WO2019140559A1 - 对待检测物质进行拉曼检测的方法和终端 - Google Patents

对待检测物质进行拉曼检测的方法和终端 Download PDF

Info

Publication number
WO2019140559A1
WO2019140559A1 PCT/CN2018/072899 CN2018072899W WO2019140559A1 WO 2019140559 A1 WO2019140559 A1 WO 2019140559A1 CN 2018072899 W CN2018072899 W CN 2018072899W WO 2019140559 A1 WO2019140559 A1 WO 2019140559A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
detected
vibration motor
laser light
detection
Prior art date
Application number
PCT/CN2018/072899
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2018/072899 priority Critical patent/WO2019140559A1/zh
Priority to CN201880000037.0A priority patent/CN109073559B/zh
Publication of WO2019140559A1 publication Critical patent/WO2019140559A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present disclosure relates to the field of Raman detection, and in particular to a method and terminal for Raman detection of a substance to be detected.
  • Raman detection techniques are commonly used to detect the composition of a substance to be detected.
  • the laser is irradiated onto the substance to be detected, and the Raman signal emitted by the substance to be detected under the action of the laser is used to detect the ratio of each component and each component.
  • Raman detection not only accurately detects the composition of the substance to be detected, but also accurately detects the proportion of each component. This is because, for liquids, since the liquid is fluid, sufficient mixing between molecules can be achieved, so that the laser focus irradiation range already contains numerous incompletely mixed molecules of different substances, so the ratio analysis is accurate. For powdery solid materials, the mixing of the components does not achieve absolute uniformity.
  • An object of the present disclosure is to provide a technique for Raman detection of a substance to be detected, which can accurately detect the proportion of components of a powdery substance to be detected.
  • a method of Raman detection of a substance to be detected comprising:
  • Determining that the substance to be detected is a powdery substance
  • the vibration motor is caused to drive the powdery substance to vibrate with respect to the laser light path, and the laser light path is used to emit laser light for Raman detection.
  • determining that the substance to be detected is a powdery substance specifically comprises:
  • the substance to be detected is a powdery substance.
  • the vibration frequency of the vibration motor for vibrating the substance to be detected while performing Raman detection on the substance to be detected includes:
  • the vibration frequency of the vibration motor is determined.
  • causing the vibration motor to drive the powdered substance to vibrate relative to the laser light path comprises:
  • the vibration motor is mounted on the detecting head on which the substance to be detected is placed, so that in the Raman detection, the vibration motor drives the substance to be detected to vibrate.
  • causing the vibration motor to drive the powdered substance to vibrate relative to the laser light path comprises:
  • a vibration motor is mounted on the laser beam path such that in the Raman detection, the vibration motor drives the laser beam path to vibrate.
  • causing the vibration motor to drive the powdered substance to vibrate relative to the laser light path comprises:
  • the vibration motor is mounted on the wall of the detection body for Raman detection of the substance to be detected, so that the vibration motor drives the substance to be detected and the laser path to vibrate.
  • the method further includes:
  • a terminal for Raman detection of a substance to be detected comprising:
  • test head for placing a substance to be tested
  • the substance to be detected is a powdery substance
  • the Raman detection the substance to be detected is caused to vibrate with respect to the laser light path.
  • the terminal further includes: an image recognition device configured to capture an image of the substance to be detected, and identify, from the captured image, that the substance to be detected is a powdery substance.
  • the image recognition device further identifies a particle size of the substance to be detected from the captured image.
  • the terminal further includes a processor for determining a vibration frequency of the vibration motor based on the identified particle size.
  • a vibration motor is mounted on the detecting head such that in the Raman detection, the vibration motor drives the substance to be detected to vibrate.
  • a vibration motor is mounted on the laser beam path such that in the Raman detection, the vibration motor drives the laser beam path to vibrate.
  • the vibration motor is mounted on a wall of the detection body that encapsulates the laser beam path such that in the Raman detection, the vibration motor drives the substance to be detected and the laser path to vibrate.
  • the terminal further includes:
  • the processor is configured to adjust the vibration frequency f of the vibration motor and/or the laser power P irradiated to the substance to be detected, so that the Raman signal intensity S of the substance to be detected excited by the unit laser power, the vibration frequency f of the vibration motor, The following relationship is satisfied between the laser powers P irradiated to the substance to be detected:
  • the substance to be detected is a powdery substance
  • the powdery substance in the Raman detection, the powdery substance is driven by the vibration motor to vibrate relative to the laser light path. Therefore, although the area of the laser irradiation on the substance to be detected is limited, due to such vibration, the particles of other areas of the substance to be detected enter the area irradiated with the laser with such vibration, so that the irradiation range of the laser focus is included. Many different components of the particles. In this way, it is possible to more accurately detect the proportion of the different components of the substance to be detected, thereby overcoming the problem that the particles entering the region where the laser is irradiated on the substance to be detected are too small and the detection accuracy is low in the static detection.
  • FIG. 1 is a flow chart of a method of Raman detection of a substance to be detected, in accordance with an embodiment of the present disclosure.
  • 2A is a side view hardware structure diagram of a terminal performing Raman detection of a substance to be detected, according to an embodiment of the present disclosure.
  • FIG. 2B is a top view hardware structure diagram of the terminal shown in FIG. 2A.
  • 3A is a side view hardware structure diagram of a terminal performing Raman detection of a substance to be detected according to another embodiment of the present disclosure.
  • FIG. 3B is a top view hardware structure diagram of the terminal shown in FIG. 3A.
  • 4A is a side view hardware structure diagram of a terminal performing Raman detection of a substance to be detected according to another embodiment of the present disclosure.
  • FIG. 4B is a top view hardware structure diagram of the terminal shown in FIG. 4A.
  • FIG. 5 is a flow chart of a method of Raman detection of a substance to be detected, in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a detailed flowchart of step 110 of FIG. 1 or FIG. 5, in accordance with an embodiment of the present disclosure.
  • FIG. 7 is a detailed flowchart of step 120 of FIG. 1 or FIG. 5, in accordance with an embodiment of the present disclosure.
  • embodiments of the present disclosure may be implemented as a system, apparatus, device, method, or computer program product. Accordingly, the present disclosure may be embodied in the form of full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • a method and terminal for Raman detection of a substance to be detected are proposed.
  • a method for Raman detection of a substance to be detected including:
  • Step S110 determining that the substance to be detected is a powdery substance
  • Step S120 Acquire a vibration frequency of a vibration motor for vibrating the substance to be detected
  • Step S130 According to the vibration frequency, in the Raman detection, the vibration motor is caused to drive the powdery substance to vibrate with respect to the laser light path, and the laser light path is used to emit laser light for Raman detection.
  • the terminal for performing Raman detection of the substance to be detected includes the detecting head 2 and the detecting body 1.
  • the detecting body 1 has a laser light path 11 that emits laser light for Raman detection and a Raman signal sensor 12 for sensing the intensity of the Raman signal emitted from the substance to be detected.
  • the laser light path 11 emits laser light to the substance to be detected.
  • the substance to be detected emits a Raman signal.
  • the Raman signal sensor 12 senses the intensity of the Raman signal emitted by the substance to be detected, and converts it into an electrical signal for transmission to the processor 14 for analysis.
  • the processor 14 calls the matching algorithm to determine the composition and composition ratio of the substance to be detected based on the Raman spectrum and other detection parameters that may be required, and sends it to the display 15 for display.
  • the detecting head 2 and the detecting body 1 are connected by a link 3.
  • the vibration motor 4 is disposed in the terminal. In the Raman detection, the vibration motor 4 drives the vibration of the substance to be detected with respect to the laser light path 11, which is used to emit laser light for Raman detection.
  • FIGS. 2A-4B illustrate a particular implementation structure of a terminal that implements the method of one embodiment of the present disclosure.
  • the present disclosure is not limited to these specific structures.
  • the substance to be detected may also be placed directly on the detecting head 2.
  • the laser light path 11, the Raman signal sensor 12, and the display 15 are placed inside the detecting body 1, it should be understood that they may also be placed outside the detecting body 1.
  • the detecting body 1 is openable, and the detecting head 2 can also be placed inside the detecting body 1 and kept at a certain distance from the laser light path 11.
  • the Raman signal sensor 12 may also be used to sense the intensity of the Raman signal emitted by the substance to be detected, but the Raman signal intensity emitted by the substance to be detected may be obtained by other methods known in the art.
  • the display 15 can also be replaced with a player as needed to broadcast the Raman detection result instead of displaying it.
  • the link 3 is not necessarily required to be connected between the detecting head 2 and the detecting body 1.
  • the detecting head 2 and the detecting body 1 can be directly connected as long as the detecting head 2 is kept at a certain distance from the laser light path 11.
  • the detecting head 2 may be independent of the detecting body 2, wherein the detecting body 1 is provided with a transparent window at a position where the laser light path 11 emits laser light to ensure that the laser light emitted from the laser light path 11 is irradiated to the substance to be detected.
  • the detecting head 2 is manually placed in front of a certain distance from the transparent window, thereby ensuring that the substance to be detected is substantially located near the focus of the laser light path.
  • steps S110-S130 will be described in detail respectively.
  • step S110 it is determined that the substance to be detected is a powdery substance.
  • step S110 can be implemented by detecting the input at the input interface 16.
  • an input interface 16 such as a touch screen
  • the user determines that the substance to be detected is a powdery substance and then inputs it on the input interface 16, such as an option to touch a "powdered substance" on the touch screen.
  • the substance to be detected is determined to be a powdery substance based on the detected user input on the input interface 16.
  • step S110 can be implemented by a processor.
  • step S110 specifically includes:
  • S1102 Identifying, from the captured image, the substance to be detected is a powdery substance.
  • step S1101 and step S1102 can be implemented by the image recognition device 13.
  • the image recognition device 13 notifies the processor 14 after recognizing that the substance to be detected is a powdery substance.
  • the image recognition device automatically determines that the substance to be detected is a powdery substance, which overcomes the problem of low detection efficiency caused by manual operation.
  • step S120 the vibration frequency of the vibration motor for vibrating the substance to be detected is acquired.
  • step S120 is performed by detecting the vibration frequency of the vibration motor input by the user at the input interface 16. Based on experience, the user estimates the vibration frequency of the vibration motor required for Raman detection of the substance to be tested. The user then inputs the estimated vibration frequency through the input interface 16. Input interface 16 transmits the input vibration frequency to processor 14. The processor obtains the vibration frequency of the vibration motor for vibrating the substance to be detected.
  • step S120 determines the particle size of the vibration motor to be detected by detecting the particle size of the substance to be detected input by the user at the input interface 16.
  • the particle size and the vibration frequency comparison table or correspondence formula of the vibration motor are stored in the processor 14 in advance. Determining the vibration frequency of the required vibration motor based on the input particle size can be performed by looking up the comparison table or the correspondence formula according to the input particle size.
  • the comparison table or the correspondence formula may not be stored in the processor 14, but may be stored in a memory (not shown) external to the processor 14, which may be inside the detection interface 1 or outside the detection interface 1. .
  • the particle size of the substance to be detected can be expressed in a predetermined particle size level.
  • the particle size of the substance to be detected is divided into several levels.
  • the particle size of the substance to be detected can be observed from the naked eye and the level stated by the particle size is judged. The user then inputs the determined level to the input interface 16.
  • step S120 includes:
  • S1202 Identify a particle size of the substance to be detected from the captured image
  • S1203 Determine a vibration frequency of the vibration motor based on the identified particle size.
  • step S1201, step 1202 is performed by the image recognition device 13.
  • Step S1203 can be performed by the processor 14 searching for the particle size and the vibration frequency comparison table or the correspondence formula of the vibration motor.
  • the particle size and the vibration frequency comparison table or correspondence formula of the vibration motor may be stored in the processor 14 in advance.
  • the vibration frequency of the vibration motor can be obtained by searching the pre-stored comparison table or the correspondence formula according to the particle size identified in step S1202.
  • the comparison table or the correspondence formula may not be stored in the processor 14, but may be stored in a memory (not shown) external to the processor 14, which may be inside the detection interface 1 or outside the detection interface 1. .
  • This embodiment identifies the particle size of the substance to be detected by means of image recognition, and determines the vibration frequency of the vibration motor based on the identified particle size. Its accuracy in determining the particle size is improved relative to the manner in which the particle size is manually input. In addition, steps S1201-S1203 are completely completed automatically by the machine, which improves the degree of automation of detecting the substance to be detected.
  • Step S130 According to the vibration frequency, in the Raman detection, the vibration motor is caused to drive the powdery substance to vibrate relative to the laser light path. Driving the powdery substance with respect to the laser light path vibration includes driving the powdery substance to vibrate and/or driving the laser light path to vibrate.
  • step S130 includes: as shown in FIGS. 2A-2B, mounting the vibration motor 4 on the detecting head 2 on which the substance to be detected is placed, so that in the Raman detection, the vibration motor 4 drives the waiting Detect material shocks.
  • the substance to be detected is vibrated, and the laser beam path 11 is not vibrated. Therefore, although the area of the laser irradiation on the substance to be detected is limited, due to such vibration, particles of other areas of the substance to be detected enter the area irradiated with the laser with such vibration, and the particles are sufficiently mixed to allow the laser focus.
  • the range of illumination contains more particles of different compositions. In this way, it is possible to more accurately detect the proportion of different components of the substance to be detected, and to improve the detection accuracy.
  • An advantage of this embodiment is that the vibration of the vibration motor 4 can make the mixing of the particles more uniform and the detection accuracy is high.
  • step S130 includes mounting the vibration motor 4 on the laser beam path 11 as shown in FIGS. 3A-3B, so that in the Raman detection, the vibration motor drives the laser beam path 11 to vibrate.
  • the substance to be detected does not vibrate, and the laser light path 11 vibrates.
  • the area where the focus is irradiated on the substance to be detected is a relatively small area, but when the laser light path 11 vibrates, the focus continuously moves on the substance to be detected, so that the particles of other areas of the substance to be detected follow This vibration enters the area illuminated by the laser, allowing the laser focus to contain more particles of different composition. In this way, it is possible to more accurately detect the proportion of different components of the substance to be detected, and to improve the detection accuracy.
  • An advantage of this embodiment is that the vibration motor 4 can be located inside the detection body 1 and is less susceptible to damage.
  • step S130 includes: mounting the vibration motor on the wall of the detection body for Raman detection of the substance to be detected, as shown in FIGS. 4A-4B, thereby causing the vibration motor to be driven in the Raman detection.
  • An advantage of this embodiment is that the vibration motor 4 is easy to install.
  • the method further includes: S140: adjusting a vibration frequency f of the vibration motor and/or a laser power P irradiated to the substance to be detected, so that the substance to be detected is emitted under the excitation of the unit laser power.
  • S140 adjusting a vibration frequency f of the vibration motor and/or a laser power P irradiated to the substance to be detected, so that the substance to be detected is emitted under the excitation of the unit laser power.
  • the time of the pre-judgment detection during the detection of the substance to be detected may be too short, so that the laser cannot be sufficiently irradiated on as many particles as possible of the substance to be detected. .
  • the vibration frequency of the vibration motor is relatively high, the laser can be irradiated more and more reciprocally on the substance to be detected in a unit time, and more particles can be irradiated to compensate for the Raman signal emitted by the substance to be detected.
  • the detection accuracy caused by the excessive strength is lowered. This deficiency can also be compensated for if the laser power to be irradiated to the substance to be detected is relatively low.
  • the intensity of the Raman signal emitted by the laser power of the substance to be detected is unadjustable, it is the property of the substance itself, and the formula 1 can only be established by adjusting the vibration frequency of the vibration motor and/or the laser power irradiated to the substance to be detected. .
  • the advantage of this embodiment is that it is possible to control the detection process and improve the detection accuracy in the detection process of the substance to be detected, in the case where the detection accuracy is lowered by some special reasons.
  • the Raman signal intensity S emitted by the substance to be detected under the excitation of the unit laser power is determined by the nature of the substance to be detected, and is constant. Therefore, if Equation 1 is not satisfied, either the vibration frequency f of the vibration motor is adjusted, or the laser power P irradiated to the substance to be detected is adjusted, or both are adjusted.
  • the vibration frequency f of the vibration motor is adjusted to be constant, and the laser power P irradiated to the substance to be detected is adjusted so that:
  • a terminal for performing Raman detection on a substance to be detected includes:
  • a detection head 2 for placing a substance to be detected
  • the vibration motor 4 in the case where the substance to be detected is a powdery substance, causes the substance to be detected to vibrate with respect to the laser light path 11 in Raman detection.
  • the terminal further includes: an image recognition device 13 configured to capture an image of the substance to be detected, and identify, from the captured image, that the substance to be detected is a powdery substance.
  • the image recognition device 13 also identifies the particle size of the substance to be detected from the captured image.
  • the terminal further includes a processor 14 for determining a vibration frequency of the vibration motor 4 based on the identified particle size.
  • the vibration motor 4 is mounted on the detecting head 2 such that in the Raman detection, the vibration motor 4 drives the substance to be detected to vibrate.
  • the vibration motor 4 is mounted on the laser beam path 11 such that in the Raman detection, the vibration motor 4 causes the laser beam path 11 to vibrate.
  • the vibration motor 4 is mounted on the wall of the detecting body 1 enclosing the laser light path, so that in the Raman detection, the vibration motor 4 drives the substance to be detected and the laser beam path to vibrate.
  • the terminal further includes:
  • the processor 14 is configured to adjust the vibration frequency f of the vibration motor and/or the laser power P irradiated to the substance to be detected, so that the Raman signal intensity S of the substance to be detected excited by the unit laser power and the vibration frequency of the vibration motor f
  • the following relationship is satisfied between the laser powers P irradiated to the substance to be detected:
  • modules or units of equipment for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one of the modules or units described above may be further divided into multiple modules or units.
  • the components displayed as modules or units may or may not be physical units, ie may be located in one place or may be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the wood disclosure scheme. Those of ordinary skill in the art can understand and implement without any creative effort.
  • a computer readable storage medium having stored thereon a computer program, the program being executable by the processor to implement the steps of the method of any one of the above embodiments.
  • the computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a computing device that can be applied to a server to be paired with a plurality of clients, and includes a processor, and a memory for storing executable instructions of the processor .
  • the processor is configured to cause the server to perform the steps of the method in any one of the above embodiments via execution of the executable instructions.
  • the computing device may be a mobile terminal such as a mobile phone or a tablet computer, or may be a terminal device such as a desktop computer or a server. This is not limited in this embodiment.
  • the example embodiments described herein may be implemented by software or by software in combination with necessary hardware. Therefore, the technical solution according to an embodiment of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, touch terminal, or network device, etc.) to perform the above-described methods in accordance with embodiments of the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种对待检测物质进行拉曼检测的方法,包括:确定待检测物质是粉末状物质(S110);获取用于对待检测物质进行震动的震动马达(4)的震动频率(S120);按照震动频率,在拉曼检测中,使震动马达(4)带动粉末状物质相对于激光光路(11)震动(S130);激光光路(11)发出用于拉曼检测的激光。

Description

对待检测物质进行拉曼检测的方法和终端 技术领域
本公开涉及拉曼检测领域,尤其涉及一种对待检测物质进行拉曼检测的方法和终端。
背景技术
目前,拉曼检测技术普遍用于检测待检测物质的成分。拉曼检测中,让激光照射在待检测物质上,利用在激光作用下待检测物质发出的拉曼信号来检测各成分和各成分占比。对于液体来说,拉曼检测不但能准确检测待检测物质的成分,还能准确检测各成分占比。这是因为,对于液体来说,由于液体是流动的,可以达到分子间的充分混合,因此激光焦点照射范围内已经包含了无数多个充分混合的不同物质分子,因此占比分析是准确的。而对于粉末状固体物质来说,各成分混合无法达到绝对的均匀。即使粉末能够达到宏观的充分混合,但因为粉末的单颗直径比起激光焦点来说依然较大,也就使得每次检测过程中激光照射范围内的各成分比例都不同,所以输出结果都不同,无法充分反映出待检测物质的真实混合比例。而且,如果激光焦点只照射到一个颗粒上,则检测结果会输出为单种物质而非混合物,更不用说各成分比例了。因此,需要一种技术来解决拉曼检测检测粉末状物质时各成分占比检测不精确的问题。
应当理解的是,以上的一般描述仅是对相关技术的示例性解释,并不表示属于本公开的现有技术。
发明内容
本公开的一个目的是,提供一种对待检测物质进行拉曼检测的技术,能精确检测粉末状待检测物质的成分占比。
根据本公开实施例的第一方面,提供了一种对待检测物质进行拉曼检测的方法,包括:
确定所述待检测物质是粉末状物质;
获取用于对待检测物质进行震动的震动马达的震动频率;
按照所述震动频率,在拉曼检测过程中,使震动马达带动粉末状物质相对于激光光路震动,所述激光光路用于发出拉曼检测用的激光。
在一个示例性实施例中,确定所述待检测物质是粉末状物质具体包括:
拍摄所述待检测物质的图像;
从拍摄的图像中识别出所述待检测物质为粉末状物质。
在一个示例性实施例中,获取用于在对待检测物质进行拉曼检测的同时对待检测物质进行震动的震动马达的震动频率,具体包括:
拍摄所述待检测物质的图像;
从拍摄的图像中识别所述待检测物质的颗粒大小;
基于识别出的颗粒大小,确定所述震动马达的震动频率。
在一个示例性实施例中,使震动马达带动粉末状物质相对于激光光路震动包括:
使震动马达安装在放置所述待检测物质的检测头上,从而在拉曼检测中,震动马达带动所述待检测物质震动。
在一个示例性实施例中,使震动马达带动粉末状物质相对于激光光路震动包括:
使震动马达安装在所述激光光路上,从而在拉曼检测中,震动马达带动所述激光光路震动。
在一个示例性实施例中,使震动马达带动粉末状物质相对于激光光路震动包括:
使震动马达安装在用于对待检测物质进行拉曼检测的检测主体的壁上,使震动马达带动所述待检测物质和所述激光光路震动。
在一个示例性实施例中,所述方法还包括:
调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向待检测物质照射的激光功率P之间满足以下关系:
SP/f<a,                              ——公式1
其中a是预设常量。
根据本公开实施例的第二方面,提供了一种对待检测物质进行拉曼检测的终端,包括:
放置待检测物质的检测头;
发出用于拉曼检测的激光的激光光路;
震动马达,在所述待检测物质是粉末状物质的情况下,在拉曼检测中,带动所述待检测物质相对于所述激光光路震动。
在一个示例性实施例中,所述终端还包括:图像识别设备,用于拍摄所述待检测物质的图像,并从拍摄的图像中识别出所述待检测物质为粉末状物质。
在一个示例性实施例中,所述图像识别设备还从拍摄的图像中识别所述待检测物质的颗粒大小。所述终端还包括:处理器,用于基于识别出的颗粒大小,确定所述震动马达的震动频率。
在一个示例性实施例中,震动马达安装在所述检测头上,从而在拉曼检测中,震动马达带动所述待检测物质震动。
在一个示例性实施例中,震动马达安装在所述激光光路上,从而在拉曼检测中,震动马达带动所述激光光路震动。
在一个示例性实施例中,震动马达安装在封装所述激光光路的检测主体的壁上,从而在拉曼检测中,震动马达带动所述待检测物质和所述激光光路震动。
在一个示例性实施例中,所述终端还包括:
处理器,配置为调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向 待检测物质照射的激光功率P之间满足以下关系:
SP/f<a,                              ——公式1
其中a是预设常量。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开的一种实施例中,如果待检测物质是粉末状物质,在拉曼检测中,用震动马达带动粉末状物质相对于激光光路震动。因此,尽管激光照射在待检测物质上的区域有限,但由于这种震动,使得待检测物质的其它区域的颗粒随着这种震动进入激光照射的区域,让激光焦点的照射范围内包含了更多不同成分的颗粒。这样,就能够更精确地检测待检测物质的不同成分的占比,从而克服了静态检测中,进入激光照射在待检测物质上的区域的颗粒太少,检测精确性低的问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
图1为根据本公开一实施例的对待检测物质进行拉曼检测的方法的流程图。
图2A为根据本公开一实施例的对待检测物质进行拉曼检测的终端的侧视硬件结构图。
图2B为图2A所示的终端的俯视硬件结构图。
图3A为根据本公开另一实施例的对待检测物质进行拉曼检测的终端的侧视硬件结构图。
图3B为图3A所示的终端的俯视硬件结构图。
图4A为根据本公开另一实施例的对待检测物质进行拉曼检测的终端的侧视硬件结构图。
图4B为图4A所示的终端的俯视硬件结构图。
图5为根据本公开一实施例的对待检测物质进行拉曼检测的方法的流程图。
图6为根据本公开一实施例的图1或图5中步骤110的详细流程图。
图7为根据本公开一实施例的图1或图5中步骤120的详细流程图。
具体实施方式
下面将参考若干示例性实施方式来描述本公开的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本公开,而并非以任何方式限制本公开的范围。相反,提供这些实施方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
本领域技术人员知道,本公开的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
根据本公开的实施方式,提出了一种对待检测物质进行拉曼检测的方法和终端。
下面参考本公开的若干代表性实施方式,详细阐释本公开的原理和精神。
如图1所示,根据本公开的一个实施例,提供了一种对待检测物质进行拉曼检测的方法,包括:
步骤S110:确定所述待检测物质是粉末状物质;
步骤S120:获取用于对待检测物质进行震动的震动马达的震动频率;
步骤S130:按照所述震动频率,在拉曼检测中,使震动马达带动粉末状物质相对于激光光路震动,所述激光光路用于发出用于拉曼检测的激光。
在对这些步骤进行详细描述之前,如图2A-4B所示,先对实现上述方法的终端的结构进行简要描述。
在一个实施例中,如图2A-4B所示,对待检测物质进行拉曼检测的终端包括检测头2和检测主体1。检测主体1具有发出用于拉曼检测的激光的激光光路11和用于感测待检测物质发出的拉曼信号强度的拉曼信号传感器12。将待检测物质放置到试剂瓶21后,置于检测头2上。激光光路11向待检测物质发出激光。在激光的作用下,待检测物质发出拉曼信号。拉曼信号传感器12感测待检测物质发出的拉曼信号强度,转换成电信号发送给处理器14进行分析。处理器14根据拉曼光谱以及可能还需要的其它检测参数,调用匹配算法确定待检测物质的成分及成分占比,发送到显示器15进行显示。检测头2和检测主体1通过连杆3连接。震动马达4设置在终端中。在拉曼检测中,震动马达4带动待检测物质相对激光光路11的震动,所述激光光路11用于发出用于拉曼检测的激光。
虽然图2A-4B示出了实现本公开的一个实施例的方法的终端的具体实现结构。但是,本领域技术人员应当理解,本公开不局限于这些具体结构。例如,虽然在图2A-4B中,将待检测物质放置到试剂瓶21后,置于检测头2上,本领域技术人员应当理解,待检测物质也可以直接放置在检测头2上。虽然在上述图中,激光光路11、拉曼信号传感器12、显示器15放置在检测主体1内部,应当理解,它们也可以放置在检测主体1外部。而且,在某些实施例中,检测主体1是可以打开的,并且可以将检测头2也放置在检测主体1内部并与激光光路11保持一定距离。在一些实施例中,也可以不采用拉曼信号传感器12感测待检测物质发出的拉曼信号强度,而是用本领域已知的其它方法获得待检测物质发出的拉曼信号强度。显示器15根据需要也可以替换成播放器,用于将拉曼检测结果语音播报而不是显示出来。另外,检测头2与检测主体1之间也不一定需要连杆3连接。例如,检测头2与检测主体1可以直接连接,只要检测头2与激光光路11保持一定距离。或者,检测头2月检测主体1也可以是独立的,其中检测主体1在激光光路11向外发激光的位 置设置透明窗口,以保证激光光路11发出的激光能照射到待检测物质。但在这种情况下,要人工使检测头2放置在距离该透明窗口一定距离的前方,从而保证待检测物质基本位于激光光路的焦点附近。
下面,对步骤S110-S130分别详细描述。
在步骤S110中,确定所述待检测物质是粉末状物质。
在一个实施例中,步骤S110可以通过检测在输入接口16的输入的方式实现。如图2A-4B所示,在检测主体1设置输入接口16,例如触摸屏。用户自行判断待检测物质是粉末状物质,然后在输入接口16上进行输入,例如触摸触摸屏上“粉末状物质”的选项。基于检测到的输入接口16上的用户输入,来确定所述待检测物质是粉末状物质。在图2A-4B所示的例子中,步骤S110可以由处理器实现。
上述实施例中,判断所述待检测物质是粉末状物质需要用户进行输入。为了提高待检测物质检测的自动化程度,在一个实施例中,如图6所示,步骤S110具体包括:
S1101、拍摄所述待检测物质的图像;
S1102、从拍摄的图像中识别出所述待检测物质为粉末状物质。
目前,拍摄物品的图像并从图像中识别出物品的性质,可以通过现有的图像识别技术来完成。在图2A-4B所示的例子中,步骤S1101和步骤S1102可以由图像识别设备13来实现。图像识别设备13识别出所述待检测物质为粉末状物质后,发消息通知处理器14。该实施例通过图像识别设备自动判断所述待检测物质是粉末状物质,克服了人工操作带来的检测效率低的问题。
在步骤S120中,获取用于对待检测物质进行震动的震动马达的震动频率。
在一个实施例中,步骤S120通过检测用户在输入接口16输入的震动马达的震动频率进行。由用户根据经验,估计对待检测物质进行拉曼检测所需要的震动马达的震动频率。然后,用户将估计的震动频率通过输入接口16输入。输入接口16将输入的震动频率发送到处理器14。处理器就得到了用于对待检测物质进行震动的震动马达的震动频率。
在另一个实施例中,步骤S120通过检测用户在输入接口16输入的待检测物质的颗粒大小,并根据输入的颗粒大小确定所需要的震动马达的震动频率。事先在处理器14存储颗粒大小与震动马达的震动频率对照表或对应关系公式。根据输入的颗粒大小确定所需要的震动马达的震动频率可以通过根据输入的颗粒大小查找所述对照表或对应关系公式进行。另外,该对照表或对应关系公式也可以不存储在处理器14,而是存储在处理器14外部的存储器(未示)中,该存储器可以在检测接口1内部,也可以在检测接口1外部。
在一个实施例中,待检测物质的颗粒大小可以用预先规定的颗粒大小级别表示。将待检测物质的颗粒大小分为几个级别。从肉眼可以观察到待检测物质的颗粒大小,并判断该颗粒大小所述的级别。然后,用户将判断出的级别输入到输入接口16。
为了提高确定震动马达的震动频率的精度,从而提高待检测物质的检测精确性,在一个实施例中,如图7所示,步骤S120包括:
S1201:拍摄所述待检测物质的图像;
S1202:从拍摄的图像中识别所述待检测物质的颗粒大小;
S1203:基于识别出的颗粒大小,确定所述震动马达的震动频率。
在图2A-4B所示的例子中,步骤S1201、步骤1202是由图像识别设备13执行的。步骤S1203可以通过由处理器14查找颗粒大小与震动马达的震动频率对照表或对应关系公式的方式执行。可以事先在处理器14存储颗粒大小与震动马达的震动频率对照表或对应关系公式。根据步骤S1202中识别出的颗粒大小,查找预先存储的对照表或对应关系公式,可以得到所述震动马达的震动频率。另外,该对照表或对应关系公式也可以不存储在处理器14,而是存储在处理器14外部的存储器(未示)中,该存储器可以在检测接口1内部,也可以在检测接口1外部。该实施例通过图像识别的方式识别待检测物质的颗粒大小,并基于识别出的颗粒大小,确定所述震动马达的震动频率。其相对于人工输入颗粒大小的方式,提高了判断颗粒大小的精确性。另外,步骤S1201-S1203完全由机器自动完成,提高了检测待检测物质的自动化程度。
步骤S130:按照所述震动频率,在拉曼检测中,使震动马达带动粉末状物质相对于激光光路震动。带动粉末状物质相对于激光光路震动包括带动粉末状物质震动和/或带动激光光路震动。
在一个实施例中,步骤S130包括:如图2A-2B所示,使震动马达4安装在放置所述待检测物质的检测头2上,从而在拉曼检测中,震动马达4带动所述待检测物质震动。
在该实施例中,待检测物质震动,激光光路11不震动。因此,尽管激光照射在待检测物质上的区域有限,但由于这种震动,使得待检测物质的其它区域的颗粒随着这种震动进入激光照射的区域,达到了颗粒的充分混合,让激光焦点的照射范围内包含了更多不同成分的颗粒。这样,就能够更精确地检测待检测物质的不同成分的占比,提高检测精确性。
该实施例的优点在于,震动马达4的震动可以使颗粒的混合更均匀,检测精度高。
在一个实施例中,步骤S130包括:如图3A-3B所示,使震动马达4安装在所述激光光路11上,从而在拉曼检测中,使震动马达带动所述激光光路11震动。
在该实施例中,待检测物质不震动,激光光路11震动。激光光路11不震动时焦点照射在待检测物质上的区域是比较小的区域,但在激光光路11震动时该焦点在待检测物质上不断移动,就使得待检测物质的其它区域的颗粒随着这种震动进入激光照射的区域,让激光焦点的照射范围内包含了更多不同成分的颗粒。这样,就能够更精确地检测待检测物质的不同成分的占比,提高检测精确性。
该实施例的优点在于,震动马达4可以位于检测主体1的内部,不容易受到损坏。
在一个实施例中,步骤S130包括:如图4A-4B所示,使震动马达安装在用于对待检测物质进行拉曼检测的检测主体的壁上,从而在拉曼检测中,使震动马达带动所述待检测物质和所述激光光路震动。
该实施例的优点在于,震动马达4容易安装。
如图5所示,在一个实施例中,该方法还包括S140:调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向待检测物质照射的激光功率P之间满足以下关系:
SP/f<a,                              ——公式1
其中a是预设常量。
如果待检测物质发出的拉曼信号强度很高,这时在待检测物质的检测过程中的预判检测的时间可能过短,造成激光不能充分地照射在待检测物质的尽可能多的颗粒上。这时,如果震动马达的震动频率比较高,就可以让激光在单位时间内更多次往复地照射在待检测物质上,就能够照射到更多颗粒,从而弥补待检测物质发出的拉曼信号强度过强造成的检测精度降低。如果向待检测物质照射的激光功率比较低,也可以弥补这一不足。这是因为,如果向待检测物质照射的激光功率比较低,拉曼信号就会相应减弱,就可以延长积分时间,增加震动的次数,使检测结果更加准确。但是,如果待检测物质发出的拉曼信号强度很高,震动马达的震动频率也较低,并且向待检测物质照射的激光功率也较高,则不能成功弥补上述不足。因此,利用公式1可以考察上述三种因素的关系是否能够达到可接受的检测精度。由于待检测物质单位激光功率发出的拉曼信号强度是不能调节的,是物质自身的特性,只能通过调节震动马达的震动频率和/或向待检测物质照射的激光功率,来使公式1成立。
该实施例的优点是,能够在对待检测物质的检测过程中,在某些特殊原因导致检测精确性降低的情况下,对检测过程进行控制,提高检测精确性。
一般来说,待检测物质在单位激光功率激发下发出的拉曼信号强度S是由待检测物质本身的性质决定的,是不变的。因此,如果公式1不满足,要么调节震动马达的震动频率f,要么调节向待检测物质照射的激光功率P,要么二者都调节。
在只调节震动马达的震动频率f的情况下,认为向待检测物质照射的激光功率P不变,则调节震动马达的震动频率f,使得:
f>SP/a                             ——公式2。
在只调节向待检测物质照射的激光功率P的情况下,认为调节震动马达的震动频率f不变,则调节向待检测物质照射的激光功率P,使得:
P<fa/S                             ——公式3。
如图2A-4B所示,根据本公开一个实施例,提供一种对待检测物质进行拉曼检测的终端,包括:
放置待检测物质的检测头2;
发出用于拉曼检测的激光的激光光路11;
震动马达4,在所述待检测物质是粉末状物质的情况下,在拉曼检测中,带动所述待 检测物质相对于所述激光光路11震动。
在一个示例实施例中,所述终端还包括:图像识别设备13,用于拍摄所述待检测物质的图像,并从拍摄的图像中识别出所述待检测物质为粉末状物质。
在一个示例实施例中,所述图像识别设备13还从拍摄的图像中识别所述待检测物质的颗粒大小。所述终端还包括:处理器14,用于基于识别出的颗粒大小,确定所述震动马达4的震动频率。
在一个示例实施例中,震动马达4安装在所述检测头2上,从而在拉曼检测中,震动马达4带动所述待检测物质震动。
在一个示例实施例中,震动马达4安装在所述激光光路11上,从而在拉曼检测中,震动马达4带动所述激光光路11震动。
在一个示例实施例中,使震动马达4安装在封装所述激光光路的检测主体1的壁上,从而在拉曼检测中,震动马达4带动所述待检测物质和所述激光光路震动。
在一个示例实施例中,所述终端还包括:
处理器14,配置为调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向待检测物质照射的激光功率P之间满足以下关系:
SP/f<a,                              ——公式1
其中a是预设常量。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。作为模块或单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现木公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本示例实施方式中,还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述任意一个实施例中的方法的步骤。所述方法的具体步骤可参考前述方法实施例中各步骤的详细描述,此处不再赘述。所述计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本示例实施方式中,还提供一种计算设备,该计算设备可以应用于待与多个客户端进行配对的服务端,并包括处理器,以及用于存储所述处理器的可执行指令的存储器。其中,所述处理器配置为经由执行所述可执行指令来使所述服务端执行上述任意一个实施例中所述方法的步骤。该方法的步骤可参考前述方法实施例中的详细描述,此处不再赘述。所述计算设备可以是手机、平板电脑等移动终端,也可以是台式计算机、服务器等终端设备, 本示例实施方式中对此不作限制。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、触控终端、或者网络设备等)执行根据本公开实施方式的上述方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离申请的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (13)

  1. 一种对待检测物质进行拉曼检测的方法,包括:
    确定所述待检测物质是粉末状物质;
    获取用于对待检测物质进行震动的震动马达的震动频率;
    在拉曼检测过程中,按照所述震动频率,使震动马达带动所述待检测物质相对于激光光路震动,所述激光光路用于发出拉曼检测用的激光。
    根据权利要求1所述的方法,其中,确定所述待检测物质是粉末状物质具体包括:
    拍摄所述待检测物质的图像;
    从拍摄的图像中识别出所述待检测物质为粉末状物质。
  2. 根据权利要求1所述的方法,其中,获取用于在对待检测物质进行拉曼检测的同时对待检测物质进行震动的震动马达的震动频率,具体包括:
    拍摄所述待检测物质的图像;
    从拍摄的图像中识别所述待检测物质的颗粒大小;
    基于识别出的颗粒大小,确定所述震动马达的震动频率。
  3. 根据权利要求1所述的方法,其中,使震动马达带动所述待检测物质相对于激光光路震动包括:
    使震动马达安装在放置所述待检测物质的检测头上,从而在拉曼检测过程中,震动马达带动所述待检测物质震动。
  4. 根据权利要求1所述的方法,其中,使震动马达带动所述待检测物质相对于激光光路震动包括:
    使震动马达安装在所述激光光路上,从而在拉曼检测过程中,震动马达带动所述激光光路震动。
  5. 根据权利要求1所述的方法,其中,使震动马达带动所述待检测物质相对于激光光路震动包括:
    使震动马达安装在用于对待检测物质进行拉曼检测的检测主体的壁上,从而在拉曼检测过程中,震动马达带动所述待检测物质和所述激光光路震动。
  6. 根据权利要求1所述的方法,还包括:
    调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向待检测物质照射的激光功率P之间满足以下关系:
    SP/f<a,
    其中a是预设常量。
  7. 一种对待检测物质进行拉曼检测的终端,包括:
    放置待检测物质的检测头;
    发出用于拉曼检测的激光的激光光路;
    震动马达,在所述待检测物质是粉末状物质的情况下,在拉曼检测过程中,带动所述待检测物质相对于所述激光光路震动。
  8. 根据权利要求8所述的终端,还包括:图像识别设备,用于拍摄所述待检测物质的图像,并从拍摄的图像中识别出所述待检测物质为粉末状物质。
  9. 根据权利要求9所述的终端,其中,所述图像识别设备还从拍摄的图像中识别所述待检测物质的颗粒大小,且
    所述终端还包括:处理器,用于基于识别出的颗粒大小,确定所述震动马达的震动频率。
  10. 根据权利要求8所述的终端,其中,震动马达安装在所述检测头上,从而在拉曼检测过程中,震动马达带动所述待检测物质震动。
  11. 根据权利要求8所述的终端,其中,震动马达安装在所述激光光路上,从而在拉曼检测过程中,震动马达带动所述激光光路震动。
  12. 根据权利要求8所述的终端,其中,震动马达安装在封装所述激光光路的检测主体的壁上,从而在拉曼检测过程中,震动马达带动所述待检测物质和所述激光光路震动。
  13. 根据权利要求8所述的终端,还包括:
    处理器,配置为调节震动马达的震动频率f和/或向待检测物质照射的激光功率P,使得待检测物质在单位激光功率激发下发出的拉曼信号强度S、震动马达的震动频率f、向待检测物质照射的激光功率P之间满足以下关系:
    SP/f<a,
    其中a是预设常量。
PCT/CN2018/072899 2018-01-16 2018-01-16 对待检测物质进行拉曼检测的方法和终端 WO2019140559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/072899 WO2019140559A1 (zh) 2018-01-16 2018-01-16 对待检测物质进行拉曼检测的方法和终端
CN201880000037.0A CN109073559B (zh) 2018-01-16 2018-01-16 对待检测物质进行拉曼检测的方法和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072899 WO2019140559A1 (zh) 2018-01-16 2018-01-16 对待检测物质进行拉曼检测的方法和终端

Publications (1)

Publication Number Publication Date
WO2019140559A1 true WO2019140559A1 (zh) 2019-07-25

Family

ID=64789382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072899 WO2019140559A1 (zh) 2018-01-16 2018-01-16 对待检测物质进行拉曼检测的方法和终端

Country Status (2)

Country Link
CN (1) CN109073559B (zh)
WO (1) WO2019140559A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070009A (ja) * 2003-08-28 2005-03-17 Toyota Motor Corp 分光分析装置
CN102495042A (zh) * 2011-12-09 2012-06-13 湖南大学 一种粉末混合物的拉曼光谱准确定量分析方法
CN103267729A (zh) * 2013-06-18 2013-08-28 河北伊诺光学科技有限公司 用于深色材料光谱分析的动态物镜
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN107044975A (zh) * 2017-06-12 2017-08-15 河北伊诺光学科技股份有限公司 一种用于危爆物检测的拉曼探头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113265B1 (en) * 2003-05-20 2006-09-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Powder handling device for analytical instruments
CN103994973B (zh) * 2014-06-16 2017-06-16 中国农业大学 一种拉曼光谱检测头和检测方法
CN104819875B (zh) * 2015-03-25 2017-04-26 舟山出入境检验检疫局综合技术服务中心 一种均匀性装样品设备
CN204575862U (zh) * 2015-03-25 2015-08-19 舟山出入境检验检疫局综合技术服务中心 一种装样品机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070009A (ja) * 2003-08-28 2005-03-17 Toyota Motor Corp 分光分析装置
CN102495042A (zh) * 2011-12-09 2012-06-13 湖南大学 一种粉末混合物的拉曼光谱准确定量分析方法
CN103267729A (zh) * 2013-06-18 2013-08-28 河北伊诺光学科技有限公司 用于深色材料光谱分析的动态物镜
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN107044975A (zh) * 2017-06-12 2017-08-15 河北伊诺光学科技股份有限公司 一种用于危爆物检测的拉曼探头

Also Published As

Publication number Publication date
CN109073559A (zh) 2018-12-21
CN109073559B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN105138942B (zh) 二维码的显示方法及装置
US8886449B2 (en) Calibrated hardware sensors for estimating real-world distances
US10275868B2 (en) Object analyzing method and object analyzing system
US20200265144A1 (en) One-touch mobile penetration testing platform
WO2015161734A1 (zh) 获取振膜固有频率的方法及系统
WO2019222964A1 (zh) 一种确定检测设备的方法、检测装置及可读存储介质
WO2019024059A1 (zh) 拉曼检测方法、装置以及存储介质
US10132751B2 (en) Method and device for detecting flatness of a fluorescent wheel in a laser light source
US20210245121A1 (en) Method and apparatus for monitoring a drive mechanism of an automated inspection system for inducing motion to a container partially filled with a liquid
CN107741761A (zh) 测量角度的方法、装置、终端及存储介质
Kersemans et al. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence
WO2019140579A1 (zh) 对待检测物质进行拉曼检测的方法和终端
WO2016014070A1 (en) Adjusting a projection area of a projector
WO2019140559A1 (zh) 对待检测物质进行拉曼检测的方法和终端
WO2020135544A1 (zh) 一种荧光光谱的测试装置及测试方法
KR101739096B1 (ko) 디스플레이 패널 외관 검사 장치 및 그 검사 방법
US10945619B2 (en) Measurement apparatus, measurement method, and electronic device provided with measurement apparatus
WO2019196113A1 (zh) 一种控制探头的方法、检测设备及控制探头的装置
CN105737965B (zh) 一种风力发电机振动检测装置及分析方法
WO2018209991A1 (zh) 一种空气微粒浓度检测的方法及终端
CN113124433A (zh) 一种吸油烟机控制方法、装置、吸油烟机和存储介质
CN106324242B (zh) 量子点试纸条的质检系统及质检方法
US20220309900A1 (en) Information processing device, information processing method, and program
TWI479119B (zh) Optical measuring device and optical measuring method
JP2006201124A (ja) 音源位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18900903

Country of ref document: EP

Kind code of ref document: A1