WO2019141641A1 - Sendevorrichtung zum aussenden von licht - Google Patents

Sendevorrichtung zum aussenden von licht Download PDF

Info

Publication number
WO2019141641A1
WO2019141641A1 PCT/EP2019/050854 EP2019050854W WO2019141641A1 WO 2019141641 A1 WO2019141641 A1 WO 2019141641A1 EP 2019050854 W EP2019050854 W EP 2019050854W WO 2019141641 A1 WO2019141641 A1 WO 2019141641A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
light
different
ranges
transmitting device
Prior art date
Application number
PCT/EP2019/050854
Other languages
English (en)
French (fr)
Inventor
Jan Niklas Caspers
Oliver Kern
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2020559021A priority Critical patent/JP7168683B2/ja
Priority to US16/961,099 priority patent/US20210063548A1/en
Priority to CN201980008736.4A priority patent/CN111630407A/zh
Publication of WO2019141641A1 publication Critical patent/WO2019141641A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection

Definitions

  • the invention relates to a transmitting device for emitting light of at least one frequency.
  • the invention also relates to a receiving device for receiving light.
  • the invention further relates to a sensor device, a method for emitting light of at least one frequency and a method for receiving light of different frequency ranges.
  • the present invention is applicable to any transmitting devices and receiving devices, the present invention will be described in the context of light detecting and spacing systems - LiDAR.
  • Known LiDAR systems use narrow-band laser beams, which are deflected in a certain direction. If the laser beam strikes an object, its distance can be determined by the reflection of the laser beam on the object at this angle. For this purpose, for example, a linear frequency ramp, based on the principle FMCW - frequency modulated continuous wave - sent out and determined by a coherent reception, the difference frequency between the transmitter lamp and receive ramp. Based on this difference frequency then the distance of the object can be determined. In order to detect an object in an area, an area can be illuminated two-dimensionally. This requires a short measuring time, which usually reduces the range, ie the distance in which an object can be detected.
  • the invention provides a transmitting device for emitting light of at least one frequency, wherein the transmitting device is designed to emit light in different angular ranges, such that the frequency of the light in the respective angular range is varied in a respective frequency range over time Frequencies in different frequency ranges do not overlap for different angular ranges at different times.
  • the invention provides a receiving device for receiving light, wherein a separating device is arranged for separating frequencies of time-varying different frequency ranges and at least one detector for converting the received light into electrical signals.
  • the invention provides a sensor device with a transmitting device according to at least one of claims 1-6 and a receiving device according to any one of claims 7-9.
  • the invention provides a method for emitting light of at least one frequency, wherein the light is emitted in different angular ranges, such that the frequency of the light in the respective angular range is varied over a specific frequency range in a time-dependent manner Frequencies in different frequency ranges do not overlap for different angular ranges at different times.
  • the invention provides a method for receiving light of different frequency ranges, in particular emitted by a method according to claim 11, wherein frequencies of time-varying different frequency ranges are separated and in particular the received light is converted into electrical signals.
  • the light can be emitted into different angular ranges by means of the transmitting device and the reflected light can also be received again by means of a receiving device.
  • One of the advantages is that several angular ranges can be irradiated simultaneously, without the need for multiple transmitters and / or multiple receivers, ie multiple transmit and receive paths. Another advantage is that this also increases the measuring time for the variation of the respective frequency range and thereby the signal-to-noise ratio can be improved, which ultimately increases the range for the detection of objects by means of the sensor device. Another advantage is that this increases flexibility, since, for example, several horizontal planes can be illuminated simultaneously.
  • the transmitting device is designed to vary the frequency in the respective angular range linearly in time, preferably to increase from a start frequency to a final frequency.
  • a light source and a modulation device for generating the time-dependent variation of frequencies of the light of the light source are arranged.
  • a modulation device is a simple and reliable modulation of the light of a light source, such as a laser, possible.
  • the modulation device comprises a modulator for each of the different frequency ranges. This enables a particularly reliable modulation.
  • the modulation device has a modulator for time variation of a frequency range and at least one further modulator for generating different frequency ranges.
  • a particularly reliable variation of frequencies in different frequency ranges can be provided by the separation of frequency ranges and their respective temporal variation.
  • a frequency offset between the different regions can be generated by means of a phase modulator.
  • the phase is modulated temporally variable and thereby generates a frequency offset.
  • modulators are those which are based on the modulation of the charge carrier density or based on electro-optical effects, such as the Pockels effect or the Kerr effect.
  • a separate light source is arranged for each frequency range. In this way, different light sources with different characteristics can be used, which increases the overall flexibility.
  • a separate detector is arranged for each frequency range.
  • a particularly reliable detection of the light can be achieved, since the detector can be tuned to the received light of the respective frequency range.
  • the separation device has a notch filter, in particular in the form of photonic ring oscillators.
  • a notch filter By means of a notch filter, received light with different frequency ramps can be reliably separated into light with one frequency ramp each.
  • Figure 1 is a time-frequency representation of the temporal variation of frequencies according to a first embodiment of the present invention
  • FIG. 2 shows a transmitting device according to a second embodiment of the present invention
  • FIG. 3 shows a transmitting device according to a third embodiment of the present invention
  • FIG. 4 shows a transmitting device according to a fourth embodiment of the present invention.
  • FIG. 5 shows a transmitting device according to a fifth embodiment of the present invention.
  • FIG. 6 shows a receiving device according to a sixth embodiment of the present invention
  • FIG. 7 shows a receiving device according to a seventh embodiment of the present invention.
  • FIG. 8 shows a sensor device according to an eighth embodiment of the present invention.
  • Figure 1 shows a time-frequency representation of the temporal variation of frequencies according to a first embodiment.
  • FIG. 1 shows a time-frequency representation of frequency ramps, in which case the base band of the uppermost frequency ramp 6c is indicated by dashed lines.
  • Figure 1 shows a time frequency representation 1, wherein the frequency 3 is plotted against the time 2. You can see three frequency ramps 5a, 5b and 5c, each rising with the same slope in the same time interval.
  • the frequency ramps 5a, 5b differ in their respective starting frequency by the frequency difference 4a and the two frequency ramps 5b and 5c differ by the frequency difference 4b.
  • the frequency differences 4a, 4b can be the same or different.
  • the starting frequency f a s TART of the first ramp 5 a is the smallest in FIG. 1 and the starting frequency START of the third frequency ramp 5 c is the largest.
  • the respective end frequency f abc ENDE of the respective frequency ramp 5 a, 5 b, 5 c is higher than the respective starting frequency f abc s TART .
  • reverse frequency ramps are also conceivable, or a linearly falling frequency ramp.
  • three frequency ramps 5a, 5b, 5c can be seen, but it is also any other number of frequency ramps also possible.
  • the generation of the frequency ramps 5a, 5b, 5c can take place in the following manner: Light from a light source, for example a laser, is generated by means of three different phase modulators and thus the three linear frequency ramps 5a, 5b, 5c are modulated.
  • a light source for example a laser
  • the frequency ramps 5a, 5b, 5c can be mixed in reception in a respective base band 6, also known as so-called "dechirping". The modulation is removed and the frequency ramps 5a, 5b, 5c separated. As long as the respective base bands 6 are far enough apart from one another in terms of frequency, in particular if the base bands do not overlap, then the frequency ramps 5a, 5b, 5c can also be at least partially in the same frequency range, whereby then frequencies of the one frequency range become a certain one Differentiate the timing of frequencies in the other frequency range. In Fig. 1, only the base band 6c of the uppermost frequency ramp 5c is shown. In general, other forms of frequency variation are also conceivable, for example, instead of the linear rise of FIG. 1, a linear rise followed by a linear fall.
  • Figure 2 shows a transmitting apparatus according to a second paging of the present invention.
  • FIG. 2 shows a transmission device 21 with three modulators 11 and a light source in the form of a laser 10.
  • the laser 10 transmits light at a specific frequency fs TART , which is modulated by means of three modulators 11a, 11b, 11c for generating the linear frequency ramps 5a, 5b, 5c.
  • a respective modulator 11a, 11b, 11c modulates a frequency ramp 11a, 11b, 11c.
  • the light of the three generated frequency ramps 5a, 5b, 5c is transmitted by means of a transmitting optical system 12.
  • FIG. 3 shows a transmitting device according to a third embodiment of the present invention.
  • FIG. 3 shows a transmission device 21 with a laser 10, a modulator 11a for generating frequency ramps and two modulators 11b, 11c for frequency offset generation 4a, 4b.
  • only one modulator 11 is used for generating the frequency ramps 5a, 5b, 5c.
  • the linear frequency ramp for the light of the laser 10 generated by the modulator 11 is then divided into three paths 5a, 5b, 5c, wherein in two of the three paths 5b, 5c by a frequency offset 4a, 4b is moved.
  • This frequency offset 4a, 4b can also be generated by means of a phase modulator. In this case, the phase is modulated temporally variable, thereby generating a frequency offset 4a, 4b.
  • Such modulators are based, for example, on the modulation of the charge carrier density or on electro-optical effects, such as, for example, the Pockels effect or the Kerr effect.
  • FIG. 4 shows a transmitting device according to a fourth embodiment of the present invention.
  • FIG. 4 essentially shows a transmitting device 21 according to FIG.
  • the modulator 11 according to FIG. 4 has a broadband design so that it can modulate all three frequency ramps 5a, 5b, 5c to the light of the laser 10.
  • FIG. 5 shows a transmitting device according to a fifth embodiment of the present invention.
  • FIG. 5 essentially shows a transmission device 21 according to FIG.
  • three lasers 10a, 10b, 10c are now arranged in the transmitting device 21 according to FIG. 5, their respective light signal having the frequency f S TART , f S TART, S TART correspondingly by means of a laser 10a, 10b, 10c respectively associated modulator 11a, 11 b, 11c with a frequency ramp 5a, 5b, 5c is provided.
  • the correspondingly modulated light with the frequency ramps 5a, 5b, 5c is then emitted together via the transmitting optics 12.
  • each of the respective modulated light signals own transmission optics 12 may be arranged, for example in the form of a micromechanical scanner or an optical phase array or the like, which then radiates in a certain angular range, so that the different angular ranges of other / further transmission optics do not overlap.
  • the transmitting device 21 may be configured so that by the different frequency ranges, in particular average wavelengths of the different ramps 5a, 5b, 5c automatically radiation by means of a transmitting optics 12 in different angular ranges take place.
  • the different frequencies of the modulated light result in a desired beam deflection into different solid angles.
  • the frequency offset 4a, 4b between the ramps 5a, 5b, 5c is chosen to be sufficiently large, which is why the embodiment of FIG. 5 is particularly advantageous for this purpose.
  • FIG. 6 shows a receiving device according to a sixth embodiment of the present invention.
  • FIG. 6 shows a receiving device 22 with three detectors 15a, 15b, 15c.
  • Light received by the receiving optics 13 of the receiving device 22 is first separated by means of a separating device 14 before it encounters a detector 15a, 15b, 15c.
  • the received optical light signal which comprises a plurality of frequency ramps 5a ', 5b', 5c ', for example via notch filters, in particular in the form of photonic ring oscillations, separated ,
  • Each frequency ramp 5a ', 5b', 5c ' is then fed to a respective detector 15a, 15b, 15c.
  • each received frequency ramp 5a ', 5b', 5c ' is superimposed with the corresponding transmitter lamp 5a, 5b, 5c to ensure coherent reception: More specifically, after detecting the light with the corresponding frequency ramp 5a', 5b ', 5c' the corresponding detector 15a, 15b, 15c, the superimposed light signal of each frequency ramp 5a ', 5b', 5c 'with the corresponding transmitter lamp 5a, 5b, 5c mixed into the respective base band 6 and can then be evaluated in a known manner according to the FMCW principle.
  • FIG. 7 shows a receiving device according to a seventh embodiment of the present invention.
  • FIG. 7 shows a receiving device 22 with a detector 15.
  • Light received by the receiving optics 13 is supplied to the detector 15, which has, for example, one or two photodiodes.
  • Light with one of the received frequency ramps 5a ', 5b', 5c ' is then superimposed with light from the corresponding transmitter lamp 5a, 5b, 5c.
  • either the complete baseband 6, ie all base bands 6a, 6b, 6c are scanned with the frequency ramps 5a ', 5b' 5c 'of the respective transmitted frequency ramps 5a, 5b, 5c, or bandpass filters and / or electrical mixers in the respective base band 6 for separating the frequency ramps 5a, 5b, 5c used.
  • the frequency difference 4a, 4b of the frequency ramps 5a, 5b, 5c is selected correspondingly in relation to the bandwidth of the detector 15, so that the detector 15 is designed to receive correspondingly all the ramps 5a, 5b, 5c.
  • FIG. 8 shows a sensor device according to an eighth embodiment of the present invention.
  • FIG. 8 shows a sensor device 20 in the form of a LiDAR system.
  • the sensor device 20 comprises a transmitting device 21 in the embodiment of FIG. 1 and a receiving device in the embodiment of FIG. 7.
  • the transmitting device 21 radiates light with different frequency ramps 5a, 5b into different angular ranges 100, 101.
  • An object 30, which is located in the angular range 100 of the sensor device, reflects the emitted light with frequency ramp 5a.
  • the light reflected by the object 30 with frequency ramp 5a ' is then received by the receiving device 22.
  • the sensor device 20 evaluates the received light and can determine the distance of the object 30 from the sensor device 20.
  • At least one of the embodiments of the present invention has at least one of the following advantages:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Die Erfindung betrifft eine Sendevorrichtung zum Aussenden von Licht, zumindest einer Frequenz, wobei die Sendevorrichtung ausgebildet ist, Licht in unterschiedliche Winkelbereiche abzustrahlen, derart, dass die Frequenz des Lichts in dem jeweiligen Winkelbereich zeitabhängig in einem jeweiligen Frequenzbereich variiert wird, wobei sich Frequenzen in unterschiedlichen Frequenzbereichen für unterschiedliche Winkelbereiche zu unterschiedlichen Zeiten nicht überlappen.

Description

Sendevorrichtung zum Aussenden von Licht
Technisches Gebiet
Die Erfindung betrifft eine Sendevorrichtung zum Aussenden von Licht zumindest einer Frequenz.
Die Erfindung betrifft ebenfalls eine Empfangsvorrichtung zum Empfangen von Licht.
Die Erfindung betrifft darüber hinaus eine Sensorvorrichtung, ein Verfahren zum Aussenden von Licht zumindest einer Frequenz sowie ein Verfahren zum Empfangen von Licht unterschiedlicher Frequenzbereiche.
Stand der Technik
Obwohl die vorliegende Erfindung auf beliebige Sendevorrichtungen und Empfangs- vorrichtungen anwendbar ist, wird die vorliegende Erfindung im Zusammenhang mit Lichtdetektions und Abstandssystemen - LiDAR - beschrieben.
Bekannte LiDAR-Systeme nutzen schmalbandige Laserstrahlen, die in eine be- stimmte Richtung abgelenkt werden. Trifft der Laserstrahl auf ein Objekt, kann an- hand der Reflexion des Laserstrahls an dem Objekt in diesem Winkel dessen Ent- fernung bestimmt werden. Hierzu wird beispielsweise eine lineare Frequenzrampe, basierend auf dem Prinzip FMCW - frequency modulated continuous wave - ausgesendet und durch einen kohärenten Empfang die Differenzfrequenz zwischen Senderampe und Empfangsrampe ermittelt. Anhand dieser Differenzfrequenz kann dann die Entfernung des Objekts bestimmt werden. Um ein Objekt in einem Gebiet detektieren zu können, kann ein Gebiet zweidimensional ausgeleuchtet werden. Hierfür ist eine kurze Messzeit erforderlich, was üblicherweise allerdings die Reich- weite, also die Entfernung, in der ein Objekt detektiert werden kann, reduziert. Ursa- che hierfür ist, dass bei größer werdender Entfernung das Signal-zu-Rausch Ver- hältnis für eine bestimmte Entfernung linear von der Messzeit abhängt und bei größer werdender Messzeit eine Messung dann nicht mehr möglich ist. Weiterhin ist bekannt geworden, mehrere Sensoren zu verwenden um einen be- stimmten Winkelbereich detektieren zu können, wobei jedem Sensor ein separater Winkelabschnitt des Winkelbereichs zugewiesen ist. Hierbei wird jedoch pro Ab- schnitt ein eigener Sende- und Empfangspfad benötigt. Darüber hinaus können Mehrfach-Reflexionen aus anderen Winkelabschnitten entstehen.
Offenbarung der Erfindung
In einer Ausführungsform stellt die Erfindung eine Sendevorrichtung zum Aussenden von Licht zumindest einer Frequenz bereit, wobei die Sendevorrichtung ausgebildet ist, Licht in unterschiedliche Winkelbereiche abzustrahlen, derart, dass die Frequenz des Lichts in dem jeweiligen Winkelbereich zeitabhängig in einem jeweiligen Frequenzbereich variiert wird, wobei sich Frequenzen in unterschiedlichen Fre- quenzbereichen für unterschiedliche Winkelbereiche zu unterschiedlichen Zeiten nicht überlappen.
In einerweiteren Ausführungsform stellt die Erfindung eine Empfangsvorrichtung zum Empfangen von Licht bereit, wobei eine Trennungseinrichtung zur Trennung von Frequenzen zeitlich variierender unterschiedlicher Frequenzbereiche und zumindest ein Detektor zur Umwandlung des empfangenen Lichts in elektrische Signale angeordnet ist.
In einer weiteren Ausführungsform stellt die Erfindung eine Sensorvorrichtung mit einer Sendevorrichtung gemäß zumindest einem der Ansprüche 1-6 und einer Empfangsvorrichtung gemäß einem der Ansprüche 7-9 bereit.
In einer weiteren Ausführungsform stellt die Erfindung ein Verfahren zum Aussenden von Licht zumindest einer Frequenz bereit, wobei das Licht in unterschiedliche Winkelbereiche ausgesendet wird, derart, dass die Frequenz des Lichts in dem jewei- ligen Winkelbereich zeitabhängig in einem jeweiligen Frequenzbereich variiert wird, wobei sich Frequenzen in unterschiedlichen Frequenzbereichen für unterschiedliche Winkelbereiche zu unterschiedlichen Zeiten nicht überlappen. In einerweiteren Ausführungsform stellt die Erfindung ein Verfahren zum Empfangen von Licht unterschiedlicher Frequenzbereiche, insbesondere ausgesendet mit einem Verfahren gemäß Anspruch 11 , bereit, wobei Frequenzen zeitlich variierender unterschiedlicher Frequenzbereiche getrennt werden und insbesondere das emp- fangene Licht in elektrische Signale umgewandelt wird.
Mit anderen Worten kann mittels der Sendevorrichtung das Licht in verschiedene Winkelbereiche ausgestrahlt werden und mittels einer Empfangseinrichtung das re- flektierte Licht auch wieder empfangen werden.
Einer der Vorteile ist, dass mehrere Winkelbereiche gleichzeitig bestrahlt werden können, ohne dass mehrere Sender und/oder mehrere Empfänger, also mehrere Sende- und Empfangspfade, benötigt werden. Ein weiterer Vorteil ist, dass dadurch auch die Messzeit für die Variation des jeweiligen Frequenzbereichs vergrößert und dadurch das Signal-zu-Rausch Verhältnis verbessert werden kann, was letztlich die Reichweite für die Detektion von Objekten mittels der Sensorvorrichtung erhöht. Ein weiterer Vorteil ist, dass dadurch die Flexibilität gesteigert wird, da beispielsweise mehrere horizontale Ebenen gleichzeitig ausgeleuchtet werden können.
Weitere Merkmale, Vorteile und weitere Ausführungsformen der Erfindung sind im Folgenden beschrieben oder werden dadurch offenbar.
Gemäß einer vorteilhaften Weiterbildung ist die Sendevorrichtung ausgebildet, die Frequenz in dem jeweiligen Winkelbereich zeitlich linear zu variieren, vorzugsweise von einer Startfrequenz zu einer Endfrequenz zu erhöhen. Einer der damit erzielten Vorteile ist, dass eine einfache zeitliche Variation der Frequenz über den gesamten Frequenzbereich ermöglicht wird. Darüber hinaus wird auch eine spätere Auswertung vereinfacht, da eine eindeutige zeitliche Zuordnung der Frequenzen ermöglicht wird.
Gemäß einer weiteren vorteilhaften Weiterbildung sind eine Lichtquelle und eine Modulationseinrichtung zur Erzeugung der zeitabhängigen Variation von Frequenzen des Lichts der Lichtquelle angeordnet. Mittels einer Modulationseinrichtung ist eine einfache und gleichzeitig zuverlässige Modulation des Lichts einer Lichtquelle, beispielsweise eines Lasers, möglich. Gemäß einer weiteren vorteilhaften Weiterbildung umfasst die Modulationseinrich- tung für jeden der unterschiedlichen Frequenzbereiche einen Modulator. Dies er- möglicht eine besonders zuverlässige Modulation.
Gemäß einer weiteren vorteilhaften Weiterbildung weist die Modulationseinrichtung einen Modulator zur zeitlichen Variation eines Frequenzbereichs und zumindest ei- nen weiteren Modulator zur Erzeugung unterschiedlicher Frequenzbereiche auf. Einer der damit erzielten Vorteile ist, dass durch die Trennung von Frequenzberei- chen und deren jeweiliger zeitlicher Variation eine besonders zuverlässige Variation von Frequenzen in unterschiedlichen Frequenzbereichen bereitgestellt werden kann. Beispielsweise lässt sich ein Frequenz-Offset zwischen den verschiedenen Bereichen mittels eines Phasenmodulators erzeugen. Hierbei wird die Phase zeitlich veränderlich moduliert und dadurch ein Frequenz-Offset erzeugt. Beispiele für solche Modulatoren sind solche, die auf der Modulation der Ladungsträgerdichte basieren oder auf Basis elektro-optischer Effekte, wie beispielsweise dem Pockels-Effekt oder dem Kerr-Effekt.
Gemäß einerweiteren vorteilhaften Weiterbildung ist für jeden Frequenzbereich eine separate Lichtquelle angeordnet. Auf diese Weise können unterschiedliche Lichtquellen mit unterschiedlicher Charakteristik genutzt werden, was die Flexibilität insgesamt erhöht.
Gemäß einer weiteren vorteilhaften Weiterbildung ist für jeden Frequenzbereich ein separater Detektor angeordnet. Damit kann eine besonders zuverlässige Detektion des Lichts erreicht werden, da der Detektor auf das empfangene Licht des jeweiligen Frequenzbereichs abgestimmt werden kann.
Gemäß einer weiteren vorteilhaften Weiterbildung weist die Trennungseinrichtung einen Notch-Filter, insbesondere in Form von photonischen Ringoszillatoren, auf. Mittels eines Notch-Filters kann empfangenes Licht mit verschiedenen Frequenz- rampen zuverlässig in Licht mit jeweils einer Frequenzrampe getrennt werden.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unter- ansprüchen, aus den Zeichnungen, und aus dazugehöriger Figurenbeschreibung anhand der Zeichnungen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu er- läuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungen und Ausführungsformen der Erfindung sind in den Zeich- nungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile oder Elemente beziehen.
Kurze Beschreibung der Zeichnungen
Dabei zeigen in schematischer Form
Figur 1 eine Zeit-Frequenzdarstellung der zeitlichen Variation von Frequenzen gemäß einer ersten Ausführungsform der vorliegenden Erfindung;
Figur 2 eine Sendevorrichtung gemäß einer zweiten Ausführungsform der vorliegenden Erfindung;
Figur 3 eine Sendevorrichtung gemäß einer dritten Ausführungsform der vorlie- genden Erfindung;
Figur 4 eine Sendevorrichtung gemäß einer vierten Ausführungsform der vorlie- genden Erfindung;
Figur 5 eine Sendevorrichtung gemäß einer fünften Ausführungsform der vorlie- genden Erfindung;
Figur 6 eine Empfangsvorrichtung gemäß einer sechsten Ausführungsform der vorliegenden Erfindung; Figur 7 eine Empfangsvorrichtung gemäß einer siebten Ausführungsform der vorliegenden Erfindung; und
Figur 8 eine Sensorvorrichtung gemäß einer achten Ausführungsform der vorliegenden Erfindung.
Ausführungsformen der Erfindung
Figur 1 zeigt eine Zeit-Frequenzdarstellung der zeitlichen Variation von Frequenzen gemäß einer ersten Ausführungsform.
In Figur 1 ist eine Zeit-Frequenzdarstellung von Frequenzrampen gezeigt, wobei hier das Basisband der obersten Frequenzrampe 6c gestrichelt angedeutet ist. Im Detail zeigt Figur 1 eine Zeitfrequenzdarstellung 1 , wobei die Frequenz 3 über der Zeit 2 aufgetragen ist. Zu sehen sind drei Frequenzrampen 5a, 5b und 5c, die jeweils mit der gleichen Steigung im gleichen Zeitintervall ansteigen. Die Frequenzrampen 5a, 5b unterscheiden sich dabei in ihrer jeweiligen Startfrequenz um die Frequenz- differenz 4a und die beiden Frequenzrampen 5b und 5c unterscheiden sich um die Frequenzdifferenz 4b. Die Frequenzdifferenzen 4a, 4b können dabei gleich oder unterschiedlich sein. Die Startfrequenz fasTART der ersten Rampe 5a ist in Figur 1 am kleinsten und die Startfrequenz START der dritten Frequenzrampe 5c am größten. Durch den linearen Anstieg ist die jeweilige Endfrequenz fa b c ENDE der jeweiligen Frequenzrampe 5a, 5b, 5c höher als die jeweilige Startfrequenz fa b csTART. Selbst- verständlich sind auch umgekehrte Frequenzrampen denkbar, beziehungsweise eine linear fallende Frequenzrampe. In Figur 1 sind drei Frequenzrampen 5a, 5b, 5c zu sehen, es ist aber auch jede andere Anzahl an Frequenzrampen auch möglich.
Die Erzeugung der Frequenzrampen 5a, 5b, 5c kann dabei auf folgende Weise er- folgen: Licht von einer Lichtquelle, beispielsweise eines Lasers, wird mittels dreier verschiedener Phasenmodulatoren erzeugt und so die drei linearen Frequenzrampen 5a, 5b, 5c moduliert. Die drei Frequenzrampen 5a, 5b, 5c unterscheiden sich durch ihre Startfrequenzen fasTART, fbsTART=fasTART + Af-i, fcsTART=fasTART + Afi + Af2, wobei die Offsetfrequenzen 4a, 4b zwischen den verschiedenen Startfrequenzen f START, fsTART + Afi , fsTART + Afi + Af2 nicht zwingend größer als der Frequenzhub, also der Differenz zwischen Start- und Endfrequenz fa b c ENDE - fa b csTART der jeweiligen Frequenzrampe 5a, 5b, 5c sein müssen. Die Frequenzrampen 5a, 5b, 5c können beim Empfang in ein jeweiliges Basisband 6 gemischt werden, auch bekannt als sogenanntes „Dechirping“. Die Modulation wird dabei entfernt und die Frequenzrampen 5a, 5b, 5c getrennt. Solange die jeweiligen Basisbänder 6 weit genug voneinander frequenz- technisch beabstandet sind, insbesondere wenn sich die Basisbänder nicht über- lappen, können die Frequenzrampen 5a, 5b, 5c auch zumindest teilweise im selben Frequenzbereich liegen, wobei sich dann Frequenzen des einen Frequenzbereichs zu einem bestimmten Zeitpunkt von Frequenzen des anderen Frequenzbereichs unterscheiden. In Fig. 1 ist lediglich das Basisband 6c der obersten Frequenzrampe 5c gezeigt. Allgemein sind auch andere Formen der Frequenzvariation denkbar, beispielsweise anstelle des linearen Anstiegs der Fig. 1 ein linearer Anstieg gefolgt von einem linearen Abfall.
Figur 2 zeigt eine Sendevorrichtung gemäß einer zweiten Ausrufung der vorliegenden Erfindung.
In Figur 2 ist in eine Sendevorrichtung 21 mit drei Modulatoren 11 und einer Licht- quelle in Form eines Lasers 10 gezeigt. Der Laser 10 sendet mit einer bestimmten Frequenz fsTART Licht, welches mittels dreier Modulatoren 11a, 11 b, 11c zur Erzeu- gung der linearen Frequenzrampen 5a, 5b, 5c moduliert wird. Mit anderen Worten je ein Modulator 11a, 11b, 11c moduliert eine Frequenzrampe 11a, 11b, 11c. An- schließend wird das Licht der drei erzeugten Frequenzrampen 5a, 5b, 5c mittels einer Sendeoptik 12 ausgesendet.
Figur 3 zeigt eine Sendevorrichtung gemäß einer dritten Ausführungsform der vor- liegenden Erfindung.
In Figur 3 ist eine Sendevorrichtung 21 mit einem Laser 10, einem Modulator 11a zur Erzeugung von Frequenzrampen und zwei Modulatoren 11b, 11c zur Frequenz- offseterzeugung 4a, 4b gezeigt. Hier wird für die Erzeugung der Frequenzrampen 5a, 5b, 5c nur ein Modulator 11 verwendet. Die mit dem Modulator 11 erzeugte lineare Frequenzrampe für das Licht des Lasers 10 wird dann auf drei Pfade 5a, 5b, 5c aufgeteilt, wobei sie in zwei der drei Pfade 5b, 5c um einen Frequenzoffset 4a, 4b verschoben wird. Dieser Frequenzoffset 4a, 4b kann auch mittels eines Phasenmo- dulators erzeugt werden. Hierbei wird die Phase zeitlich veränderlich moduliert und dadurch ein Frequenz-Offset 4a, 4b erzeugt. Derartige Modulatoren basieren beispielsweise auf der Modulation der Ladungsträgerdichte oder auf elektro-opti- schen Effekten, wie beispielsweise dem Pockels-Effekt oder dem Kerr-Effekt.
Figur 4 zeigt eine Sendevorrichtung gemäß einer vierten Ausführungsform der vor- liegenden Erfindung.
In Figur 4 ist im Wesentlichen eine Sendevorrichtung 21 gemäß Figur 2 gezeigt. Im Unterschied zu den drei Modulatoren 11a, 11b, 11c der Figur 2 ist der Modulator 11 gemäß Figur 4 breitbandig ausgebildet, sodass dieser alle drei Frequenzrampen 5a, 5b, 5c auf das Licht des Lasers 10 modulieren kann.
Figur 5 zeigt eine Sendevorrichtung gemäß einer fünften Ausführungsform der vor- liegenden Erfindung.
In Figur 5 ist im Wesentlichen eine Sendevorrichtung 21 gemäß Figur 2 gezeigt. Im Unterschied zur Sendevorrichtung 21 gemäß Figur 2 sind bei der Sendevorrichtung 21 gemäß Figur 5 nun drei Laser 10a, 10b, 10c angeordnet, deren jeweiliges Lichtsig- nal mit der Frequenz f START, f START, ‘START entsprechend mittels eines dem Laser 10a, 10b, 10c jeweils zugeordneten Modulators 11a, 11 b, 11c mit einer Frequenzrampe 5a, 5b, 5c versehen wird. Das entsprechend modulierte Licht mit den Frequenzrampen 5a, 5b, 5c wird dann gemeinsam über die Sendeoptik 12 abgestrahlt.
Die modulierten Lichtsignale gemäß Figuren 1-5 werden, wie gezeigt, über Sendeop- tiken 12 in den Raum gestrahlt. Dabei kann für die jeweils modulierten Lichtsignale jeweils eine eigene Sendeoptik 12 angeordnet sein, beispielsweise in Form eines mikromechanischen Scanners oder eines optischen Phasenarrays oder dergleichen, die dann in einen bestimmten Winkelbereich abstrahlt, sodass sich die verschiedenen Winkelbereiche von anderen/weiteren Sendeoptiken nicht überlappen. Alternativ kann die Sendevorrichtung 21 so ausgebildet sein, dass durch die verschiedenen Frequenzbereiche, insbesondere mittlere Wellenlängen der unterschiedlichen Rampen 5a, 5b, 5c automatisch eine Abstrahlung mittels einer Sendeoptik 12 in verschiedene Winkelbereiche erfolgt. Das jeweilige Licht der drei modulierten Laserstrahlen 10a, 10b, 10c der Figur 5 wird also kombiniert und dann über dieselbe Sendeoptik 12 ausgesendet. Durch die verschiedenen Frequenzen des modulierten Lichts ergibt sich eine gewünschte Strahlablenkung in verschiedene Raumwinkel. Der Frequenzoffset 4a, 4b zwischen den Rampen 5a, 5b, 5c ist dabei hinreichend groß gewählt, weshalb sich hierfür insbesondere die Ausführungsform der Figur 5 vorteilhaft ist.
Figur 6 zeigt eine Empfangsvorrichtung gemäß einer sechsten Ausführungsform der vorliegenden Erfindung.
In Figur 6 ist eine Empfangsvorrichtung 22 mit drei Detektoren 15a, 15b, 15c gezeigt. Von der Empfangsoptik 13 der Empfangsvorrichtung 22 empfangenes Licht wird vor Auftreffen auf einen Detektor 15a, 15b, 15c zunächst mittels einer Trennungsvor- richtung 14 getrennt. Mit anderen Worten vor der Mischung, also vor der Umwandlung des optischen Signals in ein elektrisches Signal, wird das empfangene optische Lichtsignal, welches mehrere Frequenzrampen 5a‘, 5b‘, 5c‘ umfasst, beispielsweise über Notchfilter, insbesondere in Form von photonischen Ringoszillationen, getrennt. Jede Frequenzrampe 5a‘, 5b‘, 5c‘ wird dann einem jeweiligen Detektor 15a, 15b, 15c zugeführt. Vorher wird jede empfangene Frequenzrampe 5a‘, 5b‘, 5c‘ mit der entsprechenden Senderampe 5a, 5b, 5c überlagert, um einen kohärenten Empfang sicherzustellen: Genauer wird nach dem Detektieren des Lichts mit der entsprechenden Frequenzrampe 5a‘, 5b‘, 5c‘ durch den entsprechenden Detektor 15a, 15b, 15c das so überlagerte Lichtsignal jeder Frequenzrampe 5a‘, 5b‘, 5c‘ mit der entsprechenden Senderampe 5a, 5b, 5c ins jeweilige Basisband 6 gemischt und kann dann in bekannter Weise nach dem FMCW-Prinzip ausgewertet werden.
Figur 7 zeigt eine Empfangsvorrichtung gemäß einer siebten Ausführungsform der vorliegenden Erfindung.
In Figur 7 ist eine Empfangsvorrichtung 22 mit einem Detektor 15 gezeigt. Von der Empfangsoptik 13 empfangenes Licht wird dem Detektor 15 zugeführt, der bei- spielsweise ein oder zwei Fotodioden aufweist. Licht mit einer der empfangenen Frequenzrampen 5a‘, 5b‘, 5c‘ wird dann mit Licht der entsprechenden Senderampe 5a, 5b, 5c überlagert. Anschließend kann entweder das komplette Basisband 6, also sämtliche Basisbänder 6a, 6b, 6c mit den Frequenzrampen 5a‘, 5b‘ 5c‘ der jeweiligen gesendeten Frequenzrampen 5a, 5b, 5c, abgetastet werden oder es werden Bandpassfilter und/oder elektrische Mischer im jeweiligen Basisband 6 zur Trennung der Frequenzrampen 5a, 5b, 5c verwendet. Hierbei ist insbesondere die Fre- quenzdifferenz 4a, 4b der Frequenzrampen 5a, 5b, 5c im Verhältnis zur Bandbreite des Detektors 15 entsprechend gewählt, sodass der Detektor 15 zum Empfang ent- sprechend aller Rampen 5a, 5b, 5c ausgebildet ist.
Figur 8 zeigt eine Sensorvorrichtung gemäß einer achten Ausführungsform der vor- liegenden Erfindung.
In Figur 8 ist eine Sensorvorrichtung 20 in Form eines LiDAR-Systems gezeigt. Die Sensorvorrichtung 20 umfasst eine Sendevorrichtung 21 in der Ausführungsform der Figur 1 und eine Empfangsvorrichtung in der Ausführungsform der Figur 7. Die Sendevorrichtung 21 strahlt Licht mit unterschiedlichen Frequenzrampen 5a, 5b in unterschiedliche Winkelbereiche 100, 101 ab. Ein Objekt 30, welches sich im Win- kelbereich 100 in Reichweite der Sensorvorrichtung befindet, reflektiert das ausge- sendete Licht mit Frequenzrampe 5a. Das vom Objekt 30 reflektierte Licht mit Fre- quenzrampe 5a‘ wird dann von der Empfangsvorrichtung 22 empfangen. Die Sen- sorvorrichtung 20 wertet dann das empfangene Licht aus und kann die Entfernung des Objekts 30 von der Sensorvorrichtung 20 bestimmen.
Zusammenfassend weist zumindest eine der Ausführungsformen der vorliegenden Erfindung zumindest einen der folgenden Vorteile auf:
• gleichzeitiges Aussenden in verschiedene Winkelbereiche und Empfang mit nur einer Empfangseinheit des reflektierten Lichts,
• gleichzeitige Bestrahlung mehrerer Winkelbereiche,
• vergrößerte Messzeit pro Rampe und dadurch Verbesserung des Signal-zu- Rausch-Verhältnisses,
• größere Reichweite,
• Parallelisierung des LiDAR Systems möglich,
• höhere Zuverlässigkeit durch weniger Fehldetektionen durch Mehrfach- Reflexionen,
• einfacher Aufbau, und • einfache Durchführung.
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele be- schrieben wurde, ist sie nicht darauf beschränkt, sondern auf vielfältige Weise modi- fizierbar.

Claims

A n s p r ü c h e
1. Sendevorrichtung (21) zum Aussenden von Licht, zumindest einer Frequenz, wobei die Sendevorrichtung (21) ausgebildet ist, Licht in unterschiedliche Winkelbe- reiche (100, 101) abzustrahlen, derart, dass die Frequenz des Lichts in dem jeweili- gen Winkelbereich (100, 101) zeitabhängig in einem jeweiligen Frequenzbereich (fasTART, faENDE, ^START, INENDE, fcsTART, fcENDE) variiert wird (5a, 5b, 5c), wobei sich Frequenzen in unterschiedlichen Frequenzbereichen (fasTART, faENDE, fbsTART, fbENDE, fcsTART, fc ENDE) für unterschiedliche Winkelbereiche (100, 101) zu unterschiedlichen Zeiten (2) nicht überlappen.
2. Sendevorrichtung gemäß Anspruch 1 , wobei diese ausgebildet ist, die Fre- quenz (3) in dem jeweiligen Winkelbereich (100, 101) zeitlich linear zu variieren, vorzugsweise von einer Startfrequenz (fasTART , I^START, START) ZU einer Endfrequenz
(fa ENDE, ^ENDE, fc ENDE)zu erhöhen.
3. Sendevorrichtung gemäß Anspruch 1 oder 2, wobei eine Lichtquelle (10, 10a, 10b, 10c) und eine Modulationseinrichtung (11 , 11a, 11 b, 11c) zur Erzeugung der zeitabhängigen Variation von Frequenzen des Lichts der Lichtquelle (10, 10a, 10b, 10c) angeordnet sind.
4. Sendevorrichtung gemäß Anspruch 3, wobei die Modulationseinrichtung (11 , 11a, 11b, 11c) für jeden der unterschiedlichen Frequenzbereiche (fasTART, fa ENDE; fhsTART, fbENDE! fcsTART, fcENDE) einen Modulator (11 a, 11 b, 11c) umfasst.
5. Sendevorrichtung gemäß Anspruch 3, wobei die Modulationseinrichtung einen Modulator (11 a) zur zeitlichen Variation eines Frequenzbereichs und zumindest einen weiteren Modulator (11 b, 11c) zur Erzeugung unterschiedlicher Frequenzbereiche aufweist.
6. Sendevorrichtung gemäß einem der Ansprüche 1 -5, wobei eine separate Licht- quelle (10a, 10b, 10c) für jeden Frequenzbereich (fasTART, faENDE; fbsTART, fbENDEi fcsTART, fc ENDE) angeordnet ist.
7. Empfangsvorrichtung (22) zum Empfangen von Licht, insbesondere ausgesen- det mit einer Sendevorrichtung (21) gemäß einem der Ansprüche 1-6, wobei eine Trennungseinrichtung (14) zur Trennung von Frequenzen (3) zeitlich variierender unterschiedlicher Frequenzbereiche (fasTART, faENDE; I^START, INENDE; fcsTART, ENDE) angeordnet und zumindest ein Detektor (15, 15a, 15b, 15c) zur Umwandlung des empfangenen Lichts in elektrische Signale angeordnet ist.
8. Empfangsvorrichtung gemäß Anspruch 7, wobei ein separater Detektor (15a, 15b, 15c) für jeden Frequenzbereich (fasTART, faENDE; I^START, INENDE; fcsTART, fcENDE) angeordnet ist.
9. Empfangsvorrichtung gemäß Anspruch 7 oder 8, wobei die Trennungseinrich- tung (14) einen Notch-Filter, insbesondere in Form von photonischen Ringoszillatoren, aufweist.
10. Sensorvorrichtung (20) mit einer Sendevorrichtung (21) gemäß zumindest einem der Ansprüche 1-6 und einer Empfangsvorrichtung (22) gemäß einem der Ansprüche 7-9.
11. Verfahren zum Aussenden von Licht zumindest einer Frequenz (3), wobei das Licht in unterschiedliche Winkelbereiche (100, 101) ausgesendet wird, derart, dass die Frequenz des Lichts in dem jeweiligen Winkelbereich (100, 101) zeitabhängig in einem jeweiligen Frequenzbereich (fasTART, faENDEl I^START, INENDE; fcsTART, fcENDE) variiert wird (5a, 5b, 5c), wobei sich Frequenzen (3) in unterschiedlichen Frequenzbereichen (fasTART, faENDE; fbsTART, fbENDE; fcsTART, fcENDE) für unterschiedliche Winkelbereiche (100, 101) zu unterschiedlichen Zeiten (2) nicht überlappen.
12. Verfahren zum Empfangen von Licht unterschiedlicher Frequenzbereiche, insbesondere ausgesendet mit einem Verfahren gemäß Anspruch 11 , wobei Fre- quenzen (3) zeitlich variierender unterschiedlicher Frequenzbereiche (PSTART, fa ENDE; I^START, INENDE; fcsTART, fcENDE) getrennt werden (14) und insbesondere das empfangene Licht in elektrische Signale umgewandelt wird.
PCT/EP2019/050854 2018-01-16 2019-01-15 Sendevorrichtung zum aussenden von licht WO2019141641A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020559021A JP7168683B2 (ja) 2018-01-16 2019-01-15 光を送信するための送信装置
US16/961,099 US20210063548A1 (en) 2018-01-16 2019-01-15 Transmitting device for emitting light
CN201980008736.4A CN111630407A (zh) 2018-01-16 2019-01-15 用于发射光的发射设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200620.2A DE102018200620A1 (de) 2018-01-16 2018-01-16 Sendevorrichtung zum Aussenden von Licht
DE102018200620.2 2018-01-16

Publications (1)

Publication Number Publication Date
WO2019141641A1 true WO2019141641A1 (de) 2019-07-25

Family

ID=65033586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/050854 WO2019141641A1 (de) 2018-01-16 2019-01-15 Sendevorrichtung zum aussenden von licht

Country Status (5)

Country Link
US (1) US20210063548A1 (de)
JP (1) JP7168683B2 (de)
CN (1) CN111630407A (de)
DE (1) DE102018200620A1 (de)
WO (1) WO2019141641A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124066A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法、並びにプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215701B2 (en) 2019-09-27 2022-01-04 Aeva, Inc. Coherent LIDAR
CN113611212B (zh) * 2021-07-30 2023-08-29 北京京东方显示技术有限公司 光接收传感器、显示面板和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177931A2 (de) * 2008-10-17 2010-04-21 Diehl BGT Defence GmbH & Co.KG Vorrichtung zur Aufnahme von Bildern einer Objektszene
US20140111808A1 (en) * 2012-10-19 2014-04-24 The Trustees Of Princeton University Optical subtraction of molecular dispersion signals enabled by differential optical dispersion spectroscopy
WO2015120903A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Optical carrier selector system and method
US20170328988A1 (en) * 2016-05-11 2017-11-16 Texas Instruments Incorporated Optical distance measurement system using solid state beam steering

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630477B2 (ja) * 1986-09-10 1994-04-20 シャープ株式会社 光伝送装置
JPS6371674A (ja) * 1986-09-16 1988-04-01 Matsushita Electric Ind Co Ltd レ−ザ−測距装置
JPS63309880A (ja) * 1987-06-12 1988-12-16 Stanley Electric Co Ltd 障害物検知システム
US5294075A (en) * 1991-08-28 1994-03-15 The Boeing Company High accuracy optical position sensing system
DE4129580A1 (de) * 1991-09-06 1993-03-11 Alfred Prof Dr Ing Marganitz Vorrichtung und verfahren zur beruehrungslosen ermittlung der bewegungsgroessen von fahrzeugen mittels des doppler-effektes
KR100269040B1 (ko) * 1998-04-28 2000-10-16 서원석 파장이동 레이저 광원 및 파장이동 레이저 광 생성방법
DE10006493C2 (de) * 2000-02-14 2002-02-07 Hilti Ag Verfahren und Vorrichtung zur optoelektronischen Entfernungsmessung
JP2003273806A (ja) 2002-03-13 2003-09-26 Matsushita Electric Ind Co Ltd 光伝送システム
DE102007043535A1 (de) * 2007-09-12 2009-03-19 Robert Bosch Gmbh FMCW-Radarortungsvorrichtung und entsprechendes FMCW-Radarortungsverfahren
US7894725B2 (en) * 2007-09-28 2011-02-22 Massachusetts Institute Of Technology Time-multiplexed optical waveform generation
JP5752040B2 (ja) 2008-09-11 2015-07-22 ニコン・メトロロジー・エヌヴェ 対チャープfmcwコヒーレントレーザレーダー用の小型の光ファイバ配置
WO2015087564A1 (ja) * 2013-12-10 2015-06-18 三菱電機株式会社 レーザレーダ装置
JP2015135386A (ja) 2014-01-16 2015-07-27 国立大学法人東北大学 光リング共振器および波長選択スイッチ
KR101619921B1 (ko) * 2014-10-21 2016-05-13 재단법인대구경북과학기술원 타겟의 위치 정보 탐지 장치
EP3056920B1 (de) * 2015-02-11 2020-08-19 Veoneer Sweden AB Kraftfahrzeugradarsystem mit zwei Sender-Empfänger-Anordnungen
CN105425245B (zh) * 2015-11-06 2018-02-09 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于相干探测的远距离高重频激光三维扫描装置
US9832552B2 (en) * 2016-02-02 2017-11-28 Oracle International Corporation Locking a polarization-insensitive optical receiver
DE102018203316B4 (de) * 2018-03-06 2020-06-04 Carl Zeiss Smt Gmbh Vorrichtung zur scannenden Abstandsermittlung eines Objekts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177931A2 (de) * 2008-10-17 2010-04-21 Diehl BGT Defence GmbH & Co.KG Vorrichtung zur Aufnahme von Bildern einer Objektszene
US20140111808A1 (en) * 2012-10-19 2014-04-24 The Trustees Of Princeton University Optical subtraction of molecular dispersion signals enabled by differential optical dispersion spectroscopy
WO2015120903A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Optical carrier selector system and method
US20170328988A1 (en) * 2016-05-11 2017-11-16 Texas Instruments Incorporated Optical distance measurement system using solid state beam steering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124066A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法、並びにプログラム

Also Published As

Publication number Publication date
JP2021510834A (ja) 2021-04-30
DE102018200620A1 (de) 2019-07-18
JP7168683B2 (ja) 2022-11-09
CN111630407A (zh) 2020-09-04
US20210063548A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
DE102010003409B4 (de) Lichtlaufzeit-Kamera
WO2019141641A1 (de) Sendevorrichtung zum aussenden von licht
EP2598906B1 (de) Lichtlaufzeitkamerasystem mit signalpfadueberwachung
DE102008052064B4 (de) Vorrichtung zur Aufnahme von Bildern einer Objektszene
EP2240797B1 (de) Optisch-elektronische entfernungsmessvorrichtung
DE102010043768B3 (de) Lichtlaufzeitkamera
EP3379293A1 (de) Optoelektronischer sensor und verfahren zum erfassen von objekten
DE102011089636A1 (de) Lichtlaufzeitkamera
EP2867694B1 (de) Distanzmessverfahren und distanzmesser
WO2013174613A1 (de) Lichtlaufzeitkamerasystem
EP3796052B1 (de) Optoelektronische sensoranordnung und sensorsystem
DE102018131182A1 (de) Lichtlaufzeitkamerasystem mit einer einstellbaren optischen Ausgangsleistung
DE2824311A1 (de) Justieranordnung fuer lichtgitter
WO2019234034A1 (de) Betriebsverfahren für ein lidar-system, steuereinheit, lidar-system und vorrichtung
DE102013207654A1 (de) Lichtlaufzeitkamerasystem
DE102013207647A1 (de) Lichtlaufzeitkamerasystem
EP0685748B1 (de) Lichttaster mit Hintergrundausblendung, realisiert nach dem Quotientenverfahren
EP3147689B1 (de) Verfahren zur detektion eines objekts
DE2521067C3 (de) Verfahren und Vorrichtung zum Ausrichten eines elektrooptischen Entfernungsmessers anhand eines akustischen Richthilfssignals
EP3665504A1 (de) Verfahren zur bereitstellung eines detektionssignals für zu detektierende objekte
EP2278359B1 (de) Verfahren zum Betrieb von Lichtschranken
DE2340688C3 (de) Lesevorrichtung für optisch erfaßbare digitale Codierungen
DE102010003411A1 (de) Lichtlaufzeit-Kamera
EP2851704B1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
DE102013207652A1 (de) Lichtlaufzeitkamerasystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19700792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19700792

Country of ref document: EP

Kind code of ref document: A1