WO2019146105A1 - 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ - Google Patents

熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ Download PDF

Info

Publication number
WO2019146105A1
WO2019146105A1 PCT/JP2018/002715 JP2018002715W WO2019146105A1 WO 2019146105 A1 WO2019146105 A1 WO 2019146105A1 JP 2018002715 W JP2018002715 W JP 2018002715W WO 2019146105 A1 WO2019146105 A1 WO 2019146105A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
group
film
compound
Prior art date
Application number
PCT/JP2018/002715
Other languages
English (en)
French (fr)
Inventor
彩 笠原
哲郎 岩倉
由佳子 庄子
信次 土川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019567812A priority Critical patent/JP7238798B2/ja
Priority to PCT/JP2018/002715 priority patent/WO2019146105A1/ja
Priority to TW108103378A priority patent/TWI805682B/zh
Publication of WO2019146105A1 publication Critical patent/WO2019146105A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a thermosetting resin composition, an interlayer insulating resin film, a composite film, a printed wiring board, and a semiconductor package.
  • thermosetting resin composition containing a liquid epoxy resin has been adopted as a material of the film in order to obtain a film having a good handling property (see, for example, Patent Document 1).
  • a film obtained from a thermosetting resin composition containing a liquid epoxy resin usually has a problem that the dielectric loss tangent is large.
  • thermosetting resin composition to contain is known (for example, refer to patent documents 2).
  • Patent No. 5504553 International Publication No. 2016/114030
  • the polyimide compound is generally rigid, it is not easy to improve the handling property.
  • Patent Document 2 a bending test is conducted as evaluation of the handling property of the film, and it is successful to obtain a film having good handling properties in this respect.
  • the handling property as described above, the thermosetting resin composition has flexibility when it is B-staged, and when it is formed into a film, it easily peels off from the cover film (tackiness is not too strong, so much The property of good) is also important industrially. That is, the handling property is good from the viewpoints of flexibility when the thermosetting resin composition is B-staged, that a crack does not easily occur during bending, and that it is easily peeled off from a protective film. desired.
  • the buildup layer is required to have a high glass transition temperature (Tg) from the viewpoint of reliability, and an embeddability to irregularities of a circuit or the like (hereinafter, may be simply referred to as “embeddability"). Ru. Furthermore, low thermal expansion is also required in order to improve processing dimensional stability and reduce the amount of warpage after semiconductor mounting. Under such circumstances, in recent years, computers and information communication devices have become increasingly sophisticated and sophisticated, and in order to process a large amount of data at a high speed, signals to be handled tend to have high frequencies.
  • Tg glass transition temperature
  • Ru an embeddability to irregularities of a circuit or the like
  • the frequency range of radio waves used for mobile phones and satellite broadcasting is in the high frequency range of GHz band, and in order to suppress the transmission loss due to high frequency, the relative dielectric constant as an organic material used in the high frequency range And materials with low dielectric loss tangent are desired.
  • the subject of the present invention is a high glass transition temperature as a thermosetting resin composition that can be used as a composite film for electronic devices using signals in a high frequency band, and it is excellent in embedding property to irregularities of a circuit etc. It has both dielectric properties and low thermal expansion, and also has good handling properties (that is, it has flexibility when B-staging the thermosetting resin composition, and along with that, it has cracks even when it is bent into a film
  • a thermosetting resin composition which can be hardly formed and easily peeled off from a cover film, and an interlayer insulating resin film, a composite film, a printed wiring board and a semiconductor package using the thermosetting resin composition To provide.
  • thermosetting resin composition containing a polyimide compound (A) having a structural unit as described above can solve the above problems, and the present invention has been completed.
  • thermosetting resin composition according to [3], wherein the aliphatic amine is at least one selected from the group consisting of aliphatic monoamines and alicyclic diamines.
  • the thermosetting resin composition according to any one of the above [1] to [4], wherein an equivalent ratio [Ta1 / Ta2] to a total equivalent (Ta1) of is 1.0 to 30.
  • thermosetting resin composition according to any one of the above [1] to [5], wherein the polyimide compound (A) further has a structural unit derived from a polyamine compound (a3).
  • the equivalent ratio [Ta1 / (Ta2 + Ta3)] to the total equivalent (Ta1) of the group derived from the maleimide group (including the maleimide group) derived from the maleimide compound (a1) relative to the total amount with the equivalent (Ta3) is 1.0
  • thermosetting resin composition according to the above [6] or [7], wherein the ratio [Ma2 / Ma3] is 0.01 to 10.
  • it contains at least 1 sort (s) selected from the group consisting of an elastomer (B), an inorganic filler (C), and a hardening accelerator (D) in any one of said [1]-[8] Thermosetting resin composition.
  • thermosetting resin composition according to the above [9], wherein the curing accelerator (D) contains a peroxide [11] A resin film for an interlayer insulating layer, which comprises the thermosetting resin composition according to any one of the above [1] to [10]. [12] A composite film comprising a first resin layer containing the thermosetting resin composition according to any one of the above [1] to [10] and a second resin layer. [13] A printed wiring board comprising the cured product of the resin film for interlayer insulation according to the above [11] or the cured product of the composite film according to the above [12]. [14] A semiconductor package comprising the printed wiring board according to the above [13].
  • thermosetting resin composition that can be used as a composite film for an electronic device using a signal in a high frequency band, it has a high glass transition temperature, is excellent in embeddability with respect to irregularities of circuits and the like, and has excellent dielectric properties. It has both properties and low thermal expansion, and also has good handling when made into a film (that is, it has flexibility when the thermosetting resin composition is B-staged, and when it is made into a film, it is bent as well)
  • the thermosetting resin composition can be provided which can be less likely to be cracked and easily peeled off from the cover film.
  • the resin film for interlayer insulation using this thermosetting resin composition a composite film, a printed wiring board, and a semiconductor package can be provided.
  • FIG. 6 is a graph showing a temperature-melt viscosity curve of the resin film for interlayer insulation manufactured in Example 4 and Comparative Example 1.
  • FIG. 6 is a graph showing a temperature-melt viscosity curve of the resin film for interlayer insulation manufactured in Example 4 and Comparative Example 1.
  • a numerical range (X, Y is a real number) which is X or more and Y or less may be expressed as “X to Y”.
  • the description “0.1 to 2” indicates a numerical range which is 0.1 or more and 2 or less, and the numerical range includes 0.1, 0.34, 1.03, 2 and the like.
  • the “composite film” is a composite film in which the thermosetting resin composition contained is uncured, and a composite film in which the thermosetting resin composition contained is semi-cured (in a so-called B-stage state) Including both.
  • the "composite” of the composite film means that the film is formed of a plurality of resin layers, and if the embodiment is included, it further has another layer comprising a support, a protective film, etc. May be
  • the “interlayer insulating layer” is a layer which is located between two conductor layers and insulates the conductor layers.
  • the “interlayer insulating layer” in the present specification includes, for example, a cured product of a composite film.
  • the term "layer” includes those which are partially missing and those where vias or patterns are formed.
  • the dielectric constant and dielectric loss tangent in the high frequency band may be referred to as dielectric characteristics or high frequency characteristics, and the fact that the dielectric constant and dielectric loss tangent in the high frequency band are low is expressed as excellent high frequency characteristics.
  • the aspect which combined the description item in this specification arbitrarily is also contained in this invention in all.
  • thermosetting resin composition is a structural unit derived from an amine compound (a2) having a carbon-carbon double bond and a structural unit derived from a maleimide compound (a1) having at least two N-substituted maleimide groups. It is a thermosetting resin composition containing the polyimide compound (A) which has and.
  • the polyimide compound (A) will be described in detail below.
  • the polyimide compound (A) has a structural unit derived from a maleimide compound (a1) having at least two N-substituted maleimide groups and a structural unit derived from an amine compound (a2) having a carbon-carbon double bond. is there.
  • the polyimide compound (A) may further contain other structural units.
  • the maleimide compound (a1) having at least two N-substituted maleimide groups (hereinafter also referred to as "component (a1)") is not particularly limited as long as it is a maleimide compound having two or more N-substituted maleimide groups.
  • component (a1) for example, bis (4-maleimidophenyl) methane, polyphenylmethane maleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, 3,3′-dimethyl-5, 5'-Diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, m-phenylenebismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane and the like Can be mentioned. These may be used alone or in combination of two or more.
  • the component (a1) may be a maleimide compound containing an aromatic hydrocarbon group somewhere in the molecule, that is, an aromatic maleimide compound, or a so-called aliphatic maleimide having only an aliphatic hydrocarbon group. It may be a compound, but is preferably an aromatic maleimide compound.
  • Component (a1) is preferably bis (4-maleimidophenyl) methane from the viewpoint of being inexpensive, and is excellent in dielectric properties and low in water absorption, so 3,3'-dimethyl-5,5'-diethyl- 4,4'-Diphenylmethane bismaleimide is preferred, and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is preferred from the viewpoint of excellent mechanical properties such as high adhesion to a conductor, elongation, and breaking strength. .
  • Examples of the structural unit derived from the component (a1) include a group represented by the following general formula (1-1), a group represented by the following general formula (1-2), and the like.
  • a 1 represents a residue of the component (a1), and * represents a bond.
  • a 1 is not particularly limited, for example, the same residues as A 3 described later are preferable.
  • a residue means the structure of the part except the functional group (The maleimide group in component (a1)) provided to coupling
  • the amine compound (a2) having a carbon-carbon double bond (hereinafter also referred to as "component (a2)") is not particularly limited as long as it has a carbon-carbon double bond, and an aliphatic amine Or an aromatic amine, may be a monoamine compound, or may be a diamine compound. Among these, aliphatic amines are preferable as the component (a2).
  • the number of carbon-carbon double bonds in component (a2) may be one or two or more.
  • Component (a2) has one or two carbon-carbon double bonds from the viewpoints of high glass transition temperature, embedding to irregularities of circuits, dielectric properties, low thermal expansion and handling properties Preferably, two are more preferable.
  • the number of carbon-carbon double bonds contained in the component (a2) is two, nitrogen is preferred from the viewpoints of high glass transition temperature, embedding to irregularities of circuits and the like, dielectric properties, low thermal expansion and handling properties. It is preferred that there be one in each of the other groups attached to the atom.
  • the number of carbon-carbon double bonds contained in the component (a2) is two or more, at least one from the viewpoints of high glass transition temperature, embedding property to irregularities of circuits and the like, dielectric properties, low thermal expansion and handling properties
  • one carbon-carbon double bond is not conjugated to the other carbon-carbon double bond.
  • the amino group which component (a2) has may be a primary amino group or a secondary amino group. From the viewpoints of high glass transition temperature, embedding property to irregularities of circuit etc., dielectric property, low thermal expansion and handling property, the amino group contained in the component (a2) is preferably a secondary amino group, secondary fat Are more preferably monoamines.
  • the said component (a2) used by this embodiment is an amine compound liquid at normal temperature, and when B-staging a thermosetting resin composition, a softness becomes favorable, ie, it is excellent in handling property.
  • the amine compound (a2) having a carbon-carbon double bond it has a high Tg, is excellent in the embeddability to irregularities of a circuit or the like, and achieves both excellent dielectric properties and low thermal expansion.
  • the handling property when made into a film is also good (that is, it has flexibility when B-staging a thermosetting resin composition, and when it is made into a film, it is difficult to form cracks even when bent) It becomes easy to peel).
  • the molecular weight of the component (a2) is preferably 50 to 400, more preferably 50 to 300, still more preferably 50 to 200, particularly preferably 50 to 150, from the viewpoint of ease of stacking and handling. Most preferably, it is 70-120.
  • At least one selected from the group consisting of aliphatic monoamines and alicyclic diamines is preferable as the aliphatic amine, and aliphatic monoamines are more preferable.
  • aliphatic monoamines having a carbon-carbon double bond include allylamine and diallylamine. Among these, diallylamine is preferred.
  • alicyclic diamines having a carbon-carbon double bond include norbornene diamine and the like.
  • the equivalent ratio [Ta1 / Ta2] to the equivalent (Ta1) is preferably 1 to 50, and more preferably 1 to 30. When the content is in the above range, better heat resistance and glass transition temperature tend to be obtained.
  • the polyimide compound (A) may further have a structural unit derived from a polyamine compound (a3) (hereinafter, also referred to as “component (a3)”. However, the above-mentioned amine compound (a2) is not included). Moreover, it is preferable to have.
  • Component (a3) is not particularly limited as long as it is a compound having two or more amino groups.
  • the component (a3) is preferably a compound having two amino groups, that is, a diamine compound.
  • As the component (a3) for example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyldiphenylmethane, 4,4′-diamino-3,3′-diethyldiphenylmethane, 4,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 '-Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl,
  • the component (a3) is 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyldiphenylmethane, from the viewpoint of excellent solubility in organic solvents, reactivity during synthesis, and heat resistance.
  • 4,4'-Diamino-3,3'-diethyldiphenylmethane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4 '-[1,3-phenylenebis (1-methylethylidene) ]] Bisaniline and 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline are preferred.
  • Component (a3) is preferably 3,3'-dimethyl-5,5'-diethyl-4,4'-diaminodiphenylmethane from the viewpoint of excellent dielectric properties and low water absorption.
  • Component (a3) is preferably 2,2-bis (4- (4-aminophenoxy) phenyl) propane, from the viewpoint of excellent mechanical properties such as high adhesion to a conductor, elongation, and breaking strength. Furthermore, in addition to the above-mentioned solubility in organic solvents, reactivity during synthesis, heat resistance, and high adhesion with a conductor, the component (a3) can exhibit excellent high-frequency characteristics and low hygroscopicity.
  • 4) is preferably 4,4 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline or 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline. These may be used alone or in combination of two or more depending on the purpose, application and the like.
  • Examples of the structural unit derived from the component (a3) include a group represented by the following general formula (3-1), a group represented by the following general formula (3-2), and the like.
  • a 2 represents a residue of component (a3), and * represents a binding site.
  • a 2 is not particularly limited, but is preferably a group represented by the following general formula (4). (Wherein, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom.
  • a 3 represents carbon And an alkylene group, an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a sulfonyl group, a carbonyloxy group, a ketone group, a fluorenylene group, a single bond, the following general formula (4-1), or the following general formula (4-2) It is a residue represented by).
  • R 3 and R 4 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom.
  • a 4 represents an alkylene group having 1 to 5 carbon atoms, an isopropylidene group.
  • each R 5 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom.
  • a 5 and A 6 each represent an alkylene group having 1 to 5 carbon atoms, an isopropylidene group , An ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a ketone group, or a single bond).
  • the equivalent ratio [Ta1 / (Ta2 + Ta3)] to the total equivalent (Ta1) of the group derived from the maleimide group (including the maleimide group) derived from the maleimide compound (a1) is preferably 1.0 to 10, More preferably, it is in the range of from 0 to 5.0.
  • the ratio of the total number of moles of the amino group-derived group (Ma2) of the amine compound (a2) and the total number of moles of the amino group-derived group (including the amino group) of the polyamine compound (a3) (Ma3) [Ma2 / Ma3] is preferably 0.01 to 10, more preferably 0.05 to 5, still more preferably 0.1 to 3, and 0.3 to 1.5. Being particularly preferred.
  • the glass transition temperature is high, the burying property to irregularities of a circuit or the like is excellent, both the excellent dielectric property and the low thermal expansion are compatible, and the handling property when made into a film is also good ( It has flexibility when B-staged the thermosetting resin composition, and along with that, it becomes a thermosetting resin composition which hardly cracks when the film is bent and is easily peeled off from the cover film. It tends to be easy.
  • the polyimide compound (A) can be produced, for example, by reacting the component (a1), the component (a2), and, if necessary, the component (a3) and other components in an organic solvent.
  • the organic solvent used when manufacturing a polyimide compound (A) does not have a restriction
  • the organic solvent may be an organic solvent used for producing a varnish for a resin film for interlayer insulation described later.
  • a reaction catalyst can also be used as needed.
  • the reaction catalyst is not limited, but is, for example, an acidic catalyst such as p-toluenesulfonic acid; amines such as triethylamine, pyridine and tributylamine; imidazoles such as methylimidazole and phenylimidazole; phosphorus catalysts such as triphenylphosphine Can be mentioned. These may be used alone or in combination of two or more.
  • the amount of the reaction catalyst used is not particularly limited, but, for example, it is 0 based on the total amount of 100 parts by mass of the component (a1), the component (a2), and the component (a3) used as needed and other components. It can be used in the range of .01 to 5.0 parts by mass.
  • the polyimide compound (A) is obtained by the Michael addition reaction.
  • the reaction conditions in this step are not particularly limited, but for example, the reaction temperature is preferably 50 to 160 ° C., and the reaction time is preferably 1 to 10 hours, from the viewpoint of workability such as reaction rate, gelation suppression, etc. .
  • the above-mentioned organic solvent can be added or concentrated to adjust the solid content concentration and solution viscosity of the reaction raw material.
  • the solid content concentration of the reaction raw material is not particularly limited, but is preferably 10 to 90% by mass, and more preferably 20 to 80% by mass.
  • the solid content concentration of the reaction raw material is 10% by mass or more, the reaction rate does not become too slow, which is advantageous in terms of production cost.
  • the solid content concentration of the reaction raw material is 90% by mass or less, better solubility is obtained, the stirring efficiency is good, and gelation is less.
  • some or all of an organic solvent may be removed and it may concentrate, and an organic solvent may be added and diluted.
  • the organic solvent illustrated by the manufacturing process of a polyimide compound (A) is applicable.
  • the organic solvent to be used is preferably methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, more preferably propylene glycol monomethyl ether.
  • the weight average molecular weight (Mw) of the polyimide compound (A) is not particularly limited, but for example, a range of 800 to 1,500 is preferable, a range of 800 to 1,300 is more preferable, and 1,000 to 1,300 A range is more preferred.
  • the weight average molecular weight of the polyimide compound (A) can be determined by the method described in the examples.
  • the content of the polyimide compound (A) in the thermosetting resin composition of the present embodiment is not particularly limited, but it is 50 in the total mass of all the resin components contained in the thermosetting resin composition of the present embodiment. -95% by mass is preferable, 60-90% by mass is more preferable, and 70-85% by mass is more preferable. By making content of a polyimide compound (A) into the said range, it exists in the tendency for a dielectric characteristic to become more favorable.
  • the thermosetting resin composition of the present embodiment may further contain at least one selected from the group consisting of an elastomer (B), an inorganic filler (C), and a curing accelerator (D). Moreover, it is preferable to contain.
  • an elastomer (B) is not particularly limited, and examples thereof include polybutadiene-based elastomers, styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, silicone-based elastomers, and the like. Derivatives and the like can be mentioned. One of these may be used alone, or two or more may be used in combination.
  • the elastomer (B) one having a reactive functional group in the molecular terminal or in the molecular chain can be used.
  • the reactive functional group is, for example, one or more selected from the group consisting of a maleic anhydride group, an epoxy group, a hydroxyl group, a carboxy group, an amino group, an amido group, an isocyanato group, an acrylic group, a methacrylic group and a vinyl group. It is preferably at least one selected from the group consisting of a maleic anhydride group, an epoxy group, a hydroxyl group, a carboxy group, an amino group and an amide group, from the viewpoint of adhesion to a metal foil. From the viewpoint of dielectric properties, maleic anhydride is more preferred.
  • the elastomer (B) is preferably an elastomer modified by maleic anhydride.
  • polybutadiene-based elastomer one comprising a structure of a 1,4-trans body and a 1,4-cis body containing a 1,2-vinyl group is preferably mentioned.
  • a polybutadiene-based elastomer one having a reactive functional group from the viewpoint of improving the compatibility with the resin and suppressing the separation of the inorganic filler (C) and the resin component when the interlayer insulating layer is formed.
  • polybutadiene-based elastomers which are modified with acid anhydrides are preferred.
  • the acid anhydride is not particularly limited, and examples thereof include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, Glutaric anhydride, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like can be mentioned.
  • maleic anhydride is preferred.
  • the number of acid anhydride-derived groups (hereinafter also referred to as "acid anhydride group") contained in one molecule of the elastomer (B) is 1 to 10 Is preferable, 1 to 6 is more preferable, and 2 to 5 is more preferable.
  • the number of acid anhydride groups is 1 or more in one molecule, the separation of the inorganic filler (C) and the resin component tends to be further suppressed when the interlayer insulating layer is formed.
  • the number of acid anhydride groups is 10 or less in one molecule, the relative dielectric constant and the dielectric loss tangent of the thermosetting resin composition tend to be lower.
  • maleic anhydride group a group derived from maleic anhydride contained in one molecule of the elastomer (B) (hereinafter, also referred to as "maleic anhydride group") 1 to 10 is preferable, 1 to 6 is more preferable, and 2 to 5 is more preferable.
  • styrene-based elastomer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • styrene-based elastomer As components constituting the styrene-based elastomer, besides styrene, styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene and the like can be mentioned.
  • olefin elastomer examples include copolymers of ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-pentene and the like, and examples thereof include ethylene-propylene co-polymers.
  • Polymers (EPR), ethylene-propylene-diene copolymers (EPDM) and the like are preferably mentioned.
  • copolymers of the above-mentioned ⁇ -olefins and non-conjugated dienes having 2 to 20 carbon atoms such as dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene, butadiene, isoprene and the like can be mentioned.
  • carboxy modified NBR etc. which copolymerized methacrylic acid to the butadiene-acrylonitrile copolymer etc. are mentioned.
  • the urethane-based elastomer preferably includes, for example, a hard segment composed of a short chain diol and a diisocyanate, and a soft segment composed of a high molecular (long chain) diol and a diisocyanate.
  • high molecular (long chain) diols include polypropylene glycol, polytetramethylene oxide, poly (1,4-butylene adipate), poly (ethylene-1,4-butylene adipate), polycaprolactone, and poly (1,6-hexane).
  • the number average molecular weight of the high molecular (long chain) diol is preferably 500 to 10,000.
  • Examples of short chain diols include ethylene glycol, propylene glycol, 1,4-butanediol, and bisphenol A.
  • the number average molecular weight of the short chain diol is preferably 48 to 500.
  • polyester-based elastomers include those obtained by polycondensation of a dicarboxylic acid or a derivative thereof and a diol compound or a derivative thereof.
  • the dicarboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene dicarboxylic acid, and aromatic dicarboxylic acids in which the hydrogen atom of their aromatic nucleus is substituted with a methyl group, an ethyl group, a phenyl group or the like; Aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid and dodecanedicarboxylic acid; and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • diol compound examples include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and 1,10-decanediol; 1,4-cyclohexanediol And alicyclic diols such as bisphenol A, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-3-methylphenyl) propane, and resorcin. One of these compounds may be used alone, or two or more thereof may be used in combination.
  • a multi-block copolymer having an aromatic polyester (for example, polybutylene terephthalate) portion as a hard segment component and an aliphatic polyester (for example, polytetramethylene glycol) portion as a soft segment component is preferable. It can be mentioned. Multiblock copolymers are of various grades depending on the type, ratio, and molecular weight of the hard segment and the soft segment.
  • polyamide-based elastomers include a hard segment component of polyamide, polybutadiene, butadiene-acrylonitrile copolymer, styrene-butadiene copolymer, polyisoprene, ethylene propylene copolymer, polyether, polyester, polybutadiene, polycarbonate, polyacrylate And block copolymers containing polymethacrylates, polyurethanes, silicone rubbers, etc. as soft segment components.
  • the polymer of the raw material monomer which has an acrylic ester as a main component is mentioned, for example.
  • Preferred acrylic esters include ethyl acrylate, butyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate and the like.
  • the crosslinking point monomer glycidyl methacrylate, allyl glycidyl ether or the like may be copolymerized, or acrylonitrile, ethylene or the like may be copolymerized.
  • acrylonitrile-butyl acrylate copolymer acrylonitrile-butyl acrylate-ethyl acrylate copolymer, acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer and the like can be mentioned.
  • the silicone-based elastomer is an elastomer containing organopolysiloxane as a main component, and is classified into, for example, polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane.
  • styrene-based elastomers polybutadiene-based elastomers, olefin-based elastomers, polyamide-based elastomers and silicone-based elastomers are preferable from the viewpoint of heat resistance and insulation reliability, and from the viewpoint of dielectric characteristics, polybutadiene-based elastomers and styrene-based elastomers Elastomers are more preferred, and polybutadiene based elastomers are even more preferred.
  • the weight average molecular weight (Mw) of the elastomer (B) is preferably 500 to 50,000, and more preferably 1,000 to 30,000. If the weight average molecular weight of the elastomer (B) is 500 or more, the curing properties of the thermosetting resin composition and the dielectric properties of the cured product tend to be better. When the weight average molecular weight of the elastomer (B) is 50,000 or less, the separation of the inorganic filler (C) and the resin component tends to be suppressed when the interlayer insulating layer is formed.
  • the weight average molecular weight of an elastomer (B) can apply the measuring method of the weight average molecular weight of the polyimide compound (A) as described in an Example.
  • the content thereof is preferably 1 to 70% by mass, and 5 to 50% by mass with respect to the total resin component contained in the thermosetting resin composition. More preferably, 10 to 30% by mass is more preferable.
  • Inorganic filler (C) examples include, but are not limited to, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, Aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like can be mentioned. These may be used alone or in combination of two or more. Among these, silica is preferable from the viewpoint of further reducing thermal expansion.
  • the shape of the inorganic filler (C) is not particularly limited, and may be, for example, spherical, crushed, needle-like or plate-like, but it is possible to improve the dispersibility in the thermosetting resin composition, organic solvent Improvement of dispersibility in resin varnish in which thermosetting resin composition is dissolved or dispersed, flowability improvement by viscosity reduction of resin varnish, increase suppression of surface roughness of insulating layer formed of thermosetting resin composition, etc. It is preferable that it is spherical shape from a viewpoint of these.
  • the volume average particle size of the inorganic filler (C) is not particularly limited, but is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, and still more preferably 0.2 to 1 ⁇ m. If the volume average particle diameter of the inorganic filler (C) is 5 ⁇ m or less, it tends to be possible to more stably form the fine pattern when forming the circuit pattern on the interlayer insulating layer. If the volume average particle size of the inorganic filler (C) is 0.1 ⁇ m or more, the heat resistance tends to be better.
  • the volume average particle diameter is the particle diameter of a point corresponding to 50% of the volume when the cumulative frequency distribution curve according to particle diameter is determined with the total volume of particles as 100%, and the laser diffraction scattering method It can measure with the particle size distribution measuring apparatus etc. which were used.
  • a coupling agent may be used in combination, as necessary. It is also good.
  • the coupling agent is not particularly limited, and, for example, various silane coupling agents, titanate coupling agents and the like can be used. These may be used alone or in combination of two or more. Among these, silane coupling agents are preferred.
  • an aminosilane type coupling agent As a silane coupling agent, an aminosilane type coupling agent, an epoxysilane type coupling agent, a phenylsilane type coupling agent, an alkylsilane type coupling agent, an alkenylsilane type coupling agent, a mercaptosilane type coupling agent, etc. are mentioned. Be Among these, an aminosilane coupling agent is preferable from the viewpoint of the improvement of the dispersibility of the inorganic filler (C) and the improvement of the adhesion between the inorganic filler (C) and the organic component.
  • the usage-amount is not specifically limited, 0.1-5 mass parts is preferable with respect to 100 mass parts of inorganic fillers (C), 0.5-3 mass parts is more preferable preferable. If it is this range, the feature by use of an inorganic filler (C) can be exhibited more effectively.
  • the addition method may be a so-called integral blend processing method in which a coupling agent is added after the inorganic filler (C) is blended in the thermosetting resin composition. From the viewpoint of expressing the characteristics of the inorganic filler (C) more effectively, the coupling agent may be surface-treated in advance with the dry type or the wet type with respect to the inorganic filler before blending.
  • the inorganic filler (C) is preferably used in the form of a slurry dispersed in advance in an organic solvent, from the viewpoint of enhancing the dispersibility in the thermosetting resin composition.
  • an organic solvent used for the slurry of an inorganic filler (C)
  • the organic solvent illustrated at the manufacturing process of the polyimide compound (A) mentioned above is applicable. These may be used alone or in combination of two or more.
  • methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone are preferable from the viewpoint of further improving the dispersibility.
  • the solid content concentration of the slurry of the inorganic filler (C) is not particularly limited.
  • 50 to 80% by mass is preferable, and 60 to 80% by mass Is more preferable, and 60 to 75% by mass is more preferable.
  • thermosetting resin composition contains the inorganic filler (C)
  • the content thereof can be appropriately selected depending on the properties and functions to be obtained, but is 55% by volume or more based on the solid content of the thermosetting resin composition Is preferable, 55 to 85% by volume is more preferable, 55 to 80% by volume is more preferable, and 55 to 75% by volume is particularly preferable.
  • content of an inorganic filler (C) into such a range it can have a low thermal expansion coefficient.
  • the solid content contained in a thermosetting resin composition means the remainder which remove
  • thermosetting resin composition By incorporating the curing accelerator (D) into the thermosetting resin composition of the present embodiment, the curability of the thermosetting resin composition is improved, and dielectric characteristics, heat resistance, elastic modulus, glass transition temperature, etc. It can be improved more.
  • the curing accelerator (D) is not particularly limited, but, for example, various imidazole compounds and derivatives thereof; various tertiary amine compounds; various quaternary ammonium compounds; various phosphorus compounds such as triphenylphosphine; peroxides Etc. Among these, various imidazole compounds and derivatives thereof and peroxides are preferable.
  • the curing accelerator (D) is a peroxide. It is preferable to contain. From the same viewpoint, the curing accelerator (D) preferably contains a peroxide together with various imidazole compounds and their derivatives.
  • imidazole compounds and derivatives thereof for example, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-1 -Methylimidazole, 1,2-diethylimidazole, 1-ethyl-2-methylimidazole, 2-ethyl-4-methylimidazole, 4-ethyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 2-phenyl -4-Methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethylimidazole --but
  • peroxide for example, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexine, dicumyl peroxide
  • organic peroxides such as di (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, di-t-hexyl peroxide, and t-butylcumyl peroxide Can be mentioned.
  • the peroxide may be used alone or in combination of two or more.
  • the content of the curing accelerator is 0. 0 to the entire resin component contained in the thermosetting resin composition.
  • the content is more preferably 01 to 10% by mass, still more preferably 0.1 to 5% by mass, and particularly preferably 0.1 to 3% by mass.
  • content of a hardening accelerator (D) is preferably 30 to 95% by mass, more preferably 50 to 95% by mass, in the curing accelerator (D).
  • 60 to 90% by mass is more preferable, and 70 to 90% by mass is particularly preferable.
  • the curing accelerator (D) contains a peroxide together with various imidazole compounds and their derivatives.
  • the thermosetting resin composition of the present embodiment may, if necessary, contain additives such as a flame retardant, an antioxidant, a UV absorber, and a flow control agent.
  • a flame retardant For example, a chlorine system flame retardant, a bromine system flame retardant, a phosphorus system flame retardant, a metal hydrate system flame retardant etc. are mentioned. Phosphorus flame retardants and metal hydrate flame retardants are preferred from the viewpoint of environmental compatibility.
  • the antioxidant is not particularly limited, and examples thereof include phenol-based antioxidants such as hindered phenol-based antioxidants and styrenated phenol-based antioxidants.
  • the ultraviolet absorber is not particularly limited, and examples thereof include benzotriazole-based ultraviolet absorbers and the like.
  • the resin film for interlayer insulation of this embodiment contains the thermosetting resin composition of this embodiment.
  • the interlayer insulating resin film of this embodiment may be provided with a support on any one of the surfaces.
  • the support include films of polyolefins such as polyethylene, polypropylene and polyvinyl chloride; films of polyesters such as polyethylene terephthalate (hereinafter, also referred to as "PET") and polyethylene naphthalate; various plastics such as polycarbonate film and polyimide film A film etc. are mentioned.
  • PET polyethylene terephthalate
  • plastics such as polycarbonate film and polyimide film A film etc. are mentioned.
  • metal foil such as copper foil and aluminum foil, mold release paper, etc.
  • the support and a protective film described later may be subjected to surface treatment such as matting treatment or corona treatment.
  • the support and the protective film described later may be subjected to a release treatment with a silicone resin release agent, an alkyd resin release agent, a fluorine resin release agent, or the like.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, and more preferably 25 to 50 ⁇ m.
  • the application of the resin film for interlayer insulation of this embodiment is not particularly limited, insulating resin sheets such as adhesive films and prepregs, circuit boards, solder resists, underfills, die bonding materials, semiconductor sealing materials, hole filling resins, parts It can be used in a wide range of applications where interlayer insulating layers such as embedded resins are required. Especially, it can be suitably used in order to form an interlayer insulation layer in manufacture of a printed wiring board. Next, the manufacturing method of the resin film for interlayer insulation of this embodiment is demonstrated.
  • the interlayer insulating resin film of the present embodiment can be used as a first resin layer described later, and can be manufactured, for example, as follows.
  • said each component is mixed and a thermosetting resin composition is manufactured.
  • the thermosetting resin composition is preferably brought into the state of a resin varnish dissolved or dispersed in an organic solvent (hereinafter, also referred to as "varnish for resin film for interlayer insulation").
  • the said resin varnish is also a category of the thermosetting resin composition of this invention.
  • organic solvents used for the production of varnishes for resin films for interlayer insulation include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether, carbitol acetate Acetic esters such as: carbitols such as cellosolve and butyl carbitol; aromatic hydrocarbons such as toluene and xylene; and amide solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These organic solvents may be used alone or in combination of two or more.
  • the blending amount of the organic solvent is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass with respect to 100 parts by mass of the total mass of the varnish for resin film for interlayer insulation.
  • the varnish for a resin film for interlayer insulation produced in this manner is coated on the support and then dried by heating to obtain a resin film for interlayer insulation.
  • coating apparatuses such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, a die coater, can be used, for example. It is preferable that these coating apparatuses be appropriately selected depending on the film thickness.
  • the drying conditions after coating are not particularly limited and may be suitably determined according to the type of solvent, but for example, the drying temperature is preferably 50 to 150 ° C., and more preferably 100 to 145 ° C.
  • the drying time can be, for example, 2 to 10 minutes.
  • the thickness of the resin film for interlayer insulation of the present embodiment is preferably equal to or greater than the thickness of the conductor layer of the circuit board from the viewpoint of embedding the conductor layer of the circuit board when it is disposed on the conductor layer.
  • the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m
  • the thickness of the interlayer insulating resin film is preferably 5 to 100 ⁇ m, and is 5 to 60 ⁇ m. Is more preferably 10 to 60 ⁇ m.
  • a protective film may be provided on the surface of the interlayer insulating resin film formed on the support, on the side opposite to the support.
  • the thickness of the protective film is not particularly limited, and is, for example, 1 to 40 ⁇ m.
  • Composite film A composite film can be formed using the thermosetting resin composition of the present embodiment.
  • the composite film of the present embodiment is a composite film including a first resin layer containing the thermosetting resin composition of the present embodiment and a second resin layer.
  • the composite film of the present embodiment is useful as a composite film for an electronic device using a signal in a high frequency band.
  • the first resin layer is provided between the circuit board and the adhesion auxiliary layer, and the conductor layer of the circuit board and the layer thereon And are used to insulate.
  • the first resin layer also plays a role of flowing into them and filling the inside of the hole.
  • the second resin layer is provided between the first resin layer and the conductor layer in the printed wiring board of the present embodiment described later, and is provided for the purpose of improving the adhesion to the conductor layer. is there.
  • the component of the second resin layer is not particularly limited as long as it improves the adhesion to the conductor layer.
  • thermosetting resin composition containing b2 a polyfunctional epoxy resin (b1), and a phenolic hydroxyl group-containing polybutadiene-modified polyamide resin (A thermosetting resin composition containing b2) is preferably mentioned.
  • the component of the second resin layer is more preferably a thermosetting resin composition further containing an active ester curing agent (b3) in addition to the components (b1) and (b2).
  • an active ester curing agent (b3) for details of the components (b1) to (b3), the description of the second resin layer described in WO 2016/11404 can be referred to, and the second resin layer described in the document is adopted as it is. May be
  • the composite film of the present embodiment has the first resin layer and the second resin layer, and a support is provided on the surface of the second resin layer opposite to the first resin layer.
  • the structure is: first resin layer / second resin layer / support.
  • the support include films of polyolefins such as polyethylene, polypropylene and polyvinyl chloride; films of polyesters such as polyethylene terephthalate (hereinafter, also referred to as "PET") and polyethylene naphthalate; various plastics such as polycarbonate film and polyimide film A film etc. are mentioned.
  • PET polyethylene terephthalate
  • plastics such as polycarbonate film and polyimide film A film etc. are mentioned.
  • metal foil such as copper foil and aluminum foil, mold release paper, etc.
  • the support and a protective film described later may be subjected to surface treatment such as matting treatment or corona treatment.
  • the support may be subjected to release treatment with a silicone resin release agent, an alkyd resin release agent, a fluorine resin release agent, or the like.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, and more preferably 25 to 50 ⁇ m.
  • the composite film of the present embodiment may be provided with a protective film.
  • a protective film plastic films, such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethyl pentene film, a polyimide film, etc. are mentioned, for example.
  • the protective film may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, release treatment, and the like, as necessary.
  • a second resin layer is formed on the support, and a first resin layer is formed on the second resin layer. It can manufacture by the method of forming a protective layer on a resin layer.
  • the varnish for the second resin layer to be described later is applied to the support and then dried by heating, and further, the varnish for the first resin layer to be described later is applied thereon It can be formed by heating and drying.
  • coating apparatuses such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, a die coater, can be used, for example.
  • the drying conditions after coating are not particularly limited, and may be appropriately determined according to the type of solvent.
  • the drying temperature is preferably 50 to 130 ° C., and more preferably 70 to 110 ° C.
  • the drying time can be, for example, 1 to 10 minutes when forming the first resin layer.
  • the drying temperature is preferably 50 to 150 ° C., and more preferably 100 to 145 ° C.
  • the drying time can be, for example, 1 to 10 minutes when forming the second resin layer.
  • the content of the volatile component (mainly organic solvent) in the first resin layer or the second resin layer after drying is preferably 10% by mass or less, preferably 6% It is more preferable to dry so that it becomes% or less.
  • the composite film of the present embodiment can also be produced by preparing a film of the first resin layer and a film of the second resin layer, respectively, and bonding them by thermocompression bonding or a laminator at a temperature higher than the softening temperature.
  • the thickness of the first resin layer in order to embed the unevenness height c of the circuit, is preferably 1c to 3c, more preferably 1c to 2c, and 1.1c More preferably, it is -1.5c.
  • the thickness of the first resin layer is 1 c or more, sufficient embeddability can be secured when embedding the unevenness of the circuit, and the surface layer of the composite film after embedding tends to be kept flat.
  • the thickness of the first resin layer is preferably, for example, 10 to 40 ⁇ m.
  • the thickness of the first resin layer is more preferably 15 to 35 ⁇ m, further preferably 20 to 35 ⁇ m.
  • the second resin layer is a layer adaptable to the semi-additive method.
  • the thickness of the second resin layer is preferably 1 to 10 ⁇ m, more preferably 1 to 7 ⁇ m, and 1 to 5 ⁇ m in order to ensure surface flatness and high adhesion to plated copper. Some are more preferable, 1 to 3 ⁇ m is more preferable, and 1.5 to 3 ⁇ m is more preferable. If the thickness of the second resin layer is 1 ⁇ m or more, it is easy to avoid that the second resin layer is broken and the first resin layer is exposed to the surface at the time of embedding in the unevenness of the circuit, and desmear There is little risk of the second resin layer eluting and disappearing in the process. On the other hand, if it is 10 micrometers or less, while it is easy to suppress the fall of surface flatness and a substrate can be made thin, it is preferable.
  • the thickness of the first resin layer is a ( ⁇ m)
  • the thickness of the second resin layer is b ( ⁇ m)
  • the height of the circuit is c ( ⁇ m)
  • c ⁇ a ⁇ It is preferable to set it as the composite film which satisfy
  • the first resin layer preferably has a minimum melt viscosity at 80 to 150 ° C. of 100 to 4,000 Pa ⁇ s. Within this range, the first resin layer can be made to flow at 80 to 150 ° C., which is preferable from the viewpoint of embeddability.
  • the minimum melt viscosity is the viscosity when the thermosetting resin composition is melted before the start of curing.
  • the minimum melt viscosity at 80 to 150 ° C. is 100 Pa ⁇ s or more, the flowability of the film does not become too large, the surface flatness of the composite film after embedding becomes easy to be maintained, and the thickness of the substrate varies. Tend to be able to Moreover, by being 4,000 Pa ⁇ s or less, the fluidity becomes good, and it tends to be easy to embed the unevenness of the wiring.
  • the second resin layer has a minimum melt viscosity at 80 to 150 ° C. of 50,000 Pa ⁇ s or more.
  • the second resin layer makes it easy to maintain the surface flatness of the composite film after embedding, while the second resin layer maintains a certain thickness when embedding the composite film in a circuit.
  • the minimum melt viscosity at 80 to 150 ° C. of the second resin layer is preferably 50,000 to 100,000 Pa ⁇ s, and more preferably 50,000 to 75,000 Pa ⁇ s. preferable.
  • the composite film of the present embodiment can be cured by heat or active energy rays.
  • the active energy ray include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays and X-rays; and particle rays such as ⁇ -rays, ⁇ -rays and electron beams. Among these, ultraviolet light is preferred.
  • FIG. 1 An example of the composite film of this embodiment is shown in FIG. 1 as a schematic cross-sectional view.
  • the composite film which concerns on this embodiment is equipped with the 1st resin layer 1 and the 2nd resin layer 2, and the support body 3 and / or the protective film 4 as needed.
  • part of the components of the first resin layer 1 and the second resin layer Some of the two components may be in a state of being compatible and / or mixed.
  • the printed wiring board of the present embodiment contains a cured product of the interlayer insulating resin film or a cured product of the composite film.
  • the printed wiring board (multilayer printed wiring board) of the present embodiment has an interlayer insulating layer, and at least one of the interlayer insulating layers contains the thermosetting resin composition of the present embodiment.
  • the composite film of this embodiment is laminated to a circuit board, and the method to manufacture a printed wiring board is demonstrated.
  • the method for manufacturing a printed wiring board of the present embodiment includes the following step (1). More specifically, the method for manufacturing a printed wiring board of the present embodiment includes the following steps (1) to (5), and after the step (1), the step (2) or the step (3), The support may be peeled off or removed.
  • Step (1) is a step of laminating the composite film of the present embodiment on one side or both sides of the circuit board.
  • vacuum laminators such as a vacuum applicator made from Nikko Materials, Inc., are mentioned, for example.
  • Laminating conditions include preheating the composite film and the circuit board as required, a pressure bonding temperature (lamination temperature) of 60 to 140 ° C., and a pressure bonding pressure of 0.1 to 1.1 MPa (9.8 ⁇ 10 4 to 107 .9 ⁇ 10 4 N / m 2 ), air pressure 20 mmHg (26.7 hPa) or less may be laminated under reduced pressure.
  • the method of lamination may be a batch system or a continuous system with a roll.
  • the substrate usually has a step due to a circuit or component, but after the composite film of the present embodiment is laminated to the substrate, the step can be sufficiently filled with the first resin layer of the composite film.
  • the lamination temperature is preferably 70 to 130.degree. C. from the viewpoint of sufficient degree of filling.
  • the step (2) is a step of curing the composite film to form an interlayer insulating layer.
  • Curing may be heat curing or curing by active energy rays.
  • the conditions of the heat curing are not particularly limited, but can be selected, for example, in the range of 20 to 80 minutes at 170 to 220 ° C.
  • the active energy ray is as described above.
  • the support may be peeled off.
  • the step (3) is a step of forming a hole in the circuit board on which the interlayer insulating layer is formed.
  • holes are formed in the interlayer insulating layer and the circuit board by a method such as drilling, laser, plasma, or a combination thereof to form via holes, through holes, and the like.
  • a laser a carbon dioxide gas laser, a YAG laser, a UV laser, an excimer laser or the like is generally used.
  • the step (4) is a step of roughening the surface of the interlayer insulating layer.
  • the oxidizing agent is not particularly limited, and examples thereof include permanganate (potassium permanganate, sodium permanganate), dichromate, ozone, hydrogen peroxide, sulfuric acid, nitric acid and the like.
  • alkaline permanganate solution for example, potassium permanganate, sodium permanganate solution
  • Roughening and smear removal may be performed.
  • Step (5) is a step of plating the surface of the roughened interlayer insulating layer.
  • the second resin layer of the composite film is a layer adaptable to the semi-additive process. Therefore, in this process, a feed layer is formed on the surface of the interlayer insulating layer by electroless plating, and then a plating resist having a pattern reverse to that of the conductor layer is formed, and a conductor layer (circuit) is formed by electrolytic plating. Additive methods can be used. After forming the conductor layer, annealing treatment may be performed at 150 to 200 ° C. for 20 to 120 minutes, for example, to improve and stabilize the adhesive strength between the interlayer insulating layer and the conductor layer.
  • the treating agent for roughening the conductor layer is not particularly limited, and, for example, MEC etch bond CZ-8100, MEC etch bond CZ-8101, MEC etch bond CZ-5480 (organic acid microetching agents) Mec Co., Ltd., trade name), and the like.
  • the following method for manufacturing a printed wiring board can be mentioned as an example of a preferable embodiment. Bonding the first resin layer side of the composite film to a substrate having a step due to a circuit or a component on the surface using the composite film, and filling the step; Curing the first resin layer and the second resin layer of the composite film, Forming a circuit by a semi-additive method on the surface on the second resin layer side of the composite film; A method of manufacturing a printed wiring board, comprising:
  • the composite film and printed wiring board of the present embodiment can be particularly suitably used for electronic devices that handle high frequency signals of 1 GHz or more, and in particular, handle high frequency signals of 5 GHz or more, high frequency signals of 10 GHz or more, or high frequency signals of 30 GHz or more. It can be suitably used for electronic devices. That is, the composite film of the present embodiment is useful as a composite film for an electronic device using a signal in a high frequency band.
  • the present invention also provides a semiconductor package formed by mounting a semiconductor element on the printed wiring board.
  • the semiconductor package of the present embodiment can be manufactured by mounting a semiconductor element such as a semiconductor chip or a memory at a predetermined position of the printed wiring board and sealing the semiconductor element with a sealing resin or the like.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, which has substantially the same configuration as the technical idea described in the claims of the present invention, and exhibits the same function and effect as that of the present invention. It is included in the technical scope.
  • Example 1 Method of producing thermosetting resin composition (resin varnish)> Example 1 (Production of Resin Varnish 1) 20% by mass of a polybutadiene-based elastomer (trade name: POLYVEST 75 MA, manufactured by Evonik Co., Ltd.) as the elastomer (B) (that is, based on all resin components, that is, all components including no inorganic filler and organic solvent) 65% by volume (relative to the total volume not containing an organic solvent) of an silica treated with aminosilane coupling agent as an inorganic filler (C) (Admatex Co., Ltd., dispersion of 70% by mass methyl isobutyl ketone dispersion) Mixed with A ratio in which the content of the polyimide compound (A-1) obtained in Production Example 1 is 80% by mass with respect to the total resin component contained in the thermosetting resin composition.
  • B polybutadiene-based elastomer
  • C silica treated with aminosilane coupling agent
  • the obtained resin varnish 1 is coated on a release-treated support (PET film) using a comma coater so that the thickness of the layer after drying is 40 ⁇ m, and dried at 90 ° C. for 3 minutes. Then, a first resin layer was formed on the support to obtain an interlayer insulating resin film. Furthermore, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film as a protective film on the surface of this 1st resin layer, and obtained the resin film 1 for interlayer insulation which has a support body and a protective film. Each characteristic was measured or evaluated according to the method described later using the interlayer insulating resin film. The results are shown in Table 2.
  • Examples 2 to 4 (Production of resin varnishes 2 to 4) The same as Example 1, except that the polyimide compounds (A-2) to (A-4) obtained in Production Examples 2 to 4 were used instead of the polyimide compound (A-1) obtained in Production Example 1
  • the resin varnishes 2 to 4 were obtained, and further, resin films 2 to 4 for interlayer insulation were obtained. Each characteristic was measured or evaluated according to the method described later using the obtained resin films 2 to 4 for interlayer insulation. The results are shown in Table 2.
  • Comparative Example 1 (Production of Resin Varnish 5 for Comparison) The same procedure as in Example 1 was repeated except that the polyimide compound (A'-5) obtained in Comparative Production Example 1 was used instead of the polyimide compound (A-1) obtained in Production Example 1. The resin varnish 5 was obtained, and further, the interlayer insulating resin film 5 was obtained. Each characteristic was measured or evaluated according to the method of the below-mentioned using resin film 5 for interlayer insulation obtained. The results are shown in Table 2.
  • the resin board was produced according to the following method for measurement or evaluation of a characteristic.
  • (I) After peeling a protective film from the resin film for interlayer insulation which has a support body and a protective film obtained in each case, it dried at 120 degreeC for 5 minutes. Next, using a vacuum pressure type laminator (trade name: MVLP-500 / 600-II, manufactured by Meieki Co., Ltd.), a resin film for interlayer insulation having a support after drying is used as a copper foil (electric field copper foil) On a shiny surface of 35 ⁇ m in thickness so that the resin layer of the interlayer insulating resin film and the copper foil are in contact with each other, and the copper foil, the interlayer insulating resin film and the support are laminated in this order I got the body (P).
  • a vacuum pressure type laminator trade name: MVLP-500 / 600-II, manufactured by Meieki Co., Ltd.
  • the lamination was performed by reducing the pressure for 30 seconds to 0.5 MPa and then pressing at 120 ° C. for 30 seconds with a pressure bonding pressure of 0.5 MPa. Thereafter, the support was peeled off from the laminate (P).
  • the resin plate prepared above is cut into a test piece of 2 mm in width and 70 mm in length, and a network analyzer (manufactured by Agilent Technologies, Inc., trade name: E8364B) and a cavity resonator for 5 GHz (manufactured by Kanto Electronics Application Development Co., Ltd.)
  • the relative dielectric constant and the dielectric loss tangent were measured.
  • the measurement temperature was 25 ° C. The lower the relative dielectric constant and the dielectric loss tangent obtained according to the measurement method, the better the high frequency characteristics.
  • the resin plate prepared above is cut into a test piece with a width of 5 mm and a length of 30 mm, and the storage elastic modulus (E ') is measured using a wide area dynamic viscoelasticity measuring device (manufactured by Rheology Co., Ltd., trade name: DVE-V4) did.
  • the measurement temperature range was 40 to 300 ° C.
  • the temperature rise rate was 5 ° C./min
  • the excitation frequency was 10 Hz
  • the storage elastic modulus (E ′) at 40 ° C. was determined.
  • the storage elastic modulus (E ') is high, warpage during mounting can be suppressed.
  • the protective film of the resin film for interlayer insulation obtained in Example 4 or Comparative Example 1 was peeled off and overlapped so as to be 1.0 mm, and the melt viscosity was measured using a sample punched to ⁇ 8 mm.
  • the viscosity was measured using a rheometer (trade name: ARESG2, manufactured by TA Instruments Japan Co., Ltd.) at a temperature rising rate of 5 ° C./min, a ⁇ 8 mm jig, a frequency of 1.0 Hz, and a strain of 1%.
  • ARESG2 manufactured by TA Instruments Japan Co., Ltd.
  • a substrate for measuring surface roughness was produced by the following procedure.
  • the interlayer insulating resin film having the support and the protective film obtained in each example was cut into a size of 240 mm ⁇ 240 mm, and then the protective film was peeled off.
  • the resin film for interlayer insulation having the obtained support was treated with a first resin layer and a printed wiring board on a printed wiring board (manufactured by Hitachi Chemical Co., Ltd., trade name: E-700GR) subjected to CZ treatment. Laminated so as to abut. Lamination was performed by a method of vacuuming at 100 ° C.
  • the printed wiring board on which the interlayer insulating resin film is disposed is cured in an explosion-proof dryer at 130 ° C. for 20 minutes as the first stage curing with the support attached, and then the second stage Curing was performed in an explosion-proof dryer at 190 ° C. for 40 minutes as curing of the eyes. Thereafter, the support was peeled off to obtain a printed wiring board on which an interlayer insulating layer was formed.
  • the surface roughness of the substrate for surface roughness measurement obtained above was measured using a specific contact surface roughness tester (manufactured by Bruker AXS Co., Ltd., trade name: WykoNT 9100), 1 ⁇ internal lens, 50 ⁇ external lens To determine the arithmetic mean roughness (Ra).
  • A-1 Polyimide compound produced in Production Example 1 (A-1)
  • A-2 Polyimide compound produced in Production Example 2 (A-2)
  • A-3 Polyimide compound produced in Production Example 3 (A-3)
  • A-4 Polyimide compound produced in Production Example 4 (A-4)
  • A'-5 Polyimide compound produced in Comparative Preparation Example 1 (A'-5)
  • ⁇ POLYVEST (registered trademark) 75MA Polybutadiene based elastomer (manufactured by Evonik Co., Ltd.)
  • Perbutyl P ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene (manufactured by NOF Corporation)
  • G8009L isocyanate mask imidazole (made by Daiichi Kog
  • the composite film and printed wiring board of the present invention are useful for vehicles such as computers, mobile phones, digital cameras, electric appliances such as digital cameras, televisions, motorcycles, automobiles, trains, ships, and aircraft.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

高周波帯域の信号を使用する電子機器用複合フィルムとして使用し得る熱硬化性樹脂組成物として、高ガラス転移温度であり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにハンドリング性も良好(つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い)となり得る熱硬化性樹脂組成物を提供すること、そして、該熱硬化性樹脂組成物を用いた層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージを提供すること。前記熱硬化性樹脂組成物は、より具体的には、N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位と、炭素-炭素二重結合を有するアミン化合物(a2)由来の構造単位と、を有するポリイミド化合物(A)を含有する熱硬化性樹脂組成物である。

Description

熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ
 本発明は、熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージに関する。
 近年、電子機器の小型化、軽量化、多機能化等が一段と進み、これに伴って、LSI(Large Scale Integration)、チップ部品等の高集積化が進み、その形態も多ピン化及び小型化へと急速に変化している。このため、電子部品の実装密度を向上するために、多層プリント配線板の微細配線化の開発が進められている。これらの要求に合致する多層プリント配線板としては、ガラスクロスを含まない絶縁樹脂フィルムを、プリプレグの代わりに絶縁層(以下、「ビルドアップ層」ともいう)として用いるビルドアップ構造の多層プリント配線板が、軽量化、小型化及び微細化に適したプリント配線板として主流になりつつある。
 ビルドアップ層形成用のフィルムを作製する際には、ハンドリング性の良さ、つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有することが求められ、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い等の特性(総じて、ハンドリング性と称する。)も求められる。ハンドリング性の良好なフィルムを得るために、従来は液状エポキシ樹脂を含有する熱硬化性樹脂組成物がフィルムの材料として採用されてきた(例えば特許文献1参照)。しかし、液状エポキシ樹脂を含有する熱硬化性樹脂組成物から得られるフィルムは、通常、誘電正接が大きいという問題がある。
 一方で、低誘電正接が得られるフィルムの材料として、N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリイミド化合物とを含有する熱硬化性樹脂組成物が知られている(例えば特許文献2参照)。
特許第5504553号公報 国際公開第2016/114030号
 しかしながら、一般的にポリイミド化合物は剛直であるため、ハンドリング性を良好なものとすることは容易なことではない。この点において、特許文献2では、フィルムのハンドリング性の評価として折り曲げ試験を行っており、この観点におけるハンドリング性が良好なフィルムを得ることに成功している。しかし、ハンドリング性としては前述の通り、熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、且つフィルムとしたときにカバーフィルムから剥離し易い(タック性が強過ぎず、程良い)という特性も工業的には重要である。つまり、熱硬化性樹脂組成物をBステージ化したときに柔軟性を有するという特性、折り曲げ時にクラックが生じ難いという特性及び保護フィルムから剥離し易いという特性の観点からハンドリング性が良好であることが望まれる。
 また、ビルドアップ層には、信頼性の観点からガラス転移温度(Tg)が高いこと、及び回路等の凹凸に対する埋め込み性(以下、単に「埋め込み性」と称することがある。)等が要求される。さらに、加工寸法安定性の向上及び半導体実装後の反り量の低減のために、低熱膨張化も求められる。
 このような状況下、コンピュータ、情報通信機器は近年ますます高性能化及び高機能化し、大量のデータを高速で処理するために、扱う信号が高周波化する傾向にある。特に携帯電話及び衛星放送に使用される電波の周波数領域はGHz帯の高周波領域のものが使用されており、高周波化による伝送損失を抑制するため、高周波領域で使用する有機材料として、比誘電率及び誘電正接が低い材料が望まれている。
 そこで本発明の課題は、高周波帯域の信号を使用する電子機器用複合フィルムとして使用し得る熱硬化性樹脂組成物として、高ガラス転移温度であり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにハンドリング性も良好(つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い)となり得る熱硬化性樹脂組成物を提供すること、そして、該熱硬化性樹脂組成物を用いた層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージを提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、N-置換マレイミド基を少なくとも2個有するマレイミド化合物由来の構造単位と、炭素-炭素二重結合を有するアミン化合物に由来する構造単位とを有するポリイミド化合物(A)を含有する熱硬化性樹脂組成物であれば上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[14]に関する。
[1]N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位と、炭素-炭素二重結合を有するアミン化合物(a2)由来の構造単位と、を有するポリイミド化合物(A)を含有する熱硬化性樹脂組成物。
[2]前記アミン化合物(a2)が炭素-炭素二重結合を2つ以上有する、上記[1]に記載の熱硬化性樹脂組成物。
[3]前記アミン化合物(a2)が脂肪族アミンである、上記[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]前記脂肪族アミンが、脂肪族モノアミン及び脂環式ジアミンからなる群から選択される少なくとも1種である、上記[3]に記載の熱硬化性樹脂組成物。
[5]前記ポリイミド化合物(A)中における、アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/Ta2]が、1.0~30である、上記[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記ポリイミド化合物(A)が、さらにポリアミン化合物(a3)由来の構造単位を有する、上記[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]前記ポリイミド化合物(A)中における、アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)と、ポリアミン化合物(a3)のアミノ基由来の基(アミノ基も含む)の合計当量(Ta3)との総量に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/(Ta2+Ta3)]が、1.0~10である、上記[6]に記載の熱硬化性樹脂組成物。
[8]前記アミン化合物(a2)のアミノ基由来の基の合計モル数(Ma2)と、ポリアミン化合物(a3)のアミノ基由来の基(アミノ基も含む)の合計モル数(Ma3)との比[Ma2/Ma3]が、0.01~10である、上記[6]又は[7]に記載の熱硬化性樹脂組成物。
[9]さらに、エラストマ(B)、無機充填材(C)及び硬化促進剤(D)からなる群から選択される少なくとも1種を含有する、上記[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]前記硬化促進剤(D)が過酸化物を含有する、上記[9]に記載の熱硬化性樹脂組成物。
[11]上記[1]~[10]のいずれかに記載の熱硬化性樹脂組成物を含む、層間絶縁層用樹脂フィルム。
[12]上記[1]~[10]のいずれかに記載の熱硬化性樹脂組成物を含む第一の樹脂層と、第二の樹脂層とを含む、複合フィルム。
[13]上記[11]に記載の層間絶縁用樹脂フィルムの硬化物、又は上記[12]に記載の複合フィルムの硬化物を含む、プリント配線板。
[14]上記[13]に記載のプリント配線板を含有してなる、半導体パッケージ。
 本発明によれば、高周波帯域の信号を使用する電子機器用複合フィルムとして使用し得る熱硬化性樹脂組成物として、高ガラス転移温度であり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにフィルムとしたときのハンドリング性も良好(つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い)となり得る熱硬化性樹脂組成物を提供することができる。そして、該熱硬化性樹脂組成物を用いた層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージを提供することができる。
本実施形態の複合フィルムの一態様を模式的に示した図である。 実施例4及び比較例1で製造した層間絶縁用樹脂フィルムに関する温度-溶融粘度曲線を示すグラフである。
 以下、本発明の実施形態について詳細に説明する。なお、本明細書においてはX以上でありY以下である数値範囲(X、Yは実数)を「X~Y」と表すことがある。例えば、「0.1~2」という記載は0.1以上であり2以下である数値範囲を示し、当該数値範囲には0.1、0.34、1.03、2等が含まれる。
 本明細書において「複合フィルム」は、含有する熱硬化性樹脂組成物が未硬化である複合フィルム、及び含有する熱硬化性樹脂組成物を半硬化させた(いわゆるBステージ状とした)複合フィルムの両方を含む。
 複合フィルムの「複合」とは、フィルムが複数の樹脂層から形成されていることを意味し、その態様が含まれていれば、さらに支持体及び保護フィルム等からなる他の層を有していてもよい。
 また、本明細書において「層間絶縁層」とは、2層の導体層の間に位置し、当該導体層を絶縁するための層である。本明細書の「層間絶縁層」は、例えば、複合フィルムの硬化物が挙げられる。なお、本明細書において「層」とは、一部が欠けているもの、ビア又はパターンが形成されているものも含む。
 また、本明細書では、高周波帯域における比誘電率及び誘電正接を、誘電特性又は高周波特性と称することがあり、高周波帯域における比誘電率及び誘電正接が低いことを、高周波特性が優れると表現することがある。
 なお、本明細書における記載事項を任意に組み合わせた態様も全て本発明に含まれる。
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位と、炭素-炭素二重結合を有するアミン化合物(a2)由来の構造単位と、を有するポリイミド化合物(A)を含有する熱硬化性樹脂組成物である。
 該ポリイミド化合物(A)について以下に詳述する。
<ポリイミド化合物(A)>
 ポリイミド化合物(A)は、N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位と、炭素-炭素二重結合を有するアミン化合物(a2)由来の構造単位とを有するものである。ポリイミド化合物(A)は、さらにその他の構造単位を含有していてもよい。
(N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1))
 N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)(以下、「成分(a1)」ともいう)は、N-置換マレイミド基を2個以上有するマレイミド化合物であれば、特に限定されない。
 成分(a1)としては、例えば、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 成分(a1)としては、分子中のどこかに芳香族炭化水素基を含有するマレイミド化合物、つまり芳香族マレイミド化合物であってもよいし、脂肪族炭化水素基しか有さない、いわゆる脂肪族マレイミド化合物であってもよいが、芳香族マレイミド化合物であることが好ましい。
 成分(a1)は、安価である点から、ビス(4-マレイミドフェニル)メタンが好ましく、誘電特性に優れ、低吸水性である点から、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドが好ましく、導体との高接着性、伸び、破断強度等の機械特性に優れる点から、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンが好ましい。
 成分(a1)由来の構造単位としては、例えば、下記一般式(1-1)で表される基、下記一般式(1-2)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1-1)及び(1-2)中、Aは成分(a1)の残基を示し、*は結合部を示す。Aは特に限定されないが、例えば後述するAと同様の残基が好ましい。
 なお、残基とは、原料成分から結合に供された官能基(成分(a1)においてはマレイミド基)を除いた部分の構造をいう。
(炭素-炭素二重結合を有するアミン化合物(a2))
 炭素-炭素二重結合を有するアミン化合物(a2)(以下、「成分(a2)」ともいう)は、炭素-炭素二重結合を有している限り特に制限はなく、脂肪族アミン(脂環式アミンを含む。)であってもよいし、芳香族アミンであってもよいし、また、モノアミン化合物であってもよいし、ジアミン化合物であってもよい。これらの中でも、成分(a2)としては脂肪族アミンが好ましい。
 成分(a2)が有する炭素-炭素二重結合の数は、1つであってもよいし、2つ以上であってもよい。高ガラス転移温度、回路等の凹凸に対する埋め込み性、誘電特性、低熱膨張性及びハンドリング性の観点から、成分(a2)が有する炭素-炭素二重結合の数は1つ又は2つであることが好ましく、2つであることがより好ましい。なお、成分(a2)が有する炭素-炭素二重結合の数が2つである場合、高ガラス転移温度、回路等の凹凸に対する埋め込み性、誘電特性、低熱膨張性及びハンドリング性の観点から、窒素原子に結合する別の基に1つずつ存在することが好ましい。成分(a2)が有する炭素-炭素二重結合の数が2つ以上である場合、高ガラス転移温度、回路等の凹凸に対する埋め込み性、誘電特性、低熱膨張性及びハンドリング性の観点から、少なくとも1つの炭素-炭素二重結合は、他の炭素-炭素二重結合と共役していないことが好ましい。
 また、成分(a2)が有するアミノ基は、第一級アミノ基であってもよいし、第二級アミノ基であってもよい。高ガラス転移温度、回路等の凹凸に対する埋め込み性、誘電特性、低熱膨張性及びハンドリング性の観点から、成分(a2)が有するアミノ基は第二級アミノ基であることが好ましく、第二級脂肪族モノアミンであることがより好ましい。
 本実施形態で用いる当該成分(a2)は、常温で液状のアミン化合物であり、熱硬化性樹脂組成物をBステージ化した際、柔軟性が良好となり、つまりハンドリング性に優れる。本実施形態では炭素-炭素二重結合を有するアミン化合物(a2)を用いることによって、高Tgであり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにフィルムとしたときのハンドリング性も良好(つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い)となる。炭素-炭素二重結合を有する基が窒素原子に置換していることによって、成分(a1)にマイケル付加したアミン化合物(a2)における炭素-炭素二重結合を有するアミノ基がスタッキングする(積み重なる)こと、及び硬化時に炭素-炭素二重結合によってラジカル重合し、成分(a1)と成分(a2)とが架橋反応も交えて複雑に反応し合うことが、Tgの向上及び低熱膨張率等につながったのであろうと推察する。
 成分(a2)の分子量は、当該スタッキングのし易さの観点及びハンドリング性の観点から、好ましくは50~400、より好ましくは50~300、さらに好ましくは50~200、特に好ましくは50~150、最も好ましくは70~120である。
 前記脂肪族アミンとしては、以上の中でも、脂肪族モノアミン及び脂環式ジアミンからなる群から選択される少なくとも1種が好ましく、脂肪族モノアミンがより好ましい。
 炭素-炭素二重結合を有する脂肪族モノアミンとしては、例えば、アリルアミン、ジアリルアミン等が挙げられる。これらの中でも、ジアリルアミンが好ましい。 炭素-炭素二重結合を有する脂環式ジアミンとしては、例えば、ノルボルネンジアミン等が挙げられる。
 前記ポリイミド化合物(A)中における、前記アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/Ta2]は、1~50であることが好ましく、1~30であることがより好ましい。上記範囲内とすることにより、より良好な耐熱性及びガラス転移温度が得られる傾向にある。
 ポリイミド化合物(A)は、さらにポリアミン化合物(a3)(以下、「成分(a3)」ともいう。但し、前記アミン化合物(a2)は含まれない。)由来の構造単位を有していてもよく、また、有していることが好ましい。
 成分(a3)は、アミノ基を2個以上有する化合物であれば、特に制限されない。成分(a3)としては、アミノ基を2個有する化合物、つまりジアミン化合物であることが好ましい。
 成分(a3)としては、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス(1-(4-(4-アミノフェノキシ)フェニル)-1-メチルエチル)ベンゼン、1,4-ビス(1-(4-(4-アミノフェノキシ)フェニル)-1-メチルエチル)ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 成分(a3)は、有機溶媒への溶解性、合成時の反応性、及び耐熱性に優れる点から、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、及び4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。また、成分(a3)は、誘電特性及び低吸水性に優れる観点から、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましい。また、成分(a3)は、導体との高接着性、伸び、破断強度等の機械特性に優れる観点から、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパンが好ましい。さらに、上記の有機溶媒への溶解性、合成時の反応性、耐熱性、導体との高接着性に優れるのに加えて、優れた高周波特性と低吸湿性を発現できる観点から、成分(a3)は、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。
 成分(a3)由来の構造単位としては、例えば、下記一般式(3-1)で表される基、下記一般式(3-2)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 一般式(3-1)及び(3-2)中、Aは成分(a3)の残基を示し、*は結合部を示す。Aは特に限定されないが、下記一般式(4)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、R及びRは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基、又はハロゲン原子を示す。Aは炭素数1~5のアルキレン基、アルキリデン基、エーテル基、スルフィド基、スルフォニル基、カルボニルオキシ基、ケトン基、フルオレニレン基、単結合、下記一般式(4-1)、又は下記一般式(4-2)で表される残基である。)
Figure JPOXMLDOC01-appb-C000004

(式中、R及びRは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示す。Aは炭素数1~5のアルキレン基、イソプロピリデン基、m-又はp-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボニルオキシ基、ケトン基、又は単結合である。)
Figure JPOXMLDOC01-appb-C000005

(式中、Rは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示す。A及びAは炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボニルオキシ基、ケトン基、又は単結合である。)
 前記ポリイミド化合物(A)中における、前記アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)及び前記アミン化合物(a3)のアミノ基由来の基の合計当量(Ta3)の総量に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/(Ta2+Ta3)]が、1.0~10であることが好ましく、1.0~5.0であることがより好ましい。上記範囲内とすることにより、より良好な高周波特性、耐熱性、難燃性、及びガラス転移温度が得られる傾向にある。
 また、前記アミン化合物(a2)のアミノ基由来の基の合計モル数(Ma2)と、ポリアミン化合物(a3)のアミノ基由来の基(アミノ基も含む)の合計モル数(Ma3)との比[Ma2/Ma3]が、0.01~10であることが好ましく、0.05~5であることがより好ましく、0.1~3であることがさらに好ましく、0.3~1.5であることが特に好ましい。上記範囲内とすることにより、高ガラス転移温度であり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにフィルムとしたときのハンドリング性も良好(つまり熱硬化性樹脂組成物をBステージ化したときに柔軟性を有し、それと共に、フィルムとしたときに折り曲げてもクラックが生じ難い及びカバーフィルムから剥離し易い)な熱硬化性樹脂組成物となり易い傾向にある。
(ポリイミド化合物(A)の製造方法)
 ポリイミド化合物(A)は、例えば、成分(a1)、成分(a2)、必要に応じて成分(a3)及びその他の成分を有機溶媒中で反応させることによって製造できる。
 ポリイミド化合物(A)を製造する際に使用される有機溶媒は特に制限はなく、公知の溶媒を使用できる。有機溶媒は、後述する層間絶縁用樹脂フィルム用ワニスの製造に用いられる有機溶媒であってもよい。
 ポリイミド化合物(A)を製造する際には、必要に応じて反応触媒を使用することもできる。反応触媒としては制限されないが、例えば、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン類;メチルイミダゾール、フェニルイミダゾール等のイミダゾール類;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 また、反応触媒の使用量は特に限定されないが、例えば、成分(a1)、成分(a2)並びに必要に応じて使用する成分(a3)及びその他の成分の合計量100質量部に対して、0.01~5.0質量部の範囲で使用することができる。
 成分(a1)、成分(a2)、必要により成分(a3)及びその他の成分を反応器に所定量仕込み、成分(a1)、成分(a2)及び必要に応じて成分(a3)及びその他の成分をマイケル付加反応させることによりポリイミド化合物(A)が得られる。この工程での反応条件としては、特に限定されないが、例えば、反応速度等の作業性、ゲル化抑制などの観点から、反応温度は50~160℃が好ましく、反応時間は1~10時間が好ましい。
 また、この工程では前述の有機溶媒を追加又は濃縮して反応原料の固形分濃度、溶液粘度を調整することができる。反応原料の固形分濃度は、特に制限はないが、例えば、10~90質量%が好ましく、20~80質量%がより好ましい。反応原料の固形分濃度が10質量%以上の場合、反応速度が遅くなりすぎず、製造コストの面で有利である。また、反応原料の固形分濃度が90質量%以下の場合、より良好な溶解性が得られ、攪拌効率が良く、またゲル化することも少ない。
 なお、ポリイミド化合物(A)の製造後に、目的に合わせて有機溶媒の一部又は全部を除去して濃縮してもよく、有機溶媒を追加して希釈してもよい。追加で使用される有機溶媒としては、ポリイミド化合物(A)の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いても、2種類以上を併用してもよい。また、使用する有機溶媒は、溶解性の観点から、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが好ましく、プロピレングリコールモノメチルエーテルがより好ましい。
 ポリイミド化合物(A)の重量平均分子量(Mw)は、特に限定されないが、例えば、800~1,500の範囲が好ましく、800~1,300の範囲がより好ましく、1,000~1,300の範囲がさらに好ましい。ポリイミド化合物(A)の重量平均分子量は、実施例に記載の方法により求めることができる。
(ポリイミド化合物(A)の含有量)
 本実施形態の熱硬化性樹脂組成物中におけるポリイミド化合物(A)の含有量は、特に限定されないが、本実施形態の熱硬化性樹脂組成物中に含まれる全樹脂成分の合計質量中、50~95質量%が好ましく、60~90質量%がより好ましく、70~85質量%がさらに好ましい。ポリイミド化合物(A)の含有量を前記範囲内とすることにより、誘電特性がより良好となる傾向にある。
 本実施形態の熱硬化性樹脂組成物は、さらに、エラストマ(B)、無機充填材(C)及び硬化促進剤(D)からなる群から選択される少なくとも1種を含有していてもよく、また、含有していることが好ましい。以下、これらの成分について順に説明する。
<エラストマ(B)>
 エラストマ(B)としては、特に限定されないが、例えば、ポリブタジエン系エラストマ、スチレン系エラストマ、オレフィン系エラストマ、ウレタン系エラストマ、ポリエステル系エラストマ、ポリアミド系エラストマ、アクリル系エラストマ、シリコーン系エラストマ、これらのエラストマの誘導体等が挙げられる。これらは、1種類を単独で用いても、2種類以上を併用してもよい。
 エラストマ(B)としては、分子末端又は分子鎖中に反応性官能基を有するものを用いることができる。反応性官能基としては、例えば、無水マレイン酸基、エポキシ基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアナト基、アクリル基、メタクリル基及びビニル基からなる群より選択される1種以上であることが好ましく、金属箔との密着性の点から、無水マレイン酸基、エポキシ基、水酸基、カルボキシ基、アミノ基及びアミド基からなる群より選択される1種以上であることがより好ましく、誘電特性の点から、無水マレイン酸基がさらに好ましい。これらの反応性官能基を有することにより、樹脂への相溶性が向上し、層間絶縁層を形成した際の無機充填材(C)と樹脂成分との分離が抑制される傾向にある。同様の観点から、エラストマ(B)は無水マレイン酸によって変性されたエラストマであることが好ましい。
 ポリブタジエン系エラストマは、1,2-ビニル基を含む、1,4-トランス体と1,4-シス体との構造体からなるものが好適に挙げられる。
 ポリブタジエン系エラストマとしては、樹脂への相溶性が向上し、層間絶縁層を形成した際の無機充填材(C)と樹脂成分との分離が抑制される観点から、反応性官能基を有するものが好ましく、特に酸無水物で変性されているポリブタジエン系エラストマが好ましい。酸無水物としては、特に限定されないが、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられる。これらの中でも、無水マレイン酸が好ましい。
 エラストマ(B)が酸無水物で変性されている場合、エラストマ(B)1分子中に含まれる酸無水物由来の基(以下、「酸無水物基」ともいう)の数は、1~10が好ましく、1~6がより好ましく、2~5がさらに好ましい。酸無水物基の数が1分子中に1以上であると、層間絶縁層を形成した際の無機充填材(C)と樹脂成分との分離がより抑制される傾向にある。また、酸無水物基の数が1分子中に10以下であると、熱硬化性樹脂組成物の比誘電率及び誘電正接がより低くなる傾向にある。エラストマ(B)が無水マレイン酸で変性されている場合、上記と同様の観点から、エラストマ(B)1分子中に含まれる無水マレイン酸由来の基(以下、「無水マレイン酸基」ともいう)の数は、1~10が好ましく、1~6がより好ましく、2~5がさらに好ましい。
 スチレン系エラストマとしては、例えば、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー等が好適に挙げられる。スチレン系エラストマを構成する成分としては、スチレンの他に、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体が挙げられる。
 オレフィン系エラストマとしては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-ペンテン等の炭素数2~20のα-オレフィンの共重合体が挙げられ、例えば、エチレン-プロピレン共重合体(EPR)、エチレン-プロピレン-ジエン共重合体(EPDM)等が好適に挙げられる。また、前記α-オレフィンと、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の炭素数2~20の非共役ジエンとの共重合体が挙げられる。さらには、ブタジエン-アクニロニトリル共重合体にメタクリル酸を共重合したカルボキシ変性NBR等が挙げられる。
 ウレタン系エラストマは、例えば、短鎖ジオールとジイソシアネートとからなるハードセグメントと、高分子(長鎖)ジオールとジイソシアネートとからなるソフトセグメントとを含有するものが好適に挙げられる。
 高分子(長鎖)ジオールとしては、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン-1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、ポリ(1,6-へキシレン・ネオペンチレンアジペート)等が挙げられる。高分子(長鎖)ジオールの数平均分子量は、500~10,000が好ましい。
 短鎖ジオールとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ビスフェノールA等が挙げられる。短鎖ジオールの数平均分子量は、48~500が好ましい。
 ポリエステル系エラストマとしては、例えば、ジカルボン酸又はその誘導体とジオール化合物又はその誘導体とを重縮合して得られるものが挙げられる。
 ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びこれらの芳香核の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸;アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸などが挙げられる。これらの化合物は1種類を単独で用いても、2種類以上を併用してもよい。
 ジオール化合物の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等の脂肪族ジオール;1,4-シクロヘキサンジオール等の脂環式ジオール;ビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、レゾルシン等の芳香族ジオールなどが挙げられる。これらの化合物は1種類を単独で用いても、2種類以上を併用してもよい。
 また、ポリエステル系エラストマとして、芳香族ポリエステル(例えば、ポリブチレンテレフタレート)部分をハードセグメント成分に、脂肪族ポリエステル(例えば、ポリテトラメチレングリコール)部分をソフトセグメント成分にしたマルチブロック共重合体が好適に挙げられる。マルチブロック共重合体は、ハードセグメントとソフトセグメントの種類、比率、分子量の違いにより様々なグレードのものがある。その具体例としては、「ハイトレル(登録商標)」(東レ・デュポン株式会社製)、「ペルプレン(登録商標)」(東洋紡株式会社製)、「エスペル(登録商標)」(日立化成株式会社製)等が挙げられる。
 ポリアミド系エラストマとしては、例えば、ポリアミドをハードセグメント成分、ポリブタジエン、ブタジエン-アクリロニトリル共重合体、スチレン-ブタジエン共重合体、ポリイソプレン、エチレンプロピレン共重合体、ポリエーテル、ポリエステル、ポリブタジエン、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリウレタン、シリコーンゴム等をソフトセグメント成分としたブロック共重合体が挙げられる。
 アクリル系エラストマとしては、例えば、アクリル酸エステルを主成分とする原料モノマーの重合体が挙げられる。アクリル酸エステルとしては、エチルアクリレート、ブチルアクリレート、メトキシエチルアクリレート、エトキシエチルアクリレート等が好適に挙げられる。また、架橋点モノマーとして、グリシジルメタクリレート、アリルグリシジルエーテル等を共重合させたものであってもよく、さらに、アクリロニトリル、エチレン等を共重合させたものであってもよい。具体的には、アクリロニトリル-ブチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-エチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-グリシジルメタクリレート共重合体等が挙げられる。
 シリコーン系エラストマは、オルガノポリシロキサンを主成分とするエラストマであり、例えば、ポリジメチルシロキサン系、ポリメチルフェニルシロキサン系、ポリジフェニルシロキサン系等に分類される。
 これらのエラストマの中でも、耐熱性、絶縁信頼性の点から、スチレン系エラストマ、ポリブタジエン系エラストマ、オレフィン系エラストマ、ポリアミド系エラストマ、シリコーン系エラストマが好ましく、誘電特性の点から、ポリブタジエン系エラストマ、スチレン系エラストマがより好ましく、ポリブタジエン系エラストマがさらに好ましい。
 エラストマ(B)の重量平均分子量(Mw)は、500~50,000が好ましく、1,000~30,000がより好ましい。エラストマ(B)の重量平均分子量が500以上であると、熱硬化性樹脂組成物の硬化性及び硬化物の誘電特性がより良好となる傾向にある。また、エラストマ(B)の重量平均分子量が50,000以下であると、層間絶縁層を形成した際の無機充填材(C)と樹脂成分との分離が抑制される傾向にある。なお、エラストマ(B)の重量平均分子量は、実施例に記載のポリイミド化合物(A)の重量平均分子量の測定方法を適用できる。
 熱硬化性樹脂組成物がエラストマ(B)を含有する場合、その含有量は、熱硬化性樹脂組成物に含まれる全樹脂成分に対して1~70質量%が好ましく、5~50質量%がより好ましく、10~30質量%がさらに好ましい。エラストマ(B)の含有量を前記範囲内とすることにより、比誘電率及び誘電正接が低く、フィルムにした際のハンドリング性に優れ、且つ層間絶縁層を形成した際の無機充填材(C)と樹脂成分との分離が抑制される傾向にある。
<無機充填材(C)>
 無機充填材(C)としては、特に限定されないが、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、より低熱膨張化させる観点から、シリカが好ましい。
 無機充填材(C)の形状に特に制限はなく、例えば、球状、破砕状、針状又は板状のいずれであってもよいが、熱硬化性樹脂組成物中における分散性向上、有機溶媒に熱硬化性樹脂組成物を溶解又は分散させた樹脂ワニス中における分散性向上、樹脂ワニスの粘度低減による流動性向上、熱硬化性樹脂組成物から形成される絶縁層の表面粗度の増大抑制等の観点から、球状であることが好ましい。
 無機充填材(C)の体積平均粒径は、特に限定されないが、例えば、0.05~5μmが好ましく、0.1~3μmがより好ましく、0.2~1μmがさらに好ましい。無機充填材(C)の体積平均粒径が5μm以下であれば、層間絶縁層上に回路パターンを形成する際にファインパターンの形成をより安定的に行える傾向にある。また、無機充填材(C)の体積平均粒径が0.1μm以上であれば、耐熱性がより良好となる傾向にある。
 なお、体積平均粒径とは、粒子の全体積を100%として、粒子径による累積度数分布曲線を求めたときの体積50%に相当する点の粒径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 また、無機充填材(C)の分散性及び無機充填材(C)と熱硬化性樹脂組成物中の有機成分との接着性を向上させる目的で、必要に応じ、カップリング剤を併用してもよい。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、シランカップリング剤が好ましい。シランカップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、メルカプトシラン系カップリング剤等が挙げられる。これらの中でも、無機充填材(C)の分散性向上の観点、及び無機充填材(C)と有機成分との接着性向上の観点から、アミノシラン系カップリング剤が好ましい。
 また、カップリング剤を使用する場合、その使用量は特に限定されないが、無機充填材(C)100質量部に対して0.1~5質量部が好ましく、0.5~3質量部がより好ましい。この範囲であれば、無機充填材(C)の使用による特長をより効果的に発揮できる。
 カップリング剤を用いる場合、その添加方式は、熱硬化性樹脂組成物中に無機充填材(C)を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいし、より効果的に無機充填材(C)の特長を発現させる観点から、配合前の無機充填材に対して予めカップリング剤を乾式又は湿式で表面処理する方式でもよい。
 無機充填材(C)は、熱硬化性樹脂組成物への分散性を高める観点から、予め有機溶媒中に分散させたスラリーの状態で用いることが好ましい。無機充填材(C)のスラリーに使用される有機溶媒に特に制限はないが、例えば、上述したポリイミド化合物(A)の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いても、2種類以上を併用してもよい。また、これらの有機溶媒の中でも、分散性をより一層高める観点から、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが好ましい。
 無機充填材(C)のスラリーの固形分濃度に特に制限はないが、例えば、無機充填材(C)の沈降性及び分散性の観点から、50~80質量%が好ましく、60~80質量%がより好ましく、60~75質量%がさらに好ましい。
 熱硬化性樹脂組成物が無機充填材(C)を含有する場合、その含有量は、求める特性及び機能によって適宜選択できるが、熱硬化性樹脂組成物の固形分に対して、55体積%以上が好ましく、55~85体積%がより好ましく、55~80体積%がさらに好ましく、55~75体積%が特に好ましい。無機充填材(C)の含有量をこのような範囲にすることで、低い熱膨張率を有することができる。
 なお、本明細書において、熱硬化性樹脂組成物に含まれる固形分とは、熱硬化性樹脂組成物を構成する成分から揮発性の成分を除外した残分を意味する。
<硬化促進剤(D)>
 本実施形態の熱硬化性樹脂組成物に硬化促進剤(D)を含有させることで、熱硬化性樹脂組成物の硬化性を向上させ、誘電特性、耐熱性、弾性率、ガラス転移温度等をより向上させることができる。
 硬化促進剤(D)としては、特に限定されないが、例えば、各種イミダゾール化合物及びその誘導体;各種第3級アミン化合物;各種第4級アンモニウム化合物;トリフェニルホスフィン等の各種リン系化合物;過酸化物などが挙げられる。これらの中でも、各種イミダゾール化合物及びその誘導体、過酸化物が好ましい。
 特に、前記ポリイミド化合物(A)の製造に用いるアミン化合物(a2)が有する炭素-炭素二重結合をラジカル重合させて本願発明の効果を得る観点から、硬化促進剤(D)が過酸化物を含有することが好ましい。同様の観点から、硬化促進剤(D)は、各種イミダゾール化合物及びその誘導体と共に、過酸化物を含有することが好ましい。
 各種イミダゾール化合物及びその誘導体としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-1-メチルイミダゾール、1,2-ジエチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4'-メチルイミダゾリル-(1’)]エチル-s-トリアジン等のイミダゾール化合物;1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等の、前記イミダゾール化合物とトリメリト酸との付加反応物;前記イミダゾール化合物とイソシアヌル酸との付加反応物;前記イミダゾール化合物と臭化水素酸との付加反応物などが挙げられる。
 過酸化物としては、例えば、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド等の有機過酸化物が挙げられる。過酸化物は、1種類を単独で用いても、2種類以上を併用してもよい。
 熱硬化性樹脂組成物が硬化促進剤(D)を含有する場合、その含有量は、求める特性及び機能によって適宜選択できるが、熱硬化性樹脂組成物に含まれる全樹脂成分に対して0.01~10質量%がより好ましく、0.1~5質量%がさらに好ましく、0.1~3質量%が特に好ましい。硬化促進剤(D)の含有量をこのような範囲にすることで、硬化性及び保存安定性が良好となる傾向にある。
 特に、硬化促進剤(D)が前記過酸化物を含有する場合、該過酸化物の含有量は、硬化促進剤(D)中、30~95質量%が好ましく、50~95質量%がより好ましく、60~90質量%がさらに好ましく、70~90質量%が特に好ましい。これは、硬化促進剤(D)が、各種イミダゾール化合物及びその誘導体と共に過酸化物を含有する場合も同様である。
<その他の成分>
 本実施形態の熱硬化性樹脂組成物には、必要に応じて、難燃剤、酸化防止剤、紫外線吸収剤、流動調整剤等の添加剤を含有させてもよい。
 難燃剤としては、特に限定されないが、例えば、塩素系難燃剤、臭素系難燃剤、リン系難燃剤、金属水和物系難燃剤等が挙げられる。環境への適合性からは、リン系難燃剤、金属水和物系難燃剤が好ましい。
 酸化防止剤としては、特に限定されないが、例えば、ヒンダードフェノール系酸化防止剤、スチレン化フェノール系酸化防止剤等のフェノール系酸化防止剤等が挙げられる。
 紫外線吸収剤としては、特に限定されないが、例えば、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。
[層間絶縁用樹脂フィルム]
 本実施形態の層間絶縁用樹脂フィルムは、本実施形態の熱硬化性樹脂組成物を含有するものである。
 本実施形態の層間絶縁用樹脂フィルムは、そのいずれか一方の面に支持体が設けられたものであってもよい。
 支持体としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステルのフィルム;ポリカーボネートフィルム、ポリイミドフィルム等の各種プラスチックフィルムなどが挙げられる。また、銅箔、アルミニウム箔等の金属箔、離型紙などを使用してもよい。支持体及び後述する保護フィルムには、マット処理、コロナ処理等の表面処理が施してあってもよい。また、支持体及び後述する保護フィルムには、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理が施してあってもよい。
 支持体の厚さは、特に限定されないが、10~150μmが好ましく、25~50μmがより好ましい。
 本実施形態の層間絶縁用樹脂フィルムの用途は特に限定されないが、接着フィルム、プリプレグ等の絶縁樹脂シート、回路基板、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂などの層間絶縁層が必要とされる用途の広範囲に使用できる。なかでも、プリント配線板の製造において層間絶縁層を形成するために好適に使用することができる。
 次に、本実施形態の層間絶縁用樹脂フィルムの製造方法について説明する。
<層間絶縁用樹脂フィルムの製造方法>
 本実施形態の層間絶縁用樹脂フィルムは、後述する第一の樹脂層として利用され得るものであり、例えば、次のようにして製造することができる。
 層間絶縁用樹脂フィルムを製造する際には、まず、前記各成分を混合して熱硬化性樹脂組成物を製造する。このとき、熱硬化性樹脂組成物は、有機溶剤に溶解又は分散した樹脂ワニス(以下、「層間絶縁用樹脂フィルム用ワニス」ともいう)の状態にすることが好ましい。当該樹脂ワニスも、本発明の熱硬化性樹脂組成物の範疇である。
 層間絶縁用樹脂フィルム用ワニスの製造に用いられる有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテル、カルビトールアセテート等の酢酸エステル類;セロソルブ、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒などが挙げられる。これらの有機溶媒は1種類を単独で用いても、2種類以上を併用してもよい。
 有機溶媒の配合量は、層間絶縁用樹脂フィルム用ワニスの全質量100質量部に対して、10~50質量部が好ましく、20~40質量部がより好ましい。
 このようにして製造した層間絶縁用樹脂フィルム用ワニスを、前記支持体に塗工した後、加熱乾燥させることにより、層間絶縁用樹脂フィルムが得られる。
 支持体に層間絶縁用樹脂フィルム用ワニスを塗工する方法としては、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。これらの塗工装置は、膜厚によって、適宜選択することが好ましい。
 塗工後の乾燥条件は、特に限定されず、溶剤の種類に応じて適宜決定すればよいが、例えば、乾燥温度は、50~150℃が好ましく、100~145℃がより好ましい。乾燥時間は、例えば、2~10分間とすることができる。
 本実施形態の層間絶縁用樹脂フィルムの厚さは、導体層上に配置して用いる場合、回路基板の導体層を埋め込む観点から、回路基板の導体層の厚さ以上であることが好ましい。具体的には、回路基板が有する導体層の厚さが、通常5~70μmの範囲であるので、層間絶縁用樹脂フィルムの厚さは、5~100μmであることが好ましく、5~60μmであることがより好ましく、10~60μmであることがさらに好ましい。
 支持体上に形成された層間絶縁用樹脂フィルムの、支持体とは反対側の面には、保護フィルムを設けてもよい。保護フィルムの厚さは、特に限定されないが、例えば、1~40μmである。保護フィルムを積層することにより、層間絶縁用樹脂フィルムの表面へのゴミ等の付着及びキズ付きを防止することができる。層間絶縁用樹脂フィルムは、ロール状に巻き取って保管することができる。
[複合フィルム]
 本実施形態の熱硬化性樹脂組成物を用いて複合フィルムを形成することができる。本実施形態の複合フィルムは、本実施形態の熱硬化性樹脂組成物を含む第一の樹脂層と、第二の樹脂層とを含む複合フィルムである。本実施形態の複合フィルムは、高周波帯域の信号を使用する電子機器用複合フィルムとして有用である。
 第一の樹脂層は、例えば、本実施形態の複合フィルムを用いてプリント配線板を製造する場合において、回路基板と接着補助層との間に設けられ、回路基板の導体層とその上の層とを絶縁するために用いられる。また、第一の樹脂層は、回路基板にスルーホール、ビアホール等が存在する場合、それらの中に流動し、該ホール内を充填する役割も果たす。
 第二の樹脂層は、後述する本実施形態のプリント配線板において、第一の樹脂層と導体層との間に位置し、導体層との接着性を向上させることを目的として設けられるものである。第二の樹脂層を設けることにより、平滑な表面が得られ、且つめっきにて形成される導体層ともより良好な接着強度が得られる。
 第二の樹脂層の成分としては、導体層との接着性を向上させるものであれば、特に限定されない。例えば、表面粗さが小さくてもめっき銅との接着性に優れ、且つ誘電特性に優れた層間絶縁層を得る観点から、多官能エポキシ樹脂(b1)、及びフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(b2)を含有する熱硬化性樹脂組成物が好ましく挙げられる。第二の樹脂層の成分としては、前記(b1)成分及び(b2)成分のほかに、さらに活性エステル硬化剤(b3)を含有する熱硬化性樹脂組成物であることがより好ましい。該(b1)~(b3)成分の詳細については、国際公開第2016/11404号に記載の第二の樹脂層についての説明を参照でき、該文献に記載の第二の樹脂層をそのまま採用してもよい。
 本実施形態の複合フィルムは、前記第一の樹脂層と前記第二の樹脂層を有し、第二の樹脂層において第一の樹脂層と反対側の面に支持体が設けられていてもよい。この場合、第一の樹脂層/第二の樹脂層/支持体という構成になる。支持体としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステルのフィルム;ポリカーボネートフィルム、ポリイミドフィルム等の各種プラスチックフィルムなどが挙げられる。また、銅箔、アルミニウム箔等の金属箔、離型紙などを使用してもよい。支持体及び後述する保護フィルムには、マット処理、コロナ処理等の表面処理が施してあってもよい。また、支持体には、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理が施してあってもよい。
 支持体の厚さは特に限定されないが、10~150μmが好ましく、25~50μmがより好ましい。
 本実施形態の複合フィルムは、保護フィルムが設けられていてもよい。例えば、第一の樹脂層において第二の樹脂層とは反対側の面に保護フィルムを設ける態様が挙げられる。この場合、例えば、保護フィルム/第一の樹脂層/第二の樹脂層、保護フィルム/第一の樹脂層/第二の樹脂層/支持体、等の構成になる。
 保護フィルムとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、保護フィルムには、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理、離型処理等の表面処理が施されていてもよい。
 なお、前記支持体を保護フィルムとして使用してもよい。
 本実施形態の複合フィルムは、例えば、前記支持体の上に第二の樹脂層を形成し、該第二の樹脂層の上に第一の樹脂層を形成し、必要に応じて第一の樹脂層の上に保護層を形成する方法により製造することができる。第二の樹脂層の形成には、後述する第二の樹脂層用ワニスを支持体に塗工した後、加熱乾燥させ、さらにその上に後述する第一の樹脂層用ワニスを塗工した後、加熱乾燥させることにより形成することができる。樹脂ワニスを塗工する方法としては、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。これらの塗工装置は、膜厚によって、適宜選択することが好ましい。
 塗工後の乾燥条件は、特に限定されず、溶剤の種類に応じて適宜決定すればよい。例えば、乾燥温度は、第一の樹脂層を形成する場合には、50~130℃が好ましく、70~110℃がより好ましい。乾燥時間は、第一の樹脂層を形成する場合には、例えば、1~10分間とすることができる。例えば、乾燥温度は、第二の樹脂層を形成する場合には、50~150℃が好ましく、100~145℃がより好ましい。乾燥時間は、第二の樹脂層を形成する場合には、例えば、1~10分間とすることができる。
 上記乾燥においては、乾燥後の第一の樹脂層又は第二の樹脂層中の揮発成分(主に有機溶媒)の含有量が、10質量%以下となるように乾燥させることが好ましく、6質量%以下となるように乾燥させることがより好ましい。
 また、本実施形態の複合フィルムは、第一の樹脂層のフィルム及び第二の樹脂層のフィルムをそれぞれ作製し、軟化温度以上で熱圧着及びラミネーター等により貼り合わせることによっても製造できる。
 本実施形態の複合フィルムにおいて、回路の凹凸高さcを埋め込むために、第一の樹脂層の厚みは、1c~3cであることが好ましく、1c~2cであることがより好ましく、1.1c~1.5cであることがさらに好ましい。第一の樹脂層の厚みが、1c以上であれば、回路の凹凸を埋め込んだ際に、十分な埋め込み性を確保でき、埋め込み後の複合フィルムの表層をフラットに保ち易い傾向にある。一方、3c以下であれば、基板の薄型化が容易となり、且つ低反り化する傾向にあり、好ましい。
 具体的には、回路の凹凸高さを埋め込むために、第一の樹脂層の厚みは、例えば、10~40μmであることが好ましい。第一の樹脂層の厚みは15~35μmであるとより好ましく、20~35μmであるとさらに好ましい。
 一方、第二の樹脂層は、セミアディティブ法に適応できる層である。表面平坦性を確保し、めっき銅との高接着性を確保するため、第二の樹脂層の厚みは1~10μmであることが好ましく、1~7μmであることがより好ましく、1~5μmであることがより好ましく、1~3μmであることがより好ましく、1.5~3μmであることがさらに好ましい。第二の樹脂層の厚みが1μm以上であれば、回路の凹凸への埋め込みの際に第二の樹脂層が破断して第一の樹脂層が表面に露出するのを避け易く、且つ、デスミアプロセスで第二の樹脂層が溶出して消失してしまうおそれが少ない。一方、10μm以下であれば、表面平坦性の低下を抑制し易いとともに、基板を薄型化できるために好ましい。
 第一の樹脂層の厚みをa(μm)、第二の樹脂層の厚みをb(μm)、回路の高さをc(μm)としたときに、c≦a≦3c、c≦a≦2c、又は、c≦a≦1.5c、かつ、1≦b≦10、又は1≦b≦5の関係を満たすような複合フィルムとすることが好ましい。この関係を満たすようなフィルムであれば、充分な埋め込み性と微細回路形成性を両立できる。
 第一の樹脂層は、80~150℃における最低溶融粘度が好ましくは100~4,000Pa・sである。この範囲であれば、第一の樹脂層を80~150℃で流動させることができ、埋め込み性の観点から好ましい。ここで、最低溶融粘度とは、硬化開始前に熱硬化性樹脂組成物が溶融したときの粘度である。
 80~150℃における最低溶融粘度が100Pa・s以上であることにより、フィルムの流動性が大きくなり過ぎず、埋め込み後の複合フィルムの表面平坦性を保ち易くなり、基板の厚みにバラツキが発生するのを抑制できる傾向にある。また、4,000Pa・s以下であることにより、流動性が良好となり、配線の凹凸を埋め込み易くなる傾向にある。
 一方、第二の樹脂層は、80~150℃における最低溶融粘度が50,000Pa・s以上である。第二の樹脂層は、複合フィルムを回路へ埋め込む時に第二の樹脂層が一定の厚みを保つとともに、埋め込み後の複合フィルムの表面平坦性を保ち易い。同様の観点から、第二の樹脂層の80~150℃における最低溶融粘度は、50,000~100,000Pa・sであることが好ましく、50,000~75,000Pa・sであることがより好ましい。
 本実施形態の複合フィルムは、熱又は活性エネルギー線によって硬化させることができる。活性エネルギー線としては、例えば、紫外線、可視光線、赤外線、X線等の電磁波;α線、γ線、電子線等の粒子線が挙げられる。これらの中でも、紫外線が好ましい。
 本実施形態の複合フィルムの一例を、模式断面図として図1に示す。本実施形態に係る複合フィルムは、第一の樹脂層1及び第二の樹脂層2、並びに必要に応じて支持体3及び/又は保護フィルム4を備えている。
 なお、第一の樹脂層1と第二の樹脂層2との間には、明確な界面が存在せず、例えば、第一の樹脂層1の構成成分の一部と、第二の樹脂層2の構成成分の一部とが、相溶及び/又は混合した状態であってもよい。
[プリント配線板及びその製造方法]
 本実施形態のプリント配線板は、前記層間絶縁用樹脂フィルムの硬化物、又は前記複合フィルムの硬化物を含有する。換言すると、本実施形態のプリント配線板(多層プリント配線板)は、層間絶縁層を有し、当該層間絶縁層のうち少なくとも一層が本実施形態の前記熱硬化性樹脂組成物を含む。
 以下では、本実施形態の複合フィルムを回路基板にラミネートし、プリント配線板を製造する方法について説明する。
 本実施形態のプリント配線板の製造方法は、次の工程(1)を有する。より詳細には、本実施形態のプリント配線板の製造方法は、次の工程(1)~(5)の工程を含み、工程(1)、工程(2)又は工程(3)の後で、支持体を剥離又は除去してもよい。
 工程(1):本実施形態の複合フィルムを、回路基板の片面又は両面にラミネートする工程
 工程(2):複合フィルムを硬化し、層間絶縁層を形成する工程
 工程(3):層間絶縁層を形成した回路基板に穴あけする工程
 工程(4):層間絶縁層の表面を粗化処理する工程
 工程(5):粗化された層間絶縁層の表面にめっきする工程
<工程(1)>
 工程(1)は、本実施形態の複合フィルムを、回路基板の片面又は両面にラミネートする工程である。複合フィルムをラミネートする装置としては、例えば、ニッコー・マテリアルズ株式会社製のバキュームアップリケーター等の真空ラミネーターが挙げられる。
 ラミネートにおいて、複合フィルムが保護フィルムを有している場合には、保護フィルムを除去した後、複合フィルムを加圧及び/又は加熱しながら回路基板に圧着する。
 複合フィルムを用いる場合、第一の樹脂層が、回路基板の回路が形成されている面に対向するように配置する。
 ラミネートの条件は、複合フィルム、及び回路基板を必要に応じてプレヒートし、圧着温度(ラミネート温度)を60~140℃、圧着圧力を0.1~1.1MPa(9.8×10~107.9×10N/m)、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートしてもよい。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であってもよい。
 基板は通常、回路又は部品による段差を有するが、本実施形態の複合フィルムを基板にラミネートした後、該段差を複合フィルムの第一の樹脂層によって十分に充填できる。充填の程度が十分となるようにする観点から、ラミネート温度は、特に70~130℃が好ましい。
<工程(2)>
 工程(2)は、複合フィルムを硬化し、層間絶縁層を形成する工程である。硬化は、熱硬化であってもよいし、活性エネルギー線による硬化であってもよい。熱硬化の条件は特に限定されないが、例えば、170~220℃で20~80分の範囲で選択することができる。活性エネルギー線としては、前述のとおりである。
 なお、硬化させた後に、支持体を剥離してもよい。
<工程(3)>
 工程(3)は、層間絶縁層を形成した回路基板に穴あけする工程である。本工程では、層間絶縁層及び回路基板にドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法により、穴あけを行い、ビアホール、スルーホール等を形成する。レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が一般的に用いられる。
<工程(4)>
 工程(4)は、層間絶縁層の表面を粗化処理する工程である。本工程では、工程(2)で形成した層間絶縁層の表面を酸化剤により粗化処理を行うと同時に、ビアホール、スルーホール等が形成されている場合には、これらを形成する際に発生する「スミア」の除去を行うこともできる。
 酸化剤としては、特に限定されないが、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム)、重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸等が挙げられる。これらの中でも、ビルドアップ工法による多層プリント配線板の製造における層間絶縁層の粗化に汎用されている酸化剤であるアルカリ性過マンガン酸溶液(例えば、過マンガン酸カリウム、過マンガン酸ナトリウム溶液)を用いて粗化、及びスミアの除去を行ってもよい。
<工程(5)>
 工程(5)は、粗化された層間絶縁層の表面にめっきする工程である。複合フィルムの第二の樹脂層は、セミアディティブ法に適応できる層である。そのため、本工程では、層間絶縁層の表面に無電解めっきにて給電層を形成し、次いで導体層とは逆パターンのめっきレジストを形成し、電解めっきにより導体層(回路)を形成する、セミアディティブ法を用いることができる。
 なお、導体層形成後、例えば、150~200℃で20~120分間アニール処理を施すことにより、層間絶縁層と導体層との接着強度を向上及び安定化させることができる。
 さらに、このようにして作製された導体層の表面を粗化する工程を有していてもよい。導体層の表面の粗化は、導体層に接する樹脂との接着性を高める効果を有する。導体層を粗化する処理剤としては、特に限定されないが、例えば、有機酸系マイクロエッチング剤である、メックエッチボンドCZ-8100、メックエッチボンドCZ-8101、メックエッチボンドCZ-5480(以上、メック株式会社製、商品名)等が挙げられる。
 以上の製造方法の中でも、以下のプリント配線板の製造方法が好ましい態様の一例として挙げられる。
 前記複合フィルムを用いて、表面に回路又は部品による段差を有する基板に前記複合フィルムの第一の樹脂層側を貼付し、前記段差を充填する工程、
 前記複合フィルムの第一の樹脂層及び第二の樹脂層を硬化する工程、
 前記複合フィルムの第二の樹脂層側の面上にセミアディティブ法で回路を形成する工程、
を有する、プリント配線板の製造方法。
 本実施形態の複合フィルム及びプリント配線板は、1GHz以上の高周波信号を扱う電子機器に特に好適に用いることができ、特に5GHz以上の高周波信号、10GHz以上の高周波信号又は30GHz以上の高周波信号を扱う電子機器に好適に用いることができる。つまり、本実施形態の複合フィルムは、高周波帯域の信号を使用する電子機器用複合フィルムとして有用である。
[半導体パッケージ]
 本発明は、前記プリント配線板に半導体素子を搭載してなる半導体パッケージも提供する。本実施形態の半導体パッケージは、前記プリント配線板の所定の位置に半導体チップ、メモリ等の半導体素子を搭載し、封止樹脂等によって半導体素子を封止することによって製造できる。
 なお、本発明は、上記実施形態に限定されない。上記実施形態は例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
製造例1~4(ポリイミド化合物(A-1)~(A-4)の製造)
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1Lのガラス製フラスコ容器に、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(大和化成工業株式会社製、商品名:BMI-4000)、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン(三井化学ファイン株式会社製、商品名:ビスアニリンM)70質量部、ジアリルアミン(東京化成工業株式会社製)、及びプロピレングリコールモノメチルエーテルを、下記表1に記載の配合量(単位:特記しない限り質量部である。但し、括弧内の数値の単位はmmolである。)で投入し、還流させながら液温120℃で3時間反応させた。
 その後、冷却及び200メッシュ濾過し、重量平均分子量(Mw)が1,200のポリイミド化合物(A-1)~(A-4)(固形分濃度:65質量%)を製造した。
比較製造例1(ポリイミド化合物(A’-5)の製造)
 製造例1において、各成分の使用量を表1に記載の通りに変更したこと以外は同様にして反応を行ない、重量平均分子量(Mw)が1,200のポリイミド化合物(A’-5)を製造した。
Figure JPOXMLDOC01-appb-T000006
<重量平均分子量の測定方法>
 得られたポリイミド化合物(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名])を用いて3次式で近似した。GPCの条件を以下に示す。
 装置:ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製]
    検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製]
    カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製]
 カラム:ガードカラム;TSK Guardcolumn HHR-L + カラム;TSK gel-G4000HHR+TSK gel-G2000HHR(すべて東ソー株式会社製、商品名)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:30mg/5mL
 注入量:20μL
 流量:1.00mL/分
 測定温度:40℃
<熱硬化性樹脂組成物(樹脂ワニス)の製造方法>
実施例1(樹脂ワニス1の製造)
 エラストマ(B)として、ポリブタジエン系エラストマ(エボニック社製、商品名:POLYVEST 75MA)20質量%(全樹脂成分に対して、つまり無機充填材及び有機溶剤を含まない全成分に対して。)と、無機充填材(C)として、アミノシランカップリング剤処理を施したシリカ(株式会社アドマテックス製、固形分濃度70質量%のメチルイソブチルケトン分散液)65体積%(有機溶剤を含まない全体積に対して。)とを混合した。
 そこに製造例1で得たポリイミド化合物(A-1)を、ポリイミド化合物(A-1)の含有量が、熱硬化性樹脂組成物に含まれる全樹脂成分に対して80質量%となる比率で混合し、高速回転ミキサーにより室温で溶解させた。
 ポリイミド化合物(A-1)が溶解したことを目視で確認した後、硬化促進剤として、有機過酸化物(日油株式会社製、商品名:パーブチルP)を、ポリイミド化合物(A-1)の仕込み量から換算される原料(マレイミド化合物)とエラストマ(B)に対して1.0phr、イソシアネートマスクイミダゾール(第一工業製薬株式会社製、商品名:G8009L)を、ポリイミド化合物(A-1)の仕込み量から換算される原料のマレイミド化合物に対して0.5phr混合した。次いで、ナノマイザー処理によって分散し、樹脂ワニス1を得た。
 得られた樹脂ワニス1を、離型処理された支持体(PETフィルム)に、乾燥後の層の厚さが40μmとなるようにコンマコーターを用いて塗工し、90℃で3分間乾燥して、支持体上に第一の樹脂層を形成し、層間絶縁用樹脂フィルムを得た。
 さらに、該第一の樹脂層の表面に、保護フィルムとして厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取り、支持体及び保護フィルムを有する層間絶縁用樹脂フィルム1を得た。
 該層間絶縁用樹脂フィルムを用いて、後述の方法に従って各特性を測定又は評価した。結果を表2に示す。
実施例2~4(樹脂ワニス2~4の製造)
 実施例1において、製造例1で得たポリイミド化合物(A-1)の代わりに、製造例2~4で得たポリイミド化合物(A-2)~(A-4)を用いたこと以外は同様に操作を行い、樹脂ワニス2~4を得、さらに層間絶縁用樹脂フィルム2~4を得た。
 得られた層間絶縁用樹脂フィルム2~4を用いて、後述の方法に従って各特性を測定又は評価した。結果を表2に示す。
比較例1(比較用樹脂ワニス5の製造)
 実施例1において、製造例1で得たポリイミド化合物(A-1)の代わりに、比較製造例1で得たポリイミド化合物(A’-5)を用いたこと以外は同様に操作を行い、比較用樹脂ワニス5を得、さらに層間絶縁用樹脂フィルム5を得た。
 得られた層間絶縁用樹脂フィルム5を用いて、後述の方法に従って各特性を測定又は評価した。結果を表2に示す。
 特性の測定又は評価のため、以下の方法に従って樹脂板を作製した。
(I)各例で得られた支持体及び保護フィルムを有する層間絶縁用樹脂フィルムから保護フィルムを剥離した後、120℃で5分間乾燥した。
 次に、乾燥後の支持体を有する層間絶縁用樹脂フィルムを、真空加圧式ラミネーター(株式会社名機製作所製、商品名:MVLP-500/600-II)を用いて、銅箔(電界銅箔、厚さ35μm)の光沢面上に、層間絶縁用樹脂フィルムの樹脂層と銅箔とが当接するようにラミネートして、銅箔、層間絶縁用樹脂フィルム、支持体がこの順に積層された積層体(P)を得た。前記ラミネートは、30秒間減圧して圧力を0.5MPaとした後、120℃、30秒間、圧着圧力0.5MPaでプレスする方法により行った。その後、積層体(P)から支持体を剥離した。
(II)次に、支持体としてのPETフィルム及び保護フィルムとしてのポリプロピレンフィルムを有する別の層間絶縁用樹脂フィルムを準備し、保護フィルムを剥離した後、110℃で3分間の乾燥を行った。
(III)次に、上記(I)で得られた支持体を剥離した積層体(P)と、上記(II)で得られた乾燥後の支持体を有する層間絶縁用樹脂フィルムとを、樹脂層同士が当接するように、前記(I)と同様の条件でラミネートして、銅箔、層間絶縁用樹脂フィルム2層からなる層、支持体がこの順に積層された積層体(Q)を得た。その後、積層体(Q)から支持体を剥離した。
(IV)次に、上記(III)で得られた支持体を剥離した積層体(Q)と、上記(II)と同様の方法により得られた乾燥後の支持体を有する層間絶縁用樹脂フィルムとを、樹脂層同士が当接するように、前記(I)と同様の条件でラミネートして、銅箔、層間絶縁用樹脂フィルム3層からなる層、支持体がこの順に積層された積層体(R)を得た。
(V)前記(I)~(III)と同様の方法により、積層体(Q)を作製した。
(VI)上記(V)で得られた積層体(Q)と、上記(I)~(IV)で得られた積層体(R)の支持体をそれぞれ剥離し、積層体(Q)と積層体(R)の樹脂層同士を貼り合わせ、圧着圧力3.0MPaで190℃、60分間、真空プレスを用いてプレス成型を行った。得られた両面銅箔付き樹脂板を、190℃で2時間硬化させた後、過硫酸アンモニウムで銅箔をエッチングすることで、樹脂板を得た。
[1.比誘電率及び誘電正接の測定方法]
 上記で作製した樹脂板を幅2mm、長さ70mmの試験片に切り出し、ネットワークアナライザー(アジレント・テクノロジー株式会社製、商品名:E8364B)と5GHz対応空洞共振器(株式会社関東電子応用開発製)を用いて、比誘電率及び誘電正接を測定した。測定温度は25℃とした。当該測定方法に従って得られる比誘電率及び誘電正接が低いほど、高周波特性に優れることを示す。
[2.熱膨張率及びガラス転移温度の測定方法]
 上記で作製した樹脂板を幅4mm、長さ15mmの試験片に切り出し、熱応力歪測定装置(セイコーインスツル株式会社製、型式:TMA/SS6100型)を用いて熱膨張率を測定した。熱膨張率は、昇温速度10℃/分、荷重0.05Nの条件で、室温から260℃まで加熱(1st)した後、260℃から-30℃に冷却し、その後-30℃から300℃まで加熱(2nd)した際の、2ndの30℃から120℃の範囲における平均熱膨張率(ppm/℃)の値及び250℃から300℃の範囲における平均熱膨張率(ppm/℃)の値を熱膨張率として求めた。また、膨張量の変曲点をガラス転移温度とて求めた。
[3.貯蔵弾性率の測定方法]
 上記で作製した樹脂板を幅5mm、長さ30mmの試験片に切り出し、広域動的粘弾性測定装置(レオロジ社製、商品名:DVE-V4)を用いて貯蔵弾性率(E’)を測定した。なお、測定温度領域は40~300℃、昇温速度は5℃/分、加振周波数は10Hzで測定を行い、40℃における貯蔵弾性率(E’)を求めた。該貯蔵弾性率(E’)が高いと、実装時の反りを抑制できる。
 以下は、層間絶縁用樹脂フィルムについての試験方法である。
[4.埋め込み性の評価方法]
 実施例4又は比較例1例で得られた層間絶縁用樹脂フィルムの保護フィルムを剥がして1.0mmになるように重ね、φ8mmに打ち抜いたサンプルを用い、溶融粘度を測定した。粘度はレオメータ(商品名:ARESG2、ティー・エイ・インスツルメント・ジャパン株式会社製)を用い、昇温速度:5℃/分、φ8mm冶具、周波数1.0Hz、歪み1%で測定した。溶融粘度が低いと埋め込み性に優れる。測定によって得られた温度-溶融粘度曲線を図2に示す。
[5.曲げ試験]
 各例で得られた層間絶縁用樹脂フィルムの保護フィルムを剥がし、支持体を有する層間絶縁用樹脂フィルムを樹脂面が外側になるように180度折り曲げた。その後、目視にてフィルム樹脂面の状態を観察し、下記評価基準に従って評価した。
 A:樹脂面に異常は無かった。
 B:樹脂面にわずかな亀裂が見られた。
 C:樹脂面が割れ、支持体から剥離した。
[6.カバーフィルムの剥離試験]
 各例で得られた支持体及び保護フィルムを有する層間絶縁用樹脂フィルムから保護フィルムの剥離を試みた。目視にて層間絶縁用樹脂フィルムの状態を観察し、下記評価基準に従って評価した。
 A:層間絶縁用樹脂フィルムに異常は無かった。
 B:層間絶縁用樹脂フィルムの一部が保護フィルムから剥離せず、支持体から剥離した。
 C:保護フィルムが剥離できなかった。
[7.表面粗さの測定方法]
<表面粗さ測定用基板の作製方法>
 表面粗さ測定用基板を以下の手順により作製した。
 各例で得られた支持体及び保護フィルムを有する層間絶縁用樹脂フィルムを、240mm×240mmのサイズに切断した後、保護フィルムを剥離した。
 得られた支持体を有する層間絶縁用樹脂フィルムを、CZ処理が施されたプリント配線板(日立化成株式会社製、商品名:E-700GR)上に、第一の樹脂層とプリント配線板とが当接するようにラミネートした。ラミネートは、一段階目で100℃、30秒間真空引き、30秒間圧着、圧力0.5MPaでプレスし、二段階目で120℃、60秒間圧力0.5MPaで平坦化する方法により行った。
 その後、室温に冷却し、層間絶縁用樹脂フィルムを配したプリント配線板を得た。次に、層間絶縁用樹脂フィルムを配したプリント配線板を、支持体を付けたまま、第一段階目の硬化として130℃で20分間、防爆乾燥機中で硬化を行い、その後、第二段階目の硬化として190℃で40分間、防爆乾燥機中で硬化を行った。その後、支持体を剥離して、層間絶縁層が形成されたプリント配線板を得た。
(粗化処理方法)
 上記表面粗さ測定用基板の製造方法により得られたプリント配線板を、60℃に加温した膨潤液(アトテックジャパン株式会社製、商品名:スウェリングデップセキュリガント(登録商標)P)に10分間浸漬処理した。次に、80℃に加温した粗化液(アトテックジャパン株式会社製、商品名:コンセートレートコンパクトCP)に15分間浸漬処理した。引き続き、40℃に加温した中和液(アトテックジャパン株式会社製、商品名:リダクションソリューションセキュリガント(登録商標)P500)に5分間浸漬処理して中和した。このようにして、層間絶縁層の表面を粗化処理したものを、表面粗さ測定用基板として用いた。
 上記で得られた表面粗さ測定用基板の表面粗さを、比接触式表面粗さ計(ブルカーエイエックスエス株式会社製、商品名:WykoNT9100)を用い、内部レンズ1倍、外部レンズ50倍を用いて測定し、算術平均粗さ(Ra)を求めた。
Figure JPOXMLDOC01-appb-T000007
 表2中の各成分の詳細は以下のとおりである。
 ・A-1:製造例1で製造したポリイミド化合物(A-1)
 ・A-2:製造例2で製造したポリイミド化合物(A-2)
 ・A-3:製造例3で製造したポリイミド化合物(A-3)
 ・A-4:製造例4で製造したポリイミド化合物(A-4)
 ・A’-5:比較製造例1で製造したポリイミド化合物(A’-5)
 ・POLYVEST(登録商標)75MA:ポリブタジエン系エラストマ(エボニック社製)
 ・無機充填材(C):シリカ(株式会社アドマテックス製、固形分濃度70質量%のメチルイソブチルケトン分散液)
 ・パーブチルP:α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン(日油株式会社製)
 ・G8009L:イソシアネートマスクイミダゾール(第一工業製薬株式会社製)
 表2より、ポリイミド化合物(A)を含有する熱硬化性樹脂組成物を用いた実施例では、高ガラス転移温度であり、回路等の凹凸に対する埋め込み性に優れ、優れた誘電特性と低熱膨張性とを両立し、さらにハンドリング性も良好となった。
 一方、炭素-炭素二重結合を有するアミン化合物(a2)を用いずに形成されたポリイミド化合物を用いた比較例では、250~300℃の範囲における熱膨張率が高まり、貯蔵弾性率が低下し、曲げ試験結果に優れず、表面粗さは大きくなった。
 本発明の複合フィルム及びプリント配線板は、コンピュータ、携帯電話、デジタルカメラ、テレビ等の電気製品、自動二輪車、自動車、電車、船舶、航空機等の乗り物に有用である。
 1 第一の樹脂層
 2 第二の樹脂層
 3 支持体
 4 保護フィルム

Claims (14)

  1.  N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位と、炭素-炭素二重結合を有するアミン化合物(a2)由来の構造単位と、を有するポリイミド化合物(A)を含有する熱硬化性樹脂組成物。
  2.  前記アミン化合物(a2)が炭素-炭素二重結合を2つ以上有する、請求項1に記載の熱硬化性樹脂組成物。
  3.  前記アミン化合物(a2)が脂肪族アミンである、請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  前記脂肪族アミンが、脂肪族モノアミン及び脂環式ジアミンからなる群から選択される少なくとも1種である、請求項3に記載の熱硬化性樹脂組成物。
  5.  前記ポリイミド化合物(A)中における、アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/Ta2]が、1.0~30である、請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
  6.  前記ポリイミド化合物(A)が、さらにポリアミン化合物(a3)由来の構造単位を有する、請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物。
  7.  前記ポリイミド化合物(A)中における、アミン化合物(a2)のアミノ基由来の基の合計当量(Ta2)と、ポリアミン化合物(a3)のアミノ基由来の基(アミノ基も含む)の合計当量(Ta3)との総量に対する、マレイミド化合物(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比[Ta1/(Ta2+Ta3)]が、1.0~10である、請求項6に記載の熱硬化性樹脂組成物。
  8.  前記アミン化合物(a2)のアミノ基由来の基の合計モル数(Ma2)と、ポリアミン化合物(a3)のアミノ基由来の基(アミノ基も含む)の合計モル数(Ma3)との比[Ma2/Ma3]が、0.01~10である、請求項6又は7に記載の熱硬化性樹脂組成物。
  9.  さらに、エラストマ(B)、無機充填材(C)及び硬化促進剤(D)からなる群から選択される少なくとも1種を含有する、請求項1~8のいずれか1項に記載の熱硬化性樹脂組成物。
  10.  前記硬化促進剤(D)が過酸化物を含有する、請求項9に記載の熱硬化性樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の熱硬化性樹脂組成物を含む、層間絶縁層用樹脂フィルム。
  12.  請求項1~10のいずれか1項に記載の熱硬化性樹脂組成物を含む第一の樹脂層と、第二の樹脂層とを含む、複合フィルム。
  13.  請求項11に記載の層間絶縁用樹脂フィルムの硬化物、又は請求項12に記載の複合フィルムの硬化物を含む、プリント配線板。
  14.  請求項13に記載のプリント配線板を含有してなる、半導体パッケージ。
PCT/JP2018/002715 2018-01-29 2018-01-29 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ WO2019146105A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019567812A JP7238798B2 (ja) 2018-01-29 2018-01-29 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ
PCT/JP2018/002715 WO2019146105A1 (ja) 2018-01-29 2018-01-29 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ
TW108103378A TWI805682B (zh) 2018-01-29 2019-01-29 熱硬化性樹脂組成物、層間絕緣用樹脂薄膜、複合薄膜、印刷線路板及半導體封裝體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002715 WO2019146105A1 (ja) 2018-01-29 2018-01-29 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ

Publications (1)

Publication Number Publication Date
WO2019146105A1 true WO2019146105A1 (ja) 2019-08-01

Family

ID=67395287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002715 WO2019146105A1 (ja) 2018-01-29 2018-01-29 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ

Country Status (3)

Country Link
JP (1) JP7238798B2 (ja)
TW (1) TWI805682B (ja)
WO (1) WO2019146105A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935488A (ja) * 1972-08-09 1974-04-02
JPH0267363A (ja) * 1988-09-02 1990-03-07 Mitsui Petrochem Ind Ltd 水分散性組成物およびこれを用いた水性分散液
JP2009149742A (ja) * 2007-12-19 2009-07-09 Hitachi Chem Co Ltd ポリイミド化合物の製造方法、熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2012180482A (ja) * 2011-03-02 2012-09-20 Jnc Corp マレイミド系高分子を含有する組成物、およびマレイミド系高分子共重合体の製造方法
JP2016135859A (ja) * 2015-01-16 2016-07-28 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922167B2 (ja) * 2016-07-20 2021-08-18 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935488A (ja) * 1972-08-09 1974-04-02
JPH0267363A (ja) * 1988-09-02 1990-03-07 Mitsui Petrochem Ind Ltd 水分散性組成物およびこれを用いた水性分散液
JP2009149742A (ja) * 2007-12-19 2009-07-09 Hitachi Chem Co Ltd ポリイミド化合物の製造方法、熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2012180482A (ja) * 2011-03-02 2012-09-20 Jnc Corp マレイミド系高分子を含有する組成物、およびマレイミド系高分子共重合体の製造方法
JP2016135859A (ja) * 2015-01-16 2016-07-28 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板

Also Published As

Publication number Publication date
JPWO2019146105A1 (ja) 2021-01-28
JP7238798B2 (ja) 2023-03-14
TWI805682B (zh) 2023-06-21
TW201936787A (zh) 2019-09-16

Similar Documents

Publication Publication Date Title
JP6769032B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板
JP7491343B2 (ja) 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置
JP7501583B2 (ja) 樹脂組成物
WO2018016534A1 (ja) 高周波帯域の信号を使用する電子機器用複合フィルム、プリント配線板及びその製造方法
KR20120012782A (ko) 열경화성 수지 조성물, 및 이를 이용한 프리프레그, 지지체 부착 절연 필름, 적층판 및 인쇄 배선판
JP2018012747A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
TWI749032B (zh) 熱硬化性樹脂組成物、層間絕緣用樹脂薄膜、複合薄膜、印刷線路板及其製造方法
JP6809014B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
KR20180119126A (ko) 수지 조성물
JP2021175795A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP2018014388A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、プリント配線板及びその製造方法
TW201817813A (zh) 硬化體及多層基板
JP2021183697A (ja) 樹脂組成物
JP6848215B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
KR20200104236A (ko) 수지 조성물
JP6801280B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP7251482B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ
JP6880585B2 (ja) 高周波帯域の信号を使用する電子機器用複合フィルム、プリント配線板及びその製造方法
JP6801279B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP7238798B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及び半導体パッケージ
WO2022004756A1 (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901879

Country of ref document: EP

Kind code of ref document: A1