WO2019140547A1 - 轴承固定装置及包括该轴承固定装置的混合动力模块 - Google Patents

轴承固定装置及包括该轴承固定装置的混合动力模块 Download PDF

Info

Publication number
WO2019140547A1
WO2019140547A1 PCT/CN2018/072792 CN2018072792W WO2019140547A1 WO 2019140547 A1 WO2019140547 A1 WO 2019140547A1 CN 2018072792 W CN2018072792 W CN 2018072792W WO 2019140547 A1 WO2019140547 A1 WO 2019140547A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
shaft
inner ring
fixing device
rotor shaft
Prior art date
Application number
PCT/CN2018/072792
Other languages
English (en)
French (fr)
Inventor
刘兴芬
陈云菲
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2018/072792 priority Critical patent/WO2019140547A1/zh
Priority to EP18900979.8A priority patent/EP3742007A4/de
Priority to CN201880086691.8A priority patent/CN111656024A/zh
Publication of WO2019140547A1 publication Critical patent/WO2019140547A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the invention relates to the field of mechanical technology.
  • the present invention relates to a bearing fixture, and a hybrid module including the same.
  • the mounting of the bearing on the shaft can usually be achieved by an interference fit between the inner ring of the bearing and the shaft.
  • the bearing inner ring and the shaft need to be designed to be loosely fitted. At this point, a specific fixture is required to mount the bearing on the shaft.
  • Fig. 1 shows a fixing device for a bearing in a case where the inner ring of the bearing and the shaft are loosely fitted in the conventional P2 hybrid module.
  • the hybrid module shown in FIG. 1 includes a motor having a rotor shaft 1 having a center hole 1a and a drive shaft 2 having a torque output end 2a on the right side of the drawing for outputting the engine Torque is transmitted to the gearbox.
  • the transmission shaft 2 is provided with an outer ring portion 3 at the torque output end 2a, and the outer ring portion 3 surrounds the shaft portion of the transmission shaft 2 and is fixedly coupled to the shaft portion.
  • the outer ring portion 3 and the shaft portion of the transmission shaft 2 define an accommodation space 3a in which the shaft portion of the rotor shaft 1 is inserted into the accommodation space 3a and is diametrically opposed to the outer ring portion 3.
  • a bearing 4 is provided between the outer ring portion 3 and the rotor shaft 1, and the bearing 4 is fitted over the shaft portion of the rotor shaft 1 such that the rotor shaft 1 is rotatably coupled to the drive shaft 2.
  • One end of the shaft portion of the rotor shaft 1 is provided with a radially outer protrusion 5 for abutting against the axial side of the bearing inner ring 41.
  • the other end of the shaft portion of the rotor shaft 1 is fixedly coupled with an elastic snap ring 6 which abuts against the other side of the bearing inner ring 41.
  • the elastic snap ring 6 can be axially deformed on the one hand to provide an axial preload force to the bearing 4 to prevent relative rotation of the bearing inner ring 41 and the rotor shaft 1; on the other hand, the elastic snap ring 6 passes through the rotor shaft 1
  • the shaft portion is fixedly coupled and has an outer diameter larger than the inner diameter of the bearing inner ring 41 to prevent the bearing 4 from coming off the rotor shaft 1.
  • the above-described bearing fixing device can fix the bearing with respect to the shaft, it has the following disadvantages.
  • the installation process is complicated, especially when installing the elastic snap ring, it is necessary to use the predetermined centering, centering and pressing tools, and the tool is very complicated due to the limitation of the assembly space.
  • the manufacturing precision of the components such as the bearing, the shaft and the elastic snap ring is required to be high.
  • a bearing fixing device for fixedly mounting the bearing on a shaft
  • the bearing fixing device comprising: a radially outer protrusion having a peripheral surface diameter from the shaft Projecting outwardly and abutting an axial side of the inner ring of the bearing; an annular resilient member disposed between the inner ring of the bearing and the shaft for opposing the inner ring of the bearing Fixed in the circumferential direction of the shaft; and a stop fixedly coupled to the shaft and abutting the other axial side of the inner ring of the bearing such that the inner ring of the bearing is opposite the The shaft is axially fixed.
  • the stop is formed as a retaining ring that is sleeved on the shaft.
  • the stopper is formed as a circlip that is sleeved on the shaft and is capable of being radially elastically deformed, and the shaft is provided with an annular groove on the outer circumferential surface, the stop A piece is received in the annular groove.
  • the stop includes an annular body portion that is fixedly coupled to the shaft; a deformation portion that is coupled to an end of the annular body portion that is axially adjacent to an inner ring of the bearing and Extending obliquely outward in the radial direction, the deformation portion is elastically deformable in the radial direction.
  • an inner circumferential surface of the inner ring of the bearing or an outer circumferential surface of the shaft is provided with an annular groove, and the annular elastic member is disposed in the annular groove.
  • annular elastic member is formed as an annular rubber ring.
  • the annular elastic member is formed as an annular elastic film disposed between the inner ring of the bearing and the shaft and wrapped around the outer circumferential surface of the shaft.
  • a hybrid power module comprising the bearing fixture of any of the embodiments described above, and further comprising a motor, the shaft being a rotor shaft of the motor; and a drive shaft,
  • An outer ring portion is disposed at one end thereof, the outer ring portion is disposed around the shaft portion of the transmission shaft and is fixedly coupled to the shaft portion, and the outer ring portion and the shaft portion of the transmission shaft define an accommodation space.
  • a rotor shaft inserted into the receiving space and diametrically opposed to the outer ring portion, wherein the bearing is coupled between the rotor shaft and the outer ring portion such that the drive shaft is rotationally coupled to the rotor shaft .
  • the stop is mounted on the rotor shaft prior to the bearing.
  • the stop is radially elastically deformed due to compression of the inner ring of the bearing during installation of the bearing to the rotor shaft.
  • the bearing fixture according to the above-described embodiment of the present invention and the hybrid module including the same can simplify the mounting process and can reduce the manufacturing precision requirements for the shaft, the bearing, and other fixed components.
  • Figure 1 shows a cross-sectional view of a portion of a P2 hybrid module including a bearing fixture according to the prior art.
  • FIG. 2 shows a cross-sectional view of a portion of a mechanical structure including a bearing fixture in accordance with an embodiment of the present invention, and a partial enlarged view of a cross-sectional view.
  • Figure 3 shows a perspective view of an elastic stop in accordance with an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of a portion of a mechanical structure including a bearing fixture in accordance with an embodiment of the present invention, and a partial enlarged view of a cross-sectional view.
  • the bearing fixture shown in Figure 2 is used to securely mount the bearing to the shaft with the inner ring of the bearing loosely engaged with the shaft.
  • the bearing 1 is fitted over a shaft 2, wherein the shaft 2 has a radially outer protrusion 21 extending radially outward from its outer peripheral surface, the radially outer protrusion 21 and the inner ring 11 of the bearing 1 Abutting one side of the axial direction.
  • the bearing fixture also includes an annular resilient member 3 and a stop member 4.
  • the annular elastic member 3 is disposed between the inner ring 11 of the bearing 1 and the shaft 2 for circumferentially fixing the inner ring 11 of the bearing 1 with respect to the shaft 2.
  • the stopper 4 is provided in fixed connection with the shaft 2 and abuts against the other axial side of the inner ring 11 of the bearing 1.
  • the stop 4 cooperates with the radially outer projection 21 of the shaft 2 to axially fix the inner ring 11 of the bearing 1 relative to the shaft 2.
  • the inner ring of the bearing can be fixed circumferentially relative to the shaft by the annular elastic member, preventing the inner ring of the bearing from rotating relative to the shaft, and also passing through the shaft.
  • the radially outer protrusion and the stopper are restrained on both axial sides of the bearing inner ring, so that the inner ring of the bearing is axially fixed with respect to the shaft.
  • the bearing fixture described above may be part of a P2 hybrid module.
  • the P2 hybrid module includes a motor.
  • the shaft 2 may be a rotor shaft of a motor having a central bore 2a.
  • the P2 type hybrid module further includes a transmission shaft 5 having a torque output end 5a in the axial direction, and the transmission shaft 5 transmits the output torque of the engine to the transmission through the torque output end 5a.
  • the drive shaft 5 is formed at the torque output end 5a with an outer ring portion 6 that surrounds the shaft portion of the drive shaft 5 and is fixedly coupled to the shaft portion.
  • the outer ring portion 6 also defines an accommodation space 6a with the shaft portion of the drive shaft 5, wherein the rotor shaft 2 is inserted into the accommodation space 6a and is diametrically opposed to the outer ring portion 6.
  • the bearing 1 is disposed between the rotor shaft 2 and the outer ring portion 6 such that the transmission shaft 5 and the rotor shaft 2 are rotationally coupled via the bearing 1.
  • the bearing 1 can be fixedly mounted on the rotor shaft 2 by the bearing fixing device of the above embodiment. Specifically, in order to fix the bearing 1 in the circumferential direction with respect to the rotor shaft 2, an annular elastic member 3 is provided between the inner ring 11 of the bearing 1 and the rotor shaft 2.
  • the annular elastic member 3 may be a common rubber ring.
  • An outer circumferential surface of the rotor shaft 2 that is diametrically opposed to the inner ring 11 of the bearing 1 may be provided with an annular groove in which the rubber ring may be disposed.
  • the annular groove for accommodating the rubber ring may not be provided on the rotor shaft 2, but may be provided on the inner circumferential surface of the inner ring 11 of the bearing 1.
  • the annular elastic member 3 can also be realized as an annular elastic film which can be wrapped around the outer peripheral surface of the rotor shaft 2 which is diametrically opposed to the inner ring 11 of the bearing 1.
  • the annular elastic member 3 In the case where the inner ring 11 of the bearing 1 and the rotor shaft 2 are loosely fitted, when the bearing 1 is fitted to the rotor shaft 2, the annular elastic member 3 is compressed, and after the bearing 1 is mounted in position, the annular elastic member 3 It can be squeezed between the inner ring 11 of the bearing 1 and the rotor shaft 2 to fix the bearing 1 circumferentially with respect to the rotor shaft 2.
  • the annular elastic member 3 may be self-lubricating to facilitate the mounting of the bearing 1 to the rotor shaft 2.
  • the bearings are restricted on both axial sides of the bearing 1 by the radial projections 21 and the stoppers 4 of the rotor shaft 2. Specifically, the inner ring 11 of the bearing 1 abuts against the radial projection 21 of the rotor shaft 2 on one axial side and abuts against the stopper 4 on the other axial side, thereby achieving relative to the rotor shaft 2 Axial fixation.
  • the stop member 4 can be an annular retaining ring that is fixedly coupled to the rotor shaft 2 and that fits over the rotor shaft 2.
  • the outer diameter of the retaining ring is set larger than the inner diameter of the inner ring of the bearing, so that the bearing 1 can be prevented from coming off the rotor shaft 2.
  • the retaining ring can be fixedly connected to the rotor shaft 2 by means of an interference fit. The interference fit does not require an additional connection structure, so it is easy to operate.
  • the stop member 4 is formed as a circlip that is sleeved on the rotor shaft 2 and is capable of being radially elastically deformed.
  • an annular groove can be provided on the outer circumferential surface of the rotor shaft 2, in which the circlip can be accommodated.
  • the stop member 4 can be mounted in the annular groove of the rotor shaft 2 prior to the bearing 2, and the bearing 1 is at the stop. The piece 4 is placed in place and then placed over the rotor shaft 2.
  • the inner ring 11 of the bearing 1 can press the stopper 4 radially inwardly, causing the stopper 4 to be radially elastically deformed to contract toward the bottom of the annular groove. Thereby, the bearing 1 can be smoothly fitted over the rotor shaft 2.
  • the stop member 4 can rebound radially outwardly against the inner ring 11 of the bearing 1 already mounted, thereby defining the axial position of the bearing 1 and preventing the bearing 1 from The rotor shaft 2 is detached.
  • Such a bearing fixing device can simplify the assembly process of the rotor shaft and the transmission shaft as compared with the prior art bearing fixing device of FIG. 1, and can also reduce the manufacturing precision requirements for components such as the rotor shaft, the bearing and the stopper. .
  • a large axial preload force is applied to the bearing by the elastic snap ring to prevent relative rotation of the inner ring of the bearing relative to the rotor shaft. Therefore, in order to provide a sufficiently large preload, the elastic snap ring is relatively rigid and requires a large force to be deformed.
  • the outer diameter of the elastic snap ring is larger than the inner diameter of the inner ring of the bearing.
  • the elastic snap ring is first pre-assembled in the receiving space defined by the outer ring portion; then the bearing outer ring is fixedly connected with the inner peripheral surface of the outer ring portion; then, the driving shaft is operated through the central hole of the rotor shaft, so that The bearing is fitted over the rotor shaft from the right side in Figure 1; finally, the spring snap ring is operated to axially pre-tension the bearing.
  • the elastic snap ring is operated, it is necessary to operate with a dedicated tool via an operation window on the joint between the outer ring portion and the shaft portion of the drive shaft.
  • the stopper since the stopper does not need to provide a large pre-tightening force to prevent the bearing inner ring from rotating relative to the rotor shaft, it only acts as a stop (circumferential fixing). This is achieved by an annular elastic member, so that the rigidity of the stopper can be set small. Further, in the case where the stopper can be elastically deformed in the radial direction, even if the stopper has an outer diameter larger than the inner diameter of the inner ring of the bearing due to the stopper action, the stopper can be mounted on the rotor shaft before the bearing. That is, when the bearing is sleeved on the rotor shaft from the right side in FIG.
  • the bearing inner ring can easily press the stopper toward the bottom of the groove, and the sleeve is smoothly set. It does not damage the inner ring of the bearing on the rotor shaft. Therefore, when assembling the rotor shaft and the transmission shaft, it is no longer necessary to operate the stopper after the bearing sleeve is on the rotor shaft, which simplifies the assembly process and omits the complicated predetermined center for the elastic snap ring. Center and press the tool.
  • the stopper does not need to provide a sufficiently large axial preload force, the requirement for the axial positional accuracy thereof is lowered, and therefore, the manufacturing precision requirements for the components such as the rotor shaft, the bearing, and the stopper can be reduced.
  • Figure 3 shows a specific embodiment of an elastic stop.
  • the elastic stopper 4 includes an annular body portion 41 for fixed connection with the rotor shaft 2, and a deformation portion 42 coupled to an end of the annular body portion 41 axially adjacent to the bearing 1, and opposite Tilting radially outward in the axial direction, the deformation portion 42 is disposed to be elastically deformable in the radial direction.
  • the annular body portion 41 In the state of the annular groove mounted on the rotor shaft 2, the annular body portion 41 is fixedly coupled to the bottom of the annular groove of the rotor shaft 2, and abuts against the axial direction of the annular groove at an end axially away from the bearing 1 Side wall.
  • the annular body portion 41 can be fixedly coupled to the rotor shaft 2 at the bottom of the annular recess by means of an interference fit.
  • the deformation portion 42 extends obliquely outward in the radial direction and the end extends beyond the opening edge of the annular groove.
  • the deformation portion 42 may be formed as a plurality of separation pieces arranged in the circumferential direction of the body portion 41.
  • the deformation portion 42 is pressed by the bearing 1 toward the bottom of the annular groove below the opening edge of the annular groove to facilitate the mounting of the bearing 1 to the rotor shaft 2. After the bearing 1 is mounted in position, the deformation portion 42 bounces radially outward and abuts against the inner ring 11 of the bearing 1 at the end, thereby achieving the effect of preventing the bearing 1 from falling off the rotor shaft 2.
  • the elastic stopper 4 may be provided as an opening 43 in the circumferential direction.
  • the provision of the opening 43 facilitates the mounting of the resilient stop 4 to the rotor shaft 2, and the mounting of the resilient stop 4 can be accomplished without the use of an installation tool, further simplifying the assembly process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种轴承固定装置及包括该轴承固定装置的混合动力模块,该轴承固定装置用于将轴承(1)固定安装在轴(2)上,其包括径向外突部(21),其从轴(2)的外周面径向向外突出并且与轴承(1)的内圈(11)的轴向一侧相抵靠;环形弹性件(3),其设置在轴承(1)的内圈(11)与所述轴(2)之间,用于使轴承(1)的内圈(11)相对于轴(2)周向固定;以及止挡件(4),其与轴(2)固定连接,并且与轴承(1)的内圈(11)的轴(2)向另一侧相抵靠,以使得轴承(1)的内圈(11)相对轴(2)轴向固定。所述轴承固定装置及包括该轴承固定装置的混合动力模块,能够简化安装过程,降低对轴、轴承以及其他固定部件的制造精度要求。

Description

轴承固定装置及包括该轴承固定装置的混合动力模块 技术领域
本发明涉及机械技术领域。特别地,本发明涉及一种轴承固定装置,以及包括该轴承固定装置的混合动力模块。
背景技术
轴承在轴上的安装通常可以通过轴承的内圈与轴的过盈配合来实现。但是,在有些情况下,由于整体结构的限制,轴承内圈与轴需要设计成松配合。此时,需要设置特定的固定装置将轴承固定安装在轴上。
图1示出了一种现有的P2混合动力模块中轴承内圈与轴为松配合的情况下轴承的固定装置。具体地,图1所示混合动力模块包括具有转子轴1的电机以及传动轴2,转子轴1具有中心孔1a,传动轴2在图中右侧具有扭矩输出端2a,用来将发动机的输出扭矩传递给变速箱。
传动轴2在扭矩输出端2a设有外环部3,外环部3环绕传动轴2的轴部且与该轴部固定连接。外环部3与传动轴2的轴部限定一容纳空间3a,其中转子轴1的轴部插入该容纳空间3a中,并且与外环部3径向相对。
在外环部3与转子轴1之间设有轴承4,轴承4套在转子轴1的轴部上,使得转子轴1与传动轴2转动连接。转子轴1的轴部的一端设有径向外突部5,用于与轴承内圈41的轴向一侧相抵靠。转子轴1的轴部的另一端固定连接有弹性卡环6,该弹性卡环6与轴承内圈41的另一侧相抵靠。弹性卡环6一方面能够发生轴向变形以对轴承4提供轴向预紧力,以阻止轴承内圈41与转子轴1发生相对转动;另一方面,弹性卡环6通过与转子轴1的轴部固定连接且具有大于轴承内圈41的内径的外径,防止轴承4从转子轴1脱落。
上述轴承固定装置虽然能够实现轴承相对于轴的固定,但具有如下缺点。首先,安装过程复杂,特别是在安装弹性卡环时,需要使用预定心、 定心和按压工具,而由于组装空间的限制,该工具非常复杂。其次,为了确保弹性卡环对轴承提供足够的预紧力,对轴承、轴和弹性卡环等部件的制造精度要求较高。
发明内容
本发明的一个目的是提供一种轴承固定装置及包括该轴承固定装置的混合动力模块,其能够简化安装过程。本发明的另一个目的是提供一种轴承固定装置及包括该轴承固定装置的混合动力模块,其能够降低对轴、轴承以及其他固定部件的制造精度要求。
根据本发明的一个方面,提供了一种轴承固定装置,其用于将所述轴承固定安装在轴上,所述轴承固定装置包括:径向外突部,其从所述轴的外周面径向向外突出并且与所述轴承的内圈的轴向一侧相抵靠;环形弹性件,其设置在所述轴承的内圈与所述轴之间,用于使所述轴承的内圈相对于所述轴周向固定;以及止挡件,其与所述轴固定连接,并且与所述轴承的内圈的轴向另一侧相抵靠,以使得所述轴承的内圈相对于所述轴轴向固定。
根据一个实施例,其中所述止挡件形成为套设在所述轴上的挡圈。
根据另一个实施例,其中所述止挡件形成为套设在所述轴上且能够径向弹性变形的弹性挡圈,并且所述轴在外周面上设置有环形凹槽,所述止挡件容纳在所述环形凹槽中。
根据另一个实施例,其中所述止挡件包括环形本体部,其与所述轴固定连接;变形部,其连接于所述环形本体部的沿轴向靠近所述轴承的内圈的一端且沿径向向外倾斜地延伸,所述变形部能够径向弹性变形。
根据另一个实施例,其中所述轴承的内圈的内周面或所述轴的外周面上设置有环形凹槽,所述环形弹性件设置在所述环形凹槽内。
根据另一个实施例,其中所述环形弹性件形成为环形橡胶圈。
根据另一个实施例,其中所述环形弹性件形成为设置在所述轴承的内圈与所述轴之间且包裹在所述轴的外周面上的环形弹性薄膜。
根据本发明的另一个方面,提供了一种混合动力模块,其包括如上述 所述任意实施例的轴承固定装置,并且还包括电机,所述轴为所述电机的转子轴;和传动轴,其在一端设置有外环部,所述外环部环绕所述传动轴的轴部设置且与所述轴部固定连接,所述外环部与所述传动轴的轴部限定容纳空间,所述转子轴插入所述容纳空间且与所述外环部径向相对,其中所述轴承连接在所述转子轴与所述外环部之间,使得所述传动轴与所述转子轴转动连接。
根据一个实施例,其中所述止挡件在所述轴承之前被安装在所述转子轴上。
根据一个实施例,其中所述止挡件在所述轴承被安装到所述转子轴期间由于所述轴承的内圈的压迫而发生径向弹性变形。
根据本发明的上述实施例的的轴承固定装置及包括该轴承固定装置的混合动力模块,其能够简化安装过程,且能够降低对轴、轴承以及其他固定部件的制造精度要求。
附图说明
下面,将结合附图对本发明的示例性实施例的特征、优点和技术效果进行描述,附图中相似的附图标记表示相似的元件,其中:
图1示出了包括根据现有技术的轴承固定装置的P2混合动力模块的一部分的剖视图。
图2示出了包括根据本发明的实施例的轴承固定装置的机械结构的一部分的剖视图以及剖视图的局部放大图。
图3示出了根据本发明的实施例的弹性止挡件的立体图。
具体实施方式
下文中,参照附图描述本发明的实施例。下面的详细描述和附图用于示例性地说明本发明的原理,本发明不限于所描述的优选实施例,本发明的范围由权利要求书限定。
图2示出了包括根据本发明的实施例的轴承固定装置的机械结构的一部分的剖视图以及剖视图的局部放大图。
图2所示的轴承固定装置用于在轴承的内圈与轴为松配合的情况下将轴承固定安装在轴上。如图2所示,轴承1套装在轴2上,其中轴2具有从其外周面径向向外延伸的径向外突部21,该径向外突部21与轴承1的内圈11的轴向一侧相抵靠。轴承固定装置还包括环形弹性件3和止挡件4。环形弹性件3设置在轴承1的内圈11与轴2之间,用于使轴承1的内圈11相对于轴2周向固定。止挡件4设置成与轴2固定连接,并且与轴承1的内圈11的轴向另一侧相抵靠。止挡件4与轴2的径向外突部21相配合地使轴承1的内圈11相对于轴2轴向固定。
由此,在轴承的内圈与轴之间为松配合的情况下,可通过环形弹性件使轴承的内圈相对于轴周向固定,防止轴承内圈和轴相对转动,并且还通过轴的径向外突部和止挡件在轴承内圈的轴向两侧进行限制,从而使轴承的内圈相对于轴轴向固定。
上述轴承固定装置可以是P2型混合动力模块中的一部分。P2型混合动力模块包括电机。轴2可以是电机的转子轴,其具有中心孔2a。P2型混合动力模块还包括传动轴5,其沿轴向具有扭矩输出端5a,传动轴5通过扭矩输出端5a将发动机的输出扭矩传递给变速箱。
传动轴5在扭矩输出端5a处形成有外环部6,该外环部6环绕传动轴5的轴部并且与该轴部固定连接。外环部6还与传动轴5的轴部限定容纳空间6a,其中转子轴2插入该容纳空间6a,并且与外环部6径向相对。轴承1设置在转子轴2与外环部6之间,使得传动轴5与转子轴2经由轴承1转动连接。
轴承1可通过上述实施例的轴承固定装置固定安装在转子轴2上。具体地,为了使得轴承1相对于转子轴2周向固定,在轴承1的内圈11与转子轴2之间设置环形弹性件3。
根据一个实施例,该环形弹性件3可以是常见的橡胶圈。转子轴2与轴承1的内圈11径向相对的外周面上可设置有环形凹槽,橡胶圈可设置在该环形凹槽中。当然,本发明的实施例不限于此。用于容纳橡胶圈的环形凹槽也可以不设置在转子轴2上,而是设置在轴承1的内圈11的内周面上。根据另一个实施例,环形弹性件3还可以实现为环形弹性薄膜,其可 以包裹在转子轴2与轴承1的内圈11径向相对的外周面上。在轴承1的内圈11与转子轴2之间为松配合的情况下,将轴承1套到转子轴2时,环形弹性件3被压缩,并且在轴承1安装就位之后,环形弹性件3可挤压在轴承1的内圈11与转子轴2之间,使轴承1相对于转子轴2周向固定。环形弹性件3可以是自润滑的,以方便轴承1到转子轴2的安装。
此外,为了使得轴承1相对于转子轴2轴向固定,通过转子轴2的径向突起部21和止挡部4在轴承1的轴向两侧对轴承加以限制。具体地,轴承1的内圈11在轴向一侧与转子轴2的径向突起部21相互抵靠,并且在轴向另一侧与止挡件4相抵靠,从而实现相对于转子轴2的轴向固定。
这里,止挡件4可以是与转子轴2固定连接的、套在转子轴2上的环形挡圈。该挡圈的外径设置成大于轴承内圈的内径,从而可以阻止轴承1从转子轴2脱落。该挡圈可以通过过盈配合的方式与转子轴2固定连接。过盈配合的方式不需要设置额外的连接结构,因此操作方便。
在优选实施例中,止挡件4形成为套设在转子轴2上且能够径向弹性变形的弹性挡圈。相应地,转子轴2的外周面上可设有环形凹槽,弹性挡圈可容纳在该环形凹槽中。这样,虽然为了起到止挡作用止挡件4的外径大于轴承内圈的内径,但止挡件4可以先于轴承2安装到转子轴2的环形凹槽中,并且轴承1在止挡件4安装就位后再套到转子轴2上。当轴承1套到转子轴2上时,轴承1的内圈11可径向向内压迫止挡件4,使止挡件4发生径向弹性变形而朝向环形凹槽的底部收缩。由此,轴承1可以顺利地套装在转子轴2上。在轴承1安装就位之后,止挡件4可径向向外回弹,并抵靠已安装就位的轴承1的内圈11,由此限定轴承1的轴向位置,并防止轴承1从转子轴2脱落。
这样的轴承固定装置与图1中的现有技术的轴承固定装置相比,可以简化转子轴与传动轴的装配过程,并且还可以降低对转子轴、轴承和止挡件等部件的制造精度要求。具体地,在图1所示的结构中,通过弹性卡环对轴承施加较大的轴向预紧力,来防止轴承内圈相对于转子轴发生相对转动。因此,为了提供足够大的预紧力,弹性卡环的刚性较大,需要施加较大的力才能发生变形。此外,为防止轴承从转子轴脱落,弹性卡环的外径 大于轴承内圈的内径。因此,装配转子轴与传动轴时,通常需要将弹性卡环在轴承之后套在转子轴上。装配时,首先将弹性卡环预装在外环部限定的容纳空间中;接着将轴承外圈与外环部的内周面固定连接;然后,操作传动轴穿过转子轴的中心孔,使得轴承从图1中的右侧套在转子轴上;最后,操作弹性卡环以对轴承进行轴向预紧。这里,对弹性卡环进行操作时,需要经由外环部与传动轴的轴部之间的连接部上的操作窗口、采用专用工具进行操作。具体的操作包括对弹性卡环进行预定心、定心和按压操作。上述安装过程繁琐,且安装工具复杂。此外,为了保证弹性卡环提供足够大的预紧力,对弹性卡环在轴向上的位置精度要求较高。因此,对转子轴、轴承和弹性卡环等部件的制造精度要求较高。
而在根据本发明的轴承固定装置中,由于止挡件不需要提供较大的预紧力来防止轴承内圈相对于转子轴发生相对转动,而是仅起到止挡的作用(周向固定通过环形弹性件来实现),因此,止挡件的刚性可设置得较小。此外,在止挡件能够径向弹性变形的情况下,即使止挡件由于止挡作用而具有大于轴承内圈的内径的外径,止挡件也可以先于轴承安装在转子轴上。即,当轴承在止挡件安装之后再从图2中右侧套在转子轴上时,由于止挡件的刚性较小,轴承内圈可容易地朝向凹槽底部压迫止挡件,顺利套在转子轴上而不会使轴承内圈受损。因此,在装配转子轴与传动轴时,不再需要在轴承套在转子轴上之后再对止挡件进行操作,既简化了装配过程,又省略了用于弹性卡环的复杂的预定心、定心和按压工具。此外,由于止挡件不需要提供足够大的轴向预紧力,对其轴向位置精度的要求降低,因此,可以降低对转子轴、轴承和止挡件等部件的制造精度要求。
图3示出了弹性止挡件的一个具体实施例。如图3所示,弹性止挡件4包括环形本体部41,其用于与转子轴2固定连接;变形段42,其连接于环形本体部41的沿轴向靠近轴承1的一端,并且相对于轴线方向径向向外倾斜,变形部42设置成能够径向弹性变形。
在安装于转子轴2上的环形凹槽的状态下时,环形本体部41固定连接在转子轴2的环形凹槽底部,并且在沿轴向远离轴承1的一端抵靠环形凹槽的轴向侧壁。例如,环形本体部41可通过过盈配合的方式在环形凹 槽底部处与转子轴2固定连接。变形部42径向向外倾斜延伸且末端超出环形凹槽的开口边缘。变形部42可以形成为沿本体部41的周向排布的多个分离片。
在轴承1套到转子轴2的操作期间,变形部42被轴承1朝向环形凹槽的底部按压到环形凹槽的开口边缘以下,以便于轴承1到转子轴2的安装。在轴承1安装就位之后,变形部42径向向外反弹并且在末端抵靠轴承1的内圈11,从而实现防止轴承1从转子轴2脱落的作用。
此外,如图3所示,弹性止挡件4可以设置为在周向上的开口43。开口43的设置便于弹性止挡件4到转子轴2的安装,可以在不使用安装工具的情况下完成弹性止挡件4的安装,进一步简化装配过程。
以上以P2混合动力模型中的轴承固定为例,阐述了本发明的技术方案。但是,本发明的实施例不限于在P2混合动力模块中使用。在轴承与轴松配合的情况下,根据本发明的轴承固定装置的原理可用于任何其他机械装置。
尽管已经参考示例性实施例描述了本发明,但是应理解,本发明并不限于上述实施例的构造和方法。相反,本发明意在覆盖各种修改例和等同配置。另外,尽管在各种示例性结合体和构造中示出了所公开发明的各种元件和方法步骤,但是包括更多、更少的元件或方法的其它组合也落在本发明的范围之内。

Claims (10)

  1. 一种轴承固定装置,其用于将所述轴承固定安装在轴上,所述轴承固定装置包括:
    径向外突部,其从所述轴的外周面径向向外突出并且与所述轴承的内圈的轴向一侧相抵靠;
    环形弹性件,其设置在所述轴承的内圈与所述轴之间,用于使所述轴承的内圈相对于所述轴周向固定;以及
    止挡件,其与所述轴固定连接,并且与所述轴承的内圈的轴向另一侧相抵靠,以使得所述轴承的内圈相对于所述轴轴向固定。
  2. 根据权利要求1所述的轴承固定装置,其中,
    所述止挡件形成为套设在所述轴上的挡圈。
  3. 根据权利要求1或2所述的轴承固定装置,其中,
    所述止挡件形成为套设在所述轴上且能够径向弹性变形的弹性挡圈,并且
    所述轴在外周面上设置有环形凹槽,所述止挡件容纳在所述环形凹槽中。
  4. 根据权利要求3所述的轴承固定装置,其中,所述止挡件包括:
    环形本体部,其与所述轴固定连接;
    变形部,其连接于所述环形本体部的沿轴向靠近所述轴承的内圈的一端并且沿径向向外倾斜地延伸,所述变形部能够径向弹性变形。
  5. 根据权利要求1所述的轴承固定装置,其中
    所述轴承的内圈的内周面或所述轴的外周面上设置有环形凹槽,所述环形弹性件设置在所述环形凹槽内。
  6. 根据权利要求1或5所述的轴承固定装置,其中
    所述环形弹性件形成为环形橡胶圈。
  7. 根据权利要求1所述的轴承固定装置,其中
    所述环形弹性件形成为设置在所述轴承的内圈与所述轴之间且包裹在所述轴的外周面上的环形弹性薄膜。
  8. 一种混合动力模块,其包括如权利要求1-7中任一项所述的轴承固定装置,并且还包括:
    电机,所述轴为所述电机的转子轴;
    传动轴,其在一端设置有外环部,所述外环部环绕所述传动轴的轴部设置且与所述轴部固定连接,所述外环部与所述传动轴的轴部限定容纳空间,所述转子轴插入所述容纳空间且与所述外环部径向相对,其中所述轴承连接在所述转子轴与所述外环部之间,使得所述传动轴与所述转子轴转动连接。
  9. 根据权利要求8所述的混合动力模块,其中,
    所述止挡件在所述轴承之前被安装在所述转子轴上。
  10. 根据权利要求9所述的混合动力模块,其中,
    所述止挡件在所述轴承被安装到所述转子轴期间由于所述轴承的内圈的压迫而发生径向弹性变形。
PCT/CN2018/072792 2018-01-16 2018-01-16 轴承固定装置及包括该轴承固定装置的混合动力模块 WO2019140547A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/072792 WO2019140547A1 (zh) 2018-01-16 2018-01-16 轴承固定装置及包括该轴承固定装置的混合动力模块
EP18900979.8A EP3742007A4 (de) 2018-01-16 2018-01-16 Lagerbefestigungsvorrichtung und hybridleistungsmodul mit einer lagerbefestigungsvorrichtung
CN201880086691.8A CN111656024A (zh) 2018-01-16 2018-01-16 轴承固定装置及包括该轴承固定装置的混合动力模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072792 WO2019140547A1 (zh) 2018-01-16 2018-01-16 轴承固定装置及包括该轴承固定装置的混合动力模块

Publications (1)

Publication Number Publication Date
WO2019140547A1 true WO2019140547A1 (zh) 2019-07-25

Family

ID=67301861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072792 WO2019140547A1 (zh) 2018-01-16 2018-01-16 轴承固定装置及包括该轴承固定装置的混合动力模块

Country Status (3)

Country Link
EP (1) EP3742007A4 (zh)
CN (1) CN111656024A (zh)
WO (1) WO2019140547A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147144A (en) * 1990-06-20 1992-09-15 Mitsuba Electric Manufacturing Co. Ltd. Hollow shaft
JP2007270966A (ja) * 2006-03-31 2007-10-18 Ntn Corp 転がり軸受のクリープ防止構造
JP2010121651A (ja) * 2008-11-17 2010-06-03 Jtekt Corp 転がり軸受装置
WO2014141986A1 (ja) * 2013-03-14 2014-09-18 Ntn株式会社 円すいころ軸受
CN206386363U (zh) * 2016-11-21 2017-08-08 舍弗勒技术股份两合公司 具有轴向待预紧件的机械装置
CN206449123U (zh) * 2016-12-27 2017-08-29 苏州优思塔精密机械有限公司 一种具有减震性能的机床轴承座用轴承

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH676281A5 (en) * 1987-07-27 1990-12-28 Rapid Masch Fahrzeuge Ag Element for compensating tolerances between roller bearings and shafts - has centre stud with central opening and star arms which are bent S=shaped from centre part
JP2003042141A (ja) * 2001-07-31 2003-02-13 Oiles Ind Co Ltd ステアリングコラム用滑り軸受及びこの滑り軸受を用いた軸受装置
DE102005021376A1 (de) * 2005-05-04 2006-11-09 Spicer Gelenkwellenbau Gmbh Axialsicherungsanordnung für eine Lagerbüchse bei einem Kreuzgelenk
JP2008213074A (ja) * 2007-03-02 2008-09-18 Disco Abrasive Syst Ltd 駆動機構及び切削装置
JP2013194895A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Kyushu Ltd プロペラシャフト及びこのプロペラシャフトに用いられる等速ジョイント

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147144A (en) * 1990-06-20 1992-09-15 Mitsuba Electric Manufacturing Co. Ltd. Hollow shaft
JP2007270966A (ja) * 2006-03-31 2007-10-18 Ntn Corp 転がり軸受のクリープ防止構造
JP2010121651A (ja) * 2008-11-17 2010-06-03 Jtekt Corp 転がり軸受装置
WO2014141986A1 (ja) * 2013-03-14 2014-09-18 Ntn株式会社 円すいころ軸受
CN206386363U (zh) * 2016-11-21 2017-08-08 舍弗勒技术股份两合公司 具有轴向待预紧件的机械装置
CN206449123U (zh) * 2016-12-27 2017-08-29 苏州优思塔精密机械有限公司 一种具有减震性能的机床轴承座用轴承

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742007A4 *

Also Published As

Publication number Publication date
EP3742007A1 (de) 2020-11-25
CN111656024A (zh) 2020-09-11
EP3742007A4 (de) 2021-09-01

Similar Documents

Publication Publication Date Title
EP1176339B1 (en) Torque fluctuation absorbing apparatus having structure for reducing misalignment of torque limiter during assembling thereof
KR101874070B1 (ko) 전기기기, 특히 펌프장치의 전기기기
US9243645B2 (en) Fixture used in rotary machine and method for transporting rotary machine
US9664107B2 (en) Driving device for hybrid working machine
WO2010143468A1 (ja) トルクリミッタ装置
JPS58200823A (ja) クラツチ
US20150288237A1 (en) Motor
KR20180078070A (ko) 전동식 파워 스티어링 시스템
JP5212710B2 (ja) 車輪用軸受装置
WO2019140547A1 (zh) 轴承固定装置及包括该轴承固定装置的混合动力模块
JP2004316908A (ja) 自在継手
US10451143B2 (en) Damper device
KR20220051832A (ko) 하모닉 드라이브를 포함하는 로봇 구동계 시스템
CN210397601U (zh) 家用电器传动装置
US20180231062A1 (en) Power transmission device
US5943776A (en) Motor shaft assembly method
JPH11132261A (ja) クラッチベル形部材
KR101549330B1 (ko) 토크 전달 장치의 댐퍼 기구
JP2003028191A (ja) 動力伝達機構
JP2005147366A (ja) 流体継手及び流体継手の製造方法
JP2019152268A (ja) 運動変換機構及びその組立方法
CN210440533U (zh) 电器装置变速机构
JP4874055B2 (ja) 軸接続構造
JPH0227721Y2 (zh)
KR200271390Y1 (ko) 전동기용 베어링 체결구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018900979

Country of ref document: EP

Effective date: 20200817