WO2019146065A1 - 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法 - Google Patents

電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法 Download PDF

Info

Publication number
WO2019146065A1
WO2019146065A1 PCT/JP2018/002461 JP2018002461W WO2019146065A1 WO 2019146065 A1 WO2019146065 A1 WO 2019146065A1 JP 2018002461 W JP2018002461 W JP 2018002461W WO 2019146065 A1 WO2019146065 A1 WO 2019146065A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
average particle
oxide
voltage non
zinc oxide
Prior art date
Application number
PCT/JP2018/002461
Other languages
English (en)
French (fr)
Inventor
靖宣 春日
匠 堀口
鈴木 雄太
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2018/002461 priority Critical patent/WO2019146065A1/ja
Priority to JP2019567487A priority patent/JP6937390B2/ja
Publication of WO2019146065A1 publication Critical patent/WO2019146065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • Embodiments of the present invention relate to current-voltage non-linear resistor materials, current-voltage non-linear resistors, and methods of making the same.
  • an overvoltage protection device such as a lightning arrester or a surge absorber is used.
  • Overvoltage protection devices such as these have a current-voltage non-linear resistor that exhibits insulation characteristics under normal voltage while exhibiting low resistance characteristics when an abnormal voltage is applied. It is valid.
  • This current-voltage non-linear resistor is mainly composed of zinc oxide (ZnO), and at least one metal oxide is added as an additive to obtain voltage non-linear resistance characteristic (hereinafter also referred to as non-linear resistance characteristic).
  • ZnO zinc oxide
  • the mixture to which the substance is added is mixed, granulated, shaped, and sintered, and the ceramic body (sintered body) is provided.
  • an insulating layer of electrically insulating material is used on the side of this sintered body to prevent flashover from the side during surge absorption. It is used after being formed.
  • a current-voltage non-linear resistor mainly composed of zinc oxide is applied to a lightning arrester due to its excellent non-linear resistance characteristic.
  • a plurality of current-voltage non-linear resistors are stacked. It constitutes a lightning arrester. That is, if it is possible to increase the resistance of the current-voltage non-linear resistor applied to this arrester, the number of current-voltage non-linear resistors provided stacked on the arrester can be reduced.
  • the equipment can be miniaturized.
  • the content of subcomponents such as Bi 2 O 3 , Co 2 O 3 , MnO, Sb 2 O 3 and NiO is limited, and ZnO is further added.
  • a current-voltage non-linear resistor in which the crystal phase of Bi 2 O 3 contained in a sintered body which is a main component is limited. This current-voltage non-linear resistor has high resistance and excellent non-linear resistance characteristics.
  • V 1mA which is the voltage when a 1mA commercial frequency current of the current-voltage non-linear resistor used in the conventional high-performance tank arrester is applied, is approximately 200V / mm to 600V / mm. is there.
  • the prior art as described above has not been able to sufficiently satisfy these requirements.
  • the varistor voltage of the current-voltage non-linear resistor in order to increase the varistor voltage of the current-voltage non-linear resistor to 600 V / mm or more, it is necessary to further suppress the grain growth of zinc oxide particles as the main component, and Sb 2 O having the suppression effect It is necessary to further add subcomponents such as 3 and rare earth elements.
  • the resistance can be increased as the addition amount of these subcomponents increases, the amount of spinel particles mainly composed of Zn 7 Sb 2 O 12 which is an insulator also increases, so the current-voltage The current flow may be uneven throughout the non-linear resistor, and the non-linear resistance characteristic may be degraded.
  • the problem to be solved by the present invention is to provide a current-voltage non-linear resistor material, a current-voltage non-linear resistor, and a method of manufacturing the same, which can achieve high resistance and excellent non-linear resistance characteristics and energy tolerance. It is to be.
  • zinc oxide is used as the main component raw material, and at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, trivalent as a secondary component raw material.
  • a mixture containing the elements, boron and silver is fired.
  • the relative ratio of the average particle size (D50s) of the auxiliary component material in the mixture to the average particle size (D50z) of the zinc oxide is D50s / D50z ⁇ 0.60.
  • the average particle size (D50z) of the zinc oxide is 700 nm or less.
  • the mixture contains 0.005 to 0.04 wt% of the boron in terms of B 2 O 3 and 0.005 to 0.04 wt% of the silver in terms of Ag 2 O.
  • the relative ratio of boron to silver satisfies the relationship 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00.
  • Sectional drawing which shows the current-voltage non-linear resistor of embodiment. 5 is a graph showing the relationship between D50s / D50z and nonlinearity coefficient (V 10 kA / V 1 mA ) for sample numbers 1 to 12 in the examples.
  • FIG. 1 is a cross-sectional view showing an example of the current-voltage non-linear resistor 10 of the embodiment.
  • the current-voltage non-linear resistor 10 of the embodiment is formed on a sintered body 20, an insulating layer 30 covering the side surface of the sintered body 20, and upper and lower surfaces of the sintered body 20.
  • An electrode 40 is provided.
  • the sintered body 20 is a mixture containing zinc oxide as a main component material and at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, trivalent element, boron and silver as auxiliary component raw materials Is fired.
  • the sintered body 20 contains 0.005 to 0.04 wt% of boron in terms of B 2 O 3 , and 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and The relative ratio of boron to silver satisfies the relationship of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00.
  • the material for the current-voltage non-linear resistor 10 of the embodiment is mainly made of zinc oxide, and at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, 3 as a secondary component material. It consists of a mixture containing valence elements, boron and silver.
  • the relative ratio of the average particle size (D50s) of the auxiliary component material in the mixture to the average particle size (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle size of the zinc oxide material is It is 700 nm or less.
  • it contains 0.005 to 0.04 wt% of boron in terms of B 2 O 3 , 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and the relative ratio of boron to silver The following condition is satisfied: 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00.
  • the mixture contains zinc oxide as the main component material, but the “main component” here is 90 mol% or more of the ratio in the mixture Means to be.
  • the relative ratio of the average particle size (D50s) of the auxiliary component material in the mixture to the average particle size (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle size of the zinc oxide material (D50z) Below 700 nm.
  • the secondary component material can be uniformly dispersed in the zinc oxide material.
  • the grain growth of zinc oxide particles proceeds uniformly in the firing process for forming a mixture of a zinc oxide raw material and a subcomponent raw material into a sintered body 20, the effect of suppressing the grain growth of zinc oxide particles is obtained.
  • the resistance of the obtained current-voltage non-linear resistor 10 can be increased even if the addition amount of the subcomponent is small. Furthermore, by making D50s / D50z smaller, the fine structure is made uniform, and the sinterability is also improved, so the density of the sintered body 20 is increased and the porosity of the sintered body 20 is reduced. Thus, a current-voltage non-linear resistor 10 having excellent non-linear resistance characteristics and energy tolerance is obtained.
  • the additive can not work effectively, and conversely, the grain growth of zinc oxide particles is hindered and the sinterability is lowered, so that the non-linearity and energy tolerance Is worse. Further, by setting the average particle diameter of the zinc oxide raw material to 700 nm or less, the reaction of the auxiliary component raw material and the zinc oxide raw material efficiently proceeds, so the non-linear resistance characteristic is improved, but when it exceeds 700 nm, the non-linear resistance characteristic Improvement is not observed.
  • the relative ratio D50s / D50z to the average particle diameter D50z of the zinc oxide material of the average particle diameter D50s of the auxiliary component material is 0.60 or less, and the zinc oxide material And the average particle diameter D50z of It is preferable to set D50s / D50z to 0.50 or less from the viewpoint of high resistance, non-linear resistance characteristics and improvement of energy tolerance, and it is preferable to set the average particle size (D50z) of the zinc oxide raw material to 600 nm or less.
  • the lower limit of D50s / D50z is not particularly limited, but D50s / D50z becomes excessively small, that is, when the average particle diameter D50s of the auxiliary component material becomes excessively smaller than the average particle diameter D50z of the zinc oxide material, the auxiliary component material It is preferable that D50s / D50z be 0.35 or more, because it may cause aggregation and difficulty in uniform dispersion. Also, the lower limit of the average particle diameter D50z of the zinc oxide material is not particularly limited, but if the average particle diameter D50z of the zinc oxide material is excessively small, the uniform dispersion of the zinc oxide material and the subcomponent material is inhibited and the sinterability is deteriorated. It is preferable to set the thickness to 350 nm or more because
  • the average particle size (D50t) of all the raw materials including the zinc oxide raw material and the auxiliary component raw material is preferably 750 nm or less.
  • the average particle size (D50t) of all the raw materials is more preferably 650 nm or less.
  • the average particle diameter D50s of the auxiliary component raw material in the mixture which is a powder, the average particle diameter D50z of zinc oxide, and the average particle diameter D50t of all the raw materials use, for example, a particle size distribution measuring apparatus of laser diffraction / scattering type.
  • the particle size distribution can be calculated by measurement (laser diffraction / scattering type particle size distribution measuring method).
  • the laser diffraction / scattering type particle size distribution apparatus for example, "Microtrac MT3000II series" manufactured by Nikkiso Co., Ltd. can be used.
  • the average particle diameter (D50s, D50z, D50t) said by this embodiment is called a median diameter, and the particle size distribution is measured by the above-mentioned measuring method, and the accumulation of the frequency of particle size is 50%.
  • the diameter be the average particle size (D50s, D50z, D50t).
  • auxiliary component materials of the material for the current-voltage non-linear resistor 10 of the embodiment include at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, boron and silver.
  • boron which is an accessory component of the mixture, in terms of B 2 O 3 , and contains 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and
  • the relative ratio of boron to silver satisfies the relationship of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00.
  • the content of boron in the mixture is preferably 0.006 wt% or more, preferably 0.03 wt% or less, in terms of B 2 O 3 .
  • the content of silver in the mixture is preferably 0.01 wt% or more, and preferably 0.03 wt% or less, in terms of Ag 2 O.
  • the relative ratio of B 2 O 3 and Ag 2 O is preferably in the 0.20 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00.
  • Bismuth oxide is a component that is present in the grain boundaries of zinc oxide as the main component to develop nonlinear resistance characteristics, but when the content converted to Bi 2 O 3 is smaller than 0.30 mol%, The effect of developing the non-linear resistance characteristic can not be sufficiently obtained, and the energy tolerance may also be deteriorated. If the content is more than 0.80 mol%, the non-linear resistance characteristic may be deteriorated. From these facts, it is preferable that the content of bismuth oxide be 0.30 to 0.80 mol% in terms of Bi 2 O 3 .
  • Antimony oxide forms spinel particles with zinc oxide to suppress grain growth of zinc oxide particles during sintering, and has a function to homogenize, and is a component having an effect to improve non-linear resistance characteristics.
  • the content converted to Sb 2 O 3 is less than 1.50 mol%, the effect of improving the non-linear resistance characteristic can not be sufficiently obtained, and the energy tolerance may also be deteriorated.
  • the content is more than 3.50 mol%, the amount of the insulating component inside the sintered body is increased, and the energy tolerance characteristic may be deteriorated. From these facts, the content of antimony oxide is preferably 1.50 to 3.50 mol% in terms of Sb 2 O 3 .
  • Manganese oxide is an effective component mainly for solid solution in spinel particles to greatly improve non-linear resistance characteristics, but when the content converted to MnO is smaller than 0.50 mol%, this non There is a possibility that the effect of improving the linear resistance characteristic can not be sufficiently obtained. Moreover, when the content is larger than 2.00 mol%, the amount of the insulating component inside the sintered body is increased, and the energy tolerance may be deteriorated. From these facts, it is preferable that the content of manganese oxide be 0.50 to 2.00 mol% in terms of MnO.
  • Cobalt oxide is an effective component mainly for forming a solid solution in spinel particles and greatly improving non-linear resistance characteristics, but when the content converted to Co 2 O 3 is smaller than 0.30 mol% There is a possibility that the effect of improving this non-linear resistance characteristic can not be obtained sufficiently.
  • the content is more than 1.50 mol%, the amount of the insulating component inside the sintered body is increased, and the energy tolerance may be deteriorated. From these facts, the content of cobalt oxide is preferably 0.30 to 1.50 mol% in terms of Co 2 O 3 .
  • Nickel oxide is an effective component mainly for forming a solid solution in spinel particles and greatly improving non-linear resistance characteristics, but when the content converted to NiO is smaller than 1.50 mol%, this component is effective. There is a possibility that the effect of improving the non-linear resistance characteristic can not be sufficiently obtained. When the content is more than 3.50 mol%, the amount of the insulating component inside the sintered body is increased, and the energy tolerance may be deteriorated. From these facts, the content of nickel oxide is preferably 1.50 to 3.50 mol% in terms of NiO.
  • the mixture also contains a rare earth element as a minor component.
  • a rare earth element selected from yttrium (Y), europium (Eu), eribium (Er), thulium (Tm), gadolinium (Gd), dysprosium (Dy), holmium (Ho), ytterbium (Yb)
  • Y yttrium
  • Eu europium
  • Er eribium
  • Tm thulium
  • Gd gadolinium
  • Dy dysprosium
  • Ho holmium
  • Yb ytterbium
  • the mixture also contains a trivalent element as an accessory component.
  • a trivalent element as an accessory component.
  • it contains at least one trivalent element of aluminum (Al), gallium (Ga), and indium (In), and is 0.003 to 0.010 mol% in terms of Al 3+ , Ga 3+ , and In 3+ , respectively. It is preferable to include.
  • the trivalent element is an effective component for solid solution in ZnO particles and greatly improving non-linear resistance characteristics, but when the content is larger than 0.010 mol%, the non-linear resistance characteristics deteriorate There is a risk of
  • the material for the current-voltage non-linear resistor 10 according to the embodiment has been described above, but the current-voltage non-linear resistor 10 according to the embodiment is formed by firing the material for the current-voltage non-linear resistor 10 A sintered body 20 is provided.
  • the 50% breaking strength of the mechanical strength of the sintered body 20 is preferably 140 MPa or more.
  • the mechanical strength of the sintered body can be measured by a four-point bending test in accordance with JIS R1604. When the 50% breaking strength of the mechanical strength of the sintered body is 140 MPa or more, it is possible to obtain an excellent energy resistance which absorbs a lightning impulse surge.
  • the varistor voltage (V 1mA ) which is a voltage when a current of 1 mA commercial frequency is supplied, can be 900 V / mm or more.
  • the method of manufacturing the current-voltage non-linear resistor 10 is based on zinc oxide as the main component material as described above, and at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, as auxiliary component materials.
  • This is a method including the step of firing a mixture containing a trivalent element, boron and silver (a material for a current-voltage non-linear resistor) to produce a sintered body 20. The details will be described below.
  • the mixture contains zinc oxide which is a main component material, and at least bismuth oxide, antimony oxide, manganese oxide, cobalt oxide, nickel oxide, rare earth element R, boron and silver as auxiliary component materials, and boron is converted to B 2 O 3
  • B 2 O 3 contains 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and the relative ratio of boron to silver is 0.125 ⁇ B 2 O 3 / Ag
  • the mixture is weighed so as to satisfy the relationship of 2 O ⁇ 1.00.
  • Bi 2 O 3 , Sb 2 O 3 , Co 2 O 3 , MnO auxiliary component materials
  • NiO in terms of R 2 O 3, Ag 2 O and B 2 O 3, a Bi 2 O 3 0.30 ⁇ 0.80mol%
  • MnO Containing 0.50 to 2.00 mol% of Co 2 O 3 , 0.30 to 1.50 mol% of Co 2 O 3 , 1.50 to 3.50 mol% of NiO, and 0.10 to 0.50 mol% of R 2 O 3 Is preferred.
  • a trivalent element When a trivalent element is contained, it contains at least one trivalent element of aluminum (Al), gallium (Ga), and indium (In), and when converted to Al 3+ , Ga 3+ , and In 3+ , 0. It is preferable to contain 003 to 0.010 mol%.
  • the prepared mixture and a binder solution adjusted to have a content of 30 to 60% by weight of the mixture are introduced into a wet grinding apparatus, and the average particle size of the zinc oxide raw material becomes 700 nm or less,
  • the slurry is prepared by pulverizing and mixing so that the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60.
  • a binder solution for example, an aqueous solution obtained by mixing water and an organic binder such as polyvinyl alcohol is used.
  • a wet pulverizing apparatus for example, a circulating apparatus using zirconia beads having a diameter of 0.05 to 0.3 mm is used. Further, the bead packing ratio in the vessel in the wet pulverizing apparatus can be 35 to 95%, the peripheral speed of the stirring rotor can be operated at 500 to 1500 rpm, and the circulating flow rate can be operated at 5 to 50 L / min.
  • the prepared slurry is sprayed and granulated by a rotating disc method or a pressure nozzle method to prepare granules having a cumulative average particle diameter (median diameter D50) of 45 to 90 ⁇ m.
  • the obtained granules are formed into a cylindrical shape by, for example, a hydraulic press forming machine to produce a formed body.
  • the compact is heated to a first temperature of 350 to 500 ° C., and maintained at this temperature, for example, for 1 to 3 hours to remove the binder solution.
  • the molded body is heated to a second temperature, that is, a temperature of 900 to 1300 ° C., and maintained at this temperature, for example, for 2 hours or more, and fired.
  • a second temperature that is, a temperature of 900 to 1300 ° C.
  • baking is performed, for example, using a tunnel type continuous furnace and installing a molded object in refractory containers, such as an alumina and a mullite.
  • the heating rate from the first temperature to the second temperature is preferably 25 to 100 ° C./hour from the viewpoint of temperature uniformity in the material to be fired and a firing process lead time.
  • the fired compact is cooled.
  • the cooling method is not particularly limited, but the cooling rate at the time of cooling is preferably 100 to 200 ° C./hour from the viewpoint of temperature uniformity in the material to be fired and the firing process lead time.
  • a sintered body 20 is obtained through this cooling step.
  • an inorganic insulating material such as glass frit, which is an electrical insulating material, is applied or sprayed to the side surface of the cooled cylindrical sintered body 20, and heat treatment is performed at a temperature of 300 to 500 ° C. for 1 to 5 hours.
  • the insulating layer 30 is formed. Further, upper and lower end surfaces of the sintered body 20 are polished, and the conductive material described above is sprayed, for example, on the polished surface to form the electrode 40.
  • the order of performing the process of forming the insulating layer 30 and the process of forming the electrode 40 is not particularly limited, and any process may be performed first.
  • the current-voltage non-linear resistor 10 is manufactured through the above-described steps.
  • the raw material of the sintered body 20 constituting the current-voltage non-linear resistor 10 is oxidized as the main component
  • the average particle size of the zinc material is 700 nm or less, and the relative ratio of the average particle size (D50s) of the subcomponent material to the average particle size (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.6.
  • the sintered body 20 can be densified, and the zinc oxide particles in the sintered body 20 can be miniaturized.
  • the varistor voltage (V 1 mA ) of the current-voltage non-linear resistor 10 having the sintered body 20 can be increased to 900 V / mm or more.
  • boron which is a secondary component material, in terms of B 2 O 3 , and contains 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and
  • Example 1 In Example 1, the average particle diameter (D50z) of the zinc oxide raw material and the average particle diameter (D50s) of the subcomponents in the mixture at the time of producing the sintered body are relative to the average particle diameter (D50z) of the zinc oxide raw material The influence of the ratio D50s / D50z on the varistor voltage (V 1 mA ), non-linear resistance characteristic and energy tolerance characteristic of the current-voltage non-linear resistor will be described.
  • zinc oxide (ZnO) was used as a main component of a raw material of a sintered body.
  • the subcomponent materials 0.50 mol% of bismuth oxide (Bi 2 O 3), three antimony oxide (Sb 2 O 3) and 2.00 mol%, manganese oxide (MnO) 0.50mol%, cobalt oxide (Co 1.00 mol% of 2 O 3 ), 2.00 mol% of nickel oxide (NiO), 0.30 mol% of yttrium oxide (Y 2 O 3 ) as a rare earth element, 0.02 wt% of boron (B 2 O 3 ) Prepared by adding 0.02 wt% of silver (Ag 2 O) and aluminum as a trivalent element to an aqueous solution of aluminum hydroxide (Al 2 O 3 ) and adding 0.005 mol%, zinc oxide raw material and these subcomponents A mixture of raw materials was prepared. The balance is zinc oxide.
  • the uniformly mixed slurry was obtained by the grinding and mixing process in this wet grinding apparatus.
  • the average particle size (D50z) of zinc oxide and the average particle size (D50s) of all the subcomponents are the particle size distribution measuring apparatus of a laser diffraction / scattering type (a slurry manufactured by Nikkiso Co., Ltd.) It measured using "Microtrac MT3000II series".
  • this average particle diameter is an average particle diameter in median diameter.
  • this slurry was spray granulated with a spray drier so that the cumulative average particle size would be 45 to 90 ⁇ m.
  • the obtained granulated powder was made into a cylindrical compact having a diameter of 125 mm and a thickness of 30 mm by a hydraulic press-forming machine.
  • this molded body was heated to a first temperature of 500 ° C., and maintained at this temperature for 2 hours to remove an organic binder and the like.
  • the molded body was heated to a second temperature of 1050 ° C., and maintained at this temperature for 3 hours for firing.
  • baking was performed by installing a compact in a mullite refractory container using a tunnel type continuous furnace.
  • the heating rate from the first temperature of 500 ° C. to the second temperature of 1050 ° C. was 100 ° C./hour.
  • the fired compact was cooled to 750 ° C. or less.
  • the cooling rate at the time of cooling to the temperature of 750 degrees C or less was 100 degrees C / hr. A sintered body was obtained through this cooling step.
  • a glass frit was applied to the side surface of the sintered body as a cooled compact, and heat treatment was performed at a temperature of 500 ° C. for 2 hours to form an insulating layer. Furthermore, the upper and lower end surfaces of the sintered body were polished, and aluminum was sprayed on this polished surface to form an electrode, whereby a current-voltage non-linear resistor was obtained.
  • V 1 mA The varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy resistance were evaluated for the current-voltage non-linear resistors of the obtained sample Nos. 1 to 12.
  • V 1 mA The varistor voltage (V 1 mA ), which is the voltage when a current of 1 mA commercial frequency was applied, was measured according to JEC 0202-1994. It was confirmed that the value of this varistor voltage (V 1 mA ) was 900 V / mm or more.
  • Table 1 shows the average particle sizes (D50t) of all the raw materials including the zinc oxide raw material and the auxiliary component raw materials, the average particle sizes of zinc oxide (D50z), and D50s in the current-voltage non-linear resistors of sample numbers 1 to 12.
  • / D50z varistor voltage (V 1 mA ), non-linearity coefficient (V 10 kA / V 1 mA ) and energy tolerance are shown.
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • FIG. 2 is a diagram showing the relationship between D50s / D50z and the non-linearity coefficient (V 10kA / V 1mA ) for sample numbers 1 to 12.
  • the varistor voltage (V 1mA ) is 900 V / mm or more
  • the non-linearity coefficient (V 10kA / V 1mA ) is 1 It has been found that the energy tolerance is less than 300 and the energy tolerance is greater than 400 J / cc.
  • the current-voltage non-linear resistor according to the present embodiment can achieve higher resistance and has excellent non-linear resistance characteristics and energy tolerance as compared with the comparative example.
  • the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle diameter of the zinc oxide material is 700 nm or less, containing 0.005 to 0.04 wt% of boron in terms of B 2 O 3 , containing 0.005 to 0.04 wt% of silver in terms of Ag 2 O, and the relative amount of boron to silver
  • the current-voltage non-linear resistor having a sintered body obtained by firing a mixture satisfying the relationship of a ratio of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00 high resistance can be achieved. It has been found that excellent non-linear resistance characteristics and energy tolerance are obtained.
  • Example 2 In Example 2, the effect of the component content of boron and silver on the energy tolerance of the current-voltage non-linear resistor in the mixture at the time of producing the sintered body will be described.
  • the grinding and mixing treatment in a wet grinding apparatus is performed so that the average particle size (D50t) of all the raw materials is 695 nm, the average particle size (D50z) of zinc oxide is 700 nm, and D50s / D50z is 0.50 for all samples. Control the conditions.
  • the average particle size (D50t) of all the raw materials, the average particle size (D50z) of zinc oxide, and the average particle size (D50s) of all the subcomponents were measured in the same manner as in Example 1.
  • the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy resistance were evaluated for the current-voltage non-linear resistors of the obtained sample numbers 13 to 24.
  • the experimental conditions and method in the evaluation of the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy tolerance, and the evaluation criteria were the same as the experimental conditions and the experimental method of Example 1 described above.
  • 10 pieces of each of the current-voltage non-linear resistors of sample numbers 13 to 24 were prepared, and the 10 pieces were tested and their averages were evaluated.
  • Table 2 shows the composition components of boron and silver, varistor voltage (V 1 mA ), non-linearity coefficient (current-voltage non-linear resistors) of sample No. 4 (see table 1) and sample Nos. 13 to 24. V 10 kA / V 1 mA ) and energy tolerance are shown.
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • the varistor voltage (V 1mA ) is 900 V / mm or more and the non-linearity coefficient (V 10kA / V 1mA ) is 1 It has been found that the energy tolerance is less than 300 and the energy tolerance is greater than 400 J / cc. In addition, it was found that the current-voltage non-linear resistor according to the present embodiment can achieve higher resistance and has excellent non-linear resistance characteristics and energy tolerance as compared with the comparative example.
  • the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle diameter of the zinc oxide material is 700 nm or less, contains 0.005 to 0.04 wt% of boron as B 2 O 3 as a subcomponent material, and 0.005 to 0.04 wt% of silver as Ag 2 O
  • a current-voltage non-linear resistor comprising a sintered body obtained by firing a mixture satisfying the relation of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00 in the relative ratio of boron to silver It has been found that high resistance can be achieved, and excellent non-linear resistance characteristics and energy tolerance can be obtained.
  • Example 3 zinc oxide (ZnO) is a main component in the mixture at the time of producing the sintered body, and bismuth (Bi), antimony (Sb), manganese (Mn), cobalt (Co), nickel as a secondary component. The influence of each content of (Ni) on the characteristics of the current-voltage non-linear resistor will be described.
  • the grinding and mixing treatment in a wet grinding apparatus is performed so that the average particle size (D50t) of all the raw materials is 695 nm, the average particle size (D50z) of zinc oxide is 700 nm, and D50s / D50z is 0.50 for all samples. Control the conditions.
  • the average particle size (D50t) of all the raw materials, the average particle size (D50z) of zinc oxide, and the average particle size (D50s) of all the subcomponents were measured in the same manner as in Example 1.
  • the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy resistance were evaluated for the obtained current-voltage non-linear resistors of sample numbers 25 to 48.
  • the experimental conditions and method in the evaluation of the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy tolerance, and the evaluation criteria were the same as the experimental conditions and the experimental method of Example 1 described above.
  • 10 pieces of each of the current-voltage non-linear resistors of sample numbers 25 to 48 were prepared, and the 10 pieces were tested and the average was evaluated.
  • composition components (raw material addition amount) of subcomponents of the mixture in the current-voltage non-linear resistors of sample No. 4 (see Table 1) and sample Nos. 25 to 48, varistor voltage (V 1 mA ), non-linearity factor (V 10 kA / V 1 mA ) and energy tolerance.
  • V 1 mA varistor voltage
  • V 10 kA / V 1 mA energy tolerance
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • the varistor voltage (V 1mA ) is 900 V / mm or more and the non-linearity coefficient (V 10kA / V 1mA ) is 1 It has been found that the energy tolerance is less than 300 and the energy tolerance is greater than 400 J / cc. In addition, it was found that the current-voltage non-linear resistor according to the present embodiment can achieve higher resistance and has excellent non-linear resistance characteristics and energy tolerance as compared with the comparative example.
  • each Bi 2 O 3, Sb 2 O 3, Co 2 O 3, MnO in terms of NiO, Bi 2 O 3 and 0.30 to 0.80 mol%, 1.50 to 3.50 mol% of Sb 2 O 3 , 0.50 to 2.00 mol% of MnO, 0.30 to 1.50 mol% of Co 2 O 3 , 1.50 to NiO 3.50 mol%, containing 0.005 to 0.04 wt% of boron converted to B 2 O 3 , containing 0.005 to 0.04 wt% of silver converted to Ag 2 O, and boron silver
  • the relative ratio to the above satisfies the relationship of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00, and the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material Is D50s / D50z ⁇ 0.60, In the current-voltage non-linear resist
  • Example 4 In Example 4, the influence of the addition of the rare earth element on the characteristics of the current-voltage non-linear resistor in the mixture at the time of producing the sintered body will be described.
  • the grinding and mixing treatment in a wet grinding apparatus is performed so that the average particle size (D50t) of all the raw materials is 695 nm, the average particle size (D50z) of zinc oxide is 700 nm, and D50s / D50z is 0.50 for all samples. Control the conditions.
  • the average particle size (D50t) of all the raw materials, the average particle size (D50z) of zinc oxide, and the average particle size (D50s) of all the subcomponents were measured in the same manner as in Example 1.
  • the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy resistance were evaluated for the obtained current-voltage non-linear resistors of sample numbers 49 to 80.
  • the experimental conditions and method in the evaluation of the varistor voltage (V 1 mA ), the non-linear resistance characteristic and the energy tolerance, and the evaluation criteria were the same as the experimental conditions and the experimental method of Example 1 described above.
  • 10 pieces of each of the current-voltage non-linear resistors of sample numbers 49 to 80 were prepared, and the 10 pieces were tested and the average was evaluated.
  • Table 4 shows the composition of the rare earth element, the varistor voltage (V 1 mA ), and the non-linearity coefficient (V) in the current-voltage non-linear resistors of sample No. 4 (see Table 1) and sample Nos. 49 to 80. 10 kA / V 1 mA ) and energy tolerance.
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • the varistor voltage (V 1mA ) is 900 V / mm or more and the non-linearity coefficient (V 10kA / V 1mA ) is It was found that the energy tolerance is smaller than 1.300 and larger than 400 J / cc. In addition, it was found that the current-voltage non-linear resistor according to the present embodiment can achieve higher resistance and has excellent non-linear resistance characteristics and energy tolerance as compared with the comparative example.
  • the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle diameter of the zinc oxide material is 700 nm or less, contains 0.005 to 0.04 wt% of boron as B 2 O 3 as a subcomponent material, and 0.005 to 0.04 wt% of silver as Ag 2 O
  • the relative ratio of boron to silver satisfies the relation of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00, and further, yttrium (Y), europium (Eu), and eribium (Er) as subcomponent materials.
  • Example 5 describes the influence of the addition of a trivalent element on the characteristics of the current-voltage non-linear resistor in the mixture at the time of producing a sintered pair.
  • the grinding and mixing treatment in a wet grinding apparatus is performed so that the average particle size (D50t) of all the raw materials is 695 nm, the average particle size (D50z) of zinc oxide is 700 nm, and D50s / D50z is 0.50 for all samples. Control the conditions.
  • the average particle size (D50t) of all the raw materials, the average particle size (D50z) of zinc oxide, and the average particle size (D50s) of all subcomponents were measured in the same manner as in Example 1.
  • the varistor voltage (V 1 mA ) and the non-linear resistance characteristics of the obtained current-voltage non-linear resistors of sample numbers 81 to 94 were evaluated.
  • the experimental conditions, the experimental method, and the evaluation criteria in the evaluation of the varistor voltage (V 1 mA ) and the non-linearity were the same as the experimental conditions and the experimental method of Example 1 described above.
  • 10 pieces of each of the current-voltage non-linear resistors of sample numbers 81 to 94 were prepared, 10 pieces were tested, and the average was evaluated.
  • Table 5 shows the compositional components of trivalent elements, varistor voltage (V 1 mA ) and non-linearity coefficient in current-voltage non-linear resistors of sample No. 4 (see Table 1) and sample Nos. 81 to 94. V 10 kA / V 1 mA ) is shown.
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • the varistor voltage (V 1mA ) is 900 V / mm or more and the non-linearity coefficient (V 10kA / V 1mA ) is 1 It was found to be smaller than .300.
  • the current-voltage non-linear resistor according to the present embodiment had high resistance as a comparative example and had excellent non-linear resistance characteristics.
  • the relative ratio of the average particle diameter (D50s) of the auxiliary component material to the average particle diameter (D50z) of the zinc oxide material is D50s / D50z ⁇ 0.60, and the average particle diameter of the zinc oxide material is 700 nm or less, contains 0.005 to 0.04 wt% of boron as B 2 O 3 as a subcomponent material, and 0.005 to 0.04 wt% of silver as Ag 2 O
  • the relative ratio of boron to silver satisfies the relationship of 0.125 ⁇ B 2 O 3 / Ag 2 O ⁇ 1.00, and further, aluminum (Al), gallium (Ga), indium (In) as a subcomponent material
  • FIG. 1 The subsequent steps of producing a sintered body are the same steps as in Example 1 described above, but there is a difference only in the step of forming the obtained granulated powder by a hydraulic press-forming machine, and the diameter is A sintered body was produced as a cylindrical compact having a thickness of 40 mm and a thickness of 40 mm.
  • the six types of sintered bodies produced were designated as sample numbers 95 to 100, respectively, and the mechanical strength of the sintered bodies was measured for them.
  • the mechanical strength of a sintered compact processed the test piece of 3x4x38 mm from each sintered compact, and measured the bending strength by the 4 point
  • Table 6 shows the 50% breaking strength (MPa) and the breaking average energy ( ⁇ : J / cc) in the energy resistance test for the sintered bodies of sample numbers 95 to 100.
  • * mark is a comparative example which shows the sample which is out of the range of this embodiment.
  • the energy resistance can be improved by setting the 50% breaking strength of the mechanical strength of the sintered body to 140 MPa or more. That is, it was found that by mounting a sintered body having a 50% breaking strength as a component of the current-voltage non-linear resistor, it is possible to further increase the current-voltage non-linear resistor energy resistance. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

電流-電圧非直線抵抗体の製造方法は、酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、ホウ素および銀を含む混合物を焼成する方法である。前記混合物における前記副成分原料の平均粒径(D50s)の前記酸化亜鉛の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60である。前記酸化亜鉛の平均粒径(D50z)が700nm以下である。前記混合物は、前記ホウ素をBに換算して、0.005~0.04wt%含み、前記銀をAgOに換算して、0.005~0.04wt%含む。前記ホウ素の前記銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす。

Description

電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法
 本発明の実施形態は、電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法に関する。
 一般に、電力系統や電子機器回路を異常電圧から保護するために、避雷器やサージアブソーバなどの過電圧保護装置が用いられている。これらのような過電圧保護装置は、正常な電圧下において絶縁特性を示す一方、異常電圧が印加されたときに低抵抗特性を示す電流-電圧非直線抵抗体を有しており、過電圧の抑制に有効である。
 この電流-電圧非直線抵抗体は、酸化亜鉛(ZnO)を主成分とし、電圧非直線抵抗特性(以下、非直線抵抗特性とも称する。)を得るために添加物として少なくとも一種類以上の金属酸化物が添加された混合物を、混合、造粒、成形し、焼結されたセラミック体(焼結体)を備えている。実際、過電圧保護装置に電流-電圧非直線抵抗体を適用する際は、この焼結体の側面には、サージ吸収時に側面からのフラッシュ・オーバを防止するために、電気絶縁材料による絶縁層が形成された上で用いられる。
 また、近年の経済不況に伴い、電力系統において送電コストを低減するために送変電設備を構成する機器の小型化および高性能化が求められている。酸化亜鉛を主成分とする電流-電圧非直線抵抗体は、その優れた非直線抵抗特性により、避雷器に適用されており、具体的には、複数枚の電流-電圧非直線抵抗体が積層され避雷器を構成している。すなわち、この避雷器に適用されている電流-電圧非直線抵抗体を高抵抗化することができれば、避雷器に積層して備えられる電流-電圧非直線抵抗体の枚数を低減することができ、送変電設備の小型化を図ることができる。
 電流-電圧非直線抵抗体を高抵抗化するために、例えば、Bi、Co、MnO、Sb、NiOなどの副成分の含有量が限定され、さらに、ZnOを主成分とした焼結体に含まれるBiの結晶相が限定された電流-電圧非直線抵抗体が知られている。この電流-電圧非直線抵抗体では、抵抗値が高く、かつ優れた非直線抵抗特性が得られる。
 また、酸化亜鉛を主成分として、Bi、Co、MnO、Sbなどが添加された電流-電圧非直線抵抗体において、さらに希土類酸化物を添加することにより、抵抗値が高く、優れた非直線抵抗特性が得られる電流-電圧非直線抵抗体も知られている。
 また、従来の高性能タンク形避雷器に用いられる電流-電圧非直線抵抗体の1mAの商用周波の電流を通電したときの電圧であるバリスタ電圧(V1mA)は200V/mm~600V/mm程度である。
 ここで、近年、電流-電圧非直線抵抗体に求められる特性は益々厳しいものとなっており、送変電設備を構成する避雷器やサージアブソーバなどの機器の十分な小型化を図るために、電流-電圧非直線抵抗体においては、例えばバリスタ電圧を600V/mm以上とする更なる高抵抗化を求められている。
 しかし、上述したような従来の技術ではこれらの要求を十分に満足することができなかった。
 例えば、電流-電圧非直線抵抗体のバリスタ電圧を600V/mm以上に高めるためには、主成分である酸化亜鉛粒子の粒成長をさらに抑制しなければならず、当該抑制効果を有するSbや希土類元素等の副成分を更に添加する必要がある。しかし、これら副成分の添加量が多くなる程、高抵抗化を図ることができる一方、絶縁物であるZnSb12を主成分とするスピネル粒子量等も増加するため、電流-電圧非直線抵抗体全体において電流の流れが不均一となり、非直線抵抗特性が悪化する場合があった。
 また、電流-電圧非直線抵抗体のエネルギ耐量においては、50~60Hzの商用周波、msオーダーの開閉サージ、μsオーダーの雷インパルスサージを吸収する必要があり、電流-電圧非直線抵抗体を高抵抗化することで、サージエネルギ吸収時の単位体積あたりの発生エネルギが大きくなるため、それら種々のエネルギ耐量特性を向上する必要があった。
特開2001-307909号公報 特許第2904178号 特許第2933881号 特許第2940486号 特許第3165410号 特開2001-68308号公報
 本発明が解決しようとする課題は、高抵抗化が図れるとともに、非直線抵抗特性およびエネルギ耐量に優れた電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法を提供することである。
 実施形態の電流-電圧非直線抵抗体の製造方法は、酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含む混合物を焼成する。前記混合物における前記副成分原料の平均粒径(D50s)の前記酸化亜鉛の平均粒径(D50z)に対する相対比は、D50s/D50z≦0.60である。前記酸化亜鉛の平均粒径(D50z)は700nm以下である。前記混合物は、前記ホウ素をBに換算して、0.005~0.04wt%含み、前記銀をAgOに換算して、0.005~0.04wt%含む。前記ホウ素の前記銀に対する相対比は、0.125≦B/AgO≦1.00の関係を満たす。
実施形態の電流-電圧非直線抵抗体を示す断面図。 実施例の試料番号1~試料番号12ついて、D50s/D50zと非直線性係数(V10kA/V1mA)との関係を示すグラフ。
 以下、実施形態の電流-電圧非直線抵抗体およびその製造方法、ならびに電流-電圧非直線抵抗体用材料について図面を参照して説明する。
 図1は、実施形態の電流-電圧非直線抵抗体10の一例を示す断面図である。
 図1に示すように、実施形態の電流-電圧非直線抵抗体10は、焼結体20と、焼結体20の側面を被覆する絶縁層30と、焼結体20の上下面に形成された電極40を備えている。
 焼結体20は、酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含んだ混合物を焼成してなるものである。また、焼結体20は、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たすものである。
 次に、実施形態の電流-電圧非直線抵抗体10用の材料(電流-電圧非直線抵抗体用材料)について説明する。
 実施形態の電流-電圧非直線抵抗体10用の材料は、酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含んだ混合物からなる。また、前記混合物における副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下である。また、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たすものである。
 なお、実施形態の電流-電圧非直線抵抗体10用の材料において、混合物は酸化亜鉛を主成分原料とするものであるが、ここで「主成分」とは、混合物に占める割合が90mol%以上であることを意味する。
 前記混合物における副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径(D50z)を700nm以下とする。
 副成分原料の平均粒径(D50s)を、主成分原料である酸化亜鉛(以下、酸化亜鉛原料、とも称する。)の平均粒径(D50z)よりも小さくする、すなわちD50s/D50zを小さくすることで、副成分原料を酸化亜鉛原料中に均一に分散させることができる。その結果、酸化亜鉛原料と副成分原料を混合した混合物を焼結体20とするための焼成過程において、酸化亜鉛粒子の粒成長が均一に進むとともに、酸化亜鉛粒子の粒成長を抑制する効果を有するSbや希土類元素も効果的に働くため、副成分の添加量が少量でも、得られる電流-電圧非直線抵抗体10の高抵抗化を図ることができる。さらに、D50s/D50zを小さくすることで、微細構造が均一化され、焼結性も向上するため、焼結体20が高密度化し、焼結体20の気孔率が低減する。そのため、優れた、非直線抵抗特性およびエネルギ耐量を有する電流-電圧非直線抵抗体10が得られる。
 一方、D50s/D50z>0.60になると、添加物が効果的に働くことができず、逆に酸化亜鉛粒子の粒成長が妨げられ、焼結性が低下するため、非直線性およびエネルギ耐量は悪化する。また、酸化亜鉛原料の平均粒径を700nm以下とすることで、副成分原料と酸化亜鉛原料の反応が効率良く進むため、非直線抵抗特性は向上するが、700nmを超えると、非直線抵抗特性の向上が認められない。
 以上のことから、電流-電圧非直線抵抗体用材料において、副成分原料の平均粒径D50sの酸化亜鉛原料の平均粒径D50zに対する相対比D50s/D50zを0.60以下とし、かつ酸化亜鉛原料の平均粒径D50zを700nm以下とする。高抵抗化、非直線抵抗特性およびエネルギ耐量の向上の観点から、D50s/D50zは0.50以下とすることが好ましく、酸化亜鉛原料の平均粒径(D50z)は600nm以下とすることが好ましい。
 なお、D50s/D50zの下限は特に限定しないが、D50s/D50zが過度に小さくなる、すなわち、副成分原料の平均粒径D50sが酸化亜鉛原料の平均粒径D50zよりも過度に小さくなると副成分原料が凝集し、均一な分散が困難となるおそれがあるため、D50s/D50zは0.35以上とすることが好ましい。また、酸化亜鉛原料の平均粒径D50zの下限も特に限定しないが、酸化亜鉛原料の平均粒径D50zが過度に小さいと酸化亜鉛原料と副成分原料の均一分散が阻害され、焼結性が悪化するおそれがあるため、350nm以上とすることが好ましい。
 また、混合物において、酸化亜鉛原料および副成分原料を含む全原料の平均粒径(D50t)は750nm以下であることが好ましい。全原料の平均粒径(D50t)を750nm以下とすることで、副成分原料と酸化亜鉛原料の反応が効率良く進み、非直線抵抗特性を向上させることができる。全原料の平均粒径(D50t)は650nm以下であることがより好ましい。
 ここで、粉体である混合物中の副成分原料の平均粒径D50sや酸化亜鉛の平均粒径D50z、全原料の平均粒径D50tは、例えば、レーザ回折・散乱式の粒度分布測定装置を用いた粒度分布の測定(レーザ回折・散乱式粒度分布測定法)による算出することができる。レーザ回折・散乱式粒度分布装置としては、例えば日機装社製の「マイクロトラックMT3000IIシリーズ」を用いることができる。
 なお、本実施形態でいう平均粒径(D50s、D50z、D50t)は、メディアン径と呼ばれるもので、前述の測定法で粒度分布を測定して、粒径の頻度の累積が50%となる粒径を平均粒径(D50s、D50z、D50t)とする。
 また、実施形態の電流-電圧非直線抵抗体10用の材料の副成分原料は、少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、ホウ素および銀を含む。
 また、混合物の副成分であるホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす。
 ホウ素及び銀のそれぞれの含有量が所定の範囲内で、BとAgOの相対比を、0.125≦B/AgO≦1.00と満足することで、優れた、非直線抵抗特性およびエネルギ耐量が得られる。一方、ホウ素及び銀の含有量がこれらの範囲から外れると、非直線抵抗特性およびエネルギ耐量の両方、もしくはどちらか一方が悪化する。
 非直線抵抗特性およびエネルギ耐量の観点から、混合物中のホウ素の含有量は、Bに換算して0.006wt%以上が好ましく、0.03wt%以下が好ましい。同様に、混合物中の銀の含有量は、AgOに換算して0.01wt%以上が好ましく、0.03wt%以下が好ましい。さらに、BとAgOの相対比は、0.20≦B/AgO≦1.00とすることが好ましい。
 また、混合物に含まれる副成分として、それぞれBi、Sb、Co、MnO、NiOに換算して、Biを0.30~0.80mol%、Sbを01.50~3.50mol%、MnOを0.50~2.00mol%、Coを0.30~1.50mol%、NiOを1.50~3.50mol%含むことが好ましい。
 酸化ビスマスは、主成分である酸化亜鉛の粒界に存在して非直線抵抗特性を発現させる成分であるが、Biに換算した含有量が0.30mol%よりも小さい場合には、この非直線抵抗特性を発現させる効果を十分に得ることができず、エネルギ耐量も悪化するおそれがある。また、同含有量が0.80mol%よりも大きい場合には、非直線抵抗特性が悪化するおそれがある。これらのことから、酸化ビスマスの含有量はBiに換算して0.30~0.80mol%とすることが好ましい。
 酸化アンチモンは、酸化亜鉛とスピネル粒子を形成して焼結中の酸化亜鉛粒子の粒成長を抑制し、均一化する働きを有し、非直線抵抗特性を向上させる効果を有する成分である。しかし、Sbに換算した含有量が1.50mol%よりも小さい場合には、この非直線抵抗特性を向上させる効果を十分に得ることができず、エネルギ耐量も悪化するおそれがある。また、同含有量が3.50mol%よりも大きい場合には、焼結体内部の絶縁成分が多くなり、エネルギ耐量特性が悪化するおそれがある。これらのことから、酸化アンチモンの含有量はSbに換算して1.50~3.50mol%とすることが好ましい。
 酸化マンガン、主にスピネル粒子中に固溶して非直線抵抗特性を大きく向上させるために有効な成分であるが、MnOに換算した含有量が0.50mol%よりも小さい場合には、この非直線抵抗特性を向上させる効果を十分に得ることができないおそれがある。また、同含有量が2.00mol%よりも大きい場合には、焼結体内部の絶縁成分が多くなり、エネルギ耐量が悪化するおそれがある。これらのことから、酸化マンガンの含有量がMnOに換算して0.50~2.00mol%とすることが好ましい。
 酸化コバルトは、主にスピネル粒子中に固溶して非直線抵抗特性を大きく向上させるために有効な成分であるが、Coに換算した含有量が0.30mol%よりも小さい場合には、この非直線抵抗特性を向上させる効果を十分に得ることができないおそれがある。また、同含有量が1.50mol%よりも大きい場合には、焼結体内部の絶縁成分が多くなり、エネルギ耐量が悪化するおそれがある。これらのことから、酸化コバルトの含有量はCoに換算して0.30~1.50mol%とすることが好ましい。
 酸化ニッケルは、主にスピネル粒子中に固溶して非直線抵抗特性を大きく向上させるために有効な成分であるが、NiOに換算した含有量が1.50mol%よりも小さい場合には、この非直線抵抗特性を向上させる効果を十分に得ることができないおそれがある。また、同含有量が3.50mol%よりも大きい場合には、焼結体内部の絶縁成分が多くなり、エネルギ耐量が悪化するおそれがある。これらのことから、酸化ニッケルの含有量はNiOに換算して1.50~3.50mol%とすることが好ましい。
 また、混合物において、副成分として希土類元素を含む。好ましくは、イットリウム(Y)、ユウロピウム(Eu)、エリビウム(Er)、ツリウム(Tm)、ガドリニウム(Gd)、ジスプロジウム(Dy)、ホルミウム(Ho)、イッテリビウム(Yb)のうち少なくとも一種の希土類元素Rを含み、Rに換算して0.10~0.50mol%含むことで、焼結体内部に絶縁成分を増やすことなく、優れた非直線抵抗特性とエネルギ耐量を得ることができる。ここで、希土類元素Rの含有量がRに換算して0.10mol%よりも小さい場合には、非直線性が悪化し、一方0.50mol%よりも大きい場合には、エネルギ耐量が悪化するおそれがある。
 また、混合物において、副成分として3価元素を含む。好ましくは、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうち少なくとも一種の3価元素を含み、それぞれAl3+、Ga3+、In3+に換算して、0.003~0.010mol%含むことが好ましい。3価元素はZnO粒子中に固溶して非直線抵抗特性を大きく向上させるために有効な成分であるが、含有量が0.010mol%よりも大きい場合には逆に非直線抵抗特性が悪化するおそれがある。
 以上、実施形態の電流-電圧非直線抵抗体10用材料を説明してきたが、実施形態の電流-電圧非直線抵抗体10は、当該電流-電圧非直線抵抗体10用材料を焼成してなる焼結体20を備えるものである。
 また焼結体20の機械強度の50%破壊強度は、140MPa以上であることが好ましい。
 焼結体の機械強度は、JIS R1604に準拠して4点曲げ試験により測定することができる。焼結体の機械強度の50%破壊強度は、140MPa以上となることで、雷インパルスサージを吸収する優れたエネルギ耐量を得ることができる。
 また、本実施形態の電流-電圧非直線抵抗体10においては、1mAの商用周波の電流を通電したときの電圧であるバリスタ電圧(V1mA)が900V/mm以上とすることができる。
 次に、本実施形態の電流-電圧非直線抵抗体10の製造方法について説明する。
 電流-電圧非直線抵抗体10の製造方法は、上述してきた、酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含む混合物(電流-電圧非直線抵抗体用材料)を焼成して焼結体20を作製する工程を含む方法である。
 以下、具体的に説明する。
 まず、主成分原料である酸化亜鉛と、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、ホウ素および銀を含み、ホウ素をBに換算して0.005~0.04wt%含み、銀をAgOに換算して0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たすように秤量し混合物を作製する。
 なお、副成分原料として酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素Rおよび3価元素を含有させる場合、それぞれBi、Sb、Co、MnO、NiO、R、AgOおよびBに換算して、Biを0.30~0.80mol%、Sbを1.50~3.50mol%、MnOを0.50~2.00mol%、Coを0.30~1.50mol%、NiOを1.50~3.50mol%、Rを0.10~0.50mol%含有させることが好ましい。3価元素を含有させる場合は、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうち少なくとも一種の3価元素を含み、それぞれAl3+、Ga3+、In3+に換算して、0.003~0.010mol%含有させることが好ましい。
 続いて、作製された混合物と、この混合物の含有率が30~60重量%となるように調整されたバインダ溶液を湿式粉砕装置に投入し、酸化亜鉛原料の平均粒径が700nm以下となり、かつ副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60となるように粉砕しながら混合し、スラリーを作製する。バインダ溶液として、例えば、水と、ポリビニルアルコールなどの有機バインダとを混合した水溶液などが用いられる。
 ここで、湿式粉砕装置として、例えば、直径が0.05~0.3mmのジルコニアビーズを用いた循環方式の装置などが用いられる。また、湿式粉砕装置におけるベッセル内のビーズ充填率を35~95%とし、攪拌用ロータの周速を500~1500rpm、循環流量を5~50L/minの条件で作動させることができる。
 続いて、作製されたスラリーを回転円盤方式または加圧ノズル方式により、噴霧して造粒して、累積平均粒径(メディアン径D50)が45~90μmとなる顆粒を作製する。
 得られた顆粒を、例えば油圧式のプレス成形機によって、円柱状に成形し、成形体を作製する。
 続いて、この成形体を、第1の温度である、350~500℃の温度に加熱し、この温度に、例えば、1~3時間維持してバインダ溶液を除去する。
 次に、成形体を、第2の温度である、900~1300℃の温度に加熱し、この温度に、例えば、2時間以上維持して焼成する。なお、焼成は、例えば、トンネル式の連続炉を使用して、アルミナやムライトなどの耐火物容器に成形体を設置して行われる。また、第1の温度から第2の温度までの加熱速度は、被焼成物内の温度均一性と焼成プロセスリードタイムの観点から、25~100℃/時であることが好ましい。
 第2の温度の維持時間経過後、焼成された成形体を冷却する。なお、冷却方法は特に限定しないが、冷却する際の冷却速度は、被焼成物内の温度均一性と焼成プロセスリードタイムの観点から、100~200℃/時であることが好ましい。
 この冷却工程を経て、焼結体20が得られる。
 次に、冷却された円柱状の焼結体20の側面に、例えば、電気絶縁材料であるガラスフリットなどの無機絶縁物を塗布または吹き付け、300~500℃の温度で、1~5時間熱処理して、絶縁層30を形成する。
 さらに、焼結体20の上下両端面を研磨し、この研磨面に、前述した導電性材料を、例えば溶射などして、電極40を形成する。
 なお、絶縁層30を形成する工程および電極40を形成する工程を行う順番は、特に限定されるものではなく、いずれを先に行ってもよい。
 このように、上記した工程を経ることで、電流-電圧非直線抵抗体10が作製される。
 上記したように、本実施形態に係る電流-電圧非直線抵抗体10およびその製造方法によれば、電流-電圧非直線抵抗体10を構成する焼結体20の原料において、主成分である酸化亜鉛原料の平均粒径が700nm以下であり、かつ副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.6となることで、焼結体20中の酸化亜鉛粒子の粒成長抑制効果のあるスピネル粒子やその他の原料が微細構造全体に均一に分散されるため、それらの副成分原料が効果的に働き、微細構造が均一化される。さらに、スピネル粒子やその他の副成分原料の均一分散化によって焼結性も向上するため、焼結体20が高密度化し、焼結体20中の酸化亜鉛粒子を微細化することができる。これらの結果、焼結体20を有する電流-電圧非直線抵抗体10のバリスタ電圧(V1mA)を900V/mm以上と高抵抗化することができる。加えて、副成分原料であるホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00となるように、成分比を限定することによって、電流-電圧非直線抵抗体10において優れた、非直線抵抗特性およびエネルギ耐量を享受できる。
 以上説明した少なくともひとつの実施形態によれば、酸化亜鉛の平均粒径D50zおよびD50s/D50zを規定し、かつホウ素および銀の添加量を調整することにより、高抵抗化が図れるとともに、非直線抵抗特性およびエネルギ耐量に優れた電流-電圧非直線抵抗体を得ることができる。
 次に、本実施形態の電流-電圧非直線抵抗体が持つ各特性について以下に具体的に説明する。
 (実施例1)
 実施例1では、焼結体を作製する際の混合物において、酸化亜鉛原料の平均粒径(D50z)および、副成分の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比D50s/D50zが、電流-電圧非直線抵抗体のバリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量特性に及ぼす影響について説明する。
 まず、電流-電圧非直線抵抗体を製造するにあたり、焼結体の原料の主成分として酸化亜鉛(ZnO)を用いた。副成分原料としては、酸化ビスマス(Bi)を0.50mol%、三酸化アンチモン(Sb)を2.00mol%、酸化マンガン(MnO)を0.50mol%、酸化コバルト(Co)を1.00mol%、酸化ニッケル(NiO)を2.00mol%、希土類元素として酸化イットリウム(Y)を0.30mol%、ホウ素(B)を0.02wt%、銀(AgO)を0.02wt%、および3価元素としてアルミニウムを水酸化アルミニウム(Al)水溶液にし、0.005mol%添加するように調整し、酸化亜鉛原料とこれら副成分原料からなる混合物を作製した。なお、残部は、酸化亜鉛である。
 上記したように調整した混合物と、この混合物の含有率が40重量%となるように調整された、水および有機バインダからなるバインダ溶液を循環方式の湿式粉砕装置に投入した。また、湿式粉砕装置において、ジルコニアビーズの粒径、ベッセル内のビーズ充填率、攪拌用ロータの周速、循環流量、混合時間を調整することにより、主成分である酸化亜鉛の平均粒径(D50z)、全副成分の平均粒径(D50s)、および酸化亜鉛原料と副成分原料を含む全原料の平均粒径(D50t)が、表1に示す値となるように粉砕を制御した。この湿式粉砕装置における粉砕および混合処理によって、均一に混合されたスラリーを得た。
 ここで、酸化亜鉛の平均粒径(D50z)と、全副成分の平均粒径(D50s)は、湿式粉砕装置から採取されたスラリーを、レーザ回折・散乱式の粒度分布測定装置(日機装社製の「マイクロトラックMT3000IIシリーズ」)を用いて測定した。また、この平均粒径は、メディアン径における平均粒径である。
 続いて、このスラリーをスプレードライヤで、累積平均粒径が45~90μmとなるように噴霧造粒した。得られた造粒粉を、油圧式のプレス成形機によって、直径が125mm、厚さが30mmの円柱状の成形体とした。
 続いて、この成形体を第1の温度である500℃に加熱し、この温度に2時間維持して有機バインダなどを除去した。
 次に、成形体を、第2の温度である1050℃に加熱し、この温度に3時間維持して焼成した。なお、焼成は、トンネル式の連続炉を使用して、ムライトの耐火物容器に成形体を設置して行った。また、第1の温度である500℃から第2の温度である1050℃の各焼成温度にするまでの加熱速度を100℃/時とした。
 第2の温度の維持時間経過後、焼成された成形体を750℃以下まで冷却した。なお、750℃以下の温度まで冷却する際の冷却速度を、100℃/時とした。この冷却工程を経て、焼結体を得た。
 続いて、冷却された成形体である焼結体の側面に、ガラスフリットを塗布し、500℃の温度で、2時間熱処理して、絶縁層を形成した。さらに、焼結体の上下両端面を研磨し、この研磨面に、アルミニウムを溶射して電極を形成し、電流-電圧非直線抵抗体を得た。
 得られた試料番号1~試料番号12の電流-電圧非直線抵抗体について、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量を評価した。
 1mAの商用周波の電流を通電したときの電圧であるバリスタ電圧(V1mA)をJEC0202-1994に準じて測定した。このバリスタ電圧(V1mA)の値が900V/mm以上であることを確認した。
 非直線抵抗特性の評価において、上記したバリスタ電圧(V1mA)と、8×20μsインパルス電流を10kA流したときの電圧(V10kA)とを測定し、これらの比(V10kA/V1mA)を非直線性係数として評価した。この非直線性係数の値が小さいほど、非直線抵抗特性が優れていることを示しており、本実施例1では非直線性係数が1.300以下のものを良好であると評価した。
 エネルギ耐量の評価において、バリスタ電圧(V1mA)の1.3倍の商用周波電圧(50Hz)を印加し続け、電流-電圧非直線抵抗体が破壊するまでに吸収したエネルギ値(J/cc)を測定し、このエネルギ値(J/cc)に基づいて、エネルギ耐量を評価した。ここで、「破壊するまで」とは、AE検出器により電流-電圧非直線抵抗体に亀裂が発生したことが検出されるまでをいう。このエネルギ値(J/cc)の値が大きいほどエネルギ耐量に優れていることを示しており、本実施例ではエネルギ耐量が400J/cc以上のものを良好であると評価した。
 なお、上記した各評価試験では、試料番号1~12の各電流-電圧非直線抵抗体を10ピース作製し、10ピースについて試験を行いそれらの平均でもって評価した。
 表1には、試料番号1~12の電流-電圧非直線抵抗体における、酸化亜鉛原料と副成分原料を含む全原料の平均粒径(D50t)、酸化亜鉛の平均粒径(D50z)、D50s/D50z、バリスタ電圧(V1mA)、非直線性係数(V10kA/V1mA)およびエネルギ耐量を示す。なお、表1において、*印は本実施形態の範囲外である試料を示す比較例である。
 また、図2は、試料番号1~12ついて、D50s/D50zと非直線性係数(V10kA/V1mA)との関係を示した図である。
 表1に示すように、本実施形態に係る電流-電圧非直線抵抗体においては、いずれも、バリスタ電圧(V1mA)が900V/mm以上、非直線性係数(V10kA/V1mA)が1.300より小さく、エネルギ耐量が400J/ccよりも大きくなることがわかった。また、本実施形態に係る電流-電圧非直線抵抗体は、比較例と比較して、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量を有することがわかった。
 また、図2に示すように、D50s/D50zを0.60以下とすることで、電流-電圧非直線抵抗体における非直線性係数(V10kA/V1mA)が小さくなった。
 以上の結果から、副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下であり、ホウ素をBに換算して0.005~0.04wt%含み、銀をAgOに換算して0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす混合物を焼成して得られる焼結体を備える電流-電圧非直線抵抗体では、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量が得られることがわかった。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例2では、焼結体を作製する際の混合物において、ホウ素と銀の成分含有量が電流-電圧非直線抵抗体のエネルギ耐量特性に及ぼす影響について説明する。
 まず、上記実施例1における試料番号4を作製するために用いた焼結体の原料成分のうち、ホウ素および銀以外の同様の成分組成を有する混合物に、ホウ素と銀を、表2に示す試料番号13~試料番号24の値となるように調整し、酸化亜鉛原料とこれら副成分原料からなる混合物を作製した。
 以後の電流-電圧非直線抵抗体を作製する工程は、前述した実施例1と同じ工程とし、電流-電圧非直線抵抗体を得た。
 なお、いずれの試料も、全原料の平均粒径(D50t)は695nm、酸化亜鉛の平均粒径(D50z)は700nm、D50s/D50zは0.50となるよう、湿式粉砕装置における粉砕および混合処理条件を制御した。全原料の平均粒径(D50t)と酸化亜鉛の平均粒径(D50z)と、全副成分の平均粒径(D50s)は、実施例1と同法にて測定した。
 得られた試料番号13~試料番号24の電流-電圧非直線抵抗体について、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量を評価した。なお、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量の評価における実験条件や実験方法、評価基準は、前述した実施例1の実験条件や実験方法と同じとした。
 なお、上記した各評価試験では、試料番号13~24の各電流-電圧非直線抵抗体を10ピース作製し、10ピースについて試験を行いそれらの平均でもって評価した。
 表2には、試料番号4(表1参照)、試料番号13~試料番号24の電流-電圧非直線抵抗体における、ホウ素、銀の組成成分、バリスタ電圧(V1mA)、非直線性係数(V10kA/V1mA)およびエネルギ耐量を示す。なお、表2において、*印は本実施形態の範囲外である試料を示す比較例である。
 表2に示すように、本実施形態に係る電流-電圧非直線抵抗体においては、いずれも、バリスタ電圧(V1mA)が900V/mm以上、非直線性係数(V10kA/V1mA)が1.300より小さく、エネルギ耐量が400J/ccよりも大きくなることがわかった。また、本実施形態に係る電流-電圧非直線抵抗体は、比較例と比較して、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量を有することがわかった。
 以上の結果から、副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下であり、副成分原料として、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす混合物を焼成して得られる焼結体を備える電流-電圧非直線抵抗体では、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量が得られることがわかった。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 実施例3では、焼結体を作製する際の混合物において、酸化亜鉛(ZnO)を主成分とし、副成分としてビスマス(Bi)、アンチモン(Sb)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)の各含有量が、電流-電圧非直線抵抗体の特性に及ぼす影響について説明する。
 まず、上記実施例1における試料番号4を作製するために用いた焼結体の副成分原料のうち、イットリウム、ホウ素、銀およびアルミニウムは同様の含有量とし、その他の副成分(Bi、Sb、MnO、Co、NiO)を、表3に示す試料番号25~試料番号48の値となるように調整した。
 以後の電流-電圧非直線抵抗体を作製する工程は、前述した実施例1と同じ工程とし、電流-電圧非直線抵抗体を得た。
 なお、いずれの試料も、全原料の平均粒径(D50t)は695nm、酸化亜鉛の平均粒径(D50z)は700nm、D50s/D50zは0.50となるよう、湿式粉砕装置における粉砕および混合処理条件を制御した。全原料の平均粒径(D50t)と酸化亜鉛の平均粒径(D50z)と、全副成分の平均粒径(D50s)は、実施例1と同法にて測定した。
 得られた試料番号25~試料番号48の電流-電圧非直線抵抗体について、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量を評価した。なお、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量の評価における実験条件や実験方法、評価基準は、前述した実施例1の実験条件や実験方法と同じとした。
 なお、上記した各評価試験では、試料番号25~48の各電流-電圧非直線抵抗体を10ピース作製し、10ピースについて試験を行いそれらの平均でもって評価した。
 表3には、試料番号4(表1参照)、試料番号25~試料番号48の電流-電圧非直線抵抗体における、混合物のうちの副成分の組成成分(原料添加量)、バリスタ電圧(V1mA)、非直線性係数(V10kA/V1mA)およびエネルギ耐量を示す。なお、表3において、*印は本実施形態の範囲外である試料を示す比較例である。
 表3に示すように、本実施形態に係る電流-電圧非直線抵抗体においては、いずれも、バリスタ電圧(V1mA)が900V/mm以上、非直線性係数(V10kA/V1mA)が1.300より小さく、エネルギ耐量が400J/ccよりも大きくなることがわかった。また、本実施形態に係る電流-電圧非直線抵抗体は、比較例と比較して、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量を有することがわかった。
 以上の結果から、酸化亜鉛を主成分として含み、副成分として、それぞれBi、Sb、Co、MnO、NiOに換算して、Biを0.30~0.80mol%、Sbを1.50~3.50mol%、MnOを0.50~2.00mol%、Coを0.30~1.50mol%、NiOを1.50~3.50mol%、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たし、副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下である混合物を焼成して得られる焼結体を備える電流-電圧非直線抵抗体では、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量が得られることがわかった。
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 実施例4では、焼結体を作製する際の混合物において、希土類元素の添加が、電流-電圧非直線抵抗体の特性に及ぼす影響について説明する。
 まず、上記実施例1における試料番号4を作製するために用いた焼結体の副成分のうち、希土類元素以外の同様の成分組成を有する混合物に、希土類元素を、表4に示す試料番号49~試料番号80の値となるように調整し、酸化亜鉛原料とこれら副成分原料からなる混合物を作製した。
 以後の電流-電圧非直線抵抗体を作製する工程は、前述した実施例1と同じ工程とし、電流-電圧非直線抵抗体を得た。
 なお、いずれの試料も、全原料の平均粒径(D50t)は695nm、酸化亜鉛の平均粒径(D50z)は700nm、D50s/D50zは0.50となるよう、湿式粉砕装置における粉砕および混合処理条件を制御した。全原料の平均粒径(D50t)と酸化亜鉛の平均粒径(D50z)と、全副成分の平均粒径(D50s)は、実施例1と同法にて測定した。
 得られた試料番号49~試料番号80の電流-電圧非直線抵抗体について、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量を評価した。なお、バリスタ電圧(V1mA)、非直線抵抗特性およびエネルギ耐量の評価における実験条件や実験方法、評価基準は、前述した実施例1の実験条件や実験方法と同じとした。
 なお、上記した各評価試験では、試料番号49~80の各電流-電圧非直線抵抗体を10ピース作製し、10ピースについて試験を行いそれらの平均でもって評価した。
 表4には、試料番号4(表1参照)、試料番号49~試料番号80の電流-電圧非直線抵抗体における、希土類元素の組成成分、バリスタ電圧(V1mA)、非直線性係数(V10kA/V1mA)およびエネルギ耐量を示す。なお、表4において、*印は本実施形態の範囲外である試料を示す比較例である。
 表4に示すように、本実施系形態に係る電流-電圧非直線抵抗体においては、いずれも、バリスタ電圧(V1mA)が900V/mm以上、非直線性係数(V10kA/V1mA)が1.300より小さく、エネルギ耐量が400J/ccよりも大きくなることがわかった。また、本実施形態に係る電流-電圧非直線抵抗体は、比較例と比較して、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量を有することがわかった。
 以上の結果から、副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下であり、副成分原料として、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たし、さらに副成分原料として、イットリウム(Y)、ユウロピウム(Eu)、エリビウム(Er)、ツリウム(Tm)、ガドリニウム(Gd)、ジスプロジウム(Dy)、ホルミウム(Ho)、イッテリビウム(Yb)のうち少なくとも一種の希土類元素Rを用い、かつRに換算して0.10~0.50mol%含む混合物を焼成して得られる焼結体を備える電流-電圧非直線抵抗体では、高抵抗化が図れ、優れた、非直線抵抗特性およびエネルギ耐量が得られることがわかった。

Figure JPOXMLDOC01-appb-T000004
(実施例5)
 実施例5では、焼結対を作製する際の混合物において、3価元素の添加が電流-電圧非直線抵抗体の特性に及ぼす影響について説明する。 

 まず、上記実施例1における試料番号4を作製するために用いた焼結体成分のうち、3価元素であるアルミニウム以外の同様の成分組成を有する混合物に、3価元素(アルミニウム、ガリウム、インジウム)を、表5に示す試料番号81~試料番号94の値となるように調整し、酸化亜鉛原料とこれら副成分原料からなる混合物を作製した。
 以後の電流-電圧非直線抵抗体を作製する工程は、前述した実施例1と同じ工程とし、電流-電圧非直線抵抗体を得た。
 なお、いずれの試料も、全原料の平均粒径(D50t)は695nm、酸化亜鉛の平均粒径(D50z)は700nm、D50s/D50zは0.50となるよう、湿式粉砕装置における粉砕および混合処理条件を制御した。全原料の平均粒径(D50t)と酸化亜鉛の平均粒径(D50z)と、全副成分の平均粒径(D50s)は実施例1と同法にて測定した。 

 得られた試料番号81~試料番号94の電流-電圧非直線抵抗体について、バリスタ電圧(V1mA)および非直線抵抗特性を評価した。なお、バリスタ電圧(V1mA)および非直線性の評価における実験条件や実験方法、評価基準は前述した実施例1の実験条件や実験方法と同じとした。 なお、上記した各評価試験では、試料番号81~試料番号94の各電流-電圧非直線抵抗体を10ピース作製し、10ピースについて試験を行いそれらの平均でもって評価した。
 表5には、試料番号4(表1参照)、試料番号81~試料番号94の電流-電圧非直線抵抗体における、3価元素の組成成分、バリスタ電圧(V1mA)および非直線性係数(V10kA/V1mA)を示す。なお、表5において、*印は本実施形態の範囲外である試料を示す比較例である。
 表5に示すように、本実施形態に係る電流-電圧非直線抵抗体においては、いずれも、バリスタ電圧(V1mA)が900V/mm以上、非直線性係数(V10kA/V1mA)が1.300より小さくなることがわかった。また本実施形態に係る電流-電圧非直線抵抗体は、比較例として、高抵抗化が図られ、優れた、非直線抵抗特性を有することがわかった。
 以上の結果から、副成分原料の平均粒径(D50s)の酸化亜鉛原料の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ酸化亜鉛原料の平均粒径が700nm以下であり、副成分原料として、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たし、さらに副成分原料として、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうち少なくとも一種以上の3価元素を用い、それぞれAl3+、Ga3+、In3+に換算して、0.003~0.010mol%含む混合物を焼成して得られる焼結体を備える電流-電圧非直線抵抗体では、高抵抗化が図られ、優れた、非直線抵抗特性が得られることがわかった。

Figure JPOXMLDOC01-appb-T000005
(実施例6)
 実施例6では、焼結体の機械強度の50%破壊強度が、電流-電圧非直線抵抗体のエネルギ耐量特性に及ぼす影響について説明する。
 上記実施例1における試料番号1、3、4、7、8および10を作製するために用いた焼結体の原料と同様の成分組成を有する混合物となるように調整した。
 以後の焼結体を作製する工程は、前述した実施例1と同じ工程であるが、得られた造粒粉を、油圧式のプレス成形機によって、成形する工程においてのみ違いがあり、直径が40mm、厚さが40mmの円柱状の成形体とし、焼結体を作製した。
 作製した6種類の焼結体を、それぞれ試料番号95~100とし、それらについて、焼結体の機械強度の測定を行った。
 ここで、焼結体の機械強度は、それぞれの焼結体から3×4×38mmの試験片を加工し、JIS R1604に準拠して4点曲げ試験により曲げ強度を測定した。また、それぞれの焼結体から各10ピースの試験片を加工し、それらの50%破壊強度の平均値を各々の焼結体の機械的強度とした。
 また、エネルギ耐量の評価においては、4/10μsのインパルス電流を、400J/ccから、約50J/ccずつ破壊するまでエネルギを上げて試験を行った。印加間は、室温まで冷却を行った。破壊までの最低エネルギ(破壊エネルギ)が大きいほど、エネルギ耐量が優れていることを示す。なお、エネルギ耐量試験では、各焼結体を10ピース作製し、10ピースについてそれぞれ試験を行い、得られた破壊エネルギ値の平均値を「破壊平均エネルギ」として評価した。
 表6には、試料番号95~試料番号100の焼結体における、50%破壊強度(MPa)、エネルギ耐量試験における破壊平均エネルギ(μ:J/cc)を示す。なお、表5において、*印は本実施形態の範囲外である試料を示す比較例である。
 表6に示すように、焼結体の機械強度の50%破壊強度が140MPa以上になると、破壊までの平均エネルギが700J/cc以上となり、優れたエネルギ耐量が得られることがわかった。
 以上の結果から、焼結体の機械強度の50%破壊強度が140MPa以上とすることによりエネルギ耐量を向上させることができる。すなわち、電流-電圧非直線抵抗体の構成部材として、50%破壊強度に優れた焼結体を搭載することにより電流-電圧非直線抵抗体エネルギ耐量をさらに高めることが可能であることがわかった。
Figure JPOXMLDOC01-appb-T000006
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…電流-電圧非直線抵抗体、20…焼結体、30…絶縁層、40…電極

Claims (11)

  1. 酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含む混合物を焼成する電流-電圧非直線抵抗体の製造方法であって、
     前記混合物における前記副成分原料の平均粒径(D50s)の前記酸化亜鉛の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ前記酸化亜鉛の平均粒径(D50z)が700nm以下であり、
     前記混合物は、前記ホウ素をBに換算して、0.005~0.04wt%含み、前記銀をAgOに換算して、0.005~0.04wt%含み、かつ前記ホウ素の前記銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす電流-電圧非直線抵抗体の製造方法。
  2.  前記副成分原料は、それぞれBi、Sb、Co、MnO、NiOに換算して、Biを0.30~0.80mol%、Sbを1.50~3.50mol%、MnOを0.50~2.00mol%、Coを0.30~1.50mol%、NiOを1.50~3.50mol%含む請求項1に記載の電流-電圧非直線抵抗体の製造方法。
  3.  前記希土類元素Rは、イットリウム(Y)、ユウロピウム(Eu)、エリビウム(Er)、ツリウム(Tm)、ガドリニウム(Gd)、ジスプロジウム(Dy)、ホルミウム(Ho)、イッテリビウム(Yb)のうち少なくとも一種の希土類元素であり、Rに換算して0.10~0.50mol%含む請求項1または2に記載の電流-電圧非直線抵抗体の製造方法。
  4.  前記3価元素として、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうち少なくとも一種を含み、それぞれAl3+、Ga3+、In3+に換算して、0.003~0.010mol%含む請求項1乃至3の何れか一項に記載の電流-電圧非直線抵抗体の製造方法。

  5.  前記混合物において、前記酸化亜鉛および前記副成分原料を含む全原料の平均粒径(D50t)が、750nm以下である請求項1乃至4の何れか一項に記載の電流-電圧非直線抵抗体の製造方法。
  6. 酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含んだ混合物を焼成してなる焼結体を備える電流-電圧非直線抵抗体であって、
     前記混合物における前記副成分原料の平均粒径(D50s)の前記酸化亜鉛の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ前記酸化亜鉛の平均粒径(D50z)が700nm以下であり、
     前記焼結体は、ホウ素をBに換算して、0.005~0.04wt%含み、銀をAgOに換算して、0.005~0.04wt%含み、かつホウ素の銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たし、

     1mAの商用周波の電流を通電したときの電圧であるバリスタ電圧(V1mA)が900V/mm以上である電流-電圧非直線抵抗体。
  7.  前記焼結体の機械強度の50%破壊強度が140MPa以上である請求項6に記載の電流-電圧非直線抵抗体。
  8. 酸化亜鉛を主成分原料とし、副成分原料として少なくとも、酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト、酸化ニッケル、希土類元素R、3価元素、ホウ素および銀を含んだ混合物からなる電流-電圧非直線抵抗体用材料であって、
     前記混合物における前記副成分原料の平均粒径(D50s)の前記酸化亜鉛の平均粒径(D50z)に対する相対比が、D50s/D50z≦0.60であり、かつ前記酸化亜鉛の平均粒径(D50z)が700nm以下であり、
     前記混合物は、前記ホウ素をBに換算して、0.005~0.04wt%含み、前記銀をAgOに換算して、0.005~0.04wt%含み、かつ前記ホウ素の前記銀に対する相対比が、0.125≦B/AgO≦1.00の関係を満たす電流-電圧非直線抵抗体用材料。
  9.  前記副成分原料は、それぞれBi、Sb、Co、MnO、NiOに換算して、Biを0.30~0.80mol%、Sbを1.50~3.50mol%、MnOを0.50~2.00mol%、Coを0.30~1.50mol%、NiOを1.50~3.50mol%含む請求項8に記載の電流-電圧非直線抵抗体用材料。

  10.  前記希土類元素Rは、イットリウム(Y)、ユウロピウム(Eu)、エリビウム(Er)、ツリウム(Tm)、ガドリニウム(Gd)、ジスプロジウム(Dy)、ホルミウム(Ho)、イッテリビウム(Yb)のうち少なくとも一種の希土類元素であり、Rに換算して0.10~0.50mol%含む請求項8または9に記載の電流-電圧非直線抵抗体用材料。

  11.  前記3価元素として、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうち少なくとも一種を含み、それぞれAl3+、Ga3+、In3+に換算して、0.003~0.010mol%含む請求項8乃至10の何れか一項に記載の電流-電圧非直線抵抗体用材料。
PCT/JP2018/002461 2018-01-26 2018-01-26 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法 WO2019146065A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/002461 WO2019146065A1 (ja) 2018-01-26 2018-01-26 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法
JP2019567487A JP6937390B2 (ja) 2018-01-26 2018-01-26 電流−電圧非直線抵抗体用材料、電流−電圧非直線抵抗体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002461 WO2019146065A1 (ja) 2018-01-26 2018-01-26 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2019146065A1 true WO2019146065A1 (ja) 2019-08-01

Family

ID=67395328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002461 WO2019146065A1 (ja) 2018-01-26 2018-01-26 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法

Country Status (2)

Country Link
JP (1) JP6937390B2 (ja)
WO (1) WO2019146065A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116901A (ja) * 1990-09-07 1992-04-17 Ngk Insulators Ltd 電圧非直線抵抗体とその製造方法
JP2007173313A (ja) * 2005-12-19 2007-07-05 Toshiba Corp 電流−電圧非直線抵抗体
JP2012231091A (ja) * 2011-04-27 2012-11-22 Toshiba Corp 電流−電圧非直線抵抗体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116901A (ja) * 1990-09-07 1992-04-17 Ngk Insulators Ltd 電圧非直線抵抗体とその製造方法
JP2007173313A (ja) * 2005-12-19 2007-07-05 Toshiba Corp 電流−電圧非直線抵抗体
JP2012231091A (ja) * 2011-04-27 2012-11-22 Toshiba Corp 電流−電圧非直線抵抗体

Also Published As

Publication number Publication date
JP6937390B2 (ja) 2021-09-22
JPWO2019146065A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
EP1150306B1 (en) Current/voltage non-linear resistor and sintered body therefor
JP5208703B2 (ja) 電流−電圧非直線抵抗体およびその製造方法
JPH11340009A (ja) 非直線抵抗体
JP6756484B2 (ja) 電圧非直線抵抗体
KR100812425B1 (ko) 전류-전압 비직선 저항체
JP5065688B2 (ja) 電流−電圧非直線抵抗体
JP5337073B2 (ja) 電流−電圧非直線抵抗体およびその製造方法
WO2019146065A1 (ja) 電流-電圧非直線抵抗体用材料、電流-電圧非直線抵抗体およびその製造方法
JP7242274B2 (ja) 電圧非直線抵抗体
JP6223076B2 (ja) 焼成体、その製造方法、バリスタおよび過電圧保護装置
JP4282243B2 (ja) 非直線抵抗体
JP2010103440A (ja) 電流−電圧非直線抵抗体およびその製造方法
EP2144256B1 (en) Current/voltage nonlinear resistor
JP5282332B2 (ja) 酸化亜鉛積層チップバリスタの製造方法
WO2023176608A1 (ja) 酸化アンチモン代替酸化亜鉛素子
JP5264929B2 (ja) 電圧非直線抵抗体の製造方法
KR102612982B1 (ko) 고전압 ZnO 바리스터 및 그의 조성물
JP2013251385A (ja) 電流−電圧非直線抵抗体およびその製造方法
JP5995772B2 (ja) 電圧非直線抵抗体、その製造方法およびそれを含む過電圧保護装置
JPH01228105A (ja) 電圧非直線抵抗体の製造方法
JP2012231091A (ja) 電流−電圧非直線抵抗体
JP5306135B2 (ja) 電流−電圧非直線抵抗体およびその製造方法
JP2020047685A (ja) 酸化亜鉛素子
JP2014183272A (ja) 電流−電圧非直線抵抗体
JPH10241911A (ja) 非直線抵抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902992

Country of ref document: EP

Kind code of ref document: A1