WO2019145781A1 - Composition pour marquage de substrat à surface dure - Google Patents

Composition pour marquage de substrat à surface dure Download PDF

Info

Publication number
WO2019145781A1
WO2019145781A1 PCT/IB2019/000065 IB2019000065W WO2019145781A1 WO 2019145781 A1 WO2019145781 A1 WO 2019145781A1 IB 2019000065 W IB2019000065 W IB 2019000065W WO 2019145781 A1 WO2019145781 A1 WO 2019145781A1
Authority
WO
WIPO (PCT)
Prior art keywords
divalent cation
composition
polymer
pigment
cation
Prior art date
Application number
PCT/IB2019/000065
Other languages
English (en)
Inventor
Alexandra FOGUTH
Lori HOWELL
Haksu Lee
Original Assignee
Coatex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18305316.4A external-priority patent/EP3543302B1/fr
Application filed by Coatex filed Critical Coatex
Priority to CN201980006948.9A priority Critical patent/CN111542572B/zh
Priority to CA3088290A priority patent/CA3088290A1/fr
Priority to MX2020007378A priority patent/MX2020007378A/es
Priority to BR112020011449-9A priority patent/BR112020011449A2/pt
Priority to US16/770,454 priority patent/US20200377741A1/en
Priority to AU2019213275A priority patent/AU2019213275B2/en
Publication of WO2019145781A1 publication Critical patent/WO2019145781A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters

Definitions

  • the invention relates to the field of marking hard surface substrates, in particular to the field of traffic paints.
  • the invention thus provides an aqueous composition useful for marking hard surface substrates.
  • the composition according to the invention comprises a binder and a pigment that is dispersed with a particular (meth)acrylic polymer.
  • the invention also provides a method for preparing such a composition as well as a method for marking a hard surface substrate with such a composition.
  • compositions comprising a binder and a pigment dispersed with a dispersing agent for marking hard surface substrates are known.
  • a binder for the preparation of traffic paints.
  • the binder that is used in such compositions is a latex binder.
  • compositions are their ability to dry rapidly once applied on a hard substrate, in particular on a substrate that is aimed for traffic of vehicles or for traffic of persons. Fast drying is of particular importance in high humidity conditions.
  • Good drying time normally corresponds to improved performance in certain tests, notably in test where no-pick up time of a film coating is measured.
  • Wear resistance of a film coating is normally the ability of this film coating applied on a surface to resist to detachment or separation from the substrate. Such a detachment or separation can occur for various reasons but is normally depending from the use conditions of the film coating that include the level of traffic, the weather conditions as well as the intrinsic specifications of the film coating.
  • compositions for traffic paints are ammonium salts of polyacrylic acid or ammonium salts of polymethacrylic acid, wherein volatility of ammonia is considered helping accelerating drying time of these compositions.
  • stability of these known compositions is not always sufficient or not always satisfying.
  • compositions for marking hard surface substrates are also an essential property, either during their preparation but also during their application. Improving the stability of these compositions during their shelf life is also necessary.
  • Controlling the rheology, in particular the viscosity, of such compositions also allows for an easier use, notably in situations where these compositions must be pumped or must be sprayed.
  • Fineness of ground pigments used in paints is also important since coarse pigment particles generally reduce the properties of a paint, notably color uniformity and opacity. Grinding efficiency of the pigment, including grinding time, is also important in the course of preparing the pigments to be incorporated in the compositions for marking hard surface substrate.
  • Satisfying regulations or certain standards is also important for compositions for marking hard surface substrates, notably for traffic paints, in particular when shorter drying time is required.
  • Document EP 2167595 describes polymers useful in controlling corrosion in coatings. These carboxylic acid-acrylonitrile-styrene polymers can be partially neutralized by dimethylethanolamine.
  • Document EP 2655450 discloses paint compositions comprising a binder bearing acid groups.
  • Document DE 10331053 relates to the use of a hydrophobic polymer combined with a cation modifying agent, for altering the surface of a substrate.
  • compositions do not always provides the necessary properties for addressing these problems. There is thus a need for improved compositions for marking hard surface substrates, notably for traffic paints.
  • composition according to the invention provides a solution to all or part of these problems.
  • the invention thus provides an aqueous hard surface substrate marking composition comprising:
  • the aqueous composition according to the invention is a waterborne composition whereby its active components are conveyed by water.
  • the hard surface substrate marking composition according to the invention comprises:
  • the substrate is selected from wood, reconstituted wood products, concrete, asphalt, cement, fiber cement, stone, marble, clay, plaster, masonry, wallboard, paper, cardboard, ferrous metal, non-ferrous metal, plastics (for example, polystyrene, polyethylene, ABS, polyurethane, polyethylene terphthalate, polybutylene terphthalate, polypropylene, polyphenylene, polycarbonate, polyacrylate, PVC, polysulfone or mixtures thereof) and combinations thereof.
  • the preferred substrate according to the invention is selected from concrete, asphalt, cement, fiber cement, stone, marble, clay, plaster, masonry, wallboard and combinations thereof, while the preferred substrate according to the invention is selected from concrete and asphalt.
  • binder (a) can be selected in a broad range of binders.
  • binder (a) renders the composition according to the invention being capable of forming a film at ambient temperature or at a greater temperature, preferably at a temperature between 20 and 55°C.
  • binder (a) has glass transition temperature (T g ) greater than -40°C or below the application temperature of the composition. More preferably the T g of binder (a) is between -40 and l50°C, even more preferably between -20 and l00°C or between -10 and 60°C, in particular between 0 and 50°C.
  • binder (a) is a polymer latex. Still also preferably, binder (a) is selected from polyvinyl acetate resins, polyvinyl acetate latexes, methyl methacrylate resins, acrylic resins, styrenic resins, styrene-acrylic resins, linseed resins, soya oil resins, alkyd resins and combinations thereof. Particularly preferred binder (a) is selected from acrylic resins, styrene-acrylic resins and combinations thereof. Examples of binders can be selected from products like Arkema Encor DT 250, Arkema Encor DT 400, Arkema Encor DT 211 or Arkema Encor DT 100.
  • pigment (b) can be selected in a number of categories of pigments.
  • Organic pigments or inorganic pigments can be included in the composition according to the invention.
  • pigment (b) is a coloring pigment. More preferably pigment (b) is a coloring pigment selected from a white coloring pigment, a yellow coloring pigment, an orange coloring pigment, a red coloring pigment, a blue coloring pigment, a green coloring pigment and a black coloring pigment.
  • pigment (b) is selected from titanium dioxide, zinc dioxide, zinc sulfide, barium dioxide, barium sulfate, lithopone, carbon black, organic pigments and combinations thereof. Most preferred pigment (b) is selected from titanium dioxide arid organic pigments.
  • Polymer (c) is an essential component of the composition according to the invention.
  • Polymer (c) primarily acts as a dispersing agent within the composition according to the invention, in particular for dispersing pigment (b).
  • polymer (c) is obtained from a polymerization reaction of acrylic acid. More preferably, polymer (c) is partially or totally neutralized. Even more preferably it is totally neutralized.
  • Polymer (c) is neutralized by at least one divalent cation selected from cations of Ca, Mg, Zn. Polymer (c) can also be neutralized by at least one divalent cation selected from cations of Ca, Mg, Zn and by at least one monovalent cation selected from cations of Na, K, Li. Polymer (c) can also be neutralized by at least one divalent cation selected from cations of Ca, Mg, Zn and by at least one amino compound. Most preferably, polymer (c) is totally or partially neutralized by Ca.
  • Preferred polymer (c) according to the invention is totally or partially neutralized by at least one divalent cation and at least one monovalent cation, in a (divalent cation / monovalent cation) molar ratio from 0.1 to 10, more preferably from 0.2 to 5, even more preferably from 0.8 to 3 and most preferably from 1 to 2.5.
  • the divalent cation can be replaced by at least one amino compound.
  • More preferred polymer (c) according to the invention is totally or partially neutralized by at least one divalent cation selected from cations of Ca, Mg, Zn and a least one monovalent cation selected from cations of Na, K, Li, in a (divalent cation / monovalent cation) molar ratio from 0.1 to 10, more preferably from 0.2 to 5, even more preferably from 0.8 to 3 and most preferably from 1 to 2.5.
  • the divalent cation can be replaced by at least one amino compound.
  • Particularly preferred polymer (c) according to the invention is totally neutralized by Na and Ca, in particular in a Na/Ca molar ratio from 0.1 to 10. More preferably, the Na/Ca molar ratio is from 0.2 to 5, even more preferably from 0.8 to 3 and most preferably from 1 to 2.5.
  • polymer (c) according to the invention can be totally or partially neutralized by Ca and Na, Mg and Na, Ca and K, Mg and K, Ca and Mg and Na, Ca and Mg and K, Ca and Na and K, Mg and Na and K, Ca and Mg and Na and K, in particular in a (divalent cation / monovalent cation) molar ratio from 0.1 to 10, more preferably from 0.2 to 5, even more preferably from 0.8 to 3 and most preferably from 1 to 2.5.
  • a (divalent cation / monovalent cation) molar ratio from 0.1 to 10, more preferably from 0.2 to 5, even more preferably from 0.8 to 3 and most preferably from 1 to 2.5.
  • polymer (c) is partially or totally neutralized, by mean of at least one compound selected from Ca(OH) 2 , Mg(OH) 2 , Ba(OH) 2 , CaO, MgO, ZnO, NaOH, KOH, LiOH and combinations thereof.
  • polymer (c) has a pH that can vary. Preferably, this pH is greater than 5, even preferably greater than 5.5 or greater than 6. Also preferably, this pH is below than 10.
  • polymer (c) has a molecular weight (Mw - measured by SEC) that can vary.
  • polymer (c) has a molecular weight (Mw - measured by SEC) below 15,000 g/mol or below 12,000 g/mol, preferably below 10,000 g/mol or between 1,000 and 10,000 g/mol, equally preferably below 8,000 g/mol or between 1,000 and 8,000 g/mol, more preferably below 6,500 g/mol or between 1,500 and 6,500 g/mol, even more preferably below 6,000 g/mol or between 2,000 and 6,000 g/mol.
  • polymer (c) has a polymolecular index that can vary.
  • polymer (c) has a polymolecular index below 3.5, more preferably below 3 or below 2.8. Even more preferably, polymer (c) has a polymolecular index below 2.5 or below 2.2.
  • polymer (c) can be selected from homopolymers (c) of one monomer selected from acrylic acid, methacrylic acid, itaconic acid and their salts and copolymers (c) of at least one further monomer and at least of one monomer selected from acrylic acid, methacrylic acid, itaconic acid and their salts.
  • Preferred homopolymers (c) according to the invention can be selected from homopolymers of acrylic acid.
  • the further monomer useful for preparing copolymers (c) according to the invention is preferably selected from:
  • At least one anionic monomer selected acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride, crotonic acid and their salts ;
  • At least one non-ionic monomer selected from esters of a carboxylic acid preferably esters of acids selected from acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride, crotonic acid; more preferably selected from styryl- vinylcaprolactam, alkylacrylate, in particular Ci-C l0 -alkyl-acrylate or Ci-C 4 -alkyl- acrylate, more preferably selected from methyl-acrylate, ethyl-acrylate, propyl- acrylate, isobutyl-acrylate, n-butyl-acrylate, alkyl-methacrylate, in particular Ci-Cio-alkyl-methacrylate or Ci-C 4 -alkyl-methacrylate, more preferably methyl methacrylate, ethyl-methacrylate, propyl-methacrylate, isobutyl-methacrylate, n-butyl-methacrylate,
  • R 1 represents an acrylate group that can be polymerized or a methacrylate group that can be polymerized
  • R 2 represents OH or OCH 3 ,
  • o L 1 and L 2 identical or different, independently represent an ethylene-oxy group or an oxy-propylene group and
  • o m and n identical or different, at least one not being null, represent a number below or equal to 150 and their sum m + n is below 150 ;
  • AMPS 2-acrylamido-2-methylpropane-sulfonic acid
  • APMS 2-acrylamido-2-methylpropane-sulfonic acid
  • 2-(methacryloyloxy)ethanesulfonic acid a salt of 2-(methacryloyloxy)ethanesulfonic acid, sodium methallyl-sulfonate, sodium styryl-sulfonate, hydroxyethyl-phosphate-acrylate, hydroxypropyl-phosphate- acrylate, hydroxyethylhexyl-phosphate-acrylate, hydroxyethyl-phosphate- methacrylate, hydroxypropyl-phosphate-methacrylate, hydroxyethylhexyl- phosphate-methacrylate and combinations thereof.
  • Preferred copolymers (c) according to the invention can be selected from copolymers of acrylic acid and methacrylic acid, copolymers of acrylic acid, methacrylic acid and AMPS, copolymers of acrylic acid and AMPS, copolymers of acrylic acid and alkyl methacrylates (like ethyl methacrylate), copolymers of acrylic acid and alkyl acrylates (like ethyl acrylate), copolymers of acrylic acid, alkyl methacrylates (like ethyl methacrylate) and AMPS, copolymers of acrylic acid, alkyl acrylates (like ethyl acrylate) and AMPS, copolymers of acrylic acid and itaconic acid, copolymers of acrylic acid, itaconic acid and AMPS.
  • Equally preferred copolymers (c) according to the invention are obtained further to at least one polymerization reaction of 70 to 99.5 weight % of at least one monomer selected from acrylic acid, methacrylic acid, itaconic acid and their salts, and of 0.5 to 30 weight % of at least one further monomer as herein-defined.
  • Homopolymer (c) and copolymer (c) according to the invention can be prepared by known radical polymerization methods, for example they can be prepared in solution, in direct emulsion or in inversed emulsion, in suspension or in precipitation from an appropriate solvent. They can be prepared in presence of at least one catalytic system and in presence of at least one chain transfer agent.
  • initiators are hydrogen peroxide or various persulfate derivatives.
  • chain transfer agents are copper sulfate or various hypophosphite derivatives like sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, hypophosphorous acid, mercaptan derivatives, secondary alcohols and thiolactic acid. Initiators and chain transfer agents can be combined.
  • the composition according to the invention is an aqueous composition but it can also include at least one solvent in admixture with water.
  • a solvent is selected from water miscible organic solvents, such as alcohols and glycol ethers.
  • solvents can be selected from Texanol ester alcohol (CAS # 25265-77-4), Dowanol dipropylene glycol methyl ether (CAS# 34590-94-8), Dowanol propylene glycol methyl ether (CAS# 107-98-2), Dowanol propylene glycol n-propyl ether (CAS # 1569-01-3), Dowanol dipropylene glycol n-propyl ether (CAS # 29911-27-1), Dowanol dipropylene glycol n-butyl ether (CAS # 29911-28-2), Butyl Cellosolve ethylene glycol monobutyl ether (CAS # 111-76-2), Butyl Carbitol dietheylene glycol monobutyl ether (CAS # 111
  • the composition according to the invention can comprise further components.
  • the composition according to the invention further comprises at least one extender compound, preferably at least one compound selected from natural calcium carbonate, synthetic calcium carbonate, barium carbonate, talc, clays, silicas, silicates and combinations thereof.
  • composition according to the invention can additionally comprise at least one further additive, preferably at least one additive selected from thickeners, rheology modifiers, dyes, artificial light reflecting agents, natural light reflecting agents, sequestering agents, biocides, dispersants, fillers (for example microspheres or beads of a material selected from glass, polymer, quartz and sand), anti-freeze agents, plasticizers, adhesion promoters, coalescence agents, wetting agents, waxes, surfactants, slip additives, crosslinking agents, defoamers, colorants, preservatives, freeze protectors, thaw protectors, corrosion inhibitors, alkali soluble polymers, water soluble polymers and combinations thereof.
  • at least one additive selected from thickeners, rheology modifiers, dyes, artificial light reflecting agents, natural light reflecting agents, sequestering agents, biocides, dispersants, fillers (for example microspheres or beads of a material selected from glass, polymer, quartz and sand), anti-freeze agents,
  • the invention not only provides a composition but also provides various methods derived from this composition or for implementing this composition.
  • the invention thus also provides a method (Ml) for preparing an aqueous marking composition for hard surface substrate comprising adding at least one polymer (c)
  • aqueous composition also comprising at least one binder (a) and at least one pigment (b).
  • the invention also provides a method (M2) for marking a hard surface substrate comprising the application to the surface of the substrate of at least one aqueous marking composition, comprising: (a) at least one binder;
  • the composition is applied by a method selected from air spray, air-assisted airless spray, high volume-low pressure (HVLP) spray, low volume-low pressure (LVLP) spray, hot spray, airless spray, roll, brush, curtain, flood, and dip-coating methods.
  • HVLP high volume-low pressure
  • LVLP low volume-low pressure
  • Method (M3) for improving stability of an aqueous marking composition for hard surface substrate.
  • Method (M3) according to the invention comprises adding to an aqueous composition also comprising at least one binder and at least one pigment, at least one polymer
  • the invention also provides a method (M4) for improving drying time of an aqueous marking composition for hard surface substrate.
  • Method (M4) according to the invention comprises adding to an aqueous composition also comprising at least one binder and at least one pigment, at least one polymer - obtained further to at least one polymerization reaction of at least one monomer selected from acrylic acid, methacrylic acid, itaconic acid and their salts, and
  • compositions or the substrate are defined according to the composition or to the substrate according to the invention.
  • preferred, particular, advantageous or specific features of the composition according to the invention allow defining corresponding preferred, particular, advantageous or specific methods (Ml), (M2), (M3) and (M4) according to the invention.
  • Example 1 preparation of polymer tel) according to the invention
  • the medium is heated to 95 °C, and then the following elements are simultaneously and continuously added, over 2 hours:
  • a solution of polyacrylic acid having a Mw of 5,700 g/mol and an Ip of 2.5 is obtained.
  • the solution of polyacrylic acid is treated with:
  • the medium is heated to 97°C, and then the following elements are simultaneously and continuously added, over 3 hours:
  • a solution of polyacrylic acid having a Mw of 4,500 g/mol and an Ip of 2.25 is obtained.
  • the solution of polyacrylic acid is treated with:
  • the pH of resulting polymer (c2) is finally adjusted to 8.5 with soda and to a final concentration of 35 % dry matter in water.
  • cpl comparative polymer
  • Tamol 901 Low Chemicals
  • cp2 comparative polymer (cp2) is homopolymer of acrylic acid that is 100 wt. % ammonium neutralized: Tamol 963 (Dow Chemicals),
  • - comparative polymer (cp3) is homopolymer of methacrylic acid that is 100 wt. % sodium neutralized: Tamol 851 (Dow Chemicals)
  • - comparative polymer (cp4) is homopolymer of acrylic acid that is 100 wt. % sodium neutralized: Rhodoline 226/35 851 (Solvay)
  • cp5 comparative polymer (cp5) is homopolymer of acrylic acid that is 100 wt. % sodium neutralized: Ecodis P30 (Coatex),
  • cp6 comparative polymer (cp6) is homopolymer of acrylic acid that is 100 wt. % ammonium neutralized: Ecodis P90 (Coatex),
  • comparative polymer (cp7) is homopolymer of acrylic acid that is 100 wt. % sodium neutralized: Ecodis P50 (Coatex).
  • Traffic paint compositions have been prepared by using polymers (c) according to the invention by mixing the various components.
  • comparative paint compositions have been prepared that include known polymers. Products and respective amounts have been employed and introduced according to table 1. paint composition components kilograms liter
  • the components were mixed for 15 minutes.
  • the fineness of dispersions has been evaluated in accordance with ASTM D1210 of 2005 (Test Method for Fineness of Dispersion of Pigment- Vehicle Systems by Hegman-Type Gage).
  • the components were allowed to mix for 15 minutes or until the fineness of grind was not less than 4 Hegman units. The results obtained are presented in table 2.
  • polymers (cl) and (c2) according to the invention allows better grinding efficiency, or faster grinding time versus comparative polymers.
  • Coating films prepared with paint compositions comprising dispersions of pigments using polymers (c) according to the invention and comparative polymers have been evaluated. This evaluation has been performed in accordance with ASTM D 823 of 1995 (Practices for Producing Films of Uniform Thickness of Paint, Varnish, and Related Products on Test Panels - reapproved in 2001). The results obtained are presented in table 3.
  • polymers (c2) according to the invention allows faster dry time for polymer (c2) versus comparative polymers. Comparative polymer (cp2) gelled overnight thus the dry time could not be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne le domaine du marquage de substrats à surface dure, en particulier le domaine des peintures de signalisation routière. L'invention fournit ainsi une composition aqueuse utile pour marquer des substrats à surface dure. La composition selon l'invention comprend un liant et un pigment qui est dispersé avec un polymère (méth)acrylique particulier. L'invention concerne également un procédé de préparation d'une telle composition ainsi qu'un procédé de marquage d'un substrat à surface dure avec une telle composition.
PCT/IB2019/000065 2018-01-24 2019-01-14 Composition pour marquage de substrat à surface dure WO2019145781A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980006948.9A CN111542572B (zh) 2018-01-24 2019-01-14 用于硬质表面基材标记的组合物
CA3088290A CA3088290A1 (fr) 2018-01-24 2019-01-14 Composition pour marquage de substrat a surface dure
MX2020007378A MX2020007378A (es) 2018-01-24 2019-01-14 Composicion para marcado de sustratos de superficie dura.
BR112020011449-9A BR112020011449A2 (pt) 2018-01-24 2019-01-14 composição aquosa, métodos de preparação de composições, de marcação de substratos com superfície dura, de aumento da estabilidade e de melhoria do tempo de secagem de composições
US16/770,454 US20200377741A1 (en) 2018-01-24 2019-01-14 Composition for hard surface substrate marking
AU2019213275A AU2019213275B2 (en) 2018-01-24 2019-01-14 Composition for hard surface substrate marking

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862621262P 2018-01-24 2018-01-24
US62/621,262 2018-01-24
EP18305316.4 2018-03-22
EP18305316.4A EP3543302B1 (fr) 2018-03-22 2018-03-22 Composition pour marquage de substrat à surface dure

Publications (1)

Publication Number Publication Date
WO2019145781A1 true WO2019145781A1 (fr) 2019-08-01

Family

ID=65995785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000065 WO2019145781A1 (fr) 2018-01-24 2019-01-14 Composition pour marquage de substrat à surface dure

Country Status (1)

Country Link
WO (1) WO2019145781A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234461A1 (fr) 2020-05-20 2021-11-25 Coatex Composition pour béton aéré ou léger
EP3919459A1 (fr) * 2020-06-01 2021-12-08 Coatex Composition pour béton aéré ou léger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331053A1 (de) 2003-07-09 2005-01-27 Basf Ag Verwendung einer Polymerzusammensetzung zur Modifizierung der Oberflächeneigenschaften von Substraten
EP2167595A1 (fr) 2007-06-20 2010-03-31 Basf Se Procédé destiné à poser des couches anticorrosives sur des surfaces métalliques
WO2012130817A1 (fr) * 2011-03-25 2012-10-04 Nuplex Resins B.V. Composition aqueuse de revêtement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331053A1 (de) 2003-07-09 2005-01-27 Basf Ag Verwendung einer Polymerzusammensetzung zur Modifizierung der Oberflächeneigenschaften von Substraten
EP2167595A1 (fr) 2007-06-20 2010-03-31 Basf Se Procédé destiné à poser des couches anticorrosives sur des surfaces métalliques
US8268404B2 (en) * 2007-06-20 2012-09-18 Basf Se Method for applying corrosion protection coatings to metal surfaces
WO2012130817A1 (fr) * 2011-03-25 2012-10-04 Nuplex Resins B.V. Composition aqueuse de revêtement
EP2655450A1 (fr) 2011-03-25 2013-10-30 Nuplex Resins B.V. Composition aqueuse de revêtement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234461A1 (fr) 2020-05-20 2021-11-25 Coatex Composition pour béton aéré ou léger
EP3919459A1 (fr) * 2020-06-01 2021-12-08 Coatex Composition pour béton aéré ou léger

Similar Documents

Publication Publication Date Title
US5312863A (en) Cationic latex coatings
US6348528B1 (en) Aqueous polymer dispersion containing an emulsifier with phosphate groups
AU778766B2 (en) Aqueous high gloss emulsion paint with long open time
JP2001523751A (ja) 顔料およびホスホネート含有樹脂からなる配合物
US11479619B2 (en) Aqueous polymer dispersions
CN108350124B (zh) 水性聚合物分散体及其制备方法
CN110036083B (zh) 水性涂料组合物
KR102426693B1 (ko) 저장 안정적인 수성 조성물 및 이의 제조 방법
CA3065551C (fr) Composition de revetement epoxydique a l'eau
WO2019145781A1 (fr) Composition pour marquage de substrat à surface dure
AU2019213275B2 (en) Composition for hard surface substrate marking
EP0407085A2 (fr) Composition de peinture à base de latex cationique
KR101800106B1 (ko) 코어-쉘 에멀젼 수지 및 이를 포함하는 도료 조성물
KR102532022B1 (ko) 수성 중합체 분산액 및 이의 제조 방법
CN110945038B (zh) 水性聚合物分散体
EP3752543A1 (fr) (co)polymères de monomères hydrophobes, et leurs procédés de fabrication et d'utilisation
KR102623070B1 (ko) 수성 중합체 조성물
CA3220290A1 (fr) Compositions de peinture hybrides comprenant des liants inorganiques et organiques
JP2013036007A (ja) 速乾性の遮熱水性塗料組成物
JP2023547989A (ja) エマルジョンポリマー及びその調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19714773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019213275

Country of ref document: AU

Date of ref document: 20190114

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3088290

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011449

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200608

122 Ep: pct application non-entry in european phase

Ref document number: 19714773

Country of ref document: EP

Kind code of ref document: A1