WO2019142676A1 - アンテナ、自転車、表示機器、および無人航空機 - Google Patents

アンテナ、自転車、表示機器、および無人航空機 Download PDF

Info

Publication number
WO2019142676A1
WO2019142676A1 PCT/JP2019/000108 JP2019000108W WO2019142676A1 WO 2019142676 A1 WO2019142676 A1 WO 2019142676A1 JP 2019000108 W JP2019000108 W JP 2019000108W WO 2019142676 A1 WO2019142676 A1 WO 2019142676A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna
bicycle
resonator
unit
Prior art date
Application number
PCT/JP2019/000108
Other languages
English (en)
French (fr)
Inventor
橋本 直
信樹 平松
内村 弘志
泰彦 福岡
真人 藤代
冬威 神田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/964,179 priority Critical patent/US11764479B2/en
Priority to CN201980009560.4A priority patent/CN111630715B/zh
Priority to JP2019566416A priority patent/JP7041690B2/ja
Priority to EP19741953.4A priority patent/EP3745531B1/en
Publication of WO2019142676A1 publication Critical patent/WO2019142676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/20Cycle computers as cycle accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/416Physiological sensors, e.g. heart rate sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/30Frame parts shaped to receive other cycle parts or accessories
    • B62K19/40Frame parts shaped to receive other cycle parts or accessories for attaching accessories, e.g. article carriers, lamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • B62K3/02Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • B62M3/16Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like

Definitions

  • the present disclosure relates to antennas, bicycles, display devices, and unmanned aerial vehicles.
  • the electromagnetic wave emitted from the antenna is reflected by the metal conductor.
  • the electromagnetic wave reflected by the metal conductor has a phase shift of 180 °.
  • the reflected electromagnetic wave is combined with the electromagnetic wave emitted from the antenna.
  • the electromagnetic wave emitted from the antenna may have a reduced amplitude due to the combination with the phase-shifted electromagnetic wave. As a result, the amplitude of the electromagnetic wave emitted from the antenna decreases.
  • the influence of the reflected wave is reduced by setting the distance between the antenna and the metal conductor to 1/4 of the wavelength ⁇ of the electromagnetic wave to be emitted.
  • Murakami et al. "Low-attitude design and band characteristics of artificial magnetic conductors using dielectric substrates", Theory of Communication (B), Vol. J98-B No. 2, pp. 172-179
  • Murakami et al. "Optimal Configuration of Reflector for AMC Reflector-equipped Dipole Antenna”, Theory of Communication (B), Vol. J98-B No. 11, pp. 1212-1220
  • An antenna includes a first conductor, a second conductor facing the first conductor in a first direction, a third conductor, a fourth conductor, and a front third conductor. And a feed line to be connected.
  • the third conductor is spaced apart from the first conductor and the second conductor between the first conductor and the second conductor, and extends along the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor, and extends along the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on the bicycle component such that the fourth conductor faces the bicycle component of the bicycle.
  • An antenna includes a first conductor, a second conductor facing the first conductor in a first direction, a third conductor, a fourth conductor, and a front third conductor. And a feed line to be connected.
  • the third conductor is spaced apart from the first conductor and the second conductor between the first conductor and the second conductor, and extends along the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor, and extends along the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on the elongated portion such that the first direction is along the conductive elongated portion included in the frame of the bicycle.
  • a bicycle includes an antenna and a bicycle component.
  • the antenna includes a first conductor, a second conductor facing the first conductor in the first direction, a third conductor, a fourth conductor, and a feeder electrically connected to the front third conductor.
  • the third conductor is spaced apart from the first conductor and the second conductor between the first conductor and the second conductor, and extends along the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor, and extends along the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on the bicycle component such that the fourth conductor faces the bicycle component of the bicycle.
  • a bicycle includes an antenna and a frame including at least one conductive long portion.
  • the antenna includes a first conductor, a second conductor facing the first conductor in a first direction, a third conductor, a fourth conductor, and a feeder electrically connected to the third conductor.
  • the third conductor is spaced apart from the first conductor and the second conductor between the first conductor and the second conductor, and extends along the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor, and extends along the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on the elongated portion such that the first direction is along the elongated portion.
  • a display device includes an antenna and a display device.
  • the antenna includes a first conductor, a second conductor facing the first conductor in the first direction, a third conductor, a fourth conductor, and a feeder electrically connected to the front third conductor.
  • the third conductor is spaced apart from the first conductor and the second conductor between the first conductor and the second conductor, and extends along the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor, and extends along the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on the bicycle component such that the fourth conductor faces the bicycle component of the bicycle, or the first direction is along the conductive long portion included in the bicycle frame To be placed in the long part.
  • An antenna according to an embodiment of the present disclosure is electromagnetically connected to a first conductor and a second conductor, one or more third conductors, a fourth conductor, and the third conductor, which face each other in a first direction. And a feed line.
  • the third conductor is located between the first conductor and the second conductor and extends in the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor and extends in the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • the antenna is disposed on an unmanned aerial vehicle.
  • An unmanned aerial vehicle is provided with an antenna.
  • the antenna includes a first conductor and a second conductor opposed in a first direction, one or more third conductors, a fourth conductor, and a feed line electromagnetically connected to the third conductor.
  • the third conductor is located between the first conductor and the second conductor and extends in the first direction.
  • the fourth conductor is connected to the first conductor and the second conductor and extends in the first direction.
  • the first conductor and the second conductor are capacitively connected via the third conductor.
  • FIG. 1 is a perspective view of an embodiment of a resonator.
  • FIG. 2 is a plan view of the resonator shown in FIG. 1; It is sectional drawing of an example of the resonator shown in FIG. It is sectional drawing of the other example of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG. It is a conceptual diagram which shows the unit structure body of the resonator shown in FIG.
  • FIG. 1 is a perspective view of an embodiment of a resonator.
  • FIG. 7 is a plan view of the resonator shown in FIG. 6; It is sectional drawing of an example of the resonator shown in FIG. It is sectional drawing of the other example of the resonator shown in FIG.
  • FIG. 1 is a perspective view of an embodiment of a resonator.
  • FIG. 11 is a plan view of the resonator shown in FIG. It is sectional drawing of an example of the resonator shown in FIG. It is sectional drawing of the other example of the resonator shown in FIG. It is sectional drawing of the resonator shown in FIG.
  • FIG. 1 is a perspective view of an embodiment of a resonator.
  • FIG. 15 is a plan view of the resonator shown in FIG. It is sectional drawing of an example of the resonator shown in FIG. It is sectional drawing of the other example of the resonator shown in FIG.
  • FIG. 2 is a plan view showing an embodiment of a resonator.
  • FIG. 19 is a cross-sectional view of an example of the resonator shown in FIG. 18;
  • FIG. 19 is a cross-sectional view of another example of the resonator shown in FIG. 18;
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a cross-sectional view of one embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 2 is a plan view of an embodiment of a resonator.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is the figure which planarly viewed one Embodiment of the antenna. It is the figure which planarly viewed one Embodiment of the antenna. It is sectional drawing of the antenna shown in FIG.
  • FIG. 1 is a block diagram illustrating an embodiment of a wireless communication module.
  • FIG. 1 is a partial cross-sectional perspective view of an embodiment of a wireless communication module.
  • FIG. 1 is a block diagram illustrating an embodiment of a wireless communication device.
  • FIG. 1 is a block diagram illustrating an embodiment of a wireless communication device.
  • FIG. 1 is a plan view showing an embodiment of a wireless communication device.
  • FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
  • FIG. 1 is a plan view showing an embodiment of a wireless communication device.
  • FIG. 1 is a cross-sectional view of an embodiment of a wireless communication device.
  • FIG. 1 is a cross-sectional view of an embodiment of an antenna. It is a figure which shows the general
  • FIG. 89 is a view showing a frame of the bicycle shown in FIG. 89.
  • FIG. 89 is a view showing a crank and a chain wheel of the bicycle shown in FIG. 89.
  • FIG. 89 is a view showing a dual control lever of the bicycle shown in FIG. 89.
  • FIG. 89 is a functional block diagram of an example of the bicycle shown in FIG. 89.
  • FIG. 89 is a functional block diagram of another example of the bicycle shown in FIG. 89.
  • It is a functional block diagram of the further another example of the bicycle shown in FIG. 1 is a perspective view of an embodiment of an unmanned aerial vehicle.
  • FIG. 97 is a rear view of the unmanned aerial vehicle shown in FIG. 96.
  • FIG. 97 is a top view of the unmanned aerial vehicle shown in FIG. 96.
  • FIG. 97 is a functional block diagram of the unmanned aerial vehicle shown in FIG. 96.
  • the present disclosure aims to provide a new antenna, a bicycle with a new antenna, a display device with a new antenna, and an unmanned aerial vehicle with a new antenna.
  • a new antenna, a bicycle having a new antenna, a display device having a new antenna, and an unmanned aerial vehicle having a new antenna can be provided.
  • the resonant structure may include a resonator.
  • the resonant structure includes a resonator and other members, and can be realized in combination.
  • the resonator 10 shown in FIGS. 1 to 62 includes a base 20, a pair of conductors 30, a third conductor 40, and a fourth conductor 50.
  • the base 20 is in contact with the pair of conductors 30, the third conductor 40, and the fourth conductor 50.
  • the pair of conductors 30, the third conductor 40, and the fourth conductor 50 function as a resonator.
  • the resonator 10 can resonate at a plurality of resonant frequencies.
  • the single resonant frequency first frequency f 1 is ⁇ 1 .
  • the resonator 10 may have at least one of the at least one resonance frequencies as an operating frequency. Resonator 10 has a first frequency f 1 to the operating frequency.
  • the substrate 20 can include any of a ceramic material and a resin material as a composition.
  • the ceramic material includes an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a glass ceramic sintered body, a crystallized glass in which a crystal component is precipitated in a glass base material, and mica or titanic acid It contains a microcrystalline sintered body such as aluminum.
  • the resin material includes those obtained by curing an uncured material such as an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, a polyetherimide resin, and a liquid crystal polymer.
  • the counter conductor 30, the third conductor 40, and the fourth conductor 50 may contain any of metal materials, alloys of metal materials, hardened metal paste, and conductive polymers as a composition.
  • the conductor pair 30, the third conductor 40 and the fourth conductor 50 may all be of the same material.
  • the conductor pair 30, the third conductor 40 and the fourth conductor 50 may all be of different materials.
  • the conductor pair 30, the third conductor 40, and the fourth conductor 50 may be made of the same material in any combination.
  • Metal materials include copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, lead cadmium, selenium, manganese, tin, vanadium, lithium, cobalt, titanium and the like.
  • the alloy comprises a plurality of metallic materials.
  • a metal paste agent contains what knead
  • the binder includes an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, and a polyetherimide resin.
  • the conductive polymer includes polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers and the like.
  • the resonator 10 has two paired conductors 30.
  • Pair conductor 30 includes a plurality of conductors.
  • the conductor pair 30 includes a first conductor 31 and a second conductor 32.
  • the conductor 30 may include three or more conductors.
  • Each conductor of the paired conductor 30 is separated from the other conductors in the first direction.
  • one conductor can be paired with the other conductor.
  • Each conductor of the paired conductor 30 can be seen as an electrical wall from a resonator located between the paired conductors.
  • the first conductor 31 is spaced apart from the second conductor 32 in the first direction.
  • Each of the conductors 31 and 32 extends along a second plane intersecting the first direction.
  • the first axis (first axis) is shown as the x direction.
  • the third axis (third axis) is shown as the y direction.
  • the second axis (second axis) is shown as the z direction.
  • a first plane is shown as an xy plane.
  • the second plane is shown as the yz plane.
  • the third plane is shown as the zx plane. These planes are planes in coordinate space, and do not indicate a specific plate and a specific surface.
  • an area (surface integral) in the xy plane may be referred to as a first area.
  • the area in the yz plane may be referred to as a second area.
  • an area in the zx plane may be referred to as a third area.
  • the surface integral is counted in units such as square meters.
  • the length in the x direction may simply be referred to as "length”.
  • the length in the y direction may be simply referred to as "width”.
  • the length in the z direction may simply be referred to as "height".
  • the conductors 31 and 32 are located at both ends of the base 20 in the x direction. Each of the conductors 31 and 32 can partially face the outside of the base 20. Each of the conductors 31 and 32 may be partially located inside the base 20, and the other may be located outside the base 20. Each conductor 31, 32 may be located in the base 20.
  • the third conductor 40 functions as a resonator.
  • the third conductor 40 may include at least one of line, patch, and slot resonators.
  • the third conductor 40 is located on the base 20.
  • the third conductor 40 is located at the end of the base 20 in the z direction.
  • the third conductor 40 can be located in the base 20.
  • the third conductor 40 may be partially located inside the base 20, and the other may be located outside the base 20. A part of the third conductor 40 may face the outside of the base 20.
  • the third conductor 40 includes at least one conductor.
  • the third conductor 40 can include a plurality of conductors. When the third conductor 40 includes a plurality of conductors, the third conductor 40 can be referred to as a third conductor group.
  • the third conductor 40 includes at least one conductor layer.
  • the third conductor 40 includes at least one conductor in one conductor layer.
  • the third conductor 40 can include a plurality of conductor layers.
  • the third conductor 40 can include three or more conductor layers.
  • the third conductor 40 includes at least one conductor in each of the plurality of conductor layers.
  • the third conductor 40 extends in the xy plane.
  • the xy plane contains the x direction. Each conductor layer of the third conductor 40 extends along the xy plane.
  • the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
  • the first conductor layer 41 extends along the xy plane.
  • the first conductor layer 41 may be located on the base 20.
  • the second conductor layer 42 extends along the xy plane.
  • the second conductor layer 42 can be capacitively coupled to the first conductor layer 41.
  • the second conductor layer 42 can be electrically connected to the first conductor layer 41.
  • Two conductor layers capacitively coupled can be opposed in the y direction.
  • Two conductor layers capacitively coupled can be opposed in the x direction.
  • the two conductor layers capacitively coupled may face each other in the first plane.
  • the two conductor layers facing each other in the first plane can be rephrased that there are two conductors in one conductor layer.
  • the second conductor layer 42 may be at least partially overlapped with the first conductor layer 41 in the z direction.
  • the second conductor layer 42 may be located in the base 20.
  • the fourth conductor 50 is located apart from the third conductor 40.
  • the fourth conductor 50 is electrically connected to the conductors 31 and 32 of the pair of conductors 30.
  • the fourth conductor 50 is electrically connected to the first conductor 31 and the second conductor 32.
  • the fourth conductor 50 extends along the third conductor 40.
  • the fourth conductor 50 extends along the first plane.
  • the fourth conductor 50 extends from the first conductor 31 to the second conductor 32.
  • the fourth conductor 50 is located on the base 20.
  • the fourth conductor 50 may be located in the base 20.
  • the fourth conductor 50 may be partially located inside the base 20, and the other may be located outside the base 20. A part of the fourth conductor 50 may face the outside of the base 20.
  • the fourth conductor 50 can function as a ground conductor in the resonator 10.
  • the fourth conductor 50 can be a potential reference of the resonator 10.
  • the fourth conductor 50 can be connected to the ground of the device comprising the resonator 10.
  • the resonator 10 may include the fourth conductor 50 and the reference potential layer 51.
  • the reference potential layer 51 is located apart from the fourth conductor 50 in the z direction.
  • the reference potential layer 51 is electrically isolated from the fourth conductor 50.
  • the reference potential layer 51 can be a potential reference of the resonator 10.
  • the reference potential layer 51 can be electrically connected to the ground of the device provided with the resonator 10.
  • the fourth conductor 50 can be electrically separated from the ground of the device comprising the resonator 10.
  • the reference potential layer 51 faces either the third conductor 40 or the fourth conductor 50 in the z direction.
  • the reference potential layer 51 is opposed to the third conductor 40 via the fourth conductor 50.
  • the fourth conductor 50 is located between the third conductor 40 and the reference potential layer 51.
  • the distance between the reference potential layer 51 and the fourth conductor 50 is narrower than the distance between the third conductor 40 and the fourth conductor 50.
  • the fourth conductor 50 may include one or more conductors.
  • the fourth conductor 50 may include one or more conductors, and the third conductor 40 may be one conductor connected to the pair conductor 30.
  • each of the third conductor 40 and the fourth conductor 50 may include at least one resonator.
  • the fourth conductor 50 can include a plurality of conductor layers.
  • the fourth conductor 50 can include the third conductor layer 52 and the fourth conductor layer 53.
  • the third conductor layer 52 can be capacitively coupled to the fourth conductor layer 53.
  • the third conductor layer 52 can be electrically connected to the first conductor layer 41.
  • Two conductor layers capacitively coupled can be opposed in the y direction.
  • Two conductor layers capacitively coupled can be opposed in the x direction.
  • the two conductor layers capacitively coupled can be opposed in the xy plane.
  • the distance between the two conductor layers opposed and capacitively coupled in the z direction is shorter than the distance between the conductor group and the reference potential layer 51.
  • the distance between the first conductor layer 41 and the second conductor layer 42 is shorter than the distance between the third conductor 40 and the reference potential layer 51.
  • the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
  • Each of the first conductor 31 and the second conductor 32 may include one or more conductors. Each of the first conductor 31 and the second conductor 32 may be one conductor. Each of the first conductor 31 and the second conductor 32 may include a plurality of conductors. Each of the first conductor 31 and the second conductor 32 may include at least one fifth conductor layer 301 and a plurality of fifth conductors 302. The conductor pair 30 includes at least one fifth conductor layer 301 and a plurality of fifth conductors 302.
  • the fifth conductor layer 301 extends in the y direction.
  • the fifth conductor layer 301 extends along the xy plane.
  • the fifth conductor layer 301 is a layered conductor.
  • the fifth conductor layer 301 may be located on the base 20.
  • the fifth conductor layer 301 can be located in the base 20.
  • the plurality of fifth conductor layers 301 are separated from one another in the z direction.
  • the plurality of fifth conductor layers 301 are arranged in the z direction.
  • the plurality of fifth conductor layers 301 partially overlap in the z direction.
  • the fifth conductor layer 301 electrically connects the plurality of fifth conductors 302.
  • the fifth conductor layer 301 serves as a connection conductor for connecting the plurality of fifth conductors 302.
  • the fifth conductor layer 301 can be electrically connected to any conductor layer of the third conductor 40. In one embodiment, the fifth conductor layer 301 is electrically connected to the second conductor layer 42. The fifth conductor layer 301 can be integrated with the second conductor layer 42. In one embodiment, the fifth conductor layer 301 can be electrically connected to the fourth conductor 50. The fifth conductor layer 301 can be integrated with the fourth conductor 50.
  • Each fifth conductor 302 extends in the z direction.
  • the plurality of fifth conductors 302 are separated from one another in the y direction.
  • the distance between the fifth conductors 302 is equal to or less than a half wavelength of ⁇ 1 .
  • the distance between the fifth conductor 302 that is electrically connected is at lambda 1/2 or less, each of the first conductor 31 and second conductor 32, the electromagnetic wave of the resonance frequency band from between the fifth conductor 302 Leakage can be reduced.
  • the pair conductor 30 can be seen as an electrical wall from the unit structure because the leakage of electromagnetic waves in the resonant frequency band is small. At least a portion of the plurality of fifth conductors 302 is electrically connected to the fourth conductor 50.
  • a portion of the plurality of fifth conductors 302 can electrically connect the fourth conductor 50 and the fifth conductor layer 301. In one embodiment, the plurality of fifth conductors 302 can be electrically connected to the fourth conductor 50 via the fifth conductor layer 301. A portion of the plurality of fifth conductors 302 can electrically connect one fifth conductor layer 301 to the other fifth conductor layer 301.
  • the fifth conductor 302 can employ a via conductor and a through hole conductor.
  • the resonator 10 includes a third conductor 40 that functions as a resonator.
  • the third conductor 40 may function as an artificial magnetic wall (AMC).
  • the artificial magnetic wall can also be referred to as a reactive impedance surface (RIS).
  • the resonator 10 includes a third conductor 40 functioning as a resonator between two pair conductors 30 opposed in the x direction.
  • the two paired conductors 30 can be viewed as an electric conductor (Electric Conductor) extending from the third conductor 40 to the yz plane.
  • the resonator 10 is electrically released at the end in the y direction.
  • zx planes at both ends in the y direction have high impedance.
  • the zx planes at both ends of the resonator 10 in the y direction can be seen as a magnetic conductor from the third conductor 40.
  • the resonator 10 is surrounded by two electric walls and two high impedance surfaces (magnetic walls), so that the resonator of the third conductor 40 has an artificial magnetic wall character (Artificial Magnetic Conductor Character) in the z direction. Being surrounded by two electrical walls and two high impedance planes, the resonators of the third conductor 40 have artificial magnetic wall properties with a finite number.
  • the phase difference between the incident wave and the reflected wave at the operating frequency is 0 degrees.
  • the resonator 10 the phase difference between the reflected wave and the incident wave at the first frequency f 1 is 0 degrees.
  • the phase difference between the incident wave and the reflected wave is ⁇ 90 degrees to +90 degrees in the operating frequency band.
  • Operating frequency band and is a frequency band between the second frequency f 2 and the third frequency f 3.
  • the second is the frequency f 2
  • phase difference between the incident wave and the reflected wave is a frequency that is +90 degrees.
  • the third frequency f 3 the phase difference between the incident wave and the reflected wave is a frequency that is -90 degrees.
  • the width of the operating frequency band determined based on the second and third frequencies may be, for example, 100 MHz or more when the operating frequency is about 2.5 GHz.
  • the width of the operating frequency band may be, for example, 5 MHz or more when the operating frequency is about 400 MHz.
  • the operating frequency of the resonators 10 may be different from the resonant frequency of each resonator of the third conductor 40.
  • the operating frequency of the resonator 10 may vary with the length, size, shape, material, etc. of the base 20, the pair of conductors 30, the third conductor 40, and the fourth conductor 50.
  • the third conductor 40 may include at least one unit resonator 40X.
  • the third conductor 40 can include one unit resonator 40X.
  • the third conductor 40 can include a plurality of unit resonators 40X.
  • the unit resonator 40X is positioned so as to overlap the fourth conductor 50 in the z direction.
  • the unit resonator 40X faces the fourth conductor 50.
  • Unit resonator 40X can function as a frequency selective surface (FSS).
  • the plurality of unit resonators 40X are arranged along the xy plane.
  • the plurality of unit resonators 40X can be regularly arranged in the xy plane.
  • the unit resonators 40X may be arranged in a square grid, an oblique grid, a rectangular grid, and a hexagonal grid.
  • the third conductor 40 can include a plurality of conductor layers aligned in the z direction. Each of the plurality of conductor layers of the third conductor 40 includes at least one unit resonator.
  • the third conductor 40 includes a first conductor layer 41 and a second conductor 42.
  • the first conductor layer 41 includes at least one first unit resonator 41X.
  • the first conductor layer 41 may include one first unit resonator 41X.
  • the first conductor layer 41 can include a plurality of first partial resonators 41Y in which one first unit resonator 41X is divided into a plurality.
  • the plurality of first partial resonators 41Y can be at least one first unit resonator 41X by the adjacent unit structures 10X.
  • the plurality of first partial resonators 41 ⁇ / b> Y are located at the end of the first conductor layer 41.
  • the first unit resonator 41X and the first partial resonator 41Y can be referred to as a third conductor.
  • the second conductor layer 42 includes at least one second unit resonator 42X.
  • the second conductor layer 42 can include one second unit resonator 42X.
  • the second conductor layer 42 can include a plurality of second partial resonators 42Y in which one second unit resonator 42X is divided into a plurality.
  • the plurality of second partial resonators 42Y can be at least one second unit resonator 42X by the adjacent unit structures 10X.
  • the plurality of second partial resonators 42 Y are located at the end of the second conductor layer 42.
  • the second unit resonators 42X and the second partial resonators 42Y can be called third conductors.
  • At least a part of the second unit resonators 42X and the second partial resonators 42Y is located so as to overlap the first unit resonators 41X and the first partial resonators 41Y in the Z direction.
  • the third conductor 40 at least a portion of the unit resonators and the partial resonators of each layer overlap in the Z direction, and form one unit resonator 40X.
  • Unit resonator 40X includes at least one unit resonator in each layer.
  • the first conductor layer 41 includes at least one first unit conductor 411.
  • the first unit conductor 411 can function as a first unit resonator 41X or a first partial resonator 41Y.
  • the first conductor layer 41 has a plurality of first unit conductors 411 arranged in n rows and m columns in the xy direction. n and m are one or more natural numbers independent of each other. In one example shown in FIGS. 1 to 9 and the like, the first conductor layer 41 has six first unit conductors 411 arranged in a grid of two rows and three columns.
  • the first unit conductors 411 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
  • the first unit conductor 411 corresponding to the first partial resonator 41 ⁇ / b> Y is located at the end of the first conductor layer 41 in the xy plane.
  • the first conductor layer 41X When the first unit resonator 41X is a slot type resonator, at least one conductor layer of the first conductor layer 41 extends in the xy direction.
  • the first conductor layer 41 has at least one first unit slot 412.
  • the first unit slot 412 can function as the first unit resonator 41X or the first partial resonator 41Y.
  • the first conductor layer 41 may include a plurality of first unit slots 412 arranged in n rows and m columns in the xy direction. n and m are one or more natural numbers independent of each other. In the example shown in FIGS. 6 to 9 etc., the first conductor layer 41 has six first unit slots 412 arranged in a grid of two rows and three columns.
  • the first unit slots 412 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
  • the first unit slot 412 corresponding to the first partial resonator 41 Y is located at the end of the first conductor layer 41 in the xy plane.
  • the second conductor layer 42 includes at least one second unit conductor 421.
  • the second conductor layer 42 may include a plurality of second unit conductors 421 aligned in the xy direction.
  • the second unit conductors 421 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
  • the second unit conductor 421 can function as a second unit resonator 42X or a second partial resonator 42Y.
  • the second unit conductor 421 corresponding to the second partial resonator 42Y is located at the end of the second conductor layer 42 in the xy plane.
  • the second unit conductor 421 at least partially overlaps with at least one of the first unit resonator 41X and the first partial resonator 41Y in the z direction.
  • the second unit conductor 421 may overlap with the plurality of first unit resonators 41X.
  • the second unit conductor 421 can overlap with the plurality of first partial resonators 41Y.
  • the second unit conductor 421 can overlap with one first unit resonator 41X and four first partial resonators 41Y.
  • the second unit conductor 421 may overlap with only one first unit resonator 41X.
  • the center of gravity of the second unit conductor 421 may overlap with one first unit conductor 41X.
  • the center of gravity of the second unit conductor 421 may be located between the plurality of first unit conductors 41X and the first partial resonator 41Y.
  • the center of gravity of the second unit conductor 421 may be located between two first unit resonators 41X aligned in the x direction or the y direction.
  • the second unit conductor 421 may overlap at least partially with the two first unit conductors 411.
  • the second unit conductor 421 may overlap only one first unit conductor 411.
  • the center of gravity of the second unit conductor 421 may be located between the two first unit conductors 411.
  • the center of gravity of the second unit conductor 421 may overlap with one first unit conductor 411.
  • the second unit conductor 421 may at least partially overlap the first unit slot 412.
  • the second unit conductor 421 may overlap with only one first unit slot 412.
  • the center of gravity of the second unit conductor 421 may be located between two first unit slots 412 aligned in the x or y direction.
  • the center of gravity of the second unit conductor 421 may overlap one first unit slot 412.
  • the second unit resonator 42X is a slot type resonator
  • at least one conductor layer of the second conductor layer 42 extends along the xy plane.
  • the second conductor layer 42 has at least one second unit slot 422.
  • the second unit slot 422 may function as a second unit resonator 42X or a first partial resonator 42Y.
  • the second conductor layer 42 may include a plurality of second unit slots 422 aligned in the xy plane.
  • the second unit slots 422 may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
  • a second unit slot 422 corresponding to the second partial resonator 42Y is located at an end of the second conductor layer 42 in the xy plane.
  • the second unit slot 422 at least partially overlaps with at least one of the first unit resonator 41X and the first partial resonator 41Y in the y direction.
  • the second unit slot 422 may overlap the plurality of first unit resonators 41X.
  • the second unit slot 422 may overlap with the plurality of first partial resonators 41Y.
  • the second unit slot 422 may overlap with one first unit resonator 41X and four first partial resonators 41Y.
  • the second unit slot 422 may overlap only one first unit resonator 41X.
  • the center of gravity of the second unit slot 422 may overlap with one first unit conductor 41X.
  • the center of gravity of the second unit slot 422 may be located between the plurality of first unit conductors 41X.
  • the center of gravity of the second unit slot 422 may be located between the two first unit resonators 41X and the first partial resonator 41Y aligned in the x or y direction.
  • the second unit slot 422 may at least partially overlap the two first unit conductors 411.
  • the second unit slot 422 may overlap only one first unit conductor 411.
  • the center of gravity of the second unit slot 422 may be located between the two first unit conductors 411.
  • the center of gravity of the second unit slot 422 may overlap with one first unit conductor 411.
  • the second unit slot 422 may at least partially overlap the first unit slot 412.
  • the second unit slot 422 may overlap with only one first unit slot 412.
  • the center of gravity of the second unit slot 422 may be located between two first unit slots 412 aligned in the x or y direction.
  • the center of the second unit slot 422 may overlap with one first unit slot 412.
  • the unit resonator 40X includes at least one first unit resonator 41X and at least one second unit resonator 42X.
  • the unit resonator 40X may include one first unit resonator 41X.
  • the unit resonator 40X may include a plurality of first unit resonators 41X.
  • the unit resonator 40X can include one first partial resonator 41Y.
  • the unit resonator 40X can include a plurality of first partial resonators 41Y.
  • the unit resonator 40X may include a part of the first unit resonator 41X.
  • the unit resonator 40X may include one or more partial first unit resonators 41X.
  • the unit resonator 40X includes a plurality of partial resonators from one or more partial first unit resonators 41X and one or more first partial resonators 41Y.
  • the plurality of partial resonators included in the unit resonator 40X are combined with the first unit resonator 41X corresponding to at least one.
  • the unit resonator 40X may not include the first unit resonator 41X, but may include a plurality of first partial resonators 41Y.
  • the unit resonator 40X can include, for example, four first partial resonators 41Y.
  • the unit resonator 40X may include a plurality of partial first unit resonators 41X.
  • the unit resonator 40X may include one or more partial first unit resonators 41X and one or more first partial resonators 41Y.
  • the unit resonator 40X may include, for example, two partial first unit resonators 41X and two first partial resonators 41Y.
  • the mirror images of the included first conductor layers 41 at both ends in the x direction may be substantially the same.
  • the included first conductor layer 41 can be substantially symmetrical with respect to the center line extending in the z direction.
  • the unit resonator 40X may include one second unit resonator 42X.
  • the unit resonator 40X may include a plurality of second unit resonators 42X.
  • Unit resonator 40X may include one second partial resonator 42Y.
  • Unit resonator 40X can include a plurality of second partial resonators 42Y.
  • the unit resonator 40X may include a part of the second unit resonator 42X.
  • the unit resonator 40X may include one or more partial second unit resonators 42X.
  • Unit resonator 40X includes a plurality of partial resonators from one or more partial second unit resonators 42X and one or more second partial resonators 42Y.
  • the plurality of partial resonators included in the unit resonator 40X are combined with the second unit resonator 42X corresponding to at least one.
  • the unit resonator 40X may not include the second unit resonator 42X but may include a plurality of second partial resonators 42Y.
  • the unit resonator 40X can include, for example, four second partial resonators 42Y.
  • the unit resonator 40X may include a plurality of partial second unit resonators 42X.
  • Unit resonator 40X may include one or more partial second unit resonators 42X and one or more second partial resonators 42Y.
  • the unit resonator 40X may include, for example, two partial second unit resonators 42X and two second partial resonators 42Y.
  • the mirror images of the included second conductor layers 42 at each of both ends in the x direction can be substantially the same.
  • the included second conductor layer 42 can be substantially symmetrical with respect to the center line extending in the y direction.
  • the unit resonator 40X includes one first unit resonator 41X and a plurality of partial second unit resonators 42X.
  • the unit resonator 40X includes one first unit resonator 41X and half of four second unit resonators 42X.
  • the unit resonator 40X includes one first unit resonator 41X and two second unit resonators 42X.
  • the configuration included in the unit resonator 40X is not limited to this example.
  • the resonator 10 may include at least one unitary structure 10X.
  • the resonator 10 can include a plurality of unit structures 10X.
  • the plurality of unit structures 10X can be arranged in the xy plane.
  • the plurality of unit structures 10X may be arranged in a square lattice, an oblique lattice, a rectangular lattice, and a hexagonal lattice.
  • the unit structure 10X includes any of repeating units of square grid, oblique grid, rectangular grid, and hexagonal grid.
  • the unit structure 10X can function as an artificial magnetic wall (AMC) by being infinitely arranged along the xy plane.
  • AMC artificial magnetic wall
  • the unit structure 10X can include at least a portion of the base 20, at least a portion of the third conductor 40, and at least a portion of the fourth conductor 50.
  • the portions of the base 20, the third conductor 40, and the fourth conductor 50 included in the unit structure 10X overlap in the z direction.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a fourth conductor 50 overlapping the unit resonator 40X in the z direction.
  • the resonator 10 can include, for example, six unit structures 10X arranged in two rows and three columns.
  • the resonator 10 can have at least one unit structure 10X between two pair conductors 30 opposed in the x direction.
  • the two paired conductors 30 can be seen as an electric wall extending from the unit structure 10X to the yz plane.
  • the end of the unit structure 10X in the y direction is released.
  • zx planes at both ends in the y direction have high impedance.
  • zx planes at both ends in the y direction can be seen as magnetic walls.
  • the unit structure 10X may be line symmetrical with respect to the z direction when repeatedly arranged.
  • the unit structure 10X has artificial magnetic wall characteristics in the z direction by being surrounded by two electric walls and two high impedance surfaces (magnetic walls). Being surrounded by two electric walls and two high impedance surfaces (magnetic walls), the unit structure 10X has artificial magnetic wall characteristics with a finite number.
  • the operating frequency of the resonator 10 may be different from the operating frequency of the first unit resonator 41X.
  • the operating frequency of the resonator 10 may be different from the operating frequency of the second unit resonator 42X.
  • the operating frequency of the resonator 10 can be changed by the coupling of the first unit resonator 41X and the second unit resonator 42X constituting the unit resonator 40X.
  • the third conductor 40 can include a first conductor layer 41 and a second conductor layer 42.
  • the first conductor layer 41 includes at least one first unit conductor 411.
  • the first unit conductor 411 includes a first connection conductor 413 and a first floating conductor 414.
  • the first connection conductor 413 is connected to one of the pair of conductors 30.
  • the first floating conductor 414 is not connected to the paired conductor 30.
  • the second conductor layer 42 includes at least one second unit conductor 421.
  • the second unit conductor 421 includes a second connection conductor 423 and a second floating conductor 424.
  • the second connection conductor 423 is connected to one of the pair of conductors 30.
  • the second floating conductor 424 is not connected to the paired conductor 30.
  • the third conductor 40 may include a first unit conductor 411 and a second unit conductor 421.
  • the first connection conductor 413 can be longer than the first floating conductor 414 in the x direction.
  • the first connection conductor 413 can have a length along the x direction shorter than that of the first floating conductor 414.
  • the first connection conductor 413 can have a half length along the x direction as compared to the first floating conductor 414.
  • the second connection conductor 423 can be longer than the second floating conductor 424 in the x direction.
  • the second connection conductor 423 can have a shorter length along the x direction than the second floating conductor 424.
  • the second connection conductor 423 can have a half length along the x direction as compared to the second floating conductor 424.
  • the third conductor 40 can include a current path 40I that becomes a current path between the first conductor 31 and the second conductor 32 when the resonator 10 resonates.
  • the current path 40I can be connected to the first conductor 31 and the second conductor 32.
  • the current path 40I has a capacitance between the first conductor 31 and the second conductor 32.
  • the capacitance of the current path 40I is electrically connected in series between the first conductor 31 and the second conductor 32.
  • the conductors are separated between the first conductor 31 and the second conductor 32.
  • the current path 40I can include a conductor connected to the first conductor 31 and a conductor connected to the second conductor 32.
  • the first unit conductor 411 and the second unit conductor 421 are partially opposed in the z direction.
  • the first unit conductor 411 and the second unit conductor 421 are capacitively coupled.
  • the first unit conductor 411 has a capacitive component at an end in the x direction.
  • the first unit conductor 411 can have a capacitive component at an end in the y direction facing the second unit conductor 421 in the z direction.
  • the first unit conductor 411 can have a capacitive component at an end in the x direction opposite to the second unit conductor 421 in the z direction and at an end in the y direction.
  • the second unit conductor 421 has a capacitive component at an end in the x direction.
  • the second unit conductor 421 can have a capacitance component at an end in the y direction facing the first unit conductor 411 in the z direction.
  • the second unit conductor 421 can have a capacitance component at an end in the x direction opposite to the first unit conductor 411 in the z direction and at an end in the y direction.
  • the resonator 10 can lower the resonance frequency by increasing the capacitive coupling in the current path 40I. When realizing a desired operating frequency, the resonator 10 can shorten the length along the x direction by increasing the capacitive coupling of the current path 40I.
  • the first unit conductor 411 and the second unit conductor 421 are capacitively coupled to face each other in the stacking direction of the base 20.
  • the third conductor 40 can adjust the capacitance between the first unit conductor 411 and the second unit conductor 421 by the facing area.
  • the length along the y direction of the first unit conductor 411 is different from the length along the y direction of the second unit conductor 421.
  • the length along the third direction is the first unit.
  • current path 40I comprises a single conductor spatially separated from the first conductor 31 and the second conductor 32 and capacitively coupled to the first conductor 31 and the second conductor 32.
  • the current path 40I includes the first conductor layer 41 and the second conductor layer 42.
  • the current path 40I includes at least one first unit conductor 411 and at least one second unit conductor 421.
  • the current path 40I includes any one of two first connection conductors 413, two second connection conductors 423, and one first connection conductor 413 and one second connection conductor 423.
  • the first unit conductors 411 and the second unit conductors 421 can be alternately arranged along the first direction.
  • the current path 40I includes the first connection conductor 413 and the second connection conductor 423.
  • the current path 40I includes at least one first connection conductor 413 and at least one second connection conductor 423.
  • the third conductor 40 has a capacitance between the first connection conductor 413 and the second connection conductor 423.
  • the first connection conductor 413 may face the second connection conductor 423 and have a capacitance.
  • the first connection conductor 413 can be capacitively connected to the second connection conductor 423 via another conductor.
  • the current path 40I includes the first connection conductor 413 and the second floating conductor 424.
  • the current path 40I includes two first connection conductors 413.
  • the third conductor 40 has a capacitance between the two first connection conductors 413.
  • the two first connection conductors 413 can be capacitively connected via the at least one second floating conductor 424.
  • the two first connection conductors 413 can be capacitively connected via the at least one first floating conductor 414 and the plurality of second floating conductors 424.
  • the current path 40I includes the first floating conductor 414 and the second connection conductor 423.
  • the current path 40I includes two second connection conductors 423.
  • the third conductor 40 has a capacitance between the two second connection conductors 423.
  • the two second connection conductors 423 can be capacitively connected via the at least one first floating conductor 414.
  • the two second connection conductors 423 can be capacitively connected via the plurality of first floating conductors 414 and the at least one second floating conductor 424.
  • each of the first connection conductor 413 and the second connection conductor 423 may be one-quarter length of the wavelength ⁇ at the resonant frequency.
  • Each of the first connection conductor 413 and the second connection conductor 423 can function as a resonator having a half length of the wavelength ⁇ .
  • Each of the first connection conductor 413 and the second connection conductor 423 can oscillate in the odd mode and the even mode by capacitive coupling of the respective resonators.
  • the resonator 10 can use the resonance frequency in the even mode after capacitive coupling as the operating frequency.
  • the current path 40I can be connected to the first conductor 31 at a plurality of points.
  • the current path 40I can be connected to the second conductor 32 at a plurality of points.
  • the current path 40I can include a plurality of conductive paths that independently conduct from the first conductor 31 to the second conductor 32.
  • the end of the second floating conductor 424 on the capacitively coupled side is the distance to the first connection conductor 413 compared to the distance to the pair conductor 30. Is short.
  • the end of the first floating conductor 414 on the capacitively coupled side is the distance to the second connection conductor 423 compared to the distance to the pair conductor 30. Is short.
  • the conductor layers of the third conductor 40 may have different lengths in the y direction.
  • the conductor layer of the third conductor 40 capacitively couples with other conductor layers in the z direction.
  • the change in capacitance is small even if the conductor layers are shifted in the y direction.
  • the resonator 10 can widen the tolerance
  • the third conductor 40 has a capacitance due to capacitive coupling between the conductor layers.
  • a plurality of capacitive portions having the capacitance can be arranged in the y direction.
  • a plurality of capacitance portions arranged in the y direction can be in an electromagnetically parallel relationship.
  • Resonator 10 can mutually complement each capacity error by having a plurality of capacity parts arranged in parallel electrically.
  • the current flowing in the pair conductor 30, the third conductor 40, and the fourth conductor 50 loops.
  • an alternating current flows in the resonator 10.
  • the current flowing through the third conductor 40 is referred to as a first current
  • the current flowing through the fourth conductor 50 is referred to as a second current.
  • the first current flows in a direction different from the second current in the x direction. For example, when the first current flows in the + x direction, the second current flows in the ⁇ x direction.
  • the second current flows in the + x direction. That is, when the resonator 10 is in the resonant state, the loop current flows alternately in the + x direction and the ⁇ x direction.
  • the resonator 10 emits an electromagnetic wave when the loop current that generates the magnetic field repeats inversion.
  • the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
  • the first conductor layer 41 and the second conductor layer 42 are capacitively coupled, it appears that current is flowing in one direction in a global manner in a resonant state.
  • the current through each conductor has a high density at the end in the y direction.
  • the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 form a resonant circuit.
  • the resonant frequency of the resonator 10 is the resonant frequency of the unit resonator.
  • the resonance frequency of the resonator 10 is determined by the base 20, the pair conductor 30, the third conductor 40, and the like. It is changed by electromagnetic coupling with the fourth conductor 50 and the periphery of the resonator 10.
  • the resonator 10 when the periodicity of the third conductor 40 is low, the resonator 10 becomes one unit resonator entirely or a part of one unit resonator.
  • the resonant frequency of the resonator 10 is determined by the length in the z direction of the first conductor 31 and the second conductor 32, the length in the x direction of the third conductor 40 and the fourth conductor 50, the third conductor 40 and the fourth conductor It changes with the capacitance of 50.
  • the resonator 10 having a large capacitance between the first unit conductor 411 and the second unit conductor 421 has a length in the z direction of the first conductor 31 and the second conductor 32, and the third conductor 40 and the fourth conductor 50. It is possible to reduce the resonant frequency while shortening the length in the x direction of.
  • the first conductor layer 41 is an effective radiation surface of the electromagnetic wave in the z direction.
  • the first area of the first conductor layer 41 is larger than the first area of the other conductor layers.
  • the resonator 10 can increase the radiation of the electromagnetic wave by increasing the first area of the first conductor layer 41.
  • resonator 10 may include one or more impedance elements 45.
  • the impedance element 45 has an impedance value between the plurality of terminals.
  • the impedance element 45 changes the resonant frequency of the resonator 10.
  • the impedance element 45 may include a resistor, a capacitor, and an inductor.
  • the impedance element 45 may include a variable element capable of changing the impedance value.
  • the variable element can change the impedance value by the electrical signal.
  • the variable element can change the impedance value according to the physical mechanism.
  • the impedance element 45 can be connected to two unit conductors of the third conductor 40 aligned in the x direction.
  • the impedance element 45 can be connected to the two first unit conductors 411 aligned in the x direction.
  • the impedance element 45 can be connected to the first connection conductor 413 and the first floating conductor 414 aligned in the x direction.
  • the impedance element 45 can be connected to the first conductor 31 and the first floating conductor 414.
  • the impedance element 45 is connected to the unit conductor of the third conductor 40 at the central portion in the y direction.
  • the impedance element 45 is connected to the central portion of the two first unit conductors 411 in the y direction.
  • the impedance element 45 is electrically connected in series between two conductors aligned in the x direction in the xy plane.
  • the impedance element 45 can be electrically connected in series between the two first unit conductors 411 aligned in the x direction.
  • the impedance element 45 can be electrically connected in series between the first connection conductor 413 and the first floating conductor 414, which are aligned in the x direction.
  • the impedance element 45 can be electrically connected in series between the first conductor 31 and the first floating conductor 414.
  • the impedance element 45 can be electrically connected in parallel to the two first unit conductors 411 and the second unit conductors 421, which overlap in the z direction and have capacitance.
  • the impedance element 45 can be electrically connected in parallel to the second connection conductor 423 and the first floating conductor 414 that overlap in the z direction and have capacitance.
  • the resonator 10 can lower the resonance frequency by adding a capacitor as the impedance element 45.
  • the resonator 10 can increase the resonance frequency by adding an inductor as the impedance element 45.
  • Resonator 10 may include impedance elements 45 of different impedance values.
  • the resonator 10 may include capacitors of different capacitances as the impedance element 45.
  • the resonator 10 can include inductors of different inductances as the impedance element 45. In the resonator 10, the adjustment range of the resonance frequency is increased by adding the impedance elements 45 having different impedance values.
  • Resonator 10 can simultaneously include a capacitor and an inductor as impedance element 45.
  • the adjustment range of the resonance frequency is increased by simultaneously adding a capacitor and an inductor as the impedance element 45.
  • the resonator 10 can be an entire unit resonator or a part of an entire unit resonator by including the impedance element 45.
  • FIG. 1 to 5 are diagrams showing a resonator 10 which is an example of a plurality of embodiments.
  • FIG. 1 is a schematic view of a resonator 10.
  • FIG. 2 is a plan view of the xy plane from the z direction.
  • FIG. 3A is a cross-sectional view taken along the line IIIa-IIIa shown in FIG.
  • FIG. 3B is a cross-sectional view taken along the line IIIb-IIIb shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV shown in FIG.
  • FIG. 5 is a conceptual view showing a unit structure 10X which is an example of a plurality of embodiments.
  • the first conductor layer 41 includes a patch resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes a patch type resonator as a second unit resonator 42X.
  • the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
  • FIGS. 6-9 are diagrams showing a resonator 10 that is an example of a plurality of embodiments.
  • FIG. 6 is a schematic view of the resonator 10.
  • FIG. 7 is a plan view of the xy plane from the z direction.
  • FIG. 8A is a cross-sectional view taken along the line VIIIa-VIIIa shown in FIG.
  • FIG. 8B is a cross-sectional view taken along line VIIIb-VIIIb shown in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX shown in FIG.
  • the first conductor layer 41 includes a slot type resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes a slot type resonator as a second unit resonator 42X.
  • the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
  • FIG. 10 to 13 show a resonator 10 which is an example of a plurality of embodiments.
  • FIG. 10 is a schematic view of the resonator 10.
  • FIG. 11 is a plan view of the xy plane from the z direction.
  • 12A is a cross-sectional view along the line XIIa-XIIa shown in FIG. 12B is a cross-sectional view taken along line XIIb-XIIb shown in FIG.
  • FIG. 13 is a cross-sectional view taken along the line XIII-XIII shown in FIG.
  • the first conductor layer 41 includes a patch resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes a slot type resonator as a second unit resonator 42X.
  • the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
  • FIGS. 14-17 illustrate a resonator 10 that is an example of a plurality of embodiments.
  • FIG. 14 is a schematic view of the resonator 10.
  • FIG. 15 is a plan view of the xy plane from the z direction.
  • FIG. 16A is a cross-sectional view along the line XVIa-XVIa shown in FIG.
  • FIG. 16B is a cross-sectional view along the line XVIb-XVIb shown in FIG.
  • FIG. 17 is a cross-sectional view along the line XVII-XVII shown in FIG.
  • the first conductor layer 41 includes a slot type resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes a patch type resonator as a second unit resonator 42X.
  • the unit resonator 40X includes one first unit resonator 41X and four second partial resonators 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50.
  • FIGS. 1 to 17 The resonator 10 shown in FIGS. 1 to 17 is an example.
  • the configuration of the resonator 10 is not limited to the structures shown in FIGS.
  • FIG. 18 is a diagram showing a resonator 10 including a pair conductor 30 of another configuration.
  • FIG. 19A is a cross-sectional view along the line XIXa-XIXa shown in FIG.
  • FIG. 19B is a cross-sectional view along the line XIXb-XIXb shown in FIG.
  • the base 20 shown in FIGS. 1 to 19 is an example.
  • the configuration of the base 20 is not limited to the configuration shown in FIGS.
  • the base 20 can include a cavity 20a inside, as shown in FIG. In the z direction, the cavity 20 a is located between the third conductor 40 and the fourth conductor 50.
  • the dielectric constant of the cavity 20 a is lower than the dielectric constant of the substrate 20.
  • the base 20 can shorten the electromagnetic distance between the third conductor 40 and the fourth conductor 50 by having the cavity 20 a.
  • the substrate 20 can include a plurality of members as shown in FIG.
  • the substrate 20 can include a first substrate 21, a second substrate 22, and a connector 23.
  • the first base 21 and the second base 22 can be mechanically connected via the connector 23.
  • the connection body 23 can include the sixth conductor 303 inside.
  • the sixth conductor 303 is electrically connected to the fourth conductor 301 or the fifth conductor 302.
  • the sixth conductor 303 is combined with the fourth conductor 301 and the fifth conductor 302 to form the first conductor 31 or the second conductor 32.
  • the pair conductor 30 shown in FIGS. 1 to 21 is an example.
  • the configuration of the paired conductor 30 is not limited to the configuration shown in FIGS.
  • FIGS. 22-28 illustrate a resonator 10 including a pair of conductors 30 of another configuration.
  • FIG. 22 is a cross-sectional view corresponding to FIG. 19A.
  • the number of 5th conductor layers 301 can be changed suitably.
  • the fifth conductor layer 301 may not be located on the base 20.
  • the fifth conductor layer 301 may not be located in the base 20.
  • FIG. 23 is a plan view corresponding to FIG. As shown in FIG. 23, the resonator 10 can separate the fifth conductor 302 from the boundary of the unit resonator 40X.
  • FIG. 24 is a plan view corresponding to FIG. As shown in FIG. 24, the two paired conductors 30 can have a projection that protrudes to the side of the other paired conductor 30 to be paired.
  • Such a resonator 10 can be formed, for example, by applying and curing a metal paste to a base 20 having a recess.
  • FIG. 25 is a plan view corresponding to FIG.
  • the substrate 20 can have a recess.
  • the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
  • the paired conductors 30 extend along the surface of the base 20.
  • Such a resonator 10 can be formed, for example, by spraying a fine metal material on a base 20 having a recess.
  • FIG. 26 is a plan view corresponding to FIG.
  • the substrate 20 can have a recess.
  • the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
  • the paired conductors 30 extend along the recess of the base 20.
  • Such a resonator 10 can be manufactured, for example, by dividing a mother substrate along an array of through-hole conductors. Such a pair of conductors 30 can be called an end face through hole or the like.
  • FIG. 27 is a plan view corresponding to FIG.
  • the base 20 can have a recess.
  • the paired conductor 30 has a recess that is recessed inward from the outer surface in the x direction.
  • Such a resonator 10 can be manufactured, for example, by dividing a mother substrate along an array of through-hole conductors. Such a pair of conductors 30 can be called an end face through hole or the like.
  • FIG. 28 is a plan view corresponding to FIG. As shown in FIG. 28, the length in the x direction of the paired conductor 30 may be shorter than that of the base 20.
  • the configuration of the conductor 30 is not limited to these.
  • the two paired conductors 30 can have different configurations.
  • one paired conductor 30 may include the fifth conductor layer 301 and the fifth conductor 302, and the other paired conductor 30 may be an end face through hole.
  • the third conductor 40 shown in FIGS. 1 to 28 is an example.
  • the configuration of the third conductor 40 is not limited to the configuration shown in FIGS.
  • the unit resonator 40X, the first unit resonator 41X, and the second unit resonator 42X are not limited to the square.
  • the unit resonator 40X, the first unit resonator 41X, and the second unit resonator 42X can be referred to as a unit resonator 40X or the like.
  • the unit resonators 40X and so forth may be triangular as shown in FIG. 29A and may be hexagonal as shown in FIG. 29B.
  • Each side of the unit resonator 40X and the like can extend in a direction different from the x direction and the y direction, as shown in FIG.
  • the second conductor layer 42 may be located on the base 20, and the first conductor layer 41 may be located in the base 20.
  • the second conductor layer 42 may be located farther from the fourth conductor 50 than the first conductor layer 41.
  • the third conductor 40 shown in FIGS. 1 to 30 is an example.
  • the configuration of the third conductor 40 is not limited to the configuration shown in FIGS.
  • the resonator including the third conductor 40 may be a line type resonator 401.
  • FIG. 31A shows a meander line resonator 401.
  • FIG. 31B shows a spiral resonator 401.
  • the resonator included in the third conductor 40 may be a slot type resonator 402.
  • the slotted resonator 402 may have one or more seventh conductors 403 in the opening.
  • the seventh conductor 403 in the opening is electrically connected at one end to the conductor defining the opening.
  • the unit slot shown in FIG. 31C has five seventh conductors 403 located in the opening.
  • the unit slot corresponds to a meander line by the seventh conductor 403.
  • one seventh conductor 403 is located in the opening.
  • the unit slot corresponds to a spiral by the seventh conductor 4
  • the configuration of the resonator 10 shown in FIGS. 1 to 31 is an example.
  • the configuration of the resonator 10 is not limited to the configuration shown in FIGS.
  • the pair conductor 30 of the resonator 10 may include three or more.
  • one paired conductor 30 can be opposed to two paired conductors 30 in the x direction.
  • the two paired conductors 30 differ in distance from the paired conductor 30.
  • resonator 10 may include two pairs of paired conductors 30.
  • the two pairs of paired conductors 30 may differ in the distance of each pair and the length of each pair.
  • the resonator 10 may include five or more first conductors.
  • the unit structure 10X of the resonator 10 can be aligned with other unit structures 10X in the y direction.
  • the unit structure 10X of the resonator 10 can be aligned with the other unit structures 10X in the x direction without the pair conductor 30 interposed.
  • 32 to 34 show examples of the resonator 10.
  • FIGS. 1 to 34 The configuration of the resonator 10 shown in FIGS. 1 to 34 is an example.
  • the configuration of the resonator 10 is not limited to the configuration shown in FIGS.
  • FIG. 35 is a plan view of the xy plane from the z direction.
  • 36A is a cross-sectional view along the line XXXVIa-XXXVIa shown in FIG. 36B is a cross-sectional view taken along the line XXVIb-XXXVIb shown in FIG.
  • the first conductor layer 41 includes half of the patch resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes half of the patch resonator as the second unit resonator 42X.
  • Unit resonator 40X includes one first partial resonator 41Y and one second partial resonator 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the Z direction, and a part of the fourth conductor 50.
  • three unit resonators 40X are aligned in the x direction.
  • the first unit conductor 411 and the second unit conductor 421 included in the three unit resonators 40X form one current path 40I.
  • FIG. 37 shows another example of the resonator 10 shown in FIG.
  • the resonator 10 shown in FIG. 37 is longer in the x direction as compared to the resonator 10 shown in FIG.
  • the dimensions of the resonator 10 are not limited to the resonator 10 shown in FIG.
  • the first connection conductor 413 has a length in the x direction different from that of the first floating conductor 414.
  • the first connection conductor 413 has a length in the x direction shorter than that of the first floating conductor 414.
  • FIG. 38 shows another example of the resonator 10 shown in FIG. In the resonator 10 shown in FIG. 38, the lengths of the third conductors 40 in the x direction are different.
  • the first connection conductor 413 is longer in length in the x direction than the first floating conductor 414.
  • FIG. 39 shows another example of the resonator 10.
  • FIG. 39 shows another example of the resonator 10 shown in FIG.
  • the resonator 10 capacitively couples the plurality of first unit conductors 411 and the second unit conductors 421 arranged in the x direction.
  • two current paths 40I can be arranged in the y direction, in which no current flows from one to the other.
  • FIG. 40 shows another example of the resonator 10.
  • FIG. 40 shows another example of the resonator 10 shown in FIG.
  • the resonator 10 may differ in the number of conductors connected to the first conductor 31 and the number of conductors connected to the second conductor 32.
  • one first connection conductor 413 is capacitively coupled to two second floating conductors 424.
  • the two second connection conductors 423 are capacitively coupled to one first floating conductor 414.
  • the number of first unit conductors 411 may be different from the number of second unit conductors 421 capacitively coupled to the first unit conductor 411.
  • FIG. 41 shows another example of the resonator 10 shown in FIG.
  • the first unit conductor 411 has the number of second unit conductors 421 capacitively coupled at the first end in the x direction, and the number of second unit conductors 421 capacitively coupled at the second end in the x direction. The number can be different.
  • one second floating conductor 424 has the two first connection conductors 413 capacitively coupled to the first end in the x direction, and three second floating conductors 424 at the second end. It is capacitively coupled.
  • the conductors in the y-direction may differ in length in the y-direction.
  • the three first floating conductors 414 aligned in the y direction have different lengths in the y direction.
  • FIG. 42 shows another example of the resonator 10.
  • FIG. 43 is a cross-sectional view along the line XLIII-XLIII shown in FIG.
  • the first conductor layer 41 includes half of the patch resonator as the first unit resonator 41X.
  • the second conductor layer 42 includes half of the patch resonator as the second unit resonator 42X.
  • Unit resonator 40X includes one first partial resonator 41Y and one second partial resonator 42Y.
  • the unit structure 10X includes a unit resonator 40X, a part of the base 20 overlapping the unit resonator 40X in the z direction, and a part of the fourth conductor 50. In the resonator 10 shown in FIG. 42, one unit resonator 40X extends in the x direction.
  • FIG. 44 shows another example of the resonator 10.
  • FIG. 45 is a cross-sectional view along the line XLV-XLV shown in FIG.
  • the third conductor 40 includes only the first connection conductor 413.
  • the first connection conductor 413 faces the first conductor 31 in the xy plane.
  • the first connection conductor 413 capacitively couples with the first conductor 31.
  • FIG. 46 shows another example of the resonator 10.
  • FIG. 47 is a cross-sectional view along the line XLVII-XLVII shown in FIG.
  • the third conductor 40 has a first conductor layer 41 and a second conductor layer 42.
  • the first conductor layer 41 has one first floating conductor 414.
  • the second conductor layer 42 has two second connection conductors 423.
  • the first conductor layer 41 faces the pair of conductors 30 in the xy plane.
  • the two second connection conductors 423 overlap the one first floating conductor 414 in the z direction.
  • One first floating conductor 414 is capacitively coupled to the two second connection conductors 423.
  • FIG. 48 shows another example of the resonator 10.
  • FIG. 49 is a cross sectional view taken along the line XLIX-XLIX shown in FIG.
  • the third conductor 40 includes only the first floating conductor 414.
  • the first floating conductor 414 faces the pair of conductors 30 in the xy plane.
  • the first connection conductor 413 capacitively couples with the paired conductor 30.
  • FIG. 50 shows another example of the resonator 10.
  • FIG. 51 is a cross-sectional view taken along line LI-LI shown in FIG.
  • the resonator 10 shown in FIGS. 50 and 51 differs in the configuration of the resonator 10 and the fourth conductor 50 shown in FIGS.
  • the resonator 10 shown in FIGS. 50 and 51 includes a fourth conductor 50 and a reference potential layer 51.
  • the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
  • the reference potential layer 51 is opposed to the third conductor 40 via the fourth conductor 50.
  • the fourth conductor 50 is located between the third conductor 40 and the reference potential layer 51.
  • the distance between the reference potential layer 51 and the fourth conductor 50 is narrower than the distance between the third conductor 40 and the fourth conductor 50.
  • FIG. 52 shows another example of the resonator 10.
  • FIG. 53 is a cross-sectional view taken along line LIII-LIII shown in FIG.
  • the resonator 10 includes a fourth conductor 50 and a reference potential layer 51.
  • the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
  • the fourth conductor 50 comprises a resonator.
  • the fourth conductor 50 includes a third conductor layer 52 and a fourth conductor layer 53.
  • the third conductor layer 52 and the fourth conductor layer 53 capacitively couple.
  • the third conductor layer 52 and the fourth conductor layer 53 face each other in the z direction.
  • the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor layer 53 and the reference potential layer 51.
  • the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
  • the third conductor 40 is one conductor layer
  • FIG. 54 shows another example of the resonator 10 shown in FIG.
  • the resonator 10 includes a third conductor 40, a fourth conductor 50, and a reference potential layer 51.
  • the third conductor 40 includes a first conductor layer 41 and a second conductor layer 42.
  • the first conductor layer 41 includes a first connection conductor 413.
  • the second conductor layer 42 includes a second connection conductor 423.
  • the first connection conductor 413 is capacitively coupled to the second connection conductor 423.
  • the reference potential layer 51 is electrically connected to the ground of the device provided with the resonator 10.
  • the fourth conductor 50 includes a third conductor layer 52 and a fourth conductor layer 53.
  • the third conductor layer 52 and the fourth conductor layer 53 capacitively couple.
  • the third conductor layer 52 and the fourth conductor layer 53 face each other in the z direction.
  • the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor layer 53 and the reference potential layer 51.
  • the distance between the third conductor layer 52 and the fourth conductor layer 53 is shorter than the distance between the fourth conductor 50 and the reference potential layer 51.
  • FIG. 55 shows another example of the resonator 10.
  • 56A is a cross-sectional view along the line LVIa-LVIa shown in FIG. 56B is a cross sectional view taken along line LVIb-LVIb shown in FIG.
  • the first conductor layer 41 has four first floating conductors 414.
  • the first conductor layer 41 shown in FIG. 55 does not have the first connection conductor 413.
  • the second conductor layer 42 has six second connection conductors 423 and three second floating conductors 424.
  • Each of the two second connection conductors 423 is capacitively coupled to the two first floating conductors 414.
  • One second floating conductor 424 is capacitively coupled to the four first floating conductors 414.
  • the two second floating conductors 424 are capacitively coupled to the two first floating conductors 414.
  • FIG. 57 shows another example of the resonator shown in FIG.
  • the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
  • the length of the second floating conductor 424 in the x direction is shorter than the length of the second connection conductor 423 in the x direction.
  • FIG. 58 is a view showing another example of the resonator shown in FIG.
  • the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
  • each of the plurality of second unit conductors 421 has a different first area.
  • each of the plurality of second unit conductors 421 has a different length in the x direction.
  • each of the plurality of second unit conductors 421 has a different length in the y direction.
  • FIG. 58 is a view showing another example of the resonator shown in FIG.
  • the size of the second conductor layer 42 is different from that of the resonator 10 shown in FIG.
  • each of the plurality of second unit conductors 421 has a different first area.
  • each of the plurality of second unit conductors 421 has a different length in the x direction.
  • each of the plurality of second unit conductors 421 has a different length in the y direction.
  • the plurality of second unit conductors 421 have different first areas, lengths, and widths, but are not limited thereto.
  • the plurality of second unit conductors 421 may differ in part of the first area, length, and width.
  • the plurality of second unit conductors 421 may have part or all of the first area, length, and width match each other.
  • the plurality of second unit conductors 421 may differ in part or all of the first area, length, and width.
  • the plurality of second unit conductors 421 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second unit conductors 421 may match each other.
  • the plurality of second connection conductors 423 aligned in the y direction have different first areas.
  • the plurality of second connection conductors 423 aligned in the y direction have different lengths in the x direction.
  • the plurality of second connection conductors 423 aligned in the y direction have different lengths in the y direction.
  • the plurality of second connection conductors 423 have different first areas, lengths, and widths, but are not limited thereto.
  • the plurality of second connection conductors 423 may have different first areas, lengths, and portions of widths.
  • the plurality of second connection conductors 423 may have part or all of the first area, length, and width match each other.
  • the plurality of second connection conductors 423 may differ in part or all of the first area, length, and width.
  • the plurality of second connection conductors 423 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second connection conductors 423 may match each other.
  • the plurality of second floating conductors 424 aligned in the y direction have different first areas.
  • the plurality of second floating conductors 424 aligned in the y direction have different lengths in the x direction.
  • the plurality of second floating conductors 424 aligned in the y direction have different lengths in the y direction.
  • the plurality of second floating conductors 424 have different first areas, lengths, and widths, but are not limited thereto.
  • the plurality of second floating conductors 424 may differ in part of the first area, length, and width.
  • the plurality of second floating conductors 424 may have part or all of the first area, length, and width match each other.
  • the plurality of second floating conductors 424 may differ in part or all of the first area, length, and width from one another.
  • the plurality of second floating conductors 424 may have part or all of the first area, length, and width match each other. Some or all of the first area, length, and width of the plurality of second floating conductors 424 may coincide with each other.
  • FIG. 59 is a diagram showing another example of the resonator 10 shown in FIG.
  • the resonator 10 of FIG. 59 differs from the resonator 10 shown in FIG. 57 in the distance between the first unit conductors 411 in the y direction.
  • the distance between the first unit conductors 411 in the y direction is smaller than the distance between the first unit conductors 411 in the x direction.
  • a current flows in the x direction because the pair of conductors 30 can function as an electrical wall.
  • the current flowing through the third conductor 40 in the y direction can be ignored.
  • the spacing in the y direction of the first unit conductor 411 may be shorter than the spacing in the x direction of the first unit conductor 411. By shortening the interval in the y direction of the first unit conductor 411, the area of the first unit conductor 411 can be increased.
  • FIG. 60 to 62 are views showing other examples of the resonator 10.
  • FIG. These resonators 10 have an impedance element 45.
  • the unit conductors to which the impedance element 45 is connected are not limited to the examples shown in FIGS.
  • the impedance element 45 shown in FIGS. 60 to 62 can be partially omitted.
  • the impedance element 45 can have capacitance characteristics.
  • the impedance element 45 can have an inductance characteristic.
  • the impedance element 45 can be a mechanical or electrical variable element.
  • the impedance element 45 can connect two different conductors in one layer.
  • the antenna has at least one of an electromagnetic wave emission function and an electromagnetic wave reception function.
  • the antennas of the present disclosure include, but are not limited to, the first antenna 60 and the second antenna 70.
  • the first antenna 60 includes a base 20, a pair of conductors 30, a third conductor 40, a fourth conductor 50, and a first feeder 61.
  • the first antenna 60 has a third base 24 on the base 20.
  • the third substrate 24 may have a composition different from that of the substrate 20.
  • the third base 24 may be located on the third conductor 40.
  • 63 to 76 are views showing a first antenna 60 which is an example of a plurality of embodiments.
  • the first feeder line 61 feeds at least one of the resonators periodically arranged as an artificial magnetic wall.
  • the first antenna 60 may have a plurality of first feed lines.
  • the first feeder line 61 can be electromagnetically connected to any of the resonators periodically arranged as an artificial magnetic wall.
  • the first feeder line 61 can be electromagnetically connected to any of a pair of conductors that can be viewed as an electric wall from a resonator periodically arranged as an artificial magnetic wall.
  • the first feeder line 61 feeds power to at least one of the first conductor 31, the second conductor 32, and the third conductor 40.
  • the first antenna 60 may have a plurality of first feeder lines.
  • the first feeder line 61 can be electromagnetically connected to any of the first conductor 31, the second conductor 32, and the third conductor 40.
  • the first feeder line 61 may be any one of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50. Can be connected electromagnetically.
  • the first feeder line 61 is electrically connected to one of the fifth conductor layer 301 and the fifth conductor 302 in the pair of conductors 30. A portion of the first feeder line 61 may be integral with the fifth conductor layer 301.
  • the first feeder line 61 may be electromagnetically connected to the third conductor 40.
  • the first feeder line 61 is electromagnetically connected to one of the first unit resonators 41X.
  • the first feeder line 61 is electromagnetically connected to one of the second unit conductors 42X.
  • the first feeder line 61 is electromagnetically connected to the unit conductor of the third conductor 40 at a point different from the center in the x direction.
  • the first feeder line 61 supplies power to at least one resonator included in the third conductor 40 in one embodiment.
  • the first feeder line 61 supplies power from at least one resonator included in the third conductor 40 to the outside.
  • At least a part of the first feeder line 61 may be located in the base 20.
  • the first feeder line 61 can be exposed externally from any of the two zx planes, the two yz planes, and the two xy planes of the base 20.
  • the first feeder line 61 can be in contact with the third conductor 40 from the forward direction and the reverse direction of the z direction.
  • the fourth conductor 50 can be omitted around the first feeder line 61.
  • the first feeder line 61 can be electromagnetically connected to the third conductor 40 through the opening of the fourth conductor 50.
  • the first conductor layer 41 can be omitted around the first feeder line 61.
  • the first feeder line 61 can be connected to the second conductor layer 42 through the opening of the first conductor layer 41.
  • the first feeder line 61 can be in contact with the third conductor 40 along the xy plane.
  • the conductor 30 may be omitted around the first feeder line 61.
  • the first feeder line 61 can be connected to the third conductor 40 through the opening of the paired conductor 30.
  • the first feeder line 61 is connected to the unit conductor of the third conductor 40 at a distance from the center of the unit conductor.
  • FIG. 63 is a plan view of the xy plane of the first antenna 60 from the z direction.
  • FIG. 64 is a cross-sectional view along the line LXIV-LXIV shown in FIG. 63.
  • the first antenna 60 shown in FIGS. 63 and 64 has the third base 24 on the third conductor 40.
  • the third base 24 has an opening on the first conductor layer 41.
  • the first feeder line 61 is electrically connected to the first conductor layer 41 through the opening of the third base 24.
  • FIG. 65 is a plan view of the xy plane of the first antenna 60 from the z direction.
  • 66 is a cross-sectional view along the line LXVI-LXVI shown in FIG.
  • the first feeder line 61 can be connected to the third conductor 40 in the xy plane.
  • the first feeder line 61 can be connected to the first conductor layer 41 in the xy plane.
  • the first feed line 61 may be connected to the second conductor layer 42 in the xy plane.
  • FIG. 67 is a plan view of the xy plane of the first antenna 60 from the z direction.
  • FIG. 68 is a cross-sectional view taken along line LXVIII-LXVIII shown in FIG.
  • the first feeder line 61 is located in the base 20.
  • the first feeder line 61 can be connected to the third conductor 40 from the opposite direction in the z direction.
  • the fourth conductor 50 can have an opening.
  • the fourth conductor 50 can have an opening at a position overlapping the third conductor 40 in the z direction.
  • the first feeder line 61 can be exposed to the outside of the base 20 through the opening.
  • FIG. 69 is a cross-sectional view of the first antenna 60 as viewed in the yz plane from the x direction.
  • the conductor 30 may have an opening.
  • the first feeder line 61 can be exposed to the outside of the base 20 through the opening.
  • the electromagnetic wave emitted by the first antenna 70 has a polarization component in the x direction larger than that in the y direction on the first plane.
  • the polarization component in the x direction has smaller attenuation than the horizontal polarization component.
  • the first antenna 70 can maintain the radiation efficiency when the metal plate approaches from the outside.
  • FIG. 70 shows another example of the first antenna 60.
  • FIG. 71 is a cross-sectional view along the line LXXI-LXXI shown in FIG. 70.
  • FIG. 72 shows another example of the first antenna 60.
  • FIG. 73 is a cross-sectional view taken along line LXXIII-LXXIII shown in FIG.
  • FIG. 74 shows another example of the first antenna 60.
  • FIG. 75A is a cross-sectional view along the line LXXVa-LXXVa shown in FIG.
  • FIG. 75B is a cross sectional view taken along line LXXVb-LXXVb shown in FIG.
  • FIG. 76 shows another example of the first antenna 60.
  • the first antenna 60 shown in FIG. 76 has an impedance element 45.
  • the operating frequency of the first antenna 60 can be changed by the impedance element 45.
  • the first antenna 60 includes a first feed conductor 415 connected to the first feed line 61 and a first unit conductor 411 not connected to the first feed line 61.
  • the impedance matching changes when the impedance element 45 is connected to the first feed conductor 415 and the other conductor.
  • the first antenna 60 can adjust the impedance matching by connecting the first feed conductor 415 to another conductor by means of the impedance element 45.
  • the impedance element 45 can be inserted between the first feed conductor 415 and the other conductor in order to adjust the impedance matching.
  • the impedance element 45 may be inserted between the two first unit conductors 411 not connected to the first feeder line 61 in order to adjust the operating frequency.
  • the impedance element 45 can be inserted between the first unit conductor 411 not connected to the first feeder line 61 and any of the pair conductors 30 in order to adjust the operating frequency.
  • the second antenna 70 includes a base 20, a pair of conductors 30, a third conductor 40, a fourth conductor 50, a second feed layer 71, and a second feed line 72.
  • the third conductor 40 is located in the base 20.
  • the second antenna 70 has a third base 24 on the base 20.
  • the third substrate 24 may have a composition different from that of the substrate 20.
  • the third base 24 may be located on the third conductor 40.
  • the third base 24 may be located on the second feed layer 71.
  • the second feed layer 71 is positioned above the third conductor 40 with a space.
  • the base 20 or the third base 24 may be located between the second feed layer 71 and the third conductor 40.
  • the second feed layer 71 includes line-type, patch-type, and slot-type resonators.
  • the second feed layer 71 can be referred to as an antenna element.
  • the second feed layer 71 may be electromagnetically coupled to the third conductor 40.
  • the resonant frequency of the second feed layer 71 changes from a single resonant frequency due to the electromagnetic coupling with the third conductor 40.
  • the second feed layer 71 receives the transmission of the power from the second feed line 72 and resonates with the third conductor 40.
  • the second feed layer 71 receives the transmission of power from the second feed line 72 and resonates with the third conductor 40 and the third conductor.
  • the second feed line 72 is electrically connected to the second feed layer 71. In one embodiment, the second feed line 72 transmits power to the second feed layer 71. In one embodiment, the second feed line 72 transmits the power from the second feed layer 71 to the outside.
  • FIG. 77 is a plan view of the second antenna 70 in the xy plane from the z direction.
  • 78 is a cross-sectional view taken along line LXXVIII-LXXVIII shown in FIG.
  • the third conductor 40 is located in the base 20.
  • the second feed layer 71 is located on the base 20.
  • the second feed layer 71 is positioned so as to overlap the unit structure 10X in the z direction.
  • the second feed line 72 is located on the base 20.
  • the second feed line 72 is electromagnetically connected to the second feed layer 71 in the xy plane.
  • the wireless communication module of the present disclosure includes a wireless communication module 80 as an example of the plurality of embodiments.
  • FIG. 79 is a block diagram of the wireless communication module 80.
  • FIG. 80 is a schematic block diagram of the wireless communication module 80.
  • the wireless communication module 80 includes a first antenna 60, a circuit board 81, and an RF module 82.
  • the wireless communication module 80 may include a second antenna 70 instead of the first antenna 60.
  • the first antenna 60 is located on the circuit board 81.
  • the first feeder line 61 of the first antenna 60 is electromagnetically connected to the RF module 82 via the circuit board 81.
  • the fourth conductor 50 of the first antenna 60 is electromagnetically connected to the ground conductor 811 of the circuit board 81.
  • the ground conductor 811 can extend in the xy plane.
  • the ground conductor 811 has a larger area than the fourth conductor 50 in the xy plane.
  • the ground conductor 811 is longer than the fourth conductor 50 in the y direction.
  • the ground conductor 811 is longer than the fourth conductor 50 in the x direction.
  • the first antenna 60 may be located on the end side of the center of the ground conductor 811 in the y direction.
  • the center of the first antenna 60 may be different from the center of the ground conductor 811 in the xy plane.
  • the center of the first antenna 60 may be different from the centers of the first conductor 41 and the second conductor 42.
  • the point at which the first feed line 61 is connected to the third conductor 40 may differ from the center of the ground conductor 811 in the xy plane.
  • the first antenna 60 In the first antenna 60, the first current and the second current loop through the pair of conductors 30. As the first antenna 60 is located on the end side in the y direction from the center of the ground conductor 811, the second current flowing through the ground conductor 811 becomes asymmetric. When the second current flowing through the ground conductor 811 becomes asymmetric, the antenna structure including the first antenna 60 and the ground conductor 811 has a large polarization component in the x direction of the radiation wave. By increasing the x-direction polarization component of the radiation wave, the radiation wave can improve the overall radiation efficiency.
  • the RF module 82 may control the power supplied to the first antenna 60.
  • the RF module 82 modulates the baseband signal and supplies it to the first antenna 60.
  • the RF module 82 may modulate the electrical signal received by the first antenna 60 into a baseband signal.
  • the first antenna 60 has a small change in resonant frequency due to the conductor on the circuit board 81 side.
  • the wireless communication module 80 can reduce the influence from the external environment by having the first antenna 60.
  • the first antenna 60 can be integrated with the circuit board 81.
  • the fourth conductor 50 and the ground conductor 811 are integrated.
  • the wireless communication device of the present disclosure includes a wireless communication device 90 as an example of the plurality of embodiments.
  • FIG. 81 is a block diagram of the wireless communication device 90. As shown in FIG. FIG. 82 is a plan view of the wireless communication device 90. FIG. A part of the configuration of the wireless communication device 90 shown in FIG. 82 is omitted.
  • FIG. 83 is a cross-sectional view of the wireless communication device 90. The wireless communication device 90 shown in FIG. 83 omits part of the configuration.
  • the wireless communication device 90 includes a wireless communication module 80, a battery 91, a sensor 92, a memory 93, a controller 94, a first housing 95, and a second housing 96.
  • the wireless module 80 of the wireless communication device 90 has the first antenna 60 but may have the second antenna 70.
  • FIG. 84 is one of the other embodiments of the wireless communication device 90.
  • the first antenna 60 of the wireless communication device 90 can have a reference potential layer 51.
  • the battery 91 supplies power to the wireless communication module 80.
  • Battery 91 may provide power to at least one of sensor 92, memory 93, and controller 94.
  • Battery 91 may include at least one of a primary battery and a secondary battery.
  • the negative electrode of the battery 91 is electrically connected to the ground terminal of the circuit board 81.
  • the negative pole of the battery 91 is electrically connected to the fourth conductor 50 of the antenna 60.
  • the sensor 92 is, for example, a velocity sensor, a vibration sensor, an acceleration sensor, a gyro sensor, a rotation angle sensor, an angular velocity sensor, a geomagnetic sensor, a magnet sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, a light sensor, an illuminance sensor, a UV sensor, a gas sensor Gas concentration sensor, atmosphere sensor, level sensor, odor sensor, pressure sensor, air pressure sensor, contact sensor, wind sensor, infrared sensor, human sensor, displacement sensor, image sensor, weight sensor, smoke sensor, liquid leakage sensor, It may include a vital sensor, a battery residual amount sensor, an ultrasonic sensor, or a GPS (Global Positioning System) signal receiver.
  • GPS Global Positioning System
  • the memory 93 can include, for example, a semiconductor memory or the like.
  • the memory 93 can function as a work memory of the controller 94.
  • the memory 93 may be included in the controller 94.
  • the memory 93 stores a program in which processing content for realizing each function of the wireless communication device 90 is described, information used for processing in the wireless communication device 90, and the like.
  • the controller 94 may include, for example, a processor. Controller 94 may include one or more processors.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the application specific IC is also referred to as an application specific integrated circuit (ASIC).
  • the processor may include programmable logic devices. Programmable logic devices are also referred to as PLDs (Programmable Logic Devices).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the controller 94 may be either a system-on-a-chip (SoC) with which one or more processors cooperate, and a system in package (SiP).
  • SoC system-on-a-chip
  • SiP system in package
  • the controller 94 may store, in the memory 93, various types of information, programs for operating each component of the wireless communication device 90, and the like.
  • the controller 94 generates a transmission signal to be transmitted from the wireless communication device 90.
  • the controller 94 may, for example, obtain measurement data from the sensor 92.
  • the controller 94 may generate a transmission signal according to the measurement data.
  • the controller 94 may transmit a baseband signal to the RF module 82 of the wireless communication module 80.
  • the first housing 95 and the second housing 96 protect other devices of the wireless communication device 90.
  • the first housing 95 may extend in the xy plane.
  • the first housing 95 supports other devices.
  • the first housing 95 may support the wireless communication module 80.
  • the wireless communication module 80 is located on the top surface 95 A of the first housing 95.
  • the first housing 95 can support the battery 91.
  • the battery 91 is located on the top surface 95 A of the first housing 95.
  • the wireless communication module 80 and the battery 91 are aligned along the x direction on the upper surface 95A of the first housing 95.
  • the first conductor 31 is located between the battery 91 and the third conductor 40.
  • the battery 91 is located on the other side of the pair of conductors 30 as viewed from the third conductor 40.
  • the second housing 96 may cover other devices.
  • the second housing 96 includes a lower surface 96 ⁇ / b> A located on the z direction side of the first antenna 60.
  • the lower surface 96A extends along the xy plane.
  • the lower surface 96A is not limited to being flat, and may include asperities.
  • the second housing 96 can have an eighth conductor 961.
  • the eighth conductor 961 is located at least one of the inside, the outside, and the inside of the second housing 96.
  • the eighth conductor 961 is located on at least one of the top surface and the side surface of the second housing 96.
  • the eighth conductor 961 faces the first antenna 60.
  • the first portion 9611 of the eighth conductor 961 faces the first antenna 60 in the z direction.
  • the eighth conductor 961 can include, in addition to the first portion 9611, at least one of a second portion facing the first antenna 60 in the x direction and a third portion facing the first antenna in the y direction. A part of the eighth conductor 961 faces the battery 91.
  • the eighth conductor 961 may include a first extension 9612 extending outward from the first conductor 31 in the x direction.
  • the eighth conductor 961 can include a second extension 9613 extending outward from the second conductor 32 in the x direction.
  • the first extending portion 9612 can be electrically connected to the first portion 9611.
  • the second extending portion 9613 can be electrically connected to the first portion 9611.
  • the first extending portion 9612 of the eighth conductor 961 faces the battery 91 in the z direction.
  • the eighth conductor 961 can be capacitively coupled to the battery 91.
  • the eighth conductor 961 can have a capacitance with the battery 91.
  • the eighth conductor 961 is separated from the third conductor 40 of the first antenna 60.
  • the eighth conductor 961 is not electrically connected to each conductor of the first antenna 60.
  • the eighth conductor 961 may be spaced apart from the first antenna 60.
  • the eighth conductor 961 may be electromagnetically coupled to any conductor of the first antenna 60.
  • the first portion 9611 of the eighth conductor 961 may be electromagnetically coupled to the first antenna 60.
  • the first portion 9611 can overlap the third conductor 40 when viewed in plan from the z direction. When the first portion 9611 overlaps with the third conductor 40, propagation due to electromagnetic coupling can be large.
  • the eighth conductor 961 may have an electromagnetic coupling with the third conductor 40 as mutual inductance.
  • the eighth conductor 961 extends along the x direction.
  • the eighth conductor 961 extends along the xy plane.
  • the length of the eighth conductor 961 is longer than the length of the first antenna 60 along the x direction.
  • the length of the eighth conductor 961 in the x direction is longer than the length of the first antenna 60 in the x direction.
  • the length of the eighth conductor 961 may be longer than half of the operating wavelength ⁇ of the wireless communication device 90.
  • the eighth conductor 961 can include a portion extending along the y direction.
  • the eighth conductor 961 can bend in the xy plane.
  • the eighth conductor 961 can include a portion extending along the z direction.
  • the eighth conductor 961 can bend from the xy plane to the yz plane or the zx plane.
  • the first antenna 60 and the eighth conductor 961 may be electromagnetically coupled to function as a third antenna 97.
  • the operating frequency f c of the third antenna 97 may be different from the resonant frequency of the first antenna 60 alone.
  • the operating frequency f c of the third antenna 97 may be closer to the resonant frequency of the first antenna 60 than the resonant frequency of the eighth conductor 961 alone.
  • the operating frequency f c of the third antenna 97 may be within the resonant frequency band of the first antenna 60.
  • the operating frequency f c of the third antenna 97 may be outside the resonant frequency band of the eighth conductor 961 alone.
  • FIG. 85 shows another embodiment of the third antenna 97.
  • the eighth conductor 961 can be configured integrally with the first antenna 61.
  • a part of the configuration of the wireless communication device 90 is omitted.
  • the second housing 96 may not include the eighth conductor 961.
  • the eighth conductor 961 is capacitively coupled to the third conductor 40.
  • the eighth conductor 961 is electromagnetically coupled to the fourth conductor 50.
  • the third antenna 97 improves the gain as compared to the first antenna 60 by including the first extending portion 9612 and the second extending portion 9613 of the eighth conductor in the air.
  • Wireless communication device 90 may be located on various objects. Wireless communication device 90 may be located on electrical conductor 99.
  • FIG. 86 is a plan view showing an embodiment of the wireless communication device 90.
  • the conductor 99 is a conductor that transmits electricity.
  • the material of the conductor 99 includes metals, highly doped semiconductors, conductive plastics, and liquids containing ions.
  • Conductor 99 may include a nonconductive layer that does not conduct electricity on the surface.
  • the part that transmits electricity and the nonconductive layer may contain a common element.
  • the conductor 99 containing aluminum may include a nonconductive layer of aluminum oxide on the surface.
  • the portion carrying electricity and the nonconductive layer may contain different elements.
  • the shape of the conductor 99 is not limited to a flat plate, and may include a three-dimensional shape such as a box shape.
  • the three-dimensional shape formed by the conductor 99 includes a rectangular parallelepiped and a cylinder.
  • the three-dimensional shape may include a partially recessed shape, a partially penetrating shape, and a partially protruding shape.
  • the conductor 99 may be of a torus type.
  • the conductor 99 includes an upper surface 99A on which the wireless communication device 90 can be mounted.
  • the upper surface 99A can extend over the entire surface of the conductor 99.
  • the top surface 99A may be part of the conductor 99.
  • the top surface 99A may have a larger area than the wireless communication device 90.
  • the wireless communication device 90 may be placed on the top surface 99A of the conductor 99.
  • the upper surface 99A may have a smaller area than the wireless communication device 90.
  • the wireless communication device 90 may be partially located on the top surface 99A of the conductor 99.
  • Wireless communication device 90 may be placed on top surface 99A of electrical conductor 99 in various orientations.
  • the orientation of the wireless communication device 90 may be arbitrary.
  • the wireless communication device 90 may be appropriately fixed on the upper surface 99A of the conductor 99 by a fixing tool.
  • Fasteners include those that secure with a surface, such as double-sided tape and adhesives.
  • Fasteners include fasteners such as screws and nails.
  • the upper surface 99A of the conductor 99 can include a portion extending along the j direction.
  • the portion extending along the j direction has a longer length along the j direction than the length along the k direction.
  • the j direction and the k direction are orthogonal to each other.
  • the j direction is a direction in which the conductor 99 extends long.
  • the k direction is a direction in which the length of the conductor 99 is shorter than the j direction.
  • the wireless communication device 90 may be placed on the top surface 99A such that the x direction is along the j direction.
  • the wireless communication device 90 may be placed on the upper surface 99A of the conductor 99 so as to align with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
  • the first antenna 60 When the wireless communication device 90 is located on the conductor 99, the first antenna 60 may be electromagnetically coupled to the conductor 99. In the fourth conductor 50 of the first antenna 60, a second current flows along the x direction. The conductor 99 electromagnetically coupled to the first antenna 60 induces a current by the second current. When the x direction of the first antenna 60 and the j direction of the electrical conductor 99 are aligned, the electrical current in the electrical conductor 99 increases along the j direction. When the x direction of the first antenna 60 and the j direction of the conductor 99 are aligned, the radiation by the induced current of the conductor 99 is increased. The angle in the x direction with respect to the j direction may be 45 degrees or less.
  • the ground conductor 811 of the wireless communication device 90 is separated from the conductor 99.
  • the ground conductor 811 is separated from the conductor 99.
  • the wireless communication device 90 may be placed on the upper surface 99A such that the direction along the long side of the upper surface 99A is aligned with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
  • the upper surface 99A may include a rhombus and a circle in addition to the square surface.
  • the conductor 99 may include a rhombus-shaped surface. This diamond shaped surface may be the top surface 99A on which the wireless communication device 90 is mounted.
  • the wireless communication device 90 may be placed on the upper surface 99A such that the direction along the long diagonal of the upper surface 99A is aligned with the x direction in which the first conductor 31 and the second conductor 32 are aligned.
  • the upper surface 99A is not limited to being flat.
  • the upper surface 99A may include asperities.
  • the upper surface 99A may include a curved surface.
  • the curved surface includes a ruled surface.
  • the curved surface includes a cylinder face.
  • the conductor 99 extends in the xy plane.
  • the conductor 99 can increase the length along the x direction as compared to the length along the y direction.
  • the conductor 99 can have a length in the y direction shorter than half of the wavelength ⁇ c at the operating frequency f c of the third antenna 97.
  • Wireless communication device 90 may be located on electrical conductor 99.
  • the conductor 99 is located apart from the fourth conductor 50 in the z direction.
  • the conductor 99 has a length along the x direction longer than that of the fourth conductor 50.
  • the conductor 99 has a larger area in the xy plane than the fourth conductor 50.
  • Conductor 99 is located away from ground conductor 811 in the z-direction.
  • the conductor 99 has a length in the x direction longer than that of the ground conductor 811.
  • the conductor 99 has a larger area in the xy plane than the ground conductor 811.
  • the wireless communication device 90 can be placed on the conductor 99 in a direction in which the first conductor 31 and the second conductor 32 are aligned in the direction in which the conductor 99 extends long. In other words, the wireless communication device 90 can be placed on the conductor 99 in a direction in which the current of the first antenna 60 flows in the xy plane and the direction in which the conductor 99 extends long.
  • the first antenna 60 has a small change in resonant frequency due to the conductor on the circuit board 80 side.
  • the wireless communication device 90 can reduce the influence from the external environment.
  • the ground conductor 811 capacitively couples with the conductor 99.
  • the wireless communication device 90 improves the gain as compared to the first antenna 60 by including a portion of the conductor 99 which extends outward from the third antenna 97.
  • the resonant circuit in the air may be different from the resonant circuit on the conductor 99.
  • FIG. 87 is a schematic circuit of a resonant structure formed in the air.
  • FIG. 88 is a schematic circuit of a resonant structure formed on the conductor 99.
  • L3 is an inductance of the resonator 10
  • L8 is an inductance of the eighth conductor 961
  • L9 is an inductance of the conductor 99
  • M is a mutual inductance of L3 and L8.
  • C3 is the capacitance of the third conductor 40
  • C4 is the capacitance of the fourth conductor 50
  • C8 is the capacitance of the eighth conductor 961
  • C8B is the capacitance of the eighth conductor 961 and the battery 91
  • C9 is Conductor 99, ground conductor 811 and capacitance.
  • R3 is a radiation resistance of the resonator 10
  • R8 is a radiation resistance of the eighth conductor 961.
  • the operating frequency of the resonator 10 is lower than the resonant frequency of the eighth conductor.
  • the ground conductor 811 functions as a chassis ground in the air.
  • the fourth conductor 50 capacitively couples with the conductor 99.
  • the conductor 99 functions as a substantial chassis ground.
  • wireless communication device 90 includes an eighth conductor 961.
  • the eighth conductor 961 is electromagnetically coupled to the first antenna 60 and capacitively coupled to the fourth conductor 50.
  • the wireless communication device 90 can increase the operating frequency when placed on the conductor 99 from the air by increasing the capacitance C8B due to capacitive coupling.
  • the wireless communication device 90 can lower the operating frequency when placed on the conductor 99 from the air by increasing the mutual inductance M due to electromagnetic coupling.
  • the wireless communication device 90 can adjust the change in the operating frequency when placed on the conductor 99 from the air by changing the balance between the capacitance C 8 B and the mutual inductance M.
  • the wireless communication device 90 can reduce the change in operating frequency when placed on the conductor 99 from the air by changing the balance between the capacitance C8B and the mutual inductance M.
  • the wireless communication device 90 has an eighth conductor 961 electromagnetically coupled to the third conductor 40 and capacitively coupled to the fourth conductor 50. By including the eighth conductor 961, the wireless communication device 90 can adjust the change in the operating frequency when placed on the conductor 99 from the air. By including the eighth conductor 961, the wireless communication device 90 can reduce the change in operating frequency when placed on the conductor 99 from the air.
  • the ground conductor 811 functions as a chassis ground.
  • the conductor 99 functions as a substantial chassis ground on the conductor 99.
  • the resonant structure including the resonator 10 can oscillate even if the chassis ground changes. This corresponds to the fact that the resonator 10 including the reference potential layer 51 and the resonator 10 not including the reference potential layer 51 can oscillate.
  • FIG. 89 is an external view showing an embodiment of the bicycle 1.
  • FIG. 90 is a view showing a frame of the bicycle 1 shown in FIG.
  • FIG. 91 is a view showing a crank 1b-1 and a chain wheel 1j of the bicycle 1 shown in FIG.
  • FIG. 92 is a view showing a dual control lever 1 h of the bicycle 1 shown in FIG. 89.
  • the bicycle 1 travels by human power.
  • the "bicycle” of the present disclosure is not limited to a bicycle that travels with only human power.
  • “bicycle” may include electrically powered bicycles, electrically powered bicycles, and two wheel drive bicycles.
  • the “bicycle” of the present disclosure is not limited to a two-wheeled vehicle.
  • “bicycle” may include unicycles, tricycles, and four-wheeled vehicles.
  • the classification of the bicycle is not limited to the above.
  • "bicycle” may include tandem bicycles.
  • the bicycle 1 may be owned by an individual.
  • the bicycle 1 may be owned by a business that provides a bicycle rental service.
  • the bicycle 1 may be owned by a company that provides home delivery service for food and the like.
  • a person who is authorized to use the bicycle 1 is referred to as a "user”.
  • Those who are currently driving the bicycle 1 are referred to as "drivers”.
  • the bicycle 1 includes a frame and bicycle components.
  • the frame of the bicycle 1 may be any conductive material.
  • the conductive material may include metal and carbon fiber reinforced plastic.
  • the bicycle component may be composed of any member depending on the application of the component.
  • the frame of the bicycle 1 includes a seat stay 1A, a seat tube 1B, a chain stay 1C, a down tube 1D, a front fork 1E, a head tube 1F, and a top tube 1G. Good.
  • the frame of the bicycle 1 may include a rear fork end 1H, a bottom bracket shell 1J, and a front fork end 1K.
  • the shape of the frame of the bicycle 1 is not limited to the shape shown in FIG. 90, and may be any shape.
  • the seat stay 1A extends along the extending direction A from the rear fork end 1H to one end of the seat tube 1B.
  • the seat tube 1B extends along the extending direction B from the bottom bracket shell 1J toward one end of the seat stay 1A.
  • the chain stay 1C extends along an extending direction C extending from the rear fork end 1H to the bottom bracket shell 1J.
  • the down tube 1D extends along the extending direction D from the bottom bracket shell 1J toward the head tube 1F.
  • the front fork 1E extends along the extending direction E from one end of the head tube 1F toward the front fork end 1K.
  • the head tube 1F extends in the extending direction F from one end of the front fork 1E to one end of the top tube 1G.
  • the top tube 1G extends in the extending direction F from one end of the seat stay 1A to the other end of the head tube 1F.
  • the bicycle parts of the bicycle 1 are, as shown in FIG. 89, a handle 1a, a crank 1b, a rear wheel 1c, a wheel 1d, a stem 1e, a rear derailleur 1f, a front derailleur 1g, and a dual control lever 1h , Light 1i, chain wheel 1j, brake 1k-1, brake 1k-2, and pedal 1m.
  • the bicycle component of the bicycle 1 may include a power meter 1 n, as shown in FIG.
  • the bicycle component of the bicycle 1 may include a battery 1o, as shown in FIG.
  • the bicycle component of the bicycle 1 may include a saddle 1p, a seat post 1q, and a head part 1r, as shown in FIG.
  • the crank 1b extends along the extending direction b from the bottom bracket shell 1J toward the pedal 1m, as shown in FIG.
  • the crank 1 b may include a crank 1 b-1 receiving power from the driver's right foot and a crank 1 b-2 receiving power from the driver's left foot.
  • the rear wheel 1c may include a spoke 1c-1, a rim 1c-2, a tire 1c-3 and a hub 1c-4.
  • the hub 1c-4 is attached to the rear fork end 1H shown in FIG.
  • the hub 1c-4 is a rotation axis of the rear wheel 1c.
  • the wheel 1d may include a spoke 1d-1, a rim 1d-2, a tire 1d-3, and a hub 1d-4.
  • the hub 1d-4 is attached to the front fork end 1K shown in FIG.
  • the hub 1d-4 is the rotation axis of the wheel 1d.
  • Each of the brake 1k-1 and the brake 1k-2 may be configured to include a brake caliper.
  • the brake caliper of the brake 1k-1 may be configured to be able to sandwich the rear wheel 1c.
  • the brake caliper of the brake 1k-2 may be configured to be able to sandwich the wheel 1d.
  • the chain wheel 1j extends along the circumferential direction j1.
  • the chain wheel 1 j may include a plurality of chain wheels.
  • the chain wheel 1j may include a chain wheel 1j-1 and a chain wheel 1j-2.
  • the chain wheel 1j may include a portion connecting the chain wheel 1j-1 and the chain wheel 1j-2. The portion may extend along the radial direction j2 of the chain wheel 1j.
  • the chain wheel 1j may include a hole 1j-3 and a bottom bracket 1j-4.
  • Bottom bracket 1j-4 is attached to bottom bracket shell 1J shown in FIG.
  • the chain wheel 1j is attached to the bottom bracket 1j-4.
  • the bottom bracket 1j-4 is the rotation axis of the chain wheel 1j.
  • the pedal 1 m may include a pedal 1 m-1 on which the driver's right foot is placed and a pedal 1 m-2 on which the driver's left foot is placed.
  • the dual control lever 1h may be configured to include the shift lever 1h-1 and the brake lever 1h-2.
  • the shift lever 1h-1 may be provided with a switch 1h-3.
  • the brake lever 1h-2 may extend along the extending direction h.
  • the bicycle component may include an independent shift lever and a brake lever instead of the dual control lever 1h.
  • the power meter 1 n may be disposed in the hole 1 j-3 of the chain wheel 1 j as shown in FIG.
  • the "bicycle part” of the present disclosure is not limited to the above-described parts.
  • the “bicycle part” of the present disclosure may include any part depending on the application of the bicycle.
  • “bicycle components” may include shadows and cycle computers.
  • the bicycle 1 is provided with at least one first antenna 60a.
  • the first antenna 60a has the same structure as the first antenna 60 described above.
  • the bicycle 1 may include a second antenna 70 in addition to the first antenna 60a or in place of the first antenna 60a.
  • the first antenna 60 a may be disposed on any of the frames of the bicycle 1.
  • the first antenna 60 a may be disposed on the frame so that the fourth conductor 50 included in the first antenna 60 a faces the frame of the bicycle 1.
  • the direction in which the frame is positioned with respect to the fourth conductor 50 is the direction in which the third conductor 40 is positioned with respect to the fourth conductor 50 And can be in the opposite direction.
  • the effective traveling direction of the electromagnetic wave emitted by the first antenna 60 a may be the direction in which the third conductor 40 is positioned with respect to the fourth conductor 50.
  • the frame of the bicycle 1 By making the fourth conductor 50 of the first antenna 60a face the frame of the bicycle 1, the frame of the bicycle 1 can be positioned in the opposite direction to the effective traveling direction of the electromagnetic wave emitted by the first antenna 60a.
  • the radiation efficiency of the first antenna 60a can be maintained by positioning the frame of the bicycle 1 in the direction opposite to the effective traveling direction of the electromagnetic waves from the first antenna 60a.
  • the first antenna 60a may be disposed on the long portion.
  • the first antenna 60a may be disposed on the long portion so that the first direction is along the conductive long portion.
  • the long portion may include a seat stay 1A, a seat tube 1B, a chain stay 1C, a down tube 1D, a front fork 1E, a head tube 1F, and a top tube 1G.
  • the fourth conductor 50 of the first antenna 60a and the long portion are capacitively coupled, when the first antenna 60a radiates an electromagnetic wave, a current can be induced to the long portion.
  • the long portion may emit an electromagnetic wave by the current induced in the long portion.
  • the overall radiation efficiency of the first antenna 60a can be improved by the long portion radiating the current induced to the long portion as an electromagnetic wave.
  • the electromagnetic waves radiated from the long part can be radiated isotropically from the long part.
  • the first antenna 60a when the first antenna 60a is disposed on the seat stay 1A as a long portion, the first antenna 60a may be disposed on the seat stay 1A such that the first direction is along the extending direction A.
  • the first antenna 60a when arranging the first antenna 60a on the sheet tube 1B as a long part, the first antenna 60a may be arranged on the sheet tube 1B such that the first direction is along the extending direction B.
  • the first antenna 60a when the first antenna 60a is disposed on the chain stay 1C as a long portion, the first antenna 60a may be disposed on the chain stay 1C such that the first direction is along the extending direction C.
  • the first antenna 60a when arranging the first antenna 60a in the down tube 1D as a long part, the first antenna 60a may be arranged in the down tube 1D such that the first direction is along the extending direction D.
  • the first antenna 60a when arranging the first antenna 60a on the front fork 1E as a long part, the first antenna 60a may be arranged on the front fork 1E such that the first direction is along the extending direction E.
  • the first antenna 60a when arranging the first antenna 60a on the head tube 1F as a long part, the first antenna 60a may be arranged on the head tube 1F such that the first direction is along the extending direction F.
  • the first antenna 60a when arranging the first antenna 60a on the top tube 1G as a long part, the first antenna 60a may be arranged on the top tube 1G such that the first direction is along the extending direction G.
  • the first antenna 60 a may be disposed on any of the bicycle components of the bicycle 1.
  • the first antenna 60 a may be disposed on the bicycle component such that the fourth conductor 50 included in the first antenna 60 a faces the bicycle component of the bicycle 1.
  • the radiation efficiency of the first antenna 60a can be maintained as described above by causing the fourth conductor 50 of the first antenna 60a to face the bicycle component.
  • the first antenna 60a may be disposed on the long part when the bicycle component has a conductive long part.
  • the first antenna 60a may be disposed on the elongated portion such that the first direction is along the conductive elongated portion of the bicycle component.
  • the overall radiation efficiency of the first antenna 60a can be improved as described above by arranging the first antenna 60a in the long portion.
  • a bicycle component having a conductive long portion may include a brake lever 1h-2, a chain wheel 1j, and a crank 1b.
  • the first antenna 60a when arranging the first antenna 60a on the crank 1b as a long portion, the first antenna 60a may be arranged on the crank 1b such that the first direction is along the extending direction b.
  • the first antenna 60a when arranging the first antenna 60a on the chain wheel 1j as a long part, the first antenna 60a may be arranged on the chain wheel 1j such that the first direction is along the circumferential direction j1.
  • the first antenna 60a may be disposed on the chain wheel 1j such that the first direction is along the radial direction j2.
  • the first antenna 60a when arranging the first antenna 60a on the brake lever 1h-2 as a long part, the first antenna 60a is arranged on the brake lever 1h-2 so that the first direction is along the extending direction h Good.
  • the first antenna 60a may be disposed on a bicycle component that can contact the driver.
  • the first antenna 60a may be disposed at a portion with less contact with the driver among the portions included in the bicycle component that can be in contact with the driver.
  • the parts of the bicycle that can be in contact with the driver may include the handle 1a, the shift lever 1h-1, and the brake lever 1h-2.
  • the first antenna 60a may be disposed at a portion of the portion included in the steering wheel 1a that is less likely to be gripped by the driver.
  • the portion may be a root portion of the handle 1a or an end portion of the handle 1a.
  • the first antenna 60a may be disposed at a portion of the portion included in the brake lever 1h-2 that is less likely to be gripped by the driver .
  • the portion may be a root portion of the brake lever 1h-2, as shown in FIG.
  • FIG. 93 is a functional block diagram of an example of the bicycle 1 shown in FIG.
  • the bicycle 1 can communicate with the information processing device 3 via the network 2.
  • the bicycle 1 can communicate directly with the mobile 4.
  • the network 2 may include a wireless network.
  • a part of the network 2 may include a wired network.
  • the bicycle 1 and the information processing device 3 can constitute an information accumulation system.
  • the information processing device 3 can communicate with a plurality of bicycles 1.
  • the bicycle 1 includes a sensor device 110 and a communication device 120.
  • the sensor device 110 and the communication device 120 may be integrally configured.
  • the sensor device 110 and the communication device 120 may be integrally configured.
  • the information processing apparatus 3 may be managed by any business operator or the like.
  • the information processing device 3 may be managed by the provider of the rental service.
  • the information processing device 3 may be managed by the provider of the home delivery service.
  • the information processing device 3 may be managed by the insurance company.
  • the information processing device 3 may be configured by a computer system or other hardware capable of executing program instructions.
  • Computer systems and other hardware may be general-purpose computers, PCs (personal computers), dedicated computers, workstations, personal communications systems (PCSs), mobile (cellular) phones, mobile phones with data processing functions, It may include a Radio Frequency IDentification (RFID) receiver, a game console, an electronic note pad, a laptop computer, a Global Positioning System (GPS) receiver or other programmable data processing device.
  • RFID Radio Frequency IDentification
  • GPS Global Positioning System
  • the mobile unit 4 is a mobile unit existing in the communication range of the bicycle 1 among the mobile units.
  • the mobile 4 includes a vehicle, a ship, and an aircraft.
  • the mobile unit 4 may be a vehicle traveling in the communication area of the bicycle 1.
  • the "vehicle" of the present disclosure includes, but is not limited to, a car, a rail car, an industrial vehicle, and a living vehicle.
  • the vehicle may include an airplane traveling on the runway.
  • Automobiles include, but are not limited to, passenger cars, trucks, buses, motorcycles, trolley buses, etc., and may include other vehicles traveling on the road.
  • Tracked vehicles may include, but are not limited to, locomotives, freight cars, passenger cars, trams, guided track railways, ropeways, cable cars, linear motor cars, and monorails, but not limited to other vehicles traveling along tracks .
  • Industrial vehicles include agricultural and industrial vehicles for construction.
  • Industrial vehicles include, but are not limited to, forklifts and golf carts.
  • Industrial vehicles for agriculture include, but are not limited to, tractors, cultivators, transplanters, binders, combine harvesters, and lawn mowers.
  • Industrial vehicles for construction include, but are not limited to, bulldozers, scrapers, excavators, cranes, dumpers, and road rollers.
  • Living vehicles include, but are not limited to, bicycles, wheelchairs, prams, handcarts, and electric standing motorcycles.
  • Vehicle power engines include, but are not limited to, internal combustion engines including diesel engines, gasoline engines, and hydrogen engines, and electric engines including motors. Vehicles include those that travel by human power.
  • the classification of vehicles is not limited to the above. For example, a car may include an industrial vehicle capable of traveling on a road, and a plurality of classifications may include the same vehicle.
  • Sensor device 110 may communicate directly with communication device 120.
  • the sensor device 110 and the communication device 120 may perform wired communication or wireless communication.
  • Wireless communication may be based on near field communication standards.
  • the near field communication standard may include WiFi (registered trademark), Bluetooth (registered trademark), and wireless local area network (LAN).
  • the sensor device 110 includes a sensor 112, a memory 113, and a controller 114.
  • the sensor device 110 may have at least one first antenna 60b, for example, when the sensor device 110 and the communication device 120 communicate wirelessly.
  • the sensor device 110 may have a first antenna 60 b on the outside or the outer surface of the sensor device 110.
  • Sensor device 110 may have a battery 111. If the sensor device 110 does not have the battery 111, the sensor device 110 may operate with the power supplied from the battery 1o shown in FIG. When the sensor device 110 receives supply of power from the battery 1o, the sensor device 110 and the battery 1o may be electrically connected by a power line or the like.
  • the first antenna 60 b may be the above-described first antenna 60 a that is independent of the first antenna 60 c of the communication device 120.
  • the first antenna 60 b may be appropriately configured according to the frequency band used in communication between the sensor device 110 and another device.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60b is used in communication between the sensor device 110 and another device. May be appropriately configured according to the frequency band.
  • the first antenna 60b may be configured according to a frequency band used in near field communication between the sensor device 110 and the communication device 120.
  • the first antenna 60b may be configured according to the frequency band used in communication between the sensor device 110 and the GPS satellites.
  • the arrangement position of the first antenna 60b is appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the communication counterpart of the sensor device 110 or the data acquired by the sensor 112. You may
  • the arrangement position of the first antenna 60b may be the top tube 1G shown in FIG. 90 or the stem 1e shown in FIG.
  • the first antenna 60b can easily receive an electromagnetic wave from a GPS satellite.
  • the first antenna 60b can receive electromagnetic waves from other devices as a reception signal.
  • the received signal received by the first antenna 60 b is transmitted to the controller 114 via the first feeder line 61 of the first antenna 60 b.
  • the first antenna 60b can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61 of the first antenna 60b.
  • the battery 111 may supply power to at least one of the first antenna 60 b, the sensor 112, the memory 113, and the controller 114.
  • the battery 111 can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 111 is electrically connected to the fourth conductor 50 of the first antenna 60b.
  • the sensor 112 may be appropriately configured according to the application of the sensor device 110.
  • the sensor 112 includes at least one of a speed sensor, an acceleration sensor, a gyro sensor, a rotation angle sensor, a strain sensor, a geomagnetic sensor, a temperature sensor, a humidity sensor, an air pressure sensor, an illuminance sensor, a camera, and a biological sensor. Good.
  • the arrangement position of the first antenna 60b may be appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the data measured by the sensor 112.
  • the sensor 112 may measure the speed of the bicycle 1 if configured to include a speed sensor.
  • the sensor 112 outputs the measured speed of the bicycle 1 to the controller 114.
  • the sensor device 110 including the sensor 112 can be disposed in the seat stay 1A or the chain stay 1C shown in FIG.
  • the arrangement position of the first antenna 60b may be the seat stay 1A or the chain stay 1C.
  • the sensor 112 may measure the acceleration acting on the bicycle 1.
  • the sensor 112 outputs the measured acceleration to the controller 114.
  • the sensor device 110 including the sensor 112 can be disposed in the seat stay 1A or the chain stay 1C shown in FIG.
  • the arrangement position of the first antenna 60b may be the seat stay 1A or the chain stay 1C.
  • the angular velocity of the bicycle 1 can be measured.
  • the sensor 112 outputs the measured angular velocity to the controller 114.
  • the sensor device 110 including the sensor 112 can be disposed in the seat stay 1A or the chain stay 1C shown in FIG.
  • the arrangement position of the first antenna 60b may be the seat stay 1A or the chain stay 1C.
  • the sensor 112 when the sensor 112 is configured to include a rotation angle sensor, the sensor 112 can measure the rotation speed of the crank 1b of the bicycle 1.
  • the sensor device 110 provided with the sensor 112 may be a power meter 1 n disposed in the hole 1 j-3 of the chain wheel 1 j shown in FIG.
  • the sensor 112 outputs the measured rotational speed to the controller 114.
  • the arrangement position of the first antenna 60b may be the chain wheel 1j-1 or the chain wheel 1j-2 shown in FIG.
  • the load on the crank 1b can be measured.
  • the sensor 112 outputs the measured load data to the controller 114.
  • the sensor device 110 provided with the sensor 112 may be a power meter 1 n disposed on the crank 1 b shown in FIG.
  • the arrangement position of the first antenna 60b may be the power meter 1n shown in FIG. 91, or may be the crank 1b.
  • the sensor 112 may measure the magnitude and direction of magnetism around the bicycle 1.
  • the sensor 112 outputs the measured magnitude and direction of the magnetism to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on any of the frames of the bicycle 1 or on any of the bicycle components.
  • the arrangement position of the first antenna 60b may be any of the frame of the bicycle 1 or any bicycle component in which the sensor device 110 is arranged or in the vicinity of the sensor device 110.
  • the sensor 112 may measure the temperature around the bicycle 1.
  • the sensor 112 outputs the measured temperature to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on any of the frames of the bicycle 1 or on any of the bicycle components.
  • the arrangement position of the first antenna 60b may be any of the frame of the bicycle 1 or any bicycle component in which the sensor device 110 is arranged or in the vicinity of the sensor device 110.
  • the sensor 112 may measure the humidity around the bicycle 1.
  • the sensor 112 outputs the measured humidity to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on any of the frames of the bicycle 1 or on any of the bicycle components.
  • the arrangement position of the first antenna 60b may be any of the frame of the bicycle 1 or any bicycle component in which the sensor device 110 is arranged or in the vicinity of the sensor device 110.
  • the air pressure around the bicycle 1 can be measured.
  • the sensor 112 outputs the measured air pressure to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on any of the frames of the bicycle 1 or on any of the bicycle components.
  • the arrangement position of the first antenna 60b may be any of the frame of the bicycle 1 or any bicycle component in which the sensor device 110 is arranged or in the vicinity of the sensor device 110.
  • the ambient illumination of the bicycle 1 can be measured.
  • the sensor 112 outputs the measured illuminance to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on any of the frames of the bicycle 1 or on any of the bicycle components.
  • the arrangement position of the first antenna 60b may be any of the frame of the bicycle 1 or any bicycle component in which the sensor device 110 is arranged or in the vicinity of the sensor device 110.
  • the sensor 112 when the sensor 112 is configured to include a camera, the sensor 112 can capture (measure) a face image of the driver. The sensor 112 outputs the measured driver's face image to the controller 114.
  • the sensor device 110 including the sensor 112 can be disposed on the handle 1a or stem 1e shown in FIG.
  • the arrangement position of the first antenna 60b may be the handle 1a shown in FIG. 89 or the stem 1e.
  • the sensor 112 may measure at least one of the driver's heart rate and pulse rate.
  • the biological sensor may be a microwave sensor.
  • the sensor 112 outputs the measured heart rate and pulse rate to the controller 114.
  • the sensor device 110 including the sensor 112 may be disposed on the top tube 1G shown in FIG. 90, the handle 1a shown in FIG. 89, or the stem 1e.
  • the arrangement position of the first antenna 60b may be the top tube 1G, the handle 1a, or the stem 1e.
  • the memory 113 may be configured by, for example, a semiconductor memory or the like.
  • the memory 113 may function as a work memory of the controller 114.
  • Memory 113 may be included in controller 114.
  • the controller 114 may include, for example, a processor. Controller 114 may include one or more processors.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • the controller 114 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 114 may store, in the memory 113, various types of information, programs for operating each component of the sensor device 110, and the like.
  • the controller 114 acquires data of the bicycle 1 from the sensor 112.
  • the data of the bicycle 1 includes the speed of the bicycle 1, the acceleration acting on the bicycle 1, the angular velocity of the bicycle 1, the magnetism around the bicycle 1, the temperature around the bicycle 1, the humidity around the bicycle 1, the air pressure around the bicycle 1, And the illuminance around the bicycle 1 may be included.
  • the data of the bicycle 1 may include the rotational speed of the crank 1 b and the load applied to the crank 1 b.
  • the controller 114 may obtain the driver's biometric data from the sensor 112.
  • the driver's biometric data may include face image, heart rate, and pulse rate.
  • the controller 114 may acquire position information of the bicycle 1 based on the GPS signal received by the first antenna 60b.
  • the controller 114 may generate a transmission signal from the sensor device 110 to the communication device 120.
  • the controller 114 may generate a transmission signal according to at least one of the bicycle 1 data, the driver's biometric data, and the bicycle 1 position information.
  • the controller 114 may generate the transmission signal in accordance with the communication standard between the sensor device 110 and the communication device 120.
  • the controller 114 supplies power corresponding to the generated transmission signal to the first feeder 61 of the first antenna 60b.
  • the controller 114 transmits the transmission signal as the electromagnetic wave to the communication device 120 by supplying the power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60b.
  • the communication device 120 can communicate with the information processing device 3 via the network 2.
  • the communication standard between the communication device 120 and the information processing device 3 may be a long distance communication standard. Telecommunications standards include 2G (2nd Generation), 3G (3rd Generation), 4G (4th Generation), LTE (Long Term Evolution), WiMAX (Worldwide Interoperability for Microwave Access), and PHS (Personal Handy-phone System). May be included.
  • the communication device 120 can directly communicate with the mobile 4.
  • the communication standard between the communication device 120 and the mobile unit 4 may be a short distance communication standard.
  • the near field communication standard may include WiFi (registered trademark), Bluetooth (registered trademark), and a wireless LAN.
  • the communication device 120 has at least one first antenna 60c, a memory 123, and a controller 124.
  • the communication device 120 may have a first antenna 60 c on the outside or the outside of the communication device 120.
  • the communication device 120 may have a battery 121. When the communication device 120 does not have the battery 121, the communication device 120 may operate with the power supplied from the battery 1o shown in FIG. When the communication device 120 receives supply of power from the battery 1o, the communication device 120 and the battery 1o may be electrically connected by a power line or the like.
  • the first antenna 60c may be the above-mentioned first antenna 60a independent of the first antenna 60b of the sensor device 110.
  • the first antenna 60c may be appropriately configured according to the frequency band used for communication between the communication device 120 and another device.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60c is used in communication between the communication device 120 and another device. May be appropriately configured according to the frequency band.
  • the arrangement position of the first antenna 60c may be appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the communication counterpart of the communication device 120.
  • the arrangement position of the first antenna 60c may be the seat stay 1A, the front fork 1E, or the head tube 1F shown in FIG.
  • the electromagnetic wave from the first antenna 60c can be easily radiated to the rear of the bicycle 1.
  • the electromagnetic wave from the first antenna 60c can be easily radiated to the front of the bicycle 1.
  • Communication between the communication device 120 and the information processing device 3 and the mobile object 4 can be stabilized by the electromagnetic waves from the first antenna 60 c being easily radiated forward or backward of the bicycle 1.
  • the arrangement position of the first antenna 60c may be the top tube 1G shown in FIG. 90 or the stem 1e shown in FIG.
  • the first antenna 60c can easily receive an electromagnetic wave from a GPS satellite.
  • the first antenna 60c can receive electromagnetic waves from other devices as a reception signal.
  • the received signal received by the first antenna 60c is transmitted to the controller 124 via the first feeder line 61 of the first antenna 60c.
  • the first antenna 60c can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61 of the first antenna 60c.
  • the battery 121 may supply power to at least one of the first antenna 60 c, the memory 123, and the controller 124.
  • the battery 121 can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 121 is electrically connected to the fourth conductor 50 of the first antenna 60c.
  • the memory 123 may be configured of, for example, a semiconductor memory or the like.
  • the memory 123 may function as a work memory of the controller 124.
  • Memory 123 may be included in controller 124.
  • the memory 123 may store identification information of the bicycle 1 and biometric data of the user.
  • the identification information of the bicycle 1 may be information unique to the bicycle 1.
  • the identification information of the bicycle 1 may be composed of a combination of numbers and / or letters.
  • the controller 124 may include, for example, a processor.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • Controller 124 may include one or more processors.
  • the controller 124 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 124 may store, in the memory 123, various types of information, programs for operating each component of the communication device 120, and the like.
  • the controller 124 may store the identification information of the bicycle 1 acquired from the external information processing device 3 or the like in the memory 123.
  • the controller 124 may store in the memory 123 biometric data of the user acquired from the external information processing apparatus 3 or the like.
  • the controller 124 acquires a received signal from the sensor device 110 via, for example, the first feeder line 61 of the first antenna 60c.
  • the received signal may include data of the bicycle 1 measured by the sensor device 110 and biometric data of the driver.
  • the received signal may include position information of the bicycle 1 when the sensor device 110 is configured to measure position information of the bicycle 1.
  • the controller 124 may detect the driving state of the bicycle 1 based on the data of the bicycle 1.
  • the driving state of the bicycle 1 may include the traveling distance of the bicycle 1, the turning direction of the bicycle 1, the fall while the bicycle 1 is traveling, and the pause while the bicycle 1 is in operation.
  • the controller 124 may calculate the travel distance of the bicycle 1 based on the acceleration included in the data of the bicycle 1.
  • the controller 124 may detect the turning direction of the bicycle 1 based on the speed of the bicycle 1 and the angular velocity included in the data of the bicycle 1.
  • the controller 124 may detect a fall while the bicycle 1 is traveling based on the speed of the bicycle 1 and the angular velocity included in the data of the bicycle 1. If the bicycle 1 falls while traveling, the bicycle 1 tilts, so an angular velocity equal to or greater than a predetermined value can be measured.
  • the controller 124 may detect a pause during driving of the bicycle 1 based on the speed and angular velocity of the bicycle included in the data of the bicycle 1.
  • the driver can tilt the bicycle 1 and put his / her foot on the ground.
  • a velocity below a predetermined velocity may be measured, and an angular velocity above a predetermined value may be measured.
  • the controller 124 may acquire position information of the bicycle 1 based on the GPS signal received by the first antenna 60c.
  • the controller 124 may generate a transmission signal from the communication device 120 to the information processing device 3.
  • the controller 124 may generate a transmission signal according to at least one of the data of the bicycle 1, the driving state of the bicycle 1, and the position information of the bicycle 1.
  • the controller 124 may generate the transmission signal such that the identification information of the bicycle 1 stored in the memory 123 is included.
  • the controller 124 may generate a transmission signal in accordance with the communication standard between the communication device 120 and the information processing device 3.
  • the controller 124 supplies the power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60c.
  • the controller 124 transmits the transmission signal as an electromagnetic wave from the communication device 120 to the information processing device 3 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60c.
  • the controller 124 may generate, as a transmission signal from the communication device 120 to the information processing device 3, a transmission signal according to the traveling distance of the bicycle 1 included in the driving state of the bicycle 1.
  • the controller 124 may generate the transmission signal to include the identification information of the bicycle 1.
  • the communication device 120 transmits the transmission signal to the information processing device 3
  • the information processing device 3 can acquire the transmission signal from the communication device 120 via the network 2.
  • the information processing device 3 can acquire the traveling distance of the bicycle 1 and the identification information of the bicycle 1 by acquiring the transmission signal.
  • the user can grasp the distance traveled by the bicycle 1 by viewing the travel distance of the bicycle 1 acquired by the information processing device 3.
  • the controller 124 may generate a transmission signal according to the position information of the bicycle 1 as a transmission signal from the communication device 120 to the information processing device 3.
  • the controller 124 may generate the transmission signal so that the identification information of the bicycle 1 is included.
  • the communication device 120 transmits the transmission signal to the information processing device 3
  • the information processing device 3 can acquire the transmission signal from the communication device 120 via the network 2.
  • the information processing device 3 can acquire the position information of the bicycle 1 and the identification information of the bicycle 1 by acquiring the transmission signal.
  • the provider of the home delivery service owns the bicycle 1
  • the provider browses the identification information of the bicycle 1 acquired by the information processing device 3 and the position information to obtain the position of the bicycle 1 during home delivery.
  • the owner of the bicycle 1 grasps the position of the stolen bicycle 1 by browsing the identification information of the bicycle 1 acquired by the information processing device 3 and the position information.
  • the controller 124 may generate a transmission signal from the communication device 120 to the mobile 4 around the bicycle 1.
  • the controller 124 may generate a transmission signal according to at least one of the data of the bicycle 1 and the driving state of the bicycle 1.
  • the controller 124 may generate the transmission signal according to the near field communication standard.
  • the controller 124 supplies the power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60c.
  • the controller 124 transmits the transmission signal as an electromagnetic wave from the communication device 120 to the mobile body 4 by supplying the power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60c.
  • the controller 124 may generate a transmission signal according to the turning direction of the bicycle 1 included in the driving state of the bicycle 1 as a transmission signal from the communication device 120 to the surrounding mobile unit 4.
  • the controller 124 may generate the transmission signal when detecting the turning direction of the bicycle 1.
  • the mobile unit 4 can acquire the information on the turning direction of the bicycle 1 by acquiring the transmission signal from the communication device 120.
  • the driver of the car can grasp the turning direction of the bicycle 1.
  • the driver of the car grasps the turning direction of the bicycle 1, an accident between the mobile body 4 and the bicycle 1 can be avoided.
  • the controller 124 may generate, as a transmission signal from the communication device 120 to the surrounding mobile body 4, a transmission signal according to the falling during the traveling of the bicycle 1 included in the driving state of the bicycle 1.
  • the controller 124 may generate a transmission signal when detecting a fall while the bicycle 1 is traveling.
  • the mobile body 4 can acquire information on falling while the bicycle 1 is traveling. For example, when the moving body 4 is a car, the driver of the car can stop the car quickly to avoid a collision with the bicycle 1 by grasping the fall of the bicycle 1.
  • the controller 124 may determine whether the driver and the user are the same person based on the biometric data of the driver of the bicycle 1 and the biometric data of the user stored in the memory 123.
  • the controller 124 may generate a transmission signal indicating a warning when it is determined that the driver of the bicycle 1 and the user of the bicycle 1 are not the same person.
  • the transmission signal may be transmitted from the communication device 120 to the information processing device 3.
  • the controller 124 may generate the transmission signal so that the position information of the bicycle 1 stored in the memory 123 is included.
  • the information processing device 3 can acquire the signal indicating the warning and the position information of the bicycle 1 by acquiring the transmission signal.
  • the user of the bicycle 1 can know from the signal indicating the warning acquired by the information processing device 3 that the bicycle 1 has been stolen.
  • the user who has learned the theft of the bicycle 1 can know the location of the bicycle 1 from the position information of the bicycle 1 acquired by the information processing device 3.
  • FIG. 94 is a functional block diagram of another example of the bicycle 1 shown in FIG.
  • the bicycle 1 includes a sensor device 110 and a display device 130.
  • the sensor device 110 and the display device 130 can wirelessly communicate with each other.
  • Wireless communication may be based on near field communication standards.
  • the near field communication standard may include WiFi (registered trademark), Bluetooth (registered trademark), and a wireless LAN.
  • the sensor device 110 may transmit data of the bicycle 1 to the display device 130.
  • the sensor device 110 may transmit the driver's biometric data to the display device 130.
  • the sensor device 110 can transmit the position information of the bicycle 1 to the display device 130.
  • the sensor device 110 may have a configuration similar to that of the sensor device 110 shown in FIG.
  • the display device 130 presents various data to the driver.
  • Display device 130 may be a cycle computer.
  • the display device 130 may be appropriately disposed on any of the frames of the bicycle 1 shown in FIG. 90 or any of the bicycle components shown in FIG.
  • the display device 130 may be disposed on the top tube 1G shown in FIG. 90, the handle 1a shown in FIG. 89, or the stem 1e shown in FIG.
  • the arrangement location of the display device 130 is not limited to the frame of the bicycle 1 and the bicycle parts.
  • the display device 130 may be attached to the user of the bicycle 1.
  • the display device 130 includes at least one first antenna 60 d, a display device 132, a memory 133, and a controller 134.
  • the display device 130 may have a first antenna 60 d on the outside or the outer surface of the display device 130.
  • the display device 130 may have a battery 131. When the display device 130 does not have the battery 131, the display device 130 may operate with the power supplied from the battery 1o shown in FIG. When the display device 130 receives supply of power from the battery 1 o, the display device 130 and the battery 1 o may be electrically connected by a power line or the like.
  • the first antenna 60 d may be the above-described first antenna 60 a that is independent of the first antenna 60 b of the sensor device 110.
  • the first antenna 60 d may be appropriately configured in accordance with a used frequency band used in communication between the display device 130 and another device.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60d is used in communication between the display device 130 and another device. May be appropriately configured according to the frequency band.
  • the first antenna 60 d may be appropriately configured in accordance with a use frequency band used in near field communication between the display device 130 and the sensor device 110.
  • the first antenna 60d may be configured according to the frequency band used for communication between the display device 130 and the GPS satellites.
  • the first antenna 60d can receive an electromagnetic wave from another device as a reception signal.
  • the received signal received by the first antenna 60 d is transmitted to the controller 134 via the first feeder line 61 of the first antenna 60 d.
  • the first antenna 60d can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61 of the first antenna 60d.
  • the arrangement position of the first antenna 60d may be appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the arrangement position of the display device 130 or according to the communication counterpart of the display device 130. .
  • the arrangement position of the first antenna 60d may be the top tube 1G.
  • the arrangement position of the first antenna 60d may be the handle 1a or the stem 1e.
  • the arrangement position of the first antenna 60d may be the top tube 1G shown in FIG. 90 or the stem 1e shown in FIG.
  • the first antenna 60d can easily receive an electromagnetic wave from a GPS satellite.
  • the battery 131 may supply power to at least one of the first antenna 60 d, the display device 132, the memory 133, and the controller 134.
  • the battery 131 can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 131 is electrically connected to the fourth conductor 50 of the first antenna 60 d.
  • the display device 132 may include an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence), or an inorganic EL.
  • the display device 132 displays characters, images, operation objects, pointers, and the like based on the control of the controller 134.
  • the memory 133 may be configured by, for example, a semiconductor memory or the like.
  • the memory 133 may function as a work memory of the controller 134.
  • Memory 133 may be included in controller 134.
  • the memory 133 may store the weight of the user and the weight of the bicycle 1.
  • the controller 134 may include, for example, a processor.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • Controller 134 may include one or more processors.
  • the controller 134 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 134 may store, in the memory 133, various information, programs for operating the components of the display device 130, and the like.
  • the controller 134 acquires a received signal from the sensor device 110 via, for example, the first feeder line 61 of the first antenna 60d.
  • the received signal may include data of the bicycle 1 measured by the sensor device 110 and biometric data of the driver.
  • the received signal may include position information of the bicycle 1 when the sensor device 110 is configured to measure position information of the bicycle 1.
  • the controller 134 may acquire position information of the bicycle 1 based on the GPS signal received by the first antenna 60d.
  • the controller 134 may calculate the travel distance of the bicycle 1 based on the acceleration included in the data of the bicycle 1.
  • the controller 134 may calculate the consumed calories consumed by the user driving the bicycle 1 based on the traveling distance of the bicycle 1, the weight of the user, and the weight of the bicycle 1.
  • the controller 134 may cause the display device 132 to display various information. For example, the controller 134 may cause the display device 132 to display the speed of the bicycle 1 included in the data of the bicycle 1. For example, the controller 134 may cause the display device 132 to display the position information of the bicycle 1. For example, the controller 134 may cause the display device 132 to display the rotational speed of the crank 1 b included in the data of the bicycle 1. For example, the controller 134 may cause the display device 132 to display the load applied to the crank 1 b included in the data of the bicycle 1. For example, the controller 134 may cause the display device 132 to display the calculated travel distance of the bicycle 1 and the consumed calories of the user.
  • the controller 134 may cause the display device 132 to display the remaining amount of the battery 1 o shown in FIG. 90.
  • the controller 134 may cause the display device 132 to display the heart rate and the pulse rate included in the driver's biometric data.
  • the controller 134 may generate a transmission signal from the display device 130 to the sensor device 110.
  • the controller 134 may generate the transmission signal in accordance with the near field communication standard between the display device 130 and the sensor device 110.
  • the controller 134 supplies the power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60d.
  • the controller 134 transmits a transmission signal from the display device 130 to the sensor device 110 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60 d.
  • the sensor device 110 and the display device 130 can wirelessly communicate with each other by respectively having the independent first antenna 60 b and the independent first antenna 60 d.
  • the wireless communication between the sensor device 110 and the display device 130 can reduce the number of wires such as cables attached to the bicycle 1. By reducing the number of wires attached to the bicycle 1, the bicycle 1 can be reduced in weight. The convenience of the bicycle 1 can be improved by reducing the weight of the bicycle 1.
  • FIG. 95 is a functional block diagram of still another example of the bicycle 1 shown in FIG.
  • the bicycle 1 includes a detection device 140 and a control device 150.
  • the detection device 140 and the control device 150 can wirelessly communicate with each other.
  • Wireless communication may be based on near field communication standards.
  • the near field communication standard may include WiFi (registered trademark), Bluetooth (registered trademark), and wireless LAN.
  • the detection device 140 detects the driver's operation.
  • the detection device 140 may be a bicycle component.
  • the detection device 140 may be a dual control lever 1h shown in FIG.
  • the detection device 140 may detect the driver's operation on the shift lever 1h-1 or may detect the driver's operation on the brake lever 1h-2.
  • the detection device 140 may detect the environment around the bicycle 1. For example, the detection device 140 may detect the illuminance around the bicycle 1.
  • the detection device 140 includes at least one first antenna 60 e, a detection unit 142, a memory 143, and a controller 144.
  • the detection device 140 may have a first antenna 60 e on the outside or the outside of the detection device 140.
  • the detection device 140 may have a battery 141. If the detection device 140 does not have the battery 141, it may operate with the power supplied from the battery 1o shown in FIG. When the detection device 140 receives supply of power from the battery 1 o, the detection device 140 and the battery 1 o may be electrically connected via a power line or the like.
  • the first antenna 60 e may be the above-described first antenna 60 a which is independent of the first antenna 60 f of the control device 150.
  • the arrangement position of the first antenna 60e may be appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the bicycle component that may be the detection device 140.
  • the detection device 140 can be a dual control lever 1h shown in FIG.
  • the arrangement position of the first antenna 60e may be the dual control lever 1h or the head tube 1F in the vicinity of the dual control lever 1h shown in FIG.
  • the first antenna 60e may be appropriately configured according to the frequency band used in communication between the detection device 140 and another device.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60e is used in communication between the detection device 140 and another device. May be appropriately configured according to the frequency band.
  • the first antenna 60e can receive electromagnetic waves from other devices as a reception signal.
  • the received signal received by the first antenna 60e is transmitted to the controller 144 via the first feeder line 61 of the first antenna 60e.
  • the first antenna 60e can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61 of the first antenna 60e.
  • the battery 141 may supply power to at least one of the first antenna 60e, the detection unit 142, the memory 143, and the controller 144.
  • the battery 141 can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 141 is electrically connected to the fourth conductor 50 of the first antenna 60e.
  • the detection unit 142 detects the driver's operation.
  • the detection unit 142 may be appropriately configured according to the specification of the bicycle component that may be the detection device 140.
  • the detection device 140 can be a dual control lever 1h shown in FIG.
  • the specification of the dual control lever 1h may be to change the gear ratio according to the left and right rotation of the shift lever 1h-1.
  • the transmission ratio is the number of revolutions of the rear wheel 1c per one rotation of the chain wheel 1j.
  • the detection unit 142 may be configured to include a rotation sensor. The detection unit 142 detects left and right rotation of the shift lever 1h-1 by the rotation sensor. The detection unit 142 outputs the detected left and right rotations to the controller 144.
  • the detection device 140 can be a dual control lever 1h shown in FIG.
  • the specification of the dual control lever 1h may be to change the gear ratio in accordance with the driver's operation on the switch 1h-3.
  • the detection unit 142 may be configured to include a pressure sensor. The detection unit 142 detects the driver's operation on the switch 1h-3. The detection unit 142 outputs the detected operation of the switch 1 h-3 to the controller 144.
  • the detection device 140 can be a dual control lever 1h shown in FIG.
  • the specification of the dual control lever 1 h may be to exert a brake function according to the pressure applied to the brake lever 1 h-2 by the driver's grip force, for example.
  • the brake function is a function to stop the rear wheel 1c and the wheel 1d shown in FIG.
  • the detection unit 142 may be configured to include a pressure sensor.
  • the detection unit 142 detects the pressure applied to the brake lever 1h-2 by the pressure sensor.
  • the detection unit 142 outputs the detected pressure to the controller 144.
  • the detection unit 142 may detect the environment around the bicycle 1.
  • the detection unit 142 may be appropriately configured according to the environment around the bicycle 1 detected by the detection device 140.
  • the detection unit 142 may be configured to include an illuminance sensor.
  • the detection unit 142 detects the illuminance around the bicycle 1 by the illuminance sensor.
  • the detection unit 142 outputs the detected illuminance to the controller 144.
  • the memory 143 may be configured by, for example, a semiconductor memory or the like.
  • the memory 143 may function as a work memory of the controller 144.
  • Memory 143 may be included in controller 144.
  • the controller 144 may include, for example, a processor.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • Controller 144 may include one or more processors.
  • the controller 144 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 144 may store, in the memory 143, various types of information or programs for operating each component of the detection device 140.
  • the controller 144 may obtain a received signal from the control device 150 via the first feeder line 61 of the first antenna 60e.
  • the controller 144 acquires the detection result of the detection unit 142.
  • the controller 144 generates a control signal based on the detection result of the detection unit 142.
  • the controller 144 determines the transmission gear ratio in accordance with the left and right rotation of the shift lever 1h-1 detected by the detection unit 142.
  • the controller 114 generates a signal indicating the determined transmission rate as a control signal.
  • the controller 144 determines the transmission gear ratio in accordance with the operation on the switch 1h-3 detected by the detection unit 142.
  • the controller 144 generates a signal indicating the determined transmission rate as a control signal.
  • the controller 114 acquires the pressure applied to the brake lever 1h-2 from the detection unit 142.
  • the controller 114 generates a signal indicating execution of the brake function as a control signal according to the pressure applied to the brake lever 1h-2.
  • the controller 114 Based on the illuminance around the bicycle 1 detected by the detection unit 142, the controller 114 generates a signal indicating lighting of the light 1i or a signal indicating lighting off of the light 1i as a control signal. For example, when the illuminance detected by the detection unit 142 is less than a predetermined value, the controller 144 generates a signal indicating lighting of the light 1i as a control signal. For example, after the controller 144 generates a signal indicating lighting of the light 1i, the controller 144 generates, as a control signal, a signal indicating extinguishing of the light 1i when the illuminance detected by the detection unit 142 becomes equal to or greater than a predetermined value.
  • the controller 144 generates a transmission signal according to the generated control signal as a transmission signal from the detection device 140 to the control device 150.
  • the controller 144 may generate the transmission signal in accordance with the near field communication standard between the detection device 140 and the control device 150.
  • the controller 144 supplies the power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60e.
  • the controller 144 may obtain a received signal from the control device 150 via the first feeder line 61 of the first antenna 60e.
  • the control device 150 controls the function of the bicycle 1 based on the operation of the driver detected by the detection device 140.
  • the control device 150 may control the functions of the bicycle 1 based on the environment around the bicycle 1 detected by the detection device 140.
  • the control device 150 may be a bicycle part according to the function of the bicycle 1 controlled by the control device 150.
  • control device 150 may control the gear ratio of the bicycle 1 as a function of the bicycle 1.
  • control device 150 may be a rear derailleur 1 f or a front derailleur 1 g.
  • control device 150 may control the brake function of the bicycle 1 as a function of the bicycle 1.
  • the control device 150 may be the brake 1k-1 or the brake 1k-2.
  • control device 150 may illuminate around the bicycle 1 as a function of the bicycle 1.
  • control device 150 may be the light 1i.
  • the control device 150 has at least one first antenna 60f, a mechanism 152, a memory 153, and a controller 154.
  • the control device 150 may have a first antenna 60 f on the outside or the outer surface of the control device 150.
  • the control device 150 may have a battery 151. When the control device 150 does not have the battery 151, the control device 150 may operate with the power supplied from the battery 1o shown in FIG. When control device 150 receives supply of power from battery 1o, control device 150 and battery 1o may be electrically connected by a power line or the like.
  • the first antenna 60 f may be the above-described first antenna 60 a that is independent of the first antenna 60 e of the detection device 140.
  • the first antenna 60 f may be appropriately configured according to the frequency band used in communication between the control device 150 and another device.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60f is used in communication between the control device 150 and another device. May be appropriately configured according to the frequency band.
  • the first antenna 60 f can receive electromagnetic waves from other devices as a reception signal.
  • the reception signal received by the first antenna 60 f is transmitted to the controller 154 via the first feeder line 61 of the first antenna 60 f.
  • the first antenna 60 f can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61 of the first antenna 60 f.
  • the arrangement position of the first antenna 60 f may be appropriately selected from the arrangement positions described above with reference to FIGS. 89 to 92 according to the bicycle component that may be the control device 150.
  • control device 150 may be the rear derailleur 1 f shown in FIG.
  • arrangement position of the first antenna 60f may be the rear derailleur 1f or the seat stay 1A shown in FIG. 90 near the rear derailleur 1f.
  • control device 150 may be the front derailleur 1g shown in FIG.
  • arrangement position of the first antenna 60f may be the front derailleur 1g or the sheet tube 1B shown in FIG. 90 near the front derailleur 1g.
  • control device 150 may be the brake 1k-1 shown in FIG.
  • the arrangement position of the first antenna 60f may be the brake 1k-1.
  • the arrangement position of the first antenna 60f may be the seat stay 1A shown in FIG. 90 in the vicinity of the brake 1k-1.
  • control device 150 may be the brake 1k-2 shown in FIG.
  • the arrangement position of the first antenna 60f may be the brake 1k-2.
  • the arrangement position of the first antenna 60f may be the head tube 1F shown in FIG. 90 in the vicinity of the brake 1k-2.
  • control device 150 may be the light 1i shown in FIG.
  • the arrangement position of the first antenna 60 f may be the light 1 i.
  • the arrangement position of the first antenna 60f may be the head tube 1F shown in FIG. 90 near the light 1i.
  • the battery 151 may supply power to at least one of the first antenna 60f, the mechanism 152, the memory 153, and the controller 154.
  • the battery 151 can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 151 is electrically connected to the fourth conductor 50 of the first antenna 60 f.
  • the mechanism 152 may be configured to include any member depending on, for example, the bicycle component which may be the control device 150.
  • control device 150 may be the front derailleur 1g shown in FIG.
  • the mechanism 152 may be configured to include a chain guide and a motor that drives the chain guide.
  • the chain guide guides the chain mounted on the chain wheel 1j shown in FIG. 91 to the chain wheel 1j-1 or the chain wheel 1j-2.
  • control device 150 may be the rear derailleur 1 f shown in FIG.
  • the mechanism 152 may be configured to include a chain guide and a motor that drives the chain guide.
  • the chain guide guides the chain of the bicycle 1 to any of a plurality of chain wheels attached to the rear wheel 1c shown in FIG.
  • control device 150 may be the brake 1k-1 or the brake 1k-2 shown in FIG.
  • the mechanism 152 may be a brake caliper that may be included in the brake 1k-1, or a brake caliper that may be included in the brake 1k-2.
  • control device 150 may be the light 1i shown in FIG.
  • mechanism 152 may be configured to include an LED.
  • the memory 153 may be configured by, for example, a semiconductor memory or the like.
  • the memory 153 may function as a work memory of the controller 154.
  • Memory 153 may be included in controller 154.
  • the controller 154 may include, for example, a processor.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • Controller 154 may include one or more processors.
  • the controller 154 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 154 may store, in the memory 153, various information, programs for operating the respective components of the control device 150, and the like.
  • the controller 154 acquires the reception signal from the detection device 140 via the feed line of the first antenna 60 f.
  • the received signal may include a control signal.
  • the control signal may include a signal indicating a transmission ratio, a signal indicating execution of a brake function, a signal indicating lighting of the light 1i, and a signal indicating lighting off of the light 1i.
  • the controller 154 controls the mechanism 152 in response to the control signal.
  • the controller 154 controls the mechanism 152 in accordance with the signal indicating the transmission gear ratio.
  • the controller 154 controls the mechanism 152 in accordance with a signal indicating execution of the brake function.
  • the controller 154 turns on the LED of the mechanism 152 in accordance with a signal indicating that the light 1i is turned on.
  • the controller 154 turns off the LED of the mechanism 152 in response to the signal indicating that the light 1i is turned off.
  • the controller 154 may generate a transmission signal that is transmitted from the control device 150 to the detection device 140.
  • the controller 154 may generate the transmission signal in accordance with the near field communication standard between the detection device 140 and the control device 150.
  • the controller 154 supplies the power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60 f.
  • the controller 154 transmits the transmission signal as an electromagnetic wave from the control device 150 to the detection device 140 by supplying the power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60 f.
  • the detection device 140 and the control device 150 can wirelessly communicate with each other by respectively having the independent first antenna 60 e and the first antenna 60 f.
  • the wireless communication between the detection device 140 and the control device 150 can reduce the number of wires such as cables attached to the bicycle 1. By reducing the number of wires attached to the bicycle 1, the bicycle 1 can be reduced in weight. The convenience of the bicycle 1 can be improved by reducing the weight of the bicycle 1.
  • the configuration according to the present disclosure is not limited to the embodiment described above, and many modifications and variations are possible.
  • the functions and the like included in the respective constituent parts and the like can be rearranged so as not to be logically contradictory, and a plurality of constituent parts and the like can be combined or divided into one.
  • the control device 150 shown in FIG. 95 may be a motor for driving the rear wheel 1c shown in FIG.
  • the detection device 140 may be a device that detects the load applied to the crank 1b shown in FIG.
  • FIG. 96 is a perspective view of one embodiment of unmanned aerial vehicle 101.
  • FIG. 97 is a rear view of the unmanned aerial vehicle 101 shown in FIG.
  • FIG. 98 is a top view of the unmanned aerial vehicle 101 shown in FIG.
  • the "unmanned aircraft” of the present disclosure is one that can be made to fly by remote control or autopilot among those structurally incapable of getting on the airframe.
  • the "unmanned aerial vehicle” of the present disclosure may include fixed wing aircraft and rotary wing aircraft.
  • Rotorcraft may include multicopters and monocopters.
  • the unmanned aerial vehicle 101 comprises parts and a frame.
  • the parts of the unmanned aerial vehicle 101 may be composed of any members depending on the application of the parts.
  • the frame of the unmanned aerial vehicle 101 may be formed of any material.
  • any material may include metal and carbon fiber reinforced plastic.
  • the carbon fiber reinforced plastic may have conductivity.
  • the components of the unmanned aerial vehicle 101 may include motors 101a-1, 101a-2, 101a-3, 101a-4 and propellers 101b, 101c, 101d, 101e as shown in FIGS.
  • Parts of the unmanned aerial vehicle 101 may include a gimbal 101 f and a camera 101 g as shown in FIG.
  • the parts of the unmanned aerial vehicle 101 may include a battery 101h housed in a battery holder 1F, as shown in FIG.
  • Parts of the unmanned aerial vehicle 101 may include an ultrasonic sensor 101i, as shown in FIG.
  • a propeller 101b is attached to the motor 101a-1.
  • a propeller 101c is attached to the motor 101a-2.
  • a propeller 101d is attached to the motor 101a-3.
  • a propeller 101e is attached to the motor 101a-4.
  • the arrangement positions of the propellers 101b, 101c, 101d, and 101e may be appropriately determined in consideration of the balance of the unmanned aircraft 101 in flight.
  • the propellers 101 b, 101 c, 101 d, and 101 e may be arranged on the same circumference that can be centered on the center of gravity of the unmanned aerial vehicle 101.
  • the propellers 101b, 101c, 101d, and 101e may be arranged at positions dividing the circumference into four equal parts.
  • the frame of the unmanned aerial vehicle 101 may include a main body 101A and arms 101B, 101C, 101D, 101E, as shown in FIG.
  • the frame of the unmanned aerial vehicle 101 may include a battery holder 101F, as shown in FIGS. 97 and 98.
  • the frame of the UAV 101 may include two legs 101G, as shown in FIG.
  • the arm 101B extends along the extending direction B1 from the main body portion 101A to the arrangement position of the motor 101a-1.
  • the arm 101C extends along the extending direction C1 from the main body portion 101A to the arrangement position of the motor 101a-2.
  • the extending direction C1 can be substantially orthogonal to the extending direction B1.
  • the arm 101D extends along the extending direction D1 from the main body portion 101A to the arrangement position of the motor 101a-3.
  • the extending direction D1 may be substantially parallel to and opposite to the extending direction B1.
  • the arm 101E extends along the extending direction E1 from the main body portion 101A to the arrangement position of the motor 101a-4.
  • the extending direction E1 may be substantially parallel to and opposite to the extending direction C1.
  • the leg 101G may include a bottom portion 101G-1 and side portions 101G-2 and 101G-3, as shown in FIG.
  • the bottom portion 101G-1 contacts the ground when the unmanned aircraft 101 lands and when the unmanned aircraft 101 stands on the ground.
  • the length of the bottom portion 101G-1 and the extending direction G1-1 in which the bottom portion 101G-1 extends may be appropriately determined in consideration of the balance of the unmanned aerial vehicle 101 when standing on the ground.
  • the side portion 101G-2 may extend along the extending direction G1-2 from one end of the bottom portion 101G-1 toward the main body portion 101A.
  • the side portion 101G-3 may extend along the extending direction G1-3 directed from the other end of the bottom portion 101G-2 to the main body portion 101A.
  • the extending direction G1-2 and the extending direction G1-3 may be substantially parallel.
  • the extending direction G1-2 and the extending direction G1-3 may be spaced apart closer to the bottom portion 101G-1.
  • the distance between the extending direction G1-2 and the extending direction G1-3 can be wider at the bottom portion 101G-1 side than at the main body portion 101A side.
  • the unmanned aerial vehicle 101 can improve the landing stability by making the bottom portion 101G-1 longer than the main body portion 101A.
  • the unmanned aerial vehicle 101 includes at least one first antenna 60g.
  • the first antenna 60 g has the same structure as the above-described first antenna 60.
  • the first antenna 60 g is an antenna independent of the first antenna 60 described above.
  • the unmanned aerial vehicle 101 may be provided with a plurality of first antennas 60g.
  • the plurality of first antennas 60g may be arranged such that the unmanned aerial vehicle 101 corresponds to the diversity and multi input multi output (MIMO) communication system.
  • the first antenna 60g may be arranged to form circular polarization or vertical polarization depending on the communication application.
  • the unmanned aerial vehicle 101 may include a second antenna 70 in addition to the first antenna 60g or in place of the first antenna 60g.
  • the first antenna 60 g may be disposed on any of the components of the unmanned aerial vehicle 101.
  • the first antenna 60 g may be disposed on the part such that the fourth conductor 50 included in the first antenna 60 g faces a part of the unmanned aerial vehicle 101.
  • the third conductor 40 is located with respect to the fourth conductor 50 in the direction in which the component is located with respect to the fourth conductor 50.
  • the direction can be in the opposite direction.
  • the effective traveling direction of the electromagnetic wave emitted by the first antenna 60 g may be the direction in which the third conductor 40 is positioned with respect to the fourth conductor 50.
  • the component of the unmanned aerial vehicle 101 is positioned in the opposite direction to the effective traveling direction of the electromagnetic wave emitted by the first antenna 60g. sell.
  • the radiation efficiency of the first antenna 60g can be maintained by positioning the components of the unmanned aerial vehicle 101 in the direction opposite to the effective traveling direction of the electromagnetic waves from the first antenna 60g.
  • the first antenna 60g may be disposed in the battery 101h such that the fourth conductor 50 faces the battery 101h.
  • the fourth conductor 50 may face a surface that can be located on the sky side during the flight of the unmanned aerial vehicle 101 among the surfaces included in the battery 101h, for example, a surface facing the opposite side to the leg 101G. .
  • the first antenna 60 g may be disposed in any of the frames of the unmanned aerial vehicle 101.
  • the first antenna 60 g may be disposed in the frame of the unmanned aerial vehicle 101 such that the fourth conductor 50 included in the first antenna 60 g faces the frame of the unmanned aerial vehicle 101.
  • the fourth conductor 50 of the first antenna 60g By causing the fourth conductor 50 of the first antenna 60g to face the frame of the unmanned aerial vehicle 101, as described above, the radiation efficiency of the first antenna 60g can be maintained.
  • the first antenna 60 g may be disposed in the long portion.
  • the first antenna 60g may be disposed on the long portion so that the first direction is along the conductive long portion.
  • the long portion may include arms 101B, 101C, 101D, and 101E as shown in FIG.
  • the long portion may include a bottom portion 101G-1 and side portions 101G-2 and 101G-3 as shown in FIG.
  • the long portion may emit an electromagnetic wave by the current induced in the long portion.
  • the first antenna 60g radiates an electromagnetic wave
  • the overall radiation efficiency of the first antenna 60g can be improved by the long portion radiating as an electromagnetic wave by the current induced to the long portion.
  • the first antenna 60g when arranging the first antenna 60g on the arm 101B as a long part, the first antenna 60g may be arranged on the arm 101B such that the first direction is along the extending direction B1.
  • the first antenna 60g may be disposed on the surface included in the arm 101B that may be located on the sky side during the flight of the unmanned aerial vehicle 101, for example, the surface facing the side opposite to the leg 101G.
  • the first antenna 60g may be disposed on a surface that can be located on the ground side during flight of the unmanned aerial vehicle 101 among the surfaces included in the arm 101B, for example, a surface facing the leg 101G side.
  • the first antenna 60g may be disposed on the side surface of the arm 101B.
  • the first antenna 60g when arranging the first antenna 60g on the arm 101C as a long part, the first antenna 60g may be arranged on the arm 101C such that the first direction is along the extending direction C1.
  • the first antenna 60g may be disposed on the surface included in the arm 101C that may be located on the sky side during the flight of the unmanned aerial vehicle 101, for example, the surface facing the side opposite to the leg 101G.
  • the first antenna 60g may be disposed on a surface that can be located on the ground side during flight of the unmanned aerial vehicle 101 among the surfaces included in the arm 101C, for example, a surface facing the leg 101G side.
  • the first antenna 60g may be disposed on the side surface of the arm 101C.
  • the first antenna 60g when arranging the first antenna 60g on the arm 101D as a long part, the first antenna 60g may be arranged on the arm 101D such that the first direction is along the extending direction D1.
  • the first antenna 60g may be disposed on the surface included in the arm 101D, which may be located on the sky side during the flight of the unmanned aerial vehicle 101, for example, the surface facing the opposite side to the leg 101G.
  • the first antenna 60g may be disposed on a surface that can be located on the ground side during flight of the unmanned aerial vehicle 101 among the surfaces included in the arm 101D, for example, a surface facing the side of the leg 101G.
  • the first antenna 60g may be disposed on the side surface of the arm 101D.
  • the first antenna 60g when arranging the first antenna 60g on the arm 101E as a long part, the first antenna 60g may be arranged on the arm 101E such that the first direction is along the extending direction E1.
  • the first antenna 60g may be disposed on the surface included in the arm 101E that may be located on the sky side during the flight of the unmanned aerial vehicle 101, for example, the surface facing the side opposite to the leg 101G.
  • the first antenna 60g may be disposed on a surface that can be located on the ground side during flight of the unmanned aerial vehicle 101 among the surfaces included in the arm 101E, for example, a surface facing the leg 101G side.
  • the first antenna 60g may be disposed on the side surface of the arm 101E.
  • the first antenna 60g is disposed at the bottom portion 101G-1 as a long portion, the first antenna 60g is disposed at the bottom portion 101G-1 so that the first direction is along the extending direction G1-1. Good.
  • the first antenna 60g may be disposed on the surface facing the main body portion 101A among the surfaces included in the bottom portion 101G-1. By arranging the first antenna 60g on the surface of the bottom 101G-1 facing the main body 101A, it is possible to reduce the contact of the first antenna 60g with the ground when the unmanned aerial vehicle 101 lands.
  • the unmanned aerial vehicle 101 can enable wireless communication from the time of landing by arranging the first antenna 60g on the surface of the bottom 101G-1 opposite to the main body 101A.
  • the first antenna 60g may be disposed on the side portion 101G-2 along the extending direction G1-2.
  • the first antenna 60g may be disposed on the side portion 101G-3 along the extending direction G1-3.
  • FIG. 99 is a functional block diagram of the unmanned aerial vehicle 101 shown in FIG.
  • the unmanned aerial vehicle 101 may be connected to the network 103 by wireless communication with the communication base station 102.
  • the unmanned aerial vehicle 101 may communicate with the information processing device 104 via the network 103.
  • Unmanned aerial vehicle 101 may be in direct communication with transmitter 105.
  • the unmanned aerial vehicle 101 may communicate directly with the aircraft 106 around the unmanned aerial vehicle 101.
  • Unmanned aerial vehicle 101 may communicate directly with land base station 107.
  • the communication standard between the unmanned aerial vehicle 101 and the information processing apparatus 104 may be a telecommunication standard.
  • Telecommunications standards include 2G (2nd Generation), 3G (3rd Generation), 4G (4th Generation), LTE (Long Term Evolution), WiMAX (Worldwide Interoperability for Microwave Access), and PHS (Personal Handy-phone System). May be included.
  • the communication standard between the unmanned aerial vehicle 101 and the transmitter 105, the aircraft 106, and the land base station 107 may be a near field communication standard.
  • the near field communication standard may include WiFi (registered trademark), Bluetooh (registered trademark), or wireless LAN.
  • the unmanned aerial vehicle 101 may fly based on the control of the controller 180 of the unmanned aerial vehicle 101.
  • the unmanned aerial vehicle 101 may be owned by an individual or owned by any business operator.
  • the optional operators may include a courier that delivers packages using the unmanned aerial vehicle 101 and a monitoring agent that monitors the predetermined area using the unmanned aerial vehicle 101.
  • the communication base station 102 is a communication facility existing in the communication area of the unmanned aerial vehicle 101 among the communication facilities arranged at various places on the ground.
  • the communication equipment is managed by the communication carrier.
  • the telecommunications carrier provides a telecommunication service for connecting a general-purpose mobile phone or the like to the network 103 by means of telecommunication equipment disposed at various places on the ground.
  • Network 103 may include a wireless network.
  • a portion of the network 103 may include a wired network.
  • the information processing apparatus 104 may be managed by any business operator or the like. For example, when the delivery company owns the unmanned aerial vehicle 101, the information processing apparatus 104 may be managed by the delivery company. For example, when the surveillance company owns the unmanned aerial vehicle 101, the information processing apparatus 104 may be managed by the surveillance company.
  • the information processing apparatus 104 may be configured by a computer system or other hardware capable of executing program instructions.
  • Computer systems and other hardware include general-purpose computers, PCs (personal computers), dedicated computers, workstations, PCSs, mobile (cellular) telephones, mobile telephones with data processing functions, RFID receivers, game consoles, electronic notepads , Laptop computer, GPS receiver or other programmable data processing device.
  • the transmitter 105 is used by the operator to remotely control the unmanned aerial vehicle 101.
  • the transmitter 105 detects a pilot's input.
  • the transmitter 105 transmits, to the unmanned aerial vehicle 101, a control signal corresponding to the detected operator's input.
  • the transmitter 105 may be configured of a computer system or other hardware capable of executing program instructions.
  • Computer systems and other hardware include general-purpose computers, PCs, dedicated computers, workstations, PCS, mobile phones, mobile phones with data processing functions, RFID receivers, game consoles, electronic notepads, laptop computers, GPS receivers Or other programmable data processing devices.
  • the aircraft 106 is an aircraft flying in the communication area of the unmanned aircraft 101 among various aircrafts.
  • the aircraft 106 may be unmanned aircraft or may be a manned aircraft.
  • the land base station 107 is a communication facility installed at a predetermined land base.
  • the predetermined land base may be a base to which the unmanned aerial vehicle 1 can land.
  • the predetermined land base may be a place predetermined by a manager of the unmanned aerial vehicle 101 or the like.
  • the unmanned aerial vehicle 101 may land on a predetermined land base according to the situation.
  • the unmanned aerial vehicle 101 may land anywhere on the ground, depending on the situation.
  • the unmanned aerial vehicle 101 includes, as a control unit 100, at least one first antenna 60g, a battery 101h, a sensor 160, a memory 170, and a controller 180.
  • the unmanned aerial vehicle 101 may comprise a wireless communication device 90.
  • the wireless communication device 90 may wirelessly communicate with the control unit.
  • the communication standard between the control unit and the wireless communication device 90 may be a short distance communication standard.
  • the wireless communication device 90 generates a transmission signal according to the measurement data measured by the sensor 92 of the wireless communication device 90.
  • the wireless communication device 90 transmits the generated transmission signal to the first antenna 60g of the control unit 100.
  • the arrangement position of the wireless communication device 90 may be appropriately determined in accordance with the measurement data acquired by the sensor 92.
  • the wireless communication device 90 may be disposed on the side 101G-3 illustrated in FIG. 96 when the sensor 92 acquires any of the illuminance, the temperature, and the humidity around the unmanned aerial vehicle 101.
  • the first antenna 60g may be appropriately configured according to the frequency band used for communication between the unmanned aerial vehicle 101 and other devices.
  • each of the first conductor 31, the second conductor 32, the third conductor 40, and the fourth conductor 50 included in the first antenna 60g is used in communication between the unmanned aerial vehicle 101 and other devices. May be appropriately configured according to the frequency band.
  • the arrangement position of the first antenna 60g may be determined as appropriate depending on the communication partner.
  • the arrangement position of the first antenna 60g may be a side surface such as the arm 101B as shown in FIG. 96 or the sky side such as the arm 101B as shown in FIG. It may be the face of
  • the radiation intensity of the first antenna 60g is the direction from the unmanned aerial vehicle 101 to the sky side and the unmanned aerial vehicle 101 during the flight of the unmanned aerial vehicle 101. It can become stronger in the lateral direction. Communication between the unmanned aerial vehicle 101 and the information processing apparatus 104 via the communication base station 102 can be stabilized by increasing the radiation intensity of the first antenna 60 g in the direction toward the sky and in the lateral direction.
  • the arrangement position of the first antenna 60g may be the ground side surface such as the arm 101B as shown in FIG. 96, or may be the side portion 101G-1 etc. .
  • the radiation intensity of the first antenna 60g can be determined on the ground side from the unmanned aerial vehicle 101 during the flight of the unmanned aerial vehicle 101. It can be strong in the direction. Communication between the unmanned aerial vehicle 101 and the ground transmitter 105 can be stabilized by strengthening in the direction toward the ground side of the radiation intensity of the first antenna 60 g.
  • the arrangement position of the first antenna 60g may be the side surface of the arm 101B etc. and the sky side surface as shown in FIG. Good.
  • the radiation intensity of the first antenna 60g can be determined from the unmanned aerial vehicle 101 during It can become strong in the direction of the sky side and the lateral direction of the unmanned aerial vehicle 101.
  • Communication between the unmanned aerial vehicle 101 and the surrounding aircraft 106 may be stabilized by the radiation intensity of the first antenna 60 g becoming stronger in the direction and the lateral direction of the sky side of the unmanned aerial vehicle 101.
  • the arrangement position of the first antenna 60g may be the ground side surface such as the arm 101B as shown in FIG. Good.
  • the radiation intensity of the first antenna 60g can be determined on the ground side from the unmanned aerial vehicle 101 during the flight of the unmanned aerial vehicle 101. It can be strong in the direction. Communication between the unmanned aerial vehicle 101 and the land base station 107 on the ground can be stabilized by the radiation intensity of the first antenna 60 g becoming stronger in the direction toward the ground side.
  • the arrangement position of the first antenna 60g may be a sky side surface such as the arm 101B as shown in FIG. 98, or may be the battery 101h.
  • the first antenna 60g can easily receive an electromagnetic wave from a GPS satellite.
  • the first antenna 60g can receive electromagnetic waves from other devices as a reception signal.
  • the received signal received by the first antenna 60g is output to the controller 180 via the first feeder line 61 of the first antenna 60g.
  • the first antenna 60 g can emit an electromagnetic wave as a transmission signal to another device by supplying power to the first feeder line 61.
  • the battery 101 h can be housed in a battery holder 101 F shown in FIG.
  • the battery 101 h may supply power to at least one of the first antenna 60 g, the sensor 160, the memory 170, and the controller 180.
  • the battery 101 h can include, for example, at least one of a primary battery and a secondary battery.
  • the negative pole of the battery 101 h is electrically connected to the fourth conductor 50 of the first antenna 60 g.
  • the sensor 160 measures various data.
  • the sensor 160 may include at least one of the camera 101g shown in FIG. 96 and the ultrasonic sensor 101i shown in FIG.
  • the sensor 160 may include at least one of an acceleration sensor, an angular velocity sensor, a geomagnetic sensor, a temperature sensor, a humidity sensor, an air pressure sensor, and an illuminance sensor.
  • the camera 101g included in the sensor 160 measures (captures) an image of the surroundings of the unmanned aerial vehicle 101.
  • the camera 101g outputs the measured image to the controller 180.
  • the ultrasonic sensor 101i included in the sensor 160 measures the relative positional relationship between the unmanned aerial vehicle 101 and surrounding objects.
  • Surrounding objects may include surrounding obstacles and surrounding aircraft 106.
  • the ultrasonic sensor 101i outputs the measured relative positional relationship to the controller 180.
  • an acceleration sensor included in the sensor 160 measures acceleration acting on the unmanned aerial vehicle 101.
  • the acceleration sensor outputs the measured acceleration to the controller 180.
  • an angular velocity sensor included in the sensor 160 measures the angular velocity of the unmanned aerial vehicle 101.
  • the angular velocity sensor outputs the measured angular velocity to the controller 180.
  • a geomagnetic sensor included in the sensor 160 measures the magnitude and direction of geomagnetism around the unmanned aerial vehicle 101.
  • the geomagnetic sensor outputs the measured geomagnetic magnitude and direction to the controller 180.
  • the temperature sensor included in the sensor 160 measures the temperature around the unmanned aerial vehicle 101.
  • the temperature sensor outputs the measured temperature to the controller 180.
  • the humidity sensor included in the sensor 160 measures the humidity around the unmanned aerial vehicle 101.
  • the humidity sensor outputs the measured humidity to the controller 180.
  • an air pressure sensor included in the sensor 160 measures the air pressure around the unmanned aerial vehicle 101.
  • the barometric pressure sensor outputs the measured barometric pressure to the controller 180.
  • an illuminance sensor included in the sensor 160 measures the illuminance around the unmanned aerial vehicle 101.
  • the illuminance sensor outputs the measured illuminance to the controller 180.
  • the memory 170 may be configured of, for example, a semiconductor memory or the like.
  • the memory 170 may function as a work memory of the controller 180.
  • Memory 170 may be included in controller 180.
  • the memory 170 may store identification information of the unmanned aerial vehicle 101.
  • the identification information of the unmanned aerial vehicle 101 may be information unique to the unmanned aerial vehicle 101.
  • the identification information of the unmanned aerial vehicle 101 may be configured by a combination of numbers and / or characters.
  • the memory 170 may store information of the flyable area of the unmanned aerial vehicle 101.
  • the flyable area may be an area where the flight of the unmanned aircraft 101 is permitted by law or the like.
  • the controller 180 may include, for example, a processor. Controller 180 may include one or more processors.
  • the processor may include a general purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for a specific process.
  • a dedicated processor may include an application specific IC.
  • the processor may include programmable logic devices.
  • the PLD may include an FPGA.
  • the controller 180 may be either an SoC with which one or more processors cooperate, and a SiP.
  • the controller 180 may store, in the memory 170, various information, programs for operating the respective components of the unmanned aerial vehicle 101, and the like.
  • the controller 180 can obtain the received signal from the transmitter 105 via the first feeder line 61 of the first antenna 60g.
  • the controller 180 causes the unmanned aerial vehicle 101 to fly based on the control signal included in the received signal.
  • the controller 180 may fly the unmanned aerial vehicle 101 by autopilot based on a predetermined program stored in the memory 170.
  • the controller 180 may obtain various data from the sensor 160.
  • the controller 180 may acquire various data from the sensor 92 of the wireless communication device 90 when the unmanned aerial vehicle 101 includes the wireless communication device 90.
  • the controller 180 may acquire the reception signal from the wireless communication device 90 via the first feeder line 61 of the first antenna 60g.
  • the received signal may include measurement data measured by the sensor 92.
  • the controller 180 may obtain environmental data around the unmanned aerial vehicle 101.
  • Environmental data may include images, temperatures, humidity, barometric pressure, and illumination around the UAV 101.
  • the controller 180 may obtain or calculate flight data of the unmanned aerial vehicle 101.
  • the flight data may include the speed, flight distance, and flight time of the UAV 101.
  • the controller 180 may obtain the speed of the unmanned aerial vehicle 101 by means of the sensor 160 or by means of the sensor 92 of the wireless communication device 90.
  • the controller 180 may calculate the flight distance of the unmanned aerial vehicle 101 based on the sensor 160 or the acceleration acquired by the sensor 92.
  • the controller 180 may calculate the available flight time of the unmanned aerial vehicle 101 based on the remaining amount of the battery 101 h.
  • the controller 180 may obtain position information of the unmanned aerial vehicle 101. For example, the controller 180 may acquire the position information of the unmanned aerial vehicle 101 based on the GPS signal acquired by the first antenna 60g. For example, the controller 180 may obtain positional information of the unmanned aerial vehicle 101 based on a signal from the communication base station 102 around the unmanned aerial vehicle 101 obtained by the first antenna 60g. The controller 180 may control to fly the flyable area based on the acquired position information and the information of the flyable area stored in the memory 170.
  • the controller 180 may generate a transmission signal to be transmitted from the unmanned aerial vehicle 101 to the information processing device 104.
  • the controller 180 may generate the transmit signal according to the telecommunications standard.
  • the controller 180 may supply power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 can transmit a transmission signal as an electromagnetic wave to the information processing apparatus 104 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 may generate a transmission signal according to at least one of environment data, flight data of the unmanned aircraft 101, and position information of the unmanned aircraft 101 as a transmission signal from the unmanned aerial vehicle 101 to the information processing apparatus 104.
  • the controller 180 may generate the transmission signal such that the identification information of the unmanned aerial vehicle 101 stored in the memory 170 is included.
  • the information processing apparatus 104 acquires at least one of environmental data, flight data of the unmanned aircraft 101, and position information of the unmanned aircraft 101 together with identification information of the unmanned aircraft 101 by acquiring the transmission signal. it can.
  • the surveillance company can monitor the predetermined area by the image of the predetermined area included in the environmental data acquired by the information processing apparatus 104.
  • the owner of the unmanned aerial vehicle 101 can grasp the state of the unmanned aerial vehicle 101 from the flight data acquired by the unmanned aerial vehicle 101.
  • the home delivery company uses the unmanned aerial vehicle 101
  • the home delivery company can grasp the position of the unmanned aerial vehicle 101 being delivered from the identification information and the position information of the unmanned aerial vehicle 101 acquired by the information processing device 104.
  • the owner of the unmanned aerial vehicle 101 can grasp the position of the unmanned aerial vehicle 101 from the identification information and the position information of the unmanned aerial vehicle 101 acquired by the information processing apparatus 104.
  • the controller 180 may generate a transmit signal to transmit from the unmanned aerial vehicle 101 to the transmitter 105.
  • the controller 180 may generate a transmission signal in accordance with the near field communication standard.
  • the controller 180 may supply power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 can transmit a transmission signal as an electromagnetic wave to the transmitter 105 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 transmits, as a transmission signal from the unmanned aerial vehicle 101 to the transmitter 105, a transmission signal according to at least one of environmental data around the unmanned aerial vehicle 101, flight data of the unmanned aerial vehicle 101, and position information of the unmanned aerial vehicle 101. , May be generated.
  • the controller 180 may generate the transmission signal such that the identification information of the unmanned aerial vehicle 101 stored in the memory 170 is included.
  • the transmitter 105 obtains at least one of environmental data around the unmanned aerial vehicle 101, flight data of the unmanned aerial vehicle 101, and position information of the unmanned aerial vehicle 101 together with identification information of the unmanned aerial vehicle 101 by acquiring the transmission signal. Can be acquired.
  • the controller 180 may generate, as a transmission signal from the unmanned aerial vehicle 101 to the transmitter 105, a transmission signal according to the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105.
  • the controller 180 may obtain the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105 based on the communication between the unmanned aerial vehicle 101 and the transmitter 105.
  • the controller 180 may control the attitude of the unmanned aerial vehicle 101 so that the radiation intensity of the first antenna 60 g becomes stronger in the direction of the transmitter 105 when acquiring the relative positional relationship.
  • the controller 180 may generate the transmission signal such that the identification information of the unmanned aerial vehicle 101 stored in the memory 170 is included.
  • the controller 180 may generate transmit signals during return to the base of the UAV 101.
  • the transmitter 105 can acquire the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105 together with the identification information of the unmanned aerial vehicle 101 by acquiring the transmission signal.
  • the pilot can grasp the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105 from the information acquired by the transmitter 105.
  • the pilot can safely land the unmanned aerial vehicle 101 by grasping the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105.
  • the controller 180 may generate a transmit signal to transmit from the unmanned aerial vehicle 101 to the surrounding aircraft 106.
  • the controller 180 may generate the transmission signal according to the near field communication standard.
  • the controller 180 may supply power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 can transmit a transmission signal as an electromagnetic wave to the surrounding aircraft 106 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 may generate, as a transmission signal from the unmanned aerial vehicle 101 to the surrounding aircraft 106, a transmission signal according to the relative positional relationship between the unmanned aerial vehicle 101 and the aircraft 106.
  • the controller 180 may obtain the relative positional relationship between the unmanned aerial vehicle 101 and the aircraft 106 by the ultrasonic sensor 101i.
  • the controller 180 may obtain the relative positional relationship between the unmanned aerial vehicle 101 and the aircraft 106 based on the communication between the unmanned aerial vehicle 101 and the aircraft 106.
  • the controller 180 may control the attitude of the unmanned aerial vehicle 101 so that the radiation intensity of the first antenna 60 g becomes stronger in the direction of the aircraft 106 when acquiring the relative positional relationship.
  • the controller 180 may generate the transmission signal such that the identification information of the unmanned aerial vehicle 101 stored in the memory 170 is included.
  • the aircraft 106 can acquire the relative positional relationship between the unmanned aircraft 101 and the aircraft 106 by acquiring the transmission signal. The collision between the unmanned aerial vehicle 101 and the aircraft 106 can be avoided by acquiring the relative positional relationship between the aircraft 106.
  • the controller 180 may generate a transmit signal to transmit from the unmanned aerial vehicle 101 to the land base station 107.
  • the controller 180 may generate the transmission signal according to the near field communication standard.
  • the controller 180 may supply power corresponding to the generated transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 transmits a transmission signal as an electromagnetic wave to the land base station 107 by supplying power corresponding to the transmission signal to the first feeder line 61 of the first antenna 60g.
  • the controller 180 may generate, as a transmission signal from the unmanned aerial vehicle 101 to the land base station 107, a transmission signal according to the relative positional relationship between the unmanned aerial vehicle 101 and the land base station 107.
  • the controller 180 may obtain the relative positional relationship between the unmanned aerial vehicle 101 and the land base station 107 based on the communication between the unmanned aerial vehicle 101 and the land base station 107.
  • the controller 180 may control the attitude of the unmanned aerial vehicle 101 so that the radiation intensity of the first antenna 60 g becomes stronger in the direction of the land base station 107 when acquiring the relative positional relationship.
  • the controller 180 may generate the transmission signal such that the identification information of the unmanned aerial vehicle 101 stored in the memory 170 is included.
  • the controller 180 may generate transmit signals during return to the base of the UAV 101.
  • the land base station 107 can obtain the relative positional relationship between the unmanned aerial vehicle 101 and the land base station 107 together with the identification information of the unmanned aerial vehicle 101 by obtaining the transmission signal.
  • the unmanned aerial vehicle 101 can be landed safely by the land base station 107 acquiring the relative positional relationship between the unmanned aerial vehicle 101 and the transmitter 105.
  • a rod antenna can be arranged on an unmanned aerial vehicle.
  • the rod antenna can be attached to the outer surface of the unmanned aerial vehicle to maintain the radiation efficiency of the rod antenna.
  • the conductive frame may reduce the radiation efficiency of the rod antenna. Therefore, when the frame of the unmanned aerial vehicle has conductivity, the rod antenna is attached to the outer surface of the unmanned aerial vehicle so as to protrude from the frame of the unmanned aerial vehicle.
  • attaching a rod antenna to the outer surface of the unmanned aerial vehicle can increase air resistance to the unmanned aerial vehicle during flight of the unmanned aerial vehicle. If the rod antenna is mounted to protrude from the frame of the unmanned aerial vehicle, the air resistance to the unmanned aerial vehicle may be further increased. Increased drag on the unmanned aerial vehicle may reduce the in-flight stability of the unmanned aerial vehicle.
  • unmanned aerial vehicle In order to maintain the stability of the unmanned aerial vehicle in flight, it is assumed to arrange an antenna such as a patch antenna inside the unmanned aerial vehicle.
  • an antenna such as a patch antenna
  • unmanned aerial vehicles may structurally have a limited space for arranging an antenna.
  • the first antenna 60 g is disposed on the unmanned aerial vehicle 101 instead of the rod antenna.
  • the first antenna 60g may be smaller than the rod antenna.
  • the unmanned aerial vehicle 101 can fly stably.
  • the fourth conductor 50 of the first antenna 60g face the unmanned aerial vehicle 101, even if the first antenna 60g is disposed near the frame of the unmanned aerial vehicle 101, the radiation efficiency of the first antenna 60g can be maintained.
  • the unmanned aerial vehicle 1 can fly stably.
  • the first antenna 60g is smaller than the rod antenna. Therefore, it can be easily arranged inside the unmanned aerial vehicle 101.
  • the configuration according to the present disclosure is not limited to the embodiment described above, and many modifications and variations are possible.
  • the functions and the like included in the respective constituent parts and the like can be rearranged so as not to be logically contradictory, and a plurality of constituent parts and the like can be combined or divided into one.
  • the descriptions of “first”, “second”, “third” and the like are an example of an identifier for distinguishing the configuration.
  • the configurations distinguished in the description such as “first” and “second” in the present disclosure can exchange the numbers in the configurations.
  • the first frequency may exchange the second frequency with the identifiers "first” and "second”.
  • the exchange of identifiers takes place simultaneously.
  • the configuration is also distinguished after the exchange of identifiers.
  • Identifiers may be deleted.
  • the configuration from which the identifier is deleted is distinguished by a code.
  • the first conductor 31 may be the conductor 31. Based on only the descriptions of the "first” and "second” identifiers etc.
  • the present disclosure includes a configuration in which the second conductor layer 42 has the second unit slot 422, but the first conductor layer 41 does not have the first unit slot.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Electromagnetism (AREA)

Abstract

新たなアンテナ、新たなアンテナを有する自転車、新たなアンテナを有する表示機器、および新たなアンテナを有する無人航空機を提供する。 アンテナは、第1導体と、第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前第3導体に電磁気的に接続される給電線とを含む。第3導体は、第1導体および第2導体の間に、当該第1導体および第2導体と離れて位置し、第1方向に沿って広がる。第4導体は、第1導体および第2導体に接続され、第1方向に沿って広がる。第1導体と第2導体は、第3導体を介して容量的に接続される。アンテナは、第4導体が自転車の自転車用部品に対向するように、当該自転車用部品に配置される。

Description

アンテナ、自転車、表示機器、および無人航空機 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2018-008411号(2018年1月22日出願)、日本国特許出願2018-008415号(2018年1月22日出願)、および日本国特許出願2018-008416(2018年1月22日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、アンテナ、自転車、表示機器、および無人航空機に関する。
 アンテナから放射された電磁波は、金属導体で反射される。金属導体で反射された電磁波は、180°の位相ずれが生じる。反射された電磁波は、アンテナから放射された電磁波と合成される。アンテナから放射された電磁波は、位相のずれのある電磁波との合成によって、振幅が小さくなる場合がある。結果、アンテナから放射される電磁波の振幅は、小さくなる。アンテナと金属導体との距離を、放射する電磁波の波長λの1/4とすることで、反射波による影響を低減している。
 これに対して、人工的な磁気壁によって、反射波による影響を低減する技術が提案されている。この技術は例えば非特許文献1,2に記載されている。
村上他,"誘電体基板を用いた人工磁気導体の低姿勢設計と帯域特性" 信学論(B),Vol.J98-B No.2,pp.172-179 村上他,"AMC反射板付ダイポールアンテナのための反射板の最適構成" 信学論(B),Vol.J98-B No.11,pp.1212-1220
 本開示の一実施形態に係るアンテナは、第1導体と、前記第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる。前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、前記第4導体が自転車の自転車用部品に対向するように、当該自転車用部品に配置される。
 本開示の一実施形態に係るアンテナは、第1導体と、前記第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる。前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、前記第1方向が自転車のフレームに含まれる導電性の長尺部に沿うように、当該長尺部に配置される。
 本開示の一実施形態に係る自転車は、アンテナと、自転車用部品とを備える。前記アンテナは、第1導体と、前記第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる。前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、前記第4導体が自転車の自転車用部品に対向するように、当該自転車用部品に配置される。
 本開示の一実施形態に係る自転車は、アンテナと、導電性の長尺部を少なくとも1つ含むフレームとを備える。前記アンテナは、第1導体と、前記第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前記第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる。前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、前記第1方向が前記長尺部に沿うように、前記長尺部に配置される。
 本開示の一実施形態に係る表示機器は、アンテナと、表示デバイスとを備える。前記アンテナは、第1導体と、前記第1導体と第1方向において対向する第2導体と、第3導体と、第4導体と、前第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる。前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、前記第4導体が自転車の自転車用部品に対向するように当該自転車用部品に配置されるか、または、前記第1方向が自転車のフレームに含まれる導電性の長尺部に沿うように当該長尺部に配置される。
 本開示の一実施形態に係るアンテナは、第1方向において対向する第1導体および第2導体と、1または複数の第3導体と、第4導体と、前記第3導体に電磁気的に接続される給電線とを備える。前記第3導体は、前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に延びる。前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続される。前記アンテナは、無人航空機に配置される。
 本開示の一実施形態に係る無人航空機は、アンテナが配置されている。前記アンテナは、第1方向において対向する第1導体および第2導体と、1または複数の第3導体と、第4導体と、前記第3導体に電磁気的に接続される給電線とを含む。前記第3導体は、前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる。前記第4導体は、前記第1導体および前記第2導体に接続され、前記第1方向に延びる。前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続される。
共振器の一実施形態を示す斜視図である。 図1に示した共振器の平面視した図である。 図1に示した共振器の一例の断面図である。 図1に示した共振器の他の例の断面図である。 図1に示した共振器の断面図である。 図1に示した共振器の単位構造体を示す概念図である。 共振器の一実施形態を示す斜視図である。 図6に示した共振器の平面視した図である。 図6に示した共振器の一例の断面図である。 図6に示した共振器の他の例の断面図である。 図6に示した共振器の断面図である。 共振器の一実施形態を示す斜視図である。 図10に示した共振器の平面視した図である。 図10に示した共振器の一例の断面図である。 図10に示した共振器の他の例の断面図である。 図10に示した共振器の断面図である。 共振器の一実施形態を示す斜視図である。 図14に示した共振器の平面視した図である。 図14に示した共振器の一例の断面図である。 図14に示した共振器の他の例の断面図である。 図14に示した共振器の断面図である。 共振器の一実施形態を示す平面視した図である。 図18に示した共振器の一例の断面図である。 図18に示した共振器の他の例の断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一例を示す概略図である。 共振器の一例を示す概略図である。 共振器の一例例を示す概略図である。 共振器の一例を示す概略図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を示す断面図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 共振器の一実施形態を平面視した図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を示す断面図である。 アンテナの一実施形態を平面視した図である。 アンテナの一実施形態を平面視した図である。 図43に示したアンテナの断面図である。 無線通信モジュールの一実施形態を示すブロック図である。 無線通信モジュールの一実施形態を示す部分断面斜視図である。 無線通信機器の一実施形態を示すブロック図である。 無線通信機器の一実施形態を示す平面視図である。 無線通信機器の一実施形態を示す断面図である。 無線通信機器の一実施形態を示す平面視図である。 無線通信機器の一実施形態を示す断面図である。 アンテナの一実施形態を示す断面図である。 無線通信機器の概略回路を示す図である。 無線通信機器の概略回路を示す図である。 自転車の一実施形態を示す外観図である。 図89に示す自転車のフレームを示す図である。 図89に示す自転車のクランクおよびチェーンホイールを示す図である。 図89に示す自転車のデュアルコントロールレバーを示す図である。 図89に示す自転車の一例の機能ブロック図である。 図89に示す自転車の他の例の機能ブロック図である。 図89に示す自転車のさらに他の例の機能ブロック図である。 無人航空機の一実施形態の斜視図である。 図96に示す無人航空機の背面図である。 図96に示す無人航空機の上面図である。 図96に示す無人航空機の機能ブロック図である。
 本開示は、新たなアンテナ、新たなアンテナを有する自転車、新たなアンテナを有する表示機器、および新たなアンテナを有する無人航空機を提供することを目的とする。本開示によれば、新たなアンテナ、新たなアンテナを有する自転車、新たなアンテナを有する表示機器、および新たなアンテナを有する無人航空機が提供されうる。
 本開示の複数の実施形態を以下に説明する。共振構造は、共振器を含みうる。共振構造は、共振器と他の部材とを含み、複合的に実現されうる。図1から図62に示す共振器10は、基体20、対導体30、第3導体40、および第4導体50を含む。基体20は、対導体30、第3導体40、および第4導体50と接する。共振器10は、対導体30、第3導体40、および第4導体50が共振器として機能する。共振器10は、複数の共振周波数で共振しうる。共振器10の共振周波数のうち、1つの共振周波数を第1の周波数f1とする。第1の周波数f1の波長は、λ1である。共振器10は、少なくとも1つの共振周波数のうちの少なくとも1つを動作周波数としうる。共振器10は、第1の周波数f1を動作周波数としている。
 基体20は、セラミック材料、および樹脂材料のいずれかを組成として含みうる。セラミック材料は、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミック焼結体、ガラス母材中に結晶成分を析出させた結晶化ガラス、および雲母もしくはチタン酸アルミニウム等の微結晶焼結体を含む。樹脂材料は、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、および液晶ポリマー等の未硬化物を硬化させたものを含む。
 対導体30、第3導体40、および第4導体50は、金属材料、金属材料の合金、金属ペーストの硬化物、および導電性高分子のいずれかを組成として含みうる。対導体30、第3導体40、および第4導体50は、全てが同じ材料であってよい。対導体30、第3導体40、および第4導体50は、全てが異なる材料であってよい。対導体30、第3導体40、および第4導体50は、いずれかの組合せが同じ材料であってよい。金属材料は、銅、銀、パラジウム、金、白金、アルミニウム、クロム、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、リチウム、コバルト、およびチタン等を含む。合金は、複数の金属材料を含む。金属ペースト剤は、金属材料の粉末を有機溶剤、およびバインダとともに混練したものを含む。バインダは、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂を含む。導電性ポリマーは、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリアニリン系ポリマー、ポリピロール系ポリマー等を含む。
 共振器10は、2つの対導体30を有する。対導体30は、複数の導電体を含む。対導体30は、第1導体31および第2導体32を含む。対導体30は、3以上の導電体を含みうる。対導体30の各導体は、他の導体と第1方向において離れている。対導体30の各導体において、1つの導体は、他の導体と対となりうる。対導体30の各導体は、対となる導体の間にある共振器から電気壁として観えうる。第1導体31は、第2導体32と第1方向において離れて位置する。各導体31,32は、第1方向と交わる第2平面に沿って広がっている。
 本開示では、第1方向(first axis)をx方向として示す。本開示では、第3方向(third axis)をy方向として示す。本開示では、第2方向(second axis)をz方向として示す。本開示では、第1平面(first plane)を、xy面として示す。本開示では、第2平面(second plane)を、yz面として示す。本開示では、第3平面(third plane)を、zx面として示す。これら平面は、座標空間(coordinate space)における平面(plane)であって、特定の面(plate)および特定の面(surface)を示すものではない。本開示では、xy平面における面積(surface integral)を第1面積という場合がある。本開示では、yz平面における面積を第2面積という場合がある。本開示では、zx平面における面積を第3面積という場合がある。面積(surface integral)は、平方メートル(square meter)などの単位で数えられる。本開示では、x方向における長さを単に“長さ”という場合がある。本開示では、y方向における長さを単に“幅”という場合がある。本開示では、z方向における長さを単に“高さ”という場合がある。
 一例において、各導体31,32は、x方向において、基体20の両端部に位置する。各導体31,32は、一部が基体20の外に面しうる。各導体31,32は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。各導体31,32は、基体20の中に位置しうる。
 第3導体40は、共振器として機能する。第3導体40は、ライン型、パッチ型、およびスロット型の共振器の少なくとも1つの型を含みうる。一例において、第3導体40は、基体20の上に位置する。一例において、第3導体40は、z方向において、基体20の端に位置する。一例において、第3導体40は、基体20の中に位置しうる。第3導体40は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。第3導体40は、一部の面が基体20の外に面しうる。
 第3導体40は、少なくとも1つの導電体を含む。第3導体40は、複数の導電体を含みうる。第3導体40が複数の導電体を含む場合、第3導体40は、第3導体群と呼びうる。第3導体40は、少なくとも1つの導体層を含む。第3導体40は、1つの導体層に少なくとも1つの導電体を含む。第3導体40は、複数の導体層を含みうる。例えば、第3導体40は、3層以上の導体層を含みうる。第3導体40は、複数の導体層の各々に、少なくとも1つの導電体を含む。第3導体40は、xy平面に広がる。xy平面はx方向を含む。第3導体40の各導体層は、xy平面に沿って広がる。
 複数の実施形態の一例において、第3導体40は、第1導体層41および第2導体層42を含む。第1導体層41は、xy平面に沿って広がる。第1導体層41は、基体20の上に位置しうる。第2導体層42は、xy平面に沿って広がる。第2導体層42は、第1導体層41と容量的に結合しうる。第2導体層42は、第1導体層41と電気的に接続されうる。容量結合する2つの導体層は、y方向に対向しうる。容量結合する2つの導体層は、x方向に対向しうる。容量結合する2つの導体層は、第1平面内において対向しうる。第1平面において対向する2つの導体層は、1つの導体層に2つの導電体があると言い換えうる。第2導体層42は、少なくとも一部が第1導体層41とz方向に重なって位置しうる。第2導体層42は、基体20の中に位置しうる。
 第4導体50は、第3導体40と離れて位置する。第4導体50は、対導体30の各導体31,32に電気的に接続される。第4導体50は、第1導体31および第2導体32に電気的に接続される。第4導体50は、第3導体40に沿って広がる。第4導体50は、第1平面に沿って広がっている。第4導体50は、第1導体31から第2導体32に渡っている。第4導体50は、基体20の上に位置する。第4導体50は、基体20の中に位置しうる。第4導体50は、基体20の内に一部が位置し、基体20の外に他の一部が位置しうる。第4導体50は、一部の面が基体20の外に面しうる。
 複数の実施形態の一例において、第4導体50は、共振器10におけるグラウンド導体として機能しうる。第4導体50は、共振器10の電位基準となりうる。第4導体50は、共振器10を備える機器のグラウンドに接続されうる。
 複数の実施形態の一例において、共振器10は、第4導体50と、基準電位層51とを備えうる。基準電位層51は、z方向において、第4導体50と離れて位置する。基準電位層51は、第4導体50と電気的に絶縁される。基準電位層51は、共振器10の電位基準となりうる。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続されうる。第4導体50は、共振器10を備える機器のグラウンドと電気的に離れうる。基準電位層51は、第3導体40または第4導体50のいずれかとz方向において対向する。
 複数の実施形態の一例において、基準電位層51は、第4導体50を介して第3導体40と対向する。第4導体50は、第3導体40と基準電位層51との間に位置する。基準電位層51と第4導体50との間隔は、第3導体40と第4導体50との間隔に比べて狭い。
 基準電位層51を備える共振器10において、第4導体50は、1または複数の導電体を含みうる。基準電位層51を備える共振器10において、第4導体50は1または複数の導電体を含み、且つ第3導体40は対導体30に接続される1つの導電体としうる。基準電位層51を備える共振器10において、第3導体40および第4導体50のそれぞれは、少なくとも1つの共振器を備えうる。
 基準電位層51を備える共振器10において、第4導体50は、複数の導体層を含みうる。例えば、第4導体50は、第3導体層52および第4導体層53を含みうる。第3導体層52は、第4導体層53と容量的に結合しうる。第3導体層52は、第1導体層41と電気的に接続されうる。容量結合する2つの導体層は、y方向に対向しうる。容量結合する2つの導体層は、x方向に対向しうる。容量結合する2つの導体層は、xy平面内において対向しうる。
 z方向において対向して容量結合する2つの導体層の距離は、当該導体群と基準電位層51との距離に比べて短い。例えば、第1導体層41と第2導体層42との距離は、第3導体40と基準電位層51との距離に比べて短い。例えば、第3導体層52と第4導体層53との距離は、第4導体50と基準電位層51との距離に比べて短い。
 第1導体31および第2導体32の各々は、1または複数の導電体を含みうる。第1導体31および第2導体32の各々は、1つの導電体としうる。第1導体31および第2導体32の各々は、複数の導電体を含みうる。第1導体31および第2導体32の各々は、少なくとも1つの第5導体層301と、複数の第5導体302とを含みうる。対導体30は、少なくとも1つの第5導体層301と、複数の第5導体302とを含む。
 第5導体層301は、y方向に広がっている。第5導体層301は、xy平面に沿って広がる。第5導体層301は、層状の導電体である。第5導体層301は、基体20の上に位置しうる。第5導体層301は、基体20の中に位置しうる。複数の第5導体層301は、z方向において互いに離れている。複数の第5導体層301は、z方向に並んでいる。複数の第5導体層301は、z方向において一部が重なっている。第5導体層301は、複数の第5導体302を電気的に接続する。第5導体層301は、複数の第5導体302を接続する接続導体となる。第5導体層301は、第3導体40のいずれかの導体層と電気的に接続しうる。一実施形態において、第5導体層301は、第2導体層42と電気的に接続する。第5導体層301は、第2導体層42と一体化しうる。一実施形態において、第5導体層301は、第4導体50と電気的に接続しうる。第5導体層301は、第4導体50と一体化しうる。
 各第5導体302は、z方向に広がっている。複数の第5導体302は、y方向において互いに離れている。第5導体302の間の距離は、λ1の1/2波長以下である。電気的に接続された第5導体302の間の距離がλ1/2以下であると、第1導体31および第2導体32の各々は、第5導体302の間から共振周波数帯の電磁波が漏れるのを低減できる。対導体30は、共振周波数帯の電磁波の漏れが小さいので、単位構造体から電気壁として見える。複数の第5導体302の少なくとも一部は、第4導体50に電気的に接続されている。一実施形態において、複数の第5導体302の一部は、第4導体50と第5導体層301とを電気的に接続しうる。一実施形態において、複数の第5導体302は、第5導体層301を介して第4導体50に電気的に接続しうる。複数の第5導体302の一部は、1つの第5導体層301と他の第5導体層301とを電気的に接続しうる。第5導体302は、ビア導体、およびスルーホール導体を採用しうる。
 共振器10は、共振器として機能する第3導体40を含む。第3導体40は、人工磁気壁(AMC;Artificial Magnetic Conductor)として機能しうる。人工磁気壁は、反応性インピーダンス面(RIS;Reactive Impedance Surface)とも言いうる。
 共振器10は、x方向において対向する2つの対導体30の間に、共振器として機能する第3導体40を含む。2つの対導体30は、第3導体40からyz平面に広がる電気壁(Electric Conductor)と観える。共振器10は、y方向の端が電気的に解放されている。共振器10は、y方向の両端のzx平面が高インピーダンスとなる。共振器10のy方向の両端のzx平面は、第3導体40から磁気壁(Magnetic Conductor)と観える。共振器10は、2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、第3導体40の共振器がz方向に人工磁気壁特性(Artificial Magnetic Conductor Character)を有する。2つの電気壁および2つの高インピーダンス面で囲まれることで、第3導体40の共振器は、有限の数で人工磁気壁特性を有する。
 「人工磁気壁特性」は、動作周波数における入射波と反射波との位相差が0度となる。共振器10では、第1の周波数f1における入射波と反射波との位相差が0度となる。「人工磁気壁特性」では、動作周波数帯において、入射波と反射波との位相差が-90度~+90度となる。動作周波数帯とは、第2の周波数f2および第3の周波数f3の間の周波数帯である。第2の周波数f2とは、入射波と反射波との間の位相差が+90度である周波数である。第3の周波数f3とは、入射波と反射波との間の位相差が-90度である周波数である。第2および第3の周波数に基づいて決定される動作周波数帯の幅は、例えば、動作周波数が約2.5GHzである場合に、100MHz以上であってよい。動作周波数帯の幅は、例えば、動作周波数が約400MHzである場合に、5MHz以上であってよい。
 共振器10の動作周波数は、第3導体40の各々の共振器の共振周波数と異なりうる。共振器10の動作周波数は、基体20、対導体30、第3導体40、および第4導体50の長さ、大きさ、形状、材料などで変化しうる。
 複数の実施形態の一例において、第3導体40は、少なくとも1つの単位共振器40Xを含みうる。第3導体40は、1つの単位共振器40Xを含みうる。第3導体40は、複数の単位共振器40Xを含みうる。単位共振器40Xは、第4導体50とz方向に重なって位置する。単位共振器40Xは、第4導体50と対向している。単位共振器40Xは、周波数選択表面(FSS;Frequency Selective Surface)として機能しうる。複数の単位共振器40Xは、xy平面に沿って並ぶ。複数の単位共振器40Xは、xy平面で規則的に並びうる。単位共振器40Xは、正方格子(square grid)、斜交格子(oblique grid)、長方格子(rectangular grid)、および六方格子(hexagonal grid)で並びうる。
 第3導体40は、z方向に並ぶ、複数の導体層を含みうる。第3導体40の複数の導体層は、各々が少なくとも1つ分の単位共振器を含む。例えば、第3導体40は、第1導体層41および第2導体42を含む。
 第1導体層41は、少なくとも1つ分の第1単位共振器41Xを含む。第1導体層41は、1つの第1単位共振器41Xを含みうる。第1導体層41は、1つの第1単位共振器41Xが複数に分かれた第1部分共振器41Yを複数含みうる。複数の第1部分共振器41Yは、隣接する単位構造体10Xによって、少なくとも1つ分の第1単位共振器41Xとなりうる。複数の第1部分共振器41Yは、第1導体層41の端部に位置する。第1単位共振器41Xおよび第1部分共振器41Yは、第3導体と呼びうる。
 第2導体層42は、少なくとも1つ分の第2単位共振器42Xを含む。第2導体層42は、1つの第2単位共振器42Xを含みうる。第2導体層42は、1つの第2単位共振器42Xが複数に分かれた第2部分共振器42Yを複数含みうる。複数の第2部分共振器42Yは、隣接する単位構造体10Xによって、少なくとも1つ分の第2単位共振器42Xとなりうる。複数の第2部分共振器42Yは、第2導体層42の端部に位置する。第2単位共振器42Xおよび第2部分共振器42Yは、第3導体と呼びうる。
 第2単位共振器42Xおよび第2部分共振器42Yの少なくとも一部は、第1単位共振器41Xおよび第1部分共振器41YとZ方向に重なって位置する。第3導体40は、各層の単位共振器および部分共振器の少なくとも一部がZ方向に重なって1つの単位共振器40Xとなっている。単位共振器40Xは、各層において、少なくとも1つ分の単位共振器を含む。
 第1単位共振器41Xがライン型またはパッチ型の共振器を含む場合、第1導体層41は、少なくとも1つの第1単位導体411を有する。第1単位導体411は、第1単位共振器41Xまたは第1部分共振器41Yとして機能しうる。第1導体層41は、xy方向においてn行m列で並ぶ複数の第1単位導体411を有する。nおよびmは、互いに独立した1以上の自然数である。図1~9等に示す一例において、第1導体層41は、2行3列の格子状に並ぶ6つの第1単位導体411を有する。第1単位導体411は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第1部分共振器41Yに相当する第1単位導体411は、第1導体層41のxy平面における端部に位置する。
 第1単位共振器41Xがスロット型の共振器である場合、第1導体層41は、少なくとも1つの導体層がxy方向に広がる。第1導体層41は、少なくとも1つの第1単位スロット412を有する。第1単位スロット412は、第1単位共振器41Xまたは第1部分共振器41Yとして機能しうる。第1導体層41は、xy方向においてn行m列で並ぶ複数の第1単位スロット412を含みうる。nおよびmは、互いに独立した1以上の自然数である。図6~9等に示す一例において、第1導体層41は、2行3列の格子状に並ぶ6つの第1単位スロット412を有する。第1単位スロット412は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第1部分共振器41Yに相当する第1単位スロット412は、第1導体層41のxy平面における端部に位置する。
 第2単位共振器42Xがライン型またはパッチ型の共振器である場合、第2導体層42は、少なくとも1つの第2単位導体421を含む。第2導体層42は、xy方向において並ぶ複数の第2単位導体421を含みうる。第2単位導体421は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第2単位導体421は、第2単位共振器42Xまたは第2部分共振器42Yとして機能しうる。第2部分共振器42Yに相当する第2単位導体421は、第2導体層42のxy平面における端部に位置する。
 第2単位導体421は、z方向において、少なくとも一部が第1単位共振器41Xおよび第1部分共振器41Yの少なくとも一方と重なっている。第2単位導体421は、複数の第1単位共振器41Xと重なりうる。第2単位導体421は、複数の第1部分共振器41Yと重なりうる。第2単位導体421は、1つの第1単位共振器41Xと、4つの第1部分共振器41Yとに重なりうる。第2単位導体421は、1つの第1単位共振器41Xのみと重なりうる。第2単位導体421の重心は、1つの第1単位導体41Xと重なりうる。第2単位導体421の重心は、複数の第1単位導体41Xおよび第1部分共振器41Yの間に位置しうる。第2単位導体421の重心は、x方向またはy方向に並ぶ2つの第1単位共振器41Xの間に位置しうる。
 第2単位導体421は、少なくとも一部が2つの第1単位導体411と重なりうる。第2単位導体421は、1つの第1単位導体411のみと重なりうる。第2単位導体421の重心は、2つの第1単位導体411の間に位置しうる。第2単位導体421の重心は、1つの第1単位導体411と重なりうる。第2単位導体421は、少なくとも一部が第1単位スロット412と重なりうる。第2単位導体421は、1つの第1単位スロット412のみと重なりうる。第2単位導体421の重心は、x方向またはy方向に並ぶ2つの第1単位スロット412の間に位置しうる。第2単位導体421の重心は、1つの第1単位スロット412に重なりうる。
 第2単位共振器42Xがスロット型の共振器である場合、第2導体層42は、少なくとも1つの導体層がxy平面に沿って広がる。第2導体層42は、少なくとも1つの第2単位スロット422を有する。第2単位スロット422は、第2単位共振器42Xまたは第1部分共振器42Yとして機能しうる。第2導体層42は、xy平面において並ぶ複数の第2単位スロット422を含みうる。第2単位スロット422は、正方格子、斜交格子、長方格子、および六方格子で並びうる。第2部分共振器42Yに相当する第2単位スロット422は、第2導体層42のxy平面における端部に位置する。
 第2単位スロット422は、y方向において、少なくとも一部が第1単位共振器41Xおよび第1部分共振器41Yの少なくとも一方と重なっている。第2単位スロット422は、複数の第1単位共振器41Xと重なりうる。第2単位スロット422は、複数の第1部分共振器41Yと重なりうる。第2単位スロット422は、1つの第1単位共振器41Xと、4つの第1部分共振器41Yとに重なりうる。第2単位スロット422は、1つの第1単位共振器41Xのみと重なりうる。第2単位スロット422の重心は、1つの第1単位導体41Xと重なりうる。第2単位スロット422の重心は、複数の第1単位導体41Xの間に位置しうる。第2単位スロット422の重心は、x方向またはy方向に並ぶ2つの第1単位共振器41Xおよび第1部分共振器41Yの間に位置しうる。
 第2単位スロット422は、少なくとも一部が2つの第1単位導体411と重なりうる。第2単位スロット422は、1つの第1単位導体411のみと重なりうる。第2単位スロット422の重心は、2つの第1単位導体411の間に位置しうる。第2単位スロット422の重心は、1つの第1単位導体411と重なりうる。第2単位スロット422は、少なくとも一部が第1単位スロット412と重なりうる。第2単位スロット422は、1つの第1単位スロット412のみと重なりうる。第2単位スロット422の重心は、x方向またはy方向に並ぶ2つの第1単位スロット412の間に位置しうる。第2単位スロット422の中心は、1つの第1単位スロット412に重なりうる。
 単位共振器40Xは、少なくとも1つ分の第1単位共振器41Xと、少なくとも1つ分の第2単位共振器42Xとを含む。単位共振器40Xは、1つの第1単位共振器41Xを含みうる。単位共振器40Xは、複数の第1単位共振器41Xを含みうる。単位共振器40Xは、1つの第1部分共振器41Yを含みうる。単位共振器40Xは、複数の第1部分共振器41Yを含みうる。単位共振器40Xは、第1単位共振器41Xのうちの一部を含みうる。単位共振器40Xは、部分的な第1単位共振器41Xを1または複数含みうる。単位共振器40Xは、1または複数の部分的な第1単位共振器41X、および1または複数の第1部分共振器41Yから複数の部分的な共振器を含む。単位共振器40Xが含む複数の部分的な共振器は、少なくとも1つ分に相当する第1単位共振器41Xに合わさる。単位共振器40Xは、第1単位共振器41Xを含まず、複数の第1部分共振器41Yを含みうる。単位共振器40Xは、例えば、4つの第1部分共振器41Yを含みうる。単位共振器40Xは、部分的な第1単位共振器41Xのみを複数含みうる。単位共振器40Xは、1または複数の部分的な第1単位共振器41X、および1または複数の第1部分共振器41Yを含みうる。単位共振器40Xは、例えば、2つの部分的な第1単位共振器41X、および2の第1部分共振器41Yを含みうる。単位共振器40Xは、x方向における両端のそれぞれにおける、含まれる第1導体層41の鏡像が略同一となりうる。単位共振器40Xは、z方向に伸びる中心線に対して、含まれる第1導体層41が略対象になりうる。
 単位共振器40Xは、1つの第2単位共振器42Xを含みうる。単位共振器40Xは、複数の第2単位共振器42Xを含みうる。単位共振器40Xは、1つの第2部分共振器42Yを含みうる。単位共振器40Xは、複数の第2部分共振器42Yを含みうる。単位共振器40Xは、第2単位共振器42Xのうちの一部を含みうる。単位共振器40Xは、部分的な第2単位共振器42Xを1または複数含みうる。単位共振器40Xは、1または複数の部分的な第2単位共振器42X、および1または複数の第2部分共振器42Yから複数の部分的な共振器を含む。単位共振器40Xが含む複数の部分的な共振器は、少なくとも1つ分に相当する第2単位共振器42Xに合わさる。単位共振器40Xは、第2単位共振器42Xを含まず、複数の第2部分共振器42Yを含みうる。単位共振器40Xは、例えば、4つの第2部分共振器42Yを含みうる。単位共振器40Xは、部分的な第2単位共振器42Xのみを複数含みうる。単位共振器40Xは、1または複数の部分的な第2単位共振器42X、および1または複数の第2部分共振器42Yを含みうる。単位共振器40Xは、例えば、2つの部分的な第2単位共振器42X、および2の第2部分共振器42Yを含みうる。単位共振器40Xは、x方向における両端のそれぞれにおける、含まれる第2導体層42の鏡像が略同一となりうる。単位共振器40Xは、y方向に伸びる中心線に対して、含まれる第2導体層42が略対象になりうる。
 複数の実施形態の一例において、単位共振器40Xは、1つの第1単位共振器41Xと、複数の部分的な第2単位共振器42Xとを含む。例えば、単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2単位共振器42Xの半分とを含む。当該単位共振器40Xは、1つ分の第1単位共振器41Xと、2つ分の第2単位共振器42Xとを含む。単位共振器40Xが含む構成は、この例に限られない。
 共振器10は、少なくとも1つの単位構造体10Xを含みうる。共振器10は、複数の単位構造体10Xを含みうる。複数の単位構造体10Xは、xy平面に並びうる。複数の単位構造体10Xは、正方格子、斜交格子、長方格子、および六方格子で並びうる。単位構造体10Xは、正方格子(square grid)、斜交格子(oblique grid)、長方格子(rectangular grid)、および六方格子(hexagonal grid)のいずれかの繰り返し単位を含む。単位構造体10Xは、xy平面に沿って無限に並ぶことで、人工磁気壁(AMC)として機能しうる。
 単位構造体10Xは、基体20の少なくとも一部と、第3導体40の少なくとも一部と、第4導体50の少なくとも一部とを含みうる。単位構造体10Xが含む基体20、第3導体40、第4導体50の部位は、z方向において重なる。単位構造体10Xは、単位共振器40Xと、当該単位共振器40Xとz方向に重なる基体20の一部と、当該単位共振器40Xとz方向に重なる第4導体50とを含む。共振器10は、例えば、2行3列で並ぶ6つの単位構造体10Xを含みうる。
 共振器10は、x方向において対向する2つの対導体30の間に、少なくとも1つの単位構造体10Xを有しうる。2つの対導体30は、単位構造体10Xからyz平面に広がる電気壁と観える。単位構造体10Xは、y方向の端が解放されている。単位構造体10Xは、y方向の両端のzx平面が高インピーダンスとなる。単位構造体10Xは、y方向の両端のzx平面が磁気壁と観える。単位構造体10Xは、繰り返して並ぶ際に、z方向に対して線対称としうる。単位構造体10Xは、2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、z方向に人工磁気壁特性を有する。2つの電気壁および2つの高インピーダンス面(磁気壁)で囲まれることで、単位構造体10Xは、有限の数で人工磁気壁特性を有する。
 共振器10の動作周波数は、第1単位共振器41Xの動作周波数と異なりうる。共振器10の動作周波数は、第2単位共振器42Xの動作周波数と異なりうる。共振器10の動作周波数は、単位共振器40Xを構成する第1単位共振器41Xおよび第2単位共振器42Xの結合などによって変化しうる。
 第3導体40は、第1導体層41と第2導体層42とを含みうる。第1導体層41は、少なくとも1つの第1単位導体411を含む。第1単位導体411は、第1接続導体413と、第1浮遊導体414とを含む。第1接続導体413は、対導体30のいずれかと接続している。第1浮遊導体414は、対導体30と接続していない。第2導体層42は、少なくとも1つの第2単位導体421を含む。第2単位導体421は、第2接続導体423と、第2浮遊導体424とを含む。第2接続導体423は、対導体30のいずれかと接続している。第2浮遊導体424は、対導体30と接続していない。第3導体40は、第1単位導体411および第2単位導体421を含みうる。
 第1接続導体413は、第1浮遊導体414よりx方向に沿った長さを長くしうる。第1接続導体413は、第1浮遊導体414よりx方向に沿った長さを短くしうる。第1接続導体413は、第1浮遊導体414に比べてx方向に沿った長さを半分としうる。第2接続導体423は、第2浮遊導体424よりx方向に沿った長さを長くしうる。第2接続導体423は、第2浮遊導体424よりx方向に沿った長さを短くしうる。第2接続導体423は、第2浮遊導体424に比べてx方向に沿った長さを半分としうる。
 第3導体40は、共振器10が共振する際に、第1導体31と第2導体32との間の電流路となる電流路40Iを含みうる。電流路40Iは、第1導体31と、第2導体32とに接続されうる。電流路40Iは、第1導体31と第2導体32との間に、静電容量を有する。電流路40Iの静電容量は、第1導体31と第2導体32との間に、電気的に直列に接続される。電流路40Iは、第1導体31と第2導体32との間で導電体が離隔している。電流路40Iは、第1導体31に接続される導電体と、第2導体32に接続される導電体とを含みうる。
 複数の実施形態において、電流路40Iにおいて、第1単位導体411と第2単位導体421とは、z方向において一部が対向している。電流路40Iにおいて、第1単位導体411と第2単位導体421とは、容量結合している。第1単位導体411は、x方向における端部に容量成分を有する。第1単位導体411は、z方向において第2単位導体421と対向するy方向における端部において容量成分を有しうる。第1単位導体411は、z方向において第2単位導体421と対向するx方向における端部、且つy方向における端部において容量成分を有しうる。第2単位導体421は、x方向における端部に容量成分を有する。第2単位導体421は、z方向において第1単位導体411と対向するy方向における端部において容量成分を有しうる。第2単位導体421は、z方向において第1単位導体411と対向するx方向における端部、且つy方向における端部において容量成分を有しうる。
 共振器10は、電流路40Iにおける容量結合を大きくすることで共振周波数を低くすることができる。所望の動作周波数を実現する際に、共振器10は、電流路40Iの静電容量結合を大きくすることで、x方向に沿った長さを短くすることができる。第3導体40は、第1単位導体411と第2単位導体421とが基体20の積層方向に対向して容量結合している。第3導体40は、第1単位導体411と第2単位導体421との間の静電容量を対向する面積によって調整できる。
 複数の実施形態において、第1単位導体411のy方向に沿った長さは、第2単位導体421のy方向に沿った長さと異なる。共振器10は、第1単位導体411と第2単位導体421との相対的な位置が理想的な位置からxy平面に沿ってずれた場合に、第3方向に沿った長さが第1単位導体411と第2単位導体421とで異なることで、静電容量の大きさの変化を小さくすることができる。
 複数の実施形態において、電流路40Iは、第1導体31および第2導体32と空間的に離れ、第1導体31および第2導体32と容量的に結合している、1つの導電体からなる。
 複数の実施形態において、電流路40Iは、第1導体層41と、第2導体層42とを含む。当該電流路40Iは、少なくとも1つの第1単位導体411と、少なくとも1つの第2単位導体421とを含む。当該電流路40Iは、2つの第1接続導体413、2つの第2接続導体423、ならびに1つの第1接続導体413および1つの第2接続導体423のいずれかを含む。当該電流路40Iは、第1単位導体411と、第2単位導体421とが第1方向に沿って交互に並びうる。
 複数の実施形態において、電流路40Iは、第1接続導体413と、第2接続導体423とを含む。当該電流路40Iは、少なくとも1つの第1接続導体413と、少なくとも1つの第2接続導体423とを含む。当該電流路40Iにおいて、第3導体40は、第1接続導体413と第2接続導体423との間に静電容量を有する。実施形態の一例において、第1接続導体413は、第2接続導体423と対向し、静電容量を有しうる。実施形態の一例において、第1接続導体413は、第2接続導体423と他の導電体を介して容量的に接続されうる。
 複数の実施形態において、電流路40Iは、第1接続導体413と、第2浮遊導体424とを含む。当該電流路40Iは、2つの第1接続導体413を含む。当該電流路40Iにおいて、第3導体40は、2つの第1接続導体413の間に静電容量を有する。実施形態の一例において、2つの第1接続導体413は、少なくとも1つの第2浮遊導体424を介して容量的に接続されうる。実施形態の一例において、2つの第1接続導体413は、少なくとも1つの第1浮遊導体414と、複数の第2浮遊導体424とを介して容量的に接続されうる。
 複数の実施形態において、電流路40Iは、第1浮遊導体414と、第2接続導体423とを含む。当該電流路40Iは、2つの第2接続導体423を含む。当該電流路40Iにおいて、第3導体40は、2つの第2接続導体423の間に静電容量を有する。実施形態の一例において、2つの第2接続導体423は、少なくとも1つの第1浮遊導体414を介して容量的に接続されうる。実施形態の一例において、2つの第2接続導体423は、複数の第1浮遊導体414と、少なくとも1つの第2浮遊導体424と、を介して容量的に接続されうる。
 複数の実施形態において、第1接続導体413および第2接続導体423の各々は、共振周波数における波長λの4分の1の長さとしうる。第1接続導体413および第2接続導体423の各々は、それぞれが波長λの2分の1の長さの共振器として機能しうる。第1接続導体413および第2接続導体423の各々は、それぞれの共振器が容量結合することで奇モードと偶モードとで発振しうる。共振器10は、容量結合後の偶モードにおける共振周波数を動作周波数としうる。
 電流路40Iは、第1導体31に複数箇所で接続されうる。電流路40Iは、第2導体32に複数箇所で接続されうる。電流路40Iは、第1導体31から第2導体32までを独立して電導する複数の電導路を含みうる。
 第1接続導体413と容量結合する第2浮遊導体424において、当該容量結合している側の第2浮遊導体424の端は、対導体30との距離に比べて第1接続導体413との距離が短い。第2接続導体423と容量結合する第1浮遊導体414において、当該容量結合している側の第1浮遊導体414の端は、対導体30との距離に比べて第2接続導体423との距離が短い。
 複数の実施形態の共振器10において、第3導体40の導体層は、y方向における長さが各々で異なりうる。第3導体40の導体層は、z方向において他の導体層と容量的に結合する。共振器10は、導体層のy方向における長さが異なると、導体層がy方向にずれても静電容量の変化が小さくなる。共振器10は、導体層のy方向における長さが異なることで、導体層のy方向に対するズレの許容範囲を広げることができる。
 複数の実施形態の共振器10において、第3導体40は、導体層間の容量的な結合による静電容量を有する。当該静電容量を有する容量部位は、y方向に複数並びうる。y方向に複数並ぶ容量部位は、電磁気的に並列の関係となりうる。共振器10は、電気的に並列に並ぶ複数の容量部位を有することで、個々の容量誤差を相互に補完することができる。
 共振器10が共振状態にあるとき、対導体30、第3導体40、第4導体50に流れる電流は、ループする。共振器10が共振状態にあるとき、共振器10には、交流電流が流れている。共振器10において、第3導体40を流れる電流を第1電流とし、第4導体50を流れる電流を第2電流とする。共振器10が共振状態にあるとき、第1電流は、x方向において第2電流と異なる方向に流れる。例えば、第1電流が+x方向に流れるとき、第2電流は-x方向に流れる。また、例えば、第1電流が-x方向に流れるとき、第2電流は+x方向に流れる。つまり、共振器10が共振状態にあるとき、ループ電流は、+x方向および-x方向に交互に流れる。共振器10は、磁界を作るループ電流が反転を繰り返すことで、電磁波を放射する。
 複数の実施形態において、第3導体40は、第1導体層41と、第2導体層42とを含む。第3導体40は、第1導体層41と第2導体層42とが容量的に結合しているため、共振状態で大域的に電流が1つの方向に流れているようにみえる。複数の実施形態において、各導体を流れる電流は、y方向の端部において密度が大きい。
 共振器10は、対導体30を介して第1電流および第2電流がループする。共振器10は、第1導体31、第2導体32、第3導体40、および第4導体50が共振回路となる。共振器10の共振周波数は、単位共振器の共振周波数となる。共振器10が1つの単位共振器を含む場合、または、共振器10が単位共振器の一部を含む場合、共振器10の共振周波数は、基体20、対導体30、第3導体40、および第4導体50、並びに共振器10の周囲との電磁的な結合によって変わる。例えば、共振器10は、第3導体40の周期性が乏しい場合、全体が1つの単位共振器、または全体が1つの単位共振器の一部となる。例えば、共振器10の共振周波数は、第1導体31および第2導体32のz方向の長さ、第3導体40および第4導体50のx方向の長さ、第3導体40および第4導体50の静電容量によって変わる。例えば、第1単位導体411と第2単位導体421の間の容量が大きい共振器10は、第1導体31および第2導体32のz方向の長さ、ならびに第3導体40および第4導体50のx方向の長さを短くしつつ、共振周波数の低周波数化が可能となる。
 複数の実施形態において、共振器10は、z方向において第1導体層41が電磁波の実効的な放射面となる。複数の実施形態において、共振器10は、第1導体層41の第1面積が他の導体層の第1面積より大きい。当該共振器10は、第1導体層41の第1面積を大きくすることで、電磁波の放射を大きくすることができる。
 複数の実施形態において、共振器10は、1または複数のインピーダンス素子45を含みうる。インピーダンス素子45は、複数の端子間にインピーダンス値を有する。インピーダンス素子45は、共振器10の共振周波数を変化させる。インピーダンス素子45は、抵抗器(Register)、キャパシタ(Capacitor)、およびインダクタ(Inductor)を含みうる。インピーダンス素子45は、インピーダンス値を変更可能な可変素子を含みうる。可変素子は、電気信号によってインピーダンス値を変更しうる。可変素子は、物理機構によってインピーダンス値を変更しうる。
 インピーダンス素子45は、x方向において並ぶ、第3導体40の2つの単位導体に接続されうる。インピーダンス素子45は、x方向において並ぶ、2つの第1単位導体411に接続されうる。インピーダンス素子45は、x方向において並ぶ、第1接続導体413と第1浮遊導体414とに接続されうる。インピーダンス素子45は、第1導体31と、第1浮遊導体414とに接続されうる。インピーダンス素子45は、y方向における中央部において、第3導体40の単位導体に接続される。インピーダンス素子45は、2つの第1単位導体411のy方向における中央部に接続される。
 インピーダンス素子45は、xy平面内でx方向に並ぶ2つの導電体の間に、電気的に直列に接続される。インピーダンス素子45は、x方向において並ぶ、2つの第1単位導体411の間に電気的に直列に接続されうる。インピーダンス素子45は、x方向において並ぶ、第1接続導体413と第1浮遊導体414との間に電気的に直列に接続されうる。インピーダンス素子45は、第1導体31と、第1浮遊導体414との間に電気的に直列に接続されうる。
 インピーダンス素子45は、z方向に重なって静電容量を持つ、2つの第1単位導体411および第2単位導体421に対して、電気的に並列に接続されうる。インピーダンス素子45は、z方向に重なって静電容量を持つ、第2接続導体423および第1浮遊導体414に対して、電気的に並列に接続されうる。
 共振器10は、インピーダンス素子45としてキャパシタを追加することで、共振周波数を低くできる。共振器10は、インピーダンス素子45としてインダクタを追加することで共振周波数を高くできる。共振器10は、異なるインピーダンス値のインピーダンス素子45を含みうる。共振器10は、インピーダンス素子45として異なる電気容量のキャパシタを含みうる。共振器10は、インピーダンス素子45として異なるインダクタンスのインダクタを含みうる。共振器10は、異なるインピーダンス値のインピーダンス素子45を追加することで、共振周波数の調整範囲が大きくなる。共振器10は、インピーダンス素子45としてキャパシタおよびインダクタを同時に含みうる。共振器10は、インピーダンス素子45としてキャパシタおよびインダクタを同時に追加することで、共振周波数の調整範囲が大きくなる。共振器10は、インピーダンス素子45を備えることによって、全体が1つの単位共振器、または全体が1つの単位共振器の一部となりうる。
 図1~5は、複数の実施形態の一例である共振器10を示す図である。図1は、共振器10の概略図である。図2は、z方向からxy平面を平面視した図である。図3Aは、図2に示したIIIa-IIIa線に沿った断面図である。図3Bは、図2に示したIIIb-IIIb線に沿った断面図である。図4は、図3に示したIV-IV線に沿った断面図である。図5は、複数の実施形態の一例である単位構造体10Xを示す概念図である。
 図1~5に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
 図6~9は、複数の実施形態の一例である共振器10を示す図である。図6は、共振器10の概略図である。図7は、z方向からxy平面を平面視した図である。図8Aは、図7に示したVIIIa-VIIIa線に沿った断面図である。図8Bは、図7に示したVIIIb-VIIIb線に沿った断面図である。図9は、図8に示したIX-IX線に沿った断面図である。
 図6~9に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてスロット型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてスロット型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
 図10~13は、複数の実施形態の一例である共振器10を示す図である。図10は、共振器10の概略図である。図11は、z方向からxy平面を平面視した図である。図12Aは、図11に示したXIIa-XIIa線に沿った断面図である。図12Bは、図11に示したXIIb-XIIb線に沿った断面図である。図13は、図12に示したXIII-XIII線に沿った断面図である。
 図10~13に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてスロット型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
 図14~17は、複数の実施形態の一例である共振器10を示す図である。図14は、共振器10の概略図である。図15は、z方向からxy平面を平面視した図である。図16Aは、図15に示したXVIa-XVIa線に沿った断面図である。図16Bは、図15に示したXVIb-XVIb線に沿った断面図である。図17は、図16に示したXVII-XVII線に沿った断面図である。
 図14~17に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてスロット型の共振器を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器を含む。単位共振器40Xは、1つの第1単位共振器41Xと、4つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。
 図1~17に示した共振器10は一例である。共振器10の構成は、図1~17に示した構造に限定されない。図18は、他の構成の対導体30を含む共振器10を示す図である。図19Aは、図18に示したXIXa-XIXa線に沿った断面図である。図19Bは、図18に示したXIXb-XIXb線に沿った断面図である。
 図1~19に示した基体20は一例である。基体20の構成は、図1~19に示した構成に限定されない。基体20は、図20に示したように、内部に空洞20aを含みうる。z方向において、空洞20aは、第3導体40と第4導体50との間に位置する。空洞20aの誘電率は、基体20の誘電率に比べて低い。基体20は、空洞20aを有することで、第3導体40と第4導体50との電磁気的な距離を短くできる。
 基体20は、図21に示したように、複数の部材を含みうる。基体20は、第1基体21、第2基体22、および接続体23を含みうる。第1基体21および第2基体22は、接続体23を介して機械的に接続されうる。接続体23は、内部に第6導体303を含みうる。第6導体303は、第4導体301または第5導体302と電気的に接続される。第6導体303は、第4導体301および第5導体302と合わせて第1導体31または第2導体32となる。
 図1~21に示した対導体30は一例である。対導体30の構成は、図1~21に示した構成に限定されない。図22~28は、他の構成の対導体30を含む共振器10を示す図である。図22は、図19Aに相当する断面図である。図22Aに示すように、第5導体層301の数は、適宜変更しうる。図22Bに示すように、第5導体層301は、基体20の上に位置しなくてよい。図22Cに示すように、第5導体層301は、基体20の中に位置しなくてよい。
 図23は、図18に相当する平面図である。図23に示すように、共振器10は、第5導体302を単位共振器40Xの境界から離しうる。図24は、図18に相当する平面図である。図24に示すように、2つの対導体30は、対となる他の対導体30側に出る凸部を有しうる。このような共振器10は、例えば、凹部を有する基体20に金属ペーストを塗布して硬化することで形成しうる。
 図25は、図18に相当する平面図である。図25に示すように、基体20は、凹部を有しうる。図25に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。図25に示すように、対導体30は、基体20の表面に沿って広がっている。このような共振器10は、例えば、凹部を有する基体20に微細な金属材料を吹き付けることで形成しうる。
 図26は、図18に相当する平面図である。図26に示すように、基体20は、凹部を有しうる。図25に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。図26に示すように、対導体30は、基体20の凹部に沿って広がっている。このような共振器10は、例えば、スルーホール導体の並びに沿ってマザー基板を分割することで製造しうる。かかる対導体30は、端面スルーホールなどと称しうる。
 図27は、図18に相当する平面図である。図27に示すように、基体20は、凹部を有しうる。図27に示すように、対導体30は、x方向における外面から内側に窪む凹部を有している。このような共振器10は、例えば、スルーホール導体の並びに沿ってマザー基板を分割することで製造しうる。かかる対導体30は、端面スルーホールなどと称しうる。
 図28は、図18に相当する平面図である。図28に示すように、対導体30は、x方向における長さが、基体20に比べて短くてよい。対導体30の構成はこれらに限られない。2つの対導体30は、互いに異なる構成と成りうる。例えば、一方の対導体30は、第5導体層301および第5導体302を含み、他方の対導体30は、端面スルーホールであってよい。
 図1~28に示した第3導体40は一例である。第3導体40の構成は、図1~28に示した構成に限定されない。単位共振器40X、第1単位共振器41X、および第2単位共振器42Xは、方形に限られない。単位共振器40X、第1単位共振器41X、および第2単位共振器42Xは、単位共振器40X等と称しうる。例えば、単位共振器40X等は、図29Aに示すように、三角形であってよく、図29Bに示すように六角形であってよい。単位共振器40X等の各辺は、図30に示すように、x方向およびy方向と異なる方向に伸びうる。第3導体40は、第2導体層42が基体20の上に位置し、第1導体層41が基体20の中に位置しうる。第3導体40は、第2導体層42が第1導体層41より第4導体50から遠くに位置しうる。
 図1~30に示した第3導体40は一例である。第3導体40の構成は、図1~30に示した構成に限定されない。第3導体40を含む共振器は、ライン型の共振器401であってよい。図31Aに示したのは、ミアンダライン型の共振器401である。図31Bに示したのは、スパイラル型の共振器401である。第3導体40の含む共振器は、スロット型の共振器402であってよい。スロット型の共振器402は、1つまたは複数の第7導体403を開口内に有しうる。開口内の第7導体403は、一端が解放され、他端が開口を規定する導体に電気的に接続される。図31Cに示した単位スロットは、5つの第7導体403が開口内に位置する。単位スロットは、第7導体403によってミアンダラインに相当する形となる。図31Dに示した単位スロットは、1つの第7導体403が開口内に位置する。単位スロットは、第7導体403によってスパイラルに相当する形となる。
 図1~31に示した共振器10の構成は一例である。共振器10の構成は、図1~31に示した構成に限定されない。例えば、共振器10の対導体30は、3以上含みうる。例えば、1つの対導体30は、2つの対導体30とx方向において対向しうる。当該2つの対導体30は、当該対導体30との距離が異なる。例えば、共振器10は、二対の対導体30を含みうる。二対の対導体30は、各対の距離、および各対の長さが異なりうる。共振器10は、5以上の第1導体を含みうる。共振器10の単位構造体10Xは、y方向において、他の単位構造体10Xと並びうる。共振器10の単位構造体10Xは、x方向において、対導体30を介さずに他の単位構造体10Xと並びうる。図32~34は、共振器10の例を示す図である。図32~34に示す共振器10では、単位構造体10Xの単位共振器40Xを正方形で示すが、これに限られない。
 図1~34に示した共振器10の構成は一例である。共振器10の構成は、図1~34に示した構成に限定されない。図35は、z方向からxy平面を平面視した図である。図36Aは、図35に示したXXXVIa-XXXVIa線に沿った断面図である。図36Bは、図35に示したXXXVIb-XXXVIb線に沿った断面図である。
 図35,36に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器の半分を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器の半分を含む。単位共振器40Xは、1つの第1部分共振器41Yと、1つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40XとZ方向に重なる基体20の一部および第4導体50の一部とを含む。図35に示した共振器10は、3つの単位共振器40Xがx方向に並んでいる。3つの単位共振器40Xに含まれる第1単位導体411および第2単位導体421は、1つの電流路40Iとなっている。
 図37は、図35に示した共振器10の他の例を示す。図37に示した共振器10は、図35に示した共振器10と比較してx方向に長い。共振器10の寸法は、図37に示した共振器10に限定されず、適宜変更しうる。図37の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414と異なる。図37の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414より短い。図38は、図35に示した共振器10の他の例を示す。図38に示した共振器10は、第3導体40のx方向の長さが異なる。図38の共振器10において、第1接続導体413は、x方向の長さが第1浮遊導体414より長い。
 図39は、共振器10の他の例を示す。図39は、図37に示した共振器10の他の例を示す。複数の実施形態において、共振器10は、x方向に並ぶ複数の第1単位導体411および第2単位導体421が容量的に結合する。共振器10は、一方から他方に電流が流れない、2つの電流路40Iがy方向に並びうる。
 図40は、共振器10の他の例を示す。図40は、図39に示した共振器10の他の例を示す。複数の実施形態において、共振器10は、第1導体31に接続される導電体の数と、第2導体32に接続される導電体の数とが異なりうる。図40の共振器10において、1つの第1接続導体413は、2つの第2浮遊導体424と容量的に結合している。図40の共振器10において、2つの第2接続導体423は、1つの第1浮遊導体414と容量的に結合している。複数の実施形態において、第1単位導体411の数は、当該第1単位導体411に容量結合する第2単位導体421の数と異なりうる。
 図41は、図39に示した共振器10の他の例を示す。複数の実施形態において、第1単位導体411は、x方向における第1端部において容量結合する第2単位導体421の数と、x方向における第2端部において容量結合する第2単位導体421の数が異なりうる。図41の共振器10において、1つの第2浮遊導体424は、x方向における第1端部に2つの第1接続導体413が容量結合し、第2端部に3つの第2浮遊導体424が容量結合している。複数の実施形態において、y方向に並ぶ複数の導電体は、y方向における長さが異なりうる。図41の共振器10において、y方向に並ぶ3つの第1浮遊導体414は、y方向における長さが異なる。
 図42は、共振器10の他の例を示す。図43は、図42に示したXLIII-XLIII線に沿った断面図である。図42,43に示した共振器10において、第1導体層41は、第1単位共振器41Xとしてパッチ型の共振器の半分を含む。第2導体層42は、第2単位共振器42Xとしてパッチ型の共振器の半分を含む。単位共振器40Xは、1つの第1部分共振器41Yと、1つの第2部分共振器42Yとを含む。単位構造体10Xは、単位共振器40Xと、単位共振器40Xとz方向に重なる基体20の一部および第4導体50の一部とを含む。図42に示した共振器10は、1つの単位共振器40Xがx方向に延びている。
 図44は、共振器10の他の例を示す。図45は、図44に示したXLV-XLV線に沿った断面図である。図44,45に示した共振器10において、第3導体40は、第1接続導体413のみを含む。第1接続導体413は、xy平面において第1導体31と対向する。第1接続導体413は、第1導体31と容量的に結合する。
 図46は、共振器10の他の例を示す。図47は、図46に示したXLVII-XLVII線に沿った断面図である。図46,47に示した共振器10において、第3導体40は、第1導体層41および第2導体層42を有する。第1導体層41は、1つの第1浮遊導体414を有する。第2導体層42は、2つの第2接続導体423を有する。当該第1導体層41は、xy平面において対導体30と対向する。2つの第2接続導体423は、1つの第1浮遊導体414とz方向に重なっている。1つの第1浮遊導体414は、2つの第2接続導体423と容量的に結合している。
 図48は、共振器10の他の例を示す。図49は、図48に示したXLIX-XLIX線に沿った断面図である。図48,49に示した共振器10において、第3導体40は、第1浮遊導体414のみを含む。第1浮遊導体414は、xy平面において対導体30と対向する。第1接続導体413は、対導体30と容量的に結合する。
 図50は、共振器10の他の例を示す。図51は、図50に示したLI-LI線に沿った断面図である。図50,51に示した共振器10は、図42,43に示した共振器10と第4導体50の構成が異なる。図50,51に示した共振器10は、第4導体50と、基準電位層51とを備える。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。基準電位層51は、第4導体50を介して第3導体40と対向している。第4導体50は、第3導体40と基準電位層51との間に位置する。基準電位層51と第4導体50との間隔は、第3導体40と第4導体50との間隔に比べて狭い。
 図52は、共振器10の他の例を示す。図53は、図52に示したLIII-LIII線に沿った断面図である。共振器10は、第4導体50と、基準電位層51とを備える。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。第4導体50は、共振器を備える。第4導体50は、第3導体層52および第4導体層53を含む。第3導体層52および第4導体層53は、容量結合する。第3導体層52および第4導体層53は、z方向に対向する。第3導体層52および第4導体層53の距離は、第4導体層53と基準電位層51との距離に比べて短い。第3導体層52および第4導体層53の距離は、第4導体50と基準電位層51との距離に比べて短い。第3導体40は、1つの導体層となっている。
 図54は、図53に示した共振器10の他の例を示す。共振器10は、第3導体40と、第4導体50と、基準電位層51とを備える。第3導体40は、第1導体層41および第2導体層42を含む。第1導体層41は、第1接続導体413を含む。第2導体層42は、第2接続導体423を含む。第1接続導体413は、第2接続導体423と容量的に結合される。基準電位層51は、共振器10を備える機器のグラウンドに電気的に接続される。第4導体50は、第3導体層52および第4導体層53を含む。第3導体層52および第4導体層53は、容量結合する。第3導体層52および第4導体層53は、z方向に対向する。第3導体層52および第4導体層53の距離は、第4導体層53と基準電位層51との距離に比べて短い。第3導体層52および第4導体層53の距離は、第4導体50と基準電位層51との距離に比べて短い。
 図55は、共振器10の他の例を示す。図56Aは、図55に示したLVIa-LVIa線に沿った断面図である。図56Bは、図55に示したLVIb-LVIb線に沿った断面図である。図55に示した共振器10において、第1導体層41は、4つの第1浮遊導体414を有する。図55に示した第1導体層41は、第1接続導体413を有していない。図55に示した共振器10において、第2導体層42は、6つの第2接続導体423と、3つの第2浮遊導体424とを有する。2つの第2接続導体423の各々は、2つの第1浮遊導体414と容量的に結合している。1つの第2浮遊導体424は、4つの第1浮遊導体414と容量的に結合している。2つの第2浮遊導体424は、2つの第1浮遊導体414と容量的に結合している。
 図57は、図55に示した共振器の他の例を示す図である。図57の共振器10は、第2導体層42の大きさが図55に示した共振器10と異なる。図57に示した共振器10は、第2浮遊導体424のx方向に沿った長さが第2接続導体423のx方向に沿った長さより短い。
 図58は、図55に示した共振器の他の例を示す図である。図58の共振器10は、第2導体層42の大きさが図55に示した共振器10と異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、第1面積が異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、x方向における長さが異なる。図58に示した共振器10において、複数の第2単位導体421の各々は、y方向における長さが異なる。図58において、複数の第2単位導体421は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2単位導体421は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2単位導体421は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2単位導体421の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
 図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、第1面積が互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、x方向における長さが互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2接続導体423は、y方向における長さが互いに異なる。図58において、複数の第2接続導体423は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2接続導体423は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2接続導体423は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2接続導体423の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
 図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、第1面積が互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、x方向における長さが互いに異なる。図58に示した共振器10において、y方向に並ぶ複数の第2浮遊導体424は、y方向における長さが互いに異なる。図58において、複数の第2浮遊導体424は、第1面積、長さ、および幅が互いに異なるがこれに限られない。図58において、複数の第2浮遊導体424は、第1面積、長さ、および幅の一部が互いに異なりうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに異なりうる。複数の第2浮遊導体424は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。複数の第2浮遊導体424の一部は、第1面積、長さ、および幅の一部または全てが互いに一致しうる。
 図59は、図57に示した共振器10の他の例を示す図である。図59の共振器10は、y方向における第1単位導体411の間隔が図57に示した共振器10と異なる。図59の共振器10は、x方向における第1単位導体411の間隔に比べて、y方向における第1単位導体411の間隔が小さい。共振器10は、対導体30が電気壁として機能しうるため、電流がx方向に流れる。当該共振器10において、第3導体40をy方向に流れる電流は、無視しうる。第1単位導体411のy方向の間隔は、第1単位導体411のx方向における間隔に比べて短くしうる。第1単位導体411のy方向の間隔を短くすることで、第1単位導体411の面積を大きくしうる。
 図60~62は、共振器10の他の例を示す図である。これらの共振器10は、インピーダンス素子45を有する。インピーダンス素子45が接続する単位導体は、図60~62に示した例に限られない。図60~62に示したインピーダンス素子45は、一部を省略しうる。インピーダンス素子45は、キャパシタンス特性を取りうる。インピーダンス素子45は、インダクタンス特性を取りうる。インピーダンス素子45は、機械的または電気的な可変素子でありうる。インピーダンス素子45は、1つの層にある異なる2つの導体を接続しうる。
 アンテナは、電磁波の放射する機能、および電磁波を受信する機能の少なくとも一方を有する。本開示のアンテナは、第1アンテナ60および第2アンテナ70を含むが、これらに限られない。
 第1アンテナ60は、基体20、対導体30、第3導体40、第4導体50、第1給電線61を備える。一例において、第1アンテナ60は、基体20の上に第3基体24を有する。第3基体24は、基体20と異なる組成としうる。第3基体24は、第3導体40の上に位置しうる。図63~76は、複数の実施形態の一例である第1アンテナ60を示す図である。
 第1給電線61は、人工磁気壁として周期的に並ぶ共振器の少なくとも1つに給電する。複数の共振器に給電する場合、第1アンテナ60は、複数の第1給電線を有しうる。第1給電線61は、人工磁気壁として周期的に並ぶ共振器のいずれかに電磁気的に接続されうる。第1給電線61は、人工磁気壁として周期的に並ぶ共振器から電気壁として観える一対の導体のいずれかに電磁気的に接続されうる。
 第1給電線61は、第1導体31、第2導体32、および第3導体40の少なくとも1つに給電する。第1導体31、第2導体32、および第3導体40の複数の部分に給電する場合、第1アンテナ60は、複数の第1給電線を有しうる。第1給電線61は、第1導体31、第2導体32、および第3導体40のいずれかに電磁気的に接続されうる。第1アンテナ60が第4導体50の他に基準電位層51を備える場合、第1給電線61は、第1導体31、第2導体32、第3導体40、および第4導体50のいずれかに電磁気的に接続されうる。第1給電線61は、対導体30のうち、第5導体層301および第5導体302のいずれかに電気的に接続される。第1給電線61の一部は、第5導体層301と一体としうる。
 第1給電線61は、第3導体40に電磁気的に接続されうる。例えば、第1給電線61は、第1単位共振器41Xの1つに電磁気的に接続される。例えば、第1給電線61は、第2単位導体42Xの1つに電磁気的に接続される。第1給電線61は、第3導体40の単位導体に対して、x方向における中央と異なる点で電磁気的に接続される。第1給電線61は、一実施形態において、第3導体40に含まれる少なくとも1つの共振器に電力を供給する。第1給電線61は、一実施形態において、第3導体40に含まれる少なくとも1つの共振器からの電力を外部に給電する。第1給電線61は、少なくとも一部が基体20の中に位置しうる。第1給電線61は、基体20の2つのzx面、2つのyz面、および2つのxy面のいずれかから外部に臨みうる。
 第1給電線61は、z方向の順方向および逆方向から第3導体40に対して接しうる。第4導体50は、第1給電線61の周囲で省略しうる。第1給電線61は、第4導体50の開口を通じて、第3導体40に電磁気的に接続しうる。第1導体層41は、第1給電線61の周囲で省略しうる。第1給電線61は、第1導体層41の開口を通じて、第2導体層42に接続しうる。第1給電線61は、xy平面に沿って第3導体40に対して接しうる。対導体30は、第1給電線61の周囲で省略しうる。第1給電線61は、対導体30の開口を通じて、第3導体40に接続しうる。第1給電線61は、第3導体40の単位導体に対して、当該単位導体の中心部から離れて接続される。
 図63は、第1アンテナ60をz方向からxy平面を平面視した図である。図64は、図63に示したLXIV-LXIV線に沿った断面図である。図63,64に示した第1アンテナ60は、第3導体40の上に第3基体24を有する。第3基体24は、第1導体層41の上に開口を有する。第1給電線61は、第3基体24の開口を介して第1導体層41に電気的に接続される。
 図65は、第1アンテナ60をz方向からxy平面を平面視した図である。図66は、図65に示したLXVI-LXVI線に沿った断面図である。図65,66に示した第1アンテナ60において、第1給電線61の一部は、基体20の上に位置する。第1給電線61は、xy平面内にて第3導体40と接続しうる。第1給電線61は、xy平面内にて第1導体層41と接続しうる。一実施形態において、第1給電線61は、第2導体層42とxy平面に接続しうる。
 図67は、第1アンテナ60をz方向からxy平面を平面視した図である。図68は、図67に示したLXVIII-LXVIII線に沿った断面図である。図67,68に示した第1アンテナ60において、第1給電線61は、基体20の中に位置する。第1給電線61は、z方向における逆方向から第3導体40に接続しうる。第4導体50は、開口を有しうる。第4導体50は、第3導体40とz方向において重なる位置に開口を有しうる。第1給電線61は、開口を介して基体20の外部に臨みうる。
 図69は、第1アンテナ60をx方向からyz面を見た断面図である。対導体30は、開口を有しうる。第1給電線61は、開口を介して基体20の外部に臨みうる。
 第1アンテナ70が放射する電磁波は、第1平面において、y方向の偏波成分よりx方向の偏波成分が大きい。x方向の偏波成分は、z方向から金属板が第4導体50に近づいた際に、水平偏波成分より減衰が小さい。第1アンテナ70は、外部から金属板が近づいた際の放射効率を維持しうる。
 図70は、第1アンテナ60の他の例を示す。図71は、図70に示したLXXI-LXXI線に沿った断面図である。図72は、第1アンテナ60の他の例を示す。図73は、図72に示したLXXIII-LXXIII線に沿った断面図である。図74は、第1アンテナ60の他の例を示す。図75Aは、図74に示したLXXVa-LXXVa線に沿った断面図である。図75Bは、図74に示したLXXVb-LXXVb線に沿った断面図である。図76は、第1アンテナ60の他の例を示す。図76に示した第1アンテナ60は、インピーダンス素子45を有している。
 第1アンテナ60は、インピーダンス素子45によって、動作周波数を変更することができる。第1アンテナ60は、第1給電線61に接続される第1給電導体415と、第1給電線61に接続されない第1単位導体411とを含む。インピーダンス整合は、第1給電導体415と他の導電体とにインピーダンス素子45が接続されると変化する。第1アンテナ60は、インピーダンス素子45によって第1給電導体415と他の導電体とを接続することで、インピーダンスの整合を調整できる。第1アンテナ60において、インピーダンス素子45は、インピーダンス整合を調整するために、第1給電導体415と他の導電体との間に挿入されうる。第1アンテナ60において、インピーダンス素子45は、動作周波数を調整するために、第1給電線61に接続されない2つの第1単位導体411の間に挿入されうる。第1アンテナ60において、インピーダンス素子45は、動作周波数を調整するために、第1給電線61に接続されない第1単位導体411と、対導体30の何れかとの間に挿入されうる。
 第2アンテナ70は、基体20、対導体30、第3導体40、第4導体50、第2給電層71、および第2給電線72を備える。一例において、第3導体40は、基体20の中に位置する。一例において、第2アンテナ70は、基体20の上に第3基体24を有する。第3基体24は、基体20と異なる組成としうる。第3基体24は、第3導体40の上に位置しうる。第3基体24は、第2給電層71の上に位置しうる。
 第2給電層71は、第3導体40の上方に間を空けて位置する。第2給電層71と第3導体40との間に、基体20、または第3基体24が位置しうる。第2給電層71は、ライン型、パッチ型、およびスロット型の共振器を含む。第2給電層71は、アンテナ素子と言いうる。一例において、第2給電層71は、第3導体40と電磁気的に結合しうる。第2給電層71の共振周波数は、第3導体40との電磁気的な結合によって、単独の共振周波数から変化する。一例において、第2給電層71は、第2給電線72からの電力の伝送を受けて、第3導体40と共に共振する。一例において、第2給電層71は、第2給電線72からの電力の伝送を受けて、第3導体40および第3導体と共に共振する。
 第2給電線72は、第2給電層71に電気的に接続される。一実施形態において、第2給電線72は、第2給電層71に電力を伝送する。一実施形態において、第2給電線72は、第2給電層71からの電力を外部に伝送する。
 図77は、第2アンテナ70をz方向からxy平面を平面視した図である。図78は、図77に示したLXXVIII-LXXVIII線に沿った断面図である。図77,78に示した第2アンテナ70において、第3導体40は、基体20の中に位置する。第2給電層71は、基体20の上に位置する。第2給電層71は、単位構造体10Xとz方向に重なって位置する。第2給電線72は、基体20の上に位置する。第2給電線72は、xy平面において第2給電層71に電磁気的に接続される。
 本開示の無線通信モジュールは、複数の実施形態の一例として無線通信モジュール80を含む。図79は、無線通信モジュール80のブロック構造図である。図80は、無線通信モジュール80の概略構成図である。無線通信モジュール80は、第1アンテナ60、回路基板81、RFモジュール82を備える。無線通信モジュール80は、第1アンテナ60に代えて第2アンテナ70を備えうる。
 第1アンテナ60は、回路基板81の上に位置する。第1アンテナ60の第1給電線61は、回路基板81を介してRFモジュール82に電磁気的に接続される。第1アンテナ60の第4導体50は、回路基板81のグラウンド導体811に電磁気的に接続される。
 グラウンド導体811は、xy平面に広がりうる。グラウンド導体811は、xy平面において第4導体50より面積が広い。グラウンド導体811は、y方向において第4導体50より長い。グラウンド導体811は、x方向において第4導体50より長い。第1アンテナ60は、y方向において、グラウンド導体811の中心よりも端側に位置しうる。第1アンテナ60の中心は、xy平面においてグラウンド導体811の中心と異なりうる。第1アンテナ60の中心は、第1導体41および第2導体42の中心と異なりうる。第1給電線61が第3導体40に接続される点は、xy平面におけるグラウンド導体811の中心と異なりうる。
 第1アンテナ60は、対導体30を介して第1電流および第2電流がループする。第1アンテナ60は、グラウンド導体811の中心よりy方向における端側に位置することで、グラウンド導体811を流れる第2電流が非対象になる。グラウンド導体811を流れる第2電流が非対象になると、第1アンテナ60およびグラウンド導体811を含むアンテナ構造体は、放射波のx方向の偏波成分が大きくなる。放射波のx方向の偏波成分が大きくすることで、放射波は、総合放射効率が向上しうる。
 RFモジュール82は、第1アンテナ60に供給する電力を制御しうる。RFモジュール82は、ベースバンド信号を変調し、第1アンテナ60に供給する。RFモジュール82は、第1アンテナ60で受信された電気信号をベースバンド信号に変調しうる。
 第1アンテナ60は、回路基板81側の導体によって共振周波数の変化が小さい。無線通信モジュール80は、第1アンテナ60を有することで、外部環境から受ける影響を低減しうる。
 第1アンテナ60は、回路基板81と一体構成としうる。第1アンテナ60と回路基板81とが一体構成の場合、第4導体50とグラウンド導体811とが一体構成となる。
 本開示の無線通信機器は、複数の実施形態の一例として無線通信機器90を含む。図81は、無線通信機器90のブロック構造図である。図82は、無線通信機器90の平面視図である。図82に示した無線通信機器90は、構成の一部を省略している。図83は、無線通信機器90の断面図である。図83に示した無線通信機器90は、構成の一部を省略している。無線通信機器90は、無線通信モジュール80、電池91、センサ92、メモリ93、コントローラ94、第1筐体95、および第2筐体96を備える。無線通信機器90の無線モジュール80は、第1アンテナ60を有しているが、第2アンテナ70を有しうる。図84は、無線通信機器90の他の実施形態の1つである。無線通信機器90の有する第1アンテナ60は、基準電位層51を有しうる。
 電池91は、無線通信モジュール80に電力を供給する。電池91は、センサ92、メモリ93、およびコントローラ94の少なくとも1つに電力を供給しうる。電池91は、1次電池および二次電池の少なくとも一方を含みうる。電池91のマイナス極は、回路基板81のグラウンド端子に電気的に接続される。電池91のマイナス極は、アンテナ60の第4導体50に電気的に接続される。
 センサ92は、例えば、速度センサ、振動センサ、加速度センサ、ジャイロセンサ、回転角センサ、角速度センサ、地磁気センサ、マグネットセンサ、温度センサ、湿度センサ、気圧センサ、光センサ、照度センサ、UVセンサ、ガスセンサ、ガス濃度センサ、雰囲気センサ、レベルセンサ、匂いセンサ、圧力センサ、空気圧センサ、接点センサ、風力センサ、赤外線センサ、人感センサ、変位量センサ、画像センサ、重量センサ、煙センサ、漏液センサ、バイタルセンサ、バッテリ残量センサ、超音波センサまたはGPS(Global Positioning System)信号の受信装置等を含んでよい。
 メモリ93は、例えば半導体メモリ等を含みうる。メモリ93は、コントローラ94のワークメモリとして機能しうる。メモリ93は、コントローラ94に含まれうる。メモリ93は、無線通信機器90の各機能を実現する処理内容を記述したプログラム、および無線通信機器90における処理に用いられる情報等を記憶する。
 コントローラ94は、例えばプロセッサを含みうる。コントローラ94は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。特定用途向けICは、ASIC(Application Specific Integrated Circuit)ともいう。プロセッサは、プログラマブルロジックデバイスを含んでよい。プログラマブルロジックデバイスは、PLD(Programmable Logic Device)ともいう。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。コントローラ94は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)のいずれかであってよい。コントローラ94は、メモリ93に、各種情報、または無線通信機器90の各構成部を動作させるためのプログラム等を格納してよい。
 コントローラ94は、無線通信機器90から送信する送信信号を生成する。コントローラ94は、例えば、センサ92から測定データを取得してよい。コントローラ94は、測定データに応じた送信信号を生成してよい。コントローラ94は、無線通信モジュール80のRFモジュール82にベースバンド信号を送信しうる。
 第1筐体95および第2筐体96は、無線通信機器90の他のデバイスを保護する。第1筐体95は、xy平面に広がりうる。第1筐体95は、他のデバイスを支える。第1筐体95は、無線通信モジュール80を支持しうる。無線通信モジュール80は、第1筐体95の上面95Aの上に位置する。第1筐体95は、電池91を支持しうる。電池91は、第1筐体95の上面95Aの上に位置する。複数の実施形態の一例において、第1筐体95の上面95Aの上には、無線通信モジュール80と、電池91とがx方向に沿って並んでいる。電池91は、第3導体40との間に第1導体31が位置する。電池91は、第3導体40から観て対導体30の向こう側に位置する。
 第2筐体96は、他のデバイスを覆いうる。第2筐体96は、第1アンテナ60のz方向側に位置する下面96Aを含む。下面96Aは、xy平面に沿って広がる。下面96Aは、平坦に限られず、凹凸を含みうる。第2筐体96は、第8導体961を有しうる。第8導体961は、第2筐体96の内部、外側および内側の少なくとも一方に位置する。第8導体961は、第2筐体96の上面および側面の少なくとも一方に位置する。
 第8導体961は、第1アンテナ60と対向する。第8導体961の第1部位9611は、z方向において、第1アンテナ60と対向する。第8導体961は、第1部位9611の他に、x方向において第1アンテナ60と対向する第2部位、およびy方向において第1アンテナと対向する第3部位の少なくとも一方を含みうる。第8導体961は、一部が電池91と対向している。
 第8導体961は、x方向において第1導体31より外側に延びる第1延部9612を含みうる。第8導体961は、x方向において第2導体32より外側に延びる第2延部9613を含みうる。第1延部9612は、第1部位9611と電気的に接続しうる。第2延部9613は、第1部位9611と電気的に接続しうる。第8導体961の第1延部9612は、z方向において、電池91と対向している。第8導体961は、電池91と容量的に結合しうる。第8導体961は、電池91との間がキャパシタンスとなりうる。
 第8導体961は、第1アンテナ60の第3導体40と離隔する。第8導体961は、第1アンテナ60の各導体と電気的に接続されていない。第8導体961は、第1アンテナ60と離隔しうる。第8導体961は、第1アンテナ60のいずれかの導体と電磁気的に結合しうる。第8導体961の第1部位9611は、第1アンテナ60と電磁気的に結合しうる。第1部位9611は、z方向から平面視したときに、第3導体40と重なりうる。第1部位9611は、第3導体40と重なることで、電磁気的な結合による伝播が大きくなりうる。第8導体961は、第3導体40との電磁気的な結合が相互インダクタンスとなりうる。
 第8導体961は、x方向に沿って広がっている。第8導体961は、xy平面に沿って広がっている。第8導体961の長さは、第1アンテナ60のx方向に沿った長さより長い。第8導体961のx方向に沿った長さは、第1アンテナ60のx方向に沿った長さより長い。第8導体961の長さは、無線通信機器90の動作波長λの1/2より長くしうる。第8導体961は、y方向に沿って延びる部位を含みうる。第8導体961は、xy平面内で曲がりうる。第8導体961は、z方向に沿って延びる部位を含みうる。第8導体961は、xy平面からyz平面またはzx平面に曲がりうる。
 第8導体961を備える無線通信機器90は、第1アンテナ60および第8導体961が電磁的に結合して第3アンテナ97として機能しうる。第3アンテナ97の動作周波数fcは、第1アンテナ60単独の共振周波数と異なってよい。第3アンテナ97の動作周波数fcは、第8導体961単独の共振周波数より第1アンテナ60の共振周波数に近くてよい。第3アンテナ97の動作周波数fcは、第1アンテナ60の共振周波数帯内にありうる。第3アンテナ97の動作周波数fcは、第8導体961単独の共振周波数帯外にありうる。図85は、第3アンテナ97の他の実施形態である。第8導体961は、第1アンテナ61と一体的に構成されうる。図85は、無線通信機器90の一部の構成を省略している。図85の例において、第2筐体96は第8導体961を備えなくてよい。
 無線通信機器90において、第8導体961は、第3導体40に対して容量的に結合する。第8導体961は、第4導体50に対して電磁気的に結合する。第3アンテナ97は、空中において、第8導体の第1延部9612および第2延部9613を含むことにより、第1アンテナ60に比べて利得が向上する。
 無線通信機器90は、種々の物体の上に位置しうる。無線通信機器90は、電導体99の上に位置しうる。図86は、無線通信機器90の一実施形態を示す平面視図である。電導体99は、電気を伝える導体である。電導体99の材料は、金属、ハイドープの半導体、電導プラスチック、イオンを含む液体を含み。電導体99は、表面上に電気を伝えない不導体層を含みうる。電気を伝える部位と不導体層とは、共通の元素を含みうる。例えば、アルミニウムを含む電導体99は、表面にアルミ酸化物の不導体層を含みうる。電気を伝える部位と不導体層とは、異なる元素を含みうる。
 電導体99の形状は、平板に限られず、箱形などの立体形状を含みうる。電導体99がなす立体形状は、直方体、円柱を含む。当該立体形状は、一部が窪んだ形状、一部が貫通した形状、一部が突出した形状を含みうる。例えば、電導体99は、円環(トーラス)型としうる。
 電導体99は、無線通信機器90を載せうる上面99Aを含む。上面99Aは、電導体99の全面に亘って広がりうる。上面99Aは、電導体99の一部としうる。上面99Aは、無線通信機器90より面積を広くしうる。無線通信機器90は、電導体99の上面99A上に置かれうる。上面99Aは、無線通信機器90より面積を狭くしうる。無線通信機器90は、電導体99の上面99A上に一部が置かれうる。無線通信機器90は、電導体99の上面99A上に種々の向きで置かれうる。無線通信機器90の向きは、任意としうる。無線通信機器90は、電導体99の上面99A上に固定具によって適宜固定されうる。固定具は、両面テープおよび接着剤などのように面で固定するものを含む。固定具は、ネジおよび釘などのように点で固定するものを含む。
 電導体99の上面99Aは、j方向に沿って延びる部位を含みうる。j方向に沿って延びる部位は、k方向に沿った長さに比べてj方向に沿った長さが長い。j方向とk方向とは、直交している。j方向は、電導体99が長く伸びる方向である。k方向は、電導体99がj方向に比べて長さが短い方向である。無線通信機器90は、x方向がj方向に沿うように、上面99A上に置かれうる。第1導体31および第2導体32が並ぶx方向と揃うように、無線通信機器90は、電導体99の上面99A上に置かれうる。無線通信機器90が電導体99の上に位置するときに、第1アンテナ60は、電導体99と電磁気的に結合しうる。第1アンテナ60の第4導体50は、x方向に沿って第2電流が流れる。第1アンテナ60と電磁気的に結合する電導体99は、第2電流によって電流が誘導される。第1アンテナ60のx方向と電導体99のj方向とが揃うと、電導体99は、j方向に沿って電流が流れる電流が大きくなる。第1アンテナ60のx方向と電導体99のj方向とが揃うと、電導体99は、誘導電流による放射が大きくなる。j方向に対するx方向の角度は、45度以下としうる。
 無線通信機器90のグラウンド導体811は、電導体99と離れている。グラウンド導体811は、電導体99と離れている。無線通信機器90は、上面99Aの長辺に沿った方向が、第1導体31および第2導体32が並ぶx方向と揃うように、上面99A上に置かれうる。上面99Aは、方形状の面の他に、菱形、円形を含みうる。電導体99は、菱形状の面を含みうる。この菱形状の面は、無線通信機器90を載せる上面99Aとしうる。無線通信機器90は、上面99Aの長対角線に沿った方向が、第1導体31および第2導体32が並ぶx方向と揃うように、上面99A上に置かれうる。上面99Aは、平坦に限られない。上面99Aは、凹凸を含みうる。上面99Aは、曲面を含みうる。曲面は、線織面(ruled surface)を含む。曲面は、柱面を含む。
 電導体99は、xy平面に広がる。電導体99は、y方向に沿った長さに比べてx方向に沿った長さを長くしうる。電導体99は、y方向に沿った長さを第3アンテナ97の動作周波数fcにおける波長λcの2分の1より短くしうる。無線通信機器90は、電導体99の上に位置しうる。電導体99は、z方向において第4導体50と離れて位置する。電導体99は、x方向に沿った長さが第4導体50に比べて長い。電導体99は、xy平面における面積が第4導体50より広い。電導体99は、z方向においてグラウンド導体811と離れて位置する。電導体99は、x方向に沿った長さがグラウンド導体811に比べて長い。電導体99は、xy平面における面積がグラウンド導体811より広い。
 無線通信機器90は、電導体99が長く延びる方向に、第1導体31および第2導体32が並ぶxが揃う向きで、電導体99の上に置かれうる。言い換えると、無線通信機器90は、xy平面において第1アンテナ60の電流が流れる方向と、電導体99が長く延びる方向とが揃う向きで、電導体99の上に置かれうる。
 第1アンテナ60は、回路基板80側の導体によって共振周波数の変化が小さい。無線通信機器90は、第1アンテナ60を有することで、外部環境から受ける影響を低減しうる。
 無線通信機器90において、グラウンド導体811は、電導体99と容量的に結合する。無線通信機器90は、電導体99のうち第3アンテナ97より外に拡がる部位を含むことにより、第1アンテナ60に比べて利得が向上する。
 無線通信機器90は、空中での共振回路と、電導体99上での共振回路とが異なりうる。図87は、空中でなす共振構造の概略回路である。図88は、電導体99上でなす共振構造の概略回路である。L3は共振器10のインダクタンスであり、L8は第8導体961のインダクタンスであり、L9は電導体99のインダクタンスであり、MはL3とL8の相互インダクタンスである。C3は第3導体40のキャパシタンスであり、C4は第4導体50のキャパシタンスであり、C8は第8導体961のキャパシタンスであり、C8Bは第8導体961と電池91とのキャパシタンスであり、C9は電導体99とグラウンド導体811とキャパシタンスである。R3は共振器10の放射抵抗であり、R8は、第8導体961の放射抵抗である。共振器10の動作周波数は、第8導体の共振周波数より低い。無線通信機器90は、空中において、グラウンド導体811がシャーシグラウンドとして機能する。無線通信機器90は、第4導体50が電導体99と容量的に結合する。電導体99上において無線通信機器90は、電導体99が実質的なシャーシグラウンドとして機能する。
 複数の実施形態において、無線通信機器90は、第8導体961を有する。この第8導体961は、第1アンテナ60と電磁気的に結合し、かつ第4導体50と容量的に結合している。無線通信機器90は、容量的な結合によるキャパシタンスC8Bを大きくすることで、空中から電導体99上へ置かれたときに動作周波数を高くすることができる。無線通信機器90は、電磁気的な結合による相互インダクタンスMを大きくすることで、空中から電導体99上へ置かれたときに動作周波数を低くすることができる。無線通信機器90は、キャパシタンスC8Bと相互インダクタンスMのバランスを変えることで、空中から電導体99上へ置かれたときの動作周波数の変化を調整できる。無線通信機器90は、キャパシタンスC8Bと相互インダクタンスMのバランスを変えることで、空中から電導体99上へ置かれたときの動作周波数の変化を小さくできる。
 無線通信機器90は、第3導体40と電磁気的に結合し、第4導体50と容量的に結合する第8導体961を有する。かかる第8導体961を有することで、無線通信機器90は、空中から電導体99上へ置かれたときの動作周波数の変化を調整できる。かかる第8導体961を有することで、無線通信機器90は、空中から電導体99上へ置かれたときの動作周波数の変化を小さくできる。
 第8導体961を含まない無線通信機器90も同様に、空中においては、グラウンド導体811がシャーシグラウンドとして機能する。第8導体961を含まない無線通信機器90も同様に、電導体99上においては、電導体99が実質的なシャーシグラウンドとして機能する。共振器10を含む共振構造は、シャーシグランドが変わっても発振可能である。基準電位層51を備える共振器10および基準電位層51を備えない共振器10が発振可能であることと対応する。
 [自転車の構成例]
 図89は、自転車1の一実施形態を示す外観図である。図90は、図89に示す自転車1のフレームを示す図である。図91は、図89に示す自転車1のクランク1b-1およびチェーンホイール1jを示す図である。図92は、図89に示す自転車1のデュアルコントロールレバー1hを示す図である。
 自転車1は、人力で走行する。ここで、本開示の「自転車」は、人力のみで走行する自転車に限定されない。例えば、「自転車」は電動アシスト自転車、電動自転車、および二輪駆動自転車を含んでよい。本開示の「自転車」は、二輪車に限定されない。例えば、「自転車」は、一輪車、三輪車、および四輪車を含んでよい。なお、自転車の分類は、上述に限られない。例えば、「自転車」は、タンデム自転車を含んでよい。
 自転車1は、個人が所有するものであってよい。自転車1は、自転車の貸出サービスを提供する事業者が所有するものであってよい。自転車1は、食品等の宅配サービスを提供する事業者が所有するものであってよい。以下、自転車1を利用する権限がある者は、「利用者」という。自転車1を現在運転している者は、「運転者」という。
 自転車1は、フレームと、自転車用部品とを備える。自転車1のフレームは、任意の導電性材料であってよい。導電性材料は、金属、および炭素繊維強化プラスチックを含んでよい。自転車用部品は、その部品の用途に応じて、任意の部材で構成されてよい。
 自転車1のフレームは、図90に示すように、シートステー1Aと、シートチューブ1Bと、チェーンステー1Cと、ダウンチューブ1Dと、フロントフォーク1Eと、ヘッドチューブ1Fと、トップチューブ1Gとを含んでよい。自転車1のフレームは、リアフォークエンド1Hと、ボトムブラケットシェル1Jと、フロントフォークエンド1Kとを含んでよい。自転車1のフレームの形状は、図90に示す形状に限定されず、任意の形状であってよい。
 シートステー1Aは、リアフォークエンド1Hからシートチューブ1Bの一端まで向かう延在方向Aに沿って延在する。
 シートチューブ1Bは、ボトムブラケットシェル1Jからシートステー1Aの一端に向かう延在方向Bに沿って延在する。
 チェーンステー1Cは、リアフォークエンド1Hからボトムブラケットシェル1Jまで延在する延在方向Cに沿って延在する。
 ダウンチューブ1Dは、ボトムブラケットシェル1Jからヘッドチューブ1Fに向かう延在方向Dに沿って延在する。
 フロントフォーク1Eは、ヘッドチューブ1Fの一端からフロントフォークエンド1Kに向かう延在方向Eに沿って延在する。
 ヘッドチューブ1Fは、フロントフォーク1Eの一端からトップチューブ1Gの一端に向かう延在方向Fに沿って延在する。
 トップチューブ1Gは、シートステー1Aの一端からヘッドチューブ1Fの他端に向かう延在方向Fに沿って延在する。
 自転車1の自転車用部品は、図89に示すように、ハンドル1aと、クランク1bと、リアホイール1cと、ホイール1dと、ステム1eと、リアディレイラー1fと、フロントディレイラー1gと、デュアルコントロールレバー1h、ライト1iと、チェーンホイール1jと、ブレーキ1k-1と、ブレーキ1k-2と、ペダル1mとを含んでよい。自転車1の自転車用部品は、図91に示すように、パワーメータ1nを含んでよい。自転車1の自転車用部品は、図89に示すように、バッテリ1oを含んでよい。自転車1の自転車用部品は、図89に示すように、サドル1pと、シートポスト1qと、ヘッドパーツ1rとを含んでよい。
 クランク1bは、図91に示すように、ボトムブラケットシェル1Jからペダル1mに向かう延在方向bに沿って延在する。クランク1bは、運転者の右足からの動力を受けるクランク1b-1と、運転者の左足からの動力を受けるクランク1b-2とを含んでよい。
 リアホイール1cは、スポーク1c-1と、リム1c-2と、タイヤ1c-3と、ハブ1c-4とを含んでよい。ハブ1c-4は、図90に示すリアフォークエンド1Hに、取り付けられる。ハブ1c-4は、リアホイール1cの回転軸となる。
 ホイール1dは、スポーク1d-1と、リム1d-2と、タイヤ1d-3と、ハブ1d-4とを含んでよい。ハブ1d-4は、図90に示すフロントフォークエンド1Kに、取り付けられる。ハブ1d-4は、ホイール1dの回転軸となる。
 ブレーキ1k-1およびブレーキ1k-2のそれぞれは、ブレーキキャリパを含んで構成されてよい。ブレーキ1k-1のブレーキキャリパは、リアホイール1cを挟込み可能に構成されてよい。ブレーキ1k-2のブレーキキャリパは、ホイール1dを挟込み可能に構成されてよい。
 チェーンホイール1jは、円周方向j1に沿って延在する。チェーンホイール1jは、複数のチェーンホイールを含んでよい。例えば、チェーンホイール1jは、図91に示すように、チェーンホイール1j-1と、チェーンホイール1j-2とを含んでよい。チェーンホイール1jは、チェーンホイール1j-1とチェーンホイール1j-2とを繋ぐ部位を含んでよい。当該部位は、チェーンホイール1jの径方向j2に沿って延在してよい。
 チェーンホイール1jは、孔部1j-3と、ボトムブラケット1j-4とを含んでよい。ボトムブラケット1j-4は、図90に示すボトムブラケットシェル1Jに、取り付けられる。チェーンホイール1jは、ボトムブラケット1j-4に取り付けられる。ボトムブラケット1j-4は、チェーンホイール1jの回転軸となる。
 ペダル1mは、運転者の右足が載せられるペダル1m-1と、運転者の左足が載せられるペダル1m-2とを含んでよい。
 デュアルコントロールレバー1hは、図92に示すように、シフトレバー1h-1およびブレーキレバー1h-2を含んで構成されてよい。シフトレバー1h-1には、スイッチ1h-3が設けられてよい。ブレーキレバー1h-2は、延在方向hに沿って延在してよい。自転車用部品は、デュアルコントロールレバー1hの代わりに、独立したシフトレバー、およびブレーキレバーを含んでよい。
 パワーメータ1nは、図91に示すようなチェーンホイール1jの孔部1j-3に配置されてよい。
 ここで、本開示の「自転車用部品」は、上述の部品に限定されない。本開示の「自転車用部品」は、自転車の用途に応じて、任意の部品を含んでよい。例えば、「自転車用部品」は、シャドー、およびサイクルコンピュータを含んでよい。
 自転車1は、少なくとも1つの第1アンテナ60aを備える。第1アンテナ60aは、上述の第1アンテナ60と同様の構造を有する。自転車1は、第1アンテナ60aに加えて、または第1アンテナ60aの代わりに、第2アンテナ70を備えてよい。
 第1アンテナ60aは、自転車1のフレームのいずれかに配置されてよい。第1アンテナ60aは、第1アンテナ60aに含まれる第4導体50が自転車1のフレームに対向するように、当該フレームに配置されてよい。第1アンテナ60aの第4導体50を自転車1のフレームに対向させることで、第4導体50に対して当該フレームが位置する方向は、第4導体50に対して第3導体40が位置する方向とは、反対方向になりうる。第1アンテナ60aが放射する電磁波の実効的な進行方向は、第4導体50に対して第3導体40が位置する方向となりうる。第1アンテナ60aの第4導体50を自転車1のフレームに対向させることで、自転車1のフレームは、第1アンテナ60aが放射する電磁波の実効的な進行方向とは反対方向に、位置しうる。自転車1のフレームが第1アンテナ60aからの電磁波の実効的な進行方向とは反対方向に位置することで、第1アンテナ60aの放射効率が維持されうる。
 第1アンテナ60aは、自転車1のフレームが導電性の長尺部を含む場合、当該長尺部に配置されてよい。第1アンテナ60aは、第1方向が導電性の長尺部に沿うように、当該長尺部に配置されてよい。当該長尺部は、シートステー1A、シートチューブ1B、チェーンステー1C、ダウンチューブ1D、フロントフォーク1E、ヘッドチューブ1F、およびトップチューブ1Gを含んでよい。第1アンテナ60aが自転車1のフレームに含まれる導電性の長尺部に配置されることで、第1アンテナ60aと当該長尺部とが電磁気的に結合しうる。第1アンテナ60aの第4導体50と当該長尺部とが容量的に結合することで、第1アンテナ60aが電磁波を放射するとき、当該長尺部に電流が誘導されうる。当該長尺部に誘導された電流によって、当該長尺部は、電磁波を放射しうる。当該長尺部に誘導された電流を長尺部が電磁波として放射することで、第1アンテナ60aが電磁波を放射するとき、第1アンテナ60aの総合放射効率が向上しうる。長尺部から放射される電磁波は、長尺部から等方的に放射されうる。
 例えば、第1アンテナ60aを長尺部としてのシートステー1Aに配置される場合、第1アンテナ60aは、第1方向が延在方向Aに沿うように、シートステー1Aに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのシートチューブ1Bに配置させる場合、第1アンテナ60aは、第1方向が延在方向Bに沿うように、シートチューブ1Bに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのチェーンステー1Cに配置される場合、第1アンテナ60aは、第1方向が延在方向Cに沿うように、チェーンステー1Cに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのダウンチューブ1Dに配置させる場合、第1アンテナ60aは、第1方向が延在方向Dに沿うように、ダウンチューブ1Dに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのフロントフォーク1Eに配置させる場合、第1アンテナ60aは、第1方向が延在方向Eに沿うように、フロントフォーク1Eに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのヘッドチューブ1Fに配置させる場合、第1アンテナ60aは、第1方向が延在方向Fに沿うように、ヘッドチューブ1Fに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのトップチューブ1Gに配置させる場合、第1アンテナ60aは、第1方向が延在方向Gに沿うように、トップチューブ1Gに配置されてよい。
 第1アンテナ60aは、自転車1の自転車用部品のいずれかに、配置されてよい。第1アンテナ60aは、第1アンテナ60aに含まれる第4導体50が自転車1の自転車用部品に対向するように、当該自転車用部品に配置されてよい。第1アンテナ60aの第4導体50を自転車用部品に対向させることで、上述のように、第1アンテナ60aの放射効率が維持されうる。
 第1アンテナ60aは、自転車用部品が導電性の長尺部を有する場合、当該長尺部に配置されてよい。第1アンテナ60aは、第1方向が自転車用部品の導電性の長尺部に沿うように、当該長尺部に配置されてよい。第1アンテナ60aが当該長尺部に配置されることで、上述のように、第1アンテナ60aの総合放射効率が向上しうる。一例として、導電性の長尺部を有する自転車用部品は、ブレーキレバー1h-2、チェーンホイール1j、およびクランク1bを含んでよい。
 例えば、第1アンテナ60aを長尺部としてのクランク1bに配置させる場合、第1アンテナ60aは、第1方向が延在方向bに沿うように、クランク1bに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのチェーンホイール1jに配置させる場合、第1アンテナ60aは、第1方向が円周方向j1に沿うように、チェーンホイール1jに配置されてよい。第1アンテナ60aは、第1方向が径方向j2に沿うように、チェーンホイール1jに配置されてよい。
 例えば、第1アンテナ60aを長尺部としてのブレーキレバー1h-2に配置させる場合、第1アンテナ60aは、第1方向が延在方向hに沿うように、ブレーキレバー1h-2に配置されてよい。
 第1アンテナ60aは、運転者と接触しうる自転車用部品に配置されてよい。第1アンテナ60aは、運転者と接触しうる自転車用部品に含まれる部分のうち、運転者との接触が少ない部分に、配置されてよい。一例として、運転者と接触しうる自転車用部品は、ハンドル1a、シフトレバー1h-1、およびブレーキレバー1h-2を含んでよい。
 例えば、第1アンテナ60aをハンドル1aに配置させる場合、第1アンテナ60aは、ハンドル1aに含まれる部位のうち、運転者が手で握ることが少ない部位に配置されてよい。当該部位は、ハンドル1aの根元部分であってよいし、ハンドル1aの終端部分であってよい。
 例えば、第1アンテナ60aをブレーキレバー1h-2に配置させる場合、第1アンテナ60aは、ブレーキレバー1h-2に含まれる部位のうち、運転者が手で握ることが少ない部位に配置されてよい。当該部位は、図92に示すような、ブレーキレバー1h-2の根元部分であってよい。
 [自転車の機能の一例]
 図93は、図89に示す自転車1の一例の機能ブロック図である。自転車1は、ネットワーク2を介して、情報処理装置3と通信することができる。自転車1は、移動体4と直接通信することができる。ネットワーク2は、無線ネットワークを含んでよい。ネットワーク2の一部は、有線ネットワークを含んでよい。自転車1、および情報処理装置3は、情報集積システムを構成しうる。情報処理装置3は、複数の自転車1と通信しうる。
 自転車1は、センサ機器110と、通信機器120とを備える。センサ機器110と通信機器120とは、一体構成されてよい。例えば、センサ機器110のセンサ112を通信機器120に統合させることにより、センサ機器110と通信機器120とは、一体構成されてよい。
 情報処理装置3は、任意の事業者等によって管理されてよい。例えば自転車の貸出サービスを提供する事業者が自転車1を所有する場合、情報処理装置3は、当該貸出サービスを提供する事業者によって、管理されてよい。例えば宅配サービスを提供する事業者が自転車1を所有する場合、情報処理装置3は、当該宅配サービスを提供する事業者によって、管理されてよい。例えば自転車1の所有者が保険会社と契約している場合、情報処理装置3は、当該保険会社によって、管理されてよい。
 情報処理装置3は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアで構成されてよい。コンピュータシステムその他のハードウェアは、汎用コンピュータ、PC(パーソナルコンピュータ)、専用コンピュータ、ワークステーション、PCS(Personal Communications System、パーソナル移動通信システム)、移動(セルラー)電話機、データ処理機能を備えた移動電話機、RFID(Radio Frequency IDentification)受信機、ゲーム機、電子ノートパッド、ラップトップコンピュータ、GPS(Global Positioning System)受信機またはその他のプログラム可能なデータ処理装置を含んでよい。
 移動体4は、移動体のうち、自転車1の通信圏内に存在する移動体である。移動体4は、車両、船舶、および航空機を含む。例えば、移動体4は、自転車1の通信圏内を走行する車両であってよい。ここで、本開示の「車両」は、自動車、鉄道車両、産業車両、および生活車両を含むが、これに限定されない。例えば車両は、滑走路を走行する飛行機を含んでよい。自動車は、乗用車、トラック、バス、二輪車、およびトロリーバス等を含むがこれに限定されず、道路上を走行する他の車両を含んでよい。軌道車両は、機関車、貨車、客車、路面電車、案内軌道鉄道、ロープウエー、ケーブルカー、リニアモーターカー、およびモノレールを含むがこれに限定されず、軌道に沿って進む他の車両を含んでよい。産業車両は、農業、および建設向けの産業車両を含む。産業車両は、フォークリフト、およびゴルフカートを含むがこれに限定されない。農業向けの産業車両は、トラクター、耕耘機、移植機、バインダー、コンバイン、および芝刈り機を含むが、これに限定されない。建設向けの産業車両は、ブルドーザー、スクレーバー、ショベルカー、クレーン車、ダンプカー、およびロードローラを含むが、これに限られない。生活車両は、自転車、車いす、乳母車、手押し車、および電動立ち乗り二輪車を含むが、これに限定されない。車両の動力機関は、ディーゼル機関、ガソリン機関、および水素機関を含む内燃機関、ならびにモーターを含む電気機関を含むが、これに限定されない。車両は、人力で走行するものを含む。なお、車両の分類は、上述に限られない。例えば、自動車は、道路を走行可能な産業車両を含んでよく、複数の分類に同じ車両が含まれてよい。
 センサ機器110は、通信機器120と直接通信することができる。センサ機器110と通信機器120とは、有線通信してよいし、無線通信してよい。無線通信は、近距離通信規格に基づいてよい。近距離通信規格は、WiFi(登録商法)、Bluetooth(登録商標)、および無線LAN(Local Area Network)を含んでよい。
 センサ機器110は、センサ112と、メモリ113と、コントローラ114とを有する。センサ機器110は、例えばセンサ機器110と通信機器120とが無線通信する場合、少なくとも1つの第1アンテナ60bを有してよい。センサ機器110は、センサ機器110の外部または外面に、第1アンテナ60bを有してよい。センサ機器110は、電池111を有してよい。センサ機器110は、電池111を有さない場合、図90に示すバッテリ1oから供給される電力によって、動作してよい。センサ機器110がバッテリ1oから電力の供給を受ける場合、センサ機器110とバッテリ1oとは、電力線等で電気的に接続されてよい。
 第1アンテナ60bは、通信機器120の第1アンテナ60cとは独立した、上述の第1アンテナ60aであってよい。
 第1アンテナ60bは、センサ機器110と他の装置との間の通信で使用される周波数帯に応じて適宜構成されてよい。言い換えると、第1アンテナ60bに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、センサ機器110と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。例えば、第1アンテナ60bは、センサ機器110と通信機器120との間の近距離通信で使用される周波数帯に応じて構成されてよい。例えば、第1アンテナ60bは、センサ機器110とGPS衛星との間の通信で使用される周波数帯に応じて構成されてよい。
 第1アンテナ60bの配置位置は、センサ機器110の通信相手に応じて、またはセンサ112が取得するデータに応じて、図89~図92を参照して上述した配置位置の中から、適宜選択されてよい。
 例えばセンサ機器110の通信相手がGPS衛星である場合、第1アンテナ60bの配置位置は、図90に示すトップチューブ1G、または図89に示すステム1eであってよい。第1アンテナ60bが図90に示すトップチューブ1G等に配置されることで、第1アンテナ60bは、GPS衛星からの電磁波を受信しやすくなる。
 第1アンテナ60bは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60bが受信した受信信号は、第1アンテナ60bの第1給電線61を経由して、コントローラ114に伝送される。また、第1アンテナ60bは、第1アンテナ60bの第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を放射しうる。
 電池111は、第1アンテナ60b、センサ112、メモリ113、およびコントローラ114の少なくとも1つに電力を供給しうる。電池111は、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池111のマイナス極は、第1アンテナ60bの第4導体50に電気的に接続される。
 センサ112は、センサ機器110の用途に応じて、適宜構成されてよい。センサ112は、速度センサ、加速度センサ、ジャイロセンサ、回転角センサ、歪センサ、地磁気センサ、温度センサ、湿度センサ、気圧センサ、照度センサ、カメラ、および生体センサの少なくとも1つを含んで構成されてよい。前述のとおり、第1アンテナ60bの配置位置は、センサ112が測定するデータに応じて、図89~図92を参照して上述した配置位置の中から、適宜選択されてよい。
 例えば、センサ112は、速度センサを含んで構成される場合、自転車1の速度を測定しうる。センサ112は、測定した自転車1の速度を、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図90に示すシートステー1A、またはチェーンステー1Cに配置されうる。この例では、第1アンテナ60bの配置位置は、シートステー1A、またはチェーンステー1Cであってよい。
 例えば、センサ112は、加速度センサを含んで構成される場合、自転車1に働く加速度を測定しうる。センサ112は、測定した加速度を、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図90に示すシートステー1A、またはチェーンステー1Cに配置されうる。この例では、第1アンテナ60bの配置位置は、シートステー1A、またはチェーンステー1Cであってよい。
 例えば、センサ112は、ジャイロセンサを含んで構成される場合、自転車1の角速度を測定しうる。センサ112は、測定した角速度を、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図90に示すシートステー1A、またはチェーンステー1Cに配置されうる。この例では、第1アンテナ60bの配置位置は、シートステー1A、またはチェーンステー1Cであってよい。
 例えば、センサ112は、回転角センサを含んで構成される場合、自転車1のクランク1bの回転速度を測定しうる。この例では、センサ112を備えるセンサ機器110は、図91に示すチェーンホイール1jの孔部1j-3に配置されたパワーメータ1nでありうる。センサ112は、測定した回転速度を、コントローラ114に出力する。この例では、第1アンテナ60bの配置位置は、図91に示すチェーンホイール1j-1、またはチェーンホイール1j-2であってよい。
 例えば、センサ112は、歪センサを含んで構成される場合、クランク1bにかかる負荷を測定しうる。センサ112は、測定した負荷のデータを、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図91に示すクランク1bに配置されたパワーメータ1nでありうる。この例では、第1アンテナ60bの配置位置は、図91に示すパワーメータ1nであってよいし、クランク1bであってよい。
 例えば、センサ112は、地磁気センサを含んで構成される場合、自転車1の周囲の磁気の大きさおよび方向を測定しうる。センサ112は、測定した磁気の大きさ、および方向を、コントローラ114に出力する。この例では、センサ112を含むセンサ機器110は、自転車1のフレームのいずれかに、または自転車用部品のいずれかに配置されうる。この例では、第1アンテナ60bの配置位置は、センサ機器110が配置された、またはセンサ機器110の近傍の、自転車1のフレームのいずれか、または自転車用部品のいずれかであってよい。
 例えば、センサ112は、温度センサを含んで構成される場合、自転車1の周囲の温度を測定しうる。センサ112は、測定した温度を、コントローラ114に出力する。この例では、センサ112を含むセンサ機器110は、自転車1のフレームのいずれかに、または自転車用部品のいずれかに配置されうる。この例では、第1アンテナ60bの配置位置は、センサ機器110が配置された、またはセンサ機器110の近傍の、自転車1のフレームのいずれか、または自転車用部品のいずれかであってよい。
 例えば、センサ112は、湿度センサを含んで構成される場合、自転車1の周囲の湿度を測定しうる。センサ112は、測定した湿度を、コントローラ114に出力する。この例では、センサ112を含むセンサ機器110は、自転車1のフレームのいずれかに、または自転車用部品のいずれかに配置されうる。この例では、第1アンテナ60bの配置位置は、センサ機器110が配置された、またはセンサ機器110の近傍の、自転車1のフレームのいずれか、または自転車用部品のいずれかであってよい。
 例えば、センサ112は、気圧センサを含んで構成される場合、自転車1の周囲の気圧を測定しうる。センサ112は、測定した気圧を、コントローラ114に出力する。この例では、センサ112を含むセンサ機器110は、自転車1のフレームのいずれかに、または自転車用部品のいずれかに配置されうる。この例では、第1アンテナ60bの配置位置は、センサ機器110が配置された、またはセンサ機器110の近傍の、自転車1のフレームのいずれか、または自転車用部品のいずれかであってよい。
 例えば、センサ112は、照度センサを含んで構成される場合、自転車1の周囲の照度を測定しうる。センサ112は、測定した照度を、コントローラ114に出力する。この例では、センサ112を含むセンサ機器110は、自転車1のフレームのいずれかに、または自転車用部品のいずれかに配置されうる。この例では、第1アンテナ60bの配置位置は、センサ機器110が配置された、またはセンサ機器110の近傍の、自転車1のフレームのいずれか、または自転車用部品のいずれかであってよい。
 例えば、センサ112は、カメラを含んで構成される場合、運転者の顔画像を撮影(測定)しうる。センサ112は、測定した運転者の顔画像を、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図89に示すハンドル1a、またはステム1eに配置されうる。この例では、第1アンテナ60bの配置位置は、図89に示すハンドル1a、またはステム1eであってよい。
 例えば、センサ112は、生体センサを含んで構成される場合、運転者の心拍数、および脈拍数の少なくとも1つを測定しうる。生体センサは、マイクロ波センサであってよい。センサ112は、測定した心拍数、および脈拍数を、コントローラ114に出力する。この例では、センサ112を備えるセンサ機器110は、図90に示すトップチューブ1G、図89に示すハンドル1a、またはステム1eに配置されうる。この例では、第1アンテナ60bの配置位置は、トップチューブ1G、ハンドル1a、またはステム1eであってよい。
 メモリ113は、例えば、半導体メモリ等で構成されてよい。メモリ113は、コントローラ114のワークメモリとして機能してよい。メモリ113は、コントローラ114に含まれてよい。
 コントローラ114は、例えば、プロセッサを含みうる。コントローラ114は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ114は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ114は、メモリ113に、各種情報、またはセンサ機器110の各構成部を動作させるためのプログラム等を格納してよい。
 コントローラ114は、センサ112から、自転車1のデータを取得する。自転車1のデータは、自転車1の速度、自転車1に働く加速度、自転車1の角速度、自転車1の周囲の磁気、自転車1の周囲の温度、自転車1の周囲の湿度、自転車1の周囲の気圧、および自転車1の周囲の照度を含んでよい。自転車1のデータは、クランク1bの回転速度、およびクランク1bにかかる負荷を含んでよい。
 コントローラ114は、センサ112から、運転者の生体データを取得してよい。運転者の生体データは、顔画像、心拍数、および脈拍数を含んでよい。
 コントローラ114は、第1アンテナ60bがGPS衛星と通信可能に構成される場合、第1アンテナ60bが受信したGPS信号に基づいて、自転車1の位置情報を、取得してよい。
 コントローラ114は、センサ機器110から通信機器120への送信信号を、生成してよい。コントローラ114は、自転車1のデータ、運転者の生体データ、および自転車1の位置情報の少なくとも1つに応じた送信信号を生成してよい。コントローラ114は、センサ機器110と通信機器120との間の通信規格に従って、送信信号を生成してよい。コントローラ114は、生成した送信信号に応じた電力を第1アンテナ60bの第1給電線61に供給する。コントローラ114は、送信信号に応じた電力を第1アンテナ60bの第1給電線61に供給することで、送信信号を電磁波として通信機器120に送信する。
 通信機器120は、ネットワーク2を介して情報処理装置3と通信することができる。通信機器120と情報処理装置3との間の通信規格は、遠距離通信規格であってよい。遠距離通信規格は、2G(2nd Generation)、3G(3rd Generation)、4G(4th Generation)、LTE(Long Term Evolution)、WiMAX(Worldwide Interoperability for Microwave Access)、およびPHS(Personal Handy-phone System)を含んでよい。通信機器120は、移動体4と直接通信することができる。通信機器120と移動体4との間の通信規格は、近距離通信規格であってよい。近距離通信規格は、WiFi(登録商標)、Bluetooth(登録商標)、および無線LANを含んでよい。
 通信機器120は、少なくとも1つの第1アンテナ60cと、メモリ123と、コントローラ124とを有する。通信機器120は、通信機器120の外部または外面に、第1アンテナ60cを有してよい。通信機器120は、電池121を有してよい。通信機器120は、電池121を有さない場合、図90に示すバッテリ1oから供給される電力によって、動作してよい。通信機器120がバッテリ1oから電力の供給を受ける場合、通信機器120とバッテリ1oとは、電力線等で電気的に接続されてよい。
 第1アンテナ60cは、センサ機器110の第1アンテナ60bとは独立した、上述の第1アンテナ60aであってよい。
 第1アンテナ60cは、通信機器120と他の装置との間の通信で使用される周波数帯に応じて適宜構成されてよい。言い換えると、第1アンテナ60cに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、通信機器120と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。
 第1アンテナ60cの配置位置は、通信機器120の通信相手に応じて、図89~図92を参照して上述した配置位置の中から、適宜選択されてよい。
 例えば通信相手が情報処理装置3および移動体4である場合、第1アンテナ60cの配置位置は、図90に示すシートステー1A、フロントフォーク1E、またはヘッドチューブ1Fであってよい。第1アンテナ60cがシートステー1Aに配置されることで、第1アンテナ60cからの電磁波は、自転車1の後方に、放射されやすくなりうる。第1アンテナ60cがフロントフォーク1E、またはヘッドチューブ1Fに配置されることで、第1アンテナ60cからの電磁波は、自転車1の前方に、放射されやすくなりうる。第1アンテナ60cからの電磁波が自転車1の前方または後方に放射されやすくなることで、通信機器120と情報処理装置3および移動体4との間の通信が安定化されうる。
 例えば通信相手がGPS衛星である場合、第1アンテナ60cの配置位置は、図90に示すトップチューブ1G、または図89に示すステム1eであってよい。第1アンテナ60cが図90に示すトップチューブ1G等に配置されることで、第1アンテナ60cは、GPS衛星からの電磁波を受信しやすくなる。
 第1アンテナ60cは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60cが受信した受信信号は、第1アンテナ60cの第1給電線61を経由して、コントローラ124に伝送される。また、第1アンテナ60cは、第1アンテナ60cの第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を、放射しうる。
 電池121は、第1アンテナ60c、メモリ123、およびコントローラ124の少なくとも1つに電力を供給しうる。電池121は、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池121のマイナス極は、第1アンテナ60cの第4導体50に電気的に接続される。
 メモリ123は、例えば、半導体メモリ等で構成されてよい。メモリ123は、コントローラ124のワークメモリとして機能してよい。メモリ123は、コントローラ124に含まれてよい。メモリ123は、自転車1の識別情報および利用者の生体データを記憶してよい。自転車1の識別情報は、自転車1に固有の情報であってよい。自転車1の識別情報は、数字、および/または文字の組み合わせで構成されてよい。
 コントローラ124は、例えば、プロセッサを含みうる。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ124は、1以上のプロセッサを含んでよい。コントローラ124は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ124は、メモリ123に、各種情報、または通信機器120の各構成部を動作させるためのプログラム等を格納してよい。コントローラ124は、メモリ123に、外部の情報処理装置3等から取得した、自転車1の識別情報を格納してよい。コントローラ124は、メモリ123に、外部の情報処理装置3等から取得した、利用者の生体データを格納してよい。
 コントローラ124は、例えば第1アンテナ60cの第1給電線61を経由して、センサ機器110からの受信信号を取得する。受信信号は、センサ機器110が測定した、自転車1のデータ、および運転者の生体データを含みうる。受信信号は、センサ機器110が自転車1の位置情報を測定可能に構成される場合、自転車1の位置情報を含みうる。
 コントローラ124は、自転車1のデータに基づいて、自転車1の運転状態を検出してよい。自転車1の運転状態は、自転車1の走行距離、自転車1の旋回方向、自転車1の走行中の転倒、および自転車1の運転中の一時停止を含んでよい。
 例えば、コントローラ124は、自転車1のデータに含まれる加速度に基づいて、自転車1の走行距離を算出してよい。
 例えば、コントローラ124は、自転車1のデータに含まれる自転車1の速度、および角速度に基づいて、自転車1の旋回方向を検出してよい。
 例えば、コントローラ124は、自転車1のデータに含まれる自転車1の速度、および角速度に基づいて、自転車1の走行中の転倒を検出してよい。自転車1が走行中に転倒すると、自転車1が傾くため、所定値以上の角速度が測定されうる。
 例えば、コントローラ124は、自転車1のデータに含まれる自転車の速度、および角速度に基づいて、自転車1の運転中の一時停止を検出してよい。運転者は、自転車1の運転中に自転車1を一時停止させるとき、自転車1を傾けて自身の足を地面に付けうる。運転者が自転車1を傾けて自身の足を地面に付けたとき、所定速度未満の速度が測定され、且つ所定値以上の角速度が測定されうる。
 コントローラ124は、第1アンテナ60cがGPS衛星と通信可能に構成される場合、第1アンテナ60cが受信したGPS信号に基づいて、自転車1の位置情報を、取得してよい。
 コントローラ124は、通信機器120から情報処理装置3への送信信号を、生成してよい。コントローラ124は、自転車1のデータ、自転車1の運転状態、および自転車1の位置情報の少なくとも1つに応じた送信信号を生成してよい。コントローラ124は、メモリ123に格納された自転車1の識別情報が含まれるように、送信信号を生成してよい。コントローラ124は、通信機器120と情報処理装置3との間の通信規格に従って、送信信号を生成してよい。コントローラ124は、生成した送信信号に応じた電力を、第1アンテナ60cの第1給電線61に供給する。コントローラ124は、送信信号に応じた電力を第1アンテナ60cの第1給電線61に供給することで、送信信号を通信機器120から情報処理装置3に、電磁波として送信する。
 例えば、コントローラ124は、通信機器120から情報処理装置3への送信信号として、自転車1の運転状態に含まれる自転車1の走行距離に応じた送信信号を生成してよい。コントローラ124は、自転車1の識別情報が含まれるように当該送信信号を生成してよい。通信機器120が当該送信信号を情報処理装置3へ送信することで、情報処理装置3は、通信機器120からネットワーク2を経由して当該送信信号を取得しうる。情報処理装置3は、当該送信信号を取得することで、自転車1の走行距離、および自転車1の識別情報を取得しうる。利用者は、情報処理装置3が取得した自転車1の走行距離を閲覧することで、自身が自転車1で走行した距離を把握することができる。
 例えば、コントローラ124は、通信機器120から情報処理装置3への送信信号として、自転車1の位置情報に応じた送信信号を生成してよい。コントローラ124は、自転車1の識別情報が含まれるように、当該送信信号を生成してよい。通信機器120が当該送信信号を情報処理装置3へ送信することで、情報処理装置3は、通信機器120からネットワーク2を経由して当該送信信号を取得しうる。情報処理装置3は、当該送信信号を取得することで、自転車1の位置情報、および自転車1の識別情報を取得しうる。例えば宅配サービスを提供する事業者が自転車1を所有する場合、当該事業者は、情報処理装置3が取得した自転車1の識別情報、および位置情報を閲覧することで、宅配中の自転車1の位置を把握することができる。例えば自転車1が盗難にあった場合、自転車1の所有者は、情報処理装置3が取得した自転車1の識別情報、および位置情報を閲覧することで、盗難された自転車1の位置を把握することができる。
 コントローラ124は、通信機器120から自転車1の周囲の移動体4への送信信号を、生成してよい。コントローラ124は、自転車1のデータ、および自転車1の運転状態の少なくとも1つに応じた送信信号を生成してよい。コントローラ124は、近距離通信規格に従って、送信信号を生成してよい。コントローラ124は、生成した送信信号に応じた電力を、第1アンテナ60cの第1給電線61に供給する。コントローラ124は、送信信号に応じた電力を第1アンテナ60cの第1給電線61に供給することで、送信信号を通信機器120から移動体4に、電磁波として送信する。
 例えば、コントローラ124は、通信機器120から周囲の移動体4への送信信号として、自転車1の運転状態に含まれる自転車1の旋回方向に応じた、送信信号を生成してよい。コントローラ124は、自転車1の旋回方向を検出したときに、当該送信信号を生成してよい。移動体4は、通信機器120から当該送信信号を取得することで、自転車1の旋回方向の情報を取得しうる。例えば移動体4が自動車である場合、当該自動車の運転者は、自転車1の旋回方向を把握することができる。当該自動車の運転者が自転車1の旋回方向を把握することで、移動体4と自転車1との事故が避けられうる。
 例えば、コントローラ124は、通信機器120から周囲の移動体4への送信信号として、自転車1の運転状態に含まれる自転車1の走行中の転倒に応じた、送信信号を生成してよい。コントローラ124は、自転車1の走行中の転倒を検出したときに、送信信号を生成してよい。移動体4は、通信機器120から当該送信信号を取得することで、自転車1の走行中の転倒の情報を取得しうる。例えば移動体4が自動車である場合、当該自動車の運転者は、自転車1の転倒を把握することで、自転車1との衝突を避けるために、速やかに当該自動車を停止させることができる。
 コントローラ124は、自転車1の運転者の生体データと、メモリ123に格納された利用者の生体データとに基づいて、運転者と利用者とが同一人物であるか否か判定してよい。コントローラ124は、自転車1の運転者と自転車1の利用者とが同一人物ではないと判定したとき、警告を示す送信信号を生成してよい。当該送信信号は、通信機器120から情報処理装置3に送信されてよい。コントローラ124は、メモリ123に格納された自転車1の位置情報が含まれるように当該送信信号を生成してよい。情報処理装置3は、当該送信信号を取得することで、警告を示す信号、および自転車1の位置情報を取得しうる。例えば、自転車1の利用者は、情報処理装置3が取得した警告を示す信号から、自転車1が盗難にあったことを知ることができる。自転車1の盗難を知った利用者は、情報処理装置3が取得した自転車1の位置情報から、自転車1の存在場所を知ることができる。
 [自転車の機能の他の例]
 図94は、図89に示す自転車1の他の例の機能ブロック図である。自転車1は、センサ機器110と、表示機器130とを備える。センサ機器110と表示機器130とは、互いに無線通信することができる。無線通信は、近距離通信規格に基づいてよい。近距離通信規格は、WiFi(登録商標)、Bluetooth(登録商標)、および無線LANを含んでよい。
 センサ機器110は、自転車1のデータを、表示機器130に送信しうる。センサ機器110は、運転者の生体データを、表示機器130に送信しうる。センサ機器110は、自転車1の位置情報を、表示機器130に送信しうる。センサ機器110には、図93に示すセンサ機器110と同様の構成が採用されてよい。
 表示機器130は、各種のデータを、運転者に提示する。表示機器130は、サイクルコンピュータであってよい。表示機器130は、図90に示す自転車1のフレームのいずれかに、または図89等に示す自転車用部品のいずれかに、適宜配置されてよい。一例として、表示機器130は、図90に示すトップチューブ1G、図89に示すハンドル1a、または図89に示すステム1eに配置されてよい。表示機器130の配置箇所は、自転車1のフレーム、および自転車用部品に限定されない。例えば、表示機器130は、自転車1の利用者に取り付けられてよい。
 表示機器130は、少なくとも1つの第1アンテナ60dと、表示デバイス132と、メモリ133と、コントローラ134とを有する。表示機器130は、表示機器130の外部または外面に、第1アンテナ60dを有してよい。表示機器130は、電池131を有してよい。表示機器130は、電池131を有さない場合、図90に示すバッテリ1oから供給される電力によって、動作してよい。表示機器130がバッテリ1oから電力の供給を受ける場合、表示機器130とバッテリ1oとは、電力線等で電気的に接続されてよい。
 第1アンテナ60dは、センサ機器110の第1アンテナ60bとは独立した、上述の第1アンテナ60aであってよい。
 第1アンテナ60dは、表示機器130と他の装置との間の通信で使用される使用周波数帯に応じて適宜構成されてよい。言い換えると、第1アンテナ60dに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、表示機器130と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。例えば、第1アンテナ60dは、表示機器130とセンサ機器110との間の近距離通信で使用される使用周波数帯に応じて、適宜構成されてよい。例えば、第1アンテナ60dは、表示機器130とGPS衛星との間の通信で使用される周波数帯に応じて構成されてよい。
 第1アンテナ60dは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60dが受信した受信信号は、第1アンテナ60dの第1給電線61を経由して、コントローラ134に伝送される。また、第1アンテナ60dは、第1アンテナ60dの第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を、放射しうる。
 第1アンテナ60dの配置位置は、表示機器130の配置位置に応じて、または表示機器130の通信相手に応じて、図89~図92を参照して上述した配置位置から、適宜選択されてよい。
 例えば表示機器130の配置位置が図90に示すトップチューブ1Gである場合、第1アンテナ60dの配置位置は、トップチューブ1Gであってよい。例えば表示機器130の配置位置が図89に示すハンドル1a、またはステム1eである場合、第1アンテナ60dの配置箇所は、ハンドル1a、またはステム1eであってよい。
 例えば表示機器130の通信相手がGPS衛星である場合、第1アンテナ60dの配置位置は、図90に示すトップチューブ1G、または図89に示すステム1eであってよい。第1アンテナ60dがトップチューブ1G、またはステム1eに配置されることで、第1アンテナ60dは、GPS衛星からの電磁波を受信しやすくなる。
 電池131は、第1アンテナ60d、表示デバイス132、メモリ133、およびコントローラ134の少なくとも1つに電力を供給しうる。電池131は、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池131のマイナス極は、第1アンテナ60dの第4導体50に電気的に接続される。
 表示デバイス132は、LCD(Liquid Crystal Display)、有機EL(Electro Luminescence)または無機ELを含んで構成されてよい。表示デバイス132は、コントローラ134の制御に基づいて、文字、画像、操作用オブジェクト、およびポインタ等を表示する。
 メモリ133は、例えば、半導体メモリ等で構成されてよい。メモリ133は、コントローラ134のワークメモリとして機能してよい。メモリ133は、コントローラ134に含まれてよい。メモリ133は、利用者の体重、および自転車1の重量を記憶してよい。
 コントローラ134は、例えば、プロセッサを含みうる。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ134は、1以上のプロセッサを含んでよい。コントローラ134は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ134は、メモリ133に、各種情報、または表示機器130の各構成部を動作させるためのプログラム等を格納してよい。
 コントローラ134は、例えば第1アンテナ60dの第1給電線61を経由して、センサ機器110からの受信信号を取得する。受信信号は、センサ機器110が測定した、自転車1のデータ、および運転者の生体データを含みうる。受信信号は、センサ機器110が自転車1の位置情報を測定可能に構成される場合、自転車1の位置情報を含みうる。
 コントローラ134は、第1アンテナ60dがGPS衛星と通信可能に構成される場合、第1アンテナ60dが受信したGPS信号に基づいて、自転車1の位置情報を、取得してよい。
 コントローラ134は、自転車1のデータに含まれる加速度に基づいて、自転車1の走行距離を算出してよい。コントローラ134は、自転車1の走行距離、利用者の体重、および自転車1の重量に基づいて、利用者が自転車1を運転することにより消費した消費カロリーを算出してよい。
 コントローラ134は、各種情報を、表示デバイス132に表示させてよい。例えば、コントローラ134は、自転車1のデータに含まれる自転車1の速度を、表示デバイス132に表示させてよい。例えば、コントローラ134は、自転車1の位置情報を、表示デバイス132に表示させてよい。例えば、コントローラ134は、自転車1のデータに含まれるクランク1bの回転速度を、表示デバイス132に表示させてよい。例えば、コントローラ134は、自転車1のデータに含まれるクランク1bに加えられる負荷を、表示デバイス132に表示させてよい。例えば、コントローラ134は、算出した自転車1の走行距離、および利用者の消費カロリーを、表示デバイス132に表示させてよい。例えば、コントローラ134は、図90に示すバッテリ1oの残量を、表示デバイス132に表示させてよい。例えば、コントローラ134は、運転者の生体データに含まれる心拍数および脈拍数を、表示デバイス132に表示させてよい。
 コントローラ134は、表示機器130からセンサ機器110への送信信号を、生成してよい。コントローラ134は、表示機器130とセンサ機器110との間の近距離通信規格に従って、送信信号を生成してよい。コントローラ134は、生成した送信信号に応じた電力を、第1アンテナ60dの第1給電線61に供給する。コントローラ134は、送信信号に応じた電力を第1アンテナ60dの第1給電線61に供給することで、表示機器130からセンサ機器110に送信信号を送信する。
 このようにセンサ機器110および表示機器130は、独立した第1アンテナ60bおよび第1アンテナ60dをそれぞれ有することで、互いに無線通信することができる。センサ機器110と表示機器130とが無線通信することで、自転車1に取り付けられるケーブル等の有線を減らすことができる。自転車1に取り付けられる有線を減らすことで、自転車1は、軽量化されうる。自転車1が軽量化されうることで、自転車1の利便性が向上しうる。
 [自転車の機能のさらに他の例]
 図95は、図89に示す自転車1のさらに他の例の機能ブロック図である。自転車1は、検出機器140と、制御機器150と、を備える。検出機器140と制御機器150とは、互いに無線通信することができる。無線通信は、近距離通信規格に基づいてよい。近距離無線通信規格は、WiFi(登録商標)、Bluetooth(登録商標)、および無線LANを含んでよい。
 検出機器140は、運転者の操作を検出する。検出機器140は、自転車用部品であってよい。例えば、検出機器140は、図92に示すデュアルコントロールレバー1hであってよい。この例では、検出機器140は、シフトレバー1h-1に対する運転者の操作を検出してよいし、ブレーキレバー1h-2に対する運転者の操作を検出してよい。
 検出機器140は、自転車1の周囲の環境を検出してよい。例えば、検出機器140は、自転車1の周囲の照度を検出してよい。
 検出機器140は、少なくとも1つの第1アンテナ60eと、検出部142と、メモリ143と、コントローラ144とを有する。検出機器140は、検出機器140の外部または外面に、第1アンテナ60eを有してよい。検出機器140は、電池141を有してよい。検出機器140は、電池141を有さない場合、図90に示すバッテリ1oから供給される電力によって、動作してよい。検出機器140がバッテリ1oから電力の供給を受ける場合、検出機器140とバッテリ1oとは、電力線等を介して電気的に接続されてよい。
 第1アンテナ60eは、制御機器150の第1アンテナ60fとは独立した、上述の第1アンテナ60aであってよい。
 第1アンテナ60eの配置位置は、検出機器140でありうる自転車用部品に応じて、図89~図92を参照して上述した配置位置から、適宜選択されてよい。
 例えば、検出機器140は、図89に示すデュアルコントロールレバー1hでありうる。この例では、第1アンテナ60eの配置位置は、デュアルコントロールレバー1hであってよいし、図90に示すデュアルコントロールレバー1hの近傍のヘッドチューブ1Fであってよい。
 第1アンテナ60eは、検出機器140と他の装置との間の通信で使用される周波数帯に応じて適宜構成されてよい。言い換えると、第1アンテナ60eに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、検出機器140と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。
 第1アンテナ60eは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60eが受信した受信信号は、第1アンテナ60eの第1給電線61を経由して、コントローラ144に伝送される。また、第1アンテナ60eは、第1アンテナ60eの第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を、放射しうる。
 電池141は、第1アンテナ60e、検出部142、メモリ143、およびコントローラ144の少なくとも1つに電力を供給しうる。電池141は、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池141のマイナス極は、第1アンテナ60eの第4導体50に電気的に接続される。
 検出部142は、運転者の操作を検出する。検出部142は、検出機器140でありうる自転車用部品の仕様等に応じ適宜構成されてよい。
 例えば、検出機器140は、図92に示すデュアルコントロールレバー1hでありうる。デュアルコントロールレバー1hの仕様は、シフトレバー1h-1の左右の回転に応じて変速率を変えることでありうる。変速率は、チェーンホイール1jの1回転当たりのリアホイール1cの回転数である。この例では、検出部142は、回転センサを含んで構成されてよい。検出部142は、回転センサによってシフトレバー1h-1の左右の回転を検出する。検出部142は、検出した左右の回転を、コントローラ144に出力する。
 例えば、検出機器140は、図92に示すデュアルコントロールレバー1hでありうる。デュアルコントロールレバー1hの仕様は、スイッチ1h-3に対する運転者の操作に応じて、変速率を変えることでありうる。この例では、検出部142は、圧力センサを含んで構成されてよい。検出部142は、スイッチ1h-3に対する運転者の操作を検出する。検出部142は、検出したスイッチ1h-3に対する運転者の操作を、コントローラ144に出力する。
 例えば、検出機器140は、図92に示すデュアルコントロールレバー1hでありうる。デュアルコントロールレバー1hの仕様は、例えば運転者の握力により、ブレーキレバー1h-2にかかる圧力に応じて、ブレーキ機能を発揮することでありうる。ブレーキ機能は、図89に示すリアホイール1cおよびホイール1dを停止させる機能である。この例では、検出部142は、圧力センサを含んで構成されてよい。検出部142は、圧力センサによって、ブレーキレバー1h-2にかかる圧力を検出する。検出部142は、検出した圧力を、コントローラ144に出力する。
 検出部142は、自転車1の周囲の環境を検出してよい。検出部142は、検出機器140が検出する自転車1の周囲の環境に応じて、適宜構成されてよい。
 例えば、検出機器140が自転車1の周囲の照度を検出する場合、検出部142は、照度センサを含んで構成されてよい。検出部142は、照度センサによって、自転車1の周囲の照度を検出する。検出部142は、検出した照度を、コントローラ144に出力する。
 メモリ143は、例えば、半導体メモリ等で構成されてよい。メモリ143は、コントローラ144のワークメモリとして機能してよい。メモリ143は、コントローラ144に含まれてよい。
 コントローラ144は、例えば、プロセッサを含みうる。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ144は、1以上のプロセッサを含んでよい。コントローラ144は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ144は、メモリ143に、各種情報、または検出機器140の各構成部を動作させるためのプログラム等を格納してよい。コントローラ144は、第1アンテナ60eの第1給電線61を経由して、制御機器150からの受信信号を取得してよい。
 コントローラ144は、検出部142の検出結果を取得する。コントローラ144は、検出部142の検出結果に基づいて、制御信号を生成する。
 例えば、コントローラ144は、検出部142が検出したシフトレバー1h-1の左右の回転に応じて、変速率を決定する。コントローラ114は、決定した変速率を示す信号を、制御信号として生成する。
 例えば、コントローラ144は、検出部142が検出したスイッチ1h-3に対する操作に応じて、変速率を決定する。コントローラ144は、決定した変速率を示す信号を、制御信号として生成する。
 例えば、コントローラ114は、検出部142から、ブレーキレバー1h-2にかかる圧力を取得する。コントローラ114は、ブレーキレバー1h-2にかかる圧力に応じて、ブレーキ機能の実行を示す信号を、制御信号として生成する。
 例えば、コントローラ114は、検出部142が検出した自転車1の周囲の照度に基づいて、ライト1iの点灯を示す信号またはライト1iの消灯を示す信号を、制御信号として生成する。例えば、コントローラ144は、検出部142が検出した照度が所定値未満であるとき、ライト1iの点灯を示す信号を、制御信号として生成する。例えば、コントローラ144は、ライト1iの点灯を示す信号を生成した後に、検出部142が検出した照度が所定値以上になったとき、ライト1iの消灯を示す信号を、制御信号として生成する。
 コントローラ144は、検出機器140から制御機器150への送信信号として、生成した制御信号に応じた、送信信号を生成する。コントローラ144は、検出機器140と制御機器150との間の近距離通信規格に従って、送信信号を生成してよい。コントローラ144は、生成した送信信号に応じた電力を、第1アンテナ60eの第1給電線61に供給する。
 コントローラ144は、第1アンテナ60eの第1給電線61を経由して、制御機器150からの受信信号を取得してよい。
 制御機器150は、検出機器140が検出した運転者の操作に基づいて、自転車1の機能を制御する。制御機器150は、検出機器140が検出した自転車1の周囲の環境に基づいて、自転車1の機能を制御してよい。制御機器150は、制御機器150が制御する自転車1の機能に応じた、自転車用部品であってよい。
 例えば、制御機器150は、自転車1の機能として、自転車1の変速率を制御してよい。この例では、制御機器150は、リアディレイラー1f、またはフロントディレイラー1gであってよい。
 例えば、制御機器150は、自転車1の機能として、自転車1のブレーキ機能を制御してよい。この例では、制御機器150は、ブレーキ1k-1、またはブレーキ1k-2であってよい。
 例えば、制御機器150は、自転車1の機能として、自転車1の周囲を照らしてよい。この例では、制御機器150は、ライト1iであってよい。
 制御機器150は、少なくとも1つの第1アンテナ60fと、機構152と、メモリ153と、コントローラ154とを有する。制御機器150は、制御機器150の外部または外面に、第1アンテナ60fを有してよい。制御機器150は、電池151を有してよい。制御機器150は、電池151を有さない場合、図90に示すバッテリ1oから供給される電力によって、動作してよい。制御機器150がバッテリ1oから電力の供給を受ける場合、制御機器150とバッテリ1oとは、電力線等で電気的に接続されてよい。
 第1アンテナ60fは、検出機器140の第1アンテナ60eとは独立した、上述の第1アンテナ60aであってよい。
 第1アンテナ60fは、制御機器150と他の装置との間の通信で使用される周波数帯に応じて適宜構成されてよい。言い換えると、第1アンテナ60fに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、制御機器150と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。
 第1アンテナ60fは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60fが受信した受信信号は、第1アンテナ60fの第1給電線61を経由して、コントローラ154に伝送される。また、第1アンテナ60fは、第1アンテナ60fの第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を、放射しうる。
 第1アンテナ60fの配置位置は、制御機器150でありうる自転車用部品に応じて、図89~図92を参照した上述した配置位置から、適宜選択されてよい。
 例えば、制御機器150は、図89に示すリアディレイラー1fでありうる。この例では、第1アンテナ60fの配置位置は、リアディレイラー1fであってよいし、リアディレイラー1fの近傍の図90に示すシートステー1Aであってよい。
 例えば、制御機器150は、図89に示すフロントディレイラー1gでありうる。この例では、第1アンテナ60fの配置位置は、フロントディレイラー1gであってよいし、フロントディレイラー1gの近傍の図90に示すシートチューブ1Bであってよい。
 例えば、制御機器150は、図89に示すブレーキ1k-1でありうる。この例では、第1アンテナ60fの配置位置は、ブレーキ1k-1であってよい。第1アンテナ60fの配置位置は、ブレーキ1k-1の近傍の図90に示すシートステー1Aであってよい。
 例えば、制御機器150は、図89に示すブレーキ1k-2でありうる。この例では、第1アンテナ60fの配置位置は、ブレーキ1k-2であってよい。第1アンテナ60fの配置位置は、ブレーキ1k-2の近傍の図90に示すヘッドチューブ1Fであってよい。
 例えば、制御機器150は、図89に示すライト1iでありうる。この例では、第1アンテナ60fの配置位置は、ライト1iであってよい。第1アンテナ60fの配置位置は、ライト1iの近傍の図90に示すヘッドチューブ1Fであってよい。
 電池151は、第1アンテナ60f、機構152、メモリ153、およびコントローラ154の少なくとも1つに電力を供給しうる。電池151は、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池151のマイナス極は、第1アンテナ60fの第4導体50に電気的に接続される。
 機構152は、例えば制御機器150でありうる自転車部品に応じて、任意の部材を含んで構成されてよい。
 例えば、制御機器150は、図89に示すフロントディレイラー1gでありうる。この例では、機構152は、チェーンガイドと、当該チェーンガイドを駆動するモーターとを含んで構成されてよい。チェーンガイドは、図91に示すチェーンホイール1jに架けられたチェーンを、チェーンホイール1j-1またはチェーンホイール1j-2に誘導する。
 例えば、制御機器150は、図89に示すリアディレイラー1fでありうる。この例では、機構152は、チェーンガイドと、当該チェーンガイドを駆動するモーターとを含んで構成されてよい。チェーンガイドは、自転車1のチェーンを、図91に示すリアホイール1cに取り付けられた複数のチェーンホイールのいずれかに誘導する。
 例えば、制御機器150は、図89に示すブレーキ1k-1、またはブレーキ1k-2でありうる。この例では、機構152は、ブレーキ1k-1に含まれうるブレーキキャリパ、またはブレーキ1k-2に含まれうるブレーキキャリパであってよい。
 例えば、制御機器150は、図89に示すライト1iでありうる。この例では、機構152は、LEDを含んで構成されてよい。
 メモリ153は、例えば、半導体メモリ等で構成されてよい。メモリ153は、コントローラ154のワークメモリとして機能してよい。メモリ153は、コントローラ154に含まれてよい。
 コントローラ154は、例えば、プロセッサを含みうる。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ154は、1以上のプロセッサを含んでよい。コントローラ154は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ154は、メモリ153に、各種情報、または制御機器150の各構成部を動作させるためのプログラム等を格納してよい。
 コントローラ154は、第1アンテナ60fの給電線を経由して、検出機器140からの受信信号を取得する。受信信号は、制御信号を含みうる。制御信号は、変速率を示す信号、ブレーキ機能の実行を示す信号、ライト1iの点灯を示す信号、およびライト1iの消灯を示す信号を含んでよい。コントローラ154は、制御信号に応じて、機構152を制御する。
 例えば制御機器150が図89に示すリアディレイラー1f、またはフロントディレイラー1gである場合、コントローラ154は、変速率を示す信号に応じて、機構152を制御する。
 例えば制御機器150が図89に示すブレーキ1k-1、またはブレーキ1k-2である場合、コントローラ154は、ブレーキ機能の実行を示す信号に応じて、機構152を制御する。
 例えば制御機器150が図89に示すライト1iである場合、コントローラ154は、ライト1iの点灯を示す信号に応じて、機構152のLEDを点灯させる。コントローラ154は、ライト1iの消灯を示す信号に応じて、機構152のLEDを消灯させる。
 コントローラ154は、制御機器150から検出機器140へ送信される、送信信号を生成してよい。コントローラ154は、検出機器140と制御機器150との間の近距離通信規格に従って、送信信号を生成してよい。コントローラ154は、生成した送信信号に応じた電力を、第1アンテナ60fの第1給電線61に供給する。コントローラ154は、送信信号に応じた電力を第1アンテナ60fの第1給電線61に供給することで、送信信号を制御機器150から検出機器140に電磁波として送信する。
 このように検出機器140および制御機器150は、独立した第1アンテナ60eおよび第1アンテナ60fをそれぞれ有することで、互いに無線通信することができる。検出機器140と制御機器150とが無線通信することで、自転車1に取り付けられるケーブル等の有線を減らすことができる。自転車1に取り付けられる有線を減らすことで、自転車1は、軽量化されうる。自転車1が軽量化されうることで、自転車1の利便性が向上しうる。
 本開示に係る構成は、以上説明してきた実施形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。
 例えば、自転車1が電動アシスト自転車である場合、図95に示す制御機器150は、図89に示すリアホイール1c等を駆動するモーターであってよい。この例では、検出機器140は、図91に示すクランク1bにかかる負荷を検出する機器であってよい。
 [無人航空機の構成例]
 図96は、無人航空機101の一実施形態の斜視図である。図97は、図96に示す無人航空機101の背面図である。図98は、図96に示す無人航空機101の上面図である。
 ここで、本開示の「無人航空機(unmanned aircraft)」は、構造的に人が機体に乗ることができないもののうち、遠隔操作または自動操縦により飛行させることができるものである。本開示の「無人航空機」は、固定翼機および回転翼機を含んでよい。回転翼機は、マルチコプター、およびモノコプターを含んでよい。
 無人航空機101は、部品と、フレームとを備える。無人航空機101の部品は、当該部品の用途に応じて、任意の部材で構成されてよい。無人航空機101のフレームは、任意の材料で形成されてよい。一例として、任意の材料は、金属、および炭素繊維強化プラスチックを含んでよい。炭素繊維強化プラスチックは、導電性を有してよい。
 無人航空機101の部品は、図96および図97に示すように、モータ101a-1,101a-2,101a-3,101a-4と、プロペラ101b,101c,101d,101eとを含んでよい。無人航空機101の部品は、図96に示すように、ジンバル101fと、カメラ101gとを含んでよい。無人航空機101の部品は、図98に示すように、電池ホルダ1Fに収容される電池101hを含んでよい。無人航空機101の部品は、図97に示すように、超音波センサ101iを含んでよい。
 モータ101a-1には、プロペラ101bが取り付けられる。モータ101a-2には、プロペラ101cが取り付けられる。モータ101a-3には、プロペラ101dが取り付けられる。モータ101a-4には、プロペラ101eが取り付けられる。
 プロペラ101b,101c,101d,101eの配置位置は、飛行中の無人航空機101のバランス等を考慮して、適宜決定されてよい。プロペラ101b,101c,101d,101eは、無人航空機101の重心を中心としうる同一円周上に、配置されてよい。プロペラ101b,101c,101d,101eは、当該円周を4等分する位置に配置されてよい。
 無人航空機101のフレームは、図98に示すように、本体部101Aと、アーム101B,101C,101D,101Eとを含んでよい。無人航空機101のフレームは、図97および図98に示すように、電池ホルダ101Fを含んでよい。無人航空機101のフレームは、図96に示すように、2つのレッグ101Gを含んでよい。
 アーム101Bは、本体部101Aからモータ101a-1の配置位置に向かう延在方向B1に沿って延在する。アーム101Cは、本体部101Aからモータ101a-2の配置位置に向かう延在方向C1に沿って延在する。延在方向C1は、延在方向B1と略直交しうる。アーム101Dは、本体部101Aからモータ101a-3の配置位置に向かう延在方向D1に沿って延在する。延在方向D1は、延在方向B1と略平行、且つ反対向きでありうる。アーム101Eは、本体部101Aからモータ101a-4の配置位置に向かう延在方向E1に沿って延在する。延在方向E1は、延在方向C1と略平行、且つ反対向きでありうる。
 レッグ101Gは、図96に示すように、底部101G-1と、側部101G-2,101G-3とを含んでよい。
 底部101G-1は、無人航空機101が着地するときおよび無人航空機101が地面に立っているとき、地面と接する。底部101G-1の長さ、および底部101G-1が延在する延在方向G1-1は、地面に立っているときの無人航空機101のバランス等を考慮して、適宜決定されてよい。
 側部101G-2は、底部101G-1の一端から本体部101Aに向かう延在方向G1-2に沿って延在してよい。側部101G-3は、底部101G-2の他端から本体部101Aに向かう延在方向G1-3に沿って延在してよい。延在方向G1-2と延在方向G1-3とは、略平行でありうる。延在方向G1-2と延在方向G1-3とは、底部101G-1に近づくほど間隔が離れうる。延在方向G1-2と延在方向G1-3との間隔は、本体部101A側に比べて底部101G-1側で広くなりうる。無人航空機101は、本体部101Aに比べて底部101G-1を長くすることで、着地時の安定性を高めうる。
 無人航空機101は、少なくとも1つの第1アンテナ60gを備える。第1アンテナ60gは、上述の第1アンテナ60と同様の構造を有する。第1アンテナ60gは、上述の第1アンテナ60とは独立したアンテナである。無人航空機101は、複数の第1アンテナ60gを備えてよい。複数の第1アンテナ60gは、無人航空機101がダイバーシチおよびMIMO(Multi Input Multi Output)の通信方式に対応するように、配置されてよい。第1アンテナ60gは、通信用途に応じて、円偏波または垂直偏波を形成するように、配置されてよい。無人航空機101は、第1アンテナ60gに加えて、または第1アンテナ60gの代わりに、第2アンテナ70を備えてよい。
 第1アンテナ60gは、無人航空機101の部品のいずれかに、配置されてよい。第1アンテナ60gは、第1アンテナ60gに含まれる第4導体50が無人航空機101の部品に対向するように、当該部品に配置されてよい。第1アンテナ60gの第4導体50を無人航空機101の部品に対向させることで、第4導体50に対して当該部品が位置する方向は、第4導体50に対して第3導体40が位置する方向とは、反対方向になりうる。第1アンテナ60gが放射する電磁波の実効的な進行方向は、第4導体50に対して第3導体40が位置する方向となりうる。第1アンテナ60gの第4導体50を無人航空機101の部品に対向させることで、無人航空機101の部品は、第1アンテナ60gが放射する電磁波の実効的な進行方向とは反対方向に、位置しうる。無人航空機101の部品が第1アンテナ60gからの電磁波の実効的な進行方向とは反対方向に位置することで、第1アンテナ60gの放射効率が維持されうる。
 例えば、第1アンテナ60gは、第4導体50が電池101hに対向するように、電池101hに配置されてよい。この例では、第4導体50は、電池101hに含まれる面のうち、無人航空機101の飛行中に天空側に位置しうる面、例えばレッグ101Gとは反対側を向く面に、対向してよい。
 第1アンテナ60gは、無人航空機101のフレームのいずれかに配置されてよい。第1アンテナ60gは、第1アンテナ60gに含まれる第4導体50が無人航空機101のフレームに対向するように、無人航空機101のフレームに配置されてよい。第1アンテナ60gの第4導体50を無人航空機101のフレームに対向させることで、上述のように、第1アンテナ60gの放射効率が維持されうる。
 第1アンテナ60gは、無人航空機101のフレームが導電性の長尺部を有する場合、当該長尺部に配置されてよい。第1アンテナ60gは、第1方向が導電性の長尺部に沿うように、当該長尺部に配置されてよい。当該長尺部は、図98に示すような、アーム101B,101C,101D,101Eを含んでよい。当該長尺部は、図96に示すような、底部101G-1と、側部101G-2,101G-3とを含んでよい。第1アンテナ60gが無人航空機101のフレームの導電性の長尺部に配置されることで、第1アンテナ60gと当該長尺部とが電磁気的に結合しうる。第1アンテナ60gと当該長尺部とが電磁気的に結合することで、第1アンテナ60gが電磁波を放射するとき、当該長尺部に電流が誘導されうる。当該長尺部に誘導された電流によって、長尺部は、電磁波を放射しうる。当該長尺部に誘導された電流によって長尺部が電磁波として放射することで、第1アンテナ60gが電磁波を放射するとき、第1アンテナ60gの総合放射効率が向上しうる。
 例えば、第1アンテナ60gを長尺部としてのアーム101Bに配置させる場合、第1アンテナ60gは、第1方向が延在方向B1に沿うように、アーム101Bに配置されてよい。第1アンテナ60gは、アーム101Bに含まれる面のうち、無人航空機101の飛行中に天空側に位置しうる面、例えばレッグ101Gとは反対側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Bに含まれる面のうち、無人航空機101の飛行中に地上側に位置しうる面、例えばレッグ101G側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Bの側面に配置されてよい。
 例えば、第1アンテナ60gを長尺部としてのアーム101Cに配置させる場合、第1アンテナ60gは、第1方向が延在方向C1に沿うように、アーム101Cに配置されてよい。第1アンテナ60gは、アーム101Cに含まれる面のうち、無人航空機101の飛行中に天空側に位置しうる面、例えばレッグ101Gとは反対側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Cに含まれる面のうち、無人航空機101の飛行中に地上側に位置しうる面、例えばレッグ101G側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Cの側面に配置されてよい。
 例えば、第1アンテナ60gを長尺部としてのアーム101Dに配置させる場合、第1アンテナ60gは、第1方向が延在方向D1に沿うように、アーム101Dに配置されてよい。第1アンテナ60gは、アーム101Dに含まれる面のうち、無人航空機101の飛行中に天空側に位置しうる面、例えばレッグ101Gとは反対側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Dに含まれる面のうち、無人航空機101の飛行中に地上側に位置しうる面、例えばレッグ101G側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Dの側面に配置されてよい。
 例えば、第1アンテナ60gを長尺部としてのアーム101Eに配置させる場合、第1アンテナ60gは、第1方向が延在方向E1に沿うように、アーム101Eに配置されてよい。第1アンテナ60gは、アーム101Eに含まれる面のうち、無人航空機101の飛行中に天空側に位置しうる面、例えばレッグ101Gとは反対側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Eに含まれる面のうち、無人航空機101の飛行中に地上側に位置しうる面、例えばレッグ101G側を向く面に、配置されてよい。第1アンテナ60gは、アーム101Eの側面に配置されてよい。
 例えば、第1アンテナ60gを長尺部としての底部101G-1に配置させる場合、第1アンテナ60gは、第1方向が延在方向G1-1に沿うように、底部101G-1に配置されてよい。第1アンテナ60gは、底部101G-1に含まれる面のうち、本体部101Aに対向する面に、配置されてよい。第1アンテナ60gを、底部101G-1の本体部101Aに対向する面に配置させることで、無人航空機101が着地するとき等に、第1アンテナ60gが地面と接触することが低減されうる。無人航空機101は、第1アンテナ60gを底部101G-1の本体部101Aに対向する面に配置させることで、着地時から無線通信を可能としうる。
 例えば、第1アンテナ60gを長尺部としての側部101G-2に配置させる場合、第1アンテナ60gは、延在方向G1-2に沿うように、側部101G-2に配置されてよい。例えば、第1アンテナ60gを長尺部としての側部101G-3に配置させる場合、第1アンテナ60gは、延在方向G1-3に沿うように、側部101G-3に配置されてよい。
 [無人航空機の機能例]
 図99は、図96に示す無人航空機101の機能ブロック図である。無人航空機101は、通信基地局102と無線通信することにより、ネットワーク103に接続されてよい。無人航空機101は、ネットワーク103を介して情報処理装置104と通信してよい。無人航空機101は、送信機105と直接通信してもよい。無人航空機101は、無人航空機101の周囲の航空機106と直接通信してもよい。無人航空機101は、陸上基地局107と直接通信してよい。
 無人航空機101と情報処理装置104との間の通信規格は、遠距離通信規格であってよい。遠距離通信規格は、2G(2nd Generation)、3G(3rd Generation)、4G(4th Generation)、LTE(Long Term Evolution)、WiMAX(Worldwide Interoperability for Microwave Access)、およびPHS(Personal Handy-phone System)を含んでよい。無人航空機101と、送信機105、航空機106、および陸上基地局107との間の通信規格は、近距離通信規格であってよい。近距離通信規格は、WiFi(登録商標)、Bluetooh(登録商標)、または無線LANを含んでよい。
 無人航空機101は、無人航空機101のコントローラ180の制御に基づいて飛行しうる。無人航空機101は、個人が所有するものであってよいし、任意の事業者が所有するものであってよい。任意の事業者は、無人航空機101を利用して荷物を宅配する宅配業者、および無人航空機101を利用して所定領域を監視する監視業者を含んでよい。
 通信基地局102は、地上の多様な箇所に配置される通信設備のうち、無人航空機101の通信圏内に存在する通信設備である。当該通信設備は、通信事業者によって管理される。通信事業者は、地上の多様な箇所に配置された通信設備によって、汎用の携帯電話機等をネットワーク103に接続させる通信サービスを提供する。ネットワーク103は、無線ネットワークを含んでよい。ネットワーク103の一部は、有線ネットワークを含んでよい。
 情報処理装置104は、任意の事業者等によって管理されてよい。例えば配達業者が無人航空機101を所有する場合、情報処理装置104は、当該配達業者によって管理されてよい。例えば監視業者が無人航空機101を所有する場合、情報処理装置104は、当該監視業者によって管理されてよい。
 情報処理装置104は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアで構成されてよい。コンピュータシステムその他のハードウェアは、汎用コンピュータ、PC(パーソナルコンピュータ)、専用コンピュータ、ワークステーション、PCS、移動(セルラー)電話機、データ処理機能を備えた移動電話機、RFID受信機、ゲーム機、電子ノートパッド、ラップトップコンピュータ、GPS受信機またはその他のプログラム可能なデータ処理装置を含んでよい。
 送信機105は、操縦者が無人航空機101を遠隔操作するために、用いられる。送信機105は、操縦者の入力を検出する。送信機105は、検出した操縦者の入力に応じた制御信号を、無人航空機101に送信する。
 送信機105は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアで構成されてよい。コンピュータシステムその他のハードウェアは、汎用コンピュータ、PC、専用コンピュータ、ワークステーション、PCS、移動電話機、データ処理機能を備えた移動電話機、RFID受信機、ゲーム機、電子ノートパッド、ラップトップコンピュータ、GPS受信機またはその他のプログラム可能なデータ処理装置を含んでよい。
 航空機106は、多様な航空機のうち、無人航空機101の通信圏内を飛行する航空機である。航空機106は、無人航空機であってよいし、有人航空機(manned aircraft)であってよい。
 陸上基地局107は、所定の陸上基地に設置された通信設備である。所定の陸上基地は、無人航空機1が着陸しうる基地であってよい。所定の陸上基地は、無人航空機101の管理者等が予め定めた場所であってよい。無人航空機101は、状況に応じて、所定の陸上基地に着陸してよい。無人航空機101は、状況に応じて、地上の任意の場所に着陸してよい。
 無人航空機101は、制御ユニット100として、少なくとも1つの第1アンテナ60gと、電池101hと、センサ160と、メモリ170と、コントローラ180とを備える。無人航空機101は、無線通信機器90を備えてよい。
 無線通信機器90は、制御ユニットと無線通信しうる。制御ユニットと無線通信機器90との間の通信規格は、近距離通信規格であってよい。
 無線通信機器90は、無線通信機器90のセンサ92が測定した測定データに応じた送信信号を生成する。無線通信機器90は、生成した送信信号を、制御ユニット100の第1アンテナ60gに送信する。無線通信機器90の配置位置は、センサ92によって取得する測定データに応じて、適宜決定されてよい。例えば、無線通信機器90は、センサ92によって無人航空機101の周囲の照度、温度、および湿度のいずれかを取得する場合、図96に示す側部101G-3に配置されてよい。
 第1アンテナ60gは、無人航空機101と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。言い換えると、第1アンテナ60gに含まれる、第1導体31、第2導体32、第3導体40、および第4導体50のそれぞれは、無人航空機101と他の装置との間の通信で使用される周波数帯に応じて、適宜構成されてよい。第1アンテナ60gの配置位置は、通信相手に応じて、適宜決定されてよい。
 例えば通信相手が情報処理装置104である場合、第1アンテナ60gの配置位置は、図96に示すようなアーム101B等の側面であってよいし、図98に示すようなアーム101B等の天空側の面であってよい。第1アンテナ60gがアーム101B等の側面および天空側の面に配置されることで、第1アンテナ60gの放射強度は、無人航空機101の飛行中、無人航空機101から天空側の方向および無人航空機101の横方向に強くなりうる。第1アンテナ60gの放射強度が天空側の方向および横方向に強くなることで、通信基地局102を経由した無人航空機101と情報処理装置104との間の通信が安定化されうる。
 例えば通信相手が送信機105である場合、第1アンテナ60gの配置位置は、図96に示すようなアーム101B等の地上側の面であってよいし、側部101G-1等であってよい。第1アンテナ60gがアーム101B等の地上側の面および側部101G-1等に配置されることで、第1アンテナ60gの放射強度は、無人航空機101の飛行中、無人航空機101から地上側の方向に強くなりうる。第1アンテナ60gの放射強度の地上側の方向に強くなることで、無人航空機101と地上の送信機105との間の通信が安定化されうる。
 例えば通信相手が航空機106である場合、第1アンテナ60gの配置位置は、図96に示すようなアーム101B等の側面および天空側の面であってよいし、側部101G-1等であってよい。第1アンテナ60gがアーム101B等の側面および天空側の面、ならびに側部101G-1等に配置されることで、第1アンテナ60gの放射強度は、無人航空機101の飛行中、無人航空機101から天空側の方向および無人航空機101の横方向に強くなりうる。第1アンテナ60gの放射強度が無人航空機101の天空側の方向および横方向に強くなることで、無人航空機101と周囲の航空機106との間の通信が安定化されうる。
 例えば通信相手が陸上基地局107である場合、第1アンテナ60gの配置位置は、図96に示すようなアーム101B等の地上側の面であってよいし、側部101G-1等であってよい。第1アンテナ60gがアーム101B等の地上側の面および側部101G-1等に配置されることで、第1アンテナ60gの放射強度は、無人航空機101の飛行中、無人航空機101から地上側の方向に強くなりうる。第1アンテナ60gの放射強度が地上側の方向に強くなることで、無人航空機101と地上の陸上基地局107との間の通信が安定化されうる。
 例えば通信相手がGPS衛星である場合、第1アンテナ60gの配置位置は、図98に示すような、アーム101B等の天空側の面であってよいし、電池101hであってよい。第1アンテナ60gがアーム101B等の天空側の面および電池101hに配置されることで、第1アンテナ60gは、GPS衛星からの電磁波を受信しやすくなる。
 第1アンテナ60gは、他の装置からの電磁波を、受信信号として受信しうる。第1アンテナ60gによって受信された受信信号は、第1アンテナ60gの第1給電線61を経由して、コントローラ180に出力される。また、第1アンテナ60gは、第1給電線61に電力が供給されることにより、他の装置に、送信信号としての電磁波を、放射しうる。
 電池101hは、図97に示す電池ホルダ101Fに収納されうる。電池101hは、第1アンテナ60g、センサ160、メモリ170、およびコントローラ180の少なくとも1つに電力を供給しうる。電池101hは、例えば、一次電池および二次電池の少なくとも一方を含みうる。電池101hのマイナス極は、第1アンテナ60gの第4導体50に電気的に接続される。
 センサ160は、各種のデータを測定する。センサ160は、図96に示すカメラ101g、および図97に示す超音波センサ101iの少なくとも1つを含んで構成されてよい。センサ160は、加速度センサ、角速度センサ、地磁気センサ、温度センサ、湿度センサ、気圧センサ、および照度センサの少なくとも1を含んで構成されてよい。
 例えば、センサ160に含まれるカメラ101gは、無人航空機101の周囲の画像を測定(撮影)する。カメラ101gは、測定した画像を、コントローラ180に出力する。
 例えば、センサ160に含まれる超音波センサ101iは、無人航空機101と、周囲の物体との間の相対位置関係を測定する。周囲の物体は、周囲の障害物、および周囲の航空機106を含んでよい。超音波センサ101iは、測定した相対位置関係を、コントローラ180に出力する。
 例えば、センサ160に含まれる加速度センサは、無人航空機101に働く加速度を測定する。加速度センサは、測定した加速度を、コントローラ180に出力する。
 例えば、センサ160に含まれる角速度センサは、無人航空機101の角速度を測定する。角速度センサは、測定した角速度を、コントローラ180に出力する。
 例えば、センサ160に含まれる地磁気センサは、無人航空機101の周囲の地磁気の大きさおよび方向を測定する。地磁気センサは、測定した地磁気の大きさおよび方向を、コントローラ180に出力する。
 例えば、センサ160に含まれる温度センサは、無人航空機101の周囲の温度を測定する。温度センサは、測定した温度を、コントローラ180に出力する。
 例えば、センサ160に含まれる湿度センサは、無人航空機101の周囲の湿度を測定する。湿度センサは、測定した湿度を、コントローラ180に出力する。
 例えばセンサ160に含まれる気圧センサは、無人航空機101の周囲の気圧を測定する。気圧センサは、測定した気圧を、コントローラ180に出力する。
 例えばセンサ160に含まれる照度センサは、無人航空機101の周囲の照度を測定する。照度センサは、測定した照度を、コントローラ180に出力する。
 メモリ170は、例えば、半導体メモリ等で構成されてよい。メモリ170は、コントローラ180のワークメモリとして機能してよい。メモリ170は、コントローラ180に含まれてよい。メモリ170は、無人航空機101の識別情報を格納してよい。無人航空機101の識別情報は、無人航空機101に固有の情報であってよい。無人航空機101の識別情報は、数字、および/または文字の組み合わせで構成されてよい。メモリ170は、無人航空機101の飛行可能エリアの情報を格納してよい。飛行可能エリアは、法律等によって無人航空機101の飛行が許可されたエリアであってよい。
 コントローラ180は、例えば、プロセッサを含みうる。コントローラ180は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けICを含んでよい。プロセッサは、プログラマブルロジックデバイスを含んでよい。PLDは、FPGAを含んでよい。コントローラ180は、1つまたは複数のプロセッサが協働するSoC、およびSiPのいずれかであってよい。コントローラ180は、メモリ170に、各種情報、または無人航空機101の各構成部を動作させるためのプログラム等を格納してよい。
 コントローラ180は、第1アンテナ60gの第1給電線61を経由して、送信機105からの受信信号を取得しうる。コントローラ180は、受信信号に含まれる制御信号に基づいて、無人航空機101を飛行させる。コントローラ180は、メモリ170に格納された所定のプログラムに基づく自動操縦により、無人航空機101を飛行させてもよい。
 コントローラ180は、各種データを、センサ160から取得してよい。コントローラ180は、各種データを、無人航空機101が無線通信機器90を備える場合、無線通信機器90のセンサ92から取得してよい。コントローラ180は、各種データをセンサ92から取得する場合、第1アンテナ60gの第1給電線61を経由して、無線通信機器90からの受信信号を取得してよい。当該受信信号は、センサ92が測定した測定データが含まれうる。
 コントローラ180は、無人航空機101の周囲の環境データを取得してよい。環境データは、無人航空機101の周囲の、画像、温度、湿度、気圧、および照度を含んでよい。
 コントローラ180は、無人航空機101の飛行データを、取得または算出してよい。飛行データは、無人航空機101の、速度、飛行距離、および飛行可能時間を含んでよい。例えば、コントローラ180は、センサ160によって、または無線通信機器90のセンサ92によって、無人航空機101の速度を、取得してよい。例えば、コントローラ180は、センサ160、またはセンサ92が取得した加速度に基づいて、無人航空機101の飛行距離を算出してよい。例えば、コントローラ180は、電池101hの残量に基づいて、無人航空機101の飛行可能時間を算出してよい。
 コントローラ180は、無人航空機101の位置情報を取得してよい。例えば、コントローラ180は、第1アンテナ60gが取得したGPS信号に基づいて、無人航空機101の位置情報を取得してよい。例えば、コントローラ180は、第1アンテナ60gによって取得した、無人航空機101の周囲の通信基地局102からの信号に基づいて、無人航空機101の位置情報を取得してよい。なお、コントローラ180は、取得した位置情報と、メモリ170に格納された飛行可能エリアの情報とに基づいて、飛行可能エリアを飛行するよう制御してよい。
 コントローラ180は、無人航空機101から情報処理装置104に送信する送信信号を、生成してよい。コントローラ180は、遠距離通信規格に従って、送信信号を生成してもよい。コントローラ180は、生成した送信信号に応じた電力を、第1アンテナ60gの第1給電線61に供給してよい。コントローラ180は、送信信号に応じた電力を第1アンテナ60gの第1給電線61に供給することで、電磁波としての送信信号を、情報処理装置104に送信しうる。
 コントローラ180は、無人航空機101から情報処理装置104への送信信号として、環境データ、無人航空機101の飛行データ、および無人航空機101の位置情報の少なくとも1つに応じた送信信号を生成してよい。コントローラ180は、メモリ170に格納された無人航空機101の識別情報が含まれるように、送信信号を生成してよい。情報処理装置104は、当該送信信号を取得することにより、無人航空機101の識別情報と共に、環境データ、無人航空機101の飛行データ、および無人航空機101の位置情報の少なくとも1つを、取得することができる。
 例えば監視業者が無人航空機101を利用する場合、監視業者は、情報処理装置104が取得した環境データに含まれる所定領域の画像によって、所定領域を監視することができる。例えば無人航空機101が自動操縦により飛行している場合、無人航空機101の所有者は、無人航空機101が取得した飛行データから、無人航空機101の状態を把握することができる。例えば宅配業者が無人航空機101を利用する場合、宅配業者は、情報処理装置104が取得した無人航空機101の識別情報および位置情報から、宅配中の無人航空機101の位置を把握することができる。例えば無人航空機101が盗難にあった場合、無人航空機101の所有者は、情報処理装置104が取得した無人航空機101の識別情報および位置情報から、無人航空機101の位置を把握することができる。
 コントローラ180は、無人航空機101から送信機105に送信する送信信号を、生成してよい。コントローラ180は、近距離通信規格に従って、送信信号を生成してもよい。コントローラ180は、生成した送信信号に応じた電力を、第1アンテナ60gの第1給電線61に供給してよい。コントローラ180は、送信信号に応じた電力を第1アンテナ60gの第1給電線61に供給することで、電磁波としての送信信号を、送信機105に送信しうる。
 コントローラ180は、無人航空機101から送信機105への送信信号として、無人航空機101の周囲の環境データ、無人航空機101の飛行データ、および無人航空機101の位置情報の少なくとも1つに応じた送信信号を、生成してよい。コントローラ180は、メモリ170に格納された無人航空機101の識別情報が含まれるように、送信信号を生成してよい。送信機105は、当該送信信号を取得することにより、無人航空機101の識別情報と共に、無人航空機101の周囲の環境データ、無人航空機101の飛行データ、および無人航空機101の位置情報の少なくとも1つを、取得することができる。
 コントローラ180は、無人航空機101から送信機105への送信信号として、無人航空機101と送信機105との間の相対位置関係に応じた送信信号を、生成してよい。コントローラ180は、無人航空機101と送信機105との間の通信に基づいて、無人航空機101と送信機105との間の相対位置関係を取得してよい。コントローラ180は、相対位置関係を取得するとき、第1アンテナ60gの放射強度が送信機105の方向へ強くなるように、無人航空機101の姿勢を制御してよい。コントローラ180は、メモリ170に格納された無人航空機101の識別情報が含まれるように、送信信号を生成してよい。コントローラ180は、無人航空機101の基地への帰還中、送信信号を生成してよい。送信機105は、当該送信信号を取得することにより、無人航空機101の識別情報とともに、無人航空機101と送信機105との間の相対位置関係を取得しうる。操縦者は、送信機105が取得した情報から、無人航空機101と送信機105との間の相対位置関係を把握することができる。操縦者は、無人航空機101と送信機105との間の相対位置関係を把握することで、無人航空機101を安全に着陸させることができる。
 コントローラ180は、無人航空機101から周囲の航空機106に送信する送信信号を、生成してよい。コントローラ180は、近距離通信規格に従って、送信信号を生成してよい。コントローラ180は、生成した送信信号に応じた電力を、第1アンテナ60gの第1給電線61に供給してよい。コントローラ180は、送信信号に応じた電力を第1アンテナ60gの第1給電線61に供給することで、電磁波としての送信信号を、周囲の航空機106に送信しうる。
 コントローラ180は、無人航空機101から周囲の航空機106への送信信号として、無人航空機101と航空機106との間の相対位置関係に応じた送信信号を、生成してよい。コントローラ180は、超音波センサ101iによって、無人航空機101と航空機106との間の相対位置関係を取得してよい。コントローラ180は、無人航空機101と航空機106との間の通信に基づいて、無人航空機101と航空機106との間の相対位置関係を取得してよい。コントローラ180は、相対位置関係を取得するとき、第1アンテナ60gの放射強度が航空機106の方向へ強くなるように、無人航空機101の姿勢を制御してよい。コントローラ180は、メモリ170に格納された無人航空機101の識別情報が含まれるように、送信信号を生成してよい。航空機106は、当該送信信号を取得することで、無人航空機101と航空機106との間の相対位置関係を取得しうる。航空機106が相対位置関係を取得することで、無人航空機101と航空機106との衝突が避けられうる。
 コントローラ180は、無人航空機101から陸上基地局107に送信する送信信号を、生成してよい。コントローラ180は、近距離通信規格に従って、送信信号を生成してよい。コントローラ180は、生成した送信信号に応じた電力を、第1アンテナ60gの第1給電線61に供給してよい。コントローラ180は、送信信号に応じた電力を第1アンテナ60gの第1給電線61に供給することで、電磁波としての送信信号を、陸上基地局107に送信する。
 コントローラ180は、無人航空機101から陸上基地局107への送信信号として、無人航空機101と陸上基地局107との間の相対位置関係に応じた送信信号を、生成してよい。コントローラ180は、無人航空機101と陸上基地局107との間の通信に基づいて、無人航空機101と陸上基地局107との間の相対位置関係を取得してよい。コントローラ180は、相対位置関係を取得するとき、第1アンテナ60gの放射強度が陸上基地局107の方向へ強くなるように、無人航空機101の姿勢を制御してよい。コントローラ180は、メモリ170に格納された無人航空機101の識別情報が含まれるように、送信信号を生成してよい。コントローラ180は、無人航空機101の基地への帰還中、送信信号を生成してよい。陸上基地局107は、当該送信信号を取得することにより、無人航空機101の識別情報とともに、無人航空機101と陸上基地局107との間の相対位置関係を取得しうる。陸上基地局107が無人航空機101と送信機105との間の相対位置関係を取得することで、無人航空機101は、安全に着陸させられうる。
 ここで、通常では、無人航空機にロッドアンテナが配置されうる。ロッドアンテナは、ロッドアンテナの放射効率を維持するために、無人航空機の外面に取り付けられうる。なお、無人航空機のフレームが導電性を有する場合、導電性のフレームによってロッドアンテナの放射効率が低下してしまう場合がある。そのため、無人航空機のフレームが導電性を有する場合、ロッドアンテナは、無人航空機のフレームから突出するように、無人航空機の外面に取り付けられる。
 しかしながら、無人航空機の外面にロッドアンテナを取り付けると、無人航空機の飛行中、無人航空機への空気抵抗が増加しうる。ロッドアンテナが無人航空機のフレームから突出するように取り付けられる場合、無人航空機への空気抵抗は、より増加しうる。無人航空機への空気抵抗が増加すると、無人航空機の飛行中の安定性が低下してしまう場合がある。
 無人航空機の飛行中の安定性を維持するために、無人航空機の内部に、パッチアンテナ等のアンテナを配置させることが想定される。しかしながら、無人航空機は、構造的に、アンテナを配置するスペースが限られてしまう場合がある。
 これに対して、本実施形態では、ロッドアンテナの代わりに、第1アンテナ60gが、無人航空機101に配置される。第1アンテナ60gは、ロッドアンテナよりも、小型でありうる。本実施形態では、ロッドアンテナよりも小型の第1アンテナ60gを用いることで、第1アンテナ60gを無人航空機101の外面に配置させても、無人航空機101は、安定して飛行することができる。
 さらに、第1アンテナ60gの第4導体50を無人航空機101に対向させることで、第1アンテナ60gを無人航空機101のフレーム近辺に配置しても、第1アンテナ60gの放射効率が維持されうる。第1アンテナ60gを無人航空機101のフレーム近辺に配置することで、無人航空機1は、安定して飛行することができる。
 また、第1アンテナ60gは、ロッドアンテナよりも、小型である。そのため、無人航空機101の内部に容易に配置させることができる。
 本開示に係る構成は、以上説明してきた実施形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。
 本開示に係る構成を説明する図は、模式的なものである。図面上の寸法比率等は、現実のものと必ずしも一致しない。
 本開示において「第1」、「第2」、「第3」等の記載は、当該構成を区別するための識別子の一例である。本開示における「第1」および「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1の周波数は、第2の周波数と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。例えば、第1導体31は、導体31としうる。本開示における「第1」および「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠、および大きい番号の識別子が存在することの根拠に利用してはならない。本開示には、第2導体層42が第2単位スロット422を有するが、第1導体層41が第1単位スロットを有さない構成が含まれる。
1 自転車
1A シートステー
1B シートチューブ
1C チェーンステー
1D ダウンチューブ
1E フロントフォーク
1F ヘッドチューブ
1G トップチューブ
1H リアフォークエンド
1J ボトムブラケットシェル
1K フロントフォークエンド
1a ハンドル
1b,1b-1,1b-2 クランク
1c リアホイール
1d ホイール
1c-1,1d-1 スポーク
1c-2,1d-2 リム
1c-3,1d-3 タイヤ
1c-4,1d-4 ハブ
1e ステム
1f リアディレイラー
1g フロントディレイラー
1h デュアルコントロールレバー
1h-1 シフトレバー
1h-2 ブレーキレバー
1h-3 スイッチ
1i ライト
1j,1j-1,1j-2 チェーンホイール
1j-3 孔部
1j-4 ボトムブラケット
1k-1,1k-2 ブレーキ
1m,1m-1,1m-2 ペダル
1n パワーメータ
1o バッテリ
1p サドル
1q シートポスト
1r ヘッドパーツ
2 ネットワーク
3 情報処理装置
4 移動体
10 共振器(Resonator)
10X 単位構造体(Unit structure)
20 基体(Base)
20a 空洞(Cavity)
21 第1基体(First Base)
22 第2基体(Second Base)
23 接続体(Connector)
24 第3基体(Third Base)
30 対導体(Pair conductors)
301 第5導体層(Fifth conductive layer)
302 第5導体(Fifth conductor)
303 第6導体(Sixth conductor)
31 第1導体(First conductor)
32 第2導体(Second conductor)
40 第3導体群(Third conductor group)
401 第1共振器(First resonator)
402 スロット(Slot)
403 第7導体(Seventh conductor)
40X 単位共振器(Unit resonator)
40I 電流路(Current path)
41 第1導体層(First conductive layer)
411 第1単位導体(First unit conductor)
412 第1単位スロット(First unit slot)
413 第1接続導体(First connecting conductor)
414 第1浮遊導体(First floating conductor)
415 第1給電導体(First feeding conductor)
41X 第1単位共振器(First unit resonator)
41Y 第1部分共振器(First divisional resonator)
42 第2導体層(Second conductive layer)
421 第2単位導体(Second unit conductor)
422 第2単位スロット(Second unit slot)
423 第1接続導体(Second connecting conductor)
424 第1浮遊導体(Second floating conductor)
42X 第2単位共振器(Second unit resonator)
42Y 第2部分共振器(Second divisional resonator)
45 インピーダンス素子(Impedance element)
50 第4導体(Fourth conductor)
51 基準電位層(Reference potential layer)
52 第3導体層(Third conductive layer)
53 第4導体層(Fourth conductive layer)
60,60a,60b,60c,60d,60e,60f,60g 第1アンテナ(First antenna)
61 第1給電線(First feeding line)
70 第2アンテナ(Second antenna)
71 第2給電層(Second feeding layer)
72 第2給電線(Second feeding line)
80 無線通信モジュール(Wireless communication module)
81 回路基板(Circuit board)
811 グラウンド導体(Ground conductor)
82 RFモジュール(RF module)
90 無線通信機器(Wireless communication device)
91 電池(Battery)
92 センサ(Sensor)
93 メモリ(Memory)
94 コントローラ(Controller)
95 第1筐体(First case)
95A 上面(Upper surface)
96 第2筐体(Second case)
96A 下面(Under surface)
961 第8導体(Eighth conductor)
9612 第1部位(First body)
9613 第1延部(First extra-body)
9614 第2延部(Second extra-body)
97 第3アンテナ(Third antenna)
99 電導体(Electrical conductive body)
99A 上面(Upper surface)
101 無人航空機(unmanned aircraft)
101A 本体部
101B,101C,101D,101E アーム
101F 電池ホルダ
101G レッグ
101G-1底部
101G-2,101G-3 側部
101a-1,101a-2,101a-3,101a-4 モータ
101b,101c,101d,101e プロペラ
101f ジンバル
101g カメラ
101h 電池
101i 超音波センサ
102 通信基地局
103 ネットワーク
104 情報処理装置
105 送信機
106 航空機
107 陸上基地局
110 センサ機器
111,121,131,141,151 電池
112,160 センサ
113,123,133,143,153,170 メモリ
114,124,134,144,154,180 コントローラ
120 通信機器
130 表示機器
132 表示デバイス
140 検出機器
142 検出部
150 制御機器
152 機構
c 第3アンテナの動作周波数(Operating frequency of the third antenna)
λc 第3アンテナの動作波長(Operating wavelength of the third antenna)

Claims (21)

  1.  第1導体と、
     前記第1導体と第1方向において対向する第2導体と、
     前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる第4導体と、
     前第3導体に電磁気的に接続される給電線と、を含み、
     前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続され、
     前記第4導体が自転車の自転車用部品に対向するように、当該自転車用部品に配置される、アンテナ。
  2.  自転車用部品は、導電性を有する長尺部を含み、
     前記アンテナは、第1方向が前記長尺部に沿うように、前記長尺部に配置される、請求項1に記載のアンテナ。
  3.  前記自転車用部品は、ブレーキレバー、およびチェーンホイールの少なくとも1つを含む、請求項2に記載のアンテナ。
  4.  第1導体と、
     前記第1導体と第1方向において対向する第2導体と、
     前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる第4導体と、
     前第3導体に電磁気的に接続される給電線と、を含み、
     前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続され、
     前記第1方向が自転車のフレームに含まれる導電性の長尺部に沿うように、当該長尺部に配置される、アンテナ。
  5.  前記長尺部は、シートステー、シートチューブ、チェーンステー、ダウンチューブ、フロントフォーク、ヘッドチューブ、およびトップチューブの少なくとも1つを含む、請求項4に記載のアンテナ。
  6.  前記アンテナは、遠距離通信で使用される周波数帯に応じて構成される、請求項1から請求項5のいずれか一項に記載のアンテナ。
  7.  前記アンテナは、近距離通信で使用される周波数帯に応じて構成される、請求項1から請求項6の少なくとも1つに記載のアンテナ。
  8.  アンテナと、自転車用部品と、を備え、
     前記アンテナは、
     第1導体と、
     前記第1導体と第1方向において対向する第2導体と、
     前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる第4導体と、
     前第3導体に電磁気的に接続される給電線と、を含み、
     前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続され、
     前記アンテナは、前記第4導体が自転車の自転車用部品に対向するように、当該自転車用部品に配置される、自転車。
  9.  アンテナと、導電性の長尺部を少なくとも1つ含むフレームと、を備え、
     前記アンテナは、
     第1導体と、
     前記第1導体と第1方向において対向する第2導体と、
     前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる第4導体と、
     前記第3導体に電磁気的に接続される給電線と、を含み、
     前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続され、
     前記アンテナは、前記第1方向が前記長尺部に沿うように、前記長尺部に配置される、自転車。
  10.  前記自転車のデータおよび運転者の生体データのいずれかを測定するセンサ機器をさらに備え、
     前記センサ機器は、前記アンテナによって他の装置と通信する、請求項8または9に記載の自転車。
  11.  運転者の操作または前記自転車の周囲の環境を検出する検出機器と、
     前記検出機器が検出した運転者の操作または前記自転車の周囲の環境に基づいて、前記自転車の機能を制御する制御機器と、を備え、
     前記検出機器および前記制御機器は、独立した前記アンテナをそれぞれ有し、互いに通信可能である、請求項8から10の少なくとも1つに記載の自転車。
  12.  アンテナと、表示デバイスとを備え、
     前記アンテナは、
     第1導体と、
     前記第1導体と第1方向において対向する第2導体と、
     前記第1導体および前記第2導体の間に、当該第1導体および第2導体と離れて位置し、前記第1方向に沿って広がる第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に沿って広がる第4導体と、
     前第3導体に電磁気的に接続される給電線と、を含み、
     前記第1導体と前記第2導体は、前記第3導体を介して容量的に接続され、
     前記アンテナは、前記第4導体が自転車の自転車用部品に対向するように当該自転車用部品に配置されるか、または、前記第1方向が自転車のフレームに含まれる導電性の長尺部に沿うように当該長尺部に配置される、表示機器。
  13.  前記自転車は、前記自転車のデータおよび運転者の生体データの少なくとも一方を測定するセンサ機器を備え、
     前記表示機器は、前記アンテナによって前記センサ機器から前記自転車のデータおよび運転者の生体データの少なくとも一方を取得して前記表示デバイスに表示する、請求項12に記載の表示機器。
  14.  前記アンテナは、前記表示機器と前記センサ機器との間の通信で使用される周波数帯に応じて構成される、請求項12または13に記載の表示機器。
  15.  第1方向において対向する第1導体および第2導体と、
     前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、
     前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、
     前記第3導体に電磁気的に接続される給電線と、を備え、
     前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続され、
     無人航空機に配置される、アンテナ。
  16.  前記アンテナは、前記第4導体が前記無人航空機に対向するように、前記無人航空機に配置される、請求項15に記載のアンテナ。
  17.  前記無人航空機のフレームは、導電性の長尺部を含み、
     前記アンテナは、前記第1方向が前記長尺部に沿うように、前記長尺部に配置される、請求項15または16に記載のアンテナ。
  18.  前記長尺部は、前記無人航空機のアームである、請求項17に記載のアンテナ。
  19.  前記長尺部は、前記無人航空機のレッグである、請求項17に記載のアンテナ。
  20.  前記アンテナは、前記第4導体が前記無人航空機のバッテリに対向するように、当該バッテリに配置される、請求項16に記載のアンテナ。
  21.  第1方向において対向する第1導体および第2導体と、前記第1導体および前記第2導体の間に位置し、前記第1方向に延びる1または複数の第3導体と、前記第1導体および前記第2導体に接続され、前記第1方向に延びる第4導体と、前記第3導体に電磁気的に接続される給電線と、を含み、前記第1導体および前記第2導体は、前記第3導体を介して容量的に接続される、アンテナが配置されている、無人航空機。
PCT/JP2019/000108 2018-01-22 2019-01-07 アンテナ、自転車、表示機器、および無人航空機 WO2019142676A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/964,179 US11764479B2 (en) 2018-01-22 2019-01-07 Antenna, bicycle, display apparatus, and unmanned aircraft
CN201980009560.4A CN111630715B (zh) 2018-01-22 2019-01-07 天线、自行车、显示设备及无人航空器
JP2019566416A JP7041690B2 (ja) 2018-01-22 2019-01-07 アンテナ、自転車、表示機器、および無人航空機
EP19741953.4A EP3745531B1 (en) 2018-01-22 2019-01-07 Antenna, bicycle, display device, and unmanned aerial vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-008411 2018-01-22
JP2018-008415 2018-01-22
JP2018008411 2018-01-22
JP2018008415 2018-01-22
JP2018008416 2018-01-22
JP2018-008416 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019142676A1 true WO2019142676A1 (ja) 2019-07-25

Family

ID=67302270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000108 WO2019142676A1 (ja) 2018-01-22 2019-01-07 アンテナ、自転車、表示機器、および無人航空機

Country Status (5)

Country Link
US (1) US11764479B2 (ja)
EP (1) EP3745531B1 (ja)
JP (1) JP7041690B2 (ja)
CN (1) CN111630715B (ja)
WO (1) WO2019142676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015146A1 (ja) * 2019-07-24 2021-01-28 京セラ株式会社 ブレーキレバー及び変速機
WO2022209053A1 (ja) * 2021-03-29 2022-10-06 京セラ株式会社 マルチアンテナ、無線通信デバイス、およびトラッキングシステム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745531B1 (en) * 2018-01-22 2023-11-15 Kyocera Corporation Antenna, bicycle, display device, and unmanned aerial vehicle
JP7159124B2 (ja) * 2019-07-24 2022-10-24 京セラ株式会社 変速機
JP7210396B2 (ja) * 2019-07-24 2023-01-23 京セラ株式会社 ブレーキレバー
WO2022099577A1 (zh) * 2020-11-13 2022-05-19 深圳市大疆创新科技有限公司 无人机
CN113328239B (zh) * 2021-05-10 2022-05-03 电子科技大学 一种任意俯仰面矩形波束赋形的周期阻抗调制表面
CN113809556A (zh) * 2021-08-05 2021-12-17 华南理工大学 共口径双频双极化天线阵列及通信设备
NL2031284B1 (en) * 2022-03-15 2023-09-27 Vanmoof Bv Bicycle, in particular an electric bicycle, and bicycle antenna

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067842A (en) * 1980-01-16 1981-07-30 Secr Defence Microstrip Antenna
JP2000095181A (ja) * 1998-09-25 2000-04-04 Akebono Brake Ind Co Ltd 自転車用変速システム
JP2000131090A (ja) * 1998-10-27 2000-05-12 Akebono Brake Ind Co Ltd 自転車用計算装置
JP2001188998A (ja) * 1999-12-28 2001-07-10 Yokohama Tokushu Senpaku Co Ltd 車輌のレンタルシステム及びレンタル方法
DE102005001209A1 (de) * 2005-01-11 2006-07-20 Hans-Peter Leicht Fahrradortung, -erkennung, -sicherung durch GPS/Galileo-Empfänger (Chip)
JP2007230340A (ja) * 2006-02-28 2007-09-13 Shimano Inc 自転車用クランク軸組立体
US20090140946A1 (en) * 2007-10-31 2009-06-04 Ziolkowski Richard W Efficient metamaterial-inspired electrically-small antenna
JP2011116324A (ja) * 2009-12-01 2011-06-16 Mitsuru Baba 踏力検知センサー
US20120330572A1 (en) * 2009-11-28 2012-12-27 David John Longman Cyclic Cranked System Method and Related Devices
JP2014523163A (ja) * 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 電気的に小型の垂直スプリットリング共振器アンテナ
CN205652331U (zh) * 2016-04-14 2016-10-19 深圳市大疆创新科技有限公司 无人飞行器的机架及多旋翼无人飞行器
US20170025744A1 (en) * 2015-07-20 2017-01-26 Qualcomm Incorporated Motor feed antenna for vehicle
JP2017052313A (ja) * 2015-09-07 2017-03-16 シリコン・バレイ・マイクロ・イー・コーポレーション ユニバーサルマウント自転車用電力計モジュール
EP3159254A1 (de) * 2015-10-22 2017-04-26 SECURE-No.com GmbH Fahrzeug, insbesondere elektrofahrrad
WO2017111612A1 (en) * 2015-12-22 2017-06-29 Bikefinder As Tracking unit for a human-powered vehicle
WO2017111613A1 (en) * 2015-12-22 2017-06-29 Bikefinder As Tracking unit for a human-powered vehicle
JP2017124814A (ja) * 2015-10-23 2017-07-20 パロット ドローンズ アンテナを収容するサポートを有するドローン
CN206885325U (zh) * 2017-05-09 2018-01-16 昊翔电能运动科技(昆山)有限公司 无人飞行器器件布局结构
CN206907920U (zh) * 2016-12-14 2018-01-19 深圳市道通智能航空技术有限公司 一种双频段微带天线及应用该天线的无人机

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013236A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Works Ltd 二輪車両位置検出装置
US7928910B2 (en) * 2005-03-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and electronic device having wireless chip
CN101156162B (zh) * 2005-03-31 2012-05-16 株式会社半导体能源研究所 无线芯片以及具有无线芯片的电子设备
US7566971B2 (en) * 2005-05-27 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4070784B2 (ja) * 2005-08-22 2008-04-02 日本電業工作株式会社 アンテナおよびアレイアンテナ
EP2304403B1 (en) * 2008-07-29 2018-11-28 Garmin Switzerland GmbH System and device for measuring and analyzing forces applied by a cyclist on a pedal of a bicycle
WO2013090465A1 (en) * 2011-12-12 2013-06-20 Biketrak, Inc. Bicycle theft monitoring and recovery devices
US9323877B2 (en) * 2013-11-12 2016-04-26 Raytheon Company Beam-steered wide bandwidth electromagnetic band gap antenna
US10180368B2 (en) * 2014-06-03 2019-01-15 Garmin Switzerland Gmbh Method and apparatus for determining whether a cyclist is sitting or standing
JP6434988B2 (ja) * 2014-11-07 2018-12-05 パイオニア株式会社 操作姿勢出力装置
CN204436080U (zh) * 2015-01-14 2015-07-01 河北三川数字信息亭传媒有限公司 一种便民自行车锁车器
JP6524868B2 (ja) 2015-09-07 2019-06-05 スズキ株式会社 キーレスエントリシステムを有する船外機
EP3173796B1 (de) 2015-11-27 2019-06-05 Deutsche Telekom AG Sensorsystem zur montage an einem fahrrad
CN106450712A (zh) * 2016-01-08 2017-02-22 深圳市脉冲星通信科技有限公司 一种多旋翼无人机高增益全向共形分集天线技术
US10475303B2 (en) * 2017-03-16 2019-11-12 Shimano Inc. Bicycle electric device
CN208401015U (zh) * 2017-06-05 2019-01-18 日本电产株式会社 波导装置以及具有该波导装置的天线装置
EP3745534A4 (en) * 2018-01-22 2021-10-20 Kyocera Corporation ANTENNA, WIRELESS COMMUNICATION DEVICE, WIRELESS COMMUNICATION SYSTEM, VEHICLE, MOTORCYCLE AND MOBILE BODY
JPWO2019142673A1 (ja) * 2018-01-22 2021-01-07 京セラ株式会社 アンテナ、通信モジュールおよび街灯
WO2019142679A1 (ja) * 2018-01-22 2019-07-25 京セラ株式会社 アンテナ、無線通信機器、ホイール、タイヤ空気圧監視システム、および車両
EP3745531B1 (en) * 2018-01-22 2023-11-15 Kyocera Corporation Antenna, bicycle, display device, and unmanned aerial vehicle
US11459061B2 (en) 2019-01-12 2022-10-04 Sram, Llc Bicycle component motion control
US11015705B2 (en) 2019-01-18 2021-05-25 Sram, Llc Bicycle control system
US11738826B2 (en) 2019-02-15 2023-08-29 Sram, Llc Bicycle control system
US11840315B2 (en) 2019-05-02 2023-12-12 Sram, Llc Gear changer adjustment and device
US11155319B2 (en) 2019-06-28 2021-10-26 Sram, Llc Dual-sided brake controller housing
CN113993778B (zh) * 2019-07-24 2023-04-21 京瓷株式会社 制动杆以及变速器
CN116133968A (zh) 2020-07-27 2023-05-16 京瓷株式会社 天线、无线通信模块、货物收取装置以及货物收取系统

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067842A (en) * 1980-01-16 1981-07-30 Secr Defence Microstrip Antenna
JP2000095181A (ja) * 1998-09-25 2000-04-04 Akebono Brake Ind Co Ltd 自転車用変速システム
JP2000131090A (ja) * 1998-10-27 2000-05-12 Akebono Brake Ind Co Ltd 自転車用計算装置
JP2001188998A (ja) * 1999-12-28 2001-07-10 Yokohama Tokushu Senpaku Co Ltd 車輌のレンタルシステム及びレンタル方法
DE102005001209A1 (de) * 2005-01-11 2006-07-20 Hans-Peter Leicht Fahrradortung, -erkennung, -sicherung durch GPS/Galileo-Empfänger (Chip)
JP2007230340A (ja) * 2006-02-28 2007-09-13 Shimano Inc 自転車用クランク軸組立体
US20090140946A1 (en) * 2007-10-31 2009-06-04 Ziolkowski Richard W Efficient metamaterial-inspired electrically-small antenna
US20120330572A1 (en) * 2009-11-28 2012-12-27 David John Longman Cyclic Cranked System Method and Related Devices
JP2011116324A (ja) * 2009-12-01 2011-06-16 Mitsuru Baba 踏力検知センサー
JP2014523163A (ja) * 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 電気的に小型の垂直スプリットリング共振器アンテナ
US20170025744A1 (en) * 2015-07-20 2017-01-26 Qualcomm Incorporated Motor feed antenna for vehicle
JP2017052313A (ja) * 2015-09-07 2017-03-16 シリコン・バレイ・マイクロ・イー・コーポレーション ユニバーサルマウント自転車用電力計モジュール
EP3159254A1 (de) * 2015-10-22 2017-04-26 SECURE-No.com GmbH Fahrzeug, insbesondere elektrofahrrad
JP2017124814A (ja) * 2015-10-23 2017-07-20 パロット ドローンズ アンテナを収容するサポートを有するドローン
WO2017111612A1 (en) * 2015-12-22 2017-06-29 Bikefinder As Tracking unit for a human-powered vehicle
WO2017111613A1 (en) * 2015-12-22 2017-06-29 Bikefinder As Tracking unit for a human-powered vehicle
CN205652331U (zh) * 2016-04-14 2016-10-19 深圳市大疆创新科技有限公司 无人飞行器的机架及多旋翼无人飞行器
CN206907920U (zh) * 2016-12-14 2018-01-19 深圳市道通智能航空技术有限公司 一种双频段微带天线及应用该天线的无人机
CN206885325U (zh) * 2017-05-09 2018-01-16 昊翔电能运动科技(昆山)有限公司 无人飞行器器件布局结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MURAKAMI ET AL.: "An Optimum Configuration of a Reflector for a Dipole Antenna with an AMC reflector", TRANS. INST. ELECTRON. INFORM. COMMUNI. ENGNR. JPN. (B, vol. J98-B, no. 11, pages 1212 - 1220
MURAKAMI ET AL.: "Low Attitude Design and a Band Characteristic of an Artificial Magnetic Conductor using a Dielectric Substrate", TRANS. INST. ELECTRON. INFORM. COMMUNI. ENGNR. JPN. (B, vol. J98-B, no. 2, pages 172 - 179

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015146A1 (ja) * 2019-07-24 2021-01-28 京セラ株式会社 ブレーキレバー及び変速機
EP4007066A4 (en) * 2019-07-24 2023-08-09 Kyocera Corporation BRAKE LEVER AND TRANSMISSION
WO2022209053A1 (ja) * 2021-03-29 2022-10-06 京セラ株式会社 マルチアンテナ、無線通信デバイス、およびトラッキングシステム

Also Published As

Publication number Publication date
EP3745531B1 (en) 2023-11-15
US20210036400A1 (en) 2021-02-04
EP3745531A4 (en) 2021-11-17
JPWO2019142676A1 (ja) 2021-01-14
CN111630715B (zh) 2022-06-17
US11764479B2 (en) 2023-09-19
EP3745531A1 (en) 2020-12-02
CN111630715A (zh) 2020-09-04
JP7041690B2 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2019142676A1 (ja) アンテナ、自転車、表示機器、および無人航空機
US11483029B2 (en) Antenna, wireless communication device, wireless communication system, vehicle, motorcycle, and movable body
US11502387B2 (en) Antenna, wireless communication device, wheel, tire pressure monitoring system, and vehicle
US11387572B2 (en) Antenna element, array antenna, communication unit, mobile object, and base station
WO2019142673A1 (ja) アンテナ、通信モジュールおよび街灯
US11843174B2 (en) Antenna element, array antenna, communication unit, mobile body, and base station
US11970242B2 (en) Brake lever and transmission
JP7159124B2 (ja) 変速機
JP7210396B2 (ja) ブレーキレバー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741953

Country of ref document: EP

Effective date: 20200824