WO2019146406A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2019146406A1
WO2019146406A1 PCT/JP2019/000363 JP2019000363W WO2019146406A1 WO 2019146406 A1 WO2019146406 A1 WO 2019146406A1 JP 2019000363 W JP2019000363 W JP 2019000363W WO 2019146406 A1 WO2019146406 A1 WO 2019146406A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
laminate
fuel
copolymer
Prior art date
Application number
PCT/JP2019/000363
Other languages
English (en)
French (fr)
Inventor
祐己 桑嶋
幸紀 神谷
剛志 稲葉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020207024444A priority Critical patent/KR102503962B1/ko
Priority to JP2019567965A priority patent/JP6966711B2/ja
Priority to US16/965,341 priority patent/US20210154984A1/en
Priority to EP19743463.2A priority patent/EP3730296A4/en
Priority to CN201980010292.8A priority patent/CN111655485A/zh
Publication of WO2019146406A1 publication Critical patent/WO2019146406A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses or catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to a laminate.
  • Patent Document 1 For fuel transfer piping materials such as gasoline, resin laminates are used from the viewpoint of processability, rust prevention, weight reduction, economy, etc.
  • a chlorotrifluoroethylene copolymer is used.
  • a laminate having the following layer and a layer comprising a non-fluorine-containing organic material.
  • An object of the present invention is to provide a laminate excellent in fuel permeation resistance.
  • a fluorine resin layer (A) made of a fluorine resin having a fuel permeation coefficient of 2.0 g ⁇ mm / m 2 / day or less, and an SP value of 11.5 to 13.5 (cal / cm 3 ) 1 a / 2, and laminate characterized by having a non-fluororesin layer fuel permeability coefficient is comprised of 1.0 g ⁇ mm / m 2 / day or less of non-fluorinated resin (B) (of the present invention, "the It is also referred to as “one stack”.
  • the fluorine resin is preferably a chlorotrifluoroethylene copolymer.
  • the non-fluororesin is preferably an ethylene / vinyl alcohol copolymer.
  • the laminate preferably further includes a resin layer (C).
  • the laminate preferably further has an adhesive layer (S).
  • the amine value of the resin constituting the adhesive layer (S) is preferably 10 to 80 (equivalent weight / 10 6 g).
  • the laminate is preferably a fuel tube.
  • the present invention is also a laminate having a fuel permeation coefficient of 0.05 g ⁇ mm / m 2 / day or less (also referred to as “the second laminate” in the present invention).
  • the laminate of the present invention has a fluorine resin layer made of a fluorine resin having a specific fuel permeability coefficient, and a non-fluorinated resin layer made of a non-fluorinated resin having a specific SP value and a fuel permeability coefficient. Excellent in quality.
  • the first laminate of the present invention is characterized by having a fluororesin layer (A) and a non-fluororesin layer (B). Each component will be described below.
  • the fluororesin layer (A) is made of a fluororesin, and the fluororesin has a fuel permeation coefficient of 2.0 g ⁇ mm / m 2 / day or less.
  • the fuel permeation coefficient is 2.0 g ⁇ mm / m 2 / day or less, excellent fuel low permeability is exhibited. Therefore, for example, the first laminate of the present invention can be suitably used as a fuel tube, a fuel hose or the like.
  • the fuel permeation coefficient is preferably 1.5 g ⁇ mm / m 2 / day or less, more preferably 0.8 g ⁇ mm / m 2 / day or less, and more preferably 0.55 g ⁇ mm / m 2 / day It is further more preferable that it is day or less, and it is particularly preferable that it is 0.5 g ⁇ mm / m 2 / day or less.
  • the fuel permeability coefficient is the cup for measuring the fuel permeability coefficient of SUS316 with an inner diameter of 40 mm ⁇ and a height of 20 mm, into which 18 mL of isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the mass change measured at 60 ° C. by incorporating a fluororesin sheet (45 mm in diameter, 120 ⁇ m in thickness) prepared from the resin to be measured according to the following method.
  • the resin pellets are respectively placed in a mold having a diameter of 120 mm, set in a press heated to 300 ° C., and melt pressed at a pressure of about 2.9 MPa to obtain a 0.12 mm thick fluororesin sheet, The sheet was processed to a diameter of 45 mm and a thickness of 120 ⁇ m.
  • the above-mentioned fluorocarbon resin provides a laminate having excellent low fuel permeability, and therefore, polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene (CTFE) copolymer, adhesive functional group-containing tetrafluoroethylene It is preferable that it is at least one selected from the group consisting of (TFE) / hexafluoropropylene (HFP) copolymer, and TFE / HFP / vinylidene fluoride (VdF) copolymer.
  • PCTFE polychlorotrifluoroethylene
  • CTFE chlorotrifluoroethylene
  • AdF vinylidene fluoride
  • CTFE copolymers From the viewpoint of flexibility, at least one selected from the group consisting of a CTFE copolymer, an adhesive functional group-containing TFE / HFP copolymer, and a TFE / HFP / VdF copolymer is more preferable. From the viewpoint of low fuel permeability, CTFE copolymers are more preferable.
  • the ratio is preferably 0.1 to 10 / 0.1 to 19, more preferably 77 to 95/1 to 8/1 to 17 (molar ratio), and 77 to 95/2 to 8/2 to 16 .5 (molar ratio) is more preferable, and 77 to 90/3 to 8/5 to 16 (molar ratio) is most preferable.
  • the TFE / HFP / VdF copolymer may contain 0 to 20 mol% of other monomers.
  • the PCTFE is a homopolymer of chlorotrifluoroethylene.
  • the CTFE-based copolymer more preferably contains a CTFE unit and a copolymerized unit derived from at least one monomer selected from the group consisting of TFE, HFP and PAVE, and substantially these More preferably, it consists only of copolymerized units of Further, from the viewpoint of low fuel permeability, it is preferable not to contain a monomer having a CH bond such as ethylene, vinylidene fluoride or vinyl fluoride.
  • the CTFE copolymer preferably has 10 to 90 mole% of CTFE units of all monomer units.
  • CTFE copolymer those containing a CTFE unit, a TFE unit, and a monomer ( ⁇ ) unit derived from a monomer ( ⁇ ) copolymerizable therewith are particularly preferable.
  • CTFE unit and the “TFE unit” are a moiety derived from CTFE (—CFCl—CF 2 —) and a moiety derived from TFE (—CF 2 —CF 2 —, respectively, in the molecular structure of the CTFE copolymer.
  • the “monomer ( ⁇ ) unit” is a portion formed by addition of the monomer ( ⁇ ) on the molecular structure of the CTFE copolymer.
  • Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms
  • CF 2 CFCF—OCF 2 —CF 2 CF 3 is more preferable.
  • the monomer ( ⁇ ) is preferably at least one selected from the group consisting of PAVE, the above vinyl monomer, and an alkyl perfluorovinyl ether derivative, and more preferably from the group consisting of PAVE and HFP. It is more preferable that it is at least one selected, and PAVE is particularly preferable.
  • the ratio of CTFE units to TFE units in the CTFE copolymer is 85 to 10 mol% of TFE units with respect to 15 to 90 mol% of CTFE units, and more preferably 20 to 90 mol of CTFE units. %, And the TFE unit is 80 to 10 mol%. Also preferred is one composed of 15 to 25 mol% of CTFE units and 85 to 75 mol% of TFE units.
  • the CTFE copolymer is preferably one having a total of 90 to 99.9 mol% of CTFE units and TFE units, and 0.1 to 10 mol% of monomer ( ⁇ ) units.
  • the monomer ( ⁇ ) unit is less than 0.1 mol%, moldability, environmental stress cracking resistance and fuel crack resistance tend to be inferior, and when it exceeds 10 mol%, fuel low permeability, heat resistance, It tends to be inferior to mechanical characteristics.
  • the fluorine resin is more preferably at least one selected from the group consisting of PCTFE, CTFE / TFE / PAVE copolymer and TFE / HFP / VdF copolymer from the viewpoint of low fuel permeability and adhesiveness. More preferably, it is at least one selected from the group consisting of CTFE / TFE / PAVE copolymers and TFE / HFP / VdF copolymers, and CTFE / TFE / PAVE copolymers are particularly preferred.
  • the CTFE / TFE / PAVE copolymer is a copolymer substantially consisting only of CTFE, TFE and PAVE.
  • the PAVE perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether) And the like, among which at least one selected from the group consisting of PMVE, PEVE and PPVE is preferred.
  • the PAVE unit is preferably 0.5 mol% or more, and more preferably 5 mol% or less of all monomer units.
  • Constituent units such as CTFE units are values obtained by conducting 19 F-NMR analysis.
  • the adhesive functional group is preferably at least one selected from the group consisting of a carbonyl group, a hydroxyl group, a heterocyclic group, and an amino group.
  • the fluorine resin may be one having an adhesive functional group introduced at the main chain terminal and / or side chain of the polymer.
  • the adhesive functional group containing a carbonyl group is not particularly limited.
  • the hydrogen atom bonded to the nitrogen atom may be substituted, for example, by a hydrocarbon group such as an alkyl group .
  • the adhesive functional group is an amide group, a carbamoyl group, a hydroxyl group, a carboxyl group, a carbonate group from the viewpoint of easy introduction and that the fluorocarbon resin has appropriate heat resistance and good adhesiveness at a relatively low temperature.
  • a carboxylic acid halide group and an acid anhydride bond are preferable, and an amido group, a carbamoyl group, a hydroxyl group, a carbonate group, a carboxylic acid halide group and an acid anhydride bond are more preferable.
  • the fluorine resin can be obtained by conventionally known polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization and bulk polymerization. In the polymerization, each condition such as temperature and pressure, and a polymerization initiator and other additives can be appropriately set according to the composition and amount of the fluorine resin.
  • the melting point of the fluorine resin is not particularly limited, but is preferably 160 to 270 ° C.
  • the melting point of the fluorine resin is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a DSC apparatus (manufactured by Seiko Instruments Inc.).
  • the molecular weight of the fluorine resin is preferably in such a range that the resulting laminate can exhibit good mechanical properties, low fuel permeability, and the like.
  • melt flow rate MFR
  • the MFR at any temperature in the range of about 230 to 350 ° C. which is the molding temperature range of fluororesins in general, is 0.5 to 100 g / 10 min Is preferred. More preferably, it is 1 to 50 g / 10 min, still more preferably 2 to 35 g / 10 min.
  • MFR is measured at 297 ° C.
  • the above-mentioned MFR is, for example, a mass of polymer flowing out for a unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 5 kg using a melt indexer (made by Toyo Seiki Seisakusho Co., Ltd.) g) can be measured.
  • the fluororesin layer (A) may contain one of these fluororesins, or may contain two or more thereof.
  • the perhalopolymer is a polymer in which a halogen atom is bonded to all carbon atoms constituting the main chain of the polymer.
  • the fluorine resin layer (A) further contains various fillers such as inorganic powder, glass fiber, carbon powder, carbon fiber, metal oxide and the like within the range that does not impair the performance according to the purpose and application. It may be.
  • smectite-based layered viscosity minerals such as montmorillonite, beidellite, saponite, nontronite, hectorite, sauconite, stevensite, etc., and micro-layered minerals having high aspect ratio such as mica, etc. You may add.
  • a conductive filler may be added.
  • the conductive filler is not particularly limited, and examples thereof include conductive single powder or conductive single fiber such as metal and carbon; powder of conductive compound such as zinc oxide; surface conductive powder and the like. When mix
  • the conductive single powder or conductive single fiber is not particularly limited, and for example, metal powders such as copper and nickel; metal fibers such as iron and stainless steel; carbon black, carbon fibers, described in JP-A-3-174018 and the like Carbon fibrils and the like.
  • the surface conductive treatment powder is a powder obtained by subjecting the surface of a nonconductive powder such as glass beads and titanium oxide to a conductive treatment.
  • the method of surface conduction treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating.
  • carbon black is preferably used because it is advantageous in terms of economy and static charge accumulation prevention.
  • the volume resistivity of the fluorine resin composition formed by blending the conductive filler is preferably 1 ⁇ 10 0 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • a more preferable lower limit is 1 ⁇ 10 2 ⁇ ⁇ cm, and a more preferable upper limit is 1 ⁇ 10 8 ⁇ ⁇ cm.
  • a heat stabilizer In addition to the filler, a heat stabilizer, a reinforcing agent, an ultraviolet light absorber, a pigment and other optional additives may be blended.
  • the non-fluorinated resin layer (B) is made of a non-fluorinated resin, and the non-fluorinated resin has an SP value of 11.5 to 13.5 (cal / cm 3 ) 1/2 and a fuel permeation coefficient Is 1.0 g ⁇ mm / m 2 / day or less.
  • the SP value is preferably 11.7 to 13.3 (cal / cm 3 ) 1/2, more preferably 12.0 to 13.0 (cal / cm 3 ) 1/2 , and 12.1 to 12. 6 (cal / cm 3 ) 1/2 is more preferable.
  • the SP value can be obtained by the Fedors equation (Polym. Eng. Sci., 14 [2], 147 (1974)).
  • the fuel permeation coefficient is preferably 0.8 g ⁇ mm / m 2 / day or less, more preferably 0.6 g ⁇ mm / m 2 / day or less, and 0.4 g ⁇ mm / m 2 / day It is more preferable that it is day or less.
  • the fuel permeability coefficient is the cup for measuring the fuel permeability coefficient of SUS316 with an inner diameter of 40 mm ⁇ and a height of 20 mm, into which 18 mL of isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10.
  • non-fluorine resins examples include polyvinyl alcohol polymers (10.6 to 14.1), nylon-6, nylon 66, nylon 11, nylon 12, nylon 9 T and other polyamides (9.9 to 11.6), poly Examples thereof include acrylonitrile (13.1), polyvinylidene chloride (10.4), polyethylene terephthalate (11.3), polyethylene (7.7 to 8.4), and PPS (19.8).
  • the SP value in parentheses indicates the SP value of the homopolymer, and the unit is (cal / cm 3 ) 1/2 .
  • some SP values of these non-fluororesins fall outside the range of 11.5 to 13.5 (cal / cm 3 ) 1/2 , the SP value is 11.5 by copolymerizing other monomers. It can also be adjusted in the range of 13.5 (cal / cm 3 ) 1/2 .
  • polyvinyl alcohol polymers are preferable from the viewpoint of excellent fuel permeation resistance.
  • a polyvinyl alcohol polymer saponifies a homopolymer of vinyl ester or a copolymer of vinyl ester and another monomer (particularly, a copolymer of vinyl ester and ethylene) using an alkali catalyst or the like. It is obtained.
  • vinyl esters vinyl acetate is mentioned as a representative compound, but other fatty acid vinyl esters (vinyl propionate, vinyl pivalate, etc.) can also be used.
  • the saponification degree of the vinyl ester component of the polyvinyl alcohol polymer is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 96 mol% or more. If the degree of saponification is less than 90% by mole, the fuel permeation resistance is lowered.
  • the polyvinyl alcohol polymer is ethylene / vinyl alcohol copolymer (EVOH)
  • EVOH ethylene / vinyl alcohol copolymer
  • the average value calculated from the mixing mass ratio is taken as the saponification degree of the mixture.
  • ethylene / vinyl alcohol copolymer is preferable from the viewpoint of being able to be melt-molded and having good fuel permeation resistance.
  • the ethylene content of EVOH is preferably 5 to 60 mol%. If the ethylene content is less than 5 mol%, the fuel permeation resistance may be lowered and the melt moldability may also be deteriorated.
  • the ethylene content of EVOH is preferably 10 mol% or more, more preferably 15 mol% or more, and most preferably 20 mol% or more. On the other hand, if the ethylene content exceeds 60 mol%, sufficient fuel permeation resistance may not be obtained.
  • the ethylene content is preferably 55 mol% or less, more preferably 50 mol% or less.
  • the EVOH preferably used has an ethylene content of 5 to 60 mol% and a saponification degree of 90 mol% or more. From the viewpoint of excellent impact releasability, it is preferable to use an EVOH having an ethylene content of 25 mol% or more and 55 mol% or less and a saponification degree of 90 mol% or more and less than 99 mol%.
  • EVOH consists of a mixture of 2 or more types of EVOH from which ethylene content differs
  • the average value computed from mixed mass ratio be ethylene content of a mixture.
  • the difference in ethylene content between EVOHs having the most separated ethylene content is 30 mol% or less, and the difference in saponification degree is 10 mol% or less.
  • the difference in ethylene content is more preferably 20 mol% or less, still more preferably 15 mol% or less.
  • the difference in the degree of saponification is more preferably 7 mol% or less, still more preferably 5 mol% or less.
  • ethylene content is 25 mol% EVOH (b'1) having a saponification degree of 90 to 99 mol% and an ethylene content of 25 to 55 mol% and a saponification degree of 99 mol It is preferable to mix and use EVOH (b'2) of at least% so that the blending mass ratio (b'1) / (b'2) is 5/95 to 95/5.
  • the ethylene content and the degree of saponification of EVOH can be determined by nuclear magnetic resonance (NMR) method.
  • This EVOH can also contain a small amount of units of other monomers other than ethylene units and vinyl alcohol units as copolymerized units, as long as the object of the present invention is not inhibited.
  • monomers include, for example, the following compounds: ⁇ -olefins such as propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like; Unsaturated carboxylic acids such as itaconic acid, methacrylic acid, acrylic acid and maleic acid, their salts, their partial or complete esters, their nitriles, their amides, their anhydrides; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ Vinylsilane compounds such as -methoxyethoxy) silane and ⁇ -methacryloxypropyltrimethoxysilane; unsaturated sulfonic acids or salts thereof; unsaturated thiols; vinyl pyrroli
  • the SP value of EVOH is preferably 11.7 to 13.3 (cal / cm 3 ) 1/2, more preferably 12.0 to 13.0 (cal / cm 3 ) 1/2 , and 12.1 to 12 6 (cal / cm 3 ) 1/2 is more preferable.
  • the melt flow rate (MFR) of EVOH (at 210 ° C. under a load of 2160 g, based on JIS K 7210) is 0.1 to 100 g / 10 min, more preferably 0.5 to 50 g / 10 min, still more preferably 1 to 30 g / 10 min.
  • the non-fluorine resin is formed by adding various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet light absorber, and a pigment within the range not impairing the object of the present invention. It is also good.
  • the non-fluororesin can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, weatherability, etc. by such an additive.
  • the first laminate of the present invention preferably further comprises a resin layer (C).
  • the resin constituting the resin layer (C) is a resin which is excellent in mechanical strength and can play a main role in maintaining pressure resistance and shape of a molded product, and is made of polyamide resin, polyolefin resin, vinyl chloride resin, polyurethane Resin, polyester resin, polyaramid resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyacetal resin, polycarbonate resin, acrylic resin, styrene resin, acrylonitrile / butadiene / styrene resin [ABS], cellulose resin, polyether ether Ketone resin (PEEK), polysulfone resin, polyethersulfone resin [PES], polyetherimide resin, polyethylene and the like can be mentioned.
  • the resin layer (C) it has excellent mechanical strength.
  • resin which comprises the said resin layer (C) it is preferable that it is at least 1 sort (s) selected from the group which consists of a polyamide-type resin, polyolefin resin, and polyethylene.
  • polyamide resin a so-called nylon resin comprising a polymer in which an amide bond in the molecule is bonded to an aliphatic structure or an alicyclic structure, or a polymer in which an amide bond in the molecule is bonded to an aromatic structure And any of the so-called aramid resins.
  • nylon resin is not particularly limited.
  • aramid resin For example, polypara phenylene terephthalamide, poly meta phenylene isophthalamide, etc. are mentioned.
  • the polyamide-based resin may also be made of a polymer in which a structure having no amide bond as a repeating unit is block-copolymerized or graft-copolymerized to a part of the molecule.
  • a polyamide-based resin for example, a polyamide-based elastomer such as nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, etc. And the like.
  • polyamide elastomers are obtained by block copolymerization of a nylon oligomer and a polyester oligomer through an ester bond, or by block copolymerizing a nylon oligomer and a polyether oligomer through an ether bond. It is obtained.
  • polyester oligomer include polycaprolactone and polyethylene adipate.
  • polyether oligomer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • nylon 6 / polytetramethylene glycol copolymer and nylon 12 / polytetramethylene glycol copolymer are preferable.
  • polyamide-based resins sufficient mechanical strength can be obtained even when the layer composed of polyamide-based resin is a thin layer, and, among them, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66, nylon 66/12, nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, etc. are preferred, among them Two or more may be used in combination.
  • the said polyolefin resin is resin which has a monomer unit derived from the vinyl group containing monomer which does not have a fluorine atom.
  • the vinyl group-containing monomer not having a fluorine atom is not particularly limited, but those having the above-mentioned polar functional group are preferable in applications where interlayer adhesion is required.
  • the polyolefin-based resin is not particularly limited, and examples thereof include polyolefins such as polyethylene, polypropylene and high density polyolefins, modified polyolefins obtained by modifying the above polyolefins with maleic anhydride and the like, epoxy-modified polyolefins, amine-modified polyolefins and the like. .
  • the resin constituting the resin layer (C) may be added, for example, various additives such as stabilizers such as heat stabilizers, reinforcing agents, fillers, ultraviolet light absorbers, and pigments, as long as the object of the present invention is not impaired. It may be The above-mentioned non-fluorine-containing organic material can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, weather resistance and the like by such an additive.
  • the amine value of the polyamide resin is preferably 10 to 80 (equivalent weight / 10 6 g).
  • the interlayer adhesion can be made excellent even when coextruding at a relatively low temperature. If the amine value is less than 10 (equivalent weight / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent weight / 10 6 g), the mechanical strength of the resulting laminate is insufficient, and it tends to be colored during storage and has poor handleability.
  • the lower limit is preferably 15 (equivalent / 10 6 g), more preferably 20 (equivalent / 10 6 g), and still more preferably 23 (equivalent / 10 6 g).
  • the upper limit is preferably 60 (equivalent / 10 6 g) and more preferably 50 (equivalent / 10 6 g).
  • the amine value is determined by heating and dissolving 1 g of a polyamide resin in 50 ml of m-cresol and titrating this with an aqueous solution of 1/10 N-p-toluenesulfonic acid using thymol blue as an indicator. Unless otherwise stated, it means the amine value of the polyamide resin before lamination. Of the number of amino groups possessed by the polyamide-based resin prior to lamination, a portion is considered to be consumed for adhesion to an adjacent layer, but since the number is very small with respect to the entire layer, the above-mentioned lamination The amine value of the polyamide-based resin prior to curing and the amine value in the first laminate of the present invention are substantially the same.
  • the first laminate of the present invention preferably further comprises an adhesive layer (S).
  • S adhesive layer
  • adhesive functional group-containing TFE / Et / HFP copolymer As a resin constituting the adhesive layer (S), adhesive functional group-containing TFE / Et / HFP copolymer, functional group modified polyethylene, high amine value nylon and the like can be mentioned as a representative example, but two layers to be adhered It can be selected appropriately according to the physical properties. Among them, polypropylene, polyethylene and high amine value nylon are preferable.
  • the amine value of the resin constituting the adhesive layer (S) is preferably 10 to 80 (equivalent weight / 10 6 g).
  • the interlayer adhesion can be made excellent even when coextruding at a relatively low temperature. If the amine value is less than 10 (equivalent weight / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent weight / 10 6 g), the mechanical strength of the resulting laminate is insufficient, and it tends to be colored during storage and has poor handleability.
  • the lower limit is preferably 15 (equivalent / 10 6 g), more preferably 20 (equivalent / 10 6 g), and still more preferably 23 (equivalent / 10 6 g).
  • the preferred upper limit is 60 (equivalent weight / 10 6 g).
  • the first laminate of the present invention preferably has a fuel permeation coefficient of 0.05 g ⁇ mm / m 2 / day or less.
  • the first laminate of the present invention can have a high degree of fuel permeation resistance since the fuel permeation coefficient is in the above-mentioned range.
  • the lower limit of the fuel permeation coefficient can be set to, for example, 0.001 g ⁇ mm / m 2 / day as long as it is within the above range.
  • the upper limit of the fuel permeability coefficient is more preferably 0.04 g ⁇ mm / m 2 / day, still more preferably 0.03 g ⁇ mm / m 2 / day, and most preferably 0.02 g ⁇ mm / m 2 / Day, and a particularly preferable upper limit is 0.015 g ⁇ mm / m 2 / day.
  • the fuel permeation coefficient is to be measured in a fuel permeation coefficient measuring cup into which isooctane / toluene / ethanol mixed solvent [CE10] in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the mass change measured at 60 ° C.
  • layer (A) / layer (B), layer (B) / layer (A), etc. are mentioned in an order from the liquid contact side.
  • the layered structure of layer (A) / layer (B) is suitable as a tube for fuel, and can be used also as a brake hose by attaching a metal blade.
  • layer (A) / layer (B) / layer (C), layer (A) / layer (S) / layer (B), layer (B) / layer Examples include (A) / layer (C), layer (B) / layer (S) / layer (A) and the like.
  • the layer (A) / layer (B) / layer (C) and the layer (A) / layer (S) / layer (B) stacked structure are used as a fuel tube or a chemical solution tube requiring chemical resistance. It is suitable.
  • the laminate having the four-layer structure is suitable as a fuel tube or a chemical solution tube.
  • a laminated structure of layer (A) / layer (S) / layer (B) / layer (C) is more preferable.
  • layer (A) / layer (S) / layer (B) / layer (S) / layer (S) / layer (C) / layer (B) / layer (S) / layer (A) / layer (S) / layer (C) etc. may be mentioned.
  • a layer (A) / layer (S) / layer (S) / layer (B) / layer (S) / layer (C) etc. are mentioned.
  • the laminated structure of (A) / layer (S) / layer (S) / layer (B) / layer (S) / layer (C) is suitable as a fuel tube or a chemical solution tube.
  • Each of the layer (A), the layer (B), the layer (C) and the layer (S) may be a single layer or may have a multilayer structure of two or more layers.
  • the first laminate of the present invention may include other layers other than the above layer (A), layer (B), layer (C) and layer (S).
  • the other layers described above are not particularly limited, and examples thereof include a protective layer, a colored layer, a marking layer, a dielectric layer for preventing static electricity and the like in the laminate, and the protective layer, the dielectric layer and the like are It is preferable that it is the outermost layer in the said laminated body from a function.
  • the first laminate of the present invention is a laminate having a layer (A) made of a fluorocarbon resin and a layer (B) made of a non-fluorocarbon resin.
  • each of the layer (A) and the layer (B) may be a single layer or may have a multilayer structure of two or more layers.
  • the first laminate of the present invention has a layer (A) and a layer (B), and may further have other layers.
  • the layer etc. which consist of an elastomer etc., protect the said laminated body from a vibration, an impact, etc., and give flexibility, etc. are mentioned, for example.
  • the elastomer include thermoplastic elastomers, and for example, at least one selected from the group consisting of polyamide elastomers, polyurethane elastomers, polyester elastomers, polyolefin elastomers, styrene / butadiene elastomers, and vinyl chloride elastomers. Can.
  • the first laminate of the present invention is preferably a laminate having a layer (A) made of a fluorocarbon resin and a layer (B) made of a non-fluorocarbon resin, and a resin layer (C).
  • the first laminate of the present invention may also have an adhesive layer (S) between the layer (A) and the layer (B).
  • stacked in this order are mentioned.
  • Each of the layer (A), the layer (B), the layer (C) and the layer (S) may be a single layer or may have a multilayer structure of two or more layers.
  • the layer (A) may be, for example, a layer comprising a fluorine-containing ethylenic polymer compounded with the above-mentioned conductive filler, and a fluorine-containing fluorine-free polymer. It may include a layer made of an ethylenic polymer.
  • the adhesive layer (S) comprises the layer (A) and the layer (A) It is preferable to be in contact with B).
  • the layer (C) is preferably in contact with the layer (B).
  • the boundaries between adjacent layers do not necessarily have to be clear.
  • Layers in which the concentration chains of the polymers constituting the respective layers penetrate each other from their contact surfaces and have a concentration gradient It may be a structure.
  • thermoforming a laminate for example, (1) heat melt bonding (melt adhesion) between layers by coextrusion molding each layer constituting the laminate in a molten state to form a multilayer structure in one step And a method of forming a laminate (co-extrusion molding).
  • the first laminate of the present invention is a tube or a hose
  • (2a) cylindrical layers are separately formed by an extruder to form a layer to be an inner layer.
  • a layer to be an inner layer is formed by an inner layer extruder.
  • a method of forming a layer in contact with the layer a method corresponding to the above (4), a coating obtained by electrostatically coating a polymer constituting the (4a) inner layer on the inside of the layer in contact with the layer
  • the product is placed in a heating oven and heated entirely, or a rod-shaped heating device is inserted inside the cylindrical coated article and heated from the inside to heat and melt the polymer constituting the inner layer.
  • molding etc. are mentioned.
  • the layers constituting the first laminate of the present invention can be coextruded, it is generally formed by the coextrusion molding described in (1) above.
  • the conventionally well-known multilayer co-pushing manufacturing methods such as the multi manifold method and the feed block method, are mentioned.
  • the contact surface of each layer with another layer may be subjected to surface treatment for the purpose of enhancing the interlayer adhesion.
  • surface treatment etching treatment such as sodium etching treatment; corona treatment; plasma treatment such as low temperature plasma treatment may be mentioned.
  • the molding method a method in which surface treatment is applied in each of the methods (1) and (2) and (3) and laminating is preferable, and the method (1) is most preferable.
  • the melting point of the outer layer material does not necessarily have to be higher than the melting point of the inner layer material, and the melting point of the inner layer material may be 100 ° C. or more higher than the melting point of the outer layer material. In that case, it is preferable to have a heating unit inside.
  • the first laminate of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape.
  • the film shape, the sheet shape, the tube shape, and the hose shape may be a wave shape, a corrugated shape, a convoluted shape, and the like.
  • the first laminate of the present invention is a tube or a hose
  • the first laminate of the present invention is a tube or a hose
  • one side of the annular is compressed in the region and the other side is Because it can be stretched outward, it can be easily bent at any angle without stress fatigue or delamination.
  • the method of forming the corrugated region is not limited, it can be easily formed by first forming a straight tubular tube and subsequently molding the same to form a predetermined corrugated shape or the like.
  • the laminate of the present invention is excellent not only in low fuel permeability but also in heat resistance, oil resistance, fuel oil resistance, LLC resistance and steam resistance, and can sufficiently withstand use under severe conditions. It can be used for various applications.
  • the first laminate of the present invention can be used for the following applications.
  • automobile engine engine body main motion system, valve system, lubrication / cooling system, fuel system, drive system transmission system such as intake / exhaust system, chassis steering system, brake system etc.
  • Gaskets and non-contact type and contact type packings that require heat resistance, oil resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance such as basic electric parts, control electric parts, and electric parts.
  • Seals such as packing, piston ring, split ring type packing, mechanical seal, oil seal, etc., bellows, diaphragm, hose, tube, electric wire, film, sheet, bottle, container, tank etc.
  • Films and sheets are films for food, sheets for food, films for medicine, films for medicine, sheets for diaphragm and diaphragm of diaphragm pump and various packing tubes
  • hoses are tubes for fuel tubes such as automobile fuel tubes or hoses for automobile fuels Or hoses for fuel, tubes for solvents or solvents for solvents, tubes for paints or hoses for paints (including printer application), radiator hoses for automobiles, air conditioner hoses, brake hoses, electric wire coating materials, tubes for food and drink or hoses for foods and drinks Underground buried tubes or hoses for gas stations, tubes or hoses for submarine oil fields (injection tubes, including crude oil transfer tubes) bottles, containers, tanks, etc.
  • injection tubes including crude oil transfer tubes
  • Tanks for automobiles such as radiator tanks, fuel tanks such as gasoline tanks, solvent tanks Chemical containers such as paint tanks, chemical liquid containers for semiconductors, tanks for food and beverages, etc.
  • Other applications such as flange gaskets of carburetors, seals for various vehicles such as O-rings of fuel pumps, seals for hydraulic equipment etc. It can be used for seals, gears, medical tubes (including catheters), conduits and the like.
  • cylinder head gaskets for the engine body, cylinder head gaskets, cylinder head cover gaskets, oil pan packings, gaskets such as general gaskets, O-rings, packings, seals such as timing belt cover gaskets, hoses such as control hoses, engine mounts Anti-vibration sheet, sealing material for high pressure valve in hydrogen storage system, etc.
  • Shaft seal such as crankshaft seal and camshaft seal of main motion system.
  • Fuel system Fuel system, fuel pump oil seal, diaphragm, valve, etc.
  • Filler (neck) hose fuel supply hose, fuel return hose, fuel hose such as vapor (Evapo) hose, fuel tank in-tank hose, filler seal, tank Packing, in-tank fuel pump mount, fuel pipe tube tube body and connector O-ring, etc., injector cushion ring of fuel injection device, injector seal ring, injector O-ring, pressure regulator diaphragm, check valves, etc.
  • CAC complex air control devices
  • manifold intake manifold packing, exhaust manifold packing, etc. EGR (circulation at the time of exhaust) diaphragm, control hose, emission control hose, etc. BPT diaphragm, AB valve afterburn prevention valve seat, etc.
  • Throttle Throttle body packing turbo charger turbo oil hose (supply), turbo oil hose (return), turbo air hose, intercooler hose, turbine shaft seal etc.
  • Transmission-related bearing seals Transmission-related bearing seals, transmission-related bearing seals, oil seals, O-rings, packings, torque converter hoses, etc. AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
  • Brake seal oil seals O-rings, packings, brake oil hoses, etc.
  • Masterback air valves vacuum valves, diaphragms, master cylinder piston cups, caliper seals, boots, etc.
  • Insulators of electric wires and sheaths of basic electric parts, tubes of harness exterior parts, etc.
  • O-rings For non-automotive applications, for example, oil-resistant, chemical-resistant, heat-resistant, steam-resistant or weatherproof packing, O-rings, hoses, other sealing materials, diaphragms, valves, etc. Similar packings in plants, O-rings, seals, diaphragms, valves, hoses, rolls, tubes, coatings for chemical resistance, linings, similar packings in food plant equipment and food equipment (including household items), O- Rings, hoses, seals, belts, diaphragms, valves, rolls, tubes, similar packing in nuclear plant equipment, o-rings, hoses, seals, diaphragms, valves, tubes, similar packing in general industrial parts, O-ring, hose, seal material, diamond flat Is suitable valves, rolls, tubes, linings, mandrels, electric wires, flexible joints, belts, weather strip, the application to a roll blade PPC copying machine.
  • it can be suitably used for food sealing materials, sealing materials for pharmaceuticals / chemicals, O-rings for general industrial fields, packings, sealing materials and the like.
  • it can be preferably used in packing applications for lithium ion batteries because both chemical resistance and seal can be maintained simultaneously.
  • the slidability by low friction it can be used conveniently.
  • a medicine plug for example, a cap seal of a bottle, a can seal, a medicated tape, a medicated pad, a syringe syringe packing, a substrate for percutaneous absorption, Medical bottle, medical bag, catheter, infusion set, co-infusion tube, cap liner, vacuum blood collection tube cap, syringe gasket, infusion tube, medical device gasket cap, syringe tip, grommet, blood collection tube cap , Cap seal, backing, O-ring, sheath introducer, dilator, guiding sheath, blood circuit, artificial heart-lung circuit, ro-tablator tube, indwelling needle, infusion set, infusion tube, closed-type infusion system, Infusion bag, blood bag, blood component separation bag, blood component separation Tube, artificial blood vessel, arterial cannula, stent, endoscopic treatment instrument protective tube, endoscopic scope tube, endoscopic top overtube, pha
  • the first laminate of the present invention can be suitably used for applications such as tubes, hoses, tanks, etc. in contact with flammable liquids such as fuel, in which case the part in contact with the liquid is layer (A) Is preferred. Since the portion in contact with the liquid is usually the inner layer, when the layer (A) is an inner layer, the layer (B) is an outer layer.
  • the above-mentioned “inner layer” and “outer layer” have any of the layer (A) and the layer (B) in the shape with the concept of inside and outside such as tube, hose, tank etc.
  • the laminate is on the surface of the layer (A) opposite to the contact surface with the layer (B), and / Or, between the layer (A) and the layer (B) and / or other surfaces of the surface of the layer (B) on the surface opposite to the contact surface with the layer (A) It may have a layer.
  • intermediate layer is a concept that refers to a layer between the inner layer and the outer layer.
  • the flammable liquid such as gasoline
  • the flammable liquid is likely to be in contact and an electrostatic charge is likely to be accumulated, but in order to avoid ignition by this electrostatic charge, contact with the liquid
  • the layer preferably contains a conductive filler.
  • the above-mentioned stack which is a tube for fuel, is also one of the first stacks of the present invention.
  • the first laminate of the present invention has excellent resistance to fuel permeation, and thus can be suitably used as a fuel tube laminate used for a fuel tube.
  • the preferred layer configuration of the first laminate of the present invention is not particularly limited, but in terms of being particularly suitable as a fuel tube, for example, Layer 1: Layer of CTFE copolymer layer 2: Laminated layer of ethylene / vinyl alcohol copolymer; Layer 1: Layer of CTFE copolymer layer 2: Layer of polyamide resin layer 3: Laminated layer of ethylene / vinyl alcohol copolymer; Layer 1: Layer of CTFE copolymer layer 2: Layer of ethylene / vinyl alcohol copolymer 3: Layered layer of polyamide resin; Layer 1: Layer of CTFE copolymer layer 2: Layer of polyamide resin 3: Layer of ethylene / vinyl alcohol copolymer 4: Layer of polyamide resin; Layer 1: layer of CTFE copolymer layer 2: layer of polyamide resin 3: layer of ethylene / vinyl alcohol copolymer 4: layer of polyethylene resin; Layer 1: layer of CTFE copolymer layer 2: layer of polyamide resin 3: layer of ethylene / vinyl alcohol copolymer 4
  • Each layer of the fuel tube laminate described above is formed by layering in order of layer number, and preferably layer 1 is the innermost layer.
  • the second laminate of the present invention is also a laminate characterized in that the fuel permeation coefficient is 0.05 g ⁇ mm / m 2 / day or less.
  • the second laminate of the present invention has a high degree of fuel permeation resistance because the fuel permeation coefficient is in the above-mentioned range.
  • the lower limit of the fuel permeation coefficient can be set to, for example, 0.001 g ⁇ mm / m 2 / day as long as it is within the above range.
  • the upper limit of the fuel permeation coefficient is preferably 0.04 g ⁇ mm / m 2 / day, more preferably 0.03 g ⁇ mm / m 2 / day, and most preferably 0.02 g ⁇ mm / m 2 / day.
  • the upper limit is particularly preferably 0.015 g ⁇ mm / m 2 / day.
  • the second laminate of the present invention preferably has a fluorine resin layer (A) made of a fluorine resin and a non fluorine resin layer (B) made of a non fluorine resin.
  • A fluorine resin layer
  • B non fluorine resin layer
  • the fluorine resin layer (A) is made of a fluorine resin, and the fluorine resin preferably has a fuel permeation coefficient of 2.0 g ⁇ mm / m 2 / day or less.
  • the fuel permeation coefficient is 2.0 g ⁇ mm / m 2 / day or less, excellent fuel low permeability is exhibited. Therefore, for example, the second laminate of the present invention can be suitably used as a fuel tube, a fuel hose or the like.
  • the fuel permeation coefficient is preferably 1.5 g ⁇ mm / m 2 / day or less, more preferably 0.8 g ⁇ mm / m 2 / day or less, and more preferably 0.55 g ⁇ mm / m 2 / day It is further more preferable that it is day or less, and it is particularly preferable that it is 0.5 g ⁇ mm / m 2 / day or less.
  • the fuel permeability coefficient is the cup for measuring the fuel permeability coefficient of SUS316 with an inner diameter of 40 mm ⁇ and a height of 20 mm, into which 18 mL of isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the mass change measured at 60 ° C. by incorporating a fluororesin sheet (45 mm in diameter, 120 ⁇ m in thickness) prepared from the resin to be measured according to the following method.
  • the resin pellets are respectively placed in a mold having a diameter of 120 mm, set in a press heated to 300 ° C., and melt pressed at a pressure of about 2.9 MPa to obtain a 0.12 mm thick fluororesin sheet, The sheet was processed to a diameter of 45 mm and a thickness of 120 ⁇ m.
  • the above-mentioned fluorocarbon resin provides a laminate having excellent low fuel permeability, and therefore, polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene (CTFE) copolymer, adhesive functional group-containing tetrafluoroethylene It is preferable that it is at least one selected from the group consisting of (TFE) / hexafluoropropylene (HFP) copolymer, and TFE / HFP / vinylidene fluoride (VdF) copolymer.
  • PCTFE polychlorotrifluoroethylene
  • CTFE chlorotrifluoroethylene
  • AdF vinylidene fluoride
  • CTFE copolymers From the viewpoint of flexibility, at least one selected from the group consisting of a CTFE copolymer, an adhesive functional group-containing TFE / HFP copolymer, and a TFE / HFP / VdF copolymer is more preferable. From the viewpoint of low fuel permeability, CTFE copolymers are more preferable.
  • the ratio is preferably 0.1 to 10 / 0.1 to 19, more preferably 77 to 95/1 to 8/1 to 17 (molar ratio), and 77 to 95/2 to 8/2 to 16 .5 (molar ratio) is more preferable, and 77 to 90/3 to 8/5 to 16 (molar ratio) is most preferable.
  • the TFE / HFP / VdF copolymer may contain 0 to 20 mol% of other monomers.
  • the PCTFE is a homopolymer of chlorotrifluoroethylene.
  • the CTFE-based copolymer more preferably contains a CTFE unit and a copolymerized unit derived from at least one monomer selected from the group consisting of TFE, HFP and PAVE, and substantially these More preferably, it consists only of copolymerized units of Further, from the viewpoint of low fuel permeability, it is preferable not to contain a monomer having a CH bond such as ethylene, vinylidene fluoride or vinyl fluoride.
  • the CTFE copolymer preferably has 10 to 90 mole% of CTFE units of all monomer units.
  • CTFE copolymer those containing a CTFE unit, a TFE unit, and a monomer ( ⁇ ) unit derived from a monomer ( ⁇ ) copolymerizable therewith are particularly preferable.
  • CTFE unit and the “TFE unit” are a moiety derived from CTFE (—CFCl—CF 2 —) and a moiety derived from TFE (—CF 2 —CF 2 —, respectively, in the molecular structure of the CTFE copolymer.
  • the “monomer ( ⁇ ) unit” is a portion formed by addition of the monomer ( ⁇ ) on the molecular structure of the CTFE copolymer.
  • Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms
  • CF 2 CFCF—OCF 2 —CF 2 CF 3 is more preferable.
  • the monomer ( ⁇ ) is preferably at least one selected from the group consisting of PAVE, the above vinyl monomer, and an alkyl perfluorovinyl ether derivative, and more preferably from the group consisting of PAVE and HFP. It is more preferable that it is at least one selected, and PAVE is particularly preferable.
  • the ratio of CTFE units to TFE units in the CTFE copolymer is 85 to 10 mol% of TFE units with respect to 15 to 90 mol% of CTFE units, and more preferably 20 to 90 mol of CTFE units. %, And the TFE unit is 80 to 10 mol%. Also preferred is one composed of 15 to 25 mol% of CTFE units and 85 to 75 mol% of TFE units.
  • the CTFE copolymer is preferably one having a total of 90 to 99.9 mol% of CTFE units and TFE units, and 0.1 to 10 mol% of monomer ( ⁇ ) units.
  • the monomer ( ⁇ ) unit is less than 0.1 mol%, moldability, environmental stress cracking resistance and fuel crack resistance tend to be inferior, and when it exceeds 10 mol%, fuel low permeability, heat resistance, It tends to be inferior to mechanical characteristics.
  • the fluorine resin is more preferably at least one selected from the group consisting of PCTFE, CTFE / TFE / PAVE copolymer and TFE / HFP / VdF copolymer from the viewpoint of low fuel permeability and adhesiveness. More preferably, it is at least one selected from the group consisting of CTFE / TFE / PAVE copolymers and TFE / HFP / VdF copolymers, and CTFE / TFE / PAVE copolymers are particularly preferred.
  • the CTFE / TFE / PAVE copolymer is a copolymer substantially consisting only of CTFE, TFE and PAVE.
  • the PAVE perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether) And the like, among which at least one selected from the group consisting of PMVE, PEVE and PPVE is preferred.
  • the PAVE unit is preferably 0.5 mol% or more, and more preferably 5 mol% or less of all monomer units.
  • Constituent units such as CTFE units are values obtained by conducting 19 F-NMR analysis.
  • the adhesive functional group is preferably at least one selected from the group consisting of a carbonyl group, a hydroxyl group, a heterocyclic group, and an amino group.
  • the fluorine resin may be one having an adhesive functional group introduced at the main chain terminal and / or side chain of the polymer.
  • the adhesive functional group is an amide group, a carbamoyl group, a hydroxyl group, a carboxyl group, a carbonate group from the viewpoint of easy introduction and that the fluorocarbon resin has appropriate heat resistance and good adhesiveness at a relatively low temperature.
  • a carboxylic acid halide group and an acid anhydride bond are preferable, and an amido group, a carbamoyl group, a hydroxyl group, a carbonate group, a carboxylic acid halide group and an acid anhydride bond are more preferable.
  • the fluorine resin can be obtained by conventionally known polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization and bulk polymerization. In the polymerization, each condition such as temperature and pressure, and a polymerization initiator and other additives can be appropriately set according to the composition and amount of the fluorine resin.
  • the melting point of the fluorine resin is not particularly limited, but is preferably 160 to 270 ° C.
  • the melting point of the fluorine resin is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a DSC apparatus (manufactured by Seiko Instruments Inc.).
  • the molecular weight of the fluorine resin is preferably in such a range that the resulting laminate can exhibit good mechanical properties, low fuel permeability, and the like.
  • melt flow rate MFR
  • the MFR at any temperature in the range of about 230 to 350 ° C. which is the molding temperature range of fluororesins in general, is 0.5 to 100 g / 10 min Is preferred. More preferably, it is 1 to 50 g / 10 min, still more preferably 2 to 35 g / 10 min.
  • MFR is measured at 297 ° C.
  • the above-mentioned MFR is, for example, a mass of polymer flowing out for a unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 5 kg using a melt indexer (made by Toyo Seiki Seisakusho Co., Ltd.) g) can be measured.
  • the fluororesin layer (A) may contain one of these fluororesins, or may contain two or more thereof.
  • the perhalopolymer is a polymer in which a halogen atom is bonded to all carbon atoms constituting the main chain of the polymer.
  • the fluorine resin layer (A) further contains various fillers such as inorganic powder, glass fiber, carbon powder, carbon fiber, metal oxide and the like within the range that does not impair the performance according to the purpose and application. It may be.
  • smectite-based layered viscosity minerals such as montmorillonite, beidellite, saponite, nontronite, hectorite, sauconite, stevensite, etc., and micro-layered minerals having high aspect ratio such as mica, etc. You may add.
  • a conductive filler may be added.
  • the conductive filler is not particularly limited, and examples thereof include conductive single powder or conductive single fiber such as metal and carbon; powder of conductive compound such as zinc oxide; surface conductive powder and the like. When mix
  • the conductive single powder or conductive single fiber is not particularly limited, and for example, metal powders such as copper and nickel; metal fibers such as iron and stainless steel; carbon black, carbon fibers, described in JP-A-3-174018 and the like Carbon fibrils and the like.
  • the surface conductive treatment powder is a powder obtained by subjecting the surface of a nonconductive powder such as glass beads and titanium oxide to a conductive treatment.
  • the method of surface conduction treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating.
  • carbon black is preferably used because it is advantageous in terms of economy and static charge accumulation prevention.
  • the volume resistivity of the fluorine resin composition formed by blending the conductive filler is preferably 1 ⁇ 10 0 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • a more preferable lower limit is 1 ⁇ 10 2 ⁇ ⁇ cm, and a more preferable upper limit is 1 ⁇ 10 8 ⁇ ⁇ cm.
  • a heat stabilizer In addition to the filler, a heat stabilizer, a reinforcing agent, an ultraviolet light absorber, a pigment and other optional additives may be blended.
  • the non-fluorinated resin layer (B) is made of a non-fluorinated resin, and the non-fluorinated resin has an SP value of 11.5 to 13.5 (cal / cm 3 ) 1/2 and a fuel permeation coefficient Is 1.0 g ⁇ mm / m 2 / day or less.
  • the SP value is preferably 11.7 to 13.3 (cal / cm 3 ) 1/2, more preferably 12.0 to 13.0 (cal / cm 3 ) 1/2 , and 12.1 to 12. 6 (cal / cm 3 ) 1/2 is more preferable.
  • the SP value can be obtained by the Fedors equation (Polym. Eng. Sci., 14 [2], 147 (1974)).
  • the fuel permeation coefficient is preferably 0.8 g ⁇ mm / m 2 / day or less, more preferably 0.6 g ⁇ mm / m 2 / day or less, and 0.4 g ⁇ mm / m 2 / day It is more preferable that it is day or less.
  • the fuel permeability coefficient is the cup for measuring the fuel permeability coefficient of SUS316 with an inner diameter of 40 mm ⁇ and a height of 20 mm, into which 18 mL of isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10.
  • non-fluorine resins examples include polyvinyl alcohol polymers (10.6 to 14.1), nylon-6, nylon 66, nylon 11, nylon 12, nylon 9 T and other polyamides (9.9 to 11.6), poly Examples thereof include acrylonitrile (13.1), polyvinylidene chloride (10.4), polyethylene terephthalate (11.3), polyethylene (7.7 to 8.4), and PPS (19.8).
  • the SP value in parentheses indicates the SP value of the homopolymer, and the unit is (cal / cm 3 ) 1/2 .
  • some SP values of these non-fluororesins fall outside the range of 11.5 to 13.5 (cal / cm 3 ) 1/2 , the SP value is 11.5 by copolymerizing other monomers. It can also be adjusted in the range of 13.5 (cal / cm 3 ) 1/2 .
  • polyvinyl alcohol polymers are preferable from the viewpoint of excellent fuel permeation resistance.
  • a polyvinyl alcohol polymer saponifies a homopolymer of vinyl ester or a copolymer of vinyl ester and another monomer (particularly, a copolymer of vinyl ester and ethylene) using an alkali catalyst or the like. It is obtained.
  • vinyl esters vinyl acetate is mentioned as a representative compound, but other fatty acid vinyl esters (vinyl propionate, vinyl pivalate, etc.) can also be used.
  • the saponification degree of the vinyl ester component of the polyvinyl alcohol polymer is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 96 mol% or more. If the degree of saponification is less than 90% by mole, the fuel permeation resistance is lowered.
  • the polyvinyl alcohol polymer is ethylene / vinyl alcohol copolymer (EVOH)
  • EVOH ethylene / vinyl alcohol copolymer
  • the average value calculated from the mixing mass ratio is taken as the saponification degree of the mixture.
  • ethylene / vinyl alcohol copolymer is preferable from the viewpoint of being able to be melt-molded and having good fuel permeation resistance.
  • the ethylene content of EVOH is preferably 5 to 60 mol%. If the ethylene content is less than 5 mol%, the fuel permeation resistance may be lowered and the melt moldability may also be deteriorated.
  • the ethylene content of EVOH is preferably 10 mol% or more, more preferably 15 mol% or more, and most preferably 20 mol% or more. On the other hand, if the ethylene content exceeds 60 mol%, sufficient fuel permeation resistance may not be obtained.
  • the ethylene content is preferably 55 mol% or less, more preferably 50 mol% or less.
  • the EVOH preferably used has an ethylene content of 5 to 60 mol% and a saponification degree of 90 mol% or more. From the viewpoint of excellent impact releasability, it is preferable to use an EVOH having an ethylene content of 25 mol% or more and 55 mol% or less and a saponification degree of 90 mol% or more and less than 99 mol%.
  • EVOH consists of a mixture of 2 or more types of EVOH from which ethylene content differs
  • the average value computed from mixed mass ratio be ethylene content of a mixture.
  • the difference in ethylene content between EVOHs having the most separated ethylene content is 30 mol% or less, and the difference in saponification degree is 10 mol% or less.
  • the difference in ethylene content is more preferably 20 mol% or less, still more preferably 15 mol% or less.
  • the difference in the degree of saponification is more preferably 7 mol% or less, still more preferably 5 mol% or less.
  • ethylene content is 25 mol% EVOH (b'1) having a saponification degree of 90 to 99 mol% and an ethylene content of 25 to 55 mol% and a saponification degree of 99 mol It is preferable to mix and use EVOH (b'2) of at least% so that the blending mass ratio (b'1) / (b'2) is 5/95 to 95/5.
  • the ethylene content and the degree of saponification of EVOH can be determined by nuclear magnetic resonance (NMR) method.
  • This EVOH can also contain a small amount of units of other monomers other than ethylene units and vinyl alcohol units as copolymerized units, as long as the object of the present invention is not inhibited.
  • monomers include, for example, the following compounds: ⁇ -olefins such as propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like; Unsaturated carboxylic acids such as itaconic acid, methacrylic acid, acrylic acid and maleic acid, their salts, their partial or complete esters, their nitriles, their amides, their anhydrides; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ Vinylsilane compounds such as -methoxyethoxy) silane and ⁇ -methacryloxypropyltrimethoxysilane; unsaturated sulfonic acids or salts thereof; unsaturated thiols; vinyl pyrroli
  • the SP value of EVOH is preferably 11.7 to 13.3 (cal / cm 3 ) 1/2, more preferably 12.0 to 13.0 (cal / cm 3 ) 1/2 , and 12.1 to 12 6 (cal / cm 3 ) 1/2 is more preferable.
  • the melt flow rate (MFR) of EVOH (at 210 ° C. under a load of 2160 g, based on JIS K 7210) is 0.1 to 100 g / 10 min, more preferably 0.5 to 50 g / 10 min, still more preferably 1 to 30 g / 10 min.
  • the non-fluorine resin is formed by adding various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet light absorber, and a pigment within the range not impairing the object of the present invention. It is also good.
  • the non-fluororesin can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, weatherability, etc. by such an additive.
  • the second laminate of the present invention preferably further comprises a resin layer (C).
  • the resin constituting the resin layer (C) is a resin which is excellent in mechanical strength and can play a main role in maintaining pressure resistance and shape of a molded product, and is made of polyamide resin, polyolefin resin, vinyl chloride resin, polyurethane Resin, polyester resin, polyaramid resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyacetal resin, polycarbonate resin, acrylic resin, styrene resin, acrylonitrile / butadiene / styrene resin [ABS], cellulose resin, polyether ether Ketone resin (PEEK), polysulfone resin, polyethersulfone resin [PES], polyetherimide resin, polyethylene and the like can be mentioned.
  • the second laminate of the present invention, when having the resin layer (C), is excellent in mechanical strength.
  • resin which comprises the said resin layer (C) it is preferable that it is at least 1 sort (s) selected from the group which consists of a polyamide-type resin, polyolefin resin, and polyethylene.
  • polyamide resin a so-called nylon resin comprising a polymer in which an amide bond in the molecule is bonded to an aliphatic structure or an alicyclic structure, or a polymer in which an amide bond in the molecule is bonded to an aromatic structure And any of the so-called aramid resins.
  • nylon resin is not particularly limited.
  • aramid resin For example, polypara phenylene terephthalamide, poly meta phenylene isophthalamide, etc. are mentioned.
  • the polyamide-based resin may also be made of a polymer in which a structure having no amide bond as a repeating unit is block-copolymerized or graft-copolymerized to a part of the molecule.
  • a polyamide-based resin for example, a polyamide-based elastomer such as nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, etc. And the like.
  • polyamide elastomers are obtained by block copolymerization of a nylon oligomer and a polyester oligomer through an ester bond, or by block copolymerizing a nylon oligomer and a polyether oligomer through an ether bond. It is obtained.
  • polyester oligomer include polycaprolactone and polyethylene adipate.
  • polyether oligomer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • nylon 6 / polytetramethylene glycol copolymer and nylon 12 / polytetramethylene glycol copolymer are preferable.
  • polyamide-based resins sufficient mechanical strength can be obtained even when the layer composed of polyamide-based resin is a thin layer, and, among them, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66, nylon 66/12, nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, etc. are preferred, among them Two or more may be used in combination.
  • the said polyolefin resin is resin which has a monomer unit derived from the vinyl group containing monomer which does not have a fluorine atom.
  • the vinyl group-containing monomer not having a fluorine atom is not particularly limited, but those having the above-mentioned polar functional group are preferable in applications where interlayer adhesion is required.
  • the polyolefin-based resin is not particularly limited, and examples thereof include polyolefins such as polyethylene, polypropylene and high density polyolefins, modified polyolefins obtained by modifying the above polyolefins with maleic anhydride and the like, epoxy-modified polyolefins, amine-modified polyolefins and the like. .
  • the resin constituting the resin layer (C) may be added, for example, various additives such as stabilizers such as heat stabilizers, reinforcing agents, fillers, ultraviolet light absorbers, and pigments, as long as the object of the present invention is not impaired. It may be The above-mentioned non-fluorine-containing organic material can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, weather resistance and the like by such an additive.
  • the amine value of the polyamide resin is preferably 10 to 80 (equivalent weight / 10 6 g).
  • the interlayer adhesion can be made excellent even when coextruding at a relatively low temperature. If the amine value is less than 10 (equivalent weight / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent weight / 10 6 g), the mechanical strength of the resulting laminate is insufficient, and it tends to be colored during storage and has poor handleability.
  • the lower limit is preferably 15 (equivalent / 10 6 g), more preferably 20 (equivalent / 10 6 g), and still more preferably 23 (equivalent / 10 6 g).
  • the upper limit is preferably 60 (equivalent / 10 6 g) and more preferably 50 (equivalent / 10 6 g).
  • the amine value is determined by heating and dissolving 1 g of a polyamide resin in 50 ml of m-cresol and titrating this with an aqueous solution of 1/10 N-p-toluenesulfonic acid using thymol blue as an indicator. Unless otherwise stated, it means the amine value of the polyamide resin before lamination. Of the number of amino groups possessed by the polyamide-based resin prior to lamination, a portion is considered to be consumed for adhesion to an adjacent layer, but since the number is very small with respect to the entire layer, the above-mentioned lamination The amine value of the polyamide-based resin prior to curing and the amine value in the second laminate of the present invention are substantially the same.
  • the second laminate of the present invention preferably further comprises an adhesive layer (S).
  • S adhesive layer
  • adhesive functional group-containing TFE / Et / HFP copolymer As a resin constituting the adhesive layer (S), adhesive functional group-containing TFE / Et / HFP copolymer, functional group modified polyethylene, high amine value nylon and the like can be mentioned as a representative example, but two layers to be adhered It can be selected appropriately according to the physical properties. Among them, polypropylene, polyethylene and high amine value nylon are preferable.
  • the amine value of the resin constituting the adhesive layer (S) is preferably 10 to 80 (equivalent weight / 10 6 g).
  • the interlayer adhesion can be made excellent even when coextruding at a relatively low temperature. If the amine value is less than 10 (equivalent weight / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent weight / 10 6 g), the mechanical strength of the resulting laminate is insufficient, and it tends to be colored during storage and has poor handleability.
  • the lower limit is preferably 15 (equivalent / 10 6 g), more preferably 20 (equivalent / 10 6 g), and still more preferably 23 (equivalent / 10 6 g).
  • the preferred upper limit is 60 (equivalent weight / 10 6 g).
  • the second laminate of the present invention preferably has a fuel permeation coefficient of 0.05 g ⁇ mm / m 2 / day or less.
  • the second laminate of the present invention can have a high degree of fuel permeation resistance since the fuel permeation coefficient is in the above-mentioned range.
  • the lower limit of the fuel permeation coefficient can be set to, for example, 0.001 g ⁇ mm / m 2 / day as long as it is within the above range.
  • the upper limit of the fuel permeability coefficient is more preferably 0.04 g ⁇ mm / m 2 / day, still more preferably 0.03 g ⁇ mm / m 2 / day, and most preferably 0.02 g ⁇ mm / m 2 / Day, and a particularly preferable upper limit is 0.015 g ⁇ mm / m 2 / day.
  • the fuel permeation coefficient is to be measured in a fuel permeation coefficient measuring cup into which isooctane / toluene / ethanol mixed solvent [CE10] in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the mass change measured at 60 ° C.
  • layer (A) / layer (B), layer (B) / layer (A), etc. are mentioned in an order from the liquid contact side.
  • the layered structure of layer (A) / layer (B) is suitable as a tube for fuel, and can be used also as a brake hose by attaching a metal blade.
  • layer (A) / layer (B) / layer (C), layer (A) / layer (S) / layer (B), layer (B) / layer Examples include (A) / layer (C), layer (B) / layer (S) / layer (A) and the like.
  • the layer (A) / layer (B) / layer (C) and the layer (A) / layer (S) / layer (B) stacked structure are used as a fuel tube or a chemical solution tube requiring chemical resistance. It is suitable.
  • the laminate having the four-layer structure is suitable as a fuel tube or a chemical solution tube.
  • a laminated structure of layer (A) / layer (S) / layer (B) / layer (C) is more preferable.
  • layer (A) / layer (S) / layer (B) / layer (S) / layer (S) / layer (C) / layer (B) / layer (S) / layer (A) / layer (S) / layer (C) etc. may be mentioned.
  • a layer (A) / layer (S) / layer (S) / layer (B) / layer (S) / layer (C) etc. are mentioned.
  • the laminated structure of (A) / layer (S) / layer (S) / layer (B) / layer (S) / layer (C) is suitable as a fuel tube or a chemical solution tube.
  • Each of the layer (A), the layer (B), the layer (C) and the layer (S) may be a single layer or may have a multilayer structure of two or more layers.
  • the second laminate of the present invention may include other layers other than the above layer (A), layer (B), layer (C) and layer (S).
  • the other layers described above are not particularly limited, and examples thereof include a protective layer, a colored layer, a marking layer, a dielectric layer for preventing static electricity and the like in the laminate, and the protective layer, the dielectric layer and the like are It is preferable that it is the outermost layer in the said laminated body from a function.
  • the second laminate of the present invention is a laminate having a layer (A) made of a fluorine resin and a layer (B) made of a non-fluorine resin.
  • each of the layer (A) and the layer (B) may be a single layer or may have a multilayer structure of two or more layers.
  • the second laminate of the present invention has a layer (A) and a layer (B), and may further have other layers.
  • the layer etc. which consist of an elastomer etc., protect the said laminated body from a vibration, an impact, etc., and give flexibility, etc. are mentioned, for example.
  • the elastomer include thermoplastic elastomers, and for example, at least one selected from the group consisting of polyamide elastomers, polyurethane elastomers, polyester elastomers, polyolefin elastomers, styrene / butadiene elastomers, and vinyl chloride elastomers. Can.
  • the second laminate of the present invention is preferably a laminate having a layer (A) made of a fluorocarbon resin and a layer (B) made of a non-fluorocarbon resin, and a resin layer (C).
  • the second laminate of the present invention may also have an adhesive layer (S) between the layer (A) and the layer (B).
  • the second laminate of the present invention for example, a laminate in which the layer (A) and the layer (B) are laminated in this order, the layer (A), the layer (B) and the layer (C) are laminated in this order
  • stacked in this order are mentioned.
  • Each of the layer (A), the layer (B), the layer (C) and the layer (S) may be a single layer or may have a multilayer structure of two or more layers.
  • the layer (A) may be, for example, a layer comprising a fluorine-containing ethylenic polymer compounded with the above-mentioned conductive filler, and a fluorine-containing fluorine-free polymer. It may include a layer made of an ethylenic polymer.
  • the adhesive layer (S) comprises the layer (A) and the layer (A) It is preferable to be in contact with B).
  • the layer (C) is preferably in contact with the layer (B).
  • the boundaries between adjacent layers do not necessarily have to be clear.
  • Layers in which the concentration chains of the polymers constituting the respective layers penetrate each other from their contact surfaces and have a concentration gradient It may be a structure.
  • the layers are thermally extruded by coextrusion in a molten state by coextrusion of each layer (melt adhesion) to form a multilayer structure in one step.
  • a method of forming a laminate co-extrusion molding
  • the second laminate of the present invention is a tube or a hose
  • (2a) cylindrical layers are separately formed by an extruder to form a layer to be an inner layer.
  • a method of forming a layer in contact with the layer a method corresponding to the above (4), a coating obtained by electrostatically coating a polymer constituting the (4a) inner layer on the inside of the layer in contact with the layer
  • the product is placed in a heating oven and heated entirely, or a rod-shaped heating device is inserted inside the cylindrical coated article and heated from the inside to heat and melt the polymer constituting the inner layer.
  • molding etc. are mentioned.
  • the layers constituting the second laminate of the present invention can be coextruded, it is generally formed by the coextrusion molding described in (1) above.
  • the conventionally well-known multilayer co-pushing manufacturing methods such as the multi manifold method and the feed block method, are mentioned.
  • the contact surface of each layer with another layer may be subjected to surface treatment for the purpose of enhancing the interlayer adhesion.
  • surface treatment etching treatment such as sodium etching treatment; corona treatment; plasma treatment such as low temperature plasma treatment may be mentioned.
  • the molding method a method in which surface treatment is applied in each of the methods (1) and (2) and (3) and laminating is preferable, and the method (1) is most preferable.
  • the melting point of the outer layer material does not necessarily have to be higher than the melting point of the inner layer material, and the melting point of the inner layer material may be 100 ° C. or more higher than the melting point of the outer layer material. In that case, it is preferable to have a heating unit inside.
  • the second laminate of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape.
  • the film shape, the sheet shape, the tube shape, and the hose shape may be a wave shape, a corrugated shape, a convoluted shape, and the like.
  • the second laminate of the present invention is a tube or a hose
  • the second laminate of the present invention is a tube or a hose
  • one side of the annular is compressed in the region and the other side is Because it can be stretched outward, it can be easily bent at any angle without stress fatigue or delamination.
  • the method of forming the corrugated region is not limited, it can be easily formed by first forming a straight tubular tube and subsequently molding the same to form a predetermined corrugated shape or the like.
  • the laminate of the present invention is excellent not only in low fuel permeability but also in heat resistance, oil resistance, fuel oil resistance, LLC resistance and steam resistance, and can sufficiently withstand use under severe conditions. It can be used for various applications.
  • the second laminate of the present invention can be used for the following applications.
  • automobile engine engine body main motion system, valve system, lubrication / cooling system, fuel system, drive system transmission system such as intake / exhaust system, chassis steering system, brake system etc.
  • Gaskets and non-contact type and contact type packings that require heat resistance, oil resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance such as basic electric parts, control electric parts, and electric parts.
  • Seals such as packing, piston ring, split ring type packing, mechanical seal, oil seal, etc., bellows, diaphragm, hose, tube, electric wire, film, sheet, bottle, container, tank etc.
  • Films and sheets are films for food, sheets for food, films for medicine, films for medicine, sheets for diaphragm and diaphragm of diaphragm pump and various packing tubes
  • hoses are tubes for fuel tubes such as automobile fuel tubes or hoses for automobile fuels Or hoses for fuel, tubes for solvents or solvents for solvents, tubes for paints or hoses for paints (including printer application), radiator hoses for automobiles, air conditioner hoses, brake hoses, electric wire coating materials, tubes for food and drink or hoses for foods and drinks Underground buried tubes or hoses for gas stations, tubes or hoses for submarine oil fields (injection tubes, including crude oil transfer tubes) bottles, containers, tanks, etc.
  • injection tubes including crude oil transfer tubes
  • Tanks for automobiles such as radiator tanks, fuel tanks such as gasoline tanks, solvent tanks Chemical containers such as paint tanks, chemical liquid containers for semiconductors, tanks for food and beverages, etc.
  • Other applications such as flange gaskets of carburetors, seals for various vehicles such as O-rings of fuel pumps, seals for hydraulic equipment etc. It can be used for seals, gears, medical tubes (including catheters), conduits and the like.
  • cylinder head gaskets for the engine body, cylinder head gaskets, cylinder head cover gaskets, oil pan packings, gaskets such as general gaskets, O-rings, packings, seals such as timing belt cover gaskets, hoses such as control hoses, engine mounts Anti-vibration sheet, sealing material for high pressure valve in hydrogen storage system, etc.
  • Shaft seal such as crankshaft seal and camshaft seal of main motion system.
  • Fuel system Fuel system, fuel pump oil seal, diaphragm, valve, etc.
  • Filler (neck) hose fuel supply hose, fuel return hose, fuel hose such as vapor (Evapo) hose, fuel tank in-tank hose, filler seal, tank Packing, in-tank fuel pump mount, fuel pipe tube tube body and connector O-ring, etc., injector cushion ring of fuel injection device, injector seal ring, injector O-ring, pressure regulator diaphragm, check valves, etc.
  • CAC complex air control devices
  • manifold intake manifold packing, exhaust manifold packing, etc. EGR (circulation at the time of exhaust) diaphragm, control hose, emission control hose, etc. BPT diaphragm, AB valve afterburn prevention valve seat, etc.
  • Throttle Throttle body packing turbo charger turbo oil hose (supply), turbo oil hose (return), turbo air hose, intercooler hose, turbine shaft seal etc.
  • Transmission-related bearing seals Transmission-related bearing seals, transmission-related bearing seals, oil seals, O-rings, packings, torque converter hoses, etc. AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
  • Brake seal oil seals O-rings, packings, brake oil hoses, etc.
  • Masterback air valves vacuum valves, diaphragms, master cylinder piston cups, caliper seals, boots, etc.
  • Insulators of electric wires and sheaths of basic electric parts, tubes of harness exterior parts, etc.
  • O-rings For non-automotive applications, for example, oil-resistant, chemical-resistant, heat-resistant, steam-resistant or weatherproof packing, O-rings, hoses, other sealing materials, diaphragms, valves, etc. Similar packings in plants, O-rings, seals, diaphragms, valves, hoses, rolls, tubes, coatings for chemical resistance, linings, similar packings in food plant equipment and food equipment (including household items), O- Rings, hoses, seals, belts, diaphragms, valves, rolls, tubes, similar packing in nuclear plant equipment, o-rings, hoses, seals, diaphragms, valves, tubes, similar packing in general industrial parts, O-ring, hose, seal material, diamond flat Is suitable valves, rolls, tubes, linings, mandrels, electric wires, flexible joints, belts, weather strip, the application to a roll blade PPC copying machine.
  • it can be suitably used for food sealing materials, sealing materials for pharmaceuticals / chemicals, O-rings for general industrial fields, packings, sealing materials and the like.
  • it can be preferably used in packing applications for lithium ion batteries because both chemical resistance and seal can be maintained simultaneously.
  • the slidability by low friction it can be used conveniently.
  • a medicine plug for example, a cap seal of a bottle, a can seal, a medicated tape, a medicated pad, a syringe syringe packing, a substrate for percutaneous absorption, Medical bottle, medical bag, catheter, infusion set, co-infusion tube, cap liner, vacuum blood collection tube cap, syringe gasket, infusion tube, medical device gasket cap, syringe tip, grommet, blood collection tube cap , Cap seal, backing, O-ring, sheath introducer, dilator, guiding sheath, blood circuit, artificial heart-lung circuit, ro-tablator tube, indwelling needle, infusion set, infusion tube, closed-type infusion system, Infusion bag, blood bag, blood component separation bag, blood component separation Tube, artificial blood vessel, arterial cannula, stent, endoscopic treatment instrument protective tube, endoscopic scope tube, endoscopic top overtube, pha
  • the second laminate of the present invention can be suitably used for applications such as tubes, hoses, tanks, etc. in contact with flammable liquids such as fuel, in which case the part in contact with the liquid is layer (A) Is preferred. Since the portion in contact with the liquid is usually the inner layer, when the layer (A) is an inner layer, the layer (B) is an outer layer.
  • the above-mentioned “inner layer” and “outer layer” have any of the layer (A) and the layer (B) in the shape with the concept of inside and outside such as tube, hose, tank etc.
  • the laminate is on the surface of the layer (A) opposite to the contact surface with the layer (B), and / Or, between the layer (A) and the layer (B) and / or other surfaces of the surface of the layer (B) on the surface opposite to the contact surface with the layer (A) It may have a layer.
  • the second laminate of the present invention When the second laminate of the present invention is in contact with a flammable liquid such as gasoline, the flammable liquid is likely to be in contact and an electrostatic charge is likely to be accumulated, but in order to avoid ignition by this electrostatic charge, contact with the liquid
  • the layer preferably contains a conductive filler.
  • the above-mentioned stack which is a tube for fuel, is also one of the second stacks of the present invention.
  • the second laminate of the present invention has excellent resistance to fuel permeation, and thus can be suitably used as a laminate for a fuel tube used for a fuel tube.
  • the preferred layer configuration of the second laminate of the present invention is not particularly limited, but in terms of being particularly suitable as a fuel tube, for example, Layer 1: Layer of CTFE copolymer layer 2: Laminated layer of ethylene / vinyl alcohol copolymer; Layer 1: Layer of CTFE copolymer layer 2: Layer of polyamide resin layer 3: Laminated layer of ethylene / vinyl alcohol copolymer; Layer 1: Layer of CTFE copolymer layer 2: Layer of ethylene / vinyl alcohol copolymer 3: Layered layer of polyamide resin; Layer 1: Layer of CTFE copolymer layer 2: Layer of polyamide resin 3: Layer of ethylene / vinyl alcohol copolymer 4: Layer of polyamide resin; Layer 1: layer of CTFE copolymer layer 2: layer of polyamide resin 3: layer of ethylene / vinyl alcohol copolymer 4: layer of polyethylene resin; Layer 1: layer of CTFE copolymer layer 2: layer of polyamide resin 3: layer of ethylene / vinyl alcohol copolymer 4
  • Each layer of the fuel tube laminate described above is formed by layering in order of layer number, and preferably layer 1 is the innermost layer.
  • composition of the copolymer in the synthesis example was determined by 19 F-NMR and elemental analysis of chlorine.
  • Tm melting point
  • melt flow rate (MFR) of fluorine resin Using a melt indexer (made by Toyo Seiki Seisakusho Co., Ltd.), measurement temperature in the case of fluorine resin (1) 297 ° C., measurement temperature in the case of fluorine resin (2) The mass (g) of polymer flowing out per unit time (10 minutes) from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg at 265 ° C. was measured.
  • Each was supplied to form a multilayer tube having an outer diameter of 8 mm and an inner diameter of 6 mm according to the extrusion conditions shown in Table 2.
  • Comparative example 4 EVOH1 (trade name: F101, manufactured by Kuraray, SP value: 12.3 (cal / cm 3 ) 1/2 , fuel permeation coefficient: 0.3 g ⁇ mm / m 2 / day) of the mid layer is EVOH 2 (trade name) : E 105 B, manufactured by Kuraray, SP value: 11.0 (cal / cm 3 ) 1/2 , fuel permeation coefficient: 0.3 g / mm / m 2 / day) Then, a multilayer tube was formed. The fuel permeation coefficient of the obtained multilayer tube was measured by the following method. The molding conditions and the evaluation results are shown in Table 2.
  • the tubular laminate was cut to a length of 40 cm to obtain a tubular sample. After filling the tube sample with CE10 (fuel prepared by mixing 10 volume% of ethanol with a mixture of isooctane and toluene in a volume ratio of 50: 50), both ends were sealed, and the mass change at 60 ° C. was measured for up to 1000 hours.
  • Table 2 shows the results of calculation of the fuel permeation coefficient (g ⁇ mm / m 2 / day) from the mass change per time, the surface area of the sample in the wetted part, and the thickness of the sample.
  • the laminate of the present invention can be suitably used, for example, as a tube for an automobile fuel which requires high fuel permeation resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本発明は、耐燃料透過性に優れた積層体を提供することを目的とする。 本発明は、燃料透過係数が2.0g・mm/m/day以下のフッ素樹脂からなるフッ素樹脂層(A)、及び、SP値が11.5~13.5(cal/cm1/2であり、かつ、燃料透過係数が1.0g・mm/m/day以下の非フッ素樹脂からなる非フッ素樹脂層(B)を有することを特徴とする積層体に関する。

Description

積層体
本発明は、積層体に関する。
ガソリン等の燃料移送配管材には、加工性、防錆性、軽量化、経済性等の点から樹脂積層体が用いられており、例えば特許文献1には、クロロトリフルオロエチレン共重合体からなる層とフッ素非含有有機材料からなる層を有する積層体が提案されている。
特開2010-030276号公報
しかしながら、耐燃料透過性についてはさらなる向上が求められている。
本発明は、耐燃料透過性に優れた積層体を提供することを目的とする。
本発明は、燃料透過係数が2.0g・mm/m/day以下のフッ素樹脂からなるフッ素樹脂層(A)、及び、SP値が11.5~13.5(cal/cm1/2であり、かつ、燃料透過係数が1.0g・mm/m/day以下の非フッ素樹脂からなる非フッ素樹脂層(B)を有することを特徴とする積層体(本発明の「第一の積層体」ともいう)である。
フッ素樹脂は、クロロトリフルオロエチレン系共重合体であることが好ましい。
非フッ素樹脂は、エチレン/ビニルアルコール共重合体であることが好ましい。
上記積層体は、更に、樹脂層(C)を有することが好ましい。
上記積層体は、更に、接着層(S)を有することも好ましい。
接着層(S)を構成する樹脂のアミン価は、10~80(当量/10g)であることが好ましい。
上記積層体は、燃料用チューブであることが好ましい。
本発明はまた、燃料透過係数が0.05g・mm/m/day以下である積層体(本発明の「第二の積層体」ともいう)でもある。
本発明の積層体は、特定の燃料透過係数を有するフッ素樹脂からなるフッ素樹脂層、及び、特定のSP値及び燃料透過係数を有する非フッ素樹脂からなる非フッ素樹脂層を有するため、耐燃料透過性に優れる。
本発明の第一の積層体は、フッ素樹脂層(A)、及び、非フッ素樹脂層(B)を有することを特徴とする。
以下、各構成要素について説明する。
フッ素樹脂層(A)は、フッ素樹脂からなるものであり、該フッ素樹脂は、燃料透過係数が2.0g・mm/m/day以下である。
燃料透過係数が2.0g・mm/m/day以下であることによって、優れた燃料低透過性が発揮される。従って、例えば、本発明の第一の積層体は、燃料用チューブ又は燃料用ホース等として好適に使用可能である。
上記燃料透過係数は、1.5g・mm/m/day以下であることが好ましく、0.8g・mm/m/day以下であることがより好ましく、0.55g・mm/m/day以下であることが更に好ましく、0.5g・mm/m/day以下であることが特に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製したフッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのフッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工した。
上記フッ素樹脂は、優れた燃料低透過性を有する積層体が得られることから、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン(CTFE)系共重合体、接着性官能基含有テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、及び、TFE/HFP/フッ化ビニリデン(VdF)共重合体からなる群より選択される少なくとも1種であることが好ましい。柔軟性の観点からは、CTFE系共重合体、接着性官能基含有TFE/HFP共重合体、及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、燃料低透過性の観点から、CTFE系共重合体が更に好ましい。
TFE/HFP/VdF共重合体は、VdF含有率が少ないと燃料低透過性が優れることから、TFE、HFP及びVdFの共重合割合(モル%比)がTFE/HFP/VdF=75~95/0.1~10/0.1~19である事が好ましく、77~95/1~8/1~17(モル比)であることがより好ましく、77~95/2~8/2~16.5(モル比)であることが更に好ましく、77~90/3~8/5~16(モル比)である事が最も好ましい。また、TFE/HFP/VdF共重合体はその他のモノマーを0~20モル%含んでいてもよい。他のモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、クロロトリフルオロエチレン、2-クロロペンタフルオロプロペン、過フッ素化されたビニルエーテル(例えばCFOCFCFCFOCF=CFなどのペルフルオロアルコキシビニルエーテル)などのフッ素含有モノマー、ペルフルオロアルキルビニルエーテル、ペルフルオロ-1,3-ブタジエン、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン、プロピレン、および、アルキルビニルエーテル、BTFB(HC=CH-CF-CF-Br)、BDFE(FC=CHBr)、BTFE(FC-CFBr)からなる群より選択される少なくとも一種のモノマー等が挙げられ、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、BTFB(HC=CH-CF-CF-Br)、BDFE(FC=CHBr)、BTFE(FC-CFBr)である事が好ましい。
上記PCTFEは、クロロトリフルオロエチレンの単独重合体である。
上記CTFE系共重合体としては、CTFEに由来する共重合単位(CTFE単位)と、TFE、HFP、パーフルオロ(アルキルビニルエーテル)(PAVE)、VdF、フッ化ビニル、へキサフルオロイソブテン、式:
CH=CX(CF(式中、XはH又はF、XはH、F又はCl、nは1~10の整数である)で示される単量体、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、及び、塩化ビニリデンからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことが好ましい。
また、CTFE系共重合体は、パーハロポリマーであることがより好ましい。
CTFE系共重合体としては、CTFE単位と、TFE、HFP及びPAVEからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことがより好ましく、実質的にこれらの共重合単位のみからなることが更に好ましい。また、燃料低透過性の観点から、エチレン、フッ化ビニリデン、フッ化ビニル等のCH結合を有するモノマーを含まないことが好ましい。
CTFE系共重合体は、全単量体単位の10~90モル%のCTFE単位を有することが好ましい。
CTFE系共重合体としては、CTFE単位、TFE単位及びこれらと共重合可能な単量体(α)に由来する単量体(α)単位を含むものが特に好ましい。
「CTFE単位」及び「TFE単位」は、CTFE系共重合体の分子構造上、それぞれ、CTFEに由来する部分(-CFCl-CF-)、TFEに由来する部分(-CF-CF-)であり、前記「単量体(α)単位」は、同様に、CTFE系共重合体の分子構造上、単量体(α)が付加してなる部分である。
単量体(α)としては、CTFE及びTFEと共重合可能な単量体であれば特に限定されず、エチレン(Et)、ビニリデンフルオライド(VdF)、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基)で表されるPAVE、CX=CX(CF(式中、X、X及びXは同一もしくは異なって、水素原子又はフッ素原子;Xは、水素原子、フッ素原子又は塩素原子;nは、1~10の整数)で表されるビニル単量体、CF=CF-O-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体等があげられる。
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCF-CFCFがより好ましい。
単量体(α)としては、なかでも、PAVE、上記ビニル単量体、及び、アルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種であることが好ましく、PAVE及びHFPからなる群より選択される少なくとも1種であることがより好ましく、PAVEが特に好ましい。
CTFE系共重合体における、CTFE単位とTFE単位との比率は、CTFE単位が15~90モル%に対し、TFE単位が85~10モル%であり、より好ましくは、CTFE単位が20~90モル%であり、TFE単位が80~10モル%である。また、CTFE単位15~25モル%と、TFE単位85~75モル%とから構成されるものも好ましい。
CTFE系共重合体は、CTFE単位とTFE単位との合計が90~99.9モル%であり、単量体(α)単位が0.1~10モル%であるものが好ましい。単量体(α)単位が0.1モル%未満であると、成形性、耐環境応力割れ性及び耐燃料クラック性に劣りやすく、10モル%を超えると、燃料低透過性、耐熱性、機械特性に劣る傾向にある。
フッ素樹脂は、燃料低透過性、接着性の観点から、PCTFE、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが更に好ましく、CTFE/TFE/PAVE共重合体が特に好ましい。
上記CTFE/TFE/PAVE共重合体とは、実質的にCTFE、TFE及びPAVEのみからなる共重合体である。
CTFE/TFE/PAVE共重合体において、上記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)等があげられ、なかでもPMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることが好ましい。
CTFE/TFE/PAVE共重合体において、PAVE単位は、全単量体単位の0.5モル%以上であることが好ましく、5モル%以下であることが好ましい。
CTFE単位等の構成単位は、19F-NMR分析を行うことにより得られる値である。
接着性官能基としては、カルボニル基、ヒドロキシル基、ヘテロ環基、及びアミノ基からなる群より選択される少なくとも1種であることが好ましい。
フッ素樹脂は、ポリマーの主鎖末端及び/又は側鎖に、接着性官能基を導入したものであってもよい。
本明細書において、「カルボニル基」は、炭素-酸素二重結合から構成される炭素2価の基であり、-C(=O)-で表されるものに代表される。前記カルボニル基を含む接着性官能基としては特に限定されず、たとえばカーボネート基、カルボン酸ハライド基(ハロゲノホルミル基)、ホルミル基、カルボキシル基、エステル結合(-C(=O)O-)、酸無水物結合(-C(=O)O-C(=O)-)、イソシアネート基、アミド基、イミド基(-C(=O)-NH-C(=O)-)、ウレタン結合(-NH-C(=O)O-)、カルバモイル基(NH-C(=O)-)、カルバモイルオキシ基(NH-C(=O)O-)、ウレイド基(NH-C(=O)-NH-)、オキサモイル基(NH-C(=O)-C(=O)-)等、化学構造上の一部としてカルボニル基を含むものがあげられる。
アミド基、イミド基、ウレタン結合、カルバモイル基、カルバモイルオキシ基、ウレイド基、オキサモイル基等においては、その窒素原子に結合する水素原子は、たとえばアルキル基等の炭化水素基で置換されていてもよい。
接着性官能基は、導入が容易である点、フッ素樹脂が適度な耐熱性と比較的低温での良好な接着性とを有する点から、アミド基、カルバモイル基、ヒドロキシル基、カルボキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましく、さらにはアミド基、カルバモイル基、ヒドロキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましい。
フッ素樹脂は、懸濁重合、溶液重合、乳化重合、塊状重合等、従来公知の重合方法により得ることができる。前記重合において、温度、圧力等の各条件、重合開始剤やその他の添加剤は、フッ素樹脂の組成や量に応じて適宜設定することができる。
フッ素樹脂の融点は特に限定されないが、160~270℃であることが好ましい。フッ素樹脂の融点は、DSC装置(セイコー社製)を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求める。
またフッ素樹脂の分子量は、得られる積層体が良好な機械特性や燃料低透過性等を発現できるような範囲であることが好ましい。たとえば、メルトフローレート(MFR)を分子量の指標とする場合、フッ素樹脂一般の成形温度範囲である約230~350℃の範囲の任意の温度におけるMFRは、0.5~100g/10分であることが好ましい。より好ましくは、1~50g/10分であり、更に好ましくは、2~35g/10分である。例えば、フッ素樹脂が、PCTFE、CTFE系共重合体又はTFE/HFP/VdF共重合体である場合には、297℃でMFRを測定する。
上記MFRは、メルトインデクサー(東洋精機製作所(株)製)を用い、例えば、297℃、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの質量(g)を測定することができる。
本発明においてフッ素樹脂層(A)は、これらのフッ素樹脂を1種含有するものであってもよいし、2種以上含有するものであってもよい。
なお、フッ素樹脂がパーハロポリマーである場合、耐薬品性及び燃料低透過性がより優れたものとなる。パーハロポリマーとは、重合体の主鎖を構成する炭素原子の全部にハロゲン原子が結合している重合体である。
フッ素樹脂層(A)は、さらに、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素粉末、炭素繊維、金属酸化物等の種々の充填剤を配合したものであってもよい。
たとえば、燃料透過性をさらに低減させるために、モンモリロナイト、バイデライト、サポナイト、ノントロナイト、ヘクトライト、ソーコナイト、スチブンサイト等のスメクタイト系の層状粘度鉱物や、雲母等の高アスペクト比を有する微小層状鉱物を添加してもよい。
また、導電性を付与するために、導電性フィラーを添加してもよい。導電性フィラーとしては特に限定されず、たとえば金属、炭素等の導電性単体粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉末等があげられる。導電性フィラーを配合する場合、溶融混練して予めペレットを作製することが好ましい。
導電性単体粉末又は導電性単体繊維としては特に限定されず、たとえば銅、ニッケル等の金属粉末;鉄、ステンレススチール等の金属繊維;カーボンブラック、炭素繊維、特開平3-174018号公報等に記載の炭素フィブリル等があげられる。
表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面に導電化処理を施して得られる粉末である。
表面導電化処理の方法としては特に限定されず、たとえば金属スパッタリング、無電解メッキ等があげられる。
導電性フィラーのなかでもカーボンブラックは、経済性や静電荷蓄積防止の観点で有利であるので好適に用いられる。
導電性フィラーを配合してなるフッ素樹脂組成物の体積抵抗率は、1×10~1×10Ω・cmであることが好ましい。より好ましい下限は、1×10Ω・cmであり、より好ましい上限は、1×10Ω・cmである。
また、充填剤以外に、熱安定化剤、補強剤、紫外線吸収剤、顔料、その他任意の添加剤を配合してもよい。
非フッ素樹脂層(B)は、非フッ素樹脂からなるものであり、該非フッ素樹脂は、SP値が11.5~13.5(cal/cm1/2であり、かつ、燃料透過係数が1.0g・mm/m/day以下である。
上記SP値は、11.7~13.3(cal/cm1/2が好ましく、12.0~13.0(cal/cm1/2がより好ましく、12.1~12.6(cal/cm1/2が更に好ましい。
上記SP値は、Fedorsの式(Polym.Eng.Sci.,14[2],147(1974))により求めることができる。上記燃料透過係数は、0.8g・mm/m/day以下であることが好ましく、0.6g・mm/m/day以下であることがより好ましく、0.4g・mm/m/day以下であることが更に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製した非フッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(非フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmの非フッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工した。
非フッ素樹脂としては、ポリビニルアルコール系重合体(10.6~14.1)、ナイロン-6、ナイロン66、ナイロン11、ナイロン12、ナイロン9T等のポリアミド(9.9~11.6)、ポリアクリロニトリル(13.1)、ポリ塩化ビニリデン(10.4)、ポリエチレンテレフタラート(11.3)、ポリエチレン(7.7~8.4)、PPS(19.8)等が挙げられる。括弧内のSP値は、ホモポリマーのSP値を示し、単位は(cal/cm1/2である。これらの非フッ素樹脂のSP値は11.5~13.5(cal/cm1/2の範囲を外れるものも存在するが、他のモノマーを共重合することによってSP値を11.5~13.5(cal/cm1/2の範囲に調整することもできる。これらの中でも、耐燃料透過性に優れる点から、ポリビニルアルコール系重合体が好ましい。
ポリビニルアルコール系重合体は、ビニルエステルの単独重合体、又はビニルエステルと他の単量体との共重合体(特にビニルエステルとエチレンとの共重合体)を、アルカリ触媒等を用いてケン化して得られる。ビニルエステルとしては、酢酸ビニルが代表的な化合物として挙げられるが、その他の脂肪酸ビニルエステル(プロピオン酸ビニル、ピバリン酸ビニル等)も使用できる。
上記ポリビニルアルコール系重合体のビニルエステル成分のケン化度は、好適には90モル%以上であり、より好適には95モル%以上であり、さらに好適には96モル%以上である。ケン化度が90モル%未満では、耐燃料透過性が低下する。また、上記ポリビニルアルコール系重合体がエチレン/ビニルアルコール共重合体(EVOH)である場合、ケン化度が90モル%未満では熱安定性が不充分となり、得られる成形体にゲル・ブツが含有され易くなる。
ポリビニルアルコール系重合体がケン化度の異なる2種類以上のポリビニルアルコール系重合体の混合物からなる場合には、混合質量比から算出される平均値を混合物のケン化度とする。
上記のようなポリビニルアルコール系重合体の中でも、溶融成形が可能で、耐燃料透過性が良好な点から、エチレン/ビニルアルコール共重合体(EVOH)が好適である。
EVOHのエチレン含有量は5~60モル%であるのが好ましい。エチレン含有量が5モル%未満では、耐燃料透過性が低下し溶融成形性も悪化することがある。EVOHのエチレン含有量は、好適には10モル%以上であり、より好適には15モル%以上、最適には20モル%以上である。一方、エチレン含有量が60モル%を超えると十分な耐燃料透過性が得られないことがある。エチレン含有量は、好適には55モル%以下であり、より好適には50モル%以下である。
好適に用いられるEVOHは、上述のようにエチレン含有量が5~60モル%であり、かつケン化度が90モル%以上である。耐衝撃剥離性に優れる点から、エチレン含有量は25モル%以上55モル%以下であり、ケン化度が90モル%以上99モル%未満のEVOHを使用することが好ましい。
EVOHがエチレン含有量の異なる2種類以上のEVOHの混合物からなる場合には、混合質量比から算出される平均値を混合物のエチレン含有量とする。この場合、エチレン含有量が最も離れたEVOH同士のエチレン含有量の差が30モル%以下であり、かつケン化度の差が10モル%以下であることが好ましい。これらの条件から外れる場合には、得られる架橋物の透明性が損なわれる場合がある。エチレン含有量の差はより好適には20モル%以下であり、さらに好適には15モル%以下である。また、ケン化度の差はより好適には7モル%以下であり、さらに好適には5モル%以下である。当該架橋性組成物を用いて得られる架橋物を成形した多層構造体において、耐衝撃剥離性及びガスバリア性がより高いレベルでバランスがとれたものを所望する場合は、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が90モル%以上99モル%未満のEVOH(b’1)と、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が99モル%以上のEVOH(b’2)とを、配合質量比(b’1)/(b’2)が5/95~95/5となるように混合して使用することが好ましい。
EVOHのエチレン含有量及びケン化度は、核磁気共鳴(NMR)法により求めることができる。
このEVOHは、本発明の目的が阻害されない範囲で、エチレン単位及びビニルアルコール単位以外のその他の単量体の単位を共重合単位として少量含有することもできる。このような単量体の例としては、例えば、次の化合物等が挙げられる:プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン;イタコン酸、メタクリル酸、アクリル酸、マレイン酸等の不飽和カルボン酸、その塩、その部分又は完全エステル、そのニトリル、そのアミド、その無水物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシエトキシ)シラン、γ-メタクリルオキシプロピルトリメトキシシラン等のビニルシラン系化合物;不飽和スルホン酸又はその塩;不飽和チオール類;ビニルピロリドン類等。
また、EVOHに柔軟性を付与するために従来公知の方法でEVOHを変性することも好適である。この場合、柔軟性を付与するための変性によって多少耐燃料透過性が犠牲になったとしても、EVOHの製法を調整して酸素透過速度を調整することもできる。
EVOHのSP値は、11.7~13.3(cal/cm1/2が好ましく、12.0~13.0(cal/cm1/2がより好ましく、12.1~12.6(cal/cm1/2が更に好ましい。EVOHのSP値を上記範囲とすることで、耐燃料透過性を良好にすることができる。
EVOHの好適なメルトフローレート(MFR)(210℃、2160g荷重下、JIS K7210に基づく)は0.1~100g/10分、より好適には0.5~50g/10分、さらに好適には1~30g/10分である。
非フッ素樹脂は、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。上記非フッ素樹脂は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。
本発明の第一の積層体は、更に、樹脂層(C)を有することが好ましい。
上記樹脂層(C)を構成する樹脂は、機械的強度に優れ、耐圧性や成形体の形状の維持を主たる役割とできる樹脂であり、ポリアミド系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアラミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、アクリル系樹脂、スチレン系樹脂、アクリロニトリル/ブタジエン/スチレン樹脂〔ABS〕、セルロース系樹脂、ポリエーテルエーテルケトン樹脂〔PEEK〕、ポリスルホン樹脂、ポリエーテルスルホン樹脂〔PES〕、ポリエーテルイミド樹脂、ポリエチレン等が挙げられる。本発明の第一の積層体は、上記樹脂層(C)を有すると、機械的強度に優れるものとなる。
上記樹脂層(C)を構成する樹脂としては、なかでも、ポリアミド系樹脂及びポリオレフィン系樹脂、ポリエチレンからなる群より選択される少なくとも1種であることが好ましい。
上記ポリアミド系樹脂は、分子内に繰り返し単位としてアミド結合〔-NH-C(=O)-〕を有するポリマーからなるものである。
上記ポリアミド系樹脂としては、分子内のアミド結合が脂肪族構造又は脂環族構造と結合しているポリマーからなるいわゆるナイロン樹脂、又は、分子内のアミド結合が芳香族構造と結合しているポリマーからなるいわゆるアラミド樹脂のいずれであってもよい。
上記ナイロン樹脂としては特に限定されず、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン46、ナイロン6T、ナイロン9T、ナイロン10T、メタキシリレンジアミン/アジピン酸共重合体等のポリマーからなるものが挙げられ、これらのなかから2種以上を組み合わせて用いてもよい。
上記アラミド樹脂としては特に限定されず、例えば、ポリパラフェニレンテレフタラミド、ポリメタフェニレンイソフタラミド等が挙げられる。
上記ポリアミド系樹脂は、また、繰り返し単位としてアミド結合を有しない構造が分子の一部にブロック共重合又はグラフト共重合されている高分子からなるものであってもよい。このようなポリアミド系樹脂としては、例えば、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等のポリアミド系エラストマーからなるもの等が挙げられる。これらのポリアミド系エラストマーは、ナイロンオリゴマーとポリエステルオリゴマーがエステル結合を介してブロック共重合することにより得られたもの、又は、ナイロンオリゴマーとポリエーテルオリゴマーとがエーテル結合を介してブロック共重合することにより得られたものである。上記ポリエステルオリゴマーとしては、例えば、ポリカプロラクトン、ポリエチレンアジペート等が挙げられ、上記ポリエーテルオリゴマーとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記ポリアミド系エラストマーとしては、ナイロン6/ポリテトラメチレングリコール共重合体、ナイロン12/ポリテトラメチレングリコール共重合体が好ましい。
上記ポリアミド系樹脂としては、ポリアミド系樹脂からなる層が薄層でも充分な機械的強度が得られることから、なかでも、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等が好ましく、これらのなかから2種以上を組み合わせて用いてもよい。
上記ポリオレフィン系樹脂は、フッ素原子を有しないビニル基含有単量体に由来する単量体単位を有する樹脂である。上記フッ素原子を有しないビニル基含有単量体としては特に限定されないが、層間接着性が求められる用途では上述した極性官能基を有するものが好ましい。
上記ポリオレフィン系樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、高密度ポリオレフィン等のポリオレフィンのほか、上記ポリオレフィンを無水マレイン酸等で変性した変性ポリオレフィン、エポキシ変性ポリオレフィン、アミン変性ポリオレフィン等が挙げられる。
上記樹脂層(C)を構成する樹脂は、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。上記フッ素非含有有機材料は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。
上記ポリアミド系樹脂のアミン価は10~80(当量/10g)が好ましい。アミン価が上記範囲内にあると、比較的低い温度で共押出する場合においても、層間接着力を優れたものとすることができる。上記アミン価が10(当量/10g)未満であると、層間接着力が不充分になるおそれがある。80(当量/10g)を超えると、得られる積層体の機械的強度が不充分であり、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は15(当量/10g)であり、より好ましい下限は20(当量/10g)であり、更に好ましい下限は23(当量/10g)である。好ましい上限は60(当量/10g)、より好ましい上限は50(当量/10g)である。
本明細書において、上記アミン価はポリアミド系樹脂1gをm-クレゾール50mlに加熱溶解し、これを1/10規定p-トルエンスルホン酸水溶液を用いて、チモールブルーを指示薬として滴定して求められる値であり、特に別の記載をしない限り、積層する前のポリアミド系樹脂のアミン価を意味する。積層する前のポリアミド系樹脂が有するアミノ基の数のうち、一部分は隣接する層との接着に消費されると考えられるが、その数は層全体に対してごく微量であるので、上述した積層する前のポリアミド系樹脂のアミン価と本発明の第一の積層体におけるアミン価は、実質的に同程度となる。
本発明の第一の積層体は、更に、接着層(S)を有することが好ましい。接着層(S)を有すると、層間の接着性が向上する。
上記接着層(S)を構成する樹脂としては、接着性官能基含有TFE/Et/HFP共重合体、官能基変性ポリエチレン、高アミン価ナイロン等が代表例として挙げられるが、接着させる2層の物性に応じて適宜選ぶ事ができる。なかでも、ポリプロピレン、ポリエチレン、高アミン価ナイロンが好ましい。
上記接着層(S)を構成する樹脂のアミン価は10~80(当量/10g)が好ましい。アミン価が上記範囲内にあると、比較的低い温度で共押出する場合においても、層間接着力を優れたものとすることができる。上記アミン価が10(当量/10g)未満であると、層間接着力が不充分になるおそれがある。80(当量/10g)を超えると、得られる積層体の機械的強度が不充分であり、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は15(当量/10g)であり、より好ましい下限は20(当量/10g)であり、更に好ましい下限は23(当量/10g)である。好ましい上限は60(当量/10g)である。
本発明の第一の積層体は、燃料透過係数が0.05g・mm/m/day以下であることが好ましい。
本発明の第一の積層体は、上記燃料透過係数が上述の範囲内であることから、高度の耐燃料透過性を有するものとすることができる。燃料透過係数は上述の範囲内であれば下限を例えば、0.001g・mm/m/dayとすることができる。燃料透過係数のより好ましい上限は0.04g・mm/m/dayであり、更に好ましい上限は0.03g・mm/m/dayであり、最も好ましい上限は0.02g・mm/m/dayであり、特に好ましい上限は0.015g・mm/m/dayである。
本明細書において、上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒〔CE10〕を投入した燃料透過係数測定用カップに測定対象の積層体を入れ、60℃において測定した質量変化から算出される値である。
2層構造を有する積層体の好ましい積層構成としては、接液側から順に、層(A)/層(B)、層(B)/層(A)等が挙げられる。
これらのうち、層(A)/層(B)の積層構成は燃料用チューブとして好適であり、更に金属ブレードをつけることによりブレーキホースとしても使用できる。
3層構造を有する積層体の好ましい積層構成としては、層(A)/層(B)/層(C)、層(A)/層(S)/層(B)、層(B)/層(A)/層(C)、層(B)/層(S)/層(A)等が挙げられる。
これらのうち、層(A)/層(B)/層(C)、層(A)/層(S)/層(B)の積層構成は燃料用チューブや耐薬品性が求められる薬液チューブとして好適である。
4層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(B)/層(C)、層(A)/層(B)/層(S)/層(C)、層(B)/層(S)/層(A)/層(C)、層(B)/層(A)/層(S)/層(C)等が挙げられる。
これら4層構造を有する積層体は、燃料用チューブや薬液チューブとして好適である。これらのうち、層(A)/層(S)/層(B)/層(C)の積層構成がより好ましい。
5層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(B)/層(S)/層(C)、層(B)/層(S)/層(A)/層(S)/層(C)等が挙げられる。
6層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(S)/層(B)/層(S)/層(C)等が挙げられる。
これらのうち、層(A)/層(S)/層(B)/層(C)、層(A)/層(S)/層(B)/層(S)/層(C)、層(A)/層(S)/層(S)/層(B)/層(S)/層(C)の積層構成は燃料用チューブや薬液チューブとして好適である。
上記層(A)、層(B)、層(C)及び層(S)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。
本発明の第一の積層体としては、上記層(A)、層(B)、層(C)及び層(S)以外のその他の層をも含むものであってもよい。上記その他の層としては特に限定されず、例えば、上記積層体における保護層、着色層、マーキング層、静電防止のための誘電体層等が挙げられ、保護層、誘電体層等は、その機能から、上記積層体における最外層であることが好ましい。
本発明の第一の積層体は、フッ素樹脂からなる層(A)及び非フッ素樹脂からなる層(B)を有する積層体である。
上記積層体において、層(A)及び層(B)はそれぞれ単層であってもよいし、2層以上の多層構造を有するものであってもよい。
本発明の第一の積層体は、層(A)及び層(B)を有し、更に、その他の層を有するものであってもよい。上記その他の層としては、例えば、エラストマー等からなり上記積層体を振動や衝撃等から保護し、可とう性を付与する層等が挙げられる。上記エラストマーとしては熱可塑性エラストマーが挙げられ、例えば、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、スチレン/ブタジエン系エラストマー、塩化ビニル系エラストマーからなる群から少なくとも1種を選択することができる。
本発明の第一の積層体は、また、フッ素樹脂からなる層(A)及び非フッ素樹脂からなる層(B)と、更に樹脂層(C)とを有する積層体であることが好ましい。
本発明の第一の積層体は、また、上記層(A)と層(B)との間に接着層(S)を有するものであってもよい。
本発明の第一の積層体としては、例えば、層(A)及び層(B)がこの順に積層している積層体、層(A)、層(B)及び層(C)がこの順に積層している積層体、層(A)、層(S)、層(B)及び層(C)がこの順に積層している積層体等が挙げられる。
上記層(A)、層(B)、層(C)及び層(S)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。
層(A)が2層以上の多層構造を有する場合、層(A)は、例えば、上述の導電性フィラーを配合した含フッ素エチレン性重合体からなる層と、導電性フィラーを含まない含フッ素エチレン性重合体からなる層とを含むものであってもよい。
本発明の第一の積層体が、層(A)と層(B)との間に、接着層(S)を有するものである場合、接着層(S)は、層(A)及び層(B)に接していることが好ましい。また、本発明の第一の積層体が、層(C)を有するものである場合、層(C)は、層(B)に接していることが好ましい。
本発明の第一の積層体において、接している各層の境界は必ずしも明確である必要はなく、各層を構成するポリマーの分子鎖同士が接している面から相互に侵入し、濃度勾配がある層構造であってもよい。
本発明の第一の積層体の成形方法としては、例えば、(1)積層体を構成する各層を溶融状態で共押出成形することにより層間を熱溶融着(溶融接着)させ1段で多層構造の積層体を形成する方法(共押出成形)が挙げられる。
本発明の第一の積層体の成形方法としては、また上記(1)の他に、(2)押出機によりそれぞれ別個に作製した各層を重ね合せ熱融着により層間を接着させる方法、(3)予め作製した層の表面上に押出機により溶融樹脂を押し出すことにより積層体を形成する方法、(4)予め作製した層の表面上に、該層に隣接することとなる層を構成する重合体を静電塗装したのち、得られる塗装物を全体的に又は塗装した側から加熱することにより、塗装に供した重合体を加熱溶融して層を成形する方法等が挙げられる。
本発明の第一の積層体がチューブ又はホースである場合、例えば、上記(2)に相当する方法として、(2a)押出機により円筒状の各層をそれぞれ別個に形成し、内層となる層に該層に接触する層を熱収縮チューブにて被膜する方法、上記(3)に相当する方法として、(3a)先ず内層となる層を内層押出機で形成し、この外周面に、外層押出機で該層に接触する層を形成する方法、上記(4)に相当する方法として、(4a)内層を構成する重合体を該層に接触する層の内側に静電塗装したのち、得られる塗装物を加熱オーブンに入れて全体的に加熱するか、又は、円筒状の塗装物品の内側に棒状の加熱装置を挿入して内側から加熱することにより、内層を構成する重合体を加熱溶融して成形する方法、等が挙げられる。
本発明の第一の積層体を構成する各層が共押出可能なものであれば、上記(1)の共押出成形によって形成することが一般的である。上記共押出成形としては、マルチマニホールド法、フィードブロック法等の従来公知の多層共押製造法が挙げられる。
上記(2)及び(3)の成形方法においては、各層を形成したのち、層間接着性を高めることを目的として、各層における他の層との接触面を表面処理してもよい。そのような表面処理としては、ナトリウムエッチング処理等のエッチング処理;コロナ処理;低温プラズマ処理等のプラズマ処理が挙げられる。
上記成形方法としては、上記(1)、及び、上記(2)と(3)の各方法において表面処理を施して積層させる方法が好ましく、(1)の方法が最も好ましい。
本発明の第一の積層体の成形方法としては、また、複数の材料を多段階に分けて回転成形によって積層する成形方法も可能である。その場合、必ずしも外層材料の融点は内層材料の融点より高くする必要はなく、内層材料の融点は外層材料の融点より100℃以上高くてもよい。その場合は内部にも加熱部があった方が好ましい。
本発明の第一の積層体は、フィルム形状、シート形状、チューブ形状、ホース形状、ボトル形状、タンク形状等の各種形状とすることができる。フィルム形状、シート形状、チューブ形状、ホース形状は、波形形状、蛇腹(corrugated)形状、渦巻き(convoluted)形状等であってもよい。
本発明の第一の積層体がチューブ又はホースである場合、かかる波形の折り目が複数個環状に配設されている領域を有することにより、その領域において環状の一側を圧縮し、他側を外方に伸張することができるので、応力疲労や層間の剥離を伴うことなく容易に任意の角度で曲げることが可能となる。
波形領域の形成方法は限定されないが、まず直管状のチューブを成形した後に、引き続いてモールド成形等し、所定の波形形状等とすることにより容易に形成することができる。
本発明の積層体は、燃料低透過性に優れるほか、耐熱性、耐油性、耐燃料油性、耐LLC性、耐スチーム性に優れており、また、過酷な条件下での使用に十分耐えうるものであり、各種の用途に使用可能である。
本発明の第一の積層体は、以下の用途に用いることができる。
たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、潤滑・冷却系、燃料系、吸気・排気系など、駆動系のトランスミッション系など、シャーシのステアリング系、ブレーキ系など、電装品の基本電装部品、制御系電装部品、装備電装部品などの、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性が要求されるガスケットや非接触型および接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシールなど)などのシール、ベローズ、ダイヤフラム、ホース、チューブ、電線、フィルム、シート、ボトル、容器、タンクなどとして好適な特性を備えており、
フィルム、シート類としては食品用フィルム、食品用シート、薬品用フィルム、薬品用シート、ダイヤフラムポンプのダイヤフラムや各種パッキン等
チューブ、ホース類としては自動車燃料用チューブ若しくは自動車燃料用ホース等の燃料用チューブ又は燃料用ホース、溶剤用チューブ又は溶剤用ホース、塗料用チューブ又は塗料用ホース(プリンタ用途含む)、自動車のラジエーターホース、エアコンホース、ブレーキホース、電線被覆材、飲食物用チューブ又は飲食物用ホース、ガソリンスタンド用地下埋設チューブ若しくはホース、海底油田用チューブ若しくはホース(インジェクションチューブ、原油移送チューブ含む)等
ボトル、容器、タンク類としては自動車のラジエータータンク、ガソリンタンク等の燃料用タンク、溶剤用タンク、塗料用タンク、半導体用薬液容器等の薬液容器、飲食物用タンク等
その他用途としてはキャブレターのフランジガスケット、燃料ポンプのOリング等の各種自動車用シール、油圧機器のシール等の各種機械関係シール、ギア、医療用チューブ(カテーテル含む)、索道管等に使用可能である。
具体的には、エンジン本体の、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケットなどのガスケット、O-リング、パッキン、タイミングベルトカバーガスケットなどのシール、コントロールホースなどのホース、エンジンマウントの防振シート、水素貯蔵システム内の高圧弁用シール材など。
主運動系の、クランクシャフトシール、カムシャフトシールなどのシャフトシールなど。
動弁系の、エンジンバルブのバルブステムシールなど。
潤滑・冷却系の、エンジンオイルクーラーのエンジンオイルクーラーホース、オイルリターンホース、シールガスケットなどや、ラジエータ周辺のウォーターホース、バキュームポンプのバキュームポンプオイルホースなど。
燃料系の、燃料ポンプのオイルシール、ダイヤフラム、バルブなど、フィラー(ネック)ホース、燃料供給ホース、燃料リターンホース、ベーパー(エバポ)ホースなどの燃料ホース、燃料タンクのインタンクホース、フィラーシール、タンクパッキン、インタンクフューエルポンプマウントなど、燃料配管チューブのチューブ本体やコネクターO-リングなど、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターO-リング、プレッシャーレギュレーターダイヤフラム、チェックバルブ類など、キャブレターのニードルバルブ花弁、加速ポンプピストン、フランジガスケット、コントロールホースなど、複合空気制御装置(CAC)のバルブシート、ダイヤフラムなど。
吸気・排気系の、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキンなど、EGR(排気際循環)のダイヤフラム、コントロールホース、エミッションコントロールホースなど、BPTのダイヤフラムなど、ABバルブのアフターバーン防止バルブシートなど、スロットルのスロットルボディパッキン、ターボチャージャーのターボオイルホース(供給)、ターボオイルホース(リターン)、ターボエアホース、インタークーラーホース、タービンシャフトシールなど。
トランスミッション系の、トランスミッション関連のベアリングシール、オイルシール、O-リング、パッキン、トルコンホースなど、ATのミッションオイルホース、ATFホース、O-リング、パッキン類など。
ステアリング系の、パワーステアリングオイルホースなど。
ブレーキ系の、オイルシール、O-リング、パッキン、ブレーキオイルホースなど、マスターバックの大気弁、真空弁、ダイヤフラムなど、マスターシリンダーのピストンカップなど、キャリパーシール、ブーツ類など。
基本電装部品の、電線(ハーネス)の絶縁体やシースなど、ハーネス外装部品のチューブなど。
制御系電装部品の、各種センサー線の被覆材料など。
装備電装部品の、カーエアコンのO-リング、パッキン、クーラーホース、外装品のワイパーブレードなど。
また自動車用以外では、たとえば、船舶、航空機などの輸送機関における耐油、耐薬品、耐熱、耐スチーム、あるいは耐候用のパッキン、O-リング、ホース、その他のシール材、ダイヤフラム、バルブに、また化学プラントにおける同様のパッキン、O-リング、シール材、ダイヤフラム、バルブ、ホース、ロール、チューブ、耐薬品用コーティング、ライニングに、食品プラント機器および食品機器(家庭用品を含む)における同様のパッキン、O-リング、ホース、シール材、ベルト、ダイヤフラム、バルブ、ロール、チューブに、原子力プラント機器における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、チューブに、一般工業部品における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ウエザーストリップ、PPC複写機のロールブレードなどへの用途に好適である。
また、食品シール材用途、医薬・ケミカル用途のシール材、一般工業分野のO-リング、パッキン、シール材等に好適に用いることができる。特に、リチウムイオン電池のパッキン用途には耐薬品性とシールの両方を同時に維持できることから好適に使用できる。その他、低摩擦による摺動性が要求される用途においては、好適に使用できる。
本発明の積層体が適用できる医療用成形品としては、具体的には、例えば、薬栓、ボトルのキャップシール、缶シール、薬用テープ、薬用パッド、注射器シリンジパッキン、経皮吸収薬用基材、ほ乳びん等の吸い口、医療用バッグ、カテーテル、輸液セット、混注管、キャップライナー、真空採血管のキャップ、シリンジ用ガスケット、輸液チューブ、医療機器のガスケット・キャップ、シリンジチップ、グロメット、採血管キャップ、キャップシール、バッキング、O-リング、シースイントロデューサー、ダイレーター、ガイディングシース、血液回路、人工心肺回路、ロ-タブレーター用チューブ、留置針、インフュージョンセット、輸液チューブ、閉鎖式輸液システム、輸液バッグ、血液バッグ、血液成分分離バッグ、血液成分分離バッグ用チューブ、人工血管、動脈カニューレ、ステント、内視鏡処置具保護チューブ、内視鏡スコープチューブ、内視鏡トップオーバーチューブ、咽頭部通過用ガイドチューブ、冠動脈バイパス術用チューブ、イレウスチューブ、経皮経肝胆道ドレナージ術用チューブ、電気メス外装チューブ、超音波メス外装チューブ、剥離鉗子外装チューブ、細胞培養用バッグ等が挙げられる。
本発明の第一の積層体は、チューブ、ホース、タンク等、燃料等の引火性の液体に接する用途に好適に用いることができ、この場合、液体と接する箇所は層(A)であることが好ましい。上記液体と接する箇所は、通常、内層であるので、層(A)を内層とする場合、層(B)は外層となる。本明細書において、上記「内層」「外層」は、チューブ、ホース、タンク等の内側・外側の概念を伴う形状において、上記層(A)及び上記層(B)のうちどの層が内側か外側か又はこの二者の間に位置するかを表すにすぎず、上記積層体は、上記層(A)の表面のうち上記層(B)との接面とは反対側の表面上、及び/又は、上記層(A)と上記層(B)との間、及び/又は、上記層(B)の表面のうち上記層(A)との接面とは反対側の表面上にそれぞれその他の層を有するものであってもよい。
本明細書において、「中間層」という場合、上記内層と上記外層との間にある層を指す概念である。
本発明の第一の積層体がガソリン等の引火性の液体に接する場合、引火性の液体が接して静電荷が蓄積しやすいが、この静電荷によって引火することを避けるため、液体と接触する層は導電性フィラーを含有することが好ましい。
燃料用チューブである上記積層体も本発明の第一の積層体の一つである。
本発明の第一の積層体は、上述したように、優れた耐燃料透過性を有するので、燃料用チューブに用いる燃料チューブ用積層体として好適に用いることができる。
本発明の第一の積層体の好ましい層構成としては特に限定されないが、燃料用チューブとして特に好適である点で、例えば、
層1:CTFE系共重合体からなる層
層2:エチレン/ビニルアルコール共重合体からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:エチレン/ビニルアルコール共重合体からなる層
層3:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリエチレン系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
層5:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
層5:ポリエチレン系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:ポリアミド系樹脂からなる層
層4:エチレン/ビニルアルコール共重合体からなる層
層5:ポリアミド系樹脂からなる層
層6:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:ポリアミド系樹脂からなる層
層4:エチレン/ビニルアルコール共重合体からなる層
層5:ポリアミド系樹脂からなる層
層6:ポリエチレン系樹脂からなる層
からなる積層体;
等が挙げられる。
上述した燃料チューブ用積層体の各層は、層の番号順に積層してなるものであり、好ましくは層1が最内層である。
本発明の第二の積層体は、燃料透過係数が0.05g・mm/m/day以下であることを特徴とする積層体でもある。
本発明の第二の積層体は、上記燃料透過係数が上述の範囲内であることから、高度の耐燃料透過性を有する。燃料透過係数は上述の範囲内であれば下限を例えば、0.001g・mm/m/dayとすることができる。燃料透過係数の好ましい上限は0.04g・mm/m/dayであり、更に好ましい上限は0.03g・mm/m/dayであり、最も好ましい上限は0.02g・mm/m/dayであり、特に好ましい上限は0.015g・mm/m/dayである。
本発明の第二の積層体は、フッ素樹脂からなるフッ素樹脂層(A)、及び、非フッ素樹脂からなる非フッ素樹脂層(B)を有することが好ましい。
以下、各構成要素について説明する。
フッ素樹脂層(A)は、フッ素樹脂からなるものであり、該フッ素樹脂は、燃料透過係数が2.0g・mm/m/day以下であることが好ましい。
燃料透過係数が2.0g・mm/m/day以下であることによって、優れた燃料低透過性が発揮される。従って、例えば、本発明の第二の積層体は、燃料用チューブ又は燃料用ホース等として好適に使用可能である。
上記燃料透過係数は、1.5g・mm/m/day以下であることが好ましく、0.8g・mm/m/day以下であることがより好ましく、0.55g・mm/m/day以下であることが更に好ましく、0.5g・mm/m/day以下であることが特に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製したフッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのフッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工した。
上記フッ素樹脂は、優れた燃料低透過性を有する積層体が得られることから、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン(CTFE)系共重合体、接着性官能基含有テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、及び、TFE/HFP/フッ化ビニリデン(VdF)共重合体からなる群より選択される少なくとも1種であることが好ましい。柔軟性の観点からは、CTFE系共重合体、接着性官能基含有TFE/HFP共重合体、及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、燃料低透過性の観点から、CTFE系共重合体が更に好ましい。
TFE/HFP/VdF共重合体は、VdF含有率が少ないと燃料低透過性が優れることから、TFE、HFP及びVdFの共重合割合(モル%比)がTFE/HFP/VdF=75~95/0.1~10/0.1~19である事が好ましく、77~95/1~8/1~17(モル比)であることがより好ましく、77~95/2~8/2~16.5(モル比)であることが更に好ましく、77~90/3~8/5~16(モル比)である事が最も好ましい。また、TFE/HFP/VdF共重合体はその他のモノマーを0~20モル%含んでいてもよい。他のモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、クロロトリフルオロエチレン、2-クロロペンタフルオロプロペン、過フッ素化されたビニルエーテル(例えばCFOCFCFCFOCF=CFなどのペルフルオロアルコキシビニルエーテル)などのフッ素含有モノマー、ペルフルオロアルキルビニルエーテル、ペルフルオロ-1,3-ブタジエン、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン、プロピレン、および、アルキルビニルエーテル、BTFB(HC=CH-CF-CF-Br)、BDFE(FC=CHBr)、BTFE(FC-CFBr)からなる群より選択される少なくとも一種のモノマー等が挙げられ、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、BTFB(HC=CH-CF-CF-Br)、BDFE(FC=CHBr)、BTFE(FC-CFBr)である事が好ましい。
上記PCTFEは、クロロトリフルオロエチレンの単独重合体である。
上記CTFE系共重合体としては、CTFEに由来する共重合単位(CTFE単位)と、TFE、HFP、パーフルオロ(アルキルビニルエーテル)(PAVE)、VdF、フッ化ビニル、へキサフルオロイソブテン、式:
CH=CX(CF(式中、XはH又はF、XはH、F又はCl、nは1~10の整数である)で示される単量体、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、及び、塩化ビニリデンからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことが好ましい。
また、CTFE系共重合体は、パーハロポリマーであることがより好ましい。
CTFE系共重合体としては、CTFE単位と、TFE、HFP及びPAVEからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことがより好ましく、実質的にこれらの共重合単位のみからなることが更に好ましい。また、燃料低透過性の観点から、エチレン、フッ化ビニリデン、フッ化ビニル等のCH結合を有するモノマーを含まないことが好ましい。
CTFE系共重合体は、全単量体単位の10~90モル%のCTFE単位を有することが好ましい。
CTFE系共重合体としては、CTFE単位、TFE単位及びこれらと共重合可能な単量体(α)に由来する単量体(α)単位を含むものが特に好ましい。
「CTFE単位」及び「TFE単位」は、CTFE系共重合体の分子構造上、それぞれ、CTFEに由来する部分(-CFCl-CF-)、TFEに由来する部分(-CF-CF-)であり、前記「単量体(α)単位」は、同様に、CTFE系共重合体の分子構造上、単量体(α)が付加してなる部分である。
単量体(α)としては、CTFE及びTFEと共重合可能な単量体であれば特に限定されず、エチレン(Et)、ビニリデンフルオライド(VdF)、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基)で表されるPAVE、CX=CX(CF(式中、X、X及びXは同一もしくは異なって、水素原子又はフッ素原子;Xは、水素原子、フッ素原子又は塩素原子;nは、1~10の整数)で表されるビニル単量体、CF=CF-O-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体等があげられる。
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCF-CFCFがより好ましい。
単量体(α)としては、なかでも、PAVE、上記ビニル単量体、及び、アルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種であることが好ましく、PAVE及びHFPからなる群より選択される少なくとも1種であることがより好ましく、PAVEが特に好ましい。
CTFE系共重合体における、CTFE単位とTFE単位との比率は、CTFE単位が15~90モル%に対し、TFE単位が85~10モル%であり、より好ましくは、CTFE単位が20~90モル%であり、TFE単位が80~10モル%である。また、CTFE単位15~25モル%と、TFE単位85~75モル%とから構成されるものも好ましい。
CTFE系共重合体は、CTFE単位とTFE単位との合計が90~99.9モル%であり、単量体(α)単位が0.1~10モル%であるものが好ましい。単量体(α)単位が0.1モル%未満であると、成形性、耐環境応力割れ性及び耐燃料クラック性に劣りやすく、10モル%を超えると、燃料低透過性、耐熱性、機械特性に劣る傾向にある。
フッ素樹脂は、燃料低透過性、接着性の観点から、PCTFE、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが更に好ましく、CTFE/TFE/PAVE共重合体が特に好ましい。
上記CTFE/TFE/PAVE共重合体とは、実質的にCTFE、TFE及びPAVEのみからなる共重合体である。
CTFE/TFE/PAVE共重合体において、上記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)等があげられ、なかでもPMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることが好ましい。
CTFE/TFE/PAVE共重合体において、PAVE単位は、全単量体単位の0.5モル%以上であることが好ましく、5モル%以下であることが好ましい。
CTFE単位等の構成単位は、19F-NMR分析を行うことにより得られる値である。
接着性官能基としては、カルボニル基、ヒドロキシル基、ヘテロ環基、及びアミノ基からなる群より選択される少なくとも1種であることが好ましい。
フッ素樹脂は、ポリマーの主鎖末端及び/又は側鎖に、接着性官能基を導入したものであってもよい。
接着性官能基は、導入が容易である点、フッ素樹脂が適度な耐熱性と比較的低温での良好な接着性とを有する点から、アミド基、カルバモイル基、ヒドロキシル基、カルボキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましく、さらにはアミド基、カルバモイル基、ヒドロキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましい。
フッ素樹脂は、懸濁重合、溶液重合、乳化重合、塊状重合等、従来公知の重合方法により得ることができる。前記重合において、温度、圧力等の各条件、重合開始剤やその他の添加剤は、フッ素樹脂の組成や量に応じて適宜設定することができる。
フッ素樹脂の融点は特に限定されないが、160~270℃であることが好ましい。フッ素樹脂の融点は、DSC装置(セイコー社製)を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求める。
またフッ素樹脂の分子量は、得られる積層体が良好な機械特性や燃料低透過性等を発現できるような範囲であることが好ましい。たとえば、メルトフローレート(MFR)を分子量の指標とする場合、フッ素樹脂一般の成形温度範囲である約230~350℃の範囲の任意の温度におけるMFRは、0.5~100g/10分であることが好ましい。より好ましくは、1~50g/10分であり、更に好ましくは、2~35g/10分である。例えば、フッ素樹脂が、PCTFE、CTFE系共重合体又はTFE/HFP/VdF共重合体である場合には、297℃でMFRを測定する。
上記MFRは、メルトインデクサー(東洋精機製作所(株)製)を用い、例えば、297℃、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの質量(g)を測定することができる。
フッ素樹脂層(A)は、これらのフッ素樹脂を1種含有するものであってもよいし、2種以上含有するものであってもよい。
なお、フッ素樹脂がパーハロポリマーである場合、耐薬品性及び燃料低透過性がより優れたものとなる。パーハロポリマーとは、重合体の主鎖を構成する炭素原子の全部にハロゲン原子が結合している重合体である。
フッ素樹脂層(A)は、さらに、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素粉末、炭素繊維、金属酸化物等の種々の充填剤を配合したものであってもよい。
たとえば、燃料透過性をさらに低減させるために、モンモリロナイト、バイデライト、サポナイト、ノントロナイト、ヘクトライト、ソーコナイト、スチブンサイト等のスメクタイト系の層状粘度鉱物や、雲母等の高アスペクト比を有する微小層状鉱物を添加してもよい。
また、導電性を付与するために、導電性フィラーを添加してもよい。導電性フィラーとしては特に限定されず、たとえば金属、炭素等の導電性単体粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉末等があげられる。導電性フィラーを配合する場合、溶融混練して予めペレットを作製することが好ましい。
導電性単体粉末又は導電性単体繊維としては特に限定されず、たとえば銅、ニッケル等の金属粉末;鉄、ステンレススチール等の金属繊維;カーボンブラック、炭素繊維、特開平3-174018号公報等に記載の炭素フィブリル等があげられる。
表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面に導電化処理を施して得られる粉末である。
表面導電化処理の方法としては特に限定されず、たとえば金属スパッタリング、無電解メッキ等があげられる。
導電性フィラーのなかでもカーボンブラックは、経済性や静電荷蓄積防止の観点で有利であるので好適に用いられる。
導電性フィラーを配合してなるフッ素樹脂組成物の体積抵抗率は、1×10~1×10Ω・cmであることが好ましい。より好ましい下限は、1×10Ω・cmであり、より好ましい上限は、1×10Ω・cmである。
また、充填剤以外に、熱安定化剤、補強剤、紫外線吸収剤、顔料、その他任意の添加剤を配合してもよい。
非フッ素樹脂層(B)は、非フッ素樹脂からなるものであり、該非フッ素樹脂は、SP値が11.5~13.5(cal/cm1/2であり、かつ、燃料透過係数が1.0g・mm/m/day以下である。
上記SP値は、11.7~13.3(cal/cm1/2が好ましく、12.0~13.0(cal/cm1/2がより好ましく、12.1~12.6(cal/cm1/2が更に好ましい。
上記SP値は、Fedorsの式(Polym.Eng.Sci.,14[2],147(1974))により求めることができる。
上記燃料透過係数は、0.8g・mm/m/day以下であることが好ましく、0.6g・mm/m/day以下であることがより好ましく、0.4g・mm/m/day以下であることが更に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製した非フッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(非フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmの非フッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工した。
非フッ素樹脂としては、ポリビニルアルコール系重合体(10.6~14.1)、ナイロン-6、ナイロン66、ナイロン11、ナイロン12、ナイロン9T等のポリアミド(9.9~11.6)、ポリアクリロニトリル(13.1)、ポリ塩化ビニリデン(10.4)、ポリエチレンテレフタラート(11.3)、ポリエチレン(7.7~8.4)、PPS(19.8)等が挙げられる。括弧内のSP値は、ホモポリマーのSP値を示し、単位は(cal/cm1/2である。これらの非フッ素樹脂のSP値は11.5~13.5(cal/cm1/2の範囲を外れるものも存在するが、他のモノマーを共重合することによってSP値を11.5~13.5(cal/cm1/2の範囲に調整することもできる。これらの中でも、耐燃料透過性に優れる点から、ポリビニルアルコール系重合体が好ましい。
ポリビニルアルコール系重合体は、ビニルエステルの単独重合体、又はビニルエステルと他の単量体との共重合体(特にビニルエステルとエチレンとの共重合体)を、アルカリ触媒等を用いてケン化して得られる。ビニルエステルとしては、酢酸ビニルが代表的な化合物として挙げられるが、その他の脂肪酸ビニルエステル(プロピオン酸ビニル、ピバリン酸ビニル等)も使用できる。
上記ポリビニルアルコール系重合体のビニルエステル成分のケン化度は、好適には90モル%以上であり、より好適には95モル%以上であり、さらに好適には96モル%以上である。ケン化度が90モル%未満では、耐燃料透過性が低下する。また、上記ポリビニルアルコール系重合体がエチレン/ビニルアルコール共重合体(EVOH)である場合、ケン化度が90モル%未満では熱安定性が不充分となり、得られる成形体にゲル・ブツが含有され易くなる。
ポリビニルアルコール系重合体がケン化度の異なる2種類以上のポリビニルアルコール系重合体の混合物からなる場合には、混合質量比から算出される平均値を混合物のケン化度とする。
上記のようなポリビニルアルコール系重合体の中でも、溶融成形が可能で、耐燃料透過性が良好な点から、エチレン/ビニルアルコール共重合体(EVOH)が好適である。
EVOHのエチレン含有量は5~60モル%であるのが好ましい。エチレン含有量が5モル%未満では、耐燃料透過性が低下し溶融成形性も悪化することがある。EVOHのエチレン含有量は、好適には10モル%以上であり、より好適には15モル%以上、最適には20モル%以上である。一方、エチレン含有量が60モル%を超えると十分な耐燃料透過性が得られないことがある。エチレン含有量は、好適には55モル%以下であり、より好適には50モル%以下である。
好適に用いられるEVOHは、上述のようにエチレン含有量が5~60モル%であり、かつケン化度が90モル%以上である。耐衝撃剥離性に優れる点から、エチレン含有量は25モル%以上55モル%以下であり、ケン化度が90モル%以上99モル%未満のEVOHを使用することが好ましい。
EVOHがエチレン含有量の異なる2種類以上のEVOHの混合物からなる場合には、混合質量比から算出される平均値を混合物のエチレン含有量とする。この場合、エチレン含有量が最も離れたEVOH同士のエチレン含有量の差が30モル%以下であり、かつケン化度の差が10モル%以下であることが好ましい。これらの条件から外れる場合には、得られる架橋物の透明性が損なわれる場合がある。エチレン含有量の差はより好適には20モル%以下であり、さらに好適には15モル%以下である。また、ケン化度の差はより好適には7モル%以下であり、さらに好適には5モル%以下である。当該架橋性組成物を用いて得られる架橋物を成形した多層構造体において、耐衝撃剥離性及びガスバリア性がより高いレベルでバランスがとれたものを所望する場合は、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が90モル%以上99モル%未満のEVOH(b’1)と、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が99モル%以上のEVOH(b’2)とを、配合質量比(b’1)/(b’2)が5/95~95/5となるように混合して使用することが好ましい。
EVOHのエチレン含有量及びケン化度は、核磁気共鳴(NMR)法により求めることができる。
このEVOHは、本発明の目的が阻害されない範囲で、エチレン単位及びビニルアルコール単位以外のその他の単量体の単位を共重合単位として少量含有することもできる。このような単量体の例としては、例えば、次の化合物等が挙げられる:プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン;イタコン酸、メタクリル酸、アクリル酸、マレイン酸等の不飽和カルボン酸、その塩、その部分又は完全エステル、そのニトリル、そのアミド、その無水物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシエトキシ)シラン、γ-メタクリルオキシプロピルトリメトキシシラン等のビニルシラン系化合物;不飽和スルホン酸又はその塩;不飽和チオール類;ビニルピロリドン類等。
また、EVOHに柔軟性を付与するために従来公知の方法でEVOHを変性することも好適である。この場合、柔軟性を付与するための変性によって多少耐燃料透過性が犠牲になったとしても、EVOHの製法を調整して酸素透過速度を調整することもできる。
EVOHのSP値は、11.7~13.3(cal/cm1/2が好ましく、12.0~13.0(cal/cm1/2がより好ましく、12.1~12.6(cal/cm1/2が更に好ましい。EVOHのSP値を上記範囲とすることで、耐燃料透過性を良好にすることができる。
EVOHの好適なメルトフローレート(MFR)(210℃、2160g荷重下、JIS K7210に基づく)は0.1~100g/10分、より好適には0.5~50g/10分、さらに好適には1~30g/10分である。
非フッ素樹脂は、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。上記非フッ素樹脂は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。
本発明の第二の積層体は、更に、樹脂層(C)を有することが好ましい。
上記樹脂層(C)を構成する樹脂は、機械的強度に優れ、耐圧性や成形体の形状の維持を主たる役割とできる樹脂であり、ポリアミド系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアラミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、アクリル系樹脂、スチレン系樹脂、アクリロニトリル/ブタジエン/スチレン樹脂〔ABS〕、セルロース系樹脂、ポリエーテルエーテルケトン樹脂〔PEEK〕、ポリスルホン樹脂、ポリエーテルスルホン樹脂〔PES〕、ポリエーテルイミド樹脂、ポリエチレン等が挙げられる。本発明の第二の積層体は、上記樹脂層(C)を有すると、機械的強度に優れるものとなる。
上記樹脂層(C)を構成する樹脂としては、なかでも、ポリアミド系樹脂及びポリオレフィン系樹脂、ポリエチレンからなる群より選択される少なくとも1種であることが好ましい。
上記ポリアミド系樹脂は、分子内に繰り返し単位としてアミド結合〔-NH-C(=O)-〕を有するポリマーからなるものである。
上記ポリアミド系樹脂としては、分子内のアミド結合が脂肪族構造又は脂環族構造と結合しているポリマーからなるいわゆるナイロン樹脂、又は、分子内のアミド結合が芳香族構造と結合しているポリマーからなるいわゆるアラミド樹脂のいずれであってもよい。
上記ナイロン樹脂としては特に限定されず、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン46、ナイロン6T、ナイロン9T、ナイロン10T、メタキシリレンジアミン/アジピン酸共重合体等のポリマーからなるものが挙げられ、これらのなかから2種以上を組み合わせて用いてもよい。
上記アラミド樹脂としては特に限定されず、例えば、ポリパラフェニレンテレフタラミド、ポリメタフェニレンイソフタラミド等が挙げられる。
上記ポリアミド系樹脂は、また、繰り返し単位としてアミド結合を有しない構造が分子の一部にブロック共重合又はグラフト共重合されている高分子からなるものであってもよい。このようなポリアミド系樹脂としては、例えば、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等のポリアミド系エラストマーからなるもの等が挙げられる。これらのポリアミド系エラストマーは、ナイロンオリゴマーとポリエステルオリゴマーがエステル結合を介してブロック共重合することにより得られたもの、又は、ナイロンオリゴマーとポリエーテルオリゴマーとがエーテル結合を介してブロック共重合することにより得られたものである。上記ポリエステルオリゴマーとしては、例えば、ポリカプロラクトン、ポリエチレンアジペート等が挙げられ、上記ポリエーテルオリゴマーとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記ポリアミド系エラストマーとしては、ナイロン6/ポリテトラメチレングリコール共重合体、ナイロン12/ポリテトラメチレングリコール共重合体が好ましい。
上記ポリアミド系樹脂としては、ポリアミド系樹脂からなる層が薄層でも充分な機械的強度が得られることから、なかでも、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等が好ましく、これらのなかから2種以上を組み合わせて用いてもよい。
上記ポリオレフィン系樹脂は、フッ素原子を有しないビニル基含有単量体に由来する単量体単位を有する樹脂である。上記フッ素原子を有しないビニル基含有単量体としては特に限定されないが、層間接着性が求められる用途では上述した極性官能基を有するものが好ましい。
上記ポリオレフィン系樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、高密度ポリオレフィン等のポリオレフィンのほか、上記ポリオレフィンを無水マレイン酸等で変性した変性ポリオレフィン、エポキシ変性ポリオレフィン、アミン変性ポリオレフィン等が挙げられる。
上記樹脂層(C)を構成する樹脂は、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。上記フッ素非含有有機材料は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。
上記ポリアミド系樹脂のアミン価は10~80(当量/10g)が好ましい。アミン価が上記範囲内にあると、比較的低い温度で共押出する場合においても、層間接着力を優れたものとすることができる。上記アミン価が10(当量/10g)未満であると、層間接着力が不充分になるおそれがある。80(当量/10g)を超えると、得られる積層体の機械的強度が不充分であり、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は15(当量/10g)であり、より好ましい下限は20(当量/10g)であり、更に好ましい下限は23(当量/10g)である。好ましい上限は60(当量/10g)、より好ましい上限は50(当量/10g)である。
本明細書において、上記アミン価はポリアミド系樹脂1gをm-クレゾール50mlに加熱溶解し、これを1/10規定p-トルエンスルホン酸水溶液を用いて、チモールブルーを指示薬として滴定して求められる値であり、特に別の記載をしない限り、積層する前のポリアミド系樹脂のアミン価を意味する。積層する前のポリアミド系樹脂が有するアミノ基の数のうち、一部分は隣接する層との接着に消費されると考えられるが、その数は層全体に対してごく微量であるので、上述した積層する前のポリアミド系樹脂のアミン価と本発明の第二の積層体におけるアミン価は、実質的に同程度となる。
本発明の第二の積層体は、更に、接着層(S)を有することが好ましい。接着層(S)を有すると、層間の接着性が向上する。
上記接着層(S)を構成する樹脂としては、接着性官能基含有TFE/Et/HFP共重合体、官能基変性ポリエチレン、高アミン価ナイロン等が代表例として挙げられるが、接着させる2層の物性に応じて適宜選ぶ事ができる。なかでも、ポリプロピレン、ポリエチレン、高アミン価ナイロンが好ましい。
上記接着層(S)を構成する樹脂のアミン価は10~80(当量/10g)が好ましい。アミン価が上記範囲内にあると、比較的低い温度で共押出する場合においても、層間接着力を優れたものとすることができる。上記アミン価が10(当量/10g)未満であると、層間接着力が不充分になるおそれがある。80(当量/10g)を超えると、得られる積層体の機械的強度が不充分であり、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は15(当量/10g)であり、より好ましい下限は20(当量/10g)であり、更に好ましい下限は23(当量/10g)である。好ましい上限は60(当量/10g)である。
本発明の第二の積層体は、燃料透過係数が0.05g・mm/m/day以下であることが好ましい。
本発明の第二の積層体は、上記燃料透過係数が上述の範囲内であることから、高度の耐燃料透過性を有するものとすることができる。燃料透過係数は上述の範囲内であれば下限を例えば、0.001g・mm/m/dayとすることができる。燃料透過係数のより好ましい上限は0.04g・mm/m/dayであり、更に好ましい上限は0.03g・mm/m/dayであり、最も好ましい上限は0.02g・mm/m/dayであり、特に好ましい上限は0.015g・mm/m/dayである。
本明細書において、上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒〔CE10〕を投入した燃料透過係数測定用カップに測定対象の積層体を入れ、60℃において測定した質量変化から算出される値である。
2層構造を有する積層体の好ましい積層構成としては、接液側から順に、層(A)/層(B)、層(B)/層(A)等が挙げられる。
これらのうち、層(A)/層(B)の積層構成は燃料用チューブとして好適であり、更に金属ブレードをつけることによりブレーキホースとしても使用できる。
3層構造を有する積層体の好ましい積層構成としては、層(A)/層(B)/層(C)、層(A)/層(S)/層(B)、層(B)/層(A)/層(C)、層(B)/層(S)/層(A)等が挙げられる。
これらのうち、層(A)/層(B)/層(C)、層(A)/層(S)/層(B)の積層構成は燃料用チューブや耐薬品性が求められる薬液チューブとして好適である。
4層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(B)/層(C)、層(A)/層(B)/層(S)/層(C)、層(B)/層(S)/層(A)/層(C)、層(B)/層(A)/層(S)/層(C)等が挙げられる。
これら4層構造を有する積層体は、燃料用チューブや薬液チューブとして好適である。これらのうち、層(A)/層(S)/層(B)/層(C)の積層構成がより好ましい。
5層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(B)/層(S)/層(C)、層(B)/層(S)/層(A)/層(S)/層(C)等が挙げられる。
6層構造を有する積層体の好ましい積層構成としては、層(A)/層(S)/層(S)/層(B)/層(S)/層(C)等が挙げられる。
これらのうち、層(A)/層(S)/層(B)/層(C)、層(A)/層(S)/層(B)/層(S)/層(C)、層(A)/層(S)/層(S)/層(B)/層(S)/層(C)の積層構成は燃料用チューブや薬液チューブとして好適である。
上記層(A)、層(B)、層(C)及び層(S)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。
本発明の第二の積層体としては、上記層(A)、層(B)、層(C)及び層(S)以外のその他の層をも含むものであってもよい。上記その他の層としては特に限定されず、例えば、上記積層体における保護層、着色層、マーキング層、静電防止のための誘電体層等が挙げられ、保護層、誘電体層等は、その機能から、上記積層体における最外層であることが好ましい。
本発明の第二の積層体は、フッ素樹脂からなる層(A)及び非フッ素樹脂からなる層(B)を有する積層体である。
上記積層体において、層(A)及び層(B)はそれぞれ単層であってもよいし、2層以上の多層構造を有するものであってもよい。
本発明の第二の積層体は、層(A)及び層(B)を有し、更に、その他の層を有するものであってもよい。上記その他の層としては、例えば、エラストマー等からなり上記積層体を振動や衝撃等から保護し、可とう性を付与する層等が挙げられる。上記エラストマーとしては熱可塑性エラストマーが挙げられ、例えば、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、スチレン/ブタジエン系エラストマー、塩化ビニル系エラストマーからなる群から少なくとも1種を選択することができる。
本発明の第二の積層体は、また、フッ素樹脂からなる層(A)及び非フッ素樹脂からなる層(B)と、更に樹脂層(C)とを有する積層体であることが好ましい。
本発明の第二の積層体は、また、上記層(A)と層(B)との間に接着層(S)を有するものであってもよい。
本発明の第二の積層体としては、例えば、層(A)及び層(B)がこの順に積層している積層体、層(A)、層(B)及び層(C)がこの順に積層している積層体、層(A)、層(S)、層(B)及び層(C)がこの順に積層している積層体等が挙げられる。
上記層(A)、層(B)、層(C)及び層(S)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。
層(A)が2層以上の多層構造を有する場合、層(A)は、例えば、上述の導電性フィラーを配合した含フッ素エチレン性重合体からなる層と、導電性フィラーを含まない含フッ素エチレン性重合体からなる層とを含むものであってもよい。
本発明の第二の積層体が、層(A)と層(B)との間に、接着層(S)を有するものである場合、接着層(S)は、層(A)及び層(B)に接していることが好ましい。また、本発明の第二の積層体が、層(C)を有するものである場合、層(C)は、層(B)に接していることが好ましい。
本発明の第二の積層体において、接している各層の境界は必ずしも明確である必要はなく、各層を構成するポリマーの分子鎖同士が接している面から相互に侵入し、濃度勾配がある層構造であってもよい。
本発明の第二の積層体の成形方法としては、例えば、(1)積層体を構成する各層を溶融状態で共押出成形することにより層間を熱溶融着(溶融接着)させ1段で多層構造の積層体を形成する方法(共押出成形)が挙げられる。
本発明の第二の積層体の成形方法としては、また上記(1)の他に、(2)押出機によりそれぞれ別個に作製した各層を重ね合せ熱融着により層間を接着させる方法、(3)予め作製した層の表面上に押出機により溶融樹脂を押し出すことにより積層体を形成する方法、(4)予め作製した層の表面上に、該層に隣接することとなる層を構成する重合体を静電塗装したのち、得られる塗装物を全体的に又は塗装した側から加熱することにより、塗装に供した重合体を加熱溶融して層を成形する方法等が挙げられる。
本発明の第二の積層体がチューブ又はホースである場合、例えば、上記(2)に相当する方法として、(2a)押出機により円筒状の各層をそれぞれ別個に形成し、内層となる層に該層に接触する層を熱収縮チューブにて被膜する方法、上記(3)に相当する方法として、(3a)先ず内層となる層を内層押出機で形成し、この外周面に、外層押出機で該層に接触する層を形成する方法、上記(4)に相当する方法として、(4a)内層を構成する重合体を該層に接触する層の内側に静電塗装したのち、得られる塗装物を加熱オーブンに入れて全体的に加熱するか、又は、円筒状の塗装物品の内側に棒状の加熱装置を挿入して内側から加熱することにより、内層を構成する重合体を加熱溶融して成形する方法、等が挙げられる。
本発明の第二の積層体を構成する各層が共押出可能なものであれば、上記(1)の共押出成形によって形成することが一般的である。上記共押出成形としては、マルチマニホールド法、フィードブロック法等の従来公知の多層共押製造法が挙げられる。
上記(2)及び(3)の成形方法においては、各層を形成したのち、層間接着性を高めることを目的として、各層における他の層との接触面を表面処理してもよい。そのような表面処理としては、ナトリウムエッチング処理等のエッチング処理;コロナ処理;低温プラズマ処理等のプラズマ処理が挙げられる。
上記成形方法としては、上記(1)、及び、上記(2)と(3)の各方法において表面処理を施して積層させる方法が好ましく、(1)の方法が最も好ましい。
本発明の第二の積層体の成形方法としては、また、複数の材料を多段階に分けて回転成形によって積層する成形方法も可能である。その場合、必ずしも外層材料の融点は内層材料の融点より高くする必要はなく、内層材料の融点は外層材料の融点より100℃以上高くてもよい。その場合は内部にも加熱部があった方が好ましい。
本発明の第二の積層体は、フィルム形状、シート形状、チューブ形状、ホース形状、ボトル形状、タンク形状等の各種形状とすることができる。フィルム形状、シート形状、チューブ形状、ホース形状は、波形形状、蛇腹(corrugated)形状、渦巻き(convoluted)形状等であってもよい。
本発明の第二の積層体がチューブ又はホースである場合、かかる波形の折り目が複数個環状に配設されている領域を有することにより、その領域において環状の一側を圧縮し、他側を外方に伸張することができるので、応力疲労や層間の剥離を伴うことなく容易に任意の角度で曲げることが可能となる。
波形領域の形成方法は限定されないが、まず直管状のチューブを成形した後に、引き続いてモールド成形等し、所定の波形形状等とすることにより容易に形成することができる。
本発明の積層体は、燃料低透過性に優れるほか、耐熱性、耐油性、耐燃料油性、耐LLC性、耐スチーム性に優れており、また、過酷な条件下での使用に十分耐えうるものであり、各種の用途に使用可能である。
本発明の第二の積層体は、以下の用途に用いることができる。
たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、潤滑・冷却系、燃料系、吸気・排気系など、駆動系のトランスミッション系など、シャーシのステアリング系、ブレーキ系など、電装品の基本電装部品、制御系電装部品、装備電装部品などの、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性が要求されるガスケットや非接触型および接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシールなど)などのシール、ベローズ、ダイヤフラム、ホース、チューブ、電線、フィルム、シート、ボトル、容器、タンクなどとして好適な特性を備えており、
フィルム、シート類としては食品用フィルム、食品用シート、薬品用フィルム、薬品用シート、ダイヤフラムポンプのダイヤフラムや各種パッキン等
チューブ、ホース類としては自動車燃料用チューブ若しくは自動車燃料用ホース等の燃料用チューブ又は燃料用ホース、溶剤用チューブ又は溶剤用ホース、塗料用チューブ又は塗料用ホース(プリンタ用途含む)、自動車のラジエーターホース、エアコンホース、ブレーキホース、電線被覆材、飲食物用チューブ又は飲食物用ホース、ガソリンスタンド用地下埋設チューブ若しくはホース、海底油田用チューブ若しくはホース(インジェクションチューブ、原油移送チューブ含む)等
ボトル、容器、タンク類としては自動車のラジエータータンク、ガソリンタンク等の燃料用タンク、溶剤用タンク、塗料用タンク、半導体用薬液容器等の薬液容器、飲食物用タンク等
その他用途としてはキャブレターのフランジガスケット、燃料ポンプのOリング等の各種自動車用シール、油圧機器のシール等の各種機械関係シール、ギア、医療用チューブ(カテーテル含む)、索道管等に使用可能である。
具体的には、エンジン本体の、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケットなどのガスケット、O-リング、パッキン、タイミングベルトカバーガスケットなどのシール、コントロールホースなどのホース、エンジンマウントの防振シート、水素貯蔵システム内の高圧弁用シール材など。
主運動系の、クランクシャフトシール、カムシャフトシールなどのシャフトシールなど。
動弁系の、エンジンバルブのバルブステムシールなど。
潤滑・冷却系の、エンジンオイルクーラーのエンジンオイルクーラーホース、オイルリターンホース、シールガスケットなどや、ラジエータ周辺のウォーターホース、バキュームポンプのバキュームポンプオイルホースなど。
燃料系の、燃料ポンプのオイルシール、ダイヤフラム、バルブなど、フィラー(ネック)ホース、燃料供給ホース、燃料リターンホース、ベーパー(エバポ)ホースなどの燃料ホース、燃料タンクのインタンクホース、フィラーシール、タンクパッキン、インタンクフューエルポンプマウントなど、燃料配管チューブのチューブ本体やコネクターO-リングなど、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターO-リング、プレッシャーレギュレーターダイヤフラム、チェックバルブ類など、キャブレターのニードルバルブ花弁、加速ポンプピストン、フランジガスケット、コントロールホースなど、複合空気制御装置(CAC)のバルブシート、ダイヤフラムなど。
吸気・排気系の、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキンなど、EGR(排気際循環)のダイヤフラム、コントロールホース、エミッションコントロールホースなど、BPTのダイヤフラムなど、ABバルブのアフターバーン防止バルブシートなど、スロットルのスロットルボディパッキン、ターボチャージャーのターボオイルホース(供給)、ターボオイルホース(リターン)、ターボエアホース、インタークーラーホース、タービンシャフトシールなど。
トランスミッション系の、トランスミッション関連のベアリングシール、オイルシール、O-リング、パッキン、トルコンホースなど、ATのミッションオイルホース、ATFホース、O-リング、パッキン類など。
ステアリング系の、パワーステアリングオイルホースなど。
ブレーキ系の、オイルシール、O-リング、パッキン、ブレーキオイルホースなど、マスターバックの大気弁、真空弁、ダイヤフラムなど、マスターシリンダーのピストンカップなど、キャリパーシール、ブーツ類など。
基本電装部品の、電線(ハーネス)の絶縁体やシースなど、ハーネス外装部品のチューブなど。
制御系電装部品の、各種センサー線の被覆材料など。
装備電装部品の、カーエアコンのO-リング、パッキン、クーラーホース、外装品のワイパーブレードなど。
また自動車用以外では、たとえば、船舶、航空機などの輸送機関における耐油、耐薬品、耐熱、耐スチーム、あるいは耐候用のパッキン、O-リング、ホース、その他のシール材、ダイヤフラム、バルブに、また化学プラントにおける同様のパッキン、O-リング、シール材、ダイヤフラム、バルブ、ホース、ロール、チューブ、耐薬品用コーティング、ライニングに、食品プラント機器および食品機器(家庭用品を含む)における同様のパッキン、O-リング、ホース、シール材、ベルト、ダイヤフラム、バルブ、ロール、チューブに、原子力プラント機器における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、チューブに、一般工業部品における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ウエザーストリップ、PPC複写機のロールブレードなどへの用途に好適である。
また、食品シール材用途、医薬・ケミカル用途のシール材、一般工業分野のO-リング、パッキン、シール材等に好適に用いることができる。特に、リチウムイオン電池のパッキン用途には耐薬品性とシールの両方を同時に維持できることから好適に使用できる。その他、低摩擦による摺動性が要求される用途においては、好適に使用できる。
本発明の積層体が適用できる医療用成形品としては、具体的には、例えば、薬栓、ボトルのキャップシール、缶シール、薬用テープ、薬用パッド、注射器シリンジパッキン、経皮吸収薬用基材、ほ乳びん等の吸い口、医療用バッグ、カテーテル、輸液セット、混注管、キャップライナー、真空採血管のキャップ、シリンジ用ガスケット、輸液チューブ、医療機器のガスケット・キャップ、シリンジチップ、グロメット、採血管キャップ、キャップシール、バッキング、O-リング、シースイントロデューサー、ダイレーター、ガイディングシース、血液回路、人工心肺回路、ロ-タブレーター用チューブ、留置針、インフュージョンセット、輸液チューブ、閉鎖式輸液システム、輸液バッグ、血液バッグ、血液成分分離バッグ、血液成分分離バッグ用チューブ、人工血管、動脈カニューレ、ステント、内視鏡処置具保護チューブ、内視鏡スコープチューブ、内視鏡トップオーバーチューブ、咽頭部通過用ガイドチューブ、冠動脈バイパス術用チューブ、イレウスチューブ、経皮経肝胆道ドレナージ術用チューブ、電気メス外装チューブ、超音波メス外装チューブ、剥離鉗子外装チューブ、細胞培養用バッグ等が挙げられる。
本発明の第二の積層体は、チューブ、ホース、タンク等、燃料等の引火性の液体に接する用途に好適に用いることができ、この場合、液体と接する箇所は層(A)であることが好ましい。上記液体と接する箇所は、通常、内層であるので、層(A)を内層とする場合、層(B)は外層となる。本明細書において、上記「内層」「外層」は、チューブ、ホース、タンク等の内側・外側の概念を伴う形状において、上記層(A)及び上記層(B)のうちどの層が内側か外側か又はこの二者の間に位置するかを表すにすぎず、上記積層体は、上記層(A)の表面のうち上記層(B)との接面とは反対側の表面上、及び/又は、上記層(A)と上記層(B)との間、及び/又は、上記層(B)の表面のうち上記層(A)との接面とは反対側の表面上にそれぞれその他の層を有するものであってもよい。
本発明の第二の積層体がガソリン等の引火性の液体に接する場合、引火性の液体が接して静電荷が蓄積しやすいが、この静電荷によって引火することを避けるため、液体と接触する層は導電性フィラーを含有することが好ましい。
燃料用チューブである上記積層体も本発明の第二の積層体の一つである。
本発明の第二の積層体は、上述したように、優れた耐燃料透過性を有するので、燃料用チューブに用いる燃料チューブ用積層体として好適に用いることができる。
本発明の第二の積層体の好ましい層構成としては特に限定されないが、燃料用チューブとして特に好適である点で、例えば、
層1:CTFE系共重合体からなる層
層2:エチレン/ビニルアルコール共重合体からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:エチレン/ビニルアルコール共重合体からなる層
層3:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリエチレン系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
層5:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:エチレン/ビニルアルコール共重合体からなる層
層4:ポリアミド系樹脂からなる層
層5:ポリエチレン系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:ポリアミド系樹脂からなる層
層4:エチレン/ビニルアルコール共重合体からなる層
層5:ポリアミド系樹脂からなる層
層6:ポリアミド系樹脂からなる層
からなる積層体;
層1:CTFE系共重合体からなる層
層2:ポリアミド系樹脂からなる層
層3:ポリアミド系樹脂からなる層
層4:エチレン/ビニルアルコール共重合体からなる層
層5:ポリアミド系樹脂からなる層
層6:ポリエチレン系樹脂からなる層
からなる積層体;
等が挙げられる。
上述した燃料チューブ用積層体の各層は、層の番号順に積層してなるものであり、好ましくは層1が最内層である。
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
合成例1(フッ素樹脂(1)のペレットの製造)
φ50mm単軸押出し機を用いて、フッ素樹脂(1)(TFE/CTFE/PPVE=76.5/21.0/2.5(モル%))とカーボンを溶融混練し、ペレットを得た。次いで得られたペレット状のCTFE共重合体を190℃で24時間加熱した。
合成例2(フッ素樹脂(2)のペレットの製造)
φ50mm単軸押出し機を用いて、フッ素樹脂(2)(TFE/エチレン/HFP/CH=CF-CF-CFH=45.0/45.0/9.5/0.5(モル%))とカーボンを溶融混練し、ペレットを得た。次いで得られたペレット状のEFEP共重合体を150℃で24時間加熱した。
各合成例で得られた共重合体について、以下の方法により物性評価を行った。結果を表1に示す。
(1)共重合体の組成の測定
合成例の共重合体組成は19F-NMRおよび塩素の元素分析測定より求めた。
(2)融点(Tm)の測定
セイコー型示差走査熱量計〔DSC〕を用い、10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点(Tm)とした。
(3)フッ素樹脂のメルトフローレート(MFR)の測定
メルトインデクサー(東洋精機製作所社製)を用い、フッ素樹脂(1)の場合は測定温度297℃、フッ素樹脂(2)の場合は測定温度265℃において、5kg荷重下で内径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポリマーの質量(g)を測定した。
(4)単層の燃料透過係数の測定
積層体の各層に用いる共重合体のペレットを、それぞれ、直径120mmの金型に入れ、280~300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのシートを得た。CE10(イソオクタンとトルエンとの容量比50:50の混合物にエタノール10容量%を混合した燃料)を18ml投入した内径40mmφ、高さ20mmのSUS316製の透過係数測定用カップに得られたシートを入れ、60℃における質量変化を1000時間まで測定した。時間あたりの質量変化、接液部のシートの表面積及びシートの厚さから燃料透過係数(g・mm/m/day)を算出した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1
マルチマニホールドダイを装着した4種4層チューブ押出装置を用いて、外層がPA612(商品名:SX8002、ダイセル・エボニック社製、アミン価:55(当量/10g))、中間層がEVOH1(商品名:F101、クラレ社製、SP値:12.3(cal/cm1/2、燃料透過係数:0.3g/mm/m/day)、接着層がPA612(商品名:SX8002、ダイセル・エボニック社製、アミン価:55(当量/10g))、内層が合成例1のフッ素樹脂(1)となるように4台の押出し機(ダイ/チップ=28mmφ/22mmφ)にそれぞれ供給して、表2に示す押出条件により、外径8mm、内径6mmの多層チューブを成形した。得られた多層チューブについて、以下の方法により燃料透過係数を測定した。成形条件及び評価結果を表2に示す。
比較例1
マルチマニホールドダイを装着した4種4層チューブ押出装置を用いて、外層がPA612(商品名:SX8002、ダイセル・エボニック社製、アミン価:55(当量/10g))、中間層がEVOH1(商品名:F101、クラレ社製、SP値:12.3(cal/cm1/2、燃料透過係数:0.3g・mm/m/day)、接着層がPA612(商品名:SX8002、ダイセル・エボニック社製、アミン価:55(当量/10g))、内層が合成例2のフッ素樹脂(2)となるように4台の押出し機(ダイ/チップ=28mmφ/22mmφ)にそれぞれ供給して、表2に示す押出条件により、外径8mm、内径6mmの多層チューブを成形した。得られた多層チューブについて、以下の方法により燃料透過係数を測定した。成形条件及び評価結果を表2に示す。
比較例2
マルチマニホールドダイを装着した2種2層チューブ押出装置を用いて、外層がPA12(商品名:Vestamid X7297、Degussa Huls AG社製)、内層が合成例1のフッ素樹脂(1)となるように4台の押出し機(ダイ/チップ=28mmφ/22mmφ)の内側2層にフッ素樹脂(1)を、外側2層にPA12を供給して、表2に示す押出条件により、外径8mm、内径6mmの多層チューブを成形した。得られた多層チューブについて、以下の方法により燃料透過係数を測定した。成形条件及び評価結果を表2に示す。
比較例3
マルチマニホールドダイを装着した2種2層チューブ押出装置を用いて、外層がPA12(商品名:Vestamid X7297、Degussa Huls AG社製)、内層が合成例2のフッ素樹脂(2)となるように4台の押出し機(ダイ/チップ=28mmφ/22mmφ)の内側2層にフッ素樹脂(2)を、外側2層にPA12を供給して、表2に示す押出条件により、外径8mm、内径6mmの多層チューブを成形した。得られた多層チューブについて、以下の方法により燃料透過係数を測定した。成形条件及び評価結果を表2に示す。
比較例4
中間層のEVOH1(商品名:F101、クラレ社製、SP値:12.3(cal/cm1/2、燃料透過係数:0.3g・mm/m/day)をEVOH2(商品名:E105B、クラレ社製、SP値:11.0(cal/cm1/2、燃料透過係数:0.3g/mm/m/day)に変更した以外は、実施例1と同様にして、多層チューブを成形した。
得られた多層チューブについて、以下の方法により燃料透過係数を測定した。成形条件及び評価結果を表2に示す。
積層体の燃料透過係数の測定
チューブ状の積層体を40cmの長さにカットし、チューブ状サンプルを得た。CE10(イソオクタンとトルエンとの容量比50:50の混合物にエタノール10容量%を混合した燃料)をチューブ状サンプルに投入した後に両端を封し、60℃における質量変化を1000時間まで測定した。時間あたりの質量変化、接液部のサンプルの表面積及びサンプルの厚さから燃料透過係数(g・mm/m/day)を算出した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
本発明の積層体は、例えば、高い耐燃料透過性が求められる自動車燃料用チューブに好適に用いることができる。

Claims (8)

  1. 燃料透過係数が2.0g・mm/m/day以下のフッ素樹脂からなるフッ素樹脂層(A)、及び、SP値が11.5~13.5(cal/cm1/2であり、かつ、燃料透過係数が1.0g・mm/m/day以下の非フッ素樹脂からなる非フッ素樹脂層(B)を有することを特徴とする積層体。
  2. フッ素樹脂は、クロロトリフルオロエチレン系共重合体である請求項1記載の積層体。
  3. 非フッ素樹脂は、エチレン/ビニルアルコール共重合体である請求項1又は2記載の積層体。
  4. 更に、樹脂層(C)を有する請求項1~3のいずれかに記載の積層体。
  5. 更に、接着層(S)を有する請求項1~4のいずれかに記載の積層体。
  6. 接着層(S)を構成する樹脂のアミン価が10~80(当量/10g)である請求項5記載の積層体。
  7. 燃料用チューブである請求項1~6のいずれかに記載の積層体。
  8. 燃料透過係数が0.05g・mm/m/day以下であることを特徴とする積層体。
PCT/JP2019/000363 2018-01-29 2019-01-09 積層体 WO2019146406A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207024444A KR102503962B1 (ko) 2018-01-29 2019-01-09 적층체
JP2019567965A JP6966711B2 (ja) 2018-01-29 2019-01-09 積層体
US16/965,341 US20210154984A1 (en) 2018-01-29 2019-01-09 Laminate
EP19743463.2A EP3730296A4 (en) 2018-01-29 2019-01-09 LAMINATE
CN201980010292.8A CN111655485A (zh) 2018-01-29 2019-01-09 层积体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012659 2018-01-29
JP2018-012659 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146406A1 true WO2019146406A1 (ja) 2019-08-01

Family

ID=67396104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000363 WO2019146406A1 (ja) 2018-01-29 2019-01-09 積層体

Country Status (6)

Country Link
US (1) US20210154984A1 (ja)
EP (1) EP3730296A4 (ja)
JP (1) JP6966711B2 (ja)
KR (1) KR102503962B1 (ja)
CN (1) CN111655485A (ja)
WO (1) WO2019146406A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220379578A1 (en) * 2021-05-28 2022-12-01 AGC Inc. Fuel filler pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174018A (ja) 1984-12-06 1991-07-29 Hyperion Catalysis Internatl Inc 炭素フィブリル、その製造方法及び該炭素フィブリルを含有する組成物
US5763034A (en) * 1992-03-05 1998-06-09 Nitta Moore Company Fuel transfer tube
JP2006168358A (ja) * 2004-12-13 2006-06-29 Nobel Plastiques フルオロポリマーとエチレン−ビニルアルコールコポリマー(evoh)−修飾されたポリアミド(pa)製チューブ
WO2009119747A1 (ja) * 2008-03-27 2009-10-01 ダイキン工業株式会社 バイオディーゼル燃料用成形体
JP2010030276A (ja) 2008-03-27 2010-02-12 Daikin Ind Ltd 積層体
JP2010179611A (ja) * 2009-02-06 2010-08-19 Daikin Ind Ltd 積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2349939C (en) * 2000-06-30 2008-04-15 Kuraray Co., Ltd. A method of producing a shaped article having excellent barrier properties
US7291369B2 (en) * 2001-10-03 2007-11-06 3M Innovative Properties Company Multi-layer articles including a fluoroelastomer layer and a barrier layer and method of making the same
US20070026177A1 (en) * 2003-05-12 2007-02-01 Daikin Industries, Ltd. Laminate
GB2405456B (en) * 2003-08-23 2007-10-10 Petrotechnik Ltd Improved pipe
FR2928152B1 (fr) * 2008-03-03 2011-04-01 Arkema France Composition adhesive et structure comprenant au moins une couche de ladite composition
JP5604820B2 (ja) * 2009-07-15 2014-10-15 ダイキン工業株式会社 成形体及び中空成形体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174018A (ja) 1984-12-06 1991-07-29 Hyperion Catalysis Internatl Inc 炭素フィブリル、その製造方法及び該炭素フィブリルを含有する組成物
US5763034A (en) * 1992-03-05 1998-06-09 Nitta Moore Company Fuel transfer tube
JP2006168358A (ja) * 2004-12-13 2006-06-29 Nobel Plastiques フルオロポリマーとエチレン−ビニルアルコールコポリマー(evoh)−修飾されたポリアミド(pa)製チューブ
WO2009119747A1 (ja) * 2008-03-27 2009-10-01 ダイキン工業株式会社 バイオディーゼル燃料用成形体
JP2010030276A (ja) 2008-03-27 2010-02-12 Daikin Ind Ltd 積層体
JP2010179611A (ja) * 2009-02-06 2010-08-19 Daikin Ind Ltd 積層体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KURARAY CO. LTD.: "EVOH gas barrier resins & film", 2016, pages 1 - 16, XP055375679 *
See also references of EP3730296A4

Also Published As

Publication number Publication date
US20210154984A1 (en) 2021-05-27
EP3730296A4 (en) 2021-09-15
JP6966711B2 (ja) 2021-11-17
KR20200110431A (ko) 2020-09-23
JPWO2019146406A1 (ja) 2020-11-19
CN111655485A (zh) 2020-09-11
KR102503962B1 (ko) 2023-02-28
EP3730296A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP5482790B2 (ja) 積層体
JP4576782B2 (ja) 積層樹脂成形体及び多層成形品
JP2007015364A (ja) 積層体
JP5169942B2 (ja) 積層体
JP2010095575A (ja) 部分結晶性フッ素樹脂及び積層体
KR20090055636A (ko) 연료용 탱크 및 그의 제조 방법
JP7032676B2 (ja) 積層体および押出成形品
WO2004098880A1 (ja) 積層体
WO2009119747A1 (ja) バイオディーゼル燃料用成形体
JP5018782B2 (ja) 燃料用タンク
JP6966711B2 (ja) 積層体
JP3972917B2 (ja) 積層体
JP2010234777A (ja) 積層体
JP7112010B2 (ja) フッ素樹脂、積層体およびチューブ
JP2010095576A (ja) 部分結晶性フッ素樹脂及び積層体
WO2011099414A1 (ja) 含フッ素共重合体
JPWO2004069534A1 (ja) 積層樹脂成形体及びその製造方法
JP7041384B1 (ja) フッ素樹脂材料、積層体、チューブおよびチューブの製造方法
JP7041385B1 (ja) 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法
JP7041386B1 (ja) フッ素樹脂、積層体、チューブおよびチューブの製造方法
JP2023131540A (ja) 積層体、チューブおよびホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743463

Country of ref document: EP

Effective date: 20200723

ENP Entry into the national phase

Ref document number: 20207024444

Country of ref document: KR

Kind code of ref document: A