WO2019143193A9 - 재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법 - Google Patents

재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법 Download PDF

Info

Publication number
WO2019143193A9
WO2019143193A9 PCT/KR2019/000782 KR2019000782W WO2019143193A9 WO 2019143193 A9 WO2019143193 A9 WO 2019143193A9 KR 2019000782 W KR2019000782 W KR 2019000782W WO 2019143193 A9 WO2019143193 A9 WO 2019143193A9
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
polypeptide
fusion
Prior art date
Application number
PCT/KR2019/000782
Other languages
English (en)
French (fr)
Other versions
WO2019143193A1 (ko
Inventor
김성건
탁상범
Original Assignee
주식회사 펩진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펩진 filed Critical 주식회사 펩진
Priority to EP19741746.2A priority Critical patent/EP3741774A4/en
Priority to US16/963,066 priority patent/US11267863B2/en
Priority to JP2020540276A priority patent/JP2021511785A/ja
Publication of WO2019143193A1 publication Critical patent/WO2019143193A1/ko
Publication of WO2019143193A9 publication Critical patent/WO2019143193A9/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/65Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/635Parathyroid hormone, i.e. parathormone; Parathyroid hormone-related peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the present invention relates to a novel N-terminal fusion partner, a fusion polypeptide comprising the fusion partner and the target polypeptide and a method for producing the target polypeptide using the same.
  • Genetic recombination technology is a method of producing a target protein (target polypeptide) by cloning nucleic acid of various target proteins to an expression vector to obtain a recombinant expression vector and transforming the same into a suitable host cell.
  • a target protein target polypeptide
  • peptides used as a fusion partner by lowering the yield by degrading all or part of the target protein by a degradation enzyme (for example, protease or peptidase) inherent in the host cell.
  • the size is too large compared to the size of the target protein to be prepared, there is a problem that the yield is significantly reduced.
  • N-terminal fusion partner consisting of novel amino acid sequences for producing recombinant polypeptides. It is another object of the present invention to provide a fusion polypeptide comprising the one-terminal fusion partner and the polypeptide of interest.
  • Still another object of the present invention is to provide a nucleotide encoding the fusion polypeptide, an expression vector comprising the nucleotide, and a host cell comprising the expression vector.
  • Still another object of the present invention is to provide a method for producing a desired polypeptide using the fusion polypeptide.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula (1); Target polypeptide; And a fusion polypeptide comprising a linker between said terminal fusion partner and said polypeptide of interest:
  • 331 to 336 each independently, isoleucine (1 1 I), glycine 0, alanine (hour 3, hour, proline (0, I 3 ), valine 0 1, V), leucine 0 11, I), methionine,] «), phenylalanine (3 ⁇ 4, tyrosine 0 1 ⁇ , ⁇ , 0, asparagine (show,), serine, ⁇ , threonine (3 ⁇ 4! ⁇ , I), cysteine, 0, glutamine 1 ⁇ 2111, 2 , arginine ( 2 , 10, lysine ( ⁇ V, histidine) ⁇ ⁇ , asphalt acid 31), I)) and glutamic acid (11),
  • Another aspect of the present invention provides a nucleotide encoding the fusion polypeptide, an expression vector comprising the nucleotide and a host cell comprising the expression vector.
  • Another aspect of the invention the step of culturing the host cell, purifying the fusion polypeptide expressed in the host cell and the purified fusion polypeptide 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782)
  • a method for producing a recombinant polypeptide comprising culturing a tide with a cleavage enzyme to recover a target polypeptide.
  • the novel fusion partner according to the present invention it is possible to improve the yield of the target polypeptide (recombinant polypeptide) compared to the conventional fusion partner.
  • the fusion polypeptide comprising a fusion partner according to the present invention has the advantage that can be stably produced the target polypeptide by being protected from proteolytic enzymes of the host cell by inducing the expression in the inclusion body form in the host cell . Accordingly, it is possible to provide a recombinant peptide production method having improved stability and yield than in the case of using a conventional fusion partner.
  • Figure 1 shows the results of analysis of the total cell fractions of 1-34 fusion polypeptides expressed in recombinant E. coli by ⁇ ) (lane marker protein, lane 1: ⁇ -1-34 (strain number? ⁇ 01), lanes) 2:? (3 ⁇ 4) 7- ⁇ 1-13 ⁇ 41-34 (strain number? 0002), lane 3 :? Lane 4:? 643 to -1 to 34 (strain number? 0004).
  • Figure 2 after separating the total cell fraction of the ä 1-34 fusion polypeptides expressed in recombinant E. coli into soluble and insoluble fractions Results were analyzed (lane 3 ⁇ 4 !: marker protein, lane soluble fraction, lane I: insoluble fraction, lane 1: Tae 1-34 (strain number? 0001), lane 2:? (? 07) ⁇ 13 ⁇ 41-34 (strain number? 0002), lane 3: yak-non-ta strain number ( ⁇ 003); Lane 4: 61-111 3 13 ⁇ 41-34 (strain number? 0004) in? 043.
  • Figure 3 ⁇ 4 is the result of analysis after sampling hourly -5 1-3-produced from recombinant E. coli via fed-batch culture. 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 Figure 4 is expressed in recombinant E. coli? Within 5 (23-2) 3 ä 1-34 fusion polymarker protein, lane 1: o 5 — 34).
  • Fig. 5 is a 13 ⁇ 4 1-34 fusion poly-substituted with isoleucine (I), asparagine (, arginine 00, and asphalt acid (I)) replacing the second or third amino acid residue of # 15 in the yak- ⁇ ⁇ liver? Peptide The result of the analysis.
  • Fig. 7 shows the substitution of the sixth or seventh amino acid residue of? 5 in ⁇ 15-11-1 1111111-34 with isoleucine (I), asparagine), arginine 00, and asphalt acid (I). Bar 3 ! ' ⁇ !
  • FIG. 83 shows the results of the purification of the 13 ⁇ 41-34 fusion polypeptide in the insoluble fraction by chromatography (solid, dashed and dashed lines in the chromatogram, respectively, with absorbance and conductivity at wavelengths of 280 to 1). ⁇ , elution buffer ratio).
  • Figure 1 shows a? (11-11 1111 34 fusion polypeptide in 3 ⁇ 47 purified by chromatography). Results were analyzed (lane marker protein, lane £: pre-purification sample, lanes 2-4: flow through fraction, lanes 8-11: eluate fraction). Arrows indicate Example 7-11-11 13 ⁇ 41-34 fusion polypeptides.
  • Fig. 93 shows the result of purification of (11-151-1111 fusion polypeptide in ⁇ 15 by insoluble fraction by chromatography) (solid line, dashed line and dotted line in the chromatogram, respectively, absorbance and conductivity at 280 to 1 wavelength) «Wave, which represents the ratio of the elution buffer).
  • FIG.% Shows the chromatographic purified CIA5-1161 ⁇ -13 ⁇ 41-34 fusion polypeptide Marker protein, lane £: sample before purification, lanes 2-4: flow through fraction, lanes 8-11: eluate fraction). Arrows indicate M (X15-X1-Bar 3 Ash 1-34 Fusion Polypeptides).
  • Fig. 10 shows the results of purification of? 643 to ⁇ 11? To 1 to 34 fusion polypeptides in an insoluble fraction by chromatography (solid, dashed and dashed lines in the chromatogram). The absorbance, conductivity and elution buffer ratio at 280 nm, respectively.
  • Figure 10b is the result of SDS-PAGE analysis of the purified PG43-H6TEV-hPTHl-34 fusion polypeptide by chromatography (lane M: marker protein, lane s: sample before purification, lanes 2-4: flow through fraction , Lanes 8 to 11: eluate fractions). Arrows indicate PG43-H6TEV-hPTHl-34 fusion polypeptides.
  • FIG. 11 shows the result of digestion of the fusion polypeptide of each sample purified by TEV protease and analysis of the fraction by SDS-PAGE (lane M: marker protein, lane C: sample without TEY protease, lane T) : Sample treated with TEV protease, lane 1: PG07-H6TEV-hPTHl-34, lane 2: PG15-H6TEV-hPTHl-34, lane 3: PG43-H6TEV-hPTHl-34.
  • 13A shows the results of separating PG15-H6TEV and hPTHl-34 from PG15-H6TEV-hPTHl-34 fusion polypeptide using isoelectric point differences (solid, dashed and dashed lines in the chromatogram, respectively, at 280 nm wavelength). Absorbance, conductivity, and elution buffer ratio).
  • Fig. 13B shows the result of SDS-PAGE analysis of fractions of the PG15-H6TEV-hPTHl-34 fusion polypeptide isolated using isoelectric point difference (lane M: marker protein, lane s: sample before purification, lanes 1 to 3: Flow through fraction, lanes 5 to 9: eluate fraction).
  • FIG. 14A shows the results of separating PG15-H6TEV and hPTHl-34 from PG15-H6TEV-hPTHl-34 fusion polypeptides using mean hydrophobicity differences (solid and dashed lines at 280 nm wavelength in chromatogram, respectively). Absorbance and elution buffer ratio).
  • Fig. 14B shows the result of analysis of the fraction of the PG15-H6TEV-hPTHl-34 fusion polypeptide isolated using the average hydrophobicity by ⁇ S-PAGE (lane M: marker protein, lane s: sample before purification, lanes 1 to 3). 5: 1 st peak fraction, lanes 1-7: 2 nd peak fraction).
  • Figure 15 shows the result of measuring the molecular weight of hPTH 1-34 standard. 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782
  • Figure 16 shows the results of measuring the molecular weight of 13 ⁇ 4 1-34 purified according to the present invention.
  • Figure 17 is a graph confirming the residence time and purity of the US Pat.
  • FIG. 18 is a result of analyzing the equivalence between Recombinant VIII 1-34 and Recombinant VIII 1-34 according to the present invention by reversed phase chromatography and peptide mapping method of the USP. .
  • Figure 19 shows the total protein produced in recombinant E. coli Analysis
  • Lane 7 Lane 433,-(Crown-28 seedlings (strain number? 0011)).
  • Figure 21 Isolates the total cell fraction of recombinant E. coli into soluble and insoluble fractions.
  • Results of the analysis (lane 3 ⁇ 41: marker protein, lane T total fraction, lane soluble fraction, lane I: insoluble fraction, lane 5: 0-28 seedlings (strain number? Example 09), lane 6:? 036) ??? my-kkyo - 281 (strain No. ⁇ 10), lane 7: 043 I _ kkyo 13-281 (strain number (; 011))?
  • Fig. 23 shows? 643- ⁇ 1-012-11 (281? my ? The ratio of the fourth or fifth amino acid residue of 43 to isoleucine (I), asparagine) and arginine (10, asphalt mountain); This is the result of the analysis of 3-1 ⁇ 8 fusion polypeptide variants. 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 Figure 24 is? 043-11- ⁇ 1 5 -1 ⁇ 81? Of the 43th or 281th fusion polypeptide in which the 6th or 7th amino acid residue of 43 was substituted with isoleucine (I), asparagine), arginine 00, and asphalt acid (I). The result of the analysis.
  • Figure 25 shows-(!) In -043 in insoluble fractions via chromatography; The result is the purification of the ⁇ 1 ′ 8 seed fusion polypeptide (solid and dashed lines in the chromatogram represent the absorbance and elution buffer ratios at 280 ⁇ wavelength, respectively).
  • Fig. 26 shows the? 643-- ⁇ -11 (281?) Purified by chromatography. Fusion polypeptides Results were analyzed (lane marker protein, sample before lane purification, ⁇ : flow through fraction, lane ⁇ eluate fraction). Arrows indicate ⁇ -(Jin-1 ⁇ 8 seedling fusion polypeptides in? 643).
  • Fig. 27 shows-? 1 3 -1? 81? In? 043 purified using TEV protease. After cleaving the fusion polypeptide, the fraction This is the result of analysis (lane marker protein, lane 0: ⁇ sample without protease, lane! ' :
  • FIG. 28 shows the results of measuring the molecular weight of purified?-281? According to the present invention.
  • Figure 29 shows the total protein produced in recombinant E. coli
  • the result of the analysis is (lane 3 ⁇ 41: marker protein, lane 1: 11- ⁇ 1 3 -2 show 2 ( ⁇ (strain number? ⁇ 12), lane 2: (3 ⁇ 4) 7) ⁇ -( ⁇ nae-2 show 2) ( ⁇ (Sector number? ⁇ 13), lane 3 :? ( ⁇ 15 ⁇ -(3 ⁇ 4-2 show26 (strain number ⁇ 14) , Lane 4 :: 0222 ⁇ ⁇ (3 ⁇ 4-2 show2 ( ⁇ ( Strain number? ⁇ 15) , Lane 5 :: 029 in-
  • the sixth or seventh amino acid residues of M 43 are isoleucine (I), asparagine (, arginine 00, asphalt acid; 3 - 26 show a second fusion polypeptide The result of the analysis.
  • Fig. 34 shows the result of purification of-(3 ⁇ 4-2 fusion polypeptide in -043 in an insoluble fraction by chromatography (solid line in chromatogram, dotted line indicates absorbance and elution buffer ratio at 280 ⁇ wavelength, respectively).
  • Fig. 35 shows the results of a chromatographic analysis of? 043-0__2 fusion polypeptide purified by chromatography (lane 1-marker protein, sample before lane purification, ⁇ : flow-through fraction, lane 1). 5: eluent fraction). Arrows indicate -0 3-2 fusion polypeptides in? 643.
  • Fig. 37 shows the results of measuring the molecular weight of () ⁇ -2 ⁇ 2 (; purified according to the present invention.
  • Figure 38 shows the total cell fraction of the ekalantide fusion polypeptides expressed in recombinant E. coli This is the result of the analysis (lane marker protein, lane 1: seedling-Kyoto strain No. PG019), lane 2: (3 ⁇ 4) 7- ⁇ 1- ⁇ 3 113 ⁇ 4 1 (16 (strain number? 0020)), lane 3: 5, -1111 1kawa6 (strain number PG021), lane 4: PG43- ⁇ ⁇ 61-seedling 0311 1 (16 (strain number? ( ⁇ 022)).
  • Figure 41 shows the separation of total cell fractions of erythride fusion polypeptides expressed in recombinant E. coli into soluble and insoluble fractions. Results were analyzed (lane 1-marker protein, lane soluble fraction, lane I: insoluble fraction, lane 3: (Strain number? 0026).
  • Figure 42 shows the total protein produced in recombinant E. coli
  • the result of the analysis is (lane 3 ⁇ 41: marker protein, lane 1: ⁇ 1 -1 ⁇ 111-84 (strain number? 0027), lane 2:
  • Fig. 44 shows the result of purification of? 7- ⁇ 1 -1 ⁇ 11-84 fusion polypeptide in an insoluble fraction by chromatography (solid color in the chromatogram, dotted lines of absorbance and elution buffer at 280 ⁇ wavelength, respectively). Percentages).
  • Figure 48 shows the structure of the respective fusion polypeptides expressed in strains ( ⁇ 001, -0003, PG031,? -32 and? (033). Best Mode for Carrying Out the Invention
  • One embodiment of the present invention is a terminal fusion partner consisting of an amino acid sequence represented by the following general formula (1); Target polypeptides; And a linker between the terminal fusion partner and the target polypeptide.
  • 331 to 336 are independently of each other, isoleucine (11I), glycine 1 ⁇ 21, G), alanine (shisho), proline (0, I 3 ), valine, V), leucine (111, me, methionine, ⁇ , Phenylalanine 03 ⁇ 4, Tyrosine ,, V), trimtophan, Asparagine,, Serine, 3), Threonine (3 ⁇ 4! ⁇ , I), 0, glutamine 1 ⁇ 2111 , 0), arginine ( ⁇ , lysine 0 ⁇ ⁇ , histidine (bar, asphalt acid 31), I)) and glutamic acid 1 ⁇ 2111 ,
  • 331 to 336 are independently of each other, isoleucine (11 I), proline (0,), leucine (1 11, me, asparagine (Sho, II), arginine (sugar, yo), histidine ( Bar 10 and asphalt acid 3 I)).
  • the terminal fusion partner may be composed of seven amino acids.
  • is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 dog, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or
  • n is an integer of 1, may be 8, 15, 22, 29, or 36 amino acids starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666.
  • yields may vary due to degradation of enzymes in host cells, low expression levels, inappropriate protein folding, and / or low mRNA stability, depending on the properties of the target material. There is a risk of deterioration.
  • MBP maltose binding protein
  • glutathione S-transferase, thioredoxin, SUMO, ubiquitin, and the like which are conventionally used as fusion partners, are 397, 216, 106, and 101, respectively.
  • 76 amino acids there was a problem that the yield is not good when producing a relatively low molecular weight target polypeptide.
  • the N-terminal fusion partner according to the present invention is a relatively small molecular weight peptide consisting of 7 to 43 amino acids, and when applied to produce a target polypeptide such as hPTH 1-34, the existing fusion partner HPTH 1-34 can be obtained with improved yield than when using the above.
  • the ratio of hPTH 1-34 in recombinant fusion polypeptides is outlined in Table 1 below.
  • the conventional fusion partners have a ratio of ä 1-34 in the fusion polypeptide of only 8% to 29%, whereas ä 1-34 in the fusion polypeptide to which the fusion partner according to the present invention is fused.
  • the proportion of is found to be 37% to 62%.
  • the fusion partner according to the present invention may induce insoluble expression of the fusion polypeptide, causing the fusion polypeptide to accumulate at high concentration into the host cell as an insoluble inclusion body. .
  • Escherichia coli ! 001 1) has the advantage that it is easy to obtain a high yield of the desired polypeptide, which may be cleaved or cleaved in whole or in part by the protease and peptidase in the host cell.
  • the ⁇ terminal fusion partner may include an amino acid sequence represented by the following general formula (2).
  • 331 is isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, tryptophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • is 1 to 36 amino acids starting from amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666,
  • the 3 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine and trimtophan.
  • 3 ⁇ 4 may be selected from the group consisting of isoleucine (1 16 , I), asparagine,, arginine (10 and 31 asphalt asphalt), £>.
  • the terminal fusion partner may be composed of seven amino acids.
  • is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12
  • the terminal fusion partner consisting of the amino acid sequence represented by Formula 2 is an amino acid sequence of SEQ ID NO: 8, 30, 52, 74, 96 or 118 It may be made of.
  • the 331 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine.
  • One-terminal fusion partner consisting of the amino acid sequence represented by 2 is SEQ ID NO: 9, 31,
  • It may be composed of the amino acid sequence of 53, 75, 97 or 119.
  • the It may be selected from the group consisting of arginine, lysine and histidine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 2 may be composed of the amino acid sequence of SEQ ID NO: 10, 32, 54, 76, 98 or 120.
  • 331 may be asphalt acid or glutamic acid.
  • the one-terminal fusion partner consisting of the amino acid sequence represented by Formula 2 may be composed of the amino acid sequence of SEQ ID NO: 11, 33, 55, 77, 99 or 121.
  • terminal fusion partner may include an amino acid sequence represented by the following general formula (3).
  • Table 332 shows isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, trimtophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • the terminal fusion partner is 7 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 It may consist of amino acids.
  • II is an integer of 1
  • 2 is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12,
  • 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 It may be 30, 31, 32, 33, 34, 35 or 36 amino acids.
  • II is an integer of 1
  • the 3 2 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, and trimtophan.
  • the N-terminal fusion partner consisting of the amino acid sequence represented by the general formula 3 may be composed of the amino acid sequence of SEQ ID NO: 9, 31, 53, 75, 97 or 119.
  • the 332 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 3 may be composed of the amino acid sequence of SEQ ID NO: 12, 34, 56, 78, 100 or 122.
  • the 332 may be selected from the group consisting of arginine, lysine and histidine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 3 may be composed of the amino acid sequence of SEQ ID NO: 13, 35, 57, 79, 101 or 123.
  • the 332 may be asphalt acid or glutamic acid.
  • the I terminal fusion partner consisting of the amino acid sequence represented by the general formula 3 may be composed of the amino acid sequence of SEQ ID NO: 14, 36, 58, 80, 102 or 124.
  • the I terminal fusion partner may include an amino acid sequence represented by the following general formula (4).
  • 333 is isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, trimtophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • is 1 to 36 amino acids starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666,
  • the 333 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine and trimtophan.
  • the It can be selected from the group consisting of isoleucine (1 1 I), asparagine (show,, arginine (10 and asphalt acid 31), I)).
  • the terminal fusion partner may be composed of seven amino acids.
  • is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 Dogs, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or
  • V may be 8, 15, 22, 29, or 36 amino acids starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 4 may be composed of the amino acid sequence of SEQ ID NO: 15, 37, 59, 81, 103 or 125.
  • the 333 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 4 may be composed of the amino acid sequence of SEQ ID NO: 16, 38, 60, 82, 104 or 126.
  • the 333 may be selected from the group consisting of arginine, lysine and histidine.
  • the terminal fusion partner consisting of 1 »(: 1 ⁇ 1 ⁇ 2019/000782) may be composed of the amino acid sequence of SEQ ID NO: 9, 31, 53, 75, 97 or 119.
  • E3 may be asphalt acid or glutamic acid.
  • the one-terminal fusion partner consisting of the amino acid sequence represented by the general formula 4 may be composed of the amino acid sequence of SEQ ID NO: 17, 39, 61, 83, 105 or 127.
  • the -terminal fusion partner may include an amino acid sequence represented by the following general formula (5).
  • 334 are isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, trimtophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • is 1 to 36 amino acids starting from amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666,
  • the 334 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine and tryptophan.
  • the 331 may be selected from the group consisting of isoleucine (11I), asparagine,, arginine (dragon, 10 and asphalt acid 31), I).
  • the I terminal fusion partner may be composed of seven amino acids.
  • is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12, 1371], 14711, 1571], 1671], 1 set, 1871], 19 ⁇ , 2 why, 2171], 22711, 237]], 2471] , 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 amino acids.
  • II is an integer of 1
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 5 may be composed of the amino acid sequence of SEQ ID NO: 8, 40, 62, 84, 106 or 128.
  • the 334 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine. In one embodiment, consisting of the amino acid sequence represented by the general formula 5
  • the fusion partner may be composed of the amino acid sequence of SEQ ID NO: 19, 41, 63, 85, 107 or 129.
  • Ck4 may be selected from the group consisting of arginine, lysine and histidine.
  • the -terminal fusion partner consisting of the amino acid sequence represented by the general formula 5 may be composed of the amino acid sequence of SEQ ID NO: 20, 42, 64, 86, 108 or 130.
  • the 334 may be asphalt acid or glutamic acid.
  • the fusion partner may be composed of the amino acid sequence of SEQ ID NO: 21, 43, 65, 87, 190 or 131.
  • the one-terminal fusion partner may include an amino acid sequence represented by the following general formula (6).
  • 335 is isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, trimtophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • is 1 to 36 amino acids starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666,
  • the 335 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine and trimtophan.
  • the silver isoleucine (11 I), asparagine,, 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 arginine (yo, 10 and asphalt acid 3) may be selected from the group consisting of.
  • the -terminal fusion partner may be composed of seven amino acids.
  • is 1, 2, 3, 4, 5, 6, 7 starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666. , 8, 9, 10, 11, 12
  • the terminal fusion partner _ consisting of the amino acid sequence represented by the general formula 6 may be composed of the amino acid sequence of SEQ ID NO: 22, 44, 66, 88, 110 or 132.
  • the trik5 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 6 may be composed of the amino acid sequence of SEQ ID NO: 23, 45, 67, 89, 111 or 135.
  • the 335 may be selected from the group consisting of arginine, lysine and histidine.
  • the terminal fusion partner consisting of the amino acid sequence represented by the general formula 6 may be composed of the amino acid sequence of SEQ ID NO: 24, 46, 68, 90, 112 or 134.
  • the 335 may be asphalt acid or glutamic acid.
  • the I-terminal fusion partner consisting of the amino acid sequence represented by the general formula 6 may be composed of the amino acid sequence of SEQ ID NO: 25, 47, 69, 91, 113 or 135.
  • the one-terminal fusion partner may include an amino acid sequence represented by the following general formula (7).
  • 336 is isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine, trimtophan, asparagine, serine, threonine, cysteine, glutamine, arginine, lysine, histidine, asphalt acid or glutamic acid,
  • the 336 may be selected from the group consisting of isoleucine, glycine, alanine, proline, valine, leucine, methionine, phenylalanine, tyrosine and tryptophan.
  • the 331 may be selected from the group consisting of isoleucine (11 I), asparagine (sho,, arginine (10 and asphalt acid (show 31), I)).
  • the terminal fusion partner may be composed of seven amino acids.
  • II is an integer of 1 is 1, 2, 3, 4, 5, 6, 7, starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or
  • the one-terminal fusion partner consisting of the amino acid sequence represented by the general formula 7 may be composed of the amino acid sequence of SEQ ID NO: 26, 48, 70, 92, 114 or 136.
  • the 336 may be selected from the group consisting of asparagine, serine, threonine, cysteine and glutamine. In one embodiment, consisting of the amino acid sequence represented by the general formula
  • the fusion partner may be composed of the amino acid sequence of SEQ ID NO: 27, 49, 71, 93, 115 or 137.
  • the 336 may be selected from the group consisting of arginine, lysine and histidine.
  • the terminal fusion partner consisting of 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782) may be composed of the amino acid sequence of SEQ ID NO: 28, 50, 72, 94, 116 or 138.
  • the 336 may be asphalt acid or glutamic acid.
  • the I terminal fusion partner consisting of the amino acid sequence represented by the general formula 7 may be composed of the amino acid sequence of SEQ ID NO: 29, 51, 73, 95, 117 or 139.
  • the terminal fusion partner may be composed of seven amino acids, in the present invention I terminal fusion partner consisting of seven amino acids 7 7 " It was.
  • II when II is an integer of 1, may be 8, 15, 22, 29 or 36 amino acids starting from the amino acid at position 1 of the amino acid sequence represented by SEQ ID NO: 666.
  • the terminal fusion partner may be composed of 15, 22, 29, 36 or 43 amino acids, in the present invention I, consisting of 15, 22, 29, 36 or 43 amino acids 5), ⁇ 22 ”, ⁇ 029”, “M636”,
  • the 1 ⁇ -terminal fusion partner is chaperonin 10 (( ⁇ ? 61011 ⁇ 2 10,
  • the I-terminal fusion partner is a peptide having 7 to 43 amino acids, and may be composed of 7 to 43 consecutive amino acids at the end of the SEQ ID NO: 119 (:-terminal.
  • the fusion partner may consist of the amino acid sequence of any one of SEQ ID NOs: 8-139.
  • the number of amino acids of the fusion partner can be adjusted according to the properties of the polypeptide of interest. For example, seven, eight,
  • the terminal fusion partner is SEQ ID NO: 9, 31,
  • It may be composed of an amino acid sequence represented by 53, 75, 97 or 119.
  • Another aspect of the invention provides a novel terminal fusion partner, a target polypeptide as described above, and a fusion polypeptide comprising a linker between the terminal fusion partner and the target polypeptide.
  • the linker may comprise an affinity tag.
  • the "affinity tag” can be used for various purposes as a peptide or nucleic acid sequence that can be introduced into a recombinant fusion polypeptide or a nucleic acid encoding the same, for example, to increase the purification efficiency of the desired polypeptide.
  • Affinity tags that can be used in the present invention can be used as desired with any suitable material known in the art.
  • the affinity tag used in the present invention may be a polyhistidine tag (SEQ ID NO: 7 or 8), a polylysine tag (SEQ ID NO: 9 or 10), or a polyarginine tag (SEQ ID NO: 11 or 12).
  • the linker may comprise a protease recognition sequence.
  • a protease is a protease which recognizes a specific amino acid sequence and cleaves the peptide bond in the recognized sequence or the peptide bond with the first amino acid of the polypeptide fused with the last amino acid of the sequence.
  • the fusion polypeptide according to the present invention comprises a linker having a protease recognition sequence, so that the amino terminal (including an affinity tag in the case of using an affinity tag) containing the cleavage recognition sequence in the polypeptide purification in the final step and the purpose One end of the polypeptide can be isolated to recover the desired polypeptide.
  • the protease recognition sequence may be a recognition sequence selected from the group consisting of tobacco etching virus protease recognition sequence, enterokinase recognition sequence, ubiquitin hydrolase recognition sequence, factor purine, and combinations thereof.
  • the protease recognition sequence may include any one of amino acid sequences of SEQ ID NOs: 146 to 150.
  • target polypeptide refers to a polypeptide to be obtained through a recombinant production system.
  • the polypeptide of interest can be protected from degradation by enzymes in host cells by fusion with -terminal fusion partners according to the present invention, as well as enhanced expression levels and accumulation in cells in the form of insoluble inclusion bodies. It can be obtained in higher yields.
  • the polypeptide of interest may comprise any one of the amino acid sequence of SEQ ID NO: 18 to 27.
  • the target polypeptide is 2 3 ⁇ 4 high 3 to 15 ⁇ ) 3, 2.5 1 ⁇ 3 to 14 ⁇ ) ⁇ , 3 ⁇ to 13 ⁇ , 3.5 1 ⁇ 3 to 12 ⁇ 3 , 4 ⁇ ) 3 to 11 I) It may have a molecular weight of 3.
  • the polypeptide of interest is human parathyroid hormone 1-3401?
  • ⁇ 1-34) human parathyroid hormone l-84 (hPTH 1-84), glucagon-like peptide-GLP-1, liraglutide precursor peptide, exenatide, insulin-like growth factor -l (IGF-l), glucagon-like peptide-2 (GLP-2), teduglutide, ecalantide, neciritide, insulin and insulin analogues It may be any one selected from the group consisting of.
  • HPTH 1-34 Human Parathyroid Hormone 1_34
  • aa 115 amino acids secreted by the thyroid gland
  • hPTH 1-34 is a peptide with 34 amino acids in the amino terminal region of the human parathyroid hormone, also referred to as ter iparat ide.
  • the hPTH 1-34 polypeptide may be composed of an amino acid sequence of SEQ ID NO: 151, and the amino acid sequence may be encoded by a nucleotide sequence of SEQ ID NO: 292.
  • the human parathyroid hormone l-84 is a peptide having 84 amino acids derived from a pre-propeptide of 115 amino acids (aa) secreted by the thyroid gland, and the calcium concentration in the blood It is known to act to increase and stimulate bone formation.
  • hPTH 1-84 is generally used as a treatment for rare diseases such as hypocalcemia or hypoparathyroidism (hypoparathyroidi sm).
  • the hPTH 1-84 polypeptide may be composed of the amino acid sequence of SEQ ID NO: 628, the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 633.
  • the polypeptide of interest may be composed of the amino acid sequence of any one of the amino acid sequence of SEQ ID NO: 151, 340, 341, 484, 485, 628, 638, 642 and 652.
  • the glucagon-like peptide-1 is a polypeptide consisting of 31 amino acids.
  • liraglutide is an analog thereof, in which the 28th lysine of GLP-1 is substituted with arginine (K28R), and N-Palmi toyl-L-glutami consisting of palmitic acid and glutamic acid in the amino group of the 20th lysine residue. It has a form in which c acid is bound.
  • Liraglutide is a type 2 diabetes or Obesity can be used as a therapeutic agent, and in general, liraglutide produces a liraglutide precursor peptide (GLP-1K28R) to which N-Palmi toyl-L-glutami c acid is not bound, and N at its 20th lysine residue. It can be produced by the process of combining -Palmi toyl-L-glutami c acid (Dunweber, Jensen et al. 2007).
  • the GLP-1 polypeptide may be composed of the amino acid sequence of SEQ ID NO: 340, and the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 475.
  • the liraglutide precursor peptide (GLP-1K28R) may be composed of the amino acid sequence of SEQ ID NO: 341, the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 476.
  • the glucagon-like peptide-2 (GLP-2) is a polypeptide consisting of 33 amino acids.
  • teduglutide is an analog thereof in which the second alanine of GLP-2 is substituted with glycine (A2G). Teduglutide may be used for the treatment of rare diseases such as short bowel syndrome, chemotherapy-induced diarrhea, and enterocutaneous fi stul a.
  • the GLP-2 polypeptide may be composed of an amino acid sequence of SEQ ID NO: 484, and the amino acid sequence may be encoded by a nucleotide sequence of SEQ ID NO: 619.
  • the teduglutide polypeptide (GLP-2A2G) may be composed of the amino acid sequence of SEQ ID NO: 485, the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 620.
  • the ekalantide is a polypeptide consisting of 60 amino acids, which can inhibit kallikrein in human plasma, resulting in the conversion of high molecular weight kallikrein into bradykinin. It acts to inhibit.
  • Ecarantide can be used as a treatment for rare hereditary angioedema (Heredi tary Angioedema).
  • the ecarantide polypeptide may be composed of an amino acid sequence of SEQ ID NO: 642, and the amino acid sequence may be encoded by a nucleotide sequence of SEQ ID NO: 647.
  • the neciridide is a polypeptide composed of 32 amino acids, which is a type B natriuretic peptide secreted from the ventr i cular myocardium.
  • Nesiritide may be used as a therapeutic agent for congestive heart failure.
  • the neciridide 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 polypeptide may be composed of an amino acid sequence of SEQ ID NO: 652, and the amino acid sequence may be encoded by a nucleotide sequence of SEQ ID NO: 657.
  • exenatide polypeptide may be composed of the amino acid sequence of SEQ ID NO: 638, the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 639, the insulin-like growth factor-1 (101 ⁇ -1) poly
  • the peptide may be composed of the amino acid sequence of SEQ ID NO: 640, and the amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 641.
  • the fusion partner comprising the amino acid sequence of SEQ ID NO: 1 and the target polypeptide have a different isoelectric point from each other, the target polypeptide can be easily purified in high purity.
  • the value of the terminal fusion partner having the amino acid sequence of SEQ ID NO: 8 to 139 of the present invention may be 9.5 to 10.5.
  • this value of the terminal fusion partner having the amino acid sequence of SEQ ID NO: 9, 31, 53, 75, 97 or 119 may be 9.52, 11.72, 10.27, 10.27, 10.43, 10.42, respectively.
  • novel fusion polypeptide comprising the fusion partner, linker and the desired polypeptide is any of the amino acid sequence of SEQ ID NO: 160-291, 343-474, 487-618, 630-632, 644-646 and 654-656 It may be composed of one amino acid sequence.
  • nucleotides encoding the fusion polypeptides described above, for example, 160 to 291, 343 to 474, 487. ⁇ ) 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 to 618, 630 to 632, 644 to 646 and any of the amino acid sequences of 654 to 656 can be encoded, wherein the nucleotide is SEQ ID NO: 294, 295, 478 to 483, 621 to 627, 635 to 637, 649 to 651, and may be composed of any one of the base sequence of 659 to 661.
  • vector comprising a nucleotide molecule encoding the aforementioned fusion polypeptide.
  • vector may be introduced into a host cell to be recombined and inserted into the host cell genome, or the vector is understood as a nucleic acid means comprising a nucleotide sequence that can be spontaneously replicated as an episome.
  • vectors include linear nucleic acids, plasmids, phagemids, cosmids, ⁇ vectors, viral vectors and analogues thereof
  • viral vectors include, but are not limited to, retroviruses, adenoviruses, and adeno-associated viruses.
  • the plasmid may comprise a selection marker such as an antibiotic resistance gene, and the host cell holding the plasmid may be cultured under selective conditions.
  • the term "host cell” refers to prokaryotic or eukaryotic cells into which a recombinant expression vector can be introduced.
  • the term "transduction 1" used in the present invention uses techniques known in the art. By introducing a nucleic acid (eg, a vector) into the cell.
  • the host cell may be transformed to include a nucleotide encoding the fusion polypeptide of the present invention and used for expression and / or secretion of the polypeptide of interest.
  • Preferred host cells that can be used in the present invention are Escherichia coli cells, immortal hybridoma cells, ⁇ ) myeloma cells, 293 cells, Chinese hamster ovary cells ((3 ⁇ 4 () 0611), 3 ⁇ 41 cells, human amniotic derived cells 0:31). ⁇ 061 1) or 0 »cells.
  • the host strain used to express the fusion polypeptide in the present invention is E. coli 21 (E3), and the genes and methods of their use are known in the art.
  • Another aspect of the invention (3) culturing the above-described host cell, (purifying the fusion polypeptide expressed in the host cell and ((:)) by culturing the purified fusion polypeptide with a cleavage enzyme To recover the desired polypeptide. It provides a method for producing a target polypeptide (recombinant polypeptide) comprising the step.
  • step (a) culturing a host cell comprising an expression vector having a nucleotide encoding the fusion polypeptide of the present invention.
  • the host cell may be cultured by any fermentation method, for example, batch, fed-batch, semi-continuous and continuous fermentation may be used.
  • the fermentation medium may be selected from combination media or restriction media.
  • restriction media is selected. Restriction media may be supplemented with low levels of amino acids, vitamins such as thiamine or other ingredients.
  • production of fusion polypeptides can be accomplished in fermentor culture. For example, it can be incubated at a temperature of 37 ° C. in a fermentor containing 2 L of restriction medium and maintained at pH 6.8 through the addition of hydrochloric acid or ammonia. Dissolved oxygen can be maintained in excess by increasing the stirring rate and air flow rate into the fermentor, or via pure oxygen injection as needed.
  • a feeding solution containing glucose or glycerol may be delivered to the culture during cell culture.
  • optical density of the target culture medium for induction for example, reaches a specific value optical density (A600) at a wavelength of 600 nm
  • Optimal expression conditions can be determined by varying the cell's optical density, IPTG concentration, pH, temperature, dissolved oxygen level, respectively, upon induction.
  • the optical density of cells upon induction can be varied in the range of A600 30 to 300.
  • IPTG concentrations range from 0.01 mM to 1.0 mM, pH ranges from 5.5 to 7.5, temperature ranges from 15 ° C to 37 ° C, and air flow rate varies from 1 m (liters of air per liter of medium per minute) to 5 wm You can.
  • the cells are harvested by centrifugation of the culture from the fermentor and the cell pellet can be frozen at -80 ° C.
  • the culture sample may be analyzed by SDS-PAGE or the like for analysis of the expression level of the recombinant fusion polypeptide.
  • host cell culture can be performed at conditions of from 40 ° to 40 ° C and at conditions of about 5.5 to about 7.5.
  • expression can be induced by adding 1 ⁇ L ( ⁇ ) to the culture at a final concentration of about 0.01 to about 1.0.
  • the culture can be incubated for a period of time, for example about 12 hours, during which the recombinant protein is expressed. After addition of the inducer, the culture can be incubated for about 4 to 48 hours.
  • the cell culture can be centrifuged to remove the medium in which no cells are present (supernatant) and recover the cells.
  • the cell culture can be obtained and the insoluble fraction by 12, 01 in 000 ⁇ conditions 30 minutes (4 ° []) centrifugation to remove the supernatant.
  • Insoluble fractions obtained by centrifugation insoluble fractions contain insoluble fractions containing chaotropic agents such as urea or guanidine hydrochloride (( ⁇ 30 ⁇ 01) ⁇ 3 to 6) for solubilization of recombinant fusion polypeptides present in the form of insoluble inclusion bodies. It can be resuspended in buffer.
  • cells are disrupted using a high pressure mechanical cell disruption device (eg, microfluidizer 0 0 £ 111 ⁇ 261).
  • Resuspended cells can be disrupted using, for example, sonication. Any method known in the art that is suitable for lysing the cells can be used to recover the accumulated inclusions in the cells.
  • chemical and / or enzymatic cell lysing reagents such as cell wall lyase (2 6) and shows can be used.
  • the fusion polypeptide expressed in the host cell cultured in the step (k) is purified.
  • the insoluble fraction mainly contains a fusion polypeptide expressed in the form of an insoluble inclusion body.
  • Solubilization of the inclusion bodies present in the insoluble fraction can be carried out under denaturing conditions with chaotropic agents.
  • Inclusion body solubilization conditions may include the use of a buffer containing chaotropic agents, and the inclusion body solubilization buffer may include urea or guanidine hydrochloride, sodium phosphate or tris buffer and sodium chloride as chaotropic agents.
  • affinity chromatography immobilized metal affinity When carried out by way of example, the inclusion body solubilization buffer comprises imidazole.
  • the inclusion body solubilization buffer may comprise 4 to 10 urea or 3 to 8 guanidine hydrochloride.
  • Inclusion Body Solubilization Buffer may comprise 5 to 100 Sodium Phosphate or Tris (1 ⁇ 7 to 9).
  • Inclusion Body Solubilization Buffer is 0 To 1 sodium chloride.
  • the inclusion body solubilization buffer for 1 kPa can contain 0 to 50 imidazoles.
  • the inclusion body solubilization buffer containing 8 1 urea, 20 tris, 500 sodium chloride, 50 imidazole, 1 export 7.4, resuspend the insoluble fraction obtained by centrifugation of the lysed cells,
  • the inclusions can be solubilized.
  • solubilizing the insoluble fraction of the insoluble fraction in the inclusion body solubilization buffer it is subjected to shaking culture for about 1 to 6 hours at a temperature of 2 ° 0 to 8 ° 0 (for 12, 000). Centrifugation for 30 minutes (41 :) at to remove the debris of the crushed cells present in the insoluble fraction and obtain a supernatant containing the solubilized fusion polypeptide. The supernatant is filtered through a layered filter (A11) and a membrane filter to remove insoluble and solid components so that they can be injected into a purification column.
  • A11 layered filter
  • membrane filter to remove insoluble and solid components so that they can be injected into a purification column.
  • recombinant fusion polypeptides or target polypeptides that are solubilized after expression in the form of insoluble inclusion bodies are isolated or purified from other protein and cell debris by size exclusion, anion or cation exchange, hydrophobic interaction, or affinity chromatography methods. can do.
  • the fusion polypeptide of the present invention may be a polyhistidine tag (6 ⁇ Is it filled? Can be purified using.
  • the desired polypeptide is recovered by culturing the fusion polypeptide purified by the above-described method with a cleavage enzyme.
  • the fusion polypeptide may be suitably cleaved by a cleavage enzyme, thereby releasing the desired polypeptide into a suitable form.
  • a cleavage enzyme thereby releasing the desired polypeptide into a suitable form.
  • the fusion polypeptide may be diluted to a urea concentration of 1 M after purification and present in a buffer containing 20 mM tris, pH 7.4, 1 M urea, 62.5 mM sodium chloride, 62.5 mM 5 imidazole.
  • Recombinant fusion polypeptides are reacted with cleavage enzymes to cleave the amino terminal fusion partner with the affinity tag and cleavage recognition sequence and the desired polypeptide.
  • Protease cleavage methods can be any suitable method known in the art and described in the literature, including manufacturer's instructions.
  • the TEV protease is added to the fusion 10 polypeptide diluted to 1 so that the urea concentration is 1, and the cleavage reaction is allowed to proceed for 6 hours or more at room temperature.
  • the TEV protease cleaves from about 60% to about 100% of the recombinant fusion polypeptide.
  • Yields of recombinant fusion polypeptides or polypeptides of interest can be determined by methods known to those skilled in the art, for example, by sodium dodecyl sul fate-polyacrylamide B gel electrophores is (SDS-PAGE) or Western blot analysis. Gels electrophoresed by SDS-PAGE undergo staining, destaining, and digital imaging to enable quantitative and qualitative analysis of recombinant fusion polypeptides or target polypeptides.
  • the concentration of the purified fusion polypeptide or the desired polypeptide is the concentration of the purified fusion polypeptide or the desired polypeptide.
  • Western blot analysis to determine the yield or purity of purified fusion polypeptides or polypeptides of interest transfers proteins isolated on SDS-PAGE gels to nitrocellulose membranes and utilizes 25 antibodies specific for the polypeptide of interest. It may be carried out according to a known suitable method. In an embodiment, as one of the methods for measuring the purity of the polypeptide of interest, an ELISA (enzyme inked immunosorbent assay) method may be used.
  • ELISA enzyme inked immunosorbent assay
  • the yield of purified fusion polypeptide or polypeptide of interest is determined by the amount of purified fusion polypeptide or polypeptide of interest per volume of culture (eg, g
  • the measure of yield of a polypeptide described herein is based on the amount of polypeptide of interest expressed in its complete form.
  • the cultured cell density or cell concentration can be considered in determining the yield.
  • the yield of the desired polypeptide obtained after cleavage with the cleavage enzyme may be about 0.54 g / L to about 13.5 g / L.
  • the yield of the desired polypeptide is 5
  • It may be about 0.54 g / L on a scale of 2L or more.
  • Embodiment of the present invention by using a fusion polypeptide and a recombinant fusion polypeptide having a amino acid sequence of SEQ ID NO: 1 to obtain the desired polypeptide, so that the desired polypeptide is degraded by enzymes in the cell, or improper folding occurs
  • a fusion polypeptide and a recombinant fusion polypeptide having a amino acid sequence of SEQ ID NO: 1 to obtain the desired polypeptide, so that the desired polypeptide is degraded by enzymes in the cell, or improper folding occurs
  • Example 1.1 Preparation of hPTH 1-34 Fusion Polypeptide Expression Plasmids
  • the genes for the hPTH 1-34 fusion polypeptides were synthesized using an over lap extension polymerase chain react ion (0E-PCR) method.
  • the hPTH 1-34 fusion polypeptide is one of PG07 (SEQ ID NO: 9), PG15 (SEQ ID NO: 31), PG43 (SEQ ID NO: 119) and 6 histidine tags (SEQ ID NO: 140) and TEV protease as amino terminal fusion partners.
  • Recognition sequence SEQ ID NO: 146) and amino acid sequence of hPTH 1-34 (SEQ ID NO: 151) are included.
  • the hPTH 1-34 fusion polypeptide (H6TEV-hPTH 1-34) used as a control 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 Amino terminal fusion partner not included, 6 histidine tags (SEQ ID NO: 140), protease recognition sequence (SEQ ID NO: 146), and amino acid sequences of 1-34 SEQ ID NO: 151).
  • the gene of each fusion polypeptide comprises restriction enzymes, ⁇ 01 and 3 ⁇ 41 recognition sequences and one stop codon.
  • the nucleotide sequences encoding the 11 11 1-34 fusion polypeptides correspond to SEQ ID NOs: 294 to 296, respectively, and the control group corresponds to SEQ ID NO: 293.
  • E. coli ⁇ 21 ( ⁇ 3) cells were transformed using the prepared 1 ⁇ ä 1-34 fusion polypeptide expression plasmids by chemical method using calcium chloride.
  • ⁇ 3 ä 1-34 Expression of Fusion Polypeptides E. coli transduced with plasmids are known as kanamycin. Colonies were formed in one solid medium contained at a concentration. The transformed Escherichia coli were incubated in a single liquid medium containing kanamycin at a concentration of 50 / ⁇ /, respectively, and then 50% glycerol was added to the same volume as the culture medium to make a cell concentrate (1 1 10). : It stored in the freezer of temperature.
  • the optical density (0D600) of the cell was about 1.0 after 3 hours of incubation, the final concentration of IPTG was added to 0.1 mM to induce the expression of the hPTH 1-34 fusion polypeptide. 4 hours after expression induction, the optical density was measured to determine the optical density of the cells.
  • the cells were concentrated to have an optical density of 10.0, and the cells were resuspended in 50 mM sodium phosphate, pH 7.2 buffer, and disrupted by using an ultrasonic cell crusher (ul trasoni c processor, Cole-Parmer). Crushed cells were labeled with the total cell fraction. Cell lysate was centrifuged at 12,000 ⁇ g, 4 ° C. for 15 minutes. The supernatant was recovered and labeled with soluble fraction A. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 mM 50 mM sodium phosphate, pH 7.2 buffer and labeled with the insoluble fraction.
  • an ultrasonic cell crusher ul trasoni c processor
  • a band of H6TEV-hPTH 1-34 does not include a fusion partner comprising the amino acid sequence of SEQ ID NO: 1 control group hPTH 1-34 fusion polypeptides according to the present invention
  • Molecular weight and expression of PG43-H6TEV-hPTH 1-34 (molecular weight of 10.6 kDa) Levels can be seen to increase compared to the control (H6TEV-hPTH 1-34).
  • Densitometer analysis confirmed that the expression level of PG15-H6TEV-hPTH 1-34 by P15 fusion among PG7, PG15 and PG43 was the highest among all hPTH 1-34 fusion polypeptides.
  • Figure 2 it can be seen that all hPTH 1-34 fusion polypeptides, including the control group, are not observed in the soluble fraction but all appear in the insoluble fraction.
  • Cells were cultured in a fermentor at 37 ° C. containing 2 L of restriction medium using the medium composition described in Ri esenberg, Schul z et al. 1991 and maintained at pH 6.8 through addition of hydrochloric acid and ammonia.
  • glucose-containing feeding solut ion was injected into the culture during cell culture.
  • 1.0 mM concentration of IPTG was added to induce the expression of PG15-H6TEV-hPTH 1-34 for 11 hours.
  • Example 1.6 Improved expression level of hPTH 1-34 fusion polypeptide by amino acid substitution of N-terminal fusion partner
  • each amino acid residue was replaced with isoleucine, A total of 21 hPTH 1-34 fusion polypeptides substituted with asparagine, arginine, and asphalt acid were prepared and compared with the expression levels of PG15-H6TEV-hPTHl-34 in cells.
  • Plasmid DNA for variant expression of hPTH 1-34 fusion polypeptides was constructed using site-directed mutagenesis.
  • the template for the positional mutation used pSGK477, a PG15-H6TEV-hPTHl-34 expression plasmid, and the primers were forward and reverse single strands with altered sequences of amino acid substitutions of the respective variants. DNA oligomers were used.
  • the primers used in the experiments are shown in Table 3 below.
  • E. coli ⁇ 121 ( ⁇ 3) cells were transformed by chemical method using calcium chloride using the mutant expression plasmids of the prepared! 3 ⁇ 4 1-34 fusion polypeptide.
  • E. coli transformed with expression plasmids of 1-34 fusion polypeptides contain kanamycin 03 ⁇ 4113111 (: ⁇ 1) at a concentration of 50 // dragon / 111 yo Colonies were formed in solid medium.
  • the cell concentrates of the transformed Escherichia coli were dissolved at room temperature, and 50 was present at a concentration of 50 // dragon / 111 b. It was added to a test tube containing 5 111 cucumber of liquid medium, and the seed culture was carried out for 12 hours in a shaker at a temperature. Spawn cultured E. coli 2 111 urine was added to a flask containing 200 111 urine in 1 ⁇ liquid medium in which kanamycin was present at a concentration of 50 yong / 111 bo, and cultured in a shaker at 37 ° 0.
  • the optical density (( ⁇ 600)) of the cell became about 1.0, the final value of 1 ⁇ ( ⁇ The concentration was added to 0.1 mM to induce the expression of hPTH 1-34 fusion polypeptide. 4 hours after expression induction, the optical density was measured to determine the optical density of the cells.
  • Cells were concentrated so that the expression-induced cells had an optical density of 10.0, resuspended in 50 mM sodium phosphate, pH 7.2 buffer, and disrupted by using an ultrasonic cell crusher (Coulter-Parmer). Crushed cells were labeled with the total cell fraction. Cell lysate was centrifuged at 12,000 ⁇ g, 4 ° C. for 15 minutes. The supernatant was recovered and labeled with soluble fraction. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 mM 50 mM sodium phosphate, pH 7.2 buffer and labeled with the insoluble fraction.
  • an ultrasonic cell crusher Coulter-Parmer
  • Variants with improved expression levels and reduced variants were identified by the change of 6 amino acid residues from 2 to 7 of PG15 in PG15-H6TEV-hPTHl-34 compared to the expression level of control group PG15-H6TEV-hPTHl-34. It was. In particular, through the densitometry analysis, the mutant strains in which the fourth residue was substituted with asphalt acid and the mutant strains in which the seventh residue was substituted with arginine improved the expression level by more than three times.
  • Example 2.1 Cell disruption and insoluble inclusions recovery
  • Frozen cell pellets of cells expressed at the flask scale were 50 Thawed by addition of 50 mM sodium phosphate, pH 7.2 buffer. Resuspended cells were disrupted using an ultrasonic cell crusher (Cultrasonic Processor, Cole-Parmer). The lysed cells were centrifuged at 12,000 rpm (12,000Xg) for 30 minutes and the supernatant was removed to recover the insoluble inclusion body fraction containing the recombinant fusion polypeptide.
  • inclusion solubilization buffers 8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4
  • Recombinant fusion polypeptides in inclusion body form were allowed to be solubilized.
  • the solubilized insoluble fraction sample was centrifuged at 12,000 Xg for 30 minutes and the supernatant was filtered through a membrane filter (0.45 ⁇ ) .2 _).
  • AKTA pure 25 chromatography system equipped with S9 sample pump (S9) and F9-C fraction collector (Fract ion col lector F9-C) for purification of hPTH 1-34 fusion polypeptides in solubilized insoluble fractions Heal thcare ”was used. Soluble insoluble fraction samples were injected into Hi sTrap FF 1 in ⁇ columns (GE Heal thcare) pre-equilibrated with inclusion body solubilization buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4). .
  • Fractions of approximately 5 m of purified hPTH 1-34 fusion polypeptides were combined and diluted to a concentration of urea of 1 by adding 140 dilution buffer (20 mM Tris, pH 7.4).
  • 140 dilution buffer (20 mM Tris, pH 7.4
  • the final concentration of TEV protease was added to 500 nM and the cleavage reaction was allowed to proceed for 12 hours at room temperature.
  • PG15-H6TEV-hPTH 1-34 of 7.9 kDa is PG15-H6TEV fragment polypeptide of the N-terminal fusion partner, 6 histidine tag and TEV protease recognition sequence fusion in nearly 100% yield It was confirmed that the separated hPTH 1-34 fragment.
  • Sample pump S9 and F9-C fraction collector F9-C for purification of hPTH 1-34 liberated by cleavage of TEV protease in PG15-H6TEV-hPTH 1-34 fusion polypeptide AKTA pure 25 chromatography system (GE Healthcare) was used.
  • Each sample digested with TEV protease was injected into a HiTrap SP FF 1 in ⁇ column (GE Healthcare) previously equilibrated with the same buffer after buffer exchange with binding buffer (20 mM ammonium acetate, pH 9.3).
  • the column is washed with 5-fold column volume of binding buffer and a 5-fold column linearly with progressively 100% of 5-fold column volume of elution buffer (20 mM ammonium acetate, 500 mM sodium chloride, pH 9.3). Increase in volume elutes hPTH 1-34 bound to the resin of the column. Purified fractions of the fraction collector were analyzed by the SDS-PAGE method described above.
  • the pi of hPTH 1-34 liberated by cleavage of the recombinant fusion polypeptide (PG15-H6TEV-hPTH 1-34) is less than the pi of the amino terminal fusion partner (PG15-H6TEV) containing the preparative tag and the cleavage recognition sequence About 3 is low.
  • PG15-H6TEV having a pi value of 11.72 has a positive charge
  • hPTH 1-34 having a pi value of 8.29 has a positive charge in a buffer of pH 9.3
  • PG15-H6TEV and hPTH 1- using ion exchange chromatography 34 is easy to separate.
  • PG15-H6TEV-hPTH 1-34 was cut and the sample mixed with PG15-H6TEV and hPTH 1-34 was filled with cation exchange resin.
  • the column is washed with 5 times column volume of binding buffer, and the 5 times column volume of elution buffer (50 mM sodium phosphate, pH 7.0) is increased linearly for 30 times the column volume to 100%.
  • HPTH 1-34 bound to the resin of the column was eluted.
  • Purified fractions of the fraction collector were analyzed by the SDS-PAGE method described above.
  • the average hydrophobicity (GRAVY) value (-0.671) of hPTH 1-34 liberated by cleavage of the recombinant fusion polypeptide (PG15-H6TEV-hPTH 1-34) was determined by amino terminal fusion with a preparative tag and a cleavage recognition sequence. It is easy to separate PG15-H6TEV and hPTH 1-34 using hydrophobic interaction chromatography because it is 0.488 higher than the average hydrophobicity value (-1.272) of the partner (PG15-H6TEV). As shown in FIGS. 14A and 14B, most of PG15-H6TEV and hPTH 1-34 bound to the hydrophobic interaction resin and were not detected in the f low through fraction.
  • the N-terminal fusion partners according to the present invention having a relatively low average hydrophobic value can be removed using hydrophobic interaction chromatography, thereby facilitating the separation and purification of hPTH 1-34.
  • hPTH 1- obtained from PG15-H6TEV-hPTH 1-34
  • the molecular weight of 34 was consistent with the theoretical molecular weight within the margin of error, so it was confirmed that E. coli was expressed in its complete form without partial cleavage or degradation of amino or carboxy terminus by proteolytic enzyme.
  • the TEV protease thus recognizes the ENLFQ sequence, which is the recognition sequence in PG15-H6TEV-hPTH 1-34, and precisely cleaves the peptide bond between Q (glutamine), the last amino acid, and S (serine), the first amino acid of hPTH 1-34. Judging.
  • hPTH 1-34 as specified in U.S. Pharmacopeia SP 39, Officail Monographs, Teriparatide, 6058-6062), and the recombinant hPTH 1-34 (USP Catalog # 1643962) produced by the present invention.
  • Reverse phase hPTH 1-34 Reverse phase hPTH 1-34
  • the recombinant hPTH 1 produced through the present invention and the standard product hPTH 1-34 (USP Catalog # 1643962) through peptide mapping method additionally among the identification methods of hPTH 1-34.
  • the equivalence of -34 was analyzed.
  • the two hPTH 1-34 were treated with Staphylococcus aureus V8 protease, respectively, separated into five peptide fragments, and analyzed by reversed phase HPLC. As a result, all five peptide fragments separated from both hPTH 1-34 stayed the same.
  • the equivalence of standard hPTH 1-34 and recombinant hPTH 1-34 was confirmed (FIG. 18).
  • GLP-1K28R fusion polypeptides are PG07 (SEQ ID NO: 9), PG15C SEQ ID NO: 31), PG22 (SEQ ID NO: 53), PG29 (SEQ ID NO: 75), PG36 (SEQ ID NO: 97), and PG43C SEQ ID NO: 119 as amino terminal fusion partners.
  • PG07 SEQ ID NO: 9
  • PG15C SEQ ID NO: 31 PG22
  • PG29 SEQ ID NO: 75
  • PG36 SEQ ID NO: 97
  • PG43C SEQ ID NO: 119 amino terminal fusion partners.
  • 6 histidine tags SEQ ID NO: 140
  • TEV protease recognition sequence SEQ ID NO: 146
  • amino acid sequence of GLP-1K28R SEQ ID NO: 341).
  • 2019/143193 1 »(1 ⁇ 1 ⁇ 2019/000782 was used as a control group ( ⁇ 1 - 28 mu fusion polypeptide air - ⁇ 1 3 - 2810 does not include the amino-terminal fusion partner, six histidine tag ( SEQ ID NO: 140) Recognition is the sequence (SEQ ID NO: 146) and ⁇ 1 3 -1 ⁇ (28 seedlings containing the amino acid sequence (SEQ ID NO: 341).
  • the gene of each fusion polypeptide contains the recognition sequences of restriction enzymes, ⁇ 01 and 3 ⁇ 4101 and one stop codon. 012-1281?
  • the nucleotide sequences encoding the fusion polypeptides correspond to SEQ ID NOs: 478 to 483, respectively, and the control corresponds to SEQ ID NO: 477.
  • Fusion polypeptide expression plasmid ? 3 ⁇ 530,? 3 ⁇ 495,? 3 (3 ⁇ 4496,? 3 (3 ⁇ 4500,? 3 cases 501 ,? (3 ⁇ 4502 and? (1 3 -11 (281?
  • the fusion polypeptide gene fragment was cleaved using and a 3 ⁇ 4 0 1 restriction enzyme, and the expression vector ⁇ 261, which is capable of regulating expression by 1 ⁇ (including the T7 promoter, 130 agonists and 1 :: 1 gene) Cloned.
  • the transformed Escherichia coli were incubated in a 1 ⁇ liquid medium containing kanamycin at a concentration of 50/11, and then 50% glycerol was added to the same volume as the culture to make a cell concentrate, which was stored in a freezer at _80 ° C. It was.
  • Example 7.2 Culture of transformed cells and expression of ( ⁇ -1 ⁇ 8)
  • the optical density (OD600) of the cell was about 1.0
  • IPTG was added to a final concentration of 0.1 mM to induce the expression of the GLP-1K28R fusion polypeptide. 4 hours after expression induction, the optical density was measured to determine the optical density of the cells.
  • the cells were concentrated to have an optical density of 10.0, and the cells were resuspended in 50 mM sodium phosphate, pH 7.2 buffer, and disrupted by using an ultrasonic cell crusher (Coulter-Parmer). Crushed cells were labeled with the species cell fraction. Cell lysate was centrifuged at 12,000 ⁇ g, 4 ° C. for 15 minutes. The supernatant was recovered and labeled with soluble fraction. Insoluble fraction
  • a 50 mM sodium phosphate, pH 7.2 buffer of 500 was resuspended using an ultrasonic cell crusher and labeled with an insoluble fraction.
  • H6TEV-GLP-1K28R molecular weight of 5.1 kDa
  • a band of H6TEV-GLP-1K28R (molecular weight of 5.1 kDa) that does not include a fusion partner comprising the amino acid sequence of SEQ ID NO: 1 as a control was not detected in the SDS-PAGE gel, and thus the intracellular protein after expression. It seems to have been degraded by the enzyme.
  • Expression of GLP-1K28R fusion polypeptide in SDS-PAGE gel The smallest amino terminal fusion partner, PG07, was identified from fused PG07-H6TEV-GLP-1K28R (molecular weight of 6.1 kDa).
  • the expression level of PG15-H6TEV-GLP-1K28R (molecular weight of 7.1 kDa) to which the amino terminal fusion partner PG15 was fused increased compared to PG07-H6TEV-GLP-1K28R.
  • PG15-H6TEV-GLP-1K28R molecular weight of 7.1 kDa
  • PG22-H6TEV-GLP-1K28RC7.9 kDa a GLP-1K28R fusion polypeptide fused with amino terminal fusion partners PG15, PG22, PG29, PG36 and PG43
  • the expression levels of PG29-H6TEV-GLP-1K28R molecular weight of 8.4 kDa
  • PG36-H6TEV-GLP-1K28R molecular weight of 9.1 kDa
  • PG43VH6TEV_GLP-1K28R molecular weight of 11.7 kDa
  • Densitometer analysis showed that the expression levels of fusion polypeptides fused with PG22, PG29, PG36 and PG43 in PG07, PG15, PG22, PG29, PG36 and PG43 were similar.
  • each amino acid residue was determined by isoleucine, asparagine, and arginine.
  • a total of 22 variants of GLP-1K28R fusion polypeptides substituted with asphalt acid were prepared and compared with the expression levels of PG43-H6TEV-GLP-1K28R in cells.
  • Plasmid DNA for variant expression of the GLP-1K28R fusion polypeptide was constructed using a site-directed mutagenesis method.
  • pSGK497 As a template for the positional mutation, pSGK497, a PG43-H6TEV-GLP-1K28R expression plasmid, was used.
  • Primers are amino acids of each variant 2019/143193 1 »(: 1/10 ⁇ 019/000782 Forward change of nucleotide sequence of substitution site (ä% and reverse Single stranded oligomers were used. The primers used in the experiments are shown in Table 5 below.
  • Plasmids were identified for correct cloning through sequencing. Created 0 ⁇ -1 ⁇ 81? Variant expression plasmids of the fusion polypeptides were used to transform E. coli ⁇ 21 (E3) cells by chemical method using calcium chloride. (1 ⁇ 81? E. coli transformed with the expression plasmids of the fusion polypeptide were kanamycin (urine) . Colonies were formed in solid medium. Each of the transformed E. coli cells was present at a concentration of 50 // yong / After incubation in a liquid medium, 50% glycerol was added to the same volume as the culture to make a cell concentrate, which was stored in a -801: temperature warehouse.
  • Variant Expression Plasmids of Variant 1 28-1 Convergence Polypeptides Stored at Temperature Dissolve the Cell Concentrates of E. Coli Transformed at Room Temperature and 50 1 at a Concentration of 50 // ⁇ Liquid medium 5 ⁇ was added to the test tube containing the culture medium for 12 hours in a shaker incubator of temperature. Spawn cultured Escherichia coli 2 111 seed was added to a flask containing 200 microliters of liquid medium containing kanamycin at a concentration of 50 // 11 The cells were cultured in a shaker at a temperature. The optical density of the culture after about 3 hours the cells (( ⁇ 600) when the approximately 1.0: 1 (; was added such that the final concentration of 0. 1 ⁇ 1 3 - 28 I induces expression of the fusion polypeptide It was. 4 hours after expression induction, the optical density was measured to determine the optical density of the cells.
  • the cells were concentrated so that the optical density of the induced cells was 10.0, and 50 sodium phosphate, 7.2 Ultrasonic cell crusher after resuspension with buffer (111 ⁇ 33011 ⁇ 1) 1 * 0063301 Cells were disrupted. Crushed cells were labeled with the total cell fraction. The cell lysate was centrifuged for 15 minutes at 12, 000 ⁇ 1 4 ° 0 temperature. The supernatant was recovered and labeled with soluble fraction. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 sodium phosphate, 7.2 buffer of 500 and labeled with the insoluble fraction.
  • Frozen cell pellets of cells expressed at the flask scale were thawed by adding 50 M of 50 mM sodium phosphate, pH 7.2 buffer. Resuspended cells were disrupted using an ultrasonic cell crusher (Cultrasonic Processor, Cole-Parmer). The lysed cells were centrifuged at 12,000 rpm (12,000Xg) for 30 minutes and the supernatant was removed to recover the insoluble inclusion body fraction containing the recombinant fusion polypeptide.
  • Insoluble fraction of the recovered insoluble inclusion body was added with 20 inclusion bodies solubilization buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4) and incubated at 25 ° C for 4 hours to insoluble fraction. Recombinant fusion polypeptides in endothelial form were allowed to be solubilized. Solubilized insoluble fraction samples
  • Centrifugation was performed at 12,000Xg for 30 minutes and the supernatant was filtered through a membrane filter (0.45 / 0.2 m).
  • GLP-1K28R fusion in solubilized insoluble fraction AKTA pure 25 chromatography system (GE Heal thcare) equipped with S9 sample pump (S9) pump and F9-C fraction collector (Fract ion col lector F9-C) was used for purification of the polypeptide.
  • Solubilized insoluble fraction samples were injected into Hi HesTrap FF 1 m urine column (GE Heal thcare) previously equilibrated with inclusion body solubilization buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4). . After the injection is complete, the column is washed with 5 column column of equilibration buffer and 100% stepwise addition of 5 column column elution buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 500 mM imidazole, pH 7.4). GLP-1K28R fusion polypeptide bound to the resin of the column was eluted to increase.
  • Fractions of about 5 m of purified GLP-1K28R fusion polypeptide were combined and diluted to 1 M by adding 140 m £ dilution buffer (20 mM Tris, pH 7.4). TEV protease was added to the diluted recombinant fusion polypeptide to a final concentration of 500 and allowed for the cleavage reaction to proceed for 12 hours at room temperature.
  • the molecular weight of GLP-1K28R obtained from PG43-H6TEV-GLP-1K28R was measured to be 3382.59 Da, which was in agreement with the theoretical molecular weight of 3383.72 Da within the margin of error. It was confirmed that it was expressed in its complete form without partial cleavage or degradation of amino or carboxy terminus.
  • the TEV protease recognizes the ENLFQ sequence, which is the recognition sequence in PG43-H6TEV-GLP-1K28R, and is believed to precisely cleave the peptide bond between Q (glutamine), the last amino acid, and H (histidine), the first amino acid of GLP-1K28R. .
  • Example 11. Preparation and Production of Teduglutide (GLP-2A2G) Fusion Polypeptide
  • Example 11.1 Construction of GLP-2A2G Fusion Polypeptide Expression Plasmids
  • the gene for the GLP-2A2G fusion polypeptide was synthesized using the over lap extens ion polymerase chain react ion (OE-PCR) method.
  • the GLP-2A2G fusion polypeptide is PG07 (SEQ ID NO: 9), PG15 SEQ ID NO: 31), PG22 (SEQ ID NO: 53), PG29 SEQ ID NO: 75), PG36 (SEQ ID NO: 97), and PG43 (Amino terminal fusion partner).
  • SEQ ID NO: 119 One of SEQ ID NO: 119) and a 6 histidine tag (SEQ ID NO: 140), a TEV protease recognition sequence (SEQ ID NO: 146), and an amino acid sequence of GLP-2A2G (SEQ ID NO: 485).
  • the GLP-2A2G fusion polypeptide (H6TEV-GLP-2A2G) used as a control does not contain an amino terminal fusion partner, 6 histidine tags (SEQ ID NO: 140), TEV protease recognition sequences (SEQ ID NO: 146), and GLP-2A2G Amino acid sequence (SEQ ID NO: 485) is included.
  • the gene of each fusion polypeptide contains the restriction enzymes Ndel, Ncol and Jay's recognition sequence and one stop codon.
  • the nucleotide sequence encoding the GLP-2A2G fusion polypeptide corresponds to SEQ ID NOs: 622 to 627, respectively, and the control corresponds to SEQ ID NO: 621.
  • the prepared ⁇ 1 3 -2 show26 fusion polypeptide expression plasmids were confirmed for correct cloning by sequencing.
  • E. coli ⁇ 21 (E: 3) cells were transformed by using a chemical method using calcium chloride using the prepared VII-2 Show20 fusion polypeptide expression plasmids.
  • E. coli transfected with expression plasmids of the fusion polypeptides formed colonies in one solid medium containing 131117 ( ⁇ 11) in kanamycin 0 at a concentration of 50 // yong / 111.
  • the transformed Escherichia coli were each cultured in an [outed liquid medium in which kanamycin was present at a concentration of 50 // silver / ä, and then 50% glycerol was added to the same volume as the culture medium to make a cell concentrate. Store in a freezer at temperature.
  • Example 11.3 Preparation of Samples for Expression Level Comparison Analysis Cells were concentrated so that the expression-induced cells had an optical density of 10.0, resuspended in 50 mM sodium phosphate, pH 7.2 buffer, and disrupted using an ultrasonic cell crusher (ul trasoni c processor, Cole-Parmer). Crushed cells were labeled with the total cell fraction. Cell lysates were centrifuged for 15 min at 12, 000 x g, 4 ° C. The supernatant was recovered and labeled with soluble fraction. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 mM 50 mM sodium phosphate, pH 7.2 buffer and labeled with the insoluble fraction.
  • an ultrasonic cell crusher ul trasoni c processor
  • H6TEV-GLP-2A2G molecular weight of 5.5 kDa
  • a fusion partner comprising the amino acid sequence of SEQ ID NO: 1 as a control was not detected in the SDS-PAGE gel, and thus the intracellular protein after expression. It seems to have been degraded by the enzyme.
  • PG07-H6TEV-GLP-2A2G (molecular weight of 6.5 kDa), PG15-H6TEV-GLP-2A2G (7.5 kDa), a GLP-2A2G fusion polypeptide fused with amino terminal fusion partners PG07, PG15, PG22, PG29, PG36 and PG43 Molecular weight), PG22-H6TEV-GLP-2A2G (molecular weight of 7.5 kDa), PG29-H6TEV-GLP-2A2G (molecular weight of 8.3 kDa), PG36-H6TEV-GLP-2A2GO .5 kDa) and PG43-H6TEV- Expression of GLP-2A2G (molecular weight of 12.1 kDa) was confirmed by SDS-PAGE analysis of PG22-H6TEV-GLP-2A2G, PG29-H6TEV-GLP-2A2G, PG36-
  • each amino acid residue was converted to isoleucine, asparagine, and arginine.
  • a total of 22 variants of GLP-2A2G fusion polypeptides substituted with asphalt acid were prepared and compared with the expression levels of cells with PG43-H6TEV-GLP-2A2G.
  • plasmid DNA for variant expression of the GLP-2A2G fusion polypeptide was prepared using a site-directed mutagenesis method.
  • pSGK523 was used as the PG43-H6TEV-GLP-2A2G expression plasmid.
  • primers forward and reverse single-stranded DNA oligomers in which the nucleotide sequence of the amino acid substitution site of each variant was changed were used. Primers used in the experiments are shown in Table 7 below.
  • E. coli 1 (3) cells were transformed by chemical method using calcium chloride using the mutant expression plasmids of the prepared ⁇ 1 3 -20 urine fusion polypeptide.
  • ⁇ -2 Expression of the Show 20 fusion polypeptide E. coli transfected with plasmids were found to be kanamycin 03 ⁇ 41 1. Colonies were formed in 1 t solid medium contained in concentration. Each of the transformed E. coli cells had a kanamycin concentration of 50 // ⁇ /! 11 After incubation in liquid medium, 50% glycerol was added in the same volume as the culture to make a cell concentrate, which was stored in a freezer at -801: temperature.
  • the optical density (0D600) of the cell was about 1.0 after 3 hours of incubation, the final concentration of IPTG was added to 0.1 mM to induce the expression of the GLP-2A2G fusion polypeptide. 4 hours after expression induction, the optical density was measured to determine the optical density of the cells.
  • Cells were concentrated so that the expression-induced cells had an optical density of 10.0, resuspended in 50 mM sodium phosphate, pH 7.2 buffer, and disrupted by using an ultrasonic cell crusher (ul trasoni c processor, Cole-Parmer). Crushed cells were labeled with the species cell fraction. Cell lysates were centrifuged at 12,000 ⁇ g, 4 ° C. for 15 minutes. The supernatant was recovered and labeled with soluble fraction. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 mM 50 mM sodium phosphate, pH 7.2 buffer and labeled with the insoluble fraction.
  • an ultrasonic cell crusher ul trasoni c processor
  • Frozen cell pellets of cells expressed at the flask scale were thawed by adding 50 me of 50 mM sodium phosphate, pH 7.2 buffer. Resuspended cells were disrupted using an ultrasonic cell crusher (Col-Parmer). The lysed cells were centrifuged at 12,000 rpm (12, 000X g) for 30 minutes and the supernatant was removed to recover the insoluble inclusion body fraction containing the recombinant fusion polypeptide.
  • inclusion body solubilization buffer 8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4
  • inclusion body solubilization buffer 8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4
  • Recombinant fusion polypeptides in the form of inclusions in fractions were allowed to be solubilized.
  • Solubilized insoluble fraction samples were centrifuged at 12, 000 Xg for 30 minutes and the supernatant was filtered through a (0.45 / 0.2) membrane filter.
  • the highest expression level of PG43-H6TEV-GLP-2A2G among 7 GLP-2A2G fusion polypeptides was purified.
  • an AKTA pure 25 chromatography system equipped with an S9 sample pump (S9) and an F9-C fraction collector (Fract ion col lector F9-C) for the purification of GLP-2A2G fusion polypeptide in a solubilized insoluble fraction ( GE Heal thcare) was used.
  • Solubilized insoluble fraction samples were previously equilibrated with inclusion body solubilization buffer (8 M urea, 20 mM tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4) Hi sTrap FF 1 Injection into the column (GE Heal thcare). After the injection is complete, the column is washed with 5 column column of equilibration buffer and 100% stepwise addition of 5 column column elution buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 500 mM imidazole, pH 7.4). GLP-2A2G fusion polypeptide bound to the resin of the column was eluted by increasing to.
  • Example 13 Linker Sequence Cleavage Through Protease Treatment Fractions of about 5 m of purified GLP-2A2G fusion polypeptides were combined and diluted to a urea concentration of 1 by adding 140 mbo dilution buffer (20 mM Tris, pH 7.4). TEV protease was added to the diluted recombinant fusion polypeptide to a final concentration of 500 and allowed to proceed with cleavage reaction at room temperature for 12 hours.
  • MALTI-TOF MS was used to confirm the expression of the complete form of GLP-2A2G fusion polypeptide (PG43-H6TEV-GLP-2A2G), and the modification of GLP-2A2G obtained after accurate cleavage and cleavage by TEV protease.
  • the molecular weight analysis used was performed. The result of measuring the molecular weight of GLP-2A2G obtained according to the present invention is shown in the figure.
  • the molecular weight of GLP-2A2G obtained from PG43-H6TEV-GLP-2A2G was measured to be 3753.10 Da, which was in agreement with the theoretical molecular weight of 3752.13 Da within an error range. It was confirmed that the complete form was expressed without partial cleavage or degradation of amino or carboxy terminus by.
  • the TEV protease recognizes the ENLFQ sequence, which is the recognition sequence in PG43-H6TEV-GLP-2A2G, and precisely cleaves the peptide bond between Q (glutamine), the last amino acid, and H (histidine), the first amino acid of GLP-2A2G. . (Availability test was not performed because the target peptide was not expressed).
  • Example 15.1 Construction of Elanant Fusion Polypeptide Expression Plasmids The genes for ecarantide fusion polypeptides are overlap extension.
  • the polymerase chain react ion (OE-PCR) method was synthesized.
  • the ekalantide fusion polypeptide is one of the amino terminal fusion partners PG07 SEQ ID NO: 9, PG15 SEQ ID NO: 31), PG43 (SEQ ID NO: 119) and 6 histidine tag (SEQ ID NO: 140) and TEV protease recognition sequence ( SEQ ID NO: 146) and the amino acid sequence of the ecarantide (SEQ ID NO: 638).
  • the ecarantide fusion polypeptide term used as a control-Ecal lant ide does not contain an amino terminal fusion partner and contains 6 histidine tags (SEQ ID NO: 140), a TEV protease recognition sequence (SEQ ID NO: 146) and an ekalanide. Amino acid sequence (SEQ ID NO: 642) is included.
  • the gene of each fusion polypeptide comprises the restriction sequences Ndel, Ncol and Jay's recognition sequence and one stop codon.
  • the nucleotide sequences (PG07, PG15, and PG43) encoding the ekalantide fusion polypeptide correspond to SEQ ID NOs: 644 to 646, respectively, and the control corresponds to SEQ ID NO: 643.
  • the ekarantide fusion polypeptide gene fragment synthesized by VII-PCR was cleaved using Ndel and Xhol restriction enzymes. Then, it was cloned into an expression vector pET26b capable of expression regulation by IPTG, including the T7 promoter, lac effector and Lad gene.
  • Ekalantide fusion polypeptide expression plasmids were prepared in the same manner as performed in Example 1. 1 and stored in the freezer at -8010.
  • Example 15.4 Confirmation of Produced Elanthanide by SDS-PAGE Analysis After treating the protein of each sample by the same method and conditions as in Example 1.4, the results are shown in FIGS.
  • the band of H6TEV-Ecal lant ide (molecular weight of 8.8 kDa) without the fusion partner comprising the amino acid sequence of SEQ ID NO: 1 as the control is the lowest compared to other ekalantide fusion polypeptides. Expression level was shown.
  • PG07-H6TEV-Eca 11 ant i de (molecular weight of 9.8 kDa), PG15-H6TEV-Ecal l ant (molecular weight of 10.8 kDa), an epantant fusion polypeptide fused with amino terminal fusion partners PG7, PG15 and PG43
  • the expression level of PG43-H6TEV-Eca 11 ant i de (molecular weight of 15.4 kDa) was confirmed to be increased compared to the control (H6TEV-Ecal lant ide). Densitometer analysis confirmed that the expression level of PG07-H6TEV-Ecal lantide by fusion of PG07 among PG7, PG15 and PG43 was the highest among all ekalantide fusion polypeptides.
  • Example 16.1 Construction of Nesiritide Fusion Polypeptide Expression Plasmids The genes for the nesiriteide fusion polypeptide were synthesized using an over lap extension polymerase chain react ion (OE-PCR) method.
  • the ' neciritide fusion polypeptide is one of PG07 (SEQ ID NO: 9), PG15C SEQ ID NO: 31), PG43C SEQ ID NO: 119) as an amino terminal fusion partner, and 6 histidine tags (SEQ ID NO: 140) and a TEV protease recognition sequence. (SEQ ID NO: 146) and amino acid sequence of Nesiritide (SEQ ID NO: 652).
  • Nesiritide fusion polypeptide H6TEV- used as a control
  • Ecal ant ide does not contain an amino terminal fusion partner and contains a 6 histidine tag (SEQ ID NO: 140), a TEV protease recognition sequence (SEQ ID NO: 146), and an amino acid sequence of necilitide (SEQ ID NO: 652). .
  • the gene of each fusion polypeptide is one of the recognition sequences of restriction enzymes Ndel, Ncol and J. ⁇ ⁇ 0 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 Includes a stop codon.
  • the nucleotide sequences encoding the nesirite fusion polypeptide correspond to SEQ ID NOs: 654 to 656, respectively, and the control corresponds to SEQ ID NO: 653.
  • Nesiriteide fusion polypeptide expression plasmids are described in Example 1. Produced in the same manner as performed in 1 and stored in the freezer at -80 ⁇ temperature.
  • Nesiritide Fusion Polypeptide Stored in the Culture of Cells Transfected with Plasmids and Expression of Nesiritide was Performed in the Same Method as Example 1.2.
  • the partner PG15 was identified from the fused PG15-H6TEV-Nesiritide (molecular weight of 7.2 kDa).
  • PG43-H6TEV- by fusion of PG43 in PG07, PG15, and PG43 through densitometer analysis
  • Nesiritide The expression level of Nesiritide was found to be the highest among all Nesiritide fusion polypeptides.
  • hPTH 1-84 fusion polypeptide Genes for the hPTH 1-84 fusion polypeptide were synthesized using the overlap extension polymerase chain reaction (OE-PCR) method.
  • the hPTH 1-84 fusion polypeptide recognizes one of PG07 SEQ ID NO: 9, PG15 (SEQ ID NO: 31), PG43 (SEQ ID NO: 119), 6 histidine tags (SEQ ID NO: 140), and TEV protease as amino terminal fusion partners.
  • the amino acid sequence of SEQ ID NO: 146 and hPTH 1-84 (SEQ ID NO: 18) is included.
  • the hPTH 1-84 fusion polypeptide (H6TEV-hPTH 1-84) used as a control did not include an amino terminal fusion partner, 6 histidine tags (SEQ ID NO: 140), TEV protease recognition sequence (SEQ ID NO: 146) and hPTH
  • the amino acid sequence 1-84 (SEQ ID NO: 628) is included.
  • the gene of each fusion polypeptide comprises the recognition sequences of the restriction enzymes Ndel, Ncol and Xhol and one stop codon.
  • the nucleotide sequence encoding the hPTH 1-84 fusion polypeptide corresponds to SEQ ID NOs: 635 to 637, respectively, and the control corresponds to SEQ ID NO: 654.
  • the hPTH 1-84 fusion polypeptide gene fragment synthesized with 0E-PCR was synthesized with Ndel and Xhol restriction enzymes. using 2019/143193 1 »(: 1 ⁇ 1 ⁇ 2019/000782 was cut and cloned into an expression vector? 23 ⁇ 4 capable of regulating expression by 1 ⁇ , including 17 promoter, 1% operator and 1301 gene.
  • the prepared 1-84 fusion polypeptide expression plasmids were identified for correct cloning through 0 sequencing. Made 1-84 fusion polypeptide expression plasmids were used to transform E. coli ⁇ 21 (3) cells by chemical method using calcium chloride. Expression of 5 ä 1-84 Fusion Polypeptides E. coli transfected with plasmids contained kanamycin 3 ⁇ 43113111 ( ⁇ 11) at a concentration of 50 // silver / pa Colonies were formed in solid medium.
  • the transformed Escherichia coli were incubated in a 1-liquid liquid medium containing kanamycin at a concentration of 50 sm /, respectively, and then 50% glycerol was added to the same volume as the culture medium to make a cell concentrate, which was then stored at -80 ° C. Stored.
  • the optical density of cells induced with expression is 10.
  • the cells are concentrated to zero and 50 sodium phosphate 7.2
  • the cells were resuspended in buffer and then lysed using an ultrasonic cell crusher (1116-33011 muscle teeth, 6-31 " 11161 ⁇ ).
  • Shredded cells are species cells Labeled as fractions. Cell lysate was centrifuged at 12, 000Xg, 4 ° C for 15 minutes. The supernatant was recovered and labeled with soluble fraction. The insoluble fraction was resuspended using an ultrasonic cell crusher with 500 mM 50 mM sodium phosphate, pH 7.2 buffer and labeled with the insoluble fraction.
  • SDS sample buffer 2 50 fold concentrated SDS sample buffer (SDS sample buffer 2, concentrate, Sigma), and then heated at 95 ° C. for 5 minutes to protein of each sample. This can be denatured. Denatured proteins in the samples were allowed to separate in the gel by molecular weight size using a 16% SDS-PAGE gel and TANK buffer. After SDS-PAGE, the gel was stained with a staining buffer containing Coomassie blue R-250, and then stained with a bleaching buffer so that only the stained protein was visible. The results are shown in FIGS. 42 and 43.
  • H6TEV-hPTHl-84 (molecular weight of 11.2 kDa) that does not include a fusion partner comprising the amino acid sequence of SEQ ID NO: 1 as a control is most compared with other hPTH 1-84 fusion polypeptides. Low expression levels.
  • PG07-H6TEV-hPTHl-84 (molecular weight of 12.2 kDa), PG15-H6TEV-hPTHl-84 (molecular weight of 13.2 kDa) and PG43, which are hPTH 1-84 fusion polypeptides fused with amino terminal fusion partners PG07, PG15 and PG43
  • the expression level of -H6TEV-hPTHl-84 (molecular weight of 15.9 kDa) was confirmed to be improved compared to the control (H6TEV-hPTHl-84).
  • Densitometer analysis confirmed that the expression level of PG15-H6TEV-hPTHl-84 by fusion of PG15 in PG07, PG15, and PG43 was the highest among all hPTH 1-84 fusion polypeptides. 43, all hPTH 1-84 fusion polypeptides, including the control group, were observed in the soluble fraction, but as the size of the amino terminal fusion partner increased, the ratio of insoluble fraction of the hPTH 1-84 fusion polypeptides increased and was the largest. PG43-H6TEV-hPTHl-84 fused with large PG43 showed about 70% of the total protein in the insoluble fraction.
  • hPTH 1-84 fusion polypeptides have high soluble expression rates
  • the hPTH 1-84 fusion polypeptides were purified from the fractions. Frozen cell pellets of cells expressed at the flask scale were thawed and resuspended by the addition of 20 m of inclusion body solubilization buffer (8 M urea, 20 mM Tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4). Resuspended cells were disrupted using an ultrasonic cell crusher (Cultrasonic Processor, Cole-Parmer).
  • the lysed cells were centrifuged at 12,000 rpm (12,000Xg) for 30 minutes and the supernatant was removed to remove the insoluble inclusion body fraction containing the recombinant fusion polypeptide and to recover the soluble fraction supernatant.
  • Soluble fraction samples were centrifuged at 12,000 ⁇ g for 30 minutes and the supernatant was filtered through a membrane filter (0.45 / 0.2 pm).
  • the highest expression level of PG15-h6TEV-hPTHl-84 among the four hPTHl-84 fusion polypeptides was purified.
  • AKTA pure 25 chromatography system GE Healthcare
  • S9 sample pump S9 sample pump
  • F9-C fraction collector Fraction collector F9-C
  • Solubilized insoluble fraction samples were injected into 1 mL column of HisTrap FF (GE Healthcare) previously equilibrated with inclusion body solubilization buffer (8 M urea, 20 mM tris, 500 mM sodium chloride, 50 mM imidazole, pH 7.4).
  • the molecular weight of hPTH 1-84 obtained from PG15-H6TEV-hPTHl-84 was measured to be 9425.54 Da, and was consistent with the theoretical molecular weight of 9424.73 Da with a molecular weight within the margin of error.
  • proteolytic en3 ⁇ 4one showed complete expression without partial cleavage or degradation of amino or carboxy terminus.
  • the TEV protease recognizes the ENLFQ sequence, which is the recognition sequence in PG15-H6TEV-hPTHl-84, and precisely cleaves the peptide bond between Q (glutamine), the last amino acid, and S (serine), the first amino acid of hPTHl-84. .
  • Example 21 Comparison of Expression Levels of hPTH 1-34 Fusion Polypeptides According to Location of Fusion Partners
  • Example 21.1 Additional Production of hPTH 1-34 Fusion Polypeptide Expression Plasmids
  • the genes for the hPTH 1-34 fusion polypeptides were synthesized using the overlap extension polymerase chain reaction (0E-PCR) method.
  • the hPTH 1-34 fusion polypeptide is an amino terminal fusion partner of PG15 (SEQ ID NO: 31), 6 histidine tags (SEQ ID NO: 140), TEV protease recognition sequence (SEQ ID NO: 146) or amino acid sequence of hPTH 1-34 ( SEQ ID NO: 151).
  • the terminal fusion partner according to the present invention should be fused to amino terminus in 13 ⁇ 4 1-34 fusion polypeptide to induce high expression of 3 ä 1-34 I can see that.
  • high affinity of the ä 1-34 fusion polypeptide can be maintained when the affinity tag is removed from the 3 ä 1-34 fusion polypeptide or located at the carboxy terminus of the I-terminal fusion partner.
  • expression is maintained but located at the amino terminus of the terminal fusion partner, it can be seen that the expression level of the ä 1-34 fusion polypeptide is significantly reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Diabetes (AREA)
  • Cardiology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 신규한 N-말단 융합 파트너, 상기 융합 파트너와 목적 폴리펩 타이드를 포함하는 융합 폴리펩타이드 및 이를 이용하여 목적 폴리펩타이드를 생 산하는 방법에 관한 것이다. 본 발명에 따른 신규한 융합 파트너를 사용하면, 종 래 융합 파트너 대비 목적 폴리펩타이드 (재조합 폴리펩타이드)의 수율을 향상시 킬 수 있다. 특히, 상대적으로 분자량이 작으며 분해되기 쉬운 아미노 말단을 갖 는 목적 폴리펩타이드를 유전자 재조합 기술을 이용하여 제조하는 경우에 유용하 다. 또한, 본 발명에 따른 융합 파트너를 포함하는 융합 폴리템타이드는 숙주세 포 내에서 내포체 형태로 발현이 유도됨으로써 숙주세포의 단백질 분해효소 등으 로부터 보호되어 안정적으로 목적 폴리펩타이드를 생산할 수 있는 장점이 있다. 따라서, 종래의 융합 파트너를 사용한 경우보다 안정성 및 수율이 향상된 재조합 펩타이드 생산 방법을 제공할 수 있다.

Description

명세서 재조합 폴리펩타이드 생산용 N-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법 기술분야
본 발명은 신규한 N-말단 융합 파트너, 상기 융합 파트너와 목적 폴리펩 타이드를 포함하는 융합 폴리펩타이드 및 이를 이용하여 목적 폴리펩타이드를 생 산하는 방법에 관한 것이다. 배경기술
최근 유전공학 및 생명공학 기술의 발달로 대장균, 효모, 동식물세포 등 을 이용하여 유용한 외래 단백질이 많이 생산되고, 이들 단백질이 의약품 등으로 널리 이용되고 있다. 구체적으로, 면역 조절제, 효소 저해제 및 호르몬 같은 의 약 및 연구용 단백질이나 반응 첨가 효소와 같은 산업용 단백질에 대한 생산 공 정 기술 개발 및 산업화가추진되고 있다.
이중에서도 유전자 재조합 기술은 여러 타겟 단백질들의 핵산을 발현벡터 에 클로닝하여 재조합 발현벡터를 얻고, 이를 적당한 숙주세포에 형질전환시켜 배양함으로써 타겟 단백질 (목적 폴리펩타이드)을 생산하는 방법이다. 다만, 숙주 세포에 내재된 분해 효소 (예를 들어, 프로테아제 (protease) 또는 펩티다제 (pept idase) )에 의해 타겟 단백질의 전체 또는 일부가 분해되어 수율이 낮아지거 나, 융합 파트너로 사용하는 펩타이드의 크기가 제조하고자 하는 타겟 단백질의 크기에 비해 너무 커서 수율이 현저히 떨어지는 문제가 있다.
따라서, 유전자 재조합 기술을 이용하여 타겟 단백질을 대량 생산하고자 하는 경우, 타겟 단백질를 안정적으로 발현시키면서도 생산 수율을 향상시킬 수 있는 융합파트너를 개발하는 것이 중요하다. 기술적 과제
본 발명의 목적은 재조합 폴리펩타이드를 생산하기 위한 신규한 아미노산 서열로 이루어진 N-말단융합 파트너를 제공하는 것이다. 2019/143193 1»(:1^1{2019/000782 본 발명의 다른 목적은 상기 1말단 융합 파트너와 목적 폴리펩타이드를 포함하는 융합폴리펩타이드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 융합 폴리펩타이드를 코딩하는 뉴클레오 타이드, 상기 뉴클레오타이드를 포함하는 발현벡터 및 상기 발현벡터를 포함하는 숙주세포를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 융합 폴리펩타이드를 이용하여 목적 폴리 펩타이드를 생산하는 방법을 제공하는 것이다. 과제 해결수단
상기 목적을 달성하기 위해, 본 발명의 일 측면은, 하기 일반식 1로 표시 되는 아미노산서열로 이루어진 말단 융합파트너 ; 목적 폴리펩타이드; 및 상기 말단 융합 파트너와 상기 목적 폴리펩타이드 사이에 링커를 포함하는 융합 폴 리펩타이드를 제공한다:
[일반식 1]
1^1; -父크 -父五크요 - 3크3 - 884 -父885 -父336-(å)11
상기 일반식 1에서,
331 내지 336은, 서로 독립적으로, 이소루신(1 1 I), 글리신
Figure imgf000004_0001
0 , 알라닌(시3, 시, 프롤린( 0, I3), 발린 0 1, V), 루신 0 11, I), 메티오닌 , ]«), 페닐알라닌(¾ , 티로신 0 1· ,
Figure imgf000004_0002
트림토판奸대, 0, 아스파라긴 (쇼 , ) , 세린比아 , 幻, 트레오닌(¾!·, I) , 시스테인 , 0 , 글루타민 ½111, 이, 아르기닌( 2, 10, 리신(切 V , 히스티딘(먀 引, 아스팔트산 31), I)) 및 글루탐산(이11, 으로 이루어진 군으로부터 선택되고,
상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
본 발명의 다른 측면은, 상기 융합 폴리펩타이드를 코딩하는 뉴클레오타 이드, 상기 뉴클레오타이드를 포함하는 발현벡터 및 상기 발현벡터를 포함하는 숙주세포를 제공한다.
본 발명의 또 다른 측면은, 상기 숙주세포를 배양하는 단계, 상기 숙주세 포에서 발현된 융합 폴리펩타이드를 정제하는 단계 및 상기 정제된 융합 폴리펩 2019/143193 1»(:1^1{2019/000782 타이드를 절단 효소와 배양하여 목적 폴리펩타이드를 회수하는 단계를 포함하는 재조합폴리펩타이드의 생산방법을 제공한다. 발명의 효과
본 발명에 따른 신규한 융합 파트너를 사용하면, 종래 융합 파트너 대비 목적 폴리펩타이드(재조합 폴리펩타이드)의 수율을 향상시킬 수 있다. 특히 , 상 대적으로 분자량이 작으며 분해되기 쉬운 아미노 말단을 갖는 목적 폴리펩타이드 를 유전자 재조합 기술을 이용하여 제조하는 경우에 유용하다. 또한, 본 발명에 따른 융합 파트너를 포함하는 융합 폴리펩타이드는 숙주세포 내에서 내포체 형태 로 발현이 유도됨으로써 숙주세포의 단백질 분해효소 등으로부터 보호되어 안정 적으로 목적 폴리펩타이드를 생산할 수 있는 장점이 있다. 따라서, 종래의 융합 파트너를 사용한 경우보다 안정성 및 수율이 향상된 재조합 펩타이드 생산 방법 을 제공할수 있다. 도면의 간단한설명
도 1은 재조합 대장균에서 발현된 1-34 융합 폴리펩타이드들의 총세 포 분획을 況)구쇼湖로 분석한 결과이다(레인 마커 단백질, 레인 1: 抑 - 1-34(균주 번호 ?的01), 레인 2: ?(¾)7-抑1 - 1¾1-34(균주 번호 ?0002), 레 인 3: ?아5내 - 대1-34(균주 번호 (}003); 레인 4: ?643내的 - 대1-34(균 주번호 ?0004)) .
도 2는 재조합 대장균에서 발현된 ä 1-34 융합 폴리펩타이드들의 총세 포 분획을 가용성 및 불용성 분획으로 분리한 후
Figure imgf000005_0001
분석한 결과이다(레 인 ¾!: 마커 단백질, 레인 가용성 분획, 레인 I: 불용성 분획, 레인 1:
Figure imgf000005_0002
태1-34(균주 번호 ?0001), 레인 2: ?(}07내 斗 1¾1-34(균주 번호 ?0002), 레 인 3: 야크내 -비 따 균주 번호 (}003); 레인 4: ?043내61 -11131¾1-34(균 주 번호 ?0004)) .
도 33은 ?아5-11 -出:)ä 1-34를 대량으로 생산하기 위한 유가식 배양 시 시간에 따른 광학밀도(0.1).600) 및 1 犯투여시간을 나타낸 그래프이다.
도 ¾는 유가식 배양을 통해 재조합 대장균으로부터 생산된 ?아5내 - 태 1-34를 시간 별로 샘플링한후 로 분석한 결과이다. 2019/143193 1»(:1^1{2019/000782 도 4는 재조합 대장균에서 발현된 ? 5(스2-7)내 -!!!3ä 1-34 융합 폴리 마커 단백질, 레인 1: ?아5(스2-
Figure imgf000006_0001
— 34).
도 5는 야크내 -뱌江 간 내 ?(}15의 2번째 또는 3번째 아미노산 잔기 를 이소루신(I), 아스파라긴( , 아르기닌 00 , 아스팔트산(I))으로 치환한 1¾ 1-34융합폴리펩타이드의
Figure imgf000006_0002
분석한 결과이다.
Figure imgf000006_0003
내 므(}15의 4번째 또는 5번째 아미노산 잔기 를 이소루신(I), 아스파라긴( , 아르기닌 00 , 아스팔트산(I))으로 치환한 대 1-34융합폴리펩타이드의
Figure imgf000006_0004
분석한 결과이다.
도 7은 므(}15-11 -1少1111-34 내 ?아5의 6번째 또는 7번째 아미노산 잔기 를 이소루신(I), 아스파라긴어), 아르기닌 00 , 아스팔트산(I))으로 치환한 바3!'}!
1-34융합폴리펩타이드의 변이체를 況 쇼묘로 분석한 결과이다.
도 83는 크로마토그래피를 통해 불용성 분획 내의 ?예7내的 - 1¾1-34 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실선, 파선, 점선들은 각각 280 에1 파장에서의 흡광도, 전도도(«파如 , 용출 완충액의 비율을 나타냄).
도 예는 크로마토그래피를 통해 정제한 ?(¾7내 -11?1111-34 융합 폴리펩
Figure imgf000006_0005
분석한 결과이다(레인 마커 단백질, 레인 £: 정제 전 시 료, 레인 2~4: 통과액 분획, 레인 8~11: 용출액 분획). 화살표는 ?예7-11 - 11?1¾1-34융합폴리펩타이드를 나타낸다.
도 93는 크로마토그래피를 통해 불용성 분획 내의 (}15내的 -11?1111-34 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실선, 파선, 점선들은 각각 280 에1 파장에서의 흡광도, 전도도(«파 , 용출 완충액의 비율을 나타냄).
도 %는 크로마토그래피를 통해 정제한 ?아5-1161^- 1¾1-34 융합 폴리펩
Figure imgf000006_0006
마커 단백질, 레인 £: 정제 전 시 료, 레인 2~4: 통과액 분획, 레인 8~11: 용출액 분획). 화살표는 므(}15-}1 - 바3재1-34융합폴리펩타이드를 나타낸다.
도 10크는 크로마토크래피를 통해 불용성 분획 내의 ?643내況 -11?대1-34 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실선, 파선, 점선들은 각각 280 nm 파장에서의 흡광도, 전도도(conduct ivity), 용출 완충액의 비율을 나타냄).
도 10b는 크로마토그래피를 통해 정제한 PG43-H6TEV-hPTHl-34 융합 폴리 펩타이드를 SDS-PAGE로 분석한 결과이다(레인 M: 마커 단백질, 레인 s: 정제 전 시료, 레인 2~4: 통과액 분획, 레인 8~11: 용출액 분획). 화살표는 PG43-H6TEV- hPTHl-34융합폴리펩타이드를 나타낸다.
도 11은 TEV프로테아제를 이용하여 정제된 각 시료의 융합 폴리펩타이드 를 절단한 후 분획을 SDS-PAGE로 분석한 결과이다(레인 M: 마커 단백질, 레인 C: TEY프로테아제를 처리하지 않은 시료, 레인 T: TEV프로테아제를 처리한 시료, 레인 1: PG07-H6TEV-hPTHl-34, 레인 2: PG15-H6TEV-hPTHl-34, 레인 3: PG43- H6TEV-hPTHl-34) .
도 12는 TEV프로테아제를 이용하여 정제된 PG15-H6TEV-hPTHl-34 융합 폴 리펩타이드를 절단한 후 분획을 況)S-PAGE로 분석한 결과이다(레인 M: 마커 단백 질, 레인 C: TEV프로테아제를 처리하지 않은 시료, 레인 T: TEV프로테아제를 처리한 시료).
도 13a는 등전점 차이를 이용하여 PG15-H6TEV-hPTHl-34 융합 폴리펩타이 드로부터 PG15-H6TEV와 hPTHl-34를 분리한 결과를 나타낸 것이다(크로마토그램에 서 실선, 파선, 점선들은 각각 280 nm 파장에서의 흡광도, 전도도 (conductivity), 용출 완충액의 비율을 나타냄).
도 13b는 등전점 차이를 이용하여 분리한 PG15-H6TEV-hPTHl-34 융합 폴리 펩타이드의 분획을 SDS-PAGE로 분석한 결과이다(레인 M: 마커 단백질, 레인 s: 정제 전 시료, 레인 1~3: 통과액 분획, 레인 5~9: 용출액 분획).
도 14a는 평균 소수성 차이를 이용하여 PG15-H6TEV-hPTHl-34 융합 폴리펩 타이드로부터 PG15-H6TEV와 hPTHl-34를 분리한 결과를 나타낸 것이다(크로마토그 램에서 실선, 점선들은 각각 280 nm 파장에서의 흡광도 및 용출 완충액의 비율을 나타냄).
도 14b는 평균 소수성 차이를 이용하여 분리한 PG15-H6TEV-hPTHl-34 융합 폴리펩타이드의 분획을 況S-PAGE로 분석한 결과이다(레인 M: 마커 단백질, 레인 s: 정제 전 시료, 레인 1~5: 1st peak분획, 레인 1~7: 2nd peak분획).
도 15는 hPTH 1-34표준물질의 분자량을 측정한 결과를 나타낸 것이다. 2019/143193 1»(:1^1{2019/000782 도 16은 본 발명에 따라 정제된 1¾ 1-34의 분자량을 측정한 결과를 나 타낸 것이다.
도 17은 미국약전(此 의 1-34 동정 기준시험법으로 표준물질 재 1-34와 본 발명에 따른 재조합 抑 1-34의 체류시간 및 순도를 확인한 그래프이 다.
도 18은 역상 크로마토그래피 및 미국약전(此 의 대 1-34 동정 기준시 험법 중 펩타이드 맵핑 방법을 통해 표준물질 대 1-34와 본 발명에 따른 재조 합 抑 1-34의 동등성을 분석한 결과이다.
도 19는 재조합 대장균에서 생산된 총 단백질을
Figure imgf000008_0001
분석한 결과
Figure imgf000008_0002
?0010) , 레인 7: ?043내的 -(}내- 28묘(균주 번호 ?0011)) .
도 20은 재조합 대장균의 총세포 분획을 가용성 및 불용성 분획으로 분리
Figure imgf000008_0003
분석한 결과이다(레인 마커 단백질, 레인 I: 총 분획, 레인 가용성 분획, 레인 I: 불용성 분획, 레인 1: 抑 -꾜13-1他81?(균주 번호 ?的05), 레인 2: (}07-期1 -此13-11(28묘(균주 번호 ?¥06), 레인 3: ?아5내的 - (표少-1敗81?(균주 번호 (¾)07), 레인 4: ? 22-抑1^ -此1)- 28묘(균주 번호 ?(¾08)). 도 21은 재조합 대장균의 총세포 분획을 가용성 및 불용성 분획으로 분리
Figure imgf000008_0004
분석한 결과이다(레인 ¾1 : 마커 단백질, 레인 T 총 분획, 레인 가용성 분획, 레인 I: 불용성 분획, 레인 5: ?029내 - 0 - 28묘(균주 번호 ?예09), 레인 6: ?036내 -꾜?- 281?(균주 번호 的10), 레인 7: ?043내 _ 꾜13- 281?(균주 번호 (;011)).
도 22는 043-抑1 -꾜13-1}(281^ 내 ? 43의 2번째 또는 3번째 아미노산 잔 기를 이소루신(I) , 아스파라긴어), 아르기닌(10, 아스팔트산([))으로 치환한 此므 - 1X281?융합 폴리펩타이드의
Figure imgf000008_0005
분석한 결과이다.
도 23은 ?643-抑1 - 012-11(281? 내 ? 43의 4번째 또는 5번째 아미노산 잔 기를 이소루신(I), 아스파라긴어), 아르기닌(10, 아스팔트산山)으로 치환한 比!3- 1他8요융합 폴리펩타이드의 변이체를 로 분석한 결과이다. 2019/143193 1»(:1^1{2019/000782 도 24는 ?043-11 -꾜15-1狀81? 내 43의 6번째 또는 7번째 아미노산 잔 기를 이소루신(I), 아스파라긴어), 아르기닌 00 , 아스팔트산(I))으로 치환한 (}1少 - 281?융합 폴리펩타이드의
Figure imgf000009_0001
분석한 결과이다.
도 25는 크로마토그래피를 통해 불용성 분획 내의 ?043내 -(! -1秘 8묘 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실선 , 점선들은 각각 280 ^ 파장에서의 흡광도 및 용출 완충액의 비율을 나타냄).
도 26은 크로마토그래피를 통해 정제한 ?643내的 -(^^-11(281? 융합 폴리 펩타이드를
Figure imgf000009_0002
분석한 결과이다(레인 마커 단백질, 레인 정제 전 시료, 肝: 통과액 분획, 레인 ^ 용출액 분획). 화살표는 ?643내 ^ -(}내-1 他8묘 융합 폴리펩타이드를 나타낸다.
도 27은 TEV 프로테아제를 이용하여 정제된 ?043내 -此13-1他81? 융합 폴리펩타이드를 절단한 후 분획을
Figure imgf000009_0003
분석한 결과이다(레인 마커 단 백질, 레인 0: 別 프로테아제를 처리하지 않은 시료, 레인 !' :
Figure imgf000009_0004
처리한 시료).
도 28은 본 발명에 따라 정제된 꾜?- 281?의 분자량을 측정한 결과를 나 타낸 것이다.
도 29는 재조합 대장균에서 생산된 총 단백질을
Figure imgf000009_0005
분석한 결과 이다(레인 ¾1 : 마커 단백질, 레인 1: 11 -꾜13-2쇼2(}(균주 번호 ?的12), 레인 2: (¾)7내 ^ -(}내-2쇼2(}(균주 번호 ?的13), 레인 3: ?(}15내的 -(¾ -2쇼26(균주 번호 的14), 레인 4: ?022내 ^ -(¾ -2쇼2(}(균주 번호 ?的15), 레인 5: ?029내 -
(표 쇼요 (균주 번호 的16), 레인 6: ?036내 - 0 -2쇼2(;(균주 번호 ?0017), 레 인 7: ?043내 -꾜?-2쇼2((균주 번호 ?¥18)).
도 30은 재조합 대장균의 총세포 분획을 가용성 및 불용성 분획으로 분리
Figure imgf000009_0006
분석한 결과이다(레인 ¾1 : 마커 단백질, 레인 £: 가용성 분획, 레인 I: 불용성 분획, 레인 5: ?629내 ^ -꾜13-2요2(}(균주 번호 므的16), 레인 6: ?636내附 -(내 쇼요 (균주 번호 (}017), 레인 7: ?643내的 -(}1 -2요2(;(균주 번호 (»18)).
Figure imgf000009_0007
2번째 또는 3번째 아미노산 잔기 를 이소루신(I), 아스파라긴어), 아르기닌(10, 아스팔트산(미으로 치환한 比 2요20융합 폴리펩타이드의 변이체를 況 로 분석한 결과이다. 2019/143193 1»(:1^1{2019/000782
Figure imgf000010_0001
43의 4번째 또는 5번째 아미노산 잔기 를 이소루신(I), 아스파라긴( , 아르기닌犯), 아스팔트산(⑴으로 치환한 0 - 2쇼26융합폴리펩타이드의 변이체를 況 쇼湖로 분석한 결과이다.
Figure imgf000010_0002
므 43의 6번째 또는 7번째 아미노산 잔기 를 이소루신(I), 아스파라긴( , 아르기닌 00, 아스팔트산(이으로 치환한 此!3- 2쇼26융합폴리펩타이드의
Figure imgf000010_0003
분석한 결과이다.
도 34는 크로마토그래피를 통해 불용성 분획 내의 ?043내 -(¾ -2 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실선, 점선들은 각각 280 ^ 파장에서의 흡광도 및 용출 완충액의 비율을 나타냄).
도 35는 크로마토그래피를 통해 정제한 ?043내 - 0夕_2 융합 폴리펩타 이드를 쇼抑로 분석한 결과이다(레인 1- 마커 단백질, 레인 정제 전 시 료, 肝: 통과액 분획 , 레인 1~5: 용출액 분획). 화살표는 ?643내 - 0少-2 융합 폴리펩타이드를 나타낸다.
도 36은 프로테아제를 이용하여 정제된
Figure imgf000010_0004
리펩타이드를 절단한 후 분획을
Figure imgf000010_0005
분석한 결과이다(레인 ¾1: 마커 단백 질, 레인 0:
Figure imgf000010_0006
처리하지 않은 시료, 레인 I: ^ 프로테아제를 처리한 시료).
도 37은 본 발명에 따라 정제된 (}내-2요2(;의 분자량을 측정한 결과를 나타 낸 것이다.
도 38은 재조합 대장균에서 발현된 에칼란타이드 융합 폴리펩타이드들의 총세포 분획을
Figure imgf000010_0007
분석한 결과이다(레인 마커 단백질, 레인 1: 묘 -此 川 균주 번호 PG019) , 레인 2: (¾)7-}1 -此311¾ 1(16(균주 번 호 ?0020), 레인 3: ?아5내 -此311 1川6(균주 번호 PG021), 레인 4: PG43- }{61 -묘0311 1 (16(균주 번호 ?(}022)).
도 39는 재조합 대장균에서 발현된 에칼란타이드 융합 폴리펩타이드들의 총세포 분획을 가용성 및 불용성 분획으로 분리한 후 敗구요湖로 분석한 결과이 다(레인 마커 단백질, 레인 가용성 분획, 레인 I: 불용성 분획, 레인 1: 恥 - ^3113삵川6(균주 번호 ?的19), 레인 2: ?예7내 - ^ 13 6(균주 번 호 ?的20), 레인 3: ?아5내的 - 13 川6(균주 번호 (}021), 레인 4: ?GA3- - 3113삵 6(균주 번호 ?^022)). 2019/143193 1»(:1^1{2019/000782 도 40은 재조합 대장균에서 발현된 네시리타이드 융합 폴리펩타이드들의 총세포 분획을
Figure imgf000011_0001
분석한 결과이다(레인 : 마커 단백질, 레인 1:
Figure imgf000011_0002
(균주 번호 ?mA) ,
Figure imgf000011_0003
(균주 번호 (}025), 레인 4: 043내61^- !"오†; (균주 번호 (¾)26)).
도 41은 재조합 대장균에서 발현된 네시리타이드 융합 폴리펩타이드들의 총세포 분획을 가용성 및 불용성 분획으로 분리한 후
Figure imgf000011_0004
분석한 결과이 다(레인 1- 마커 단백질, 레인 가용성 분획, 레인 I: 불용성 분획, 레인 3:
Figure imgf000011_0005
(균주 번호 ?0026)).
도 42는 재조합 대장균에서 생산된 총 단백질을
Figure imgf000011_0006
분석한 결과 이다(레인 ¾1 : 마커 단백질, 레인 1: ᄈ1 -1止111-84(균주 번호 ?0027) , 레인 2:
Figure imgf000011_0007
?0029) , 레인 4: ?043내61£:\ 11) 1-84(균주번호 ?0030)) .
도 43은 재조합 대장균의 총세포 분획을 가용성 및 불용성 분획으로 분리
Figure imgf000011_0008
분석한 결과이다(레인 마커 단백질, 레인 가용성 분획, 레인 I : 불용성 분획 , 레인 1 : 볘1 -11?1¾1-84(균주 번호 ?0027), 레인 2: ?(¾7- 期別 肝 생 균주 번호 ?的28), 레인 3: ?供5내 - 대1-84(균주 번호
?예29), 레인 4: ?043내61 - 대1-84(균주 번호므(;030)).
도 44는 크로마토그래피를 통해 불용성 분획 내의 ?的7-抑1 -1^}11-84 융합 폴리펩타이드를 정제한 결과이다(크로마토그램에서 실색, 점선들은 각각 280 ¥파장에서의 흡광도 및 용출 완충액의 비율을 나타냄).
도 45는 크로마토그래피를 통해 정제한므(}07내 - 1^111-84 융합 폴리펩
Figure imgf000011_0009
분석한 결과이다(레인 ¾!: 마커 단백질, 레인 정제 전 시 료, 肝: 통과액 분획 , 레인 1~5: 용출액 분획). 화살표는 ?예7내61 -11?대1-84 융합폴리펩타이드를 나타낸다.
Figure imgf000011_0010
이용하여 정제된 ?¥7-11 - 111-84 융합 폴 리펩타이드를 절단한 후 분획을
Figure imgf000011_0012
분석한 결과이다(레인
Figure imgf000011_0011
마커 단백 질, 레인 0: 프로테아제를 처리하지 않은 시료, 레인 I: 프로테아제를 처리한 시료). 2019/143193 1»(:1^1{2019/000782 도 47은 본 발명에 따라 정제된 1¾1-84의 분자량을 측정한 결과를 나타 낸 것이다.
도 48은 균주 므(}001, ?0003, PG031, ?的32 및 ?(}033에서 발현시킨 각각의 융합 폴리펩타이드들의 구조를 도식화한 것이다. 발명의 실시를 위한최선의 형태
본 발명의 일 실시예는 하기 일반식 1로 표시되는 아미노산 서열로 이루어진 말단 융합파트너 ; 목적 폴리펩타이드 ; 및 상기 말단 융합 파트너와 상기 목적 폴리펩타이드 사이에 링커를 포함하는 융합 폴리펩타이드를 제공한다:
[일반식 1]
Figure imgf000012_0001
상기 일반식 1에서,
331 내지 336은, 서로 독립적으로, 이소루신(11 I), 글리신 ½1 , G), 알라닌(시 쇼), 프롤린( 0, I3), 발린 , V), 루신(1 11, 나, 메티오닌 , 酌, 페닐알라닌 0¾ , 티로신奸 , V), 트림토판 대,
Figure imgf000012_0002
아스파라긴 , , 세린 아 , 3) , 트레오닌(¾!·, I) ,
Figure imgf000012_0003
0 , 글루타민 ½111, 0) , 아르기닌( 的, 리신 0^ 則, 히스티딘(바 , 아스팔트산 31), I)) 및 글루탐산 ½111, 으로 이루어진 군으로부터 선택되고,
상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
구체적으로, 상기 331 내지 336은, 서로 독집적으로, 이소루신(11 I), 프롤린( 0, ), 루신(1 11, 나, 아스파라긴(쇼 , II), 아르기닌( 당, 요), 히스티딘(바 10 및 아스팔트산 3 I))으로 이루어진 군으로부터 선택될 수 있다.
상기 II이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개, 25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는
36개의 아미노산일 수 있다. 구체적으로, 상기 n이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다.
재조합 미생물 시스템을 이용하여 여러 종류의 목적 폴리펩타이드를 생산하는 경우, 그 타겟 물질의 물성에 따라 숙주세포 내 효소에 의한 분해, 낮은 발현 수준, 부적절한 단백질 폴딩 및/또는 낮은 mRNA 안정성 등으로 인해 수율이 저하될 우려가 있다. 예를 들어, 종래 융합 파트너로 활용되는 MBP (maltose binding protein) , 글루타티온 S-전달효소 (glutathione-S- transferase) , 티오레독신 (thioredoxin), SUMO, 유비퀴틴 등은 각각 397, 216 , 106 , 101 , 76 개의 아미노산을 갖는데, 비교적 저분자량의 목적 폴리펩타이드 등을 생산할 때 수율이 좋지 못한 문제가 있었다.
이에 반해, 본 발명에 따른 상기 N-말단 융합 파트너는 7개 내지 43개의 아미노산으로 이루어진 상대적으로 분자량이 작은 펩타이드로서 , 이를 적용하여 hPTH 1-34 등의 목적 폴리펩타이드를 생산하는 경우 기존의 융합 파트너들을 활용한 경우보다 향상된 수율로 hPTH 1-34를 수득할 수 있다. 예를 들어, 재조합 융합 폴리펩타이드에서 hPTH 1-34의 비율을 아래 표 1에 개략적으로 나타내었다.
【표 1】
Figure imgf000013_0002
내{3!11-34를 기준으로 링커를 포함하여 계산
표 1에 나타난 바와 같이, 종래의 융합 파트너들은 융합 폴리펩타이드에서 ä 1-34의 비율이 8% 내지 29%에 그치는 반면, 본 발명에 따른 융합 파트너가 융합된 융합 폴리펩타이드에서의 ä 1-34의 비율은 37% 내지 62%로 확인된다. 따라서, 동일한 농도의 융합 폴리펩타이드로부터 얻을 수
Figure imgf000013_0001
1-34의 양이 종래 융합 파트너 대비 더 높으므로 최종 생산 수율이 향상될 수 있다. 2019/143193 1»(:1^1{2019/000782 또한 , 본 발명에 따른 융합 파트너는 융합 폴리펩타이드의 불용성 발현을 유도하여 융합 폴리펩타이드가 불용성 내포체로서 숙주세포 내로 고농도로 축적되게 할 수 있다. 따라서, 대장균(묘 아 !! 001 1) 등의 숙주세포 내에서 프로테아제 및 펩티다제에 의해 전부 혹은 일부가 분해 혹은 절단될 우려가 있는 목적 폴리펩타이드를 고수율로 수득하기 용이한 장점이 있다.
예를 들어, 상기 ^말단 융합파트너는 하기 일반식 2로 표시되는 아미노산서열을포함하는 것일 수 있다.
[일반식 2]
]\犯七 -父크겄 1-116- 용- 0-1元11-1118-(2)11
상기 일반식 2에서,
331은 이소루신 , 글리신 , 알라닌, 프롤린, 발린 , 루신, 메티오닌 , 페닐알라닌, 티로신, 트립토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며 ,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
또한, 상기 3 은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트림토판으로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 ¾ 은 이소루신(1 16, I), 아스파라긴 에, , 아르기닌( 10 및 아스팔트산 31), £>)으로 이루어진 군으로부터 선택될 수 있다.
상기 이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개,
13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개,
25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는
36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다. 2019/143193 1»(:1^1{2019/000782 일 구체예로, 상기 일반식 2로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 8, 30, 52, 74, 96 또는 118의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 331은 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식
2로 표시되는 아미노산 서열로 이루어진 1말단 융합파트너는 서열번호 9, 31,
53, 75, 97또는 119의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기
Figure imgf000015_0001
아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 2로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 10, 32, 54, 76, 98 또는 120의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 331은 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 2로 표시되는 아미노산 서열로 이루어진 1말단 융합파트너는 서열번호 11, 33, 55, 77, 99 또는 121의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 말단 융합파트너는 하기 일반식 3으로 표시되는 아미노산 서열을포함하는 것일 수 있다.
[일반식 3]
]¾ :-요311-¾32 - / ·요-1)1· 0-[ 11내 13-(å)11
상기 일반식 3에서,
표332는 이소루신, 글리신 , 알라닌 , 프롤린, 발린 , 루신, 메티오닌 , 페닐알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며 ,
상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
구체적으로, 상기
Figure imgf000015_0002
이소루신(1^, I), 아스파라긴 , , 아르기닌( 8, 10 및 아스팔트산 31), I))으로 이루어진 군으로부터 선택될 수 있다.
상기 II이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 2019/143193 1»(:1^1{2019/000782 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 2는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개,
13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개, 25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는 36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개 , 29개 또는 36개의 아미노산일 수 있다.
또한, 상기 3크2는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트림토판으로 이루어진 군으로부터 선택될 수 있다.
일 구체예로, 상기 일반식 3으로 표시되는 아미노산 서열로 이루어진 N- 말단 융합파트너는 서열번호 9 , 31, 53, 75, 97 또는 119의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 332는 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 3으로 표시되는 아미노산서열로 이루어진 말단 융합파트너는 서열번호 12, 34 , 56 , 78 , 100또는 122의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 332는 아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 3으로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 13, 35, 57, 79, 101 또는 123의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 332는 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 3으로 표시되는 아미노산 서열로 이루어진 I말단 융합파트너는 서열번호 14, 36, 58, 80, 102 또는 124의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 I말단 융합파트너는 하기 일반식 4로 표시되는 아미노산 서열을포함하는 것일 수 있다.
[일반식 4]
-요 -:! 16-¾83-!)1*0 - 1 1 - 3_(å)11 2019/143193 1»(:1^1{2019/000782 상기 일반식 4에서,
333은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
또한, 상기 333은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트림토판으로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기
Figure imgf000017_0001
이소루신(1 1 I), 아스파라긴(쇼 , , 아르기닌( 10 및 아스팔트산 31), I))으로 이루어진 군으로부터 선택될 수 있다.
상기 II이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개, 25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는
36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 V든 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다.
일 구체예로, 상기 일반식 4로 표시되는 아미노산 서열로 이루어진 - 말단 융합파트너는 서열번호 15 , 37, 59, 81, 103 또는 125의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 333은 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 4로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 16 , 38 , 60 , 82 , 104또는 126의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 333은 아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 4로 표시되는 아미노산 서열로 2019/143193 1»(:1^1{2019/000782 이루어진 말단 융합파트너는 서열번호 9, 31, 53, 75, 97 또는 119의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 에3은 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 4로 표시되는 아미노산 서열로 이루어진 1말단 융합파트너는 서열번호 17, 39, 61, 83, 105 또는 127의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 -말단 융합파트너가 하기 일반식 5로 표시되는 아미노산 서열을포함하는 것일 수 있다.
[밀반식 5]
1¾ -요311-116- 용- 384 - 1 그 -미3-(2)11
상기 일반식 5에서,
334는 이소루신, 글리신 , 알라닌, 프롤린, 발린 , 루신 , 메티오닌, 페닐알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
또한, 상기 334는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트립토판으로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 331은 이소루신(11 I), 아스파라긴 , , 아르기닌( 용, 10 및 아스팔트산 31), I))으로 이루어진 군으로부터 선택될 수 있다.
상기 이 0의 정수인 경우, 상기 I말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 1371], 14711, 1571], 1671], 1괘, 1871], 19ᅫ, 2왜 , 2171], 22711, 237]], 2471], 25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는 36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 2019/143193 1»(:1^1{2019/000782 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다.
일 구체예로, 상기 일반식 5로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 8, 40, 62, 84, 106 또는 128의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 334는 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 5로 표시되는 아미노산 서열로 이루어진
Figure imgf000019_0001
융합파트너는 서열번호 19, 41, 63, 85, 107또는 129의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 크크4는 아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 5로 표시되는 아미노산 서열로 이루어진 -말단 융합파트너는 서열번호 20, 42, 64, 86, 108 또는 130의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 334는 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 5로 표시되는 아미노산 서열로 이루어진
Figure imgf000019_0002
융합파트너는 서열번호 21, 43, 65, 87, 190 또는 131의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 1말단 융합파트너는 하기 일반식 6으로 표시되는 아미노산 서열을포함하는 것일 수 있다.
[일반식 6]
] 1 :-쇼311-116- 용_1)1,0 - 3크5 - 3_(å)11
상기 일반식 6에서,
335는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며 ,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
또한, 상기 335는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트림토판으로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 은 이소루신 (11 I), 아스파라긴 , , 2019/143193 1»(:1^1{2019/000782 아르기닌( 요, 10 및 아스팔트산 3 이으로 이루어진 군으로부터 선택될 수 있다.
상기 II이 0의 정수인 경우, 상기 -말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개,
13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개,
25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는
36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다.
일 구체예로, 상기 일반식 6으로 표시되는 아미노산 서열로 이루어진 _ 말단 융합파트너는 서열번호 22, 44, 66, 88, 110 또는 132의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 3크5는 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 6으로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 23, 45, 67, 89, 111또는 135의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 335는 아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 6으로 표시되는 아미노산 서열로 이루어진 말단 융합파트너는 서열번호 24, 46, 68, 90, 112 또는 134의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 335는 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 6으로 표시되는 아미노산 서열로 이루어진 I말단 융합파트너는 서열번호 25, 47, 69, 91, 113 또는 135의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 1말단 융합파트너는 하기 일반식 7로 표시되는 아미노산 서열을포함하는 것일 수 있다.
[일반식 7]
-쇼 - 16- 요-1310 -해 - 2019/143193 1»(:1^1{2019/000782 상기 일반식 7에서,
336은 이소루신, 글리신, 알라닌, 프롤린 , 발린, 루신, 메티오닌, 페닐알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
또한, 상기 336은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐알라닌, 티로신 및 트립토판으로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 331은 이소루신(11 I), 아스파라긴(쇼 , , 아르기닌( 10 및 아스팔트산(쇼31), I))으로 이루어진 군으로부터 선택될 수 있다.
상기 II이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있다. 또한, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개, 17개, 18개, 19개, 20개, 21개, 22개, 23개, 24개, 25개, 26개, 27개, 28개, 29개, 30개, 31개, 32개, 33개, 34개, 35개 또는
36개의 아미노산일 수 있다. 구체적으로, 상기 II이 1의 정수인 경우, 상기 1는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다.
일 구체예로, 상기 일반식 7로 표시되는 아미노산 서열로 이루어진 1 말단 융합파트너는 서열번호 26, 48 , 70 , 92 , 114 또는 136의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 336은 아스파라긴, 세린, 트레오닌, 시스테인 및 글루타민으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 7로 표시되는 아미노산 서열로 이루어진
Figure imgf000021_0001
융합파트너는 서열번호 27 , 49 , 71 , 93 , 115또는 137의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 336은 아르기닌, 리신 및 히스티딘으로 이루어진 군으로부터 선택될 수 있다. 일 구체예로, 상기 일반식 7로 표시되는 아미노산 서열로 2019/143193 1»(:1^1{2019/000782 이루어진 말단 융합파트너는 서열번호 28, 50 , 72 , 94 , 116 또는 138의 아미노산서열로 이루어진 것일 수 있다.
또한, 상기 336은 아스팔트산 또는 글루탐산일 수 있다. 일 구체예로, 상기 일반식 7로 표시되는 아미노산 서열로 이루어진 I말단 융합파트너는 서열번호 29, 51 , 73 , 95, 117 또는 139의 아미노산 서열로 이루어진 것일 수 있다.
상기 일반식 1 내지 7에 있어서, 상기 II이 0의 정수인 경우, 상기 말단 융합 파트너는 7개의 아미노산으로 이루어진 것일 수 있으며, 본 발명에서 7개의 아미노산으로 이루어진 I말단 융합 파트너를 7的7” 로 명명하였다. 또한, 상기 II이 1의 정수인 경우, 상기 는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노산에서부터 시작하는 8개, 15개, 22개, 29개 또는 36개의 아미노산일 수 있다. 이 경우, 상기 말단 융합 파트너는 15개, 22개, 29개, 36개 또는 43개의 아미노산으로 이루어진 것일 수 있으며, 본 발명에서 15개, 22개, 29개, 36개 또는 43개의 아미노산으로 이루어진 I말단 융합 파트너를 각각 순서대로 아5” , 印 22” , 印029” , “므636” ,
Figure imgf000022_0001
명명하였다.
상기 1^-말단 융합 파트너는 샤페로닌 10((±크?6101½ 10 ,
Figure imgf000022_0002
I말단 유도체일 수 있다. 또한, 상기 I말단 융합 파트너는 7 내지 43개의 아미노산을 갖는 펩타이드로서, 서열번호 119의 말단에서 (:-말단으로 7 내지 43개의 연속적인 아미노산으로 이루어진 것일 수 있다.
구체적으로, 상기
Figure imgf000022_0003
융합 파트너는 서열번호 8 내지 139 중 어느 하나의 아미노산 서열로 이루어진 것일 수 있다. 상기 융합 파트너의 아미노산 갯수는 목적 폴리펩타이드의 특성에 따라조절될 수 있다. 예를 들어, 7개, 8개,
9개, 10개, 13개, 15개, 17개, 22개, 25개, 27개, 29개, 30개, 33개, 38개, 40개, 43개 등일 수 있다. 일 구체예로서, 상기 말단 융합 파트너는 서열번호 9 , 31 ,
53 , 75 , 97또는 119로 표시되는 아미노산서열로 이루어진 것일 수 있다.
본 발명의 또 다른 측면은, 전술한 바와 같은 신규한 말단 융합 파트너, 목적 폴리펩타이드 및 상기 말단 융합 파트너와 상기 목적 폴리펩타이드 사이에 링커를 포함하는 융합폴리펩타이드를 제공한다.
상기 링커는 친화성 태그를 포함할 수 있다. 본 발명에서 사용된 용어 2019/143193 1»(:1^1{2019/000782
"친화성 태그"는 재조합 융합 폴리펩타이드 또는 이를 코딩하는 핵산에 도입될 수 있는 펩타이드 또는 핵산 서열로서 다양한 목적으로 사용될 수 있으며, 예를 들어 목적 폴리펩타이드의 정제 효율을 높이기 위한 것일 수 있다. 본 발명에서 사용될 수 있는 친화성 태그는 당업계에 공지된 임의의 적합한 물질을 원하는 바에 따라 사용할 수 있다. 예를 들어, 본 발명에 사용되는 친화성 태그는 폴리히스티딘 태그(서열번호 7 또는 8), 폴리라이신 태그(서열번호 9 또는 10), 또는 폴리아르기닌 태그(서열번호 11 또는 12)일 수 있다.
또한, 상기 링커는 프로테아제 인식 서열을 포함할 수 있다. 프로테아제란, 특정 아미노산 서열을 인식하여, 인식한 서열 내의 펩타이드 결합이나 그 서열의 마지막 아미노산과 융합된 폴리펩타이드의 첫번째 아미노산과의 펩타이드 결합을 절단하는 단백질 분해효소이다. 본 발명에 따른 융합 폴리펩타이드는 프로테아제 인식 서열을 갖는 링커를 포함함으로써, 최종 단계에서 폴리 펩타이드 정제시 절단효소 인식 서열이 포함된 아미노 말단(친화성 태그를 사용한 경우에는 친화성 태그도 포함)과 목적 폴리펩타이드의 1말단을 분리시켜 목적 폴리펩타이드를 회수할수 있다.
구체적으로, 상기 프로테아제 인식 서열은 담배 식각 바이러스 프로테아제 인식 서열, 엔테로키나아제 인식 서열, 유비퀴틴 가수분해효소 인식 서열, 인자 퓨린 및 이들의 조합으로 이루어진 군으로부터 선택되는 인식 서열일 수 있다. 예를 들어, 상기 프로테아제 인식 서열은 서열번호 146 내지 150의 아미노산서열 중 어느 하나를 포함할 수 있다.
본 발명에서 사용된 용어 ’’목적 폴리펩타이드’’는 재조합 생산 시스템을 통해 수득하고자 하는폴리펩타이드를 의미한다.
상기 목적 폴리펩타이드는 본 발명에 따른 -말단 융합 파트너와 융합을 통해, 발현수준이 향상될 뿐만 아니라, 불용성 내포체 형태로 세포 내에 축적됨으로써 숙주세포 내 효소에 의한 분해로부터 보호될 수 있어, 결과적으로 더 높은 수율로 수득될 수 있다. 또한, 상기 목적 폴리펩타이드는 서열번호 18 내지 27의 아미노산 서열 중 어느 하나를 포함할 수 있다. 바람직하게는, 상기 목적 폴리펩타이드는 2 ¾고3 내지 15 壯)3 , 2.5 1出3 내지 14 壯)크, 3 壯 내지 13 壯 , 3.5 1出3 내지 12抑3 , 4壯)3 내지 11壯)3의 분자량을 갖는 것일 수 있다. 구체적으로, 상기 목적 폴리펩타이드는 인간 부갑상선 호르몬 1-3401?ä 1-34), 인간 부갑상선 호르몬 l-84(hPTH 1-84), 글루카곤 유사 펩타이드- GLP- 1), 리라글루타이드 ( l iraglut ide) 전구체 펩타이드, 엑세나타이드 (exenat ide), 인슐린 유사 성장인자- l( IGF-l), 글루카곤 유사 펩타이드- 2(GLP-2), 테두글루타이드 (teduglut ide), 에칼란타이드 (ecal l ant ide), 네시리타이드 (nesi r i t ide) , 인슐린 및 인슐린 유사체로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
상기 인간 부갑상선 호르몬의 아미노 말단 단편인 hPTH 1-34 (Human Parathyroid Hormone 1_34)는, 갑상선에 의해 분비되는 115개 아미노산 (aa)의 프리-프로-펩타이드 (prepropept ide) 형태로 발현되어 신호서열 및 프로펩타이드 제거 후에 혈액으로 분비되는 펩타이드로서, 혈액 내 칼슘 농도를 증가시키는 작용을 하며 뼈 형성을 자극하는 것으로 알려져 있다. hPTH 1-34는 인간 부갑상선 호르몬의 아미노 말단 부위의 34개의 아미노산을 갖는 펩타이드로, 테리파라타이드 (Ter iparat ide)로 지칭되기도 한다. 예를 들어, 상기 hPTH 1-34 폴리펩타이드는 서열번호 151의 아미노산 서열로 이루어질 수 있고, 상기 아미노산서열은서열번호 292의 염기서열에 의해 코딩될 수 있다.
또한, 상기 인간 부갑상선 호르몬 l-84(hPTH 1-84)는, 갑상선에 의해 분비되는 115개 아미노산 (aa)의 프리-프로-펩타이드로부터 유래한 84개의 아미노산을 갖는 펩타이드로, 혈액 내 칼슘 농도를 증가시키는 작용을 하며 뼈 형성을 자극하는 것으로 알려져 있다. hPTH 1-84는 일반적으로 희귀질환인 저칼슘혈증 (hypocalcemia) 또는 부갑상선 기능저하증 (hypoparathyroidi sm)의 치료제로 사용된다. 예를 들어, 상기 hPTH 1-84 폴리펩타이드는 서열번호 628의 아미노산 서열로 이루어질 수 있고, 상기 아미노산 서열은 서열번호 633의 염기서열에 의해 코딩될 수 있다. 상기 목적 폴리펩타이드는 서열번호 151, 340 , 341 , 484, 485, 628, 638, 642 및 652의 아미노산서열 중 어느 하나의 아미노산 서열로 이루어진 것일 수 있다.
또한, 상기 글루카곤 유사 펩타이드- l(GLP-l)은 31개의 아미노산으로 구성된 폴리펩타이드이다. 이와 관련하여, 리라글루타이드는 이의 유사체로서 GLP-1의 28번째 라이신이 아르기닌으로 치환 (K28R)되어 있으며, 20번째 라이신 잔기의 아미노 그룹에 팔미트산과 글루탐산으로 구성된 N-Palmi toyl-L-glutami c acid가 결합되어 있는 형태를 갖는다. 리라글루타이드는 제 2형 당뇨병 또는 비만을 치료제로 사용될 수 있으며, 일반적으로 리라글루타이드는 N-Palmi toyl- L-glutami c acid가 결합되어 있지 않은 리라글루타이드 전구체 펩타이드 (GLP- 1K28R)를 생산하고, 이의 20번째 라이신 잔기에 N-Palmi toyl-L-glutami c acid를 결합시키는 공정으로 생산할 수 있다 (Dunweber , Jensen et al . 2007) . 예를 들어 , 상기 GLP-1 폴리펩타이드는 서열번호 340의 아미노산 서열로 이루어질 수 있고, 상기 아미노산 서열은 서열번호 475의 염기서열에 의해 코딩될 수 있다. 또한, 상기 리라글루타이드 전구체 펩타이드 (GLP-1K28R)는 서열번호 341의 아미노산 서열로 이루어질 수 있고, 상기 아미노산 서열은 서열번호 476의 염기서열에 의해 코딩될 수 있다.
또한, 상기 글루카곤 유사 펩타이드- 2(GLP-2)는 33개의 아미노산으로 구성된 폴리펩타이드이다. 이와 관련하여 , 테두글루타이드는 이의 유사체로서 GLP-2의 2번째 알라닌이 글리신으로 치환 (A2G)되어 있는 형태이다. 테두글루타이드는 희귀질환인 단장증후군 (Short Bowel Syndrome) , 화학 요법 유발성 설사 (Chemotherapy- Induced Di arrhea) 및 장피 누공 (Enterocutaneous Fi stul a)의 치료제로 사용될 수 있다. 예를 들어, 상기 GLP-2 폴리펩타이드는 서열번호 484의 아미노산 서열로 이루어질 수 있고, 상기 아미노산 서열은 서열번호 619의 염기서열로 코딩될 수 있다. 또한, 상기 테두글루타이드 폴리펩타이드 (GLP-2A2G)는 서열번호 485의 아미노산 서열로 이루어질 수 있고, 상기 아미노산서열은서열번호 620의 염기서열에 의해 코딩될 수 있다.
또한, 상기 에칼란타이드는 60개의 아미노산으로 구성된 폴리펩타이드로서, 인간 혈장 내 칼리크레인 (kal l ikrein)의 저해할 수 있으며, 결과적으로 고분자량을 갖는 칼리크레인이 브래디키닌 (Bradykinin)으로 전환되는 것을 저해하는 작용을 한다. 에칼란타이드는 희귀질환인 유전성 혈관부종 (Heredi tary Angioedema)의 치료제로 사용될 수 있다. 예를 들어, 상기 에칼란타이드 폴리펩타이드는 서열번호 642의 아미노산 서열로 이루어질 수 있고, 상기 아미노산서열은서열번호 647의 염기서열에 의해 코딩될 수 있다.
또한, 상기 네시리타이드는 32개의 아미노산으로 구성된 폴리펩타이드로서, 인간 심실 심근 (ventr i cular myocardium)의 분비되는 B형 나트륨이뇨 펩타이드 (natr iuret i c pept ide)이다. 네시리타이드는 울혈성 심부전증의 치료제로 사용될 수 있다. 예를 들어, 상기 네시리타이드 2019/143193 1»(:1^1{2019/000782 폴리펩타이드는 서열번호 652의 아미노산 서열로 이루어질 수 있고, 상기 아미노산서열은서열번호 657의 염기서열에 의해 코딩될 수 있다.
또한, 상기 엑세나타이드 폴리펩타이드는 서열번호 638의 아미노산 서열로 이루어질 수 있고, 상기 아미노산 서열은 서열번호 639의 염기서열로 코딩될 수 있고, 상기 인슐린 유사 성장인자- 1( 101^-1) 폴리펩타이드는 서열번호 640의 아미노산서열로 이루어질 수 있고, 상기 아미노산서열은서열번호 641의 염기서열에 의해 코딩될 수 있다.
한편, 본 발명에 따른 융합 폴리펩타이드는, 서열번호 1의 아미노산 서열을 포함하는 융합 파트너와 목적 폴리펩타이드가 서로 상이한 등전점을 가짐으로써 목적 폴리펩타이드가 고순도로 용이하게 정제될 수 있다. 단백질의
Figure imgf000026_0001
1)1 )은단백질이 순 전하를 띠지 않는 로, 단백질은 이의 등전점에 따라분리될수 있다.
예를 들어, 본 발명의 서열번호 8 내지 139의 아미노산 서열을 갖는 말단융합파트너의 값은 9.5내지 10.5일 수 있다. 구체적으로, 서열번호 9 , 31 , 53 , 75, 97또는 119의 아미노산서열을 갖는 말단융합 파트너의 이값은 각각 9.52 , 11.72 , 10.27 , 10.27 , 10.43 , 10.42일 수 있다.
또한, 목적 폴리펩타이드의 예시로서
Figure imgf000026_0002
1-34, 노?ä 1-84 , 리라글루타이드 전구체 펩타이드 , 테두글루타이드, 에칼란타이드 , 네시리타이드의 ?1 값은 각각 8.29, 9.10, 5.53, 4. 17, 5.58, 10.95이다. 즉, 목적 폴리핍타이드들의 ?1 값과 말단 융합 파트너 및 이를 포함하는 융합 파트너들의 1)1 값은 실질적으로 상이하다. 따라서, 이온 교환 크로마토그래피, 등전점 침전법 등의 방법을 이용하여 융합 파트너로부터 목적 폴리펩타이드의 정제를 이온 교환 크로마토그래피, 등전점 침전법 등의 방법을 이용하여 용이하게 할수 있다.
또한, 상기 융합 파트너, 링커 및 목적 폴리펩타이드를 포함하는 신규한 융합폴리펩타이드는서열번호 160 내지 291, 343 내지 474, 487 내지 618 , 630 내지 632 , 644 내지 646 및 654 내지 656의 아미노산 서열 중 어느 하나의 아미노산서열로 이루어진 것일 수 있다.
본 발명의 다른 측면은, 전술한 융합 폴리펩타이드를 코딩하는 뉴클레오타이드를 제공할수 있고, 예를들어, 160내지 291, 343내지 474 , 487 \\ ) 2019/143193 1»(:1^1{2019/000782 내지 618, 630 내지 632, 644 내지 646 및 654 내지 656의 아미노산 서열 중 어느 하나를 코딩할 수 있으며, 상기 뉴클레오타이드는 서열번호 294, 295 , 478 내지 483, 621 내지 627, 635 내지 637, 649 내지 651 및 659 내지 661의 염기서열 중 어느 하나의 염기서열로 이루어진 것일 수 있다.
본 발명의 또 다른 측면은, 전술한 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 분자를 포함하는 발현벡터를 제공한다. 본 발명에서 사용된 용어 "벡터”는 숙주세포에 도입되어 숙주세포 유전체 내로 재조합 및 삽입될 수 있다. 또는, 상기 벡터는 에피좀으로서 자발적으로 복제될 수 있는 뉴클레오타이드 서열을 포함하는 핵산 수단으로 이해된다. 상기 벡터는 선형 핵산, 플라스미드, 파지미드, 코스미드, ^ 벡터, 바이러스 벡터 및 이의 유사체들을 포함한다. 바이러스 벡터의 예로는 레트로바이러스, 아데노바이러스, 및 아데노-관련 바이러스를 포함하나 이에 제한되지 않는다. 또한, 상기 플라스미드는 항생제 내성 유전자와 같은 선별 마커를 포함할 수 있고, 플라스미드를 유지하는 숙주세포는 선택적인 조건하에서 배양될 수 있다.
본 발명에서 사용된 용어 "숙주세포'’는 재조합 발현벡터가 도입될 수 있는 원핵세포 또는 진핵세포를 나타낸다. 본 발명에서 사용된 용어, "형질도입1’은, 당업계에 공지된 기술을 사용하여 세포 내로 핵산(예를 들어, 벡터)을도입하는 것을 의미한다.
본 발명의 다른 측면은, 상기 발현벡터를 포함하는 숙주세포를 제공한다. 상기 숙주세포는, 본 발명의 융합 폴리펩타이드를 코딩하는 뉴클레오타이드가 포함되도록 형질전환되어, 목적 폴리펩타이드의 발현 및/또는 분비에 이용될 수 있다. 본 발명에 사용될 수 있는 바람직한 숙주세포는 대장균 세포, 불사의 하이브리도마 세포, 八) 골수종 세포, 293 세포, 중국 햄스터 난소 세포((¾() 0611), ¾1 세포, 인간 양수 유래 세포 0:31江 061 1) 또는 0» 세포를 포함한다. 예를 들어 , 본 발명에서 융합 폴리펩타이드를 발현시키는데 사용된 숙주 균주는 대장균 21(에3)이며, 상기 유전자 및 이들의 사용 방법은 당업계에 공지되어 있다.
본 발명의 또 다른 측면은, (3) 전술한 숙주세포를 배양하는 단계, ( 숙주세포에서 발현된 융합 폴리펩타이드를 정제하는 단계 및 ((:) 상기 정제된 융합 폴리펩타이드를 절단 효소와 배양하여 목적 폴리펩타이드를 회수하는 단계를 포함하는 목적 폴리펩타이드 (재조합 폴리펩타이드)의 생산방법을 제공한다.
상기 (a) 단계에서는, 본 발명의 융합 폴리펩타이드를 코딩하는 뉴클레오타이드를 갖는 발현벡터를 포함하는 숙주세포를 배양한다 .
이때, 상기 숙주세포는 임의의 발효 방식으로 배양될 수 있다, 예를 들어, 회분식 , 유가식, 반연속식 및 연속식 발효 방식이 이용될 수 있다. 실시예에서 , 발효 배지는 복합 배지 혹은 제한 배지로부터 선택될 수 있다. 특정 실시예에서, 제한 배지가 선택된다. 제한 배지는 낮은 수준의 아미노산, 티아민과 같은 비타민 또는 다른 성분들로 보충될 수 있다. 본 발명의 방법에 유용한 배양 절차 및 무기염 배지의 상세한 설명은 문헌(Riesenberg, Schulz et al . 1991)에 기재되어 있다.
예를 들어, 융합 폴리펩타이드의 생산은 발효기 배양에서 달성될 수 있다. 예를 들어, 2 L의 제한 배지를 함유하는 발효기에서 37°C의 온도에서 배양하고, 염산이나 암모니아 첨가를 통해 pH 6.8로 유지할 수 있다. 용존 산소는 교반 속도 및 발효기 내로 공기 유속(air flow rate) 증가, 또는 필요에 따라 순수산소 주입을 통해 과량으로 유지할 수 있다. 발효기 내의 세포를 고농도로 배양하기 위해 세포 배양 동안 포도당 혹은 글리세롤이 포함된 주입 용액(feeding solution)을 배양액에 전달할수 있다.
또한, 상기 조건을 유지하다가, 유도를 위한 목표 배양액의 광학 밀도(optical density) , 예를 들어, 600 nm 파장에서 특정 값의 광학 밀도(A600)에 도달하면, IPTG를 첨가하여 융합 폴리펩타이드의 발현이 개시될 수 있다. 유도 시 세포의 광학 밀도, IPTG농도, pH, 온도, 용존 산소 수준, 각각을 변화시켜 최적의 발현 조건을 결정할 수 있다. 또한, 유도 시 세포의 광학 밀도는 A600 30 내지 300의 범위에서 변화시킬 수 있다. IPTG 농도는 0.01 mM 내지 1.0 mM범위로, pH는 5.5내지 7.5범위로, 온도는 15°C 내지 37°C 범위로, 그리고 공기 유속은 1 m (분당 배지 리터당 공기 리터) 내지 5 wm 범위로 변화시킬 수 있다. 유도 후 4시간 내지 48시간 후에, 발효기로부터의 배양액을 원심분리하여 세포를 수거하고, 세포 펠렛은 -80°C 온도에서 냉동할 수 있다. 배양액 시료는 재조합 융합 폴리펩타이드 발현 정도 분석을 위해 SDS-PAGE등의 방법으로 분석할 수 있다. 2019/143193 1»(:1^1{2019/000782 한편, 숙주세포 배양은 내지 40°(:의 온도 및 약 5.5 내지 약 7.5의 때 조건에서 행해질 수 있다. 1^0 계열 프로모터를 가진 발현 구조물이 사용될 때, 발현은 1肝(}를 약 0.01 내지 약 1.0 의 최종 농도로 배양물에 첨가하여 유도할수 있다.
유도제를 첨가한 후, 배양액은 일정 기간, 예를 들어, 약 12시간 동안 배양할 수 있는데, 이 기간에 재조합 단백질이 발현된다. 유도제를 첨가한 후, 배양액은 약 4시간내지 48시간 동안 배양할수 있다.
세포 배양액은 원심분리하여 세포가 존재하지 않는 배지(상등액)를 제거하고 세포를 회수할 수 있다. 예를 들어, 세포배양액은 12 , 000 印01조건에서 30분간(4°〔〕) 원심분리하고 상등액을 제거하여 불용성 분획을 얻을 수 있다. 원심분리에 의해 얻은 불용성 분획에 불용성 내포체 형태로 존재하는 재조합 융합 폴리펩타이드의 가용화를 위해 불용성 분획을 요소나 염산구아니딘과 같은 카오트로픽제((±30打01)比 3요6 )가 포함된 완충액으로 재현탁할 수 있다. 실시예에서, 세포는 고압 기계적 세포 파쇄 장치(예를 들어, 마이크로플루다이저 0 0£ 111 ^ 261·))를 사용하여 파괴한다. 재현탁된 세포는 예를 들어, 초음파 처리를 사용하여 파괴할 수 있다. 당업계에 공지된, 세포를 용해시키는데 적합한 임의의 방법을 이용하여 세포 내 축적된 내포체들을 회수할 수 있다. 예를 들어, 실시양태에서, 화학적 및/또는 효소적 세포 용해 시약, 예를 들어, 세포벽 용해 효소( 2 6) 및 쇼가사용될 수 있다.
상기 ( 단계에서는, 상기 (크)단계에서 배양한 숙주세포에서 발현된 융합폴리펩타이드를 정제한다.
이때, 불용성 분획에는 불용성 내포체 형태로 발현된 융합 폴리펩타이드가 주로 존재한다. 불용성 분획에 존재하는 내포체의 가용화는 카오트로픽제가 포함된 변성 조건하에서 수행할 수 있다. 내포체 가용화 조건은, 카오트로픽제가 포함된 완충액의 사용을 포함할 수 있고, 내포체 가용화 완충액은 카오트로픽제로 요소 또는 염산구아니딘, 인산나트륨 또는 트리스 완충액 및 염화나트륨을 포함할 수 있다. 또한, 친화성 크로마토그래피를 고정화된 금속 친화성
Figure imgf000029_0001
의해 수행하는 경우, 내포체 가용화 완충액은 이미다졸을 포함한다. 실시예에서, 내포체 가용화 완충액은 4 내지 10 의 요소 또는 3 내지 8 의 염산구아니딘을 포함할 수 있다. 또한, 2019/143193 1»(:1^1{2019/000782 내포체 가용화 완충액은 5 내지 100 인산나트륨 또는 트리스(1出 7 내지 9)를 포함할 수 있다. 내포체 가용화 완충액은 0
Figure imgf000030_0001
내지 1 염화나트륨을 포함할 수 있다. 또한, 1齡(:을 위한 내포체 가용화 완충액은 0 내지 50 의 이미다졸을 포함할 수 있다. 이때, 내포체 가용화 완충액은, 8 1 요소, 20 트리스, 500 염화나트륨, 50 이미다졸, 1出 7.4를 포함하고, 용해된 세포의 원심분리로 얻어진 불용성 분획을 재현탁하여 불용성 분획의 융합 폴리펩타이드의 내포체를 가용화할수 있다.
예를 들어, 내포체 가용화 완충액으로 불용성 분획의 내포체를 가용화 시키는 경우, 2°0 내지 8°0 온도에서 약 1시간 내지 6시간 동안 진탕 배양한 후 12 , 000 께 (12 , 000 용) 조건에서 30분간(41:) 원심분리하여 불용성 분획에 존재하는 파쇄된 세포 잔해를 제거하고 가용화된 융합 폴리펩타이드가 포함되어 있는 상등액을 얻는다. 상등액은 적층형 필터(( 아11 라) 및 막 필터로 여과하여 불용성 및 고형 성분을 제거하여 정제용 컬럼에 주입될 수 있도록 한다. 또한, 불용성 내포체 형태로 발현된 후 가용화된 재조합 융합 폴리펩타이드 또는 목적 폴리펩타이드는 크기 배제, 음이온 또는 양이온 교환, 소수성 상호작용, 또는 친화성 크로마토그래피 방법에 의해 다른 단백질 및 세포 잔해로부터 분리하거나 정제할 수 있다.
예를 들어, 본 발명의 융합 폴리펩타이드는 폴리히스티딘 태그(6 -
Figure imgf000030_0002
충진되어 있는 바 대? 이용하여 정제할수 있다. 가용화된 재조합 융합
Figure imgf000030_0003
크로마토그래피 시스템에 장착된 59 시료 펌프를 이용하여 내포체 가용화 완충액(8 요소, 20 트리스, 500 1 염화나트륨, 50 이미다졸, 卵 7.4)으로 평형화
Figure imgf000030_0004
내로 주입되도록 하고, 내포체 가용화 완충액으로 세척 후 용출 완충액(8 요소, 20 트리스, 500 염화나트륨, 500 이미다졸, 1出 7.4)의 비율을 100%로 단계적 증가시켜 컬럼에 결합된 융합폴리펩타이드를 용출시키고 분획을 수집할수 있다.
상기 (0) 단계에서는, 전술한 방법으로 정제된 융합 폴리펩타이드를 절단 효소와 배양하여 목적 폴리펩타이드를 회수한다.
이때, 융합 폴리펩타이드는 절단효소에 의해 적합하게 절단될 수 있어, 목적 폴리펩타이드를 적합한 형태로 유리시킬 수 있다. 정제된 융합 폴리펩타이드 분획에는 8 의 요소가 첨가되어 있으므로 절단효소의 변성을 막기 위해 희석 완충액 (20 mM 트리스, pH 7.4)를 이용하여 요소 농도가 1 M이 되도록 희석하는 것이 바람직하다. 융합 폴리펩타이드는 정제 후 요소 농도가 1 M이 되도록 희석되어 20 mM트리스, pH 7.4 , 1 M요소, 62.5 mM 염화나트륨, 62.5 mM 5 이미다졸을 함유하는 완충액에 존재할 수 있다 . 재조합 융합 폴리펩타이드는 절단효소와 반응하여 친화성 태그 및 절단효소 인식 서열이 포함된 아미노 말단 융합 파트너와 목적 폴리펩타이드로 절단된다. 프로테아제 절단 방법은 당업계에 공지되고 제조사의 지시서를 포함한 문헌에 기재된 임의의 적합한 방법이 이용될 수 있다. 바람직하게는, 정제 후 요소 농도가 1 이 되도록 희석된 융합 10 폴리펩타이드에 TEV 프로테아제를 최종 농도가 500 이이 되도록 첨가하고 실온에서 6시간 이상 절단 반응이 진행될 수 있도록 한다. 예를 들어, TEV 프로테아제에 의해 재조합융합 폴리펩타이드는 약 60%내지 약 100%가 절단된다. 재조합 융합 폴리펩타이드 또는 목적 폴리펩타이드의 수율은 당업자에게 공지된 방법, 예를 들어, SDS-PAGE( sodium dodecyl sul fate - polyacrylamide B gel electrophores i s) 또는 웨스턴 블롯 (Western blot ) 분석에 의해 결정할 수 있다. SDS-PAGE로 전기영동된 겔 (gel )은 염색 (staining) , 탈색 (destaining) , 디지털 영상화 과정을 거쳐 재조합 융합 폴리펩타이드 또는 목적 폴리펩타이드의 대략적인 정량 및 정성 분석이 가능하다.
또한, 정제된 융합 폴리펩타이드 또는 목적 폴리펩타이드의 농도는
20 당업계에 공지되고 문헌에 기재된 방법에 의한 흡광도 분광법으로 결정될 수 있다.
정제된 융합 폴리펩타이드 또는 목적 폴리펩타이드의 수율 또는 순도를 결정하기 위한 웨스턴 블롯 분석은 SDS-PAGE 겔 상에서 분리된 단백질을 니트로셀룰로오스 막으로 이동시키고, 목적 폴리펩타이드에 특이적인 항체를 25 이용하는 당업계에 공지된 적합한 방법에 따라 수행될 수 있다. 실시예에서, 목적 폴리펩타이드의 순도를 측정하기 위한 방법 중 하나로 ELISA (enzyme- l inked immunosorbent assay)방법을 이용할수 있다.
정제된 융합 폴리펩타이드 또는 목적 폴리펩타이드의 수율은 배양액의 부피당 정제된 융합 폴리펩타이드 또는 목적 폴리펩타이드의 양 (예를 들어, g
30 또는 mg의 단백질/리터의 배양액 부피), 융합 폴리펩타이드의 백분율 (예를 들어, 재조합 융합 폴리펩타이드의 양/전체 세포 단백질(total cel l protein)의 양), 및 건조 균체량(dry cel l weight)에 대한 백분율 또는 비율을 포함한다. 본원에 기재된 폴리펩타이드의 수율의 척도는 완전한 형태로 발현된 해당 폴리펩타이드의 양을 기준으로 한다.
수율이 배양액 부피에 대한 정제된 융합 폴리펩타이드 또는 목적 폴리펩타이드의 양으로 표현되는 경우, 배양된 세포 밀도 혹은 세포 농도가 수율을 결정하는데 고려될 수 있다.
또한, 절단효소로 절단된 후 얻어진 목적 폴리펩타이드의 수율은 약 0.54 g/L 내지 약 13.5 g/L일 수 있다. 본 발명에서, 목적 폴리펩타이드의 수율은 5
2L 이상의 규모에서 약 0.54 g/L 일 수 있다.
본 발명의 구체예는 서열번호 1의 아미노산 서열을 갖는 융합 파트너와 재조합된 융합 폴리펩타이드를 이용하여 목적 폴리펩타이드를 수득함으로써 , 목적 폴리펩타이드가 세포 내에서 효소에 의해 분해되거나, 부적절한 폴딩이 발생하는 등의 문제점을 최소화하여 목적 물리펩타이드를 고수율로 생산하는 방법을 제공할 수 있다. 구체적인 생산 방법의 일 예시는 실시예를 통해 설명하기로 한다. 발명의 실시를 위한형태
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1. hPTH 1-34융합폴리펩타이드의 제조 및 생산
실시예 1.1. hPTH 1-34융합폴리펩타이드발현 플라스미드의 제작 hPTH 1-34 융합 폴리펩타이드에 대한 유전자는 over lap extension polymerase chain react i on(0E-PCR) 방법을 이용하여 합성하였다. 이때, 상기 hPTH 1-34융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07(서열번호 9), PG15(서열번호 31), PG43(서열번호 119) 중 하나와 6 히스티딘 태그(서열번호 140) 및 TEV 프로테아제 인식 서열(서열번호 146) 및 hPTH 1-34의 아미노산 서열(서열번호 151)이 포함되어 있다.
대조군으로서 사용된 hPTH 1-34 융합 폴리펩타이드(H6TEV-hPTH 1-34)는 2019/143193 1»(:1^1{2019/000782 아미노 말단 융합 파트너가 포함되어 있지 않고, 6 히스티딘 태그(서열번호 140), 프로테아제 인식 서열(서열번호 146) 및 대 1-34의 아미노산 서열(서열번호 151)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 , ^01 및 ¾1이의 인식 서열과 1개의 종결 코돈을 포함한다. 상기 11 11 1-34 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 각각 서열번호 294 내지 296에 해당하며, 대조군은 서열번호 293에 해당한다.
1-34 융합 폴리펩타이드 발현 플라스미드
Figure imgf000033_0001
3(¾478를 제작하기 위해서, 에-灰고로 합성된 !¾ 1-34 융합 폴리펩타이드 유전자 단편을 및 ¾01 제한 효소를 이용하여 절단하고, 17 프로모터,
Figure imgf000033_0002
작동자 및 1301 유전자를 포함하여 1肝(}에 의한 발현 조절이 가능한 발현벡터 ?£ 2613에 클로닝하였다.
【표 2】
Figure imgf000033_0005
제작된 대 1-34 융합 폴리펩타이드 발현 플라스미드들은 0 염기서열 확인을 통해 정확한 클로닝 여부를 확인하였다. 제작된 1正ä 1-34 융합 폴리펩타이드 발현 플라스미드들을 이용하여 염화칼슘을 이용한 화학적인 방법으로 대장균 此21(孤3) 세포를 형질전환하였다. 出3ä 1-34 융합 폴리펩타이드의 발현 플라스미드들이 형질도입된 대장균들은 카나마이신(뇨 !!)이
Figure imgf000033_0003
농도로 포함된 1 고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들은 각각 카나마이신이 50 /保/】 의 농도로 존재하는 1고 액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액( 1 1 10을 만들고, 이를 -801: 온도의 냉동고에 보관하였다.
실시예 1.2. 형질전환된세포의
Figure imgf000033_0004
발현
-80V 온도에서 보관된 느!3ä 1-34 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 成를 카나마이신이 50 能/ 1成의 농도로 존재하는 1止 액체 배지 5 이 포함된 시험관에 첨가하여 37 °C 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2 in모는 카나마이신이 50 //g/m£의 농도로 존재하는 LB 액체 배지 200 m요이 포함된 플라스크에 첨가하여 37 °C 온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도 (0D600)가 약 1.0이 되었을 때, IPTG의 최종 농도가 0.1 mM이 되도록 첨가하여 hPTH 1-34 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
실시예 1.3. 발현 수준 비교분석을위한시료의 제조
발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 mM 인산 나트륨, pH 7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기 (ul trasoni c processor , Cole-Parmer )를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 총 세포 분획으로 표지하였다. 세포 파쇄액은 12 ,000 X g, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획 A로 표지하였다. 불용성 분획은 500 의 50 mM 인산 나트륨, pH 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
실시예 1.4. SDS-PAGE분석을통한 생산된 hPTH 1-34의 확인
50 의 총 세포, 가용성 및 불용성 분획을각각 50 M의 2배 농축된 SDS 시료 완충액 (SDS sample buf fer 2公· concentrate , Sigma)에 혼합한 후, 95 °C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PA湖 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루 (Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후, 탈색 완충액으로 탈색하여 염색된 단백질만 보일 수 있도록 하였다. 그 결과를 도 1 및 도 2에 나타내었다.
도 1을 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 H6TEV-hPTH 1-34(5.9 kDa의 분자량)의 밴드는 본원 발명에 따른 hPTH 1-34 융합 폴리펩타이드들과 비교하여 가장 낮은 발현 수준을 나타냈다. 본 발명에 따른 융합 파트너인 PG7 , PG15 및 PG43이 융합된 hPTH 1-34 융합 폴리펩타이드인 PG07-H6TEV-hPTH 1-34(6.9 kDa의 분자량) , PG15-H6TEV-hPTH 1-34(7.9 kDa의 분자량) 및 PG43-H6TEV-hPTH 1-34(10.6 kDa의 분자량)의 발현 수준은 대조군 (H6TEV-hPTH 1-34) 대비 증가된 것이 확인할 수 있다. 덴시토미터 분석을 통해 PG7, PG15 및 PG43 중 P15의 융합에 의한 PG15-H6TEV-hPTH 1-34의 발현 수준이 모든 hPTH 1-34융합 폴리펩타이드 중 가장 높은 것으로 확인되었다. 또한, 도 2를 참조하면, 대조군을 포함한 모든 hPTH 1-34 융합 폴리펩타이드는 가용성 분획에서는 관찰되지 않고 모두 불용성 분획에서 나타나는 것을 알수 있다.
실시예 1.5. PG15-H6TEV-hPTH 1-34대량 생산을위한유가식 배양
문헌 (Ri esenberg, Schul z et al . 1991)에 기재되어 배지 조성을 이용하여 2 L의 제한 배지를 함유하는 37°C의 발효기에서 세포를 배양하고, 염산과 암모니아 첨가를 통해 pH 6.8로 유지하였다. 발효기 내의 세포를 고농도로 배양하기 위해 세포 배양 동안 포도당이 포함된 주입 용액 ( feeding solut ion)을 배양액에 주입하였다. 배양 8시간 후 1.0 mM 농도의 IPTG를 첨가하여 11시간 동안 PG15-H6TEV-hPTH 1-34의 발현을유도하였다.
그 후, SDS-PAGE 분석을 통해 PG15-H6TEV-hPTH 1-34의 발현 수준을 확인하였다. SDS-PAGE 분석결과, IPTG에 의한 발현 유도 후 세포 성장 및 PG15- H6TEV-hPTH 1-34의 발현 수준은 지속적으로 증가하는 것을 확인할 수 있었다. 덴시토미터 분석결과 PG15-H6TEV-hPTH 1_34의 발현 수준은 총 단백질의 약 27%로 확인되었다 (도 3) .
실시예 1.6. N-말단융합 파트너의 아미노산 치환에 의한 hPTH 1-34융합 폴리펩타이드의 발현 수준 향상
PG15-H6TEV-hPTHl-34 내 PG15의 N-말단 서열이 hPTH 1-34 융합 폴리펩타이드의 발현 수준에 미치는 영향을 알아보기 위해 PG15의 아미노산 서열의 2번부터 7번까지 총 6개의 아미노산을 결실시킨 PG15(A2-7)-H6TEV- hPTHl-34(서열번호 339)의 발현 플라스미드를 제작하여 대장균 내 발현 수준을 PG15-H6TEV-hPTHl-34와 비교하였다. 형질전환부터 況 S-PAGE를 이용한 발현수준 분석은 실시예 1.2 내지 1.4와동일하게 수행하였다.
SDS-PAGE 젤의 덴시토미터 분석을 통해 PG15( A2-7)-H6TEV-hPTHl-34의 발현수준은 PG15-H6TEV-hPTHl-34와 비교하여 5배 이상 감소하는 것으로 확인되었다 (도 4) . 따라서, PG15-H6TEV-hPTHl-34 내 PG15의 2번부터 7번까지 서열이 hPTH 1-34 융합 폴리펩타이드의 발현 수준에 크게 영향을 주는 것을 확인하였다. ;;
또한, PG15-H6TEV-hPTHl-34 내 PG15의 2번부터 7번까지 6개의 아미노산 잔기의 변화가 hPTH 1-34 융합 폴리펩타이드의 발현 수준에 미치는 영향을 알아보기 위해 각각의 아미노산 잔기를 이소루신, 아스파라긴, 아르기닌, 아스팔트산으로 치환한 총 21개의 hPTH 1-34 융합 폴리펩타이드의 변이체를 제작하여 PG15-H6TEV-hPTHl-34와의 세포 내 발현수준을 비교하였다.
hPTH 1-34 융합 폴리펩타이드의 변이체 발현을 위한 플라스미드 DNA는 위치 지정 돌연변이 (site-directed mutagenesis)방법을 이용하여 제작하였다. 위치 지정 돌연변이를 위한 주형 (tempiate)은 PG15-H6TEV-hPTHl-34 발현 플라스미드인 pSGK477을 사용하였고 프라이머는 각각의 변이체의 아미노산 치환부위의 염기서열이 변경된 정방향 (forward) 및 역방향 (reverse)의 단일가닥 DNA올리고머 를 이용하였다. 실험에 사용된 프라이머를 하기 표 3에 나타내었다.
【표 3】 ·
Figure imgf000036_0001
2019/143193 1»(:1^1{2019/000782
Figure imgf000037_0004
각각의 변이체에 대한 위치 지정 돌연변이 후 얻어진 발현 플라스미드들은 0 염기서열 확인을통해 정확한클로닝 여부를 확인하였다. 제작된 !¾ 1-34 융합 폴리펩타이드의 변이체 발현 플라스미드들을 이용하여 염화칼슘을 이용한 화학적인 방법으로 대장균 ^121(^3) 세포를 형질전환하였다. ä 1-34 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균들은 카나마이신 0¾113111(:^1)이 50 //용/111요의 농도로 포함된
Figure imgf000037_0001
고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들을 각각 카나마이신이 50 / 의 농도로 존재하는
Figure imgf000037_0002
액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를 -8010 온도의 냉동고에 보관하였다.
-80 °0 온도에서 보관된 느!3ä 1-34 융합 폴리펩타이드의 변이체 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 를 카나마이신이 50 //용/111보의 농도로 존재하는
Figure imgf000037_0003
액체 배지 5 111오이 포함된 시험관에 첨가하여 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2 111요은 카나마이신이 50 용/111보의 농도로 존재하는 1止 액체 배지 200 111요이 포함된 플라스크에 첨가하여 37 °0 온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도((犯600)가 약 1.0이 되었을 때, 1肝(^의 최종 농도가 0.1 mM이 되도록 첨가하여 hPTH 1-34 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 mM 인산 나트륨, pH 7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기 (ultrasonic processor , Cole-Parmer)를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 총 세포 분획으로 표지하였다. 세포 파쇄액은 12,000Xg, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은 500 의 50 mM인산 나트륨, pH 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
50 의 총 세포, 가용성 및 불용성 분획을 각각 50 成의 2배 농축된 SDS 시료 완충액 (SDS sample buffer 2x concentrate, Sigma)에 혼합한 후, 95°C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루(Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후, 탈색 완충액으로 탈색하여 염색된 단백질만 보일 수 있도록 하였다. 그 결과를 도 5 내지 도 7에 나타내었다.
대조군인 PG15-H6TEV-hPTHl-34의 발현 수준과 비교하여 PG15-H6TEV- hPTHl-34 내 PG15의 2번부터 7번까지 6개의 아미노산 잔기의 변화에 의해 발현 수준이 향상된 변이체와 감소된 변이체들을 확인하였다. 특히, 덴시토미터 분석을 통해 4번째 잔기가 아스팔트산으로 치환된 변이주와 7번째 잔기가 아르기닌으로 치환된 변이주는 대조군 대비 3배 이상 발현 수준이 향상되었다.
실시예 2. hPTH 1-34융합폴리펩타이드의 회수 및 정제
실시예 2.1. 세포파쇄 및 불용성 내포체 회수
플라스크 규모에서 발현된 세포의 냉동된 세포 펠렛을 50
Figure imgf000038_0001
50 mM 인산 나트륨, pH 7.2 완충액을 첨가하여 해동하였다. 재현탁된 세포는 초음파 세포 파쇄기 (ultrasonic processor , Cole-Parmer )를 이용하여 파쇄하였다. 용해된 세포는 12,000 rpm( 12,000Xg) 조건에서 30분간 원심분리하고 상등액을 제거하여 재조합융합 폴리펩타이드가포함된 불용성 내포체 분획을 회수하였다. 실시예 2.2. 불용성 내포체 가용화
회수된 불용성 내포체 분획에 20 내포체 가용화 완충액(8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)을 첨가하고 25 °C 온도에서 4시간 동안 진탕배양하여 불용성 분획 내 내포체 형태의 재조합 융합 폴리펩타이드가 가용화될 수 있도록 하였다. 가용화된 불용성 분획 시료는 12,000 Xg에서 30분간 원심분리하고 상등액을 막필터(0.45八).2 _)를 통해 여과하였다.
실시예 2.3. hPTH 1-34융합폴리펩타이드정제
가용화된 불용성 분획 내의 hPTH 1-34 융합 폴리펩타이드의 정제를 위하여 S9 시료 펌프(Sample pump S9) 및 F9-C 분획 수집기(Fract ion col lector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템(GE Heal thcare)을 이용하였다. 가용화된 불용성 분획 시료는 내포체 가용화 완충액(8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)으로 미리 평형화된 Hi sTrap FF 1 in^ 컬럼(GE Heal thcare)에 주입하였다. 주입이 완료된 후 컬럼은 5배 컬럼 부피의 평형 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액(8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 500 mM 이미다졸, pH 7.4)을 단계적으로 100%가 되도록 증가시켜 컬럼의 수지에 결합되어 있는 hPTH 1-34 융합 폴리펩타이드를 용출하였다. 용출 후 얻어진 분획의 결과를 각각 도 8a 내지 도 10b에 나타내었다.
실시예 3. 프로테아제 처리를통한 링커 서열 절단
약 5 m요의 정제된 hPTH 1-34 융합 폴리펩타이드의 분획을 합친 후 140 의 희석 완충액(20 mM 트리스, pH 7.4)을 첨가하여 요소의 농도가 1 이 되도록 희석하였다. 희석된 재조합 융합 폴리펩타이드에 TEV 프로테아제의 최종 농도가 500 nM이 되도록 첨가하고 실온에서 12시간 동안 절단 반응이 진행될 수 있도록 하였다.
TEV 프로테아제에 의한 절단 여부를 확인하기 위해, 절단 후 SDS-PAGE 분석을 수행하여 그 결과를 도 11 및 도 12에 나타내었다. 한편, 도 9a를 참조하면, 7.9 kDa의 PG15-H6TEV-hPTH 1-34은 거의 100%의 수율로 N-말단 융합 파트너, 6 히스티딘 태그 및 TEV 프로테아제 인식서열 융합체인 PG15-H6TEV 단편과목적 폴리펩타이드인 hPTH 1-34단편으로 분리되는 것을 확인하였다. 실시예 4. hPTH 1-34정제
실시예 4.1. 양이온교환크로마토그래피를통한 hFffl 1-34분리 및 정제
PG15-H6TEV-hPTH 1-34 융합 폴리펩타이드에서, TEV 프로테아제의 절단에 의해 유리된 hPTH 1-34의 정제를 위하여 S9 시료 펌프(Sample pump S9) 및 F9-C 분획 수집기 (Fraction col lector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템 (GE Healthcare)을 이용하였다. TEV 프로테아제로 절단된 각각의 시료를 결합 완충액 (20 mM 아세트산 암모늄, pH 9.3)으로 완충액 교환 후 동일 완충액으로 미리 평형화된 HiTrap SP FF 1 in^ 컬럼 (GE Healthcare)에 주입하였다. 주입이 완료된 후 컬럼을 5배 컬럼 부피의 결합 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액 (20 mM 아세트산 암모늄, 500 mM 염화나트륨, pH 9.3)을 점진적으로 100%가 되도록 선형으로 10배의 컬럼 부피 동안 증가시켜 컬럼의 수지에 결합되어 있는 hPTH 1-34를 용출하였다. 분획 수집기의 정제 분획은 상기에 기재된 SDS-PAGE방법으로 분석하였다.
재조합 융합 폴리펩타이드 (PG15-H6TEV-hPTH 1-34)의 절단에 의해 유리된 hPTH 1-34의 pi는 정제용 태그 및 절단효소 인식 서열이 포함된 아미노 말단 융합 파트너 (PG15-H6TEV)의 pi보다 약 3이 낮다. 구체적으로, pH 9.3의 완충액에서 11.72의 pi 값을 갖는 PG15-H6TEV는 양전하를 갖고 8.29의 pi 값을 갖는 hPTH 1-34는 양전하를 가지므로, 이온 교환 크로마토그래피를 이용한 PG15- H6TEV와 hPTH 1-34의 분리가 용이하다. PG15-H6TEV-hPTH 1-34이 절단되어 PG15- H6TEV와 hPTH 1-34가 혼합되어 있는 시료를 양이온 교환 수지가 충진되어 있는
HiTrap SP FF 1 mL 컬럼에 주입하였다. 도 13a 및 13b를 참조하면, 음이온을 띄고 있는 hPTH 1-34는 양이온 교환 수지에 결합되지 않고 통과액 (flow through) 분획에서 확인되었고 양이온을 띄고 있는 PG15-H6TEV는 양이온 교환 수지에 결합 후 염화나트륨 농도 증가에 의해 용출되는 것을 확인하였다. 따라서 비교적 높은 pi 값을 갖는 본 발명에 따른 N-말단 융합 파트너들은 이온 교환 크로마토그래피를 이용하여 제거 가능하므로 hPTH 1-34의 분리 정제를 용이하게 할수 있다.
실시예 4.2. 소수성 상호작용 크로마토그래피를 통한 hFffl 1-34 분리 및 정제
PG15-H6TEV-hPTH 1-34 융합 폴리펩타이드에서 , TEV 프로테아제의 절단에 의해 유리된 hPTH 1-34의 정제를 위하여 S9 시료 펌프 (Sample pump S9) 및 F9-C 분획 수집기 (Fract ion col lector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템 (GE Heal thcare)을 이용하였다. TEV 프로테아제로 절단된 각각의 시료를 결합 완충액 (50 mM 인산 나트륨, 1.5 M 황산 암모늄, pH 7.0)으로 완충액 교환 후 동일 완충액으로 미리 평형화된 HiTrap Butyl HP 1 mL 컬럼 (GE Heal thcare)에 주입하였다. 주입이 완료된 후 컬럼을 5배 컬럼 부피의 결합 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액 (50 mM 인산 나트륨, pH 7.0)을 점진적으로 100%가 되도록 선형으로 30배의 컬럼 부피 동안 증가시켜 컬럼의 수지에 결합되어 있는 hPTH 1-34를 용출하였다. 분획 수집기의 정제 분획은 상기에 기재된 SDS-PAGE방법으로 분석하였다.
재조합 융합 폴리펩타이드 (PG15-H6TEV-hPTH 1-34)의 절단에 의해 유리된 hPTH 1-34의 평균 소수성 (GRAVY) 값 (-0.671)은 정제용 태그 및 절단효소 인식 서열이 포함된 아미노 말단 융합 파트너 (PG15-H6TEV)의 평균 소수성 값 (-1.272) 보다 0.488만큼 높으므로 소수성 상호작용 크로마토그래피를 이용한 PG15- H6TEV와 hPTH 1-34의 분리가 용이하다. 도 14a 및 14b에 나타난 바와 같이, 대부분의 PG15-H6TEV와 hPTH 1-34는 소수성 상호작용 수지에 결합하여 통과액 ( f low through) 분획에서 검출되지 않았다. 황산 암모늄이 포함되어 있지 않은 용출 완충액 비율이 서서히 증가됨에 따라 낮은 평균 소수성을 갖는 PG15- H6TEV부터 용출되었고 용출 완충액 비율이 더 올라가 황산 암모늄 농도가 낮아지면서 hPTH 1-34가 용출되는 결과를 확인하였다. 따라서 상대적은 낮은 평균 소수성 값을 갖는 본 발명에 따른 N-말단 융합 파트너들은 소수성 상호작용 크로마토그래피를 이용하여 제거 가능하므로 hPTH 1-34의 분리 정제를 용이하게 할수 있다.
실시예 5. 절단후의 hPTH 1-34의 분자량분석
완전한 형태의 PG15-H6TEV-hPTH 1-34의 발현 유무, TEV 프로테아제에 의한 정확한 절단 및 절단 후 얻어진 hPTH 1-34의 변형 (modi f i cat ion) 유무를 확인하기 위해 MALTI-T0F MS를 이용한 분자량 분석을 실시하였다. hPTH 1-34 표준 물질의 분자량을 측정한 결과와 본 발명에 따라 수득된 hPTH 1-34의 분자량을 측정한 결과를 도 15 및 도 16에 나타내었다.
도 15 및 도 16를 참고하면, PG15-H6TEV-hPTH 1-34로부터 수득된 hPTH 1- 34의 분자량은 이론적인 분자량과 오차범위 이내에서 일치하였으므로 대장균 내에서 단백질 분해효소(proteolyt ic enzyme)에 의한 아미노 혹은 카르복시 말단의 부분적인 절단이나 분해 없이 완전한 형태로 발현된 것을 확인할 수 있었다. 따라서 TEV 프로테아제는 PG15-H6TEV-hPTH 1-34 내 인식서열인 ENLFQ 서열을 인식하고 마지막 아미노산인 Q (글루타민)와 hPTH 1-34의 첫번째 아미노산인 S (세린) 사이의 펩타이드 결합을 정확하게 절단하는 것으로 판단된다.
실시예 6. 정제된 hPTH 1-34의 역상 HPLC분석
미국약전⑴SP 39, Officail Monographs, Teriparatide, 6058-6062)에 명시되어 있는 hPTH 1-34의 동정 (identification) 기준시험법으로 표준품 hPTH 1-34(USP Catalog #1643962)와 본 발명을 통해 생산된 재조합 hPTH 1-34을 역상
HPLC로 분석하였다. 그 결과, 두 hPTH 1-34 모두 동일한 체류시간을 보였고 재조합 hPTH 1-34의 순도는 99.5% 이상으로 확인되었다 (도 17) .
또한, 미국약전 (USP)에 hPTH 1-34의 동정 (identification) 방법 중 추가적으로 펩타이드 맵핑 (peptide mapping) 방법을 통해 표준품 hPTH 1-34(USP Catalog #1643962)와 본 발명을 통해 생산된 재조합 hPTH 1-34의 동등성을 분석하였다. 상기 두 hPTH 1-34에 각각 Staphylococcus aureus V8 protease를 처리하여 5개의 펩타이드 조각(peptide fragment)으로 분리한 후 역상 HPLC로 분석해 본 결과, 두 hPTH 1-34에서 분리된 5개의 펩타이드 조각들이 모두 동일한 체류시간을 보여 표준품 hPTH 1-34와 재조합 hPTH 1-34의 동등성이 확인되었다 (도 18) .
실시예 7. 리라글루타이드 전구체 펩타이드 (GLP-1X28R) 융합폴리펩타이드 제조 및 생산
실시예 7.1. GLP-1K28R융합폴리펩타이드 발현 플라스미드의 제작
GLP-1K28R 융합 폴리펩타이드에 대한 유전자는 overlap extension polymerase chain reaction (0E-PCR) 방법을 이용하여 합성하였다. 이때, 상기
GLP-1K28R융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07(서열번호 9), PG15C서열번호 31) , PG22(서열번호 53) , PG29(서열번호 75) , PG36(서열번호 97) 및 PG43C서열번호 119) 중 하나와 6 히스티딘 태그 (서열번호 140), TEV 프로테아제 인식서열 (서열번호 146) 및 GLP-1K28R의 아미노산 서열 (서열번호 341)이 포함되어 있다. 2019/143193 1»(:1^1{2019/000782 대조군으로서 사용된 (}1少- 28묘 융합 폴리펩타이드어 -比13- 2810는 아미노 말단 융합 파트너가 포함되어 있지 않고, 6 히스티딘 태그(서열번호 140),
Figure imgf000043_0001
인식서열(서열번호 146) 및 比13-1}(28묘의 아미노산 서열(서열번호 341)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 , ^01 및 ¾101의 인식서열과 1개의 종결 코돈을 포함한다. 상기 012-1281? 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 각각 서열번호 478 내지 483에 해당하며 , 대조군은 서열번호 477에 해당한다.
아래 표 4에 기재한 0止- 281? 융합 폴리펩타이드 발현 플라스미드 ?3況530, ?3況495, ?3(¾496, ?3(¾500, ?3예501 , ? (¾502 및 ? (¾497을 제작하기 위해서, (¾-灰고로 합성된 꾜13-11(281? 융합 폴리펩타이드 유전자 단편을 및 ¾01 제한 효소를 이용하여 절단하고, T7 프로모터, 130 작동자 및 1 (:1 유전자를 포함하여 1肝(}에 의한 발현 조절이 가능한 발현벡터 ?附261)에 클로닝하였다.
【표 4]
Figure imgf000043_0003
제작된 亂13-1他81? 융합 폴리펩타이드 발현 플라스미드들은 0 염기서열 확인을 통해 정확한 클로닝 여부를 확인하였다. 제작된 此 1狀81? 융합 폴리펩타이드 발현 플라스미드들은 염화칼슘을 이용한 화학적인 방법으로 대장균 此21( 3) 세포를 형질전환하였다. 0少- 281? 융합 폴리펩타이드의 발현 플라스미드들이 형질도입된 대장균들은 카나마이신(뇨 크미 !!)이 50 론/111次의 농도로 포함된
Figure imgf000043_0002
고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들은 각각 카나마이신이 50 能/ 11 의 농도로 존재하는 1止 액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를 _80ᄃ 온도의 냉동고에 보관하였다.
실시예 7.2. 형질전환된세포의 배양및(^-1他8요의 발현
-8010 온도에서 보관된 꾜13-1}(281? 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 를 카나마이신이 50 //g/M의 농도로 존재하는 LB액체 배지 5 1就이 포함된 시험관에 첨가하여 37°C 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2
Figure imgf000044_0001
카나마이신이 50 g/m 의 농도로 존재하는 LB 액체 배지 200 in보이 포함된 플라스크에 첨가하여 37°C 온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도 (OD600)가 약 1.0이 되었을 때 IPTG를 최종 농도 0.1 mM이 되도록 첨가하여 GLP-1K28R 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
실시예 7.3. 발현 수준 비교분석을위한시료의 제조
발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 mM 인산 나트륨, pH 7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기 (ultrasonic processor , Cole-Parmer )를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 종 세포 분획으로 표지하였다. 세포 파쇄액은 12,000Xg, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은
500 의 50 mM인산 나트륨, pH 7.2완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
실시예 7.4. SDS-PAGE분석을통한 생산된 GLP-1K28R의 확인
50成의 총 세포, 가용성 및 불용성 분획을 각각 50成의 2배 농축된 SDS 시료 완충액 (SDS sample buffer 2X concentrate, Sigma)에 혼합한 후, %°C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루(Coomassie blue) R-25◦이 포함된 염색 완충액으로 염색한 후, 탈색 완충액으로 탈색하여 염색된 단백질만 보일 수 있도록 하였다. 그 결과를 도 19 및 도 20에 나타내었다.
도 19를 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 H6TEV-GLP-1K28R(5.1 kDa의 분자량)의 밴드는 SDS- PAGE 젤에서 검출되지 않아 발현 후 세포내 단백질 분해효소에 의해 분해된 것으로 보인다. SDS-PAGE 젤에서 GLP-1K28R 융합 폴리펩타이드의 발현은 분자량이 가장 작은 아미노 말단 융합 파트너인 PG07이 융합된 PG07-H6TEV-GLP- 1K28R(6.1 kDa의 분자량)부터 확인되었다.
아미노 말단 융합 파트너인 PG15가 융합된 PG15-H6TEV-GLP-1K28R(7.1 kDa의 분자량)의 발현 수준은 PG07-H6TEV-GLP-1K28R 대비 증가하였다. 아미노 말단 융합 파트너인 PG15, PG22 , PG29, PG36 및 PG43이 융합된 GLP-1K28R융합 폴리펩타이드인 PG15-H6TEV-GLP-1K28R(7.1 kDa의 분자량), PG22-H6TEV-GLP- 1K28RC7.9 kDa의 분자량), PG29-H6TEV-GLP- 1K28R( 8.4 kDa의 분자량), PG36- H6TEV-GLP-1K28R(9.1 kDa의 분자량) 및 PG43ᅳH6TEV_GLP-1K28R(11.7 kDa의 분자량)의 발현 수준은 대조군(H6TEV-GLP-1K28R) 대비 매우 향상된 것이 확인되었다.
덴시토미터 분석을 통해 PG07, PG15, PG22, PG29 , PG36 및 PG43 중 PG22 , PG29, PG36 및 PG43이 융합된 융합 폴리펩타이드들의 발현 수준은 유사하였고
PG07, PG15이 융합된 융합 폴리펩타이드 보다 월등히 높은 것으로 확인되었다(도 20 및 도 21).
또한, 도 20을 참조하면, 대조군을 포함한 모든 GLP-1K28R 융합 폴리펩타이드는 가용성 분획에서는 관찰되지 않고 모두 불용성 분획에서 나타나는 것을 알 수 있다(레인 1 : H6TEV-GLP-1K28R(균주 번호 PG005) 및 레인 2: PG07-H6TEV-GLP-1K28R(균주 번호 PG006)의 경우 목적 펩타이드가 발현되지 않거나 발현 수준이 낮아가용성 테스트를 수행하지 않았음).
실시예 7.5. N-말단융합 파트너의 아미노산 치환에 의한 GLP-1K28R 융합 폴리펩타이드의 발현 수준 변화
PG43-H6TEV-GLP-1K28R내 PG43의 2번부터 7번까지 6개의 아미노산 잔기의 변화가 GLP-1K28R 융합 폴리펩타이드의 발현 수준에 미치는 영향을 알아보기 위해 각각의 아미노산 잔기를 이소루신, 아스파라긴, 아르기닌, 아스팔트산으로 치환한 총 22개의 GLP-1K28R 융합 폴리펩타이드의 변이체를 제작하여 PG43- H6TEV-GLP-1K28R와의 세포 내 발현수준을 비교하였다.
GLP-1K28R 융합 폴리펩타이드의 변이체 발현을 위한 플라스미드 DNA는 위치 지정 돌연변이(site-directed mutagenesis)방법을 이용하여 제작하였다. 위치 지정 돌연변이를 위한 주형(template)은 PG43-H6TEV-GLP-1K28R 발현 플라스미드인 pSGK497을 사용하였다. 프라이머는 각각의 변이체의 아미노산 2019/143193 1»(:1/10公019/000782 치환부위의 염기서열이 변경된 정방향( ä% 및 역방향
Figure imgf000046_0001
단일가닥 쇼올리고머를 이용하였다. 실험에 사용된 프라이머를 하기 표 5에 나타내었다.
【표 5】
Figure imgf000046_0002
2019/143193 1»(:1^1{2019/000782
Figure imgf000047_0006
플라스미드들은 염기서열 확인을 통해 정확한 클로닝 여부를 확인하였다. 제작된 0少-1他81? 융합 폴리펩타이드의 변이체 발현 플라스미드들을 이용하여 염화칼슘을 이용한 화학적인 방법으로 대장균 此21(에3) 세포를 형질전환하였다. ( 1敗81? 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균들은 카나마이신(뇨 )0ᅵ 50 //용/111보의 농도로 포함된
Figure imgf000047_0001
고체배지에서 콜로니를 형성하였다 . 형질전환된 대장균들을 각각 카나마이신이 50 //용/】11오의 농도로 존재하는
Figure imgf000047_0002
액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를 -801: 온도의 넁동고에 보관하였다.
온도에서 보관된 此1:)-1}(281?융합 폴리펩타이드의 변이체 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 ¹를 카나마이신이 50 용/】此의 농도로 존재하는 1止 액체 배지 5 】就이 포함된 시험관에 첨가하여 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2 111모은 카나마이신이 50 // 11 의 농도로 존재하는 1止 액체 배지 200 이 포함된 플라스크에 첨가하여
Figure imgf000047_0003
온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도((©600)가 약 1 .0이 되었을 때, 1 (;의 최종 농도가 0. 1 이 되도록 첨가하여 此13- 28요 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 인산 나트륨,
Figure imgf000047_0004
7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기(111打33011比 1)1*0063301·,
Figure imgf000047_0005
이용하여 세포를 파쇄하였다. 파쇄된 세포는 총 세포 분획으로 표지하였다. 세포 파쇄액은 12 , 000 X 1 4°0 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은 500 의 50 인산 나트륨, 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
50 의 총 세포, 가용성 및 불용성 분획을 각각 50 의 2배 농축된 況 시료 완중액 (SDS sample buffer 2x concentrate, Sigma)에 혼합한 투, 95°C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루(Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후, 탈색 완충액으로 탈색하여 염색된 단백질만보일 수 있도록 하였다.
도 22내지 도 24에 나타낸 바와 같이, 대조군인 PG43-H6TEV-GLP-1K28R의 발현 수준과 비교하여 PG43-H6TEV-GLP-1K28R 내 PG43의 2번부터 7번까지 6개의 아미노산 잔기의 변화에 의해 발현 수준이 향상된 변이체와 감소된 변이체들을 확인하였다. 특히, 덴시토미터 분석을 통해 2번째 잔기가 아스팔트산으로 치환된 변이주와 7번째 잔기가 아이소루신, 아스파라긴, 아르기닌, 아스팔트산으로 치환된 변이주들은 대조군 대비 2 내지 3배 이상 발현 수준이 향상되는 것으로 확인되었다.
실시예 8. GLP-1K28R융합폴리펩타이드의 회수 및 정제
실시예 8.1. 세포 파쇄 및 불용성 내포체 회수
플라스크 규모에서 발현된 세포의 냉동된 세포 펠렛을 50 M의 50 mM 인산 나트륨, pH 7.2 완충액을 첨가하여 해동하였다. 재현탁된 세포는 초음파 세포 파쇄기 (ultrasonic processor , Cole-Parmer )를 이용하여 파쇄하였다. 용해된 세포는 12,000 rpm (12,000Xg) 조건에서 30분간 원심분리하고 상등액을 제거하여 재조합융합폴리펩타이드가포함된 불용성 내포체 분획을 회수하였다.
실시예 8.2. 불용성 내포체 가용화
회수된 불용성 내포체 분획에 20 의 내포체 가용화 완충액 (8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)을 첨가하고 25°C 온도에서 4시간 동안 진탕배양하여 불용성 분획 내 내포체 형태의 재조합 융합 폴리펩타이드가 가용화될 수 있도록 하였다. 가용화된 불용성 분획 시료는
12,000Xg에서 30분간 원심분리하고 상등액을 (0.45/0.2 m) 막필터를 통해 여과하였다.
실시예 8.3. GLP-1K28R융합폴리됩타이드정제
7개 GLP-1K28R융합 폴리펩타이드 중 가장 발현 수준이 높은 PG43-H6TEV- GLP-1K28R를 정제하였다. 먼저, 가용화된 불용성 분획 내의 GLP-1K28R 융합 폴리펩타이드의 정제를 위하여 S9 시료 펌프 (Sample pump S9) 및 F9-C 분획 수집기 (Fract ion col lector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템 (GE Heal thcare)을 이용하였다. 가용화된 불용성 분획 시료는 내포체 가용화 완충액 (8 M 요소, 20 mM트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)으로 미리 평형화된 Hi sTrap FF 1 m요 컬럼 (GE Heal thcare)에 주입하였다. 주입이 완료된 후 컬럼은 5배 컬럼 부피의 평형 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액 (8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 500 mM 이미다졸, pH 7.4)을 단계적으로 100%가 되도록 증가시켜 컬럼의 수지에 결합되어 있는 GLP-1K28R 융합 폴리펩타이드를 용출하였다. 용출 후 얻어진 분획의 결과를 각각 도면에 나타내었다 (도 25 및 도 26) . 컬럼에 주입된 가용화된 불용성 분획 시료 내의 GLP-1K28R융합 폴리펩타이드는 대부분 컬럼 내 수지에 결합후 용출되어 95% 이상의 순도를 보였다.
실시예 9. 프로테아제 처리를통한 링커 서열 절단
약 5 m요의 정제된 GLP-1K28R 융합 폴리펩타이드의 분획을 합친 후 140 m£의 희석 완충액 (20 mM 트리스, pH 7.4)을 첨가하여 요소 농도가 1 M이 되도록 희석하였다. 희석된 재조합 융합 폴리펩타이드에 TEV 프로테아제를 최종 농도가 500 이이 되도록 첨가하고 실온에서 12시간 동안 절단 반응이 진행될 수 있도록 하였다.
TEV 프로테아제에 의한 절단 여부를 확인하기 위해, 절단 후 SDS-PAGE 분석을 수행하여 그 결과를 도면에 나타내었다 (도 27) . TEV 프로테아제에 의한 GLP-1K28R융합 폴리펩타이드 (PG43-H6TEV-GLP-1K28R)의 절단 전 후를 SDS-PA賊로 분석해본 결과 7.9 kDa의 GLP-1K28R 융합 폴리펩타이드는 거의 100%의 수율로 아미노 말단 융합 파트너와 6 히스티딘 태그 및 TEV 프로테아제 인식서열 융합체인 PG43-H6TEV와 목적 폴리펩타이드인 GLP-1K28R로 절단되는 것을 확인하였다.
실시예 10. 절단후의 GLP-1K28R의 분자량분석
완전한 형태의 GLP-1K28R 융합 폴리펩타이드 (PG43-H6TEV-GLP-1K28R)의 발현 유무, TEV 프로테아제에 의한 정확한 절단 및 절단 후 얻어진 GLP-1K28R의 변형 (modi f i cat ion) 유무를 확인하기 위해 MALTI-T0F MS를 이용한 분자량 분석을 실시하였다. 본 발명에 따라수득된 GLP-1K28R의 분자량을 측정한 결과를 도면에 나타내었다.
도 28을 참고하면, PG43-H6TEV-GLP-1K28R로부터 수득된 GLP-1K28R의 분자량은 3382.59 Da으로 측정되어 이론적인 분자량인 3383.72 Da과 오차범위 이내에서 일치하였으므로 대장균 내에서 단백질 분해효소(proteolyt i c enzyme)에 의한 아미노 혹은 카르복시 말단의 부분적인 절단이나 분해 없이 완전한 형태로 발현된 것을 확인할수 있었다.
따라서 TEV 프로테아제는 PG43-H6TEV-GLP-1K28R 내 인식서열인 ENLFQ 서열을 인식하고 마지막 아미노산인 Q(글루타민)와 GLP-1K28R의 첫번째 아미노산인 H(히스티딘) 사이의 펩타이드 결합을 정확하게 절단하는 것으로 판단된다. 실시예 11. 테두글루타이드(GLP-2A2G) 융합폴리펩타이드 제조 및 생산 실시예 11.1. GLP-2A2G융합폴리펩타이드 발현 플라스미드의 제작
GLP-2A2G 융합 폴리펩타이드에 대한 유전자는 over lap extens ion polymerase chain react ion (OE-PCR) 방법을 이용하여 합성하였다. 이때, 상기 GLP-2A2G 융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07(서열번호 9), PG15서열번호 31), PG22(서열번호 53), PG29서열번호 75), PG36(서열번호 97) 및 PG43(서열번호 119) 중 하나와 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식서열(서열번호 146) 및 GLP-2A2G의 아미노산 서열(서열번호 485)이 포함되어 있다.
대조군으로서 사용된 GLP-2A2G 융합 폴리펩타이드(H6TEV-GLP-2A2G)는 아미노 말단 융합 파트너가 포함되어 있지 않고, 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식서열(서열번호 146) 및 GLP-2A2G의 아미노산 서열(서열번호 485)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 Ndel , Ncol 및 제이의 인식서열과 1개의 종결 코돈을 포함한다. 상기 GLP-2A2G 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 각각 서열번호 622 내지 627에 해당하며, 대조군은서열번호 621에 해당한다.
아래 표 6에 기재한 GLP-2A2G 융합 폴리펩타이드 발현 플라스미드 PSGK520, pSGK521 , pSGK522 , pSGK547, pSGK548, pSGK549 및 pSGK523을 제작하기 위해서, 0E-PCR로 합성된 GLP-2A2G 융합 폴리펩타이드 유전자 단편을 Ndel 및 2019/143193 1»(:1^1{2019/000782
¾01 제한 효소를 이용하여 절단하고, 17 프로모터, 130 작동자 및 1301 유전자를 포함하여 1 ^에 의한 발현 조절이 가능한 발현벡터 ?£ 2613에 클로닝하였다.
【표 6]
Figure imgf000051_0004
제작된 꾜13-2쇼26 융합 폴리펩타이드 발현 플라스미드들은 염기서열 확인을 통해 정확한 클로닝 여부를 확인하였다. 제작된 꾜?-2쇼20 융합 폴리펩타이드 발현 플라스미드들을 이용하여 염화칼슘을 이용한 화학적인 방법으로 대장균 此21(에:3) 세포를 형질전환하였다.
Figure imgf000051_0001
융합 폴리펩타이드의 발현 플라스미드들이 형질도입된 대장균들은 카나마이신 0에131117(^11)이 50 //용/111모의 농도로 포함된 1 고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들은 각각 카나마이신이 50 //은/ä요의 농도로 존재하는 [出 액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를
Figure imgf000051_0002
온도의 냉동고에 보관하였다.
실시예 11.2. 형질전환된세포의 배양및(3 -2^의 발현
온도에서 보관된 (¾ -2쇼20 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 成를 카나마이신이 50 1塔/1111의 농도로 존재하는 1 액체 배지 5 111요이 포함된 시험관에 첨가하여 37 V 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2 «1요을 카나마이신이 50 용/111요의 농도로 존재하는
Figure imgf000051_0003
액체 배지 200 111보이 포함된 플라스크에 첨가하여 37 °0 온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도((犯600)가 약 1 .0이 되었을 때 1 (}를 최종 농도 0. 1 이 되도록 첨가하여 꾜 쇼요 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
실시예 11.3. 발현수준비교분석을위한시료의 제조 발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 mM 인산 나트륨, pH 7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기(ul trasoni c processor , Cole-Parmer)를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 총 세포 분획으로 표지하였다. 세포 파쇄액은 12, 000 X g, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은 500 의 50 mM 인산 나트륨, pH 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
실시예 11.4. SDS-PAGE분석을통한생산된 GLP-2A2G의 확인
50 의 총 세포, 가용성 및 불용성 분획을 각각 50 成의 2배 농축된 SDS 시료 완충액 sample buf fer 2X concentrate , Sigma)에 혼합한 후, 95 °C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루(Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후 탈색 완충액으로 탈색하여 염색된 단백질만 보일 수 있도록 하였다. 그 결과를 도 29 및 도 30에 나타내었다.
도 29를 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 H6TEV-GLP-2A2G(5.5 kDa의 분자량)의 밴드는 SDS- PAGE 젤에서 검출되지 않아 발현 후 세포내 단백질 분해효소에 의해 분해된 것으로 보인다.
아미노 말단 융합 파트너인 PG07 , PG15, PG22 , PG29, PG36 및 PG43이 융합된 GLP-2A2G 융합 폴리펩타이드인 PG07-H6TEV-GLP-2A2G(6.5 kDa의 분자량), PG15-H6TEV-GLP-2A2G(7.5 kDa의 분자량), PG22-H6TEV-GLP-2A2G(7.5 kDa의 분자량), PG29-H6TEV-GLP-2A2G(8.3 kDa의 분자량), PG36-H6TEV-GLP-2A2GO .5 kDa의 분자량) 및 PG43-H6TEV-GLP-2A2G( 12.1 kDa의 분자량) 중 SDS-PAGE 분석을 통해 발현 확인이 된 것은 PG22-H6TEV-GLP-2A2G, PG29-H6TEV-GLP-2A2G , PG36- H6TEV-GLP-2A2G및 PG43-H6TEV-GLP-2A2G이었다.
덴시토미터 분석을 통해 PG07, PG15, PG22 , PG29, PG36 및 PG43 중 PG43의 융합에 의한 PG43-H6TEV-GLP-2A2G의 발현 수준이 모든 GLP-2A2G 융합 폴리펩타이드 중 가장높은 것으로 확인되었다 또한, 도 30을 참조하면, 발현이 확인된 모든 GLP-2A2G 융합 폴리펩타이드들은 가용성 분획에서는 관찰되지 않고 모두 불용성 분획에서 나타나는 것을 알 수 있다(레인 1: H6TEV-GLP-2A2G(균주 번호 PG012), 레인 2: PG07-H6TEV-GLP-2A2G(균주 번호 PG013), 레인 3: PG15-H6TEV-GLP-2A2G(균주 번호 PG014) 및 레인 4: PG22-H6TEV-GLP-2A2G(균주 번호 PG015)의 경우 목적 펩타이드가 발현되지 않아가용성 테스트를 수행하지 않았음).
실시예 11.5. N-말단융합 파트너의 아미노산 치환에 의한 GLP-2A2G융합 폴리펩타이드의 발현 수준 변화
PG43-H6TEV-GLP-2A2G 내 PG43의 2번부터 7번까지 6개의 아미노산 잔기의 변화가 GLP-2A2G융합 폴리펩타이드의 발현 수준에 미치는 영향을 알아보기 위해 각각의 아미노산 잔기를 이소루신, 아스파라긴, 아르기닌, 아스팔트산으로 치환한 총 22개의 GLP-2A2G융합 폴리펩타이드의 변이체를 제작하여 PG43-H6TEV- GLP-2A2G와의 세포 내 발현수준을 비교하였다.
구체적으로, GLP-2A2G 융합 폴리펩타이드의 변이체 발현을 위한 플라스미드 DNA는 위치 지정 돌연변이(site-directed mutagenesis) 방법을 이용하여 제작하였다. 위치 지정 돌연변이를 위한 주형(template)은 PG43-H6TEV- GLP-2A2G발현 플라스미드인 pSGK523을 사용하였다. 프라이머는 각각의 변이체의 아미노산 치환부위의 염기서열이 변경된 정방향(forward) 및 역방향(reverse)의 단일가닥 DNA 올리고머를 이용하였다. 실험에 사용된 프라이머는 하기 표 7에 나타내었다.
【표 7】
Figure imgf000053_0001
2019/143193 1»(:1^1{2019/000782
Figure imgf000054_0004
플라스미드들은
Figure imgf000054_0001
염기서열 확인을 통해 정확한클로닝 여부를 확인하였다. 제작된 亂13-2요20 융합 폴리펩타이드의 변이체 발현 플라스미드들을 이용하여 염화칼슘을 이용한 화학적인 방법으로 대장균 1( 3) 세포를 형질전환하였다. 꾜 -2쇼20융합 폴리펩타이드의 발현 플라스미드들이 형질도입된 대장균들은 카나마이신 0¾1내1 (: )이
Figure imgf000054_0002
농도로포함된 1玉 고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들은 각각 카나마이신이 50 // §/!11보의 농도로 존재하는
Figure imgf000054_0003
액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를 -801: 온도의 냉동고에 보관하였다.
-801: 온도에서 보관된 융합 폴리펩타이드의 변이체 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 成를 카나마이신이 50 //g/n 의 농도로 존재하는 LB 액체 배지 5 M이 포함된 시험관에 첨가하여 37 °C 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2
Figure imgf000055_0001
카나마이신이 50 g/M의 농도로 존재하는 LB 액체 배지 200 m요이 포함된 플라스크에 첨가하여 37 °C 온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도 (0D600)가 약 1.0이 되었을 때, IPTG의 최종 농도가 0.1 mM이 되도록 첨가하여 GLP-2A2G 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
발현 유도가 된 세포의 광학밀도가 10.0이 되도록 세포를 농축하고 50 mM 인산 나트륨, pH 7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기 (ul trasoni c processor , Cole-Parmer)를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 종 세포 분획으로 표지하였다. 세포 파쇄액은 12,000 X g, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은 500 의 50 mM 인산 나트륨, pH 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
50 «의 총 세포, 가용성 및 불용성 분획을 각각 50 의 2배 농축된 SDS 시료 완충액 (SDS sample buf fer 2 X concentrate , Sigma)에 혼합한 후, 95 °C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. 況 S-PA湖 후 겔을 쿠마시 블루 (Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후, 탈색 완충액으로 탈색하여 염색된 단백질만보일 수 있도록 하였다.
도 31 내지 도 33에 나타난 바와 같이 , 대조군인 PG43-H6TEV-GLP-2A2G의 발현 수준과 비교하여 PG43-H6TEV-GLP-2A2G 내 PG43의 2번부터 7번까지 6개의 아미노산 잔기의 변화에 의해 발현 수준이 변화된 변이체들을 SDS-PA湖 젤 및 덴시토미터 분석을 통해 확인하였다. PG43의 2번부터 7번까지 6개의 아미노산 잔기의 변화는 GLP-2A2G 융합 폴리펩타이드의 발현 수준을 크게 향상시키지 못하고 5번째 잔기가 아르기닌으로 치환된 변이주와 7번째 잔기가 아르기닌으로 치환된 변이주는 대조군 대비 50% 이하로 발현 수준이 감소되었다. 실시예 12. GLP-2A2G융합폴리펩타이드의 회수 및 정제
실시예 12.1. 세포파쇄 및 불용성 내포체 회수
플라스크 규모에서 발현된 세포의 냉동된 세포 펠렛을 50 me의 50 mM 인산 나트륨, pH 7.2 완충액을 첨가하여 해동하였다. 재현탁된 세포는 초음파 세포 파쇄기 (ul trasonic processor , Cole-Parmer)를 이용하여 파쇄하였다. 용해된 세포는 12,000 rpm (12, 000X g) 조건에서 30분간 원심분리하고 상등액을 제거하여 재조합융합폴리펩타이드가포함된 불용성 내포체 분획을 회수하였다.
실시예 12.2. 불용성 내포체 가용화
회수된 불용성 내포체 분획에 20 M의 내포체 가용화 완충액 (8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)을 첨가하고 25 °C 온도에서 4시간 동안 진탕배양하여 불용성 분획 내 내포체 형태의 재조합 융합 폴리펩타이드가 가용화될 수 있도록 하였다. 가용화된 불용성 분획 시료는 12, 000 Xg에서 30분간 원심분리하고 상등액을 (0.45/0.2 ) 막필터를 통해 여과하였다.
실시예 12.3. GLP-2A2G융합폴리팹타이드정제
7개 GLP-2A2G 융합 폴리펩타이드 중 가장 발현 수준이 높은 PG43-H6TEV- GLP-2A2G를 정제하였다. 먼저, 가용화된 불용성 분획 내의 GLP-2A2G 융합 폴리펩타이드의 정제를 위하여 S9 시료 펌프 (Sample pump S9) 및 F9-C 분획 수집기 (Fract ion col lector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템 (GE Heal thcare)을 이용하였다. 가용화된 불용성 분획 시료는 내포체 가용화 완충액 (8 M요소, 20 mM트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)으로 미리 평형화된 Hi sTrap FF 1
Figure imgf000056_0001
컬럼 (GE Heal thcare)에 주입하였다. 주입이 완료된 후 컬럼은 5배 컬럼 부피의 평형 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액 (8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 500 mM 이미다졸, pH 7.4)을 단계적으로 100%가 되도록 증가시켜 컬럼의 수지에 결합되어 있는 GLP-2A2G 융합 폴리펩타이드를 용출하였다. 용출 후 얻어진 분획의 결과를 각각 도면에 나타내었다 (도 34 및 도 35) . 컬럼에 주입된 가용화된 불용성 분획 시료 내의 GLP-1K28R융합 폴리펩타이드는 대부분 컬럼 내 수지에 결합후 용출되어 95% 이상의 순도를 보였다.
실시예 13. 프로테아제 처리를통한링커 서열 절단 약 5 m요의 정제된 GLP-2A2G 융합 폴리펩타이드의 분획을 합친 후 140 m보의 희석 완충액(20 mM트리스, pH 7.4)을 첨가하여 요소 농도가 1 이 되도록 희석하였다. 희석된 재조합 융합 폴리펩타이드에 TEV프로테아제를 최종 농도가 500 이 되도록 첨가하고 실온에서 12시간 동안 절단 반응이 진행될 수 있도록 하였다.
TEV 프로테아제에 의한 절단 여부를 확인하기 위해, 절단 후 SDS-PAGE 분석을 수행하여 그 결과를 도면에 나타내었다(도 36). TEV프로테아제에 의한 GLP-2A2G 융합 폴리펩타이드(PG43-H6TEV-GLP-2A2G)의 절단 전 후를 SDS-PAGE로 분석해본 결과 12.1 kDa의 GLP-2A2G융합 폴리펩타이드는 거의 100%의 수율로 아미노 말단 융합 파트너와 6 히스티딘 태그 및 TEV 프로테아제 인식서열 융합체인 PG43-H6TEV와 목적 폴리펩타이드인 GLP-2A2G로 절단되는 것을 확인하였다.
실시예 14. 절단후의 GLP-2A2G의 분자량분석
완전한 형태의 GLP-2A2G융합 폴리펩타이드(PG43-H6TEV-GLP-2A2G)의 발현 유무, TEV 프로테아제에 의한 정확한 절단 및 절단 후 얻어진 GLP-2A2G의 변형(modification) 유무를 확인하기 위해 MALTI-TOF MS를 이용한 분자량 분석을 실시하였다. 본 발명에 따라 수득된 GLP-2A2G의 분자량을 측정한 결과를 도면에 나타내었다.
도 37를 참고하면, PG43-H6TEV-GLP-2A2G로부터 수득된 GLP-2A2G의 분자량은 3753.10 Da으로 측정되어 이론적인 분자량인 3752.13 Da과 오차범위 이내에서 일치하였으므로 대장균 내에서 단백질 분해효소(proteolytic enzyme)에 의한 아미노 혹은 카르복시 말단의 부분적인 절단이나 분해 없이 완전한 형태로 발현된 것을 확인할수 있었다.
따라서 TEV 프로테아제는 PG43-H6TEV-GLP-2A2G 내 인식서열인 ENLFQ 서열을 인식하고 마지막 아미노산인 Q(글루타민)와 GLP-2A2G의 첫번째 아미노산인 H(히스티딘) 사이의 펩타이드 결합을 정확하게 절단하는 것으로 판단된다. (목적 펩타이드가발현되지 않아가용성 테스트를 수행하지 않았음). 실시예 15. 에칼란타이드의 제조 및 생산
실시예 15.1에칼란타이드융합폴리펩타이드 발현 플라스미드의 제작 에칼란타이드 융합 폴리펩타이드에 대한 유전자는 overlap extension polymerase chain react ion (OE-PCR) 방법을 이용하여 합성하였다. 이때, 상기 에칼란타이드 융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07 서열번호 9), PG15 서열번호 31), PG43(서열번호 119) 중 하나와 6 히스티딘 태그(서열번호 140) 및 TEV 프로테아제 인식 서열(서열번호 146) 및 에칼란타이드의 아미노산 서열(서열번호 638)이 포함되어 있다.
대조군으로서 사용된 에칼란타이드 융합 폴리펩타이드어 - Ecal lant ide)는 아미노 말단 융합 파트너가 포함되어 있지 않고, 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식 서열(서열번호 146) 및 에칼란타이드의 아미노산 서열(서열번호 642)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 Ndel , Ncol 및 제이의 인식 서열과 1개의 종결 코돈을 포함한다. 상기 에칼란타이드 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열(PG07, PG15 및 PG43)은 각각 서열번호 644 내지 646에 해당하며, 대조군은 서열번호 643에 해당한다.
아래 표 8에 기재한 에칼란타이드 융합 폴리펩타이드 발현 플라스미드 pSGK512 , pSGK513 , pSGK514 및 pSGK515를 제작하기 위해서, 湖- PCR로 합성된 에칼란타이드 융합 폴리펩타이드 유전자 단편을 Ndel 및 Xhol 제한 효소를 이용하여 절단하고, T7 프로모터, lac 작동자 및 Lad 유전자를 포함하여 IPTG에 의한 발현 조절이 가능한 발현벡터 pET26b에 클로닝하였다.
【표 8]
Figure imgf000058_0001
에칼란타이드 융합 폴리펩타이드 발현 플라스미드들은 실시예 1. 1에서 수행된 것과 동일한 방법으로 제작되어 -8010 에서 냉동고에 보관하였다.
실시예 15.2. 형질전환된 세포의 배양및 에칼란타이드의 발현
-80 °0 에서 보관된 에칼란타이드 융합 폴리펩타이드의 발현 플라스미드들로 형질전환된 세포의 배양 및 에칼란타이드의 발현은 실시예 1.2와 동일한 방법으로 수행되었다.
실시예 15.3. 발현 수준 비교분석을위한시료의 제조
에칼란타이드 관련 시료의 제조는 실시예 1.3과 동일한 방법으로 수행되었다.
실시예 15.4. SDS-PAGE분석을통한생산된 에칼란타이드의 확인 실시예 1.4와 동일한 방법 및 조건으로 각 시료의 단백질을 처리한 후, 그 결과를 도 38 및 도 39에 나타내었다.
도 38을 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 H6TEV-Ecal lant ide(8.8 kDa의 분자량)의 밴드는 타 에칼란타이드 융합 폴리펩타이드들과 비교하여 가장 낮은 발현 수준을 보였다. 아미노 말단 융합 파트너인 PG7, PG15 및 PG43이 융합된 에칼란타이드 융합 폴리펩타이드인 PG07-H6TEV-Eca 11 ant i de( 9.8 kDa의 분자량), PG15-H6TEV- Ecal l ant ide(10.8 kDa의 분자량) 및 PG43-H6TEV-Eca 11 ant i de( 15.4 kDa의 분자량)의 발현 수준은 대조군(H6TEV-Ecal lant ide) 대비 증가된 것이 확인되었다. 덴시토미터 분석을 통해 PG7, PG15 및 PG43 중 PG07의 융합에 의한 PG07-H6TEV- Ecal lant ide의 발현 수준이 모든 에칼란타이드 융합 폴리펩타이드 중 가장 높은 것으로 확인되었다.
또한, 도 39를 참조하면, 대조군을 포함한 모든 에칼란타이드 융합 폴리팹타이드는 가용성 분획에서는 관찰되지 않고 모두 불용성 분획에서 나타나는 것을 알수 있다.
실시예 16. 네시리타이드의 제조 및 생산
실시예 16.1네시리타이드융합폴리펩타이드 발현 플라스미드의 제작 네시리타이드 융합 폴리펩타이드에 대한 유전자는 over lap extension polymerase chain react ion(OE-PCR) 방법을 이용하여 합성하였다. 이때, 상기 ' 네시리타이드 융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07(서열번호 9), PG15C서열번호 31), PG43C서열번호 119) 중 하나와 6 히스티딘 태그(서열번호 140) 및 TEV 프로테아제 인식 서열(서열번호 146) 및 네시리타이드의 아미노산서열(서열번호 652)이 포함되어 있다.
대조군으로서 사용된 네시리타이드 융합 폴리펩타이드(H6TEV-
Ecal l ant ide)는 아미노 말단 융합 파트너가 포함되어 있지 않고, 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식 서열(서열번호 146) 및 네시리타이드의 아미노산 서열(서열번호 652)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 Ndel , Ncol 및 제이의 인식 서열과 1개의 \¥0 2019/143193 1»(:1^1{2019/000782 종결 코돈을 포함한다. 상기 네시리타이드 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 각각 서열번호 654 내지 656에 해당하며, 대조군은 서열번호 653에 해당한다.
아래 표 9에 기재한 네시리타이드 융합 폴리펩타이드 발현 플라스미드 ?3況516, ?3(¾517, ?3(¾518 및 ? (¾519를 제작하기 위해서, 孤-^고로 합성된 네시리타이드 융합 폴리펩타이드 유전자 단편을 및 ¾01 제한 효소를 이용하여 절단하고, 17 프로모터, 130 작동자 및 1301 유전자를 포함하여 1 에 의한 발현 조절이 가능한 발현벡터 ?£ 261)에 클로닝하였다.
【표 9】
Figure imgf000060_0003
네시리타이드 융합 폴리펩타이드 발현 플라스미드들은 실시예 1 . 1에서 수행된 것과 동일한 방법으로 제작되어 -80公 온도에서 냉동고에 보관하였다.
실시예 16.2. 형질전환된세포의 배양및 네시리타이드의 발현
에서 보관된 네시리타이드 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 세포의 배양 및 네시리타이드의 발현은 실시예 1 .2와 동일한 방법으로 수행되었다.
실시예 16.3. 발현수준비교분석을위한시료의 제조
네시리타이드 관련 시료의 제조는 실시예 1 .3과 동일한 방법으로 수행되었다.
실시예 16.4
Figure imgf000060_0001
분석을통한생산된네시리타이드의 확인
실시예 1.4와 동일한 방법 및 조건으로 각 시료의 단백질을 처리한 후, 그 결과를 도 40 및 도 41에 나타내었다.
도 40을 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 볘 - 此3 ^ 6(5.2 吐) 3의 분자량)와 아미노 말단 융합 파트너 ?에7 이 융합된 네시리타이드 융합 폴리펩타이드인 에
Figure imgf000060_0002
볘3의 분자량)의 밴드는 況구쇼표 젤에서 검출되지 않아 발현 후 세포내 단백질 분해효소에 의해 분해된 것으로 보인다. 況요 요 묘 젤에서 네시리타이드 융합 폴리펩타이드의 발현은 분자량이 가장 작은 아미노 말단 융합 파트너인 PG15가 융합된 PG15-H6TEV-Nesiritide(7.2 kDa의 분자량)부터 확인되었다. 아미노 말단 융합 파트너인 PG43이 융합된 네시리타이드 융합 폴리펩타이드인 PG43-H6TEV-Nesiritide(11.8 kDa의 분자량)의 발현 수준은 PG15- H6TEV-Nesiritide(7.2 kDa의 분자량) 대비 향상된 것이 확인되었다. 덴시토미터 분석을 통해 PG07, PG15, 및 PG43 중 PG43의 융합에 의한 PG43-H6TEV-
Nesiritide의 발현 수준이 모든 네시리타이드 융합 폴리펩타이드 중 가장 높은 것으로 확인되었다.
또한, 도 41을 참조하면, 대조군을 포함한 모든 네시리타이드 융합 폴리펩타이드는 가용성 분획에서는 관찰되지 않고 모두 불용성 분획에서 나타나는 것을 알 수 있다(레인 1: H6TEV-Nesiritide(균주 번호 PG023) 및 레인 2: PG07-H6TEV-Nesiritide(균주 번호 PG024)의 경우 목적 펩타이드가 발현되지 않아가용성 테스트를 수행하지 않았음).
실시예 17. hPTH 1-84융합폴리펩타이드 제조 및 생산
실시예 17.1. hPTH 1-84융합폴리펩타이드 발현 플라스미드의 제작
hPTH 1-84 융합 폴리펩타이드에 대한 유전자는 overlap extension polymerase chain reaction (OE-PCR) 방법을 이용하여 합성하였다. 이때, 상기 hPTH 1-84융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG07서열번호 9), PG15(서열번호 31), PG43(서열번호 119)중 하나와 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식 서열(서열번호 146) 및 hPTH 1-84의 아미노산 서열(서열번호 18)이 포함되어 있다.
대조군으로서 사용된 hPTH 1-84 융합 폴리펩타이드(H6TEV-hPTH 1-84)는 아미노 말단 융합 파트너가포함되어 있지 않고, 6 히스티딘 태그(서열번호 140), TEV 프로테아제 인식 서열(서열번호 146) 및 hPTH 1-84의 아미노산 서열(서열번호 628)이 포함되어 있다. 각 융합 폴리펩타이드의 유전자는 제한 효소 Ndel, Ncol 및 Xhol의 인식 서열과 1개의 종결 코돈을 포함한다. 상기 hPTH 1-84 융합 폴리펩타이드를 코딩하는 뉴클레오타이드 서열은 각각 서열번호 635 내지 637에 해당하며, 대조군은서열번호 654에 해당한다.
아래 표 10에 기재한 hPTH 1-84 융합 폴리펩타이드 발현 플라스미드 PSGK543, pSGK544, pSGK545 및 pSGK546를 제작하기 위해서, 0E-PCR로 합성된 hPTH 1-84융합 폴리펩타이드 유전자 단편을 Ndel 및 Xhol 제한 효소를 이용하여 2019/143193 1»(:1^1{2019/000782 절단하고, 17 프로모터, 1 % 작동자 및 1301 유전자를 포함하여 1的^에 의한 발현 조절이 가능한 발현벡터 ?肝2¾에 클로닝하였다.
【표 10】
Figure imgf000062_0005
제작된 1-84 융합 폴리펩타이드 발현 플라스미드들은 0 염기서열 확인을 통해 정확한 클로닝 여부를 확인하였다. 제작된
Figure imgf000062_0001
1-84 융합 폴리펩타이드 발현 플라스미드들을 이용해 염화칼슘을 이용한 화학적인 방법으로 대장균 此21( 3) 세포를 형질전환하였다. 5ä 1-84 융합 폴리펩타이드의 발현 플라스미드들이 형질도입된 대장균들은 카나마이신 ¾3113111 (^ 11)이 50 //은/파公의 농도로 포함된
Figure imgf000062_0002
고체배지에서 콜로니를 형성하였다. 형질전환된 대장균들은 각각 카나마이신이 50 쌔/ 의 농도로 존재하는 1고 액체 배지에 배양한 후, 50% 글리세롤을 배양액과 동일한 부피로 첨가하여 세포 농축액을 만들고, 이를 -80亡 온도의 넁동고에 보관하였다.
실시예 17.2. 형질전환된세포의 배양및 매 1-84의 발현
-80 °0 온도에서 보관된 ä 1-84 융합 폴리펩타이드의 발현 플라스미드들이 형질전환된 대장균의 세포 농축액을 실온에서 녹인 후 50 成를 카나마이신이 50 / 111요의 농도로 존재하는 18, 액체 배지 5 111모이 포함된 시험관에 첨가하여 37 V 온도의 진탕배양기에서 12시간 동안 종균 배양하였다. 종균 배양된 대장균 2 111요을 카나마이신이 50 ;쌔/111모의 농도로 존재하는 1止 액체 배지 200 】1】£이 포함된 플라스크에 첨가하여
Figure imgf000062_0003
온도의 진탕배양기에서 배양하였다. 배양 약 3시간 후 세포의 광학밀도(孤600)가 약 1 . 0이 되었을 때 1的^를 최종 농도 0. 1 이 되도록 첨가하여 1¾ 1-84 융합 폴리펩타이드의 발현을 유도하였다. 발현 유도 4시간 후에 광학 밀도를 측정하여 세포의 광학 밀도를 측정하였다.
실시예 17.3. 발현수준비교분석을위한시료의 제조
발현 유도가 된 세포의 광학밀도가 10 . 0이 되도록 세포를 농축하고 50 인산 나트륨,
Figure imgf000062_0004
7.2 완충액으로 재현탁시킨 후 초음파 세포 파쇄기(111比33011 근 이", 에6-?31"11161·)를 이용하여 세포를 파쇄하였다. 파쇄된 세포는 종 세포 분획으로 표지하였다. 세포 파쇄액은 12 , 000Xg, 4°C 온도에서 15분간 원심분리하였다. 상등액을 회수하고 가용성 분획으로 표지하였다. 불용성 분획은 500 의 50 mM 인산 나트륨, pH 7.2 완충액으로 초음파 세포 파쇄기를 이용하여 재현탁하고 불용성 분획으로 표지하였다.
실시예 17.4. SDS-PAGE분석을 통한 생산된 hPTH 1-84의 확인
50 의 총 세포, 가용성 및 불용성 분획을 각각 50成의 2배 농축된 SDS 시료 완충액(SDS sample buffer 2公、 concentrate, Sigma)에 혼합한 후, 95°C 온도에서 5분간 가열하여 각 시료의 단백질이 변성될 수 있도록 하였다. 시료 내 변성된 단백질들은 16% SDS-PAGE 겔 및 TANK 완충액을 이용하여 분자량 크기에 따라 겔 내에서 분리될 수 있도록 하였다. SDS-PAGE 후 겔을 쿠마시 블루(Coomassie blue) R-250이 포함된 염색 완충액으로 염색한 후 탈색 완충액으로 탈색하여 염색된 단백질만 보일 수 있도록 하였다. 그 결과를 도 42 및 도 43에 나타내었다.
도 42를 참조하면, 대조군인 서열번호 1의 아미노산 서열을 포함하는 융합 파트너가 포함되지 않은 H6TEV-hPTHl-84 (11.2 kDa의 분자량)의 밴드는 타 hPTH 1-84융합폴리펩타이드들과 비교하여 가장낮은 발현 수준을 보였다.
아미노 말단 융합 파트너인 PG07, PG15 및 PG43이 융합된 hPTH 1-84 융합 폴리펩타이드인 PG07-H6TEV-hPTHl-84(12.2 kDa의 분자량), PG15-H6TEV- hPTHl-84(13.2 kDa의 분자량) 및 PG43-H6TEV-hPTHl-84(15.9 kDa의 분자량)의 발현 수준은 대조군(H6TEV-hPTHl-84) 대비 향상된 것이 확인되었다. 덴시토미터 분석을 통해 PG07, PG15, 및 PG43중 PG15의 융합에 의한 PG15-H6TEV-hPTHl-84의 발현 수준이 모든 hPTH 1-84융합 폴리펩타이드 중 가장 높은 것으로 확인되었다. 또한, 도 43을 참조하면, 대조군을 포함한 모든 hPTH 1-84 융합 폴리펩타이드는 가용성 분획에서 관찰되었지만 아미노 말단 융합 파트너의 크기가 커질수록 hPTH 1-84융합 폴리펩타이드의 불용성 분획 비율이 증가하였고 가장 크기가 큰 PG43이 융합된 PG43-H6TEV-hPTHl-84은 총 단백질의 약 70%가 불용성 분획에서 나타나는 것을 알수 있다.
실시예 18. hPTHl-84융합폴리펩타이드의 회수및 정제
실시예 18.1. 세포파쇄 및 가용화
4개의 hPTH 1-84융합 폴리펩타이드들은 가용성 발현비율이 높아 총세포 분획에서 hPTH 1-84융합 폴리펩타이드를 정제하였다. 플라스크 규모에서 발현된 세포의 냉동된 세포 펠렛을 20 m보의 내포체 가용화 완충액 (8 M 요소, 20 mM 트리스, 500 mM 염화나트륨, 50 mM 이미다졸, pH 7.4)을 첨가하여 해동 및 재현탁하였다. 재현탁된 세포는 초음파 세포 파쇄기 (ultrasonic processor , Cole-Parmer)를 이용하여 파쇄하였다. 용해된 세포는 12,000 rpm (12,000Xg) 조건에서 30분간 원심분리하고 상등액을 제거하여 재조합 융합 폴리펩타이드가 포함된 불용성 내포체 분획을 제거하고 가용성 분획인 상등액을 회수하였다. 가용성 분획 시료는 12,000Xg에서 30분간 원심분리하고 상등액을 (0.45/0.2 pm) 막필터를 통해 여과하였다.
실시예 18.2. hPTHl-84융합폴리펩타이드정제
4개의 hPTHl-84 융합 폴리펩타이드 중 가장 발현 수준이 높은 PG15- h6TEV-hPTHl-84를 정제하였다. 먼저, 가용성 분획 내의 hPTHl-84 융합 폴리펩타이드의 정제를 위하여 S9 시료 펌프(Sample pump S9) 및 F9-C 분획 수집기 (Fraction collector F9-C)이 장착된 AKTA pure 25 크로마토그라피 시스템 (GE Healthcare)을 이용하였다. 가용화된 불용성 분획 시료는 내포체 가용화 완충액 (8 M요소, 20 mM트리스, 500 mM염화나트륨, 50 mM이미다졸, pH 7.4)으로 미리 평형화된 HisTrap FF 1 mL컬럼 (GE Healthcare)에 주입하였다. 주입이 완료된 후 컬럼은 5배 컬럼 부피의 평형 완충액으로 세척하고, 5배 컬럼 부피의 용출 완충액 (8 M요소, 20 mM트리스, 500 mM 염화나트륨, 500 mM 이미다졸, pH 7.4)을 단계적으로 100%가 되도록 증가시켜 컬럼의 수지에 결합되어 있는 hPTHl-84 융합 폴리펩타이드를 용출하였다. 용출 후 얻어진 분획의 결과를 각각 도면에 나타내었다 (도 44 및 도 45). 컬럼에 주입된 가용화된 불용성 분획 시료 내의 hPTH 1-84융합 폴리펩타이드는 대부분 컬럼 내 수지에 결합후용출되어 90%이상의 순도를보였다.
실시예 19. 프로테아제 처리를통한 링커 서열 절단
약 5
Figure imgf000064_0001
정제된 hPTH1-84 융합 폴리펩타이드의 분획을 합친 후 140 의 희석 완충액 (20 mM트리스, pH 7.4)을 첨가하여 요소 농도가 1 M이 되도록 희석하였다. 희석된 재조합 융합 폴리펩타이드에 TEV프로테아제를 최종 농도가 500이이 되도록 첨가하고 실온에서 12시간 동안 절단 반응이 진행될 수 있도록 하였다. TEV 프로테아제에 의한 절단 여부를 확인하기 위해, 절단 후 SDS-PAGE 분석을 수행하여 그 결과를 도면에 나타내었다(도 46). TEV 프로테아제에 의한 hPTH 1-84 융합 폴리펩타이드(PG15-h6TEV-hPTHl-84)의 절단 전 후를 SDS-PAGE로 분석해본 결과 13.2 kDa의 hPTHl-84 융합 폴리펩타이드는 거의 100%의 수율로 아미노 말단 융합 파트너와 6 히스티딘 태그 및 TEV 프로테아제 인식서열 융합체인 PG15-H6TEV와 목적 폴리펩타이드인 hPTH 1-84로 절단되는 것을 확인하였다.
실시예 20. 절단후의 hPTH 1-84의 분자량분석
완전한 형태의 hPTH 1-84 융합 폴리펩타이드(PG15-H6TEV-hPTHl-84)의 발현 유무, TEV프로테아제에 의한 정확한 절단 및 절단 후 얻어진 hPTHl-84의 변형(modification) 유무를 확인하기 위해 MALTI-TOF MS를 이용한 분자량 분석을 실시하였다. 본 발명에 따라 수득된 hPTHl-84의 분자량을 측정한 결과를 도 47에 나타내었다.
도면 47을 참고하면, PG15-H6TEV-hPTHl-84로부터 수득된 hPTH 1-84의 분자량은 9425.54 Da으로 측정되어 이론적인 분자량인 9424.73 Da과분자량과 오차범위 이내에서 일치하였으므로 대장균 내에서 단백질 분해효소(proteolytic en¾one)에 의한 아미노 혹은 카르복시 말단의 부분적인 절단이나 분해 없이 완전한 형태로 발현된 것을 확인할수 있었다.
따라서 TEV 프로테아제는 PG15-H6TEV-hPTHl-84 내 인식서열인 ENLFQ 서열을 인식하고 마지막 아미노산인 Q(글루타민)와 hPTHl-84의 첫번째 아미노산인 S(세린) 사이의 펩타이드 결합을 정확하게 절단하는 것으로 판단된다.
실시예 21. 융합 파트너의 위치에 따른 hPTH 1-34 융합 폴리펩타이드의 발현 수준 비교
실시예 21.1. hPTH 1-34융합폴리펩타이드 발현 플라스미드의 추가제작 hPTH 1-34 융합 폴리펩타이드에 대한 유전자는 overlap extension polymerase chain reaction (0E-PCR) 방법을 이용하여 합성하였다. 이때, 상기 hPTH 1-34융합 폴리펩타이드는 아미노 말단 융합 파트너로서 PG15(서열번호 31), 6 히스티딘 태그(서열번호 140), TEV프로테아제 인식 서열(서열번호 146) 또는 hPTH 1-34의 아미노산서열(서열번호 151)이 포함되어 있다.
각 융합 폴리펩타이드의 유전자는 제한 효소 Ndel, Ncol 및 제이의 인식 2019/143193 1»(:1^1{2019/000782 서열과 1개의 종결 코돈을 포함한다. 상기 대 1-34 융합 폴리펩타이드를 코딩하는뉴클레오타이드서열은 각각서열번호 294 및 295에 해당한다.
아래 표 11에 기재한 1-34 융합 폴리펩타이드 발현 플라스미드 ?3(¾554, ?3部555, ?3(¾556를 제작하기 위해서, 孤- ¾로 합성된 대 1-34 융합 폴리펩타이드 유전자 단편을 ( 1 및 ¾101 제한 효소를 이용하여 절단하고, 17 프로모터, 130 작동자 및
Figure imgf000066_0001
유전자를 포함하여 1 犯에 의한 발현 조절이 가능한 발현벡터 ?肝2613에 클로닝하였다. 상기
Figure imgf000066_0002
1-34 융합 폴리펩타이드 발현 플라스미드들은 실시예 1.1에서 수행된 것과 동일한 방법으로 제작되어 -801: 온도의 냉동고에 보관하였다.
【표 11】
Figure imgf000066_0007
실시예 21.2. 형질전환된 세포의 배양 및 出해 1-34와발현
상기 표 2에 기재된 균주 ?(於01,
Figure imgf000066_0003
상기 표 12의 균주 (}031, ?0032 및 (;033 각각을 200 減의 15 배지가 포함된 플라스크에서 배양하고 11 (}를 첨가하여 대 1-34 융합 폴리펩타이드의 발현을 유도하였다. 각각의 융합폴리펩타이드의 구조를 도식화하여 도 48에 나타내었다.
유도 후, 각 배양물 시료의 총 세포 분획을
Figure imgf000066_0004
수준을 비교 분석하였다(도 48). 아미노 융합 파트너가 융합되어 있지
Figure imgf000066_0005
34(5.9 抑3의 분자량)의 밴드는 검출되지 않았고 표 41的¾1-34의 아미노 말단에 ?015 태그가 융합된 ?아5내 - 1¾1-34(7.9 四3의 분자량)은 높은 수준으로 발현되는 것을 확인하였다. ?아5-抑1 - 대1-34 내 친화성 태그인 抑(6 -뱌 ½ 13 가 제거된 (}15 - 1 -!1 ¾1-34(7.1 뇨加의 분자량)는 ?015 - }½1 - 대1-34와유사한수준으로 발현되는 것으로 확인되었다.
반면에 볘 서열을 아미노 말단 서열로 융합 위치를 변경시킨 抑?아5 - - 1^111-34(7.9 抑3의 분자량)의 발현 수준은 발현 유무만 확인할 수 있을 정도로 매우 낮은 것을 알 수 있다. 또한, 11 -11?1¾1-34의 카르복시 말단에 ( 5 태그가 융합된 恥1£:¥- 1-34-?(}15(7.9壯)3의 분자량)는
Figure imgf000066_0006
해당 크기의 밴드가 검출되지 않아 거의 발현되지 않은 것으로 판단된다. 2019/143193 1»(:1^1{2019/000782 결론적으로 본 발명에 따른 말단 융합 파트너인 아5는 1¾ 1-34 융합 폴리펩타이드에서 아미노 말단에 융합되어야 3ä 1-34의 고발현을 유도하는 것을 알 수 있다. 또한, 친화성 태그는 3ä 1-34 융합 폴리펩타이드에서 제거되거나 I말단 융합 파트너의 카르복시 말단에 위치하는 경우, ä 1-34 융합 폴리펩타이드의 고발현성은 유지될 수 있다. 그러나, 발현이 유지되지만 말단 융합 파트너의 아미노 말단에 위치하는 경우, ä 1-34 융합 폴리펩타이드의 발현 수준이 현저히 감소되는 것을 확인할 수 있다.

Claims

2019/143193 1»(:1^1{2019/000782 특허청구범위
1. 하기 일반식 1로 표시되는 아미노산서열로 이루어진 말단융합파트너 ; 목적 폴리펩타이드; 및
상기 말단 융합 파트너와 상기 목적 폴리펩타이드 사이에 링커를 포함 하는, 융합폴리펩타이드:
[일반식 1]
¾¾卜 크 - 크요 - 333-¾34-¾35 - 836-(2)11
상기 일반식 1에서,
331 내지 3크6은, 서로 독립적으로, 이소루신(11 I), 글리신 ½1九 0, 알라닌(시3, 시, 프롤린(먀0, I3) , 발린 , V),
Figure imgf000068_0001
I) , 메티오닌 , 比), 페닐알라닌 0¾ 幻, 티로신 0>1·, X), 트립토판 대, ¾0, 아스파라긴 , 비, 세린比라, 幻, 트레오닌(¾·, V, 시스테인 0方3, 0, 글루타민 ½1 0), 아 르기닌( , 리신 0 10, 히스티딘( , 아스팔트산 3 미 및 글루 탐산 ½111, 으로 이루어진 군으로부터 선택되고,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
2. 제 1항에 있어서,
상기 -말단 융합파트너가 하기 일반식 2로 표시되는 아미노산 서열을 포 함하는 것인, 융합폴리펩타이드:
[일반식 2]
Figure imgf000068_0002
상기 일반식 2에서,
3 은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐 알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 1는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
的 2019/143193 1»(:1^1{2019/000782
3. 제 1항에 있어서,
상기 I말단 융합파트너가 하기 일반식 3으로 표시되는 아미노산 서열을 포함하는 것인, 융합폴리펩타이드:
[일반식 3]
Figure imgf000069_0001
상기 일반식 3에서,
332는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐 알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며 ,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
4. 제 1항에 있어서,
상기 말단 융합파트너가 하기 일반식 4로 표시되는 아미노산 서열을 포 함하는 것인, 융합폴리펩타이드:
[일반식 4]
1\161; -쇼 !!- 1 1근-父크크 !3!· 0 - 1元11 - II 1 ( å ) II
상기 일반식 4에서,
333은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐 알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
5. 제 1항에 있어서,
상기 ^말단 융합파트너가 하기 일반식 5로 표시되는 아미노산 서열을 포 함하는 것인, 융합폴리펩타이드:
[일반식 5] 2019/143193 1»(:1^1{2019/000782 -요 - 1 1근- 용-父크크간-七 내 1 3- (2 )11
상기 일반식 5에서,
3크4는 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신, 메티오닌, 페닐 알라닌, 티로신, 트립토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
6. 제 1항에 있어서,
상기 -말단 융합파트너가 하기 일반식 6으로 표시되는 아미노산 서열을 포함하는 것인, 융합폴리펩타이드:
[일반식 6]
1¾61;-쇼311-1 1 - 용- 0 -父3크5 -미 -⑵!!
상기 일반식 6에서,
335는 이소루신, 글리신, 알라닌, 프롤린, 발린 , 루신 , 메티오닌, 페닐 알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 아르기닌, 리신, 히스티딘, 아스팔트산또는 글루탐산이며 ,
상기 å는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
7. 제 1항에 있어서,
상기 말단 융합파트너가 하기 일반식 7로 표시되는 아미노산 서열을 포 함하는 것인, 융합폴리펩타이드:
[일반식 7]
¾¾卜쇼511-1 16-/\ - 0-1611-¾36- (2 )11
상기 일반식 7에서,
336은 이소루신, 글리신, 알라닌, 프롤린, 발린, 루신 , 메티오닌 , 페닐 알라닌, 티로신, 트림토판, 아스파라긴, 세린, 트레오닌, 시스테인, 글루타민, 2019/143193 1»(:1^1{2019/000782 아르기닌, 리신, 히스티딘 , 아스팔트산또는 글루탐산이며,
상기 2는 서열번호 666으로 표시되는 아미노산 서열의 1번 위치의 아미노 산에서부터 시작하는 1개 내지 36개의 아미노산이고,
상기 II은 0또는 1의 정수이다.
8. 제 1항에 있어서,
상기 말단 융합 파트너는 서열번호 8 내지 139 중 어느 하나의 아미노 산서열로 이루어진 것인, 융합폴리펩타이드.
9. 제 1항에 있어서,
Figure imgf000071_0001
파트너는 서열번호 9, 31, 53 , 75, 97 또는 119로 표시 되는 아미노산서열로 이루어진 것인, 융합폴리펩타이드.
10. 제 1항에 있어서,
상기 링커는 친화성 태그를 포함하는, 융합폴리펩타이드.
11. 제 1항에 있어서,
상기 링커는 프로테아제 인식 서열을 포함하는, 융합폴리펩타이드.
12. 제 11항에 있어서,
상기 프로테아제 인식 서열은 담배 식각 바이러스 프로테아제 인식 서열, 엔테로키나아제 인식 서열, 유비퀴틴 카르복시 말단 가수분해효소 인식 서열, 인
Figure imgf000071_0002
서열, 퓨린 인식 서열 및 이들의 조합으로 이루어진 군으로부터 선택 되는, 융합폴리펩타이드.
13. 제 1항에 있어서,
상기 목적 폴리펩타이드는 인간 부갑상선 호르몬 1-34(11?1¾ 1-34), 인간 부갑상선 호르몬 1-8401?ä 1-34), 글루카곤 유사 펩타이드- 1(此13-1), 리라글루
Figure imgf000071_0003
전구체 펩타이드 , 엑세나타이드(근해 ), 인슐린 유사 성장인자- 1( -1), 글루카곤 유사 펩타이드- 2½내-2), 테두글루타이드 2019/143193 1»(:1^1{2019/000782
(七6(11 1111^(16) , 에칼란타이드
Figure imgf000072_0002
네시리
Figure imgf000072_0001
인슐린 및 인슐린 유사체로 이루어진 군으로부터 선택되는 어느 하나인, 융합 폴리펩타 이드.
14. 제 1항에 있어서,
상기 목적 폴리펩타이드는 서열번호 151, 340, 341, 484, 485, 628, 638 , 642 및 652의 아미노산서열 중 어느 하나의 아미노산 서열로 이루어진 것인, 융 합폴리펩타이드.
15. 제 1항에 있어서,
상기 융합 폴리펩타이드는 서열번호 160 내지 291 , 343 내지 474 , 487 내 지 618 , 630 내지 632 , 644 내지 646 및 654 내지 656의 아미노산 서열 중 어느 하나의 아미노산서열로 이루어진 것인, 융합폴리펩타이드.
16. 제 1항 내지 제 15항 중 어느 한 항에 따른 융합 폴리펩타이드를 코딩하는 뉴클레오타이드.
17. 제 16항에 있어서,
상기 뉴클레오타이드는 서열번호 294, 295, 478 내지 483, 621 내지 627 , 635 내지 637 , 649 내지 651 및 659 내지 661의 염기서열 중 어느 하나의 염기서 열로 이루어진 것인, 뉴클레오타이드.
18. 제 16항에 따른뉴클레오타이드를포함하는 발현벡터.
19. 제 18항에 따른 발현벡터를 포함하는 숙주세포.
20. (a) 제 19항에 따른 숙주세포를 배양하는 단계;
0)) 상기 숙주세포에서 발현된 융합 폴리펩타이드를 정제하는 단계; 및 ( 상기 정제된 융합 폴리펩타이드를 절단 효소와 배양하여 목적 폴리펩 타이드를 회수하는 단계를 포함하는, 목적 폴리펩타이드의 생산방법.
PCT/KR2019/000782 2018-01-19 2019-01-18 재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법 WO2019143193A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19741746.2A EP3741774A4 (en) 2018-01-19 2019-01-18 N-TERMINAL FUSION PARTNER FOR THE MANUFACTURING OF A RECOMBINANT POLYPEPTID AND PROCESS FOR THE MANUFACTURING OF A RECOMBINANT POLYPEPTID USING THESE
US16/963,066 US11267863B2 (en) 2018-01-19 2019-01-18 N-terminal fusion partner for producing recombinant polypeptide, and method for producing recombinant polypeptide using same
JP2020540276A JP2021511785A (ja) 2018-01-19 2019-01-18 組換えポリペプチド生産用n末端融合パートナーおよびこれを用いた組換えポリペプチドの生産方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2018-0006875 2018-01-19
KR20180006875 2018-01-19
KR20180018278 2018-02-14
KR20180018255 2018-02-14
KR20180018232 2018-02-14
KR10-2018-0018232 2018-02-14
KR10-2018-0018255 2018-02-14
KR10-2018-0018278 2018-02-14

Publications (2)

Publication Number Publication Date
WO2019143193A1 WO2019143193A1 (ko) 2019-07-25
WO2019143193A9 true WO2019143193A9 (ko) 2019-09-06

Family

ID=67302350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000782 WO2019143193A1 (ko) 2018-01-19 2019-01-18 재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법

Country Status (4)

Country Link
US (1) US11267863B2 (ko)
EP (1) EP3741774A4 (ko)
JP (1) JP2021511785A (ko)
WO (1) WO2019143193A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002468A1 (en) * 2019-09-13 2023-01-05 Biological E Limited N-terminal extension sequence for expression of recombinant therapeutic peptides
CN111018965B (zh) * 2019-12-30 2023-05-09 重庆艾力彼生物科技有限公司 一种重组甲状旁腺素pth(1-34)的纯化方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086196A (en) 1975-03-28 1978-04-25 Armour Pharmaceutical Company Parathyroid hormone
JP2001501093A (ja) * 1996-09-26 2001-01-30 メディカル リサーチ カウンシル シャペロン断片
KR100890184B1 (ko) 2007-09-06 2009-03-25 고려대학교 산학협력단 SlyD를 융합파트너로 이용한 재조합 단백질의 제조방법
WO2009066320A2 (en) 2007-09-21 2009-05-28 Cadila Healthcare Limited Fusion protein systems suitable for high expression of peptides
ES2905690T3 (es) 2010-04-15 2022-04-11 Kodiak Sciences Inc Polímeros que contienen zwitteriones de alto peso molecular
CN103945861B (zh) 2011-09-12 2018-06-05 阿穆尼克斯运营公司 胰高血糖素样肽-2组合物及其制备和使用方法
JP6234446B2 (ja) 2012-06-08 2017-11-22 アルカーメス,インコーポレイテッド ムチンドメインポリペプチドに連結された活性タンパク質を含む融合ポリペプチド
EP2746390A1 (en) 2012-12-19 2014-06-25 Sandoz Ag Method for producing a recombinant protein of interest
EA201591294A1 (ru) * 2013-02-22 2016-01-29 Технише Университет Делфт Рекомбинантный микроорганизм для применения в способе с повышенным выходом продукта
SG11201700378PA (en) 2014-07-30 2017-02-27 Ngm Biopharmaceuticals Inc Compositions and methods of use for treating metabolic disorders
JP6817939B2 (ja) 2014-12-01 2021-01-20 フェネックス インク. ペプチド産生のための融合パートナー
US10046058B2 (en) 2014-12-02 2018-08-14 Rezolute, Inc. Use of hydrophobic organic acids to increase hydrophobicity of proteins and protein conjugates
CN105969712B (zh) 2016-05-13 2019-09-20 江南大学 一种共表达分子伴侣蛋白提高重组大肠杆菌1,2,4-丁三醇产量的方法
KR20190047376A (ko) 2017-10-27 2019-05-08 주식회사 녹십자 개선된 면역글로불린의 정제방법

Also Published As

Publication number Publication date
WO2019143193A1 (ko) 2019-07-25
JP2021511785A (ja) 2021-05-13
EP3741774A1 (en) 2020-11-25
US20200347111A1 (en) 2020-11-05
EP3741774A4 (en) 2021-06-02
US11267863B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
AU2020242724B2 (en) Aminoacyl-tRNA synthetase for efficiently introducing lysine derivative in protein
WO2022241831A1 (zh) 多肽的制备方法
WO2019143193A9 (ko) 재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리 펩타이드를 생산하는방법
US7892787B2 (en) Method for production of recombinant growth hormone in form of hybrid protein
JP7266325B2 (ja) 蛍光タンパク質フラグメントを含む融合タンパク質およびその用途
KR100989413B1 (ko) 새로운 융합파트너를 이용한 재조합 단백질의 제조방법
KR101527528B1 (ko) 가용성 재조합 단백질의 생산, 추출 및 정제 방법
US20210230659A1 (en) Leader Sequence for Higher Expression of Recombinant Proteins
KR102064810B1 (ko) 재조합 폴리펩타이드 생산용 n-말단 융합 파트너 및 이를 이용하여 재조합 폴리펩타이드를 생산하는 방법
KR100368073B1 (ko) 융합파트너를 이용한 재조합 단백질의 제조방법
US20090035815A1 (en) Synthetic Gene for Enhanced Expression in E. Coli
KR102017542B1 (ko) 융합 폴리펩타이드를 이용하여 글루카곤 유사 펩타이드-2 또는 이의 유사체를 생산하는 방법
KR102011291B1 (ko) 신규한 융합 폴리펩타이드 및 이를 이용하여 인간 부갑상선 호르몬 1-34를 생산하는 방법
KR100407792B1 (ko) 인간 글루카곤 유사펩타이드를 융합파트너로 이용한재조합 단백질의 제조방법
KR102017540B1 (ko) 융합 폴리펩타이드를 이용하여 글루카곤 유사 펩타이드-1 또는 이의 유사체를 생산하는 방법
KR102009709B1 (ko) 융합 폴리펩타이드를 이용하여 인간 부갑상선 호르몬 1-84를 생산하는 방법
Rao et al. Expression, purification, and characterisation of nesiritide using an E. coli expression system
CN117801123B (zh) 沃索利肽可溶性中间体、中间体制备方法及沃索利肽的制备方法
CN111197041B (zh) 制备青鳉鱼肠激酶活性亚基的方法、其产物和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741746

Country of ref document: EP

Effective date: 20200819