WO2019142662A1 - 半導体ウェーハの評価方法および半導体ウェーハの製造方法 - Google Patents

半導体ウェーハの評価方法および半導体ウェーハの製造方法 Download PDF

Info

Publication number
WO2019142662A1
WO2019142662A1 PCT/JP2019/000042 JP2019000042W WO2019142662A1 WO 2019142662 A1 WO2019142662 A1 WO 2019142662A1 JP 2019000042 W JP2019000042 W JP 2019000042W WO 2019142662 A1 WO2019142662 A1 WO 2019142662A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
image
boundary
evaluation
manufacturing
Prior art date
Application number
PCT/JP2019/000042
Other languages
English (en)
French (fr)
Inventor
崇裕 長澤
靖行 橋本
裕孝 加藤
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to US16/962,559 priority Critical patent/US11955390B2/en
Priority to KR1020207020051A priority patent/KR102436876B1/ko
Priority to DE112019000461.1T priority patent/DE112019000461T5/de
Priority to CN201980009001.3A priority patent/CN111587476B/zh
Publication of WO2019142662A1 publication Critical patent/WO2019142662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • G01N2021/8825Separate detection of dark field and bright field

Definitions

  • the present invention relates to a method of evaluating a semiconductor wafer and a method of manufacturing a semiconductor wafer.
  • Semiconductor wafers are generally manufactured by performing various processes on wafers cut out from ingots.
  • the outer peripheral edge portion of the wafer cut out from the ingot is likely to be cracked or chipped because it has a corner portion as it is. Therefore, at least one outer peripheral edge on the surface (front surface) side to be the device formation surface side of the semiconductor wafer and on the surface (back surface) side opposite to the front surface is chamfered to obtain a chamfered surface. It is usually done to form. With respect to this chamfered surface, Japanese Patent Laid-Open No.
  • 2016-130738 proposes that an image be acquired so that the chamfered surface is displayed in white, and that the width dimension of the chamfered surface be calculated from the width dimension of this image (Refer to paragraphs 0060 to 0062 of JP-A-2016-130738).
  • the “front surface” of a semiconductor wafer refers to either or both of the above-mentioned front surface and back surface unless otherwise specified.
  • the main surface on the front surface side is a plane on which devices are formed
  • the flat surface on the back side is the main surface on the back surface side.
  • the chamfered surface formed on the wafer outer peripheral edge has a surface shape inclined with respect to the adjacent main surface. Therefore, looking at the cross-sectional shape in the thickness direction of the semiconductor wafer, the shape changes significantly at the boundary between the main surface and the chamfered surface adjacent to the main surface.
  • the shape of the boundary portion between the main surface and the chamfered surface can be used as an index for predicting the easiness of occurrence of chipping or flaw in the manufacturing process of the semiconductor device.
  • the boundary of the contact can be obtained by appropriately setting the shape of the boundary between the wafer surface (for example, the back surface) and the chamfered surface in accordance with the shape of the wafer support that supports the wafer during heat treatment. Since chipping and flaws are less likely to occur, it is possible to reduce the occurrence rate of dislocation (slip) and dust generation caused by chipping and flaws.
  • the method described in JP-A-2016-130738 is a method of determining the width dimension of the chamfered surface, and in the method described in JP-A-2016-130738, the boundary portion between the chamfered surface and the main surface is Shape can not be evaluated.
  • One aspect of the present invention provides a new method for evaluating the shape of the boundary between a chamfered surface and a main surface of a semiconductor wafer.
  • One aspect of the present invention is Obtaining a reflected image as a bright field image by receiving reflected light obtained by irradiating light toward one surface side of the semiconductor wafer to be evaluated; Obtaining a scattered image as a dark field image by receiving scattered light obtained by irradiating light toward the surface side of the semiconductor wafer to be evaluated; Determining an interval L between a bright area band observed in the reflected image and a bright area band observed in the scattered image; Including
  • the semiconductor wafer to be evaluated is a semiconductor wafer in which a chamfered surface is formed on the wafer outer peripheral edge portion, Evaluating the shape of the boundary portion between the principal surface on the front surface side of the semiconductor wafer to be evaluated irradiated with the light and the chamfered surface adjacent to the principal surface, based on the L.
  • a method of evaluating a semiconductor wafer including the following (hereinafter, simply referred to as an “evaluation method”), About.
  • the inventors of the present invention found that the value of L is larger as the shape of the boundary between the chamfered surface and the main surface is smoother with respect to the distance L, and the boundary between the chamfered surface and the main surface It has been newly found that the steeper the shape of, the smaller the value of L. Therefore, based on the value of L, it is possible to evaluate the gentleness / sharpness of the shape of the boundary between the main surface and the chamfered surface.
  • the evaluation method includes at least a region on the boundary side of the chamfer and a region on the chamfer side of the boundary from outside the vertical direction of the boundary from the scattering image. It may include irradiating and acquiring light toward the part.
  • the reflection image is directed from above in the vertical direction of the boundary to a portion including at least a region on the boundary of the main surface and a region on the main surface of the boundary. It may include irradiating and acquiring light.
  • the evaluation method performs a plurality of times of acquiring the scattered image and the reflected image by rotating the semiconductor wafer to be evaluated around the normal direction of the main surface as an axis, and the semiconductor wafer to be evaluated It may include determining L at a plurality of different locations.
  • a further aspect of the invention is Producing candidate semiconductor wafers for shipment as products, Evaluating the candidate semiconductor wafer by the evaluation method; Providing the semiconductor wafer determined to be non-defective as a result of evaluation to be shipped as a product semiconductor wafer, Of manufacturing a semiconductor wafer including About.
  • a further aspect of the invention is Producing semiconductor wafer lots including multiple semiconductor wafers, Extracting at least one semiconductor wafer from the semiconductor wafer lot, Evaluating the extracted semiconductor wafer by the evaluation method; As a result of the above evaluation, the semiconductor wafer of the same semiconductor wafer lot as the semiconductor wafer judged to be non-defective is subjected to preparation for shipment as a product semiconductor wafer, Of manufacturing a semiconductor wafer including About.
  • a further aspect of the invention is Manufacturing a semiconductor wafer for evaluation under test manufacturing conditions, Evaluating the manufactured semiconductor wafer for evaluation by the evaluation method; Based on the result of the evaluation, determining as the actual production condition the production condition in which the test production condition is changed or determining the test production condition as the actual production condition, Manufacturing a semiconductor wafer under the above determined actual manufacturing conditions, Of manufacturing a semiconductor wafer including About.
  • the manufacturing conditions to which the above-mentioned change is added can be at least one of polishing treatment conditions and chamfering conditions of the semiconductor wafer surface.
  • the schematic block diagram of the light irradiation system used for acquiring the reflected image in the Example, and a light reception system is shown.
  • the schematic block diagram of the light irradiation system used for acquiring the scattered image in the Example, and a light reception system is shown.
  • the example which put in order the reflected image and scattered image which were acquired about the same location of the same semiconductor wafer which chamfering process was given to the wafer outer-periphery part is shown.
  • the graph which plotted the value of L obtained in the Example with respect to the reference value is shown.
  • the evaluation result obtained in multiple places of each of two types of semiconductor wafers in an example is shown.
  • An example of the evaluation result by the evaluation method for obtaining a reference value is shown. About the semiconductor wafer evaluated by the Example, the evaluation result obtained by the evaluation method for obtaining a reference value is shown.
  • One aspect of the present invention is to obtain a reflected image as a bright field image by receiving reflected light obtained by irradiating light toward one surface side of a semiconductor wafer to be evaluated, and a semiconductor to be evaluated Obtaining a scattered image as a dark field image by receiving scattered light obtained by irradiating light toward the front surface side of the wafer; and a bright area band observed in the reflected image and the scattered image
  • the semiconductor wafer to be evaluated is a semiconductor wafer having a chamfered surface formed on the outer peripheral edge portion of the wafer, and the semiconductor wafer to be evaluated based on the above L.
  • the present invention relates to a method for evaluating a semiconductor wafer, which includes evaluating the shape of the boundary between the main surface on the front side of the wafer irradiated with the light and the chamfered surface adjacent to the main surface.
  • the above evaluation method will be described in more detail below.
  • the semiconductor wafer to be evaluated by the above evaluation method may be a semiconductor wafer having a chamfered surface formed by chamfering the outer peripheral edge portion of the wafer.
  • the semiconductor wafer to be evaluated can be various semiconductor wafers generally used as a semiconductor substrate.
  • various silicon wafers can be mentioned as a specific example of a semiconductor wafer.
  • the silicon wafer can be, for example, a silicon single crystal wafer cut out from a silicon single crystal ingot and then subjected to various processes such as chamfering.
  • a specific example of such a silicon single crystal wafer there can be mentioned, for example, a polished wafer which has been subjected to polishing and has a polished surface on the surface.
  • the silicon wafer can also be various silicon wafers such as an epitaxial wafer having an epitaxial layer on a silicon single crystal wafer, and an annealed wafer in which a modified layer is formed on a silicon single crystal wafer by annealing.
  • the inventors of the present invention have found that the region between the two bright part zones corresponds to the boundary, and the distance L between the two bright part bands is from the surface side including the boundary where the semiconductor wafer to be evaluated has a shape to be evaluated. It is considered to correspond to the width of the boundary observed when viewed. Then, as a result of intensive studies by the present inventors, it has been newly found that the width is wider as the shape of the boundary is more gentle and as it is steeper. Therefore, the distance L between the two bright part bands can be used as an index for shape evaluation of the boundary part. Specifically, it can be determined that the larger the value of L is, the smoother the shape of the boundary, and the smaller the value of L, the steeper the shape of the boundary.
  • the acquisition of the reflection image and the acquisition of the scatter image will be respectively described in more detail below.
  • the above evaluation method acquires a reflected image as a bright field image by receiving reflected light obtained by irradiating light toward the surface side including the boundary portion where the shape of the semiconductor wafer to be evaluated is to be evaluated. including. It is preferable that the wavelength of the light irradiated for the reflection image acquisition is a wavelength of the visible light region (range of 360 to 830 nm) that can be dealt with by an easily available light source and light receiving unit from the viewpoint of easiness of evaluation. .
  • a light irradiation system for acquiring a reflection image one having a known configuration can be used.
  • the outer peripheral side of the wafer is outside with reference to the upper side of the vertical direction of the boundary part whose shape is to be evaluated (this direction coincides with the “normal direction of the main surface”),
  • the wafer main surface side is called the inside.
  • the part irradiated with light for reflective image acquisition on the surface of the semiconductor wafer of evaluation object contains at least the area
  • a light receiving system for acquiring a reflection image one having a known configuration can be used.
  • the light receiving system can include, for example, a mirror for guiding reflected light from the surface of the semiconductor wafer to the light receiving unit.
  • the light receiving unit for example, a line scan camera can be used.
  • the bright part band observed in the reflection image (bright field image) thus acquired corresponds to the area on the boundary side of the main surface adjacent to the chamfered surface through the boundary part. ing. Since the reflection image is acquired as an image similar to the binary image in principle, the boundary between the light part and the dark part in the reflection image is clear and easily identifiable.
  • a scattered image is obtained as a dark field image by receiving scattered light obtained by irradiating light toward the surface side including the boundary where the shape of the semiconductor wafer to be evaluated is to be evaluated. including.
  • the wavelength of light irradiated for acquiring a scattering image is a wavelength of a visible light region (range of 360 to 830 nm) that can be handled by an easily available light source and a light receiving unit from the viewpoint of easiness of evaluation. .
  • a light irradiation system for acquiring a scattered image one having a known configuration can be used.
  • a light source used for light irradiation for scattering image acquisition well-known light sources, such as LED, can be mentioned. It is preferable that the light irradiation for acquiring a scattered image is performed from the outer side than the upper side of the perpendicular direction of the boundary part whose shape is to be evaluated.
  • light irradiation for acquiring scattered light is: From the viewpoint of acquiring scattered light of higher intensity, it is preferable to perform at least from the direction of the outer 10 ° direction to the outer 50 ° direction with respect to the upper side (0 °) of the vertical direction, It is more preferable to carry out from the direction of the outer 20 ° direction to the outer 40 ° direction, and it is further preferable to carry out the outer 20 ° direction.
  • the portion irradiated with light for acquiring a scattering image on the surface of the semiconductor wafer to be evaluated includes at least a region on the boundary of the chamfered surface and a region on the chamfer on the boundary.
  • a light receiving system for acquiring a scattered image one having a known configuration can be used.
  • the light receiving system can include, for example, a mirror for guiding scattered light from the surface of the semiconductor wafer to the light receiving unit.
  • the light receiving unit for example, a line scan camera can be used as the light receiving unit. The inventors believe that the bright part band observed in the scattered image (dark field image) thus acquired corresponds to the area on the boundary side of the chamfered surface adjacent to the main surface through the boundary part. ing.
  • a threshold can be set for brightness, and in the scattered image, a bright portion can be identified by dividing a portion with brightness above the threshold with a bright portion and a portion below the threshold with a dark portion.
  • the lightness threshold can be, for example, 0.
  • the order of the acquisition of the reflection image and the acquisition of the scatter image described above may be implemented first, regardless of the order.
  • the interval L is the end on the outer peripheral edge side of the bright part band specified in the reflection image (the boundary between the bright part and the dark part) and the end part on the main surface side of the bright part band specified in the scattered image (bright It can be determined as the shortest distance between the part and the dark part).
  • the method of determining the interval L is not particularly limited. For example, it is possible to obtain the distance L between the two bright part bands by superposing the reflection image and the scattering image or arranging the reflection image and the scattering image side by side by known image processing.
  • the shape evaluation of the boundary can be performed based on the above L. Specifically, it can be determined that the smaller the value of L is, the steeper the shape of the boundary, and the larger the value of L, the more gentle the shape of the boundary. As described above, the ability to evaluate the shape of the boundary using the value of L is preferable from the viewpoint of the reliability of the evaluation because the evaluation can be performed objectively based on the numerical values.
  • the shape of the boundary between the main surface and the chamfered surface adjacent to the main surface can be evaluated on the wafer front surface (front surface or back surface) of the semiconductor wafer.
  • the said evaluation method can be implemented, without requiring cutting out (for example, cleavage) of the sample piece from the semiconductor wafer of evaluation object. That is, according to the said evaluation method, evaluation in nondestructive is possible. This is preferable from the viewpoint of enabling a simple evaluation. Moreover, this is preferable also from the viewpoint of the ease of shape evaluation of the boundary part in the several different location of the same semiconductor wafer.
  • the semiconductor wafer to be evaluated is rotated around the normal direction of the main surface as an axis to obtain a reflected image and a scattered image a plurality of times, It may include determining L at a plurality of different locations.
  • the shape of the boundary at each location can be evaluated based on each of the plurality of L obtained in this manner.
  • representative values for example, average value (for example, arithmetic average), minimum value, maximum value, etc.
  • a plurality of L values obtained by evaluation at different portions of the same semiconductor wafer are used for shape evaluation of the boundary portion of the semiconductor wafer. It can also be an indicator.
  • ⁇ Method of manufacturing semiconductor wafer> A method of manufacturing a semiconductor wafer (a first manufacturing method) according to an aspect of the present invention, Producing candidate semiconductor wafers for shipment as products, Evaluating the candidate semiconductor wafer by the evaluation method; Providing the semiconductor wafer determined to be non-defective as a result of evaluation to be shipped as a product semiconductor wafer, Of manufacturing a semiconductor wafer including It is.
  • a method of manufacturing a semiconductor wafer (a second manufacturing method) according to another aspect of the present invention is Producing semiconductor wafer lots including multiple semiconductor wafers, Extracting at least one semiconductor wafer from the semiconductor wafer lot, Evaluating the extracted semiconductor wafer by the evaluation method; As a result of the above evaluation, the semiconductor wafer of the same semiconductor wafer lot as the semiconductor wafer judged to be non-defective is subjected to preparation for shipment as a product semiconductor wafer, Of manufacturing a semiconductor wafer including It is.
  • a method for producing a semiconductor wafer is Manufacturing a semiconductor wafer for evaluation under test manufacturing conditions, Evaluating the manufactured semiconductor wafer for evaluation by the evaluation method; Based on the result of the evaluation, determining as the actual production condition the production condition in which the test production condition is changed or determining the test production condition as the actual production condition, Manufacturing a semiconductor wafer under the above determined actual manufacturing conditions, Of manufacturing a semiconductor wafer including It is.
  • the first manufacturing method carries out the evaluation by the above-mentioned evaluation method as so-called pre-shipment inspection. Further, in the second manufacturing method, as a result of performing so-called removal inspection, the semiconductor wafer of the same lot as the semiconductor wafer determined to be non-defective is subjected to preparation for shipping as a product semiconductor wafer. In the third manufacturing method, semiconductor wafers manufactured under test manufacturing conditions are evaluated, and actual manufacturing conditions are determined based on the evaluation results. In any of the first manufacturing method, the second manufacturing method, and the third manufacturing method, the evaluation of the semiconductor wafer is performed by the evaluation method according to one aspect of the present invention described above.
  • a polished wafer which is one aspect of a silicon wafer, is obtained by cutting (slicing), chamfering, roughing (for example, lapping) a silicon wafer from a silicon single crystal ingot grown by the Czochralski method (CZ method) or the like. It can be manufactured by a manufacturing process including etching, mirror surface polishing (finishing polishing), and cleaning performed between the processing steps or after the processing steps. Also, the annealed wafer can be manufactured by annealing the polished wafer manufactured as described above.
  • the epitaxial wafer can be manufactured by vapor phase growing (epitaxial growth) an epitaxial layer on the surface of the polished wafer manufactured as described above.
  • the shape of the boundary between the main surface and the chamfered surface adjacent to the main surface is evaluated by the evaluation method according to an aspect of the present invention.
  • the details of the evaluation method are as described above.
  • the semiconductor wafer determined to be non-defective as a result of the evaluation is subjected to preparation for shipping as a product semiconductor wafer.
  • the criteria for determining a non-defective product may be determined according to the quality required for the product semiconductor wafer. For example, in one aspect, the determined value of L being greater than or equal to a certain value (ie, greater than or equal to the threshold value) can be used as a criterion for determining non-defective products.
  • a representative value for example, average value (for example, arithmetic average), minimum value, maximum value, etc.) of a plurality of L values obtained by evaluation in different portions of the same semiconductor wafer ) can also be used.
  • As preparation for shipping as a product semiconductor wafer for example, packing etc. can be mentioned.
  • the first manufacturing method it is possible to stably supply to the market a semiconductor wafer in which the shape of the boundary between the main surface and the chamfered surface is a shape desired for a product semiconductor wafer.
  • the production of semiconductor wafer lots in the second production method can also be performed in the same manner as a general semiconductor wafer production method, for example, as described above for the first production method.
  • the total number of semiconductor wafers included in the semiconductor wafer lot is not particularly limited.
  • the number of semiconductor wafers extracted from the manufactured semiconductor wafer lot and subjected to so-called sampling inspection is at least one, and may be two or more, and the number is not particularly limited.
  • the shape of the boundary between the main surface and the chamfered surface adjacent to the main surface is evaluated by the evaluation method according to an aspect of the present invention.
  • the details of the evaluation method are as described above.
  • the semiconductor wafer of the same semiconductor wafer lot as the semiconductor wafer determined to be non-defective as a result of the evaluation is prepared for shipping as a product semiconductor wafer.
  • the criteria for determining a non-defective product may be determined according to the quality required for the product semiconductor wafer. For example, in one aspect, the determined value of L being greater than or equal to a certain value (ie, greater than or equal to the threshold value) can be used as a criterion for determining non-defective products.
  • the preparation for shipping as a product semiconductor wafer is, for example, as described above for the first manufacturing method.
  • the second manufacturing method it is possible to stably supply to the market a semiconductor wafer in which the shape of the boundary between the main surface and the chamfered surface is a shape desired for a product semiconductor wafer.
  • the evaluation method according to one aspect of the present invention can be evaluated nondestructively, in one aspect of the second manufacturing method, semiconductor wafers extracted from semiconductor wafer lots and subjected to evaluation are also evaluated. As a result, if it is determined to be a non-defective product, it can be subjected to preparation for shipping as a product semiconductor wafer, and can be shipped as a product semiconductor wafer after preparation.
  • test manufacturing conditions and the actual manufacturing conditions various conditions in various processes for manufacturing a semiconductor wafer can be mentioned.
  • the various steps for manufacturing the semiconductor wafer are as described above for the first manufacturing method.
  • the actual manufacturing conditions shall mean the manufacturing conditions of a product semiconductor wafer.
  • test manufacturing conditions are set as a preliminary step for determining actual manufacturing conditions, and an evaluation semiconductor wafer is manufactured under the test manufacturing conditions.
  • the shape of the boundary between the main surface and the chamfered surface adjacent to the main surface is evaluated by the evaluation method according to an aspect of the present invention.
  • the details of the evaluation method are as described above.
  • the number of semiconductor wafers for evaluation is at least one, and may be two or more, and the number thereof is not particularly limited.
  • a product semiconductor wafer whose shape is a desired shape can be stably supplied to the market.
  • the manufacturing condition in which the test manufacturing condition is changed is determined as the actual manufacturing condition.
  • the manufacturing conditions to be changed are preferably manufacturing conditions that are considered to affect the shape of the boundary. As an example of such manufacturing conditions, polishing conditions of the front surface (front side and / or back side) of a semiconductor wafer can be mentioned.
  • polishing conditions rough polishing conditions and mirror polishing conditions can be mentioned, and more specifically, types of polishing solution, concentration of abrasive particles in the polishing solution, types of polishing pad (eg hardness, etc.) It can be mentioned.
  • chamfering conditions can be mentioned, and in detail, machining conditions such as grinding and polishing in chamfering can be mentioned, and more specifically, types of polishing tapes used for chamfering Etc. can be mentioned.
  • the manufacturing conditions in which the test manufacturing conditions are changed are determined as the actual manufacturing conditions, and the product semiconductor wafer is manufactured and shipped under the actual manufacturing conditions, whereby the product semiconductor wafer having the desired shape of the boundary portion is determined.
  • the semiconductor wafer for evaluation is manufactured again under the manufacturing conditions in which the test manufacturing conditions are changed, and the semiconductor wafer for evaluation is evaluated by the evaluation method according to an aspect of the present invention, and the manufacturing conditions are referred to as actual manufacturing conditions. Determining whether to make a change or to make a change may be repeated once or more than once.
  • the method of determining whether the shape of the boundary portion of the semiconductor wafer for evaluation is the shape desired for the product semiconductor wafer includes the first manufacturing method and the second manufacturing method first. You can refer to the description on the judgment of non-defective items.
  • a light irradiation system for acquiring a reflected image includes a light source 11 and a mirror 12. By changing the traveling direction of the light emitted from the light source 11 by the mirror 12, the light irradiation is performed from above the vertical direction (0 ° direction) of the boundary portion whose shape is to be evaluated.
  • the reflected light is guided to the light receiving unit 14 by changing the traveling direction of the light of the reflected light from the semiconductor wafer irradiated with the light by the mirror 13.
  • the light source 11 is a coaxial LED having an emission wavelength in the visible light range.
  • the light irradiation system for acquiring a scattered image includes the light source 21.
  • the light source 21 includes LEDs having emission wavelengths in 16 visible light regions arranged at equal intervals on the same circumference, and light configured to emit light from each of the 16 LEDs is configured to illuminate the same place. ing.
  • the light source 21 emits light at least from outside the upper side of the vertical direction of the boundary part whose shape is to be evaluated (specifically, from at least the outer 20 ° direction and the outer 40 ° direction).
  • the scattered light is guided to the light receiving unit 24 by changing the traveling direction of the scattered light from the semiconductor wafer irradiated with the light by the mirror 23.
  • the light receiving unit can be, for example, a line scan camera. Below, the line scan camera with which the above-mentioned automatic appearance machine was equipped was used as light sensing portion 14,24.
  • FIG. 3 shows an example in which the reflection image and the scattering image obtained by the above apparatus are arranged at the same position of the same semiconductor wafer which has been chamfered at the outer peripheral edge of the wafer.
  • an image (a) is a reflection image
  • an image (b) is a scattering image.
  • the light area band of the scattered image was specified as an area with a lightness of 0 or more, with the threshold of the lightness (Brightness) set to 0 (zero).
  • the distance between the bright partial region of the reflected image (bright field image) and the bright part region of the scattered image (dark field image) (the shortest distance between the broken line and the dashed line on FIG. 3 (b)) , L.
  • L being a value that can be an index of the shape of the boundary part is, for example, a reference value acquired by the following evaluation method
  • L obtained by the evaluation method according to one aspect of the present invention can be confirmed by showing good correlation.
  • a cross-sectional image including the boundary to be evaluated is obtained for a semiconductor wafer.
  • the cross-sectional image can be obtained, for example, by cleaving the semiconductor wafer with a cleavage plane and imaging the cross section exposed with a microscope.
  • An enlarged image is created by enlarging the acquired cross-sectional image only in the wafer thickness direction.
  • the shape of the boundary portion By enlarging only in the wafer thickness direction, it is possible to emphasize the shape of the boundary portion with respect to the main surface (so-called horizontal surface) in the contour of the cross-sectional shape. It is possible to evaluate the smoothness / steepness of the boundary more accurately than using. Further, by binarizing the enlarged image, the contour of the cross-sectional shape can be displayed more clearly, so that the gentleness / sharpness of the boundary can be evaluated more accurately. In the binarized image thus obtained, in the contour of the cross-sectional shape of the wafer, the shape of the boundary between the main surface and the chamfered surface usually has a curved shape.
  • FIG. 6 shows binarized images obtained by the above method for two different types of semiconductor wafers (images obtained by multiplying by 10 times in the wafer thickness direction and then binarizing). Show. Also shown in FIG. 6 is a circle having an arc that substantially matches the shape of the boundary curve.
  • the numerical value shown in the circle is the diameter of the circle.
  • the shape of the boundary portion of sample 2 is smoother than the shape of the boundary portion of sample 1. Comparing sample 1 and sample 2 for the size of the circle, the diameter of the circle obtained for sample 2 is larger than the diameter of the circle obtained for sample 1. As described above, the size of the circle is correlated with the shape of the boundary.
  • FIG. 7 shows a binarized image (an image obtained by performing binarization after being enlarged by 10 times only in the wafer thickness direction) obtained by the above method. Also shown in FIG. 7 is a circle having an arc that substantially matches the shape of the boundary curve.
  • Table 1 shows L obtained in the above (1) and the reference value (the size (diameter) of a circle) obtained in the above (2) for each semiconductor wafer. Moreover, the graph which plotted the value of L obtained by said (1) with respect to the reference value (diameter of a circle
  • a threshold of brightness is set, and on the scattered image acquired at each portion of the wafer A and the wafer B, an area having the brightness equal to or more than the threshold (for example, lightness 0) is specified as a bright portion band.
  • the distance L is determined as the shortest distance between the end of the bright part band specified on the scattered image acquired at each part and the broken line (that is, the end of the bright part band specified in the reflection image). In this way, by using L obtained for each part as an index, it is possible to evaluate the shape of the boundary part at each part.
  • the value of the spacing L at each portion of the wafer B was larger than the value of the spacing L at each portion of the wafer B.
  • the reflection image and the scattering image are obtained by chucking and holding the end face of the wafer and rotating it about the normal direction of the main surface in the apparatus described in 1 above, thereby obtaining the reflection image and the scattering image. After adjusting so that light should be irradiated to the part which should be done.
  • One aspect of the present invention is useful in the field of manufacturing various semiconductor wafers such as silicon wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

評価対象の半導体ウェーハの一方の表面側に向かって光を照射して得られる反射光を受光することにより明視野像として反射像を取得すること、評価対象の半導体ウェーハの上記表面側に向かって光を照射して得られる散乱光を受光することにより暗視野像として散乱像を取得すること、および、上記反射像において観察される明部帯域と上記散乱像において観察される明部帯域との間隔Lを求めることを含み、評価対象の半導体ウェーハはウェーハ外周縁部に面取り面が形成された半導体ウェーハであり、上記Lに基づき、評価対象の半導体ウェーハの上記光が照射された表面側の主面とこの主面と隣接する面取り面との境界部の形状を評価することを含む半導体ウェーハの評価方法が提供される。

Description

半導体ウェーハの評価方法および半導体ウェーハの製造方法 関連出願の相互参照
 本出願は、2018年1月18日出願の日本特願2018-006193号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 本発明は、半導体ウェーハの評価方法および半導体ウェーハの製造方法に関する。
 近年、半導体ウェーハについて、ウェーハ外周縁部の形状を評価することが行われている(例えば特開2016-130738号公報(その全記載は、ここに特に開示として援用される)参照)。
 半導体ウェーハは、一般に、インゴットから切り出したウェーハに各種加工を施して製造される。インゴットから切り出したウェーハの外周縁部は、そのままでは角部を有するため割れや欠けが生じやすい。そこで、半導体ウェーハのデバイス形成面側となる表面(おもて面)側およびおもて面とは反対側の表面(裏面)側の少なくとも一方の外周縁部に面取り加工を施して面取り面を形成すことが、通常行われる。この面取り面に関して、特開2016-130738号公報には、面取り面が白色で表示されるように画像を取得し、この画像の幅寸法から面取り面の幅寸法を算出することが提案されている(特開2016-130738号公報の段落0060~0062参照)。以下において、半導体ウェーハの「表面」とは、特記しない限り、上記のおもて面および裏面のいずれか一方または両方を言うものする。
 半導体ウェーハの表面において、おもて面側の主面は、その上にデバイスが形成される平面であり、その裏側の平面が裏面側の主面である。ウェーハ外周縁部に形成された面取り面は、隣接する主面に対して傾斜した面形状を有する。したがって、半導体ウェーハの厚み方向の断面形状を見ると、主面とこの主面と隣接する面取り面との境界部において、形状が大きく変化する。この主面と面取り面との境界部の形状は、半導体デバイスの製造工程における欠け、キズの発生のし易さ等を予測するための指標とすることができる。例えば、半導体デバイスの製造工程において、熱処理時にウェーハを支持するウェーハサポートの形状に合わせてウェーハ表面(例えば裏面)と面取り面との境界部の形状を適切に設定することによって、接触による境界部の欠けやキズが発生し難くなるため、欠けやキズを原因とする転位(スリップ)や発塵の発生率を低減することができる。しかし、特開2016-130738号公報に記載の方法は、面取り面の幅寸法を求める方法であって、特開2016-130738号公報に記載の方法では、面取り面と主面との境界部の形状を評価することはできない。
 本発明の一態様は、半導体ウェーハの面取り面と主面との境界部の形状を評価するための新たな方法を提供する。
 本発明の一態様は、
 評価対象の半導体ウェーハの一方の表面側に向かって光を照射して得られる反射光を受光することにより、明視野像として反射像を取得すること、
 評価対象の半導体ウェーハの上記表面側に向かって光を照射して得られる散乱光を受光することにより、暗視野像として散乱像を取得すること、および、
 上記反射像において観察される明部帯域と上記散乱像において観察される明部帯域との間隔Lを求めること、
 を含み、
 評価対象の半導体ウェーハは、ウェーハ外周縁部に面取り面が形成された半導体ウェーハであり、
 上記Lに基づき、評価対象の半導体ウェーハの上記光が照射された表面側の主面とこの主面と隣接する面取り面との境界部の形状を評価すること、
 を含む半導体ウェーハの評価方法(以下、単に「評価方法」とも記載する。)、
 に関する。
 本発明者らは鋭意検討を重ねた結果、上記間隔Lについて、面取り面と主面との境界部の形状がよりなだらかであるほどLの値はより大きく、面取り面と主面との境界部の形状がより急峻であるほどLの値はより小さくなることを新たに見出した。したがって、かかるLの値に基づけば、主面と面取り面との境界部の形状のなだらかさ/急峻さを評価することが可能となる。
 一態様では、上記評価方法は、上記散乱像を、上記境界部の鉛直方向上方よりも外側から、上記面取り面の上記境界部側の領域および上記境界部の上記面取り面側の領域を少なくとも含む部分に向かって光を照射して取得することを含むことができる。
 一態様では、上記評価方法は、上記反射像を、上記境界部の鉛直方向上方から、上記主面の上記境界部側の領域および上記境界部の上記主面側の領域を少なくとも含む部分に向かって光を照射して取得することを含むことができる。
 一態様では、上記評価方法は、評価対象の半導体ウェーハを上記主面の法線方向を軸として回転させて上記散乱像および上記反射像を取得することを複数回行い、評価対象の半導体ウェーハの複数の異なる箇所において上記Lを求めることを含むことができる。
 本発明の更なる態様は、
 製品として出荷する候補の半導体ウェーハを製造すること、
 上記候補の半導体ウェーハを上記評価方法によって評価すること、および、
 評価の結果、良品と判定された半導体ウェーハを、製品半導体ウェーハとして出荷するための準備に付すこと、
 を含む半導体ウェーハの製造方法、
 に関する。
 本発明の更なる態様は、
 複数の半導体ウェーハを含む半導体ウェーハロットを製造すること、
 上記半導体ウェーハロットから少なくとも1つの半導体ウェーハを抽出すること、
 上記抽出された半導体ウェーハを上記評価方法によって評価すること、および、
 上記評価の結果、良品と判定された半導体ウェーハと同じ半導体ウェーハロットの半導体ウェーハを製品半導体ウェーハとして出荷するための準備に付すこと、
 を含む半導体ウェーハの製造方法、
 に関する。
 本発明の更なる態様は、
 テスト製造条件下で評価用半導体ウェーハを製造すること、
 上記製造された評価用半導体ウェーハを上記評価方法によって評価すること、
 上記評価の結果に基づき、上記テスト製造条件に変更を加えた製造条件を実製造条件として決定するか、または上記テスト製造条件を実製造条件として決定すること、および、
 上記決定された実製造条件下で半導体ウェーハを製造すること、
 を含む半導体ウェーハの製造方法、
 に関する。
 一態様では、上記変更が加えられる製造条件は、半導体ウェーハ表面の研磨処理条件および面取り加工条件の少なくとも一方であることができる。
 本発明の一態様によれば、半導体ウェーハの面取り面と主面との境界部の形状を評価するための新たな方法を提供することができる。
実施例において反射像を取得するために使用された光照射系および受光系の概略構成図を示す。 実施例において散乱像を取得するために使用された光照射系および受光系の概略構成図を示す。 ウェーハ外周縁部に面取り加工が施された同一半導体ウェーハの同一箇所について得られた反射像と散乱像とを並べた一例を示す。 実施例において得られたLの値を、参照値に対してプロットしたグラフを示す。 実施例において二種類の半導体ウェーハのそれぞれの複数箇所で得られた評価結果を示す。 参照値を得るための評価方法による評価結果の一例を示す。 実施例で評価した半導体ウェーハについて、参照値を得るための評価方法によって得られた評価結果を示す。
[半導体ウェーハの評価方法]
 本発明の一態様は、評価対象の半導体ウェーハの一方の表面側に向かって光を照射して得られる反射光を受光することにより、明視野像として反射像を取得すること、評価対象の半導体ウェーハの上記表面側に向かって光を照射して得られる散乱光を受光することにより、暗視野像として散乱像を取得すること、および、上記反射像において観察される明部帯域と上記散乱像において観察される明部帯域との間隔Lを求めること、を含み、評価対象の半導体ウェーハは、ウェーハ外周縁部に面取り面が形成された半導体ウェーハであり、上記Lに基づき、評価対象の半導体ウェーハの上記光が照射された表面側の主面とこの主面と隣接する面取り面との境界部の形状を評価することを含む半導体ウェーハの評価方法に関する。
 以下、上記評価方法について、更に詳細に説明する。
<評価対象の半導体ウェーハ>
 上記評価方法の評価対象の半導体ウェーハは、ウェーハの外周縁部に面取り加工が施されて面取り面が形成された半導体ウェーハであればよい。評価対象の半導体ウェーハは、一般に半導体基板として使用される各種半導体ウェーハであることができる。例えば、半導体ウェーハの具体例としては、各種シリコンウェーハを挙げることができる。シリコンウェーハは、例えば、シリコン単結晶インゴットから切り出された後に面取り加工等の各種加工を経たシリコン単結晶ウェーハであることができる。かかるシリコン単結晶ウェーハの具体例としては、例えば、研磨が施されて表面に研磨面を有するポリッシュドウェーハを挙げることができる。また、シリコンウェーハは、シリコン単結晶ウェーハ上にエピタキシャル層を有するエピタキシャルウェーハ、シリコン単結晶ウェーハにアニール処理により改質層を形成したアニールウェーハ等の各種シリコンウェーハであることもできる。
<反射像および散乱像の取得>
 反射像の取得のための光照射、および散乱像取得のための光照射は、評価対象の半導体ウェーハの形状を評価すべき境界部を含む表面側に向かって行われる。かかる光照射により取得される反射像(明視野像)において観察される明部帯域は、境界部を介して面取り面と隣接する主面の境界部側の領域に対応し、散乱像(暗視野像)において観察される明部帯域は、境界部を介して主面と隣接する面取り面の境界部側の領域に対応していると、本発明者らは考えている。更に本発明者らは、両明部帯域の間の領域は境界部に対応し、両明部帯域の間隔Lは、評価対象の半導体ウェーハは、形状を評価すべき境界部を含む表面側から見た際に観察される境界部の幅に対応していると考えている。そして、この幅は、境界部の形状がよりなだらかであるほどより広くなり、より急峻であるほどより狭くなることが、本発明者らの鋭意検討の結果、新たに見出された。したがって、両明部帯域の間隔Lを、境界部の形状評価の指標とすることができる。詳しくは、Lの値がより大きいほど境界部の形状はよりなだらかであり、Lの値がより小さいほど境界部の形状はより急峻であると判定することができる。
 以下に、反射像の取得および散乱像の取得について、それぞれ更に詳細に説明する。
(反射像の取得)
 上記評価方法は、評価対象の半導体ウェーハの形状を評価すべき境界部を含む表面側に向かって光を照射して得られる反射光を受光することにより、明視野像として反射像を取得することを含む。反射像取得のために照射される光の波長は、評価の容易性の観点から、入手容易な光源および受光部で対応可能な可視光領域(360~830nmの範囲)の波長であることが好ましい。反射像取得のための光照射系としては、公知の構成のものを用いることができる。例えば、反射像取得のための光照射に用いる光源としては、LED(light emitting diode)等の公知の光源を挙げることができる。本発明および本明細書において、形状を評価すべき境界部の鉛直方向(この方向は、「主面の法線方向」と一致する。)の上方を基準として、ウェーハ外周縁部側を外側、ウェーハ主面側を内側と呼ぶ。上記鉛直方向の上方を基準の0°方向として、0°方向と直交しかつ形状を評価すべき境界部を通るウェーハ半径方向を90°方向とすると、反射光を取得するための光照射は、より高強度の反射光を取得する観点からは、上記鉛直方向の上方(0°方向)から行うことが好ましい。なお本発明および本明細書において、角度や方向に関する記載については、1°~3°程度の誤差は許容されるものとする。
 また、評価対象の半導体ウェーハの表面上で反射像取得のために光照射される部分は、主面の境界部側の領域および境界部の主面側の領域を少なくとも含むことが好ましい。反射像取得のための受光系としては、公知の構成のものを用いることができる。受光系は、例えば、半導体ウェーハ表面からの反射光を受光部に導くためのミラーを含むことができる。また、受光部としては、例えばラインスキャンカメラを用いることができる。こうして取得される反射像(明視野像)において観察される明部帯域は、境界部を介して面取り面と隣接する主面の境界部側の領域に対応していると本発明者らは考えている。反射像は、原理上二値化像と同様の像として取得されるため、反射像において明部と暗部との境界は明瞭であり容易に特定可能である。
(散乱像の取得)
 上記評価方法は、評価対象の半導体ウェーハの形状を評価すべき境界部を含む表面側に向かって光を照射して得られる散乱光を受光することにより、暗視野像として散乱像を取得することを含む。散乱像取得のために照射される光の波長は、評価の容易性の観点から、入手容易な光源および受光部で対応可能な可視光領域(360~830nmの範囲)の波長であることが好ましい。散乱像取得のための光照射系としては、公知の構成のものを用いることができる。例えば、散乱像取得のための光照射に用いる光源としては、LED等の公知の光源を挙げることができる。散乱像を取得するための光照射は、形状を評価すべき境界部の鉛直方向の上方よりも外側から行うことが好ましい。上記鉛直方向の上方を基準の0°方向として、0°方向と直交しかつ形状を評価すべき境界部を通るウェーハ半径方向を90°方向とすると、散乱光を取得するための光照射は、より高強度の散乱光を取得する観点からは、少なくとも、上記鉛直方向の上方(0°)に対して外側の10°の方向~外側の50°の方向の範囲の方向から行うことが好ましく、外側の20°の方向~外側の40°の方向の範囲の方向から行うことがより好ましく、外側の20°の方向から行うことが更に好ましい。
 また、評価対象の半導体ウェーハの表面上で散乱像取得のために光照射される部分は、面取り面の境界部側の領域および境界部の面取り側の領域を少なくとも含むことが好ましい。散乱像取得のための受光系としては、公知の構成のものを用いることができる。受光系は、例えば、半導体ウェーハ表面からの散乱光を受光部に導くためのミラーを含むことができる。また、受光部としては、例えばラインスキャンカメラを用いることができる。こうして取得される散乱像(暗視野像)において観察される明部帯域は、境界部を介して主面と隣接する面取り面の境界部側の領域に対応していると本発明者らは考えている。散乱像については、明度(Brightness)に閾値を設定し、散乱像において明度が閾値以上の部分を明部、閾値を下回る部分を暗部と区分して明部帯域を特定することができる。明度の閾値は、例えば0とすることができる。
 以上説明した反射像の取得および散乱像の取得の順序は問わず、どちらを先に実施してもよい。
(境界部の形状評価)
 上記のように反射像(明視野像)における明部帯域および散乱像(暗視野像)における明部帯域を特定した後、両明部帯域の間隔Lを求める。間隔Lは、反射像において特定された明部帯域の外周縁部側の端部(明部と暗部との境界)と、散乱像において特定された明部帯域の主面側の端部(明部と暗部との境界)との最短距離として求めることができる。間隔Lを求める手法は特に限定されない。例えば、公知の画像処理により、反射像と散乱像を重ね合わせたり反射像と散乱像を並べて配置して、両明部帯域の間隔Lを求めることができる。
 境界部の形状評価は、上記Lに基づき行うことができる。詳しくは、Lの値がより小さいほど境界部の形状はより急峻であると判断することができ、Lの値がより大きいほど境界部の形状はよりなだらかであると判断することができる。このようにLの値を用いて境界部の形状を評価できることは、数値に基づき客観的に評価を行うことができるため評価の信頼性の観点から好ましい。
 以上の通り、上記評価方法によれば、半導体ウェーハのウェーハ表面(おもて面または裏面)において、主面とこの主面と隣接する面取り面との境界部の形状を評価することができる。
 また、上記評価方法は、評価対象の半導体ウェーハからの試料片の切り出し(例えばへき開)を要することなく、実施することができる。即ち、上記評価方法によれば、非破壊での評価が可能である。このことは、簡便な評価を可能にする観点から好ましい。また、このことは、同一の半導体ウェーハの複数の異なる箇所における境界部の形状評価の容易性の観点からも好ましい。例えば一態様によれば、上記評価方法は、評価対象の半導体ウェーハを主面の法線方向を軸として回転させて反射像および散乱像を取得することを複数回行い、評価対象の半導体ウェーハの複数の異なる箇所において上記Lを求めることを含むことができる。こうして求められた複数のLにそれぞれ基づき、各箇所における境界部の形状を評価することができる。また、同一半導体ウェーハの異なる箇所における評価により求められた複数のLの値の代表値(例えば平均値(例えば算術平均)、最小値、最大値等)を、半導体ウェーハの境界部の形状評価の指標とすることもできる。
<半導体ウェーハの製造方法>
 本発明の一態様にかかる半導体ウェーハの製造方法(第一の製造方法)は、
 製品として出荷する候補の半導体ウェーハを製造すること、
 上記候補の半導体ウェーハを上記評価方法によって評価すること、および、
 評価の結果、良品と判定された半導体ウェーハを、製品半導体ウェーハとして出荷するための準備に付すこと、
 を含む半導体ウェーハの製造方法、
 である。
 本発明の他の一態様にかかる半導体ウェーハの製造方法(第二の製造方法)は、
 複数の半導体ウェーハを含む半導体ウェーハロットを製造すること、
 上記半導体ウェーハロットから少なくとも1つの半導体ウェーハを抽出すること、
 上記抽出された半導体ウェーハを上記評価方法によって評価すること、および、
 上記評価の結果、良品と判定された半導体ウェーハと同じ半導体ウェーハロットの半導体ウェーハを製品半導体ウェーハとして出荷するための準備に付すこと、
 を含む半導体ウェーハの製造方法、
 である。
 本発明の他の一態様にかかる半導体ウェーハの製造方法(第三の製造方法)は、
 テスト製造条件下で評価用半導体ウェーハを製造すること、
 上記製造された評価用半導体ウェーハを上記評価方法によって評価すること、
 上記評価の結果に基づき、上記テスト製造条件に変更を加えた製造条件を実製造条件として決定するか、または上記テスト製造条件を実製造条件として決定すること、および、
 上記決定された実製造条件下で半導体ウェーハを製造すること、
 を含む半導体ウェーハの製造方法、
 である。
 第一の製造方法は、いわゆる出荷前検査として上記評価方法による評価を実施する。また、第二の製造方法では、いわゆる抜き取り検査を行った結果、良品と判定された半導体ウェーハと同じロットの半導体ウェーハを製品半導体ウェーハとして出荷するための準備に付す。第三の製造方法では、テスト製造条件下で製造された半導体ウェーハを評価し、この評価結果に基づき実製造条件を決定する。第一の製造方法、第二の製造方法および第三の製造方法のいずれにおいても、半導体ウェーハの評価は、先に説明した本発明の一態様にかかる評価方法によって行われる。
(第一の製造方法)
 第一の製造方法において、製品として出荷する候補の半導体ウェーハロットの製造は、一般的な半導体ウェーハの製造方法と同様に行うことができる。例えば、シリコンウェーハの一態様であるポリッシュドウェーハは、チョクラルスキー法(CZ法)等により育成されたシリコン単結晶インゴットからのシリコンウェーハの切断(スライシング)、面取り加工、粗研磨(例えばラッピング)、エッチング、鏡面研磨(仕上げ研磨)、上記加工工程間または加工工程後に行われる洗浄を含む製造工程により製造することができる。また、アニールウェーハは、上記のように製造されたポリッシュドウェーハにアニール処理を施して製造することができる。エピタキシャルウェーハは、上記のように製造されたポリッシュドウェーハの表面にエピタキシャル層を気相成長(エピタキシャル成長)させることにより製造することができる。
 製造された半導体ウェーハは、本発明の一態様にかかる評価方法によって、主面とこの主面と隣接する面取り面との境界部の形状が評価される。評価方法の詳細は、先に記載した通りである。そして評価の結果、良品と判定された半導体ウェーハは、製品半導体ウェーハとして出荷するための準備に付される。良品と判定するための基準は、製品半導体ウェーハに求められる品質に応じて決定すればよい。例えば一態様では、求められたLの値がある値以上(即ち閾値以上)であることを、良品と判定するための基準とすることができる。また、良品判定のために用いるLの値としては、同一半導体ウェーハの異なる箇所における評価により求められた複数のLの値の代表値(例えば平均値(例えば算術平均)、最小値、最大値等)を用いることもできる。この点は、第二の製造方法および第三の製造方法についても同様である。製品半導体ウェーハとして出荷するための準備としては、例えば梱包等を挙げることができる。こうして第一の製造方法によれば、主面と面取り面との境界部の形状が製品半導体ウェーハに望まれる形状である半導体ウェーハを、安定的に市場に供給することが可能となる。
(第二の製造方法)
 第二の製造方法における半導体ウェーハロットの製造も、例えば先に第一の製造方法について記載したように、一般的な半導体ウェーハの製造方法と同様に行うことができる。半導体ウェーハロットに含まれる半導体ウェーハの総数は特に限定されるものではない。製造された半導体ウェーハロットから抜き出し、いわゆる抜き取り検査に付す半導体ウェーハの数は少なくとも1つであり、2つ以上であってもよく、その数は特に限定されるものではない。
 半導体ウェーハロットから抽出された半導体ウェーハは、本発明の一態様にかかる評価方法によって、主面とこの主面と隣接する面取り面との境界部の形状が評価される。評価方法の詳細は、先に記載した通りである。そして評価の結果、良品と判定された半導体ウェーハと同じ半導体ウェーハロットの半導体ウェーハを、製品半導体ウェーハとして出荷するための準備に付す。良品と判定するための基準は、製品半導体ウェーハに求められる品質に応じて決定すればよい。例えば一態様では、求められたLの値がある値以上(即ち閾値以上)であることを、良品と判定するための基準とすることができる。製品半導体ウェーハとして出荷するための準備については、例えば先に第一の製造方法について記載した通りである。第二の製造方法によれば、主面と面取り面との境界部の形状が製品半導体ウェーハに望まれる形状である半導体ウェーハを、安定的に市場に供給することが可能となる。また、本発明の一態様にかかる評価方法は非破壊での評価が可能であるため、第二の製造方法の一態様では、半導体ウェーハロットから抽出されて評価に付された半導体ウェーハも、評価の結果、良品と判定されたものであれば、製品半導体ウェーハとして出荷するための準備に付し、準備の後に製品半導体ウェーハとして出荷することができる。
(第三の製造方法)
 第三の製造方法について、テスト製造条件および実製造条件としては、半導体ウェーハの製造のための各種工程における各種条件を挙げることができる。半導体ウェーハの製造のための各種工程については、先に第一の製造方法について記載した通りである。なお、「実製造条件」とは、製品半導体ウェーハの製造条件を意味するものとする。
 第三の製造方法では、実製造条件を決定するための前段階として、テスト製造条件を設定し、このテスト製造条件下で評価用半導体ウェーハを製造する。製造された半導体ウェーハは、本発明の一態様にかかる評価方法によって、主面とこの主面と隣接する面取り面との境界部の形状が評価される。評価方法の詳細は、先に記載した通りである。評価用半導体ウェーハは、少なくとも1つであり、2つ以上であってもよく、その数は特に限定されるものではない。評価の結果、評価用半導体ウェーハの境界部の形状が、製品半導体ウェーハに望まれる形状であれば、このテスト製造条件を実製造条件として製品半導体ウェーハを製造して出荷することにより、境界部の形状が所望の形状である製品半導体ウェーハを、安定的に市場に供給することができる。他方、評価の結果、評価用半導体ウェーハの境界部の形状が、製品半導体ウェーハに望まれる形状とは異なる場合には、テスト製造条件に変更を加えた製造条件を実製造条件として決定する。変更を加える製造条件は、境界部の形状に影響を及ぼすと考えられる製造条件であることが好ましい。そのような製造条件の一例としては、半導体ウェーハの表面(おもて面および/または裏面)の研磨条件を挙げることができる。かかる研磨条件の具体例としては、粗研磨条件および鏡面研磨条件を挙げることができ、より詳しくは、研磨液の種類、研磨液の砥粒濃度、研磨パットの種類(例えば硬さ等)等を挙げることができる。また、製造条件の一例としては、面取り加工条件を挙げることもでき、詳しくは、面取り加工における研削、研磨等の機械加工条件を挙げることができ、より詳しくは、面取り加工に用いる研磨テープの種類等を挙げることができる。こうしてテスト製造条件に変更を加えた製造条件を実製造条件として決定し、この実製造条件下で製品半導体ウェーハを製造し出荷することにより、境界部の形状が所望の形状である製品半導体ウェーハを、安定的に市場に供給することができる。なおテスト製造条件に変更を加えた製造条件下で改めて評価用半導体ウェーハを製造し、この評価用半導体ウェーハを本発明の一態様にかかる評価方法により評価して、この製造条件を実製造条件とするか更に変更を加えるかを判定することを、1回または2回以上繰り返してもよい。
 以上の第三の製造方法において、評価用半導体ウェーハの境界部の形状が製品半導体ウェーハに望まれる形状であるか否かの判定方法については、先に第一の製造方法および第二の製造方法の良品の判定に関する記載を参照できる。
 第一の製造方法、第二の製造方法および第三の製造方法のその他の詳細については、半導体ウェーハの製造方法に関する公知技術を適用することができる。
 以下に、本発明を実施例に基づき更に説明する。ただし、本発明は実施例に示す態様に限定されるものではない。
1.装置の説明
 以下において、反射像(明視野像)の取得および散乱像(暗視野像)の取得は、評価対象の半導体ウェーハのおもて面側について、ルドルフテクノロジーズ社製自動外観機(AWX EBI300N)を用いて行った。この自動外観機は、半導体ウェーハを、ウェーハ端面部をチャッキングして保持して主面法線方向を軸として回転させることが可能な装置である。反射像を取得するための光照射系および受光系の概略構成図を図1に示し、散乱像を取得するための光照射系および受光系の概略構成図を図2に示す。図1、図2中、矢印は光の進行方向を模式的に示している。
 図1に示すように、反射像を取得するための光照射系は、光源11およびミラー12を含む。光源11から出射された光の進行方向をミラー12により変化させることにより、形状を評価すべき境界部の鉛直方向上方(0°方向)から光照射が行われる。こうして光が照射された半導体ウェーハからの反射光の光の進行方向をミラー13により変化させることによって、反射光が受光部14に導かれる。光源11は、可視光領域に発光波長を有する同軸(coaxial)LEDである。一方、散乱像を取得するための光照射系は、光源21を含む。光源21は、同一円周上に等間隔に配置された16個の可視光領域に発光波長を有するLEDを含み、16個のLEDからそれぞれ発光される光が同一箇所を照射するように構成されている。この光源21により、少なくとも、形状を評価すべき境界部の鉛直方向の上方よりも外側から(詳しくは、少なくとも外側の20°の方向および外側の40°の方向から)光照射が行われる。こうして光が照射された半導体ウェーハからの散乱光の進行方向をミラー23により変化させることによって、散乱光が受光部24に導かれる。受光部は、例えばラインスキャンカメラであることができる。以下では、上記自動外観機に備えられたラインスキャンカメラを、受光部14、24として使用した。
2.評価方法の説明
 ウェーハ外周縁部に面取り加工が施された同一半導体ウェーハの同一箇所について、上記装置により得られた反射像と散乱像とを並べた一例を、図3に示す。図3中、画像(a)は反射像であり、画像(b)は散乱像である。散乱像の明部帯域は、明度(Brightness)の閾値を0(ゼロ)とし、明度0以上の領域として特定した。図3中、反射像(明視野像)の明部分領域と散乱像(暗視野像)の明部領域との間隔(図3(b)上の破線と一点破線との間の最短距離)が、Lである。
3.参照値取得のための評価方法の説明
 本発明の一態様にかかる評価方法において得られるLが境界部の形状の指標となり得る値であることは、例えば、以下の評価方法により取得される参照値と、本発明の一態様にかかる評価方法により得られるLとが、良好な相関性を示すことにより確認することができる。
 まず半導体ウェーハについて、評価すべき境界部を含む断面像を得る。断面像は、例えば、半導体ウェーハをへき開面でへき開して露出させた断面を顕微鏡で撮像することにより取得することができる。
 取得された断面像を、ウェーハ厚み方向のみに拡大した拡大像を作成する。ウェーハ厚み方向のみに拡大することにより、断面形状の輪郭において、境界部の形状を主面(いわゆる水平面)に対して強調することができるため、拡大像を用いることにより、拡大していない断面像を用いるよりも境界部のなだらかさ/急峻さを精度よく評価することができる。更に拡大像を二値化処理することにより、断面形状の輪郭をより鮮明に表示させることができるため、境界部のなだらかさ/急峻さを一層精度よく評価することができる。
 こうして得られた二値化処理済像において、ウェーハ断面形状の輪郭では、通常、主面と面取り面との境界部の形状は曲線形状となる。そこで、この輪郭上で、主面と面取り面との境界部の曲線の形状に、この曲線の形状に近似するか一致する円弧形状を有する円をフィッティングさせる。こうして得られた円(曲率円)のサイズ、例えば直径または半径がより大きいほど、境界部の形状はよりなだらかであると判断することができ、上記円のサイズがより小さいほど境界部の形状はより急峻であると判断することができる。例示として、図6に、異なる二種類の半導体ウェーハについて、上記方法により得られた二値化処理済像(ウェーハ厚み方向のみに10倍拡大した後に二値化処理して得られた像)を示す。図6には境界部の曲線の形状とほぼ一致する円弧を有する円も示されている。円の中に示されている数値は、円の直径である。図6中、サンプル1とサンプル2の断面形状を対比すると、サンプル2の境界部の形状はサンプル1の境界部の形状と比べてなだらかである。円のサイズについてサンプル1とサンプル2とを対比すると、サンプル2について得られた円の直径はサンプル1について得られた円の直径より大きい。以上の通り、円のサイズと境界部の形状とは相関している。
4.半導体ウェーハの評価
(1)間隔Lの測定
 ウェーハ表面の研磨条件および面取り加工条件が異なる四種類の半導体ウェーハ(直径300mmの表面が(100)面のシリコン単結晶ウェーハ(ポリッシュドウェーハ))を準備した。以下、上記の四種類の半導体ウェーハを、それぞれ「ウェーハ1」、「ウェーハ2」、「ウェーハ3」、「ウェーハ4」と呼ぶ。これら半導体ウェーハのノッチ部を0°として左回りで45°の箇所において、上記1に記載の装置を用いて反射像および散乱像を取得し、得られた反射像および散乱像を上記2で説明したように並べて反射像の明部帯域と散乱像の明部帯域との間隔Lを求めた。
(2)参照値の取得
 上記(1)で評価した四種類の半導体ウェーハを、それぞれ(110)面でへき開して断面観察用試料を作製した。
 作製した断面観察用試料を、微分干渉顕微鏡を用いて、明るさやコントラストを調整して、上記3.で評価した境界部を含む断面像(撮像倍率:500倍)を取得した。 
 取得した断面像を画像処理ソフト(Adobe社製ソフト名Photoshop CS5)に取り込み、ウェーハ厚み方向のみに10倍に拡大した後、二値化処理を行った。
 上記二値化処理を行って得られた二値化処理済像をソフト(マイクロソフト社製パワーポイント)に取り込み、同ソフトの図形描画ツールを用いて、断面形状の輪郭上、境界部の曲線の形状と円弧の形状がほぼ一致する円を描画した。曲線の形状と円弧の形状がほぼ一致することは、目視で判断した。各半導体ウェーハについて、こうして描画された円の直径を参照値とする。図7に、上記方法により得られた二値化処理済像(ウェーハ厚み方向のみに10倍拡大した後に二値化処理して得られた像)を示す。図7には境界部の曲線の形状とほぼ一致する円弧を有する円も示されている。
(3)評価結果
 各半導体ウェーハについて、上記(1)で求められたLおよび上記(2)で求められた参照値(円のサイズ(直径))を、表1に示す。また、各半導体ウェーハについて、上記(1)で得られたLの値を、上記(2)で得られた参照値(円の直径)に対してプロットしたグラフを図4に示す。
Figure JPOXMLDOC01-appb-T000001
 図4中、4つのプロットについて最小二乗法により求められた近似直線も示す。近似曲線は、相関係数の二乗R=0.98でありきわめて良好な相関性を示している。この結果から、上記(1)で得られたLの値が境界部の形状評価のための指標となり得ることが示された。
 こうして得られるLの値は、先に記載したように出荷前検査に用いることができ、ロットからの抜き取り検査に用いることができ、半導体ウェーハの実製造条件の決定のために用いることもできる。
5.同一半導体ウェーハの複数箇所における評価
 ウェーハ外周縁部に面取り加工が施された半導体ウェーハ(直径300mmの表面が(100)面のシリコン単結晶ウェーハ(ポリッシュドウェーハ))を二種類準備した。以下、上記の二種類の半導体ウェーハを、それぞれ「ウェーハA」、「ウェーハB」と呼ぶ。これら半導体ウェーハのノッチ部を0°として、左回りに異なる角度の箇所において、上記1に記載の装置を用いて反射像および散乱像を取得した。各箇所において得られた散乱像上に、同一箇所において得られた反射像で特定された明部領域の境界に相当する破線を追加した画像を図5に示す。散乱像において明度(Brightness)の閾値を設定し、ウェーハA、ウェーハBの各箇所において取得された散乱像上で、それぞれ明度が閾値以上(例えば明度0)の領域を明部帯域として特定する。各箇所において取得された散乱像上で特定された明部帯域の端部と破線(即ち反射像で特定された明部帯域の端部)との最短距離として間隔Lを求める。こうして各箇所について求められるLを指標とすることにより、各箇所における境界部の形状を評価することができる。ウェーハBの各箇所における間隔Lの値は、ウェーハBの各箇所における間隔Lの値より大きかった。この結果から、ウェーハBの各箇所における境界部の形状は、ウェーハAと比べてなだらかであると判定できる。
 上記の反射像および散乱像の取得は、上記1に記載の装置において、ウェーハ端面部をチャッキングして保持して主面法線方向を軸として回転させることにより、反射像および散乱像を取得すべき箇所に光が照射されるように調整した後に行った。
 本発明の一態様は、シリコンウェーハ等の各種半導体ウェーハの製造分野において有用である。

Claims (8)

  1. 評価対象の半導体ウェーハの一方の表面側に向かって光を照射して得られる反射光を受光することにより、明視野像として反射像を取得すること、
    評価対象の半導体ウェーハの前記表面側に向かって光を照射して得られる散乱光を受光することにより、暗視野像として散乱像を取得すること、および、
    前記反射像において観察される明部帯域と前記散乱像において観察される明部帯域との間隔Lを求めること、
    を含み、
    評価対象の半導体ウェーハは、ウェーハ外周縁部に面取り面が形成された半導体ウェーハであり、
    前記Lに基づき、評価対象の半導体ウェーハの前記光が照射された表面側の主面と該主面と隣接する面取り面との境界部の形状を評価すること、
    を含む半導体ウェーハの評価方法。
  2. 前記散乱像を、前記境界部の鉛直方向上方よりも外側から、前記面取り面の前記境界部側の領域および前記境界部の前記面取り面側の領域を少なくとも含む部分に向かって光を照射して取得することを含む、請求項1に記載の半導体ウェーハの評価方法。
  3. 前記反射像を、前記境界部の鉛直方向上方から、前記主面の前記境界部側の領域および前記境界部の前記主面側領域を少なくとも含む部分に向かって光を照射して取得することを含む、請求項1または2に記載の半導体ウェーハの評価方法。
  4. 評価対象の半導体ウェーハを前記主面の法線方向を軸として回転させて前記散乱像および前記反射像を取得することを複数回行い、評価対象の半導体ウェーハの複数の異なる箇所において前記Lを求めることを含む、請求項1~3のいずれか1項に記載の半導体ウェーハの評価方法。
  5. 製品として出荷する候補の半導体ウェーハを製造すること、
    前記候補の半導体ウェーハを請求項1~4のいずれか1項に記載の評価方法によって評価すること、および、
    評価の結果、良品と判定された半導体ウェーハを、製品半導体ウェーハとして出荷するための準備に付すこと、
    を含む半導体ウェーハの製造方法。
  6. 複数の半導体ウェーハを含む半導体ウェーハロットを製造すること、
    前記半導体ウェーハロットから少なくとも1つの半導体ウェーハを抽出すること、
    前記抽出された半導体ウェーハを請求項1~4のいずれか1項に記載の評価方法によって評価すること、および、
    前記評価の結果、良品と判定された半導体ウェーハと同じ半導体ウェーハロットの半導体ウェーハを製品半導体ウェーハとして出荷するための準備に付すこと、
    を含む半導体ウェーハの製造方法。
  7. テスト製造条件下で評価用半導体ウェーハを製造すること、
    前記製造された評価用半導体ウェーハを請求項1~4のいずれか1項に記載の評価方法によって評価すること、
    前記評価の結果に基づき、前記テスト製造条件に変更を加えた製造条件を実製造条件として決定するか、または前記テスト製造条件を実製造条件として決定すること、および、
    前記決定された実製造条件下で半導体ウェーハを製造すること、
    を含む半導体ウェーハの製造方法。
  8. 前記変更が加えられる製造条件は、半導体ウェーハ表面の研磨処理条件および面取り加工条件の少なくとも一方である、請求項7に記載の半導体ウェーハの製造方法。
PCT/JP2019/000042 2018-01-18 2019-01-07 半導体ウェーハの評価方法および半導体ウェーハの製造方法 WO2019142662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/962,559 US11955390B2 (en) 2018-01-18 2019-01-07 Semiconductor wafer evaluation method and semiconductor wafer manufacturing method
KR1020207020051A KR102436876B1 (ko) 2018-01-18 2019-01-07 반도체 웨이퍼의 평가 방법 및 반도체 웨이퍼의 제조 방법
DE112019000461.1T DE112019000461T5 (de) 2018-01-18 2019-01-07 Bewertungsverfahren für Halbleiterwafer und Herstellungsverfahren für Halbleiterwafer
CN201980009001.3A CN111587476B (zh) 2018-01-18 2019-01-07 半导体晶圆的评价方法及半导体晶圆的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018006193A JP6806098B2 (ja) 2018-01-18 2018-01-18 半導体ウェーハの評価方法および半導体ウェーハの製造方法
JP2018-006193 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019142662A1 true WO2019142662A1 (ja) 2019-07-25

Family

ID=67301792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000042 WO2019142662A1 (ja) 2018-01-18 2019-01-07 半導体ウェーハの評価方法および半導体ウェーハの製造方法

Country Status (7)

Country Link
US (1) US11955390B2 (ja)
JP (1) JP6806098B2 (ja)
KR (1) KR102436876B1 (ja)
CN (1) CN111587476B (ja)
DE (1) DE112019000461T5 (ja)
TW (1) TWI736822B (ja)
WO (1) WO2019142662A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298557B2 (ja) * 2020-07-01 2023-06-27 株式会社Sumco 半導体ウェーハの評価方法及び半導体ウェーハの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102364A (ja) * 2013-11-22 2015-06-04 シャープ株式会社 外観検査装置
JP2017526158A (ja) * 2014-05-17 2017-09-07 ケーエルエー−テンカー コーポレイション ウェーハエッジ検出および検査

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177100A (ja) * 2001-12-12 2003-06-27 Sumitomo Mitsubishi Silicon Corp 鏡面面取りウェーハの品質評価方法
JP2006040961A (ja) * 2004-07-22 2006-02-09 Shin Etsu Handotai Co Ltd 半導体ウェーハの検査方法、製造方法、及び管理方法
US7616804B2 (en) * 2006-07-11 2009-11-10 Rudolph Technologies, Inc. Wafer edge inspection and metrology
JPWO2008139735A1 (ja) * 2007-05-14 2010-07-29 株式会社ニコン 表面検査装置および表面検査方法
JP5379432B2 (ja) * 2008-09-11 2013-12-25 Sumco Techxiv株式会社 半導体ウェーハの検査方法
DE102009050711A1 (de) * 2009-10-26 2011-05-05 Schott Ag Verfahren und Vorrichtung zur Detektion von Rissen in Halbleitersubstraten
KR101335051B1 (ko) 2009-11-20 2013-11-29 도꾸리쯔교세이호진상교기쥬쯔소고겡뀨죠 결함을 검사하는 방법, 결함의 검사를 행한 웨이퍼 또는 그 웨이퍼를 이용하여 제조된 반도체 소자, 웨이퍼 또는 반도체 소자의 품질관리 방법 및 결함검사 장치
JP5993550B2 (ja) 2011-03-08 2016-09-14 信越半導体株式会社 シリコン単結晶ウェーハの製造方法
US9157868B2 (en) 2013-03-07 2015-10-13 Kla-Tencor Corporation System and method for reviewing a curved sample edge
JP6565624B2 (ja) 2015-11-16 2019-08-28 株式会社Sumco シリコンウェーハの品質評価方法およびシリコンウェーハの製造方法
JP6020869B2 (ja) 2016-02-12 2016-11-02 株式会社東京精密 ウェーハ形状測定装置及び方法、並びにウェーハ面取り装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102364A (ja) * 2013-11-22 2015-06-04 シャープ株式会社 外観検査装置
JP2017526158A (ja) * 2014-05-17 2017-09-07 ケーエルエー−テンカー コーポレイション ウェーハエッジ検出および検査

Also Published As

Publication number Publication date
DE112019000461T5 (de) 2020-09-24
US20200411391A1 (en) 2020-12-31
JP6806098B2 (ja) 2021-01-06
CN111587476B (zh) 2023-07-14
US11955390B2 (en) 2024-04-09
JP2019125729A (ja) 2019-07-25
KR102436876B1 (ko) 2022-08-25
TWI736822B (zh) 2021-08-21
CN111587476A (zh) 2020-08-25
KR20200097323A (ko) 2020-08-18
TW201933464A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
EP3904825B1 (en) Semiconductor wafer evaluation method and semiconductor wafer production method
KR102121890B1 (ko) 에피택셜 웨이퍼 이면 검사 방법, 에피택셜 웨이퍼 이면 검사 장치, 에피택셜 성장 장치의 리프트 핀 관리 방법 및 에피택셜 웨이퍼의 제조 방법
US11948819B2 (en) Method of evaluating silicon wafer, method of evaluating silicon wafer manufacturing process, method of manufacturing silicon wafer, and silicon wafer
WO2019142662A1 (ja) 半導体ウェーハの評価方法および半導体ウェーハの製造方法
JP2020197530A (ja) 外観検査装置
JP7040608B2 (ja) 半導体ウェーハの評価方法および半導体ウェーハの製造方法
JP6841202B2 (ja) 半導体ウェーハの評価方法および半導体ウェーハの製造方法
JP6809422B2 (ja) 半導体ウェーハの評価方法
JP7420248B2 (ja) シリコンウェーハの評価方法、評価システム及び製造方法
JP7457896B2 (ja) 加工変質層の評価方法及び評価システム
JP2022012543A (ja) 半導体ウェーハの評価方法及び半導体ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020051

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19741533

Country of ref document: EP

Kind code of ref document: A1