WO2019139092A1 - Hydrophobic fine particles and water repellent agent composition - Google Patents
Hydrophobic fine particles and water repellent agent composition Download PDFInfo
- Publication number
- WO2019139092A1 WO2019139092A1 PCT/JP2019/000559 JP2019000559W WO2019139092A1 WO 2019139092 A1 WO2019139092 A1 WO 2019139092A1 JP 2019000559 W JP2019000559 W JP 2019000559W WO 2019139092 A1 WO2019139092 A1 WO 2019139092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- hydrophobic fine
- film
- hydrophobic
- inorganic compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/36—Silicates having base-exchange properties but not having molecular sieve properties
- C01B33/38—Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
- C01B33/40—Clays
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to hydrophobic microparticles and a water repellent composition containing the hydrophobic microparticles.
- a water repellent coating has been applied to the surface of an object.
- a water repellent film is formed, for example, by treating the surface of an object with a silicon-based or fluorine-based water repellent composition.
- silica fine particles having an average primary particle diameter of 100 nm or less and containing 65% by mass or more of a hydrophobic solvent in all organic solvents are included.
- a technique has been proposed for forming a film on the surface of an object using a coating liquid dispersed in an organic solvent. Since silica (SiO 2 ) is hydrophilic, hydrophobic silica is obtained by hydrophobizing the surface of silica.
- Attapulgite which is one of silicate minerals, has a hollow needle-like shape and has excellent colloid properties, so that it can be used as a hydrophobic material by hydrophobizing the surface.
- Patent Document 2 Chinese Patent Application Publication No. 104448950 (Patent Document 2) and Chinese Patent Application Publication No. 104559786 (Patent Document 3)
- Patent Document 3 a technology for obtaining a hydrophobic attapulgite by hydrophobizing attapulgite is proposed. ing.
- Attapulgite can impart transparency to a coating film
- the conventional hydrophobic attapulgite has a problem that the transparency is impaired as it is imparted with water repellency.
- the present invention is a hydrophobic fine particle for imparting water repellency to an object by treating the surface of the object, and a water repellent film having both water repellency and transparency can be obtained. It is an object of the present invention to provide hydrophobic microparticles and a water repellent composition containing the hydrophobic microparticles.
- the present invention is characterized by the following (1) to (12).
- Hydrophobic fine particles comprising an inorganic compound having a needle-like structure whose surface is coated with a hydrophobizing agent and having an average diameter of 100 nm or less in the direction orthogonal to the long axis direction.
- the hydrophobic fine particles according to (1) or (2), wherein the inorganic compound is a silicate compound.
- hydrophobic fine particles according to (3) wherein the silicate compound is at least one needle-like mineral selected from the group consisting of attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite .
- the hydrophobizing agent is at least one coupling agent selected from the group consisting of a silane coupling agent, a phosphoric acid coupling agent and a thiol coupling agent.
- the composition obtained by dispersing 60 mg of the hydrophobic fine particles in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 ⁇ m, the haze of the film
- the hydrophobic fine particles of the present invention are made hydrophobic without impairing the shape and size of the inorganic compound before being hydrophobized, and therefore, have hydrophobicity without impairing the inherent properties of the inorganic compound.
- a water repellent composition containing the hydrophobic fine particles of the present invention because the inorganic compound in the form of a hollow needle gives excellent antifogging properties to a film formed using a composition containing the inorganic compound.
- the film formed by the above can have excellent water repellency and transparency.
- FIG. 1 is a photograph by a scanning electron microscope of the hydrophobic fine particles obtained in Example 1.
- FIG. 2 is a photograph by a scanning electron microscope of the hydrophobic fine particles obtained in Example 2.
- FIG. 3 is a photograph by a scanning electron microscope of the hydrophobic fine particles obtained in Example 3.
- FIG. 4 is a photograph by a scanning electron microscope of the hydrophobic fine particles obtained in Comparative Example 1.
- hydrophobic fine particles are made of an inorganic compound having a needle-like structure whose surface is coated with a hydrophobic treatment.
- hydrophobic refers to the property of exhibiting a contact angle of 90 ° or more when droplets of water (eg, pure water) are dropped on the material under an environment of 25 ° C.
- silicate compounds represented by needle-like minerals such as attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite. One of these may be used alone, or two or more of these may be used in combination.
- the inorganic compound is preferably hollow.
- the film containing the hydrophobic fine particles of the present embodiment can have not only water repellency but also excellent transparency.
- the inorganic compound has a hollow needle-like structure with a high aspect ratio, and it is preferable to use attapulgite because of the ease of surface hydrophobic modification.
- the inorganic compound one having a diameter in a direction orthogonal to the long axis direction (hereinafter, also referred to as “diameter of cross section”) of 100 nm or less is used.
- the diameter of the cross section of the inorganic compound is 100 nm or less
- hydrophobic fine particles having an average value of the diameter of the cross section of 100 nm or less can be obtained. The dispersibility is improved, and the desired effects of the present invention can be easily obtained.
- the diameter of the cross section of the inorganic compound is preferably 10 to 100 nm, the lower limit is more preferably 20 nm or more, further preferably 30 nm or more, and the upper limit is more preferably 85 nm or less, and 70 nm or less Is more preferred.
- the inorganic compound preferably has a major axis of 0.2 to 20 ⁇ m.
- the long axis length of the inorganic compound is in the above range, hydrophobic fine particles obtained by hydrophobizing the surface exhibit good dispersibility in a solvent, and the desired effect of the present invention can be easily obtained.
- the lower limit is more preferably 1 ⁇ m or more
- the upper limit is more preferably 15 ⁇ m or less
- 10 ⁇ m or less is more preferable.
- the attapulgite when the inorganic compound is attapulgite, the attapulgite preferably has a major axis of 1 to 2 ⁇ m and a cross-sectional diameter of 10 to 50 nm.
- the ratio of the diameter of the cross section of the inorganic compound to the long axis length is preferably 10 or more, more preferably 10 to 100, still more preferably 30 to 80, with respect to the diameter 1 of the cross section. preferable.
- the ratio of the diameter of the cross section to the major axis length is 10 or more, the uneven structure on the surface of the film formed of the water repellent composition containing the hydrophobic fine particles of the present embodiment is roughened. Water repellency is high.
- the inorganic compound of the said needle-like structure can be obtained as a commercial item, for example, "Atagel” by Union Chemical Co., Ltd. (hollow needle-like attapulgite, long axis length: 1 to 2 ⁇ m, cross-sectional diameter: 10 to 50 nm ), Union Chemical Co., Ltd. "ASHAGEL SF” (hollow needle-like attapulgite, long axis length: 1 to 2 ⁇ m, cross-sectional diameter 10 to 50 nm), Hayashi Kasei Co., Ltd. "ATTAGEL 50” (hollow needle-like attapulgite, Long axis length: 1 to 2 ⁇ m, diameter of cross section 10 to 50 nm) and the like.
- hydrophobizing agent for coating the inorganic compound examples include hydrophobic coupling agents such as silane coupling agents, phosphoric acid coupling agents, and thiol coupling agents, and one of these may be used alone or in combination. More than species can be used in combination.
- silane coupling agent examples include alkoxysilanes, silazanes, chlorosilanes, special silylating agents, etc. Specifically, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltrimethoxysilane Ethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane, hexadecyltrimethoxysilane (HDMS), methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltriethoxysilane Chlorosilane, diphenyldichlorosilane, N, O- (bistrimethylsilyl) acetamide, N,
- Examples of the phosphoric acid coupling agent include 11-aminoundecylphosphonic acid, 10-carboxydecylphosphonic acid, 11-hydroxyundecylphosphonic acid, octadecylphosphonic acid, 11- [2- [2- (2-methoxy] Ethoxy) ethoxy] ethoxy] undecylphosphonic acid, 1H, 1H, 2H, 2H-perfluoro-n-hexylphosphonic acid, 1H, 1H, 2H, 2H-perfluoro-n-octylphosphonic acid, 1H, 1H, 2H , 2H-perfluoro-n-decylphosphonic acid, monooctyl ester phosphate, phenyl phosphate, 2- (1-methylguanidino) ethyl dihydrogenphosphate, and mono (2-methacryloxypropyl) ester phosphate It can be mentioned.
- thiol coupling agent examples include alkyl thiols and derivatives thereof, triazine thiols and derivatives thereof and the like.
- silane coupling agent from the viewpoint of achieving more stable and easy surface modification of the hydrophobization treatment agent, and hexadecyltrimethoxysilane (as a substance that can be easily subjected to highly hydrophobic surface treatment) It is preferred to use HDMS).
- the surface of the inorganic compound may be coated with a hydrophilic silane coupling agent or a hydrophilic polymer material in combination to adjust water repellency.
- hydrophilic silane coupling agents include tetramethoxysilane and tetraethoxysilane (TEOS).
- the hydrophobic fine particles of the present embodiment have an average diameter of 100 nm or less in the direction (cross-sectional diameter) in the direction orthogonal to the long axis direction.
- the hydrophobic fine particles of the present embodiment are characterized by having a shape substantially equal to the shape of the inorganic compound before the hydrophobization treatment. Therefore, it can be said that the fine particles after hydrophobization have hydrophobicity while having the property of the inorganic compound before hydrophobization. Therefore, a film formed of a water repellent composition containing hydrophobic fine particles can be provided with water repellency and also excellent transparency.
- the dispersibility in a solvent is good, so that when the coating is formed, the hydrophobic fine particles are uniformly dispersed, and the repellence excellent on the film surface It can be water-based and transparent.
- the lower limit is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, and the upper limit is preferably 85 nm or less, and more preferably 70 nm or less. preferable.
- the hydrophobic fine particles of the present embodiment preferably have a major axis length of 0.2 to 20 ⁇ m. If the length of the major axis is in the above range, it can be said that the shape of the inorganic compound before the hydrophobization treatment is also substantially the same, so the fine particles after hydrophobization have the hydrophobicity while having the properties of the inorganic compound before hydrophobization. It can be equipped. Moreover, since the dispersibility to a solvent is good and a uniform coating film can be formed, the desired effect of the present invention can be easily obtained.
- the lower limit is more preferably 1 ⁇ m or more, and the upper limit is more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
- the hydrophobic fine particles preferably have a contact angle of 90 ° or more with respect to water on the surface of the film when the film is formed. If the contact angle of the film surface with water is 90 ° or more, it indicates that the film surface has low surface free energy, and it is possible to make the film difficult to be soiled.
- the lower limit of the contact angle is more preferably 100 ° or more, further preferably 105 ° or more, and the upper limit is preferably 170 ° or less.
- the contact angle was controlled by applying a composition in which 60 mg of hydrophobic fine particles were dispersed in 3.5 g of toluene on a transparent substrate with a thickness of 2 mm and forming a film with a thickness of 30 ⁇ m. It can measure by measuring the contact angle with respect to water (for example, pure water) of the said film
- the hydrophobic fine particles preferably have a permeability of 80% or more when the film is formed.
- the film has a transmittance of 80% or more, the transparency is high, so that when the coating is formed on a target to form a coating film, the target has good visibility without blocking the target.
- the lower limit of the transmittance is more preferably 85% or more, further preferably 90% or more, and the upper limit is preferably 100% or less.
- the transmittance is obtained by applying a composition in which 60 mg of hydrophobic fine particles are dispersed in 3.5 g of toluene on a transparent substrate having a thickness of 2 mm and drying to form a film having a thickness of 30 ⁇ m. It can be measured by measuring the transmittance at each wavelength of the total light beam of the film using a transmittance meter (for example, a haze meter “HR-100 type” manufactured by Murakami Color Research Laboratory, Inc.).
- a transmittance meter for example, a haze meter “HR-100 type” manufactured by Murakami Color Research Laboratory, Inc.
- the hydrophobic fine particles preferably have a haze of 50% or less when the film is formed.
- the haze of the film is 50% or less, the transparency is high, and the visibility of the object is good.
- the upper limit of the haze is more preferably 45% or less, still more preferably 30% or less, and the lower limit is preferably 0% or more.
- the haze value is a haze meter when a composition in which 60 mg of hydrophobic fine particles are dispersed in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 ⁇ m. It can measure by measuring the haze value of the said film using.
- the hydrophobic fine particles of the present embodiment can be produced using a known method.
- a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, a seed polymerization method, a kneading and pulverizing method, and the like are suitably used.
- hydrophobic fine particles by suspension polymerization, first, an inorganic compound having a needle-like structure and a hydrophobizing agent (for example, a silane coupling agent containing hexadecyltrimethoxysilane (HDMS)) in a solvent
- a hydrophobizing agent for example, a silane coupling agent containing hexadecyltrimethoxysilane (HDMS)
- HDMS hexadecyltrimethoxysilane
- Examples of the solvent for suspending the inorganic compound and the hydrophobization treatment agent include ethanol, methanol, isopropyl alcohol and the like.
- the amount of the solvent used is 5 to 50 times, preferably 10 to 20 times, the amount (mass) of the solvent necessary for the hydrolysis of the hydrophobizing agent.
- the hydrophobizing agent is preferably used in a weight ratio of 1: 1 to the inorganic compound.
- a condition for subjecting a suspension in which an inorganic compound and a hydrophobizing agent are suspended in a solvent to ultrasonication it is preferable to carry out in a temperature range of 20 to 100 ° C. for about 3 to 72 hours.
- the temperature is more preferably 50 to 80 ° C., further preferably 60 to 70 ° C., the time is more preferably 6 to 48 hours, and further preferably 18 to 24 hours.
- water is mentioned, for example.
- Water is preferably used in an amount of 50 to 100 times, and more preferably 60 to 80 times, the weight of the hydrophobizing agent.
- aqueous ammonia As a catalyst solution to be added to accelerate the hydrolysis reaction, for example, aqueous ammonia can be mentioned.
- Ammonia water is preferably used in an amount of 5 to 25 times, more preferably 10 to 20 times, the weight of the hydrophobizing agent.
- the surface of the inorganic compound is modified with a hydrophobic group (HDMS) by ultrasonication again.
- a temperature range of 20 to 100 ° C. for about 3 to 72 hours it is preferable to carry out at a temperature range of 20 to 100 ° C. for about 3 to 72 hours.
- the temperature is more preferably 50 to 80 ° C., further preferably 60 to 80 ° C., the time is more preferably 6 to 48 hours, and further preferably 18 to 24 hours.
- the pellet is separated from the solvent, washed with ethanol, and dried to obtain the hydrophobic fine particles of the present embodiment.
- the drying conditions are preferably carried out, for example, in a temperature range of 60 to 100 ° C. for about 1 to 3 hours.
- the surface of the inorganic compound is modified with a hydrophobic group, and since the modified portion is a linear alkyl group having a very short chain length, the thickness is in proportion to the size of the inorganic compound With little consideration, hydrophobic microparticles have a shape approximately equal to the shape of the inorganic compound. Thus, the hydrophobic fine particles can have water repellency while having the transparency of the inorganic compound.
- the water repellent composition of the present embodiment contains a base component and the hydrophobic fine particles of the present embodiment.
- the base component of the water repellent composition may be appropriately selected depending on the properties of the coating film to be formed, and examples thereof include toluene, acetic acid, methanol, ethanol, ethyl acetate, butyl acetate and the like.
- additives which are usually used in the water repellent composition can be used as long as the effects of the present invention are not impaired.
- the additive include an ultraviolet light inhibitor, a surfactant, a pigment, a filler, and a reinforcing material.
- the water repellent composition can be obtained by adding the hydrophobic fine particles of the present embodiment and, if necessary, various additives to the base component, and mixing them using a polymer solution or the like according to a conventional method.
- the water repellent composition may be in any form such as liquid, gel or cream depending on the method of application to the object.
- the hydrophobic fine particles of the present embodiment are uniformly dispersed. Therefore, by forming a film on the surface of the object using the water repellent composition of the present embodiment, it is possible to impart water repellency to the surface of the object, and to suppress adhesion of ice, snow, etc. It does not interrupt the pattern or color.
- the water repellent film preferably has a film thickness sufficient to exhibit sufficient water repellency.
- the film thickness of the water repellent film is preferably 10 to 100 ⁇ m, the lower limit is more preferably 15 ⁇ m or more, further preferably 30 ⁇ m or more, and the upper limit is more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less.
- the film thickness is 10 ⁇ m or more, sufficient water repellency can be exhibited, and when the film thickness is 30 ⁇ m or more, a further sufficient strength can be provided.
- the film thickness is 100 ⁇ m or less, good transparency can be obtained, and when the film thickness is 40 ⁇ m or less, problems such as cracking of the water repellent film are unlikely to occur.
- the water repellent film preferably has a contact angle to water of 90 ° or more.
- the contact angle to water of the water repellent film is 90 ° or more, it is possible to make the film surface difficult to be soiled.
- the lower limit of the contact angle is more preferably 100 ° or more, further preferably 105 ° or more, and the upper limit is preferably 170 ° or less.
- the contact angle can be measured by the method described above.
- the water repellent film preferably has a transmittance of 80% or more at each wavelength of the total light. Since the transparency is high when the transmittance of the water repellent film is 80% or more, when the film is formed by applying to a target, the visibility of the target becomes good without blocking the target.
- the lower limit of the transmittance is more preferably 85% or more, further preferably 90% or more, and the upper limit is preferably 100% or less.
- permeability can be performed by the above-mentioned method.
- the water repellent film preferably has a haze of 50% or less.
- the haze of the water repellent film is 50% or less, the transparency is high, so that the visibility of the object becomes good.
- the upper limit of the haze is more preferably 45% or less, still more preferably 30% or less, and the lower limit is preferably 0% or more.
- the measuring method of haze can be performed by the above-mentioned method.
- the physical properties of the hydrophobic fine particles in each example were measured by the following.
- the ratio of hexadecyltrimethoxysilane (HDMS) to attapulgite of the hydrophobic fine particles was calculated using an infrared spectrum (IR spectrum, manufactured by Thermo Fisher Scientific, NICOLETIS 5). First, an IR spectrum of the obtained microparticles was obtained at room temperature.
- the absorption intensity at 980 cm -1 derived from attapulgite was normalized between the samples, and the ratio of hexadecyltrimethoxysilane to attapulgite was calculated from the absorption intensity at 2917 cm -1 derived from hexadecyltrimethoxysilane.
- required in this way (hexadecyl trimethoxysilane / attapulgite) is 30 or more.
- Example 1 Preparation of hydrophobic fine particles>
- the materials used are as follows. 1. Attapulgite (ATP, “Atagel” (trade name) manufactured by Union Kasei Co., Ltd., particle shape: hollow needle, particle length (average): 1 to 2 ⁇ m, diameter in a direction orthogonal to the axial direction (average): 10 to 50 nm 2. Tetraethoxysilane (TEOS, manufactured by Tokyo Chemical Industry Co., Ltd., specific gravity 0.933 to 0.9370, refractive index 1.3810 to 1.3850) 3. Hexadecyltrimethoxysilane (HDMS, manufactured by Sigma-Aldrich, specific gravity 0.8890 to 0.8930, refractive index 1.4340 to 1.4380)
- TEOS Tetraethoxysilane
- HDMS Hexadecyltrimethoxysilane
- the particle length (average) of the obtained hydrophobic fine particles was 2 ⁇ m, and the average diameter in the direction orthogonal to the long axis direction was 62.4 ⁇ 16 nm. The value indicated by ⁇ is a standard deviation.
- the ratio of hexadecyltrimethoxysilane to attapulgite (hexadecyltrimethoxysilane / attapulgite) was 32.8.
- fine-particles with the scanning electron microscope is shown in FIG.
- US Cleaner (trade name) manufactured by As One Corporation, output 80 W, oscillation frequency 40 KHz
- a transparent acrylic plate (length 5 cm, width 5 cm, thickness 2 mm) is sprayed using Mitsubishi Chemical Co., Ltd. “Acrilite” (trade name) to form a coated film so that the coating after drying is 30 ⁇ m. (Spray amount: 6.7 g / m 2 ) It was dried at 60 ° C. for 30 minutes to prepare a test piece with a membrane.
- Examples 2 to 5 Hydrophobic fine particles were obtained in the same manner as in Example 1, except that the content ratio of attapulgite to the silane coupling agent and the content ratio of tetraethoxysilane to hexadecyltrimethoxysilane were changed as described in Table 1.
- Example 2 For Examples 2 to 5 and Comparative Examples 1 to 11, as in Example 1, the ratio of hexadecyltrimethoxysilane to atapulgite of hydrophobic fine particles, and the contact angle, permeability, and haze of the membrane to water were measured. The results are shown in Table 1. Further, SEM images of the hydrophobic fine particles obtained in Examples 2 and 3 and Comparative Example 1 taken with a scanning electron microscope are shown in FIGS.
- Examples 1 to 5 are hydrophobic fine particles having a contact angle to water of 90 ° or more when formed into a coating film, and since the transmittance is also high, the transparency is also excellent. .
- the hydrophobic fine particles of the present invention are useful for preventing the adhesion of snow or ice to the surface of an aircraft, a railway, a car, a wind power generator, a house, a traffic light, a signboard and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Silicon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Provided are: hydrophobic fine particles for imparting water repellency to a subject by means of the surface of the subject being treated therewith, and by which a water repellent film having both water repellency and transparency can be obtained; and a water repellent agent composition which comprises the hydrophobic fine particles. These hydrophobic fine particles comprise an inorganic compound that is needle-like in structure and coated with a hydrophobic treatment agent on the surface thereof, and have an average size of 100 nm or less in the direction orthogonal to the longitudinal direction.
Description
本発明は、疎水性微粒子及び該疎水性微粒子を含有する撥水剤組成物に関する。
The present invention relates to hydrophobic microparticles and a water repellent composition containing the hydrophobic microparticles.
物体表面への氷、雪、霜の形成や付着、蓄積は、様々な分野において多くの被害や障害をもたらす原因となっている。例えば、太陽電池パネル、風力タービン、航空機、ヒートポンプ、電力線、電気通信機器、潜水艇等への着氷、着雪、着霜は、発電効率の低下やエネルギー消費の増加、機械的・電気的故障を引き起こす原因となるため、運行、運転、安全性に対する障害となる。
The formation, adhesion, and accumulation of ice, snow and frost on the surface of an object cause many damages and obstacles in various fields. For example, solar panels, wind turbines, aircraft, heat pumps, power lines, telecommunications equipment, submersibles, etc., such as icing, snowing, and frosting, decrease power generation efficiency and increase energy consumption, mechanical and electrical failure It causes troubles in operation, operation and safety.
これらの問題を解決するために、物体表面に撥水性のコーティングを施すことがなされている。このような撥水膜は、例えば、ケイ素系やフッ素系の撥水剤組成物を用いて対象物の表面を処理することによって形成される。
例えば、日本国特開2010-155727号公報(特許文献1)には、表面が疎水性で、平均一次粒子径が100nm以下のシリカ微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させたコーティング液を用いて対象物の表面に被膜を形成する技術が提案されている。なお、シリカ(SiO2)は親水性であるため、シリカの表面を疎水化処理することにより疎水性シリカを得ている。 In order to solve these problems, a water repellent coating has been applied to the surface of an object. Such a water repellent film is formed, for example, by treating the surface of an object with a silicon-based or fluorine-based water repellent composition.
For example, in JP-A-2010-155727 (patent document 1), silica fine particles having an average primary particle diameter of 100 nm or less and containing 65% by mass or more of a hydrophobic solvent in all organic solvents are included. A technique has been proposed for forming a film on the surface of an object using a coating liquid dispersed in an organic solvent. Since silica (SiO 2 ) is hydrophilic, hydrophobic silica is obtained by hydrophobizing the surface of silica.
例えば、日本国特開2010-155727号公報(特許文献1)には、表面が疎水性で、平均一次粒子径が100nm以下のシリカ微粒子を、疎水性溶媒を全有機溶媒中65質量%以上含有する有機溶媒に分散させたコーティング液を用いて対象物の表面に被膜を形成する技術が提案されている。なお、シリカ(SiO2)は親水性であるため、シリカの表面を疎水化処理することにより疎水性シリカを得ている。 In order to solve these problems, a water repellent coating has been applied to the surface of an object. Such a water repellent film is formed, for example, by treating the surface of an object with a silicon-based or fluorine-based water repellent composition.
For example, in JP-A-2010-155727 (patent document 1), silica fine particles having an average primary particle diameter of 100 nm or less and containing 65% by mass or more of a hydrophobic solvent in all organic solvents are included. A technique has been proposed for forming a film on the surface of an object using a coating liquid dispersed in an organic solvent. Since silica (SiO 2 ) is hydrophilic, hydrophobic silica is obtained by hydrophobizing the surface of silica.
ケイ酸塩鉱物の1つであるアタパルガイトは中空針状の形状を有し、優れたコロイド性を有するため、表面を疎水化処理することにより疎水性材料として使用できることが知られている。例えば、中国特許出願公開第104448950号明細書(特許文献2)や中国特許出願公開第104559786号明細書(特許文献3)には、アタパルガイトを疎水化処理して疎水性アタパルガイトを得る技術が提案されている。
It is known that attapulgite, which is one of silicate minerals, has a hollow needle-like shape and has excellent colloid properties, so that it can be used as a hydrophobic material by hydrophobizing the surface. For example, in Chinese Patent Application Publication No. 104448950 (Patent Document 2) and Chinese Patent Application Publication No. 104559786 (Patent Document 3), a technology for obtaining a hydrophobic attapulgite by hydrophobizing attapulgite is proposed. ing.
撥水膜を物体表面に形成する際には、着雪や着氷を防止するために撥水性を備えることはもちろん、その物体(対象物)の表面に傷がつきにくくし、汚れのない特性を有しながら、良好な透明性を維持することが求められる。
撥水性は、疎水性シリカ等により対象物の表面に微細な凹凸を付与して液滴との接触面積を減少させることにより得ているが、表面粗さが増加するとミー散乱(Mie- Scattering)のために透明性が低下する傾向にあり、両者を両立させることは困難である。 When a water repellent film is formed on the surface of an object, it is of course possible to provide water repellency to prevent snowing and icing, and the surface of the object (target object) is less likely to be scratched and has no dirt. While maintaining good transparency.
Water repellency is obtained by providing fine irregularities on the surface of the object with hydrophobic silica or the like to reduce the contact area with the droplets, but when the surface roughness increases, Mie-scattering (Mie-Scattering) Because of this, transparency tends to decrease, and it is difficult to make the two compatible.
撥水性は、疎水性シリカ等により対象物の表面に微細な凹凸を付与して液滴との接触面積を減少させることにより得ているが、表面粗さが増加するとミー散乱(Mie- Scattering)のために透明性が低下する傾向にあり、両者を両立させることは困難である。 When a water repellent film is formed on the surface of an object, it is of course possible to provide water repellency to prevent snowing and icing, and the surface of the object (target object) is less likely to be scratched and has no dirt. While maintaining good transparency.
Water repellency is obtained by providing fine irregularities on the surface of the object with hydrophobic silica or the like to reduce the contact area with the droplets, but when the surface roughness increases, Mie-scattering (Mie-Scattering) Because of this, transparency tends to decrease, and it is difficult to make the two compatible.
アタパルガイトは塗膜に透明性を付与することができるが、従来の疎水性アタパルガイトは撥水性の付与に伴い、透明性が損なわれてしまうという問題があった。
Although attapulgite can impart transparency to a coating film, the conventional hydrophobic attapulgite has a problem that the transparency is impaired as it is imparted with water repellency.
撥水膜の形成により対象物の表面の透明性が低下すると視認性が低下するので、対象物が電気通信機器等の場合は、安全上の問題が発生してしまう。
そこで、本発明は、対象物の表面に処理されることによりその対象物に撥水性を付与するための疎水性微粒子であって、撥水性と透明性を兼ね備えた撥水膜を得ることのできる疎水性微粒子、及び該疎水性微粒子を含有する撥水剤組成物を提供することを課題とする。 When the transparency of the surface of the object is reduced due to the formation of the water repellent film, the visibility is reduced, so that when the object is a telecommunications device or the like, a safety problem occurs.
Therefore, the present invention is a hydrophobic fine particle for imparting water repellency to an object by treating the surface of the object, and a water repellent film having both water repellency and transparency can be obtained. It is an object of the present invention to provide hydrophobic microparticles and a water repellent composition containing the hydrophobic microparticles.
そこで、本発明は、対象物の表面に処理されることによりその対象物に撥水性を付与するための疎水性微粒子であって、撥水性と透明性を兼ね備えた撥水膜を得ることのできる疎水性微粒子、及び該疎水性微粒子を含有する撥水剤組成物を提供することを課題とする。 When the transparency of the surface of the object is reduced due to the formation of the water repellent film, the visibility is reduced, so that when the object is a telecommunications device or the like, a safety problem occurs.
Therefore, the present invention is a hydrophobic fine particle for imparting water repellency to an object by treating the surface of the object, and a water repellent film having both water repellency and transparency can be obtained. It is an object of the present invention to provide hydrophobic microparticles and a water repellent composition containing the hydrophobic microparticles.
本発明者らは鋭意研究を重ねた結果、針状構造を有する無機化合物を、その形状・大きさを維持したまま疎水化させた疎水性微粒子により上記課題を解決できることを見出し、本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that the above problems can be solved by hydrophobic fine particles obtained by hydrophobizing an inorganic compound having a needle-like structure while maintaining its shape and size, thus completing the present invention. It came to
すなわち本発明は、以下の(1)~(12)を特徴とする。
(1)表面が疎水化処理剤で被覆された針状構造の無機化合物からなり、長軸方向に直交する方向の径の平均値が100nm以下である疎水性微粒子。
(2)前記無機化合物が、中空針状構造を有している、前記(1)に記載の疎水性微粒子。
(3)前記無機化合物が、ケイ酸塩化合物である、前記(1)又は(2)に記載の疎水性微粒子。
(4)前記ケイ酸塩化合物が、アタパルガイト、ハロイサイト、イモゴライト、ウォラストナイト、セピオライト及びパリゴルスカイトからなる群から選択される少なくとも1種の針状鉱物である、前記(3)に記載の疎水性微粒子。
(5)前記疎水化処理剤が、シランカップリング剤、リン酸カップリング剤及びチオールカップリング剤からなる群から選択される少なくとも1種のカップリング剤である、前記(1)~(4)のいずれか1つに記載の疎水性微粒子。
(6)トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の全光線の各波長における透過率が80%以上である、前記(1)~(5)のいずれか1つに記載の疎水性微粒子。
(7)トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の曇り度が50%以下である、前記(1)~(6)のいずれか1つに記載の疎水性微粒子。
(8)前記(1)~(7)のいずれか1つに記載の疎水性微粒子を含有する撥水剤組成物。
(9)前記(1)~(7)のいずれか1つに記載の疎水性微粒子を含有する膜。
(10)全光線の各波長における透過率が80%以上である、前記(9)に記載の膜。
(11)水に対する接触角が90°以上である、前記(9)又は(10)に記載の膜。
(12)曇り度が50%以下である、前記(9)~(11)のいずれか1つに記載の膜。 That is, the present invention is characterized by the following (1) to (12).
(1) Hydrophobic fine particles comprising an inorganic compound having a needle-like structure whose surface is coated with a hydrophobizing agent and having an average diameter of 100 nm or less in the direction orthogonal to the long axis direction.
(2) The hydrophobic fine particles according to (1), wherein the inorganic compound has a hollow needle-like structure.
(3) The hydrophobic fine particles according to (1) or (2), wherein the inorganic compound is a silicate compound.
(4) The hydrophobic fine particles according to (3), wherein the silicate compound is at least one needle-like mineral selected from the group consisting of attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite .
(5) The (1) to (4) above, wherein the hydrophobizing agent is at least one coupling agent selected from the group consisting of a silane coupling agent, a phosphoric acid coupling agent and a thiol coupling agent. The hydrophobic particle as described in any one of the above.
(6) A composition in which 60 mg of the hydrophobic fine particles are dispersed in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm. The hydrophobic fine particle according to any one of the above (1) to (5), wherein the transmittance at each wavelength of is 80% or more.
(7) The composition obtained by dispersing 60 mg of the hydrophobic fine particles in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm, the haze of the film The hydrophobic fine particle according to any one of the above (1) to (6), wherein is 50% or less.
(8) A water repellent composition containing the hydrophobic fine particles according to any one of the above (1) to (7).
(9) A membrane containing the hydrophobic fine particle according to any one of the above (1) to (7).
(10) The film according to (9) above, wherein the transmittance at each wavelength of the total light is 80% or more.
(11) The membrane according to (9) or (10) above, wherein the contact angle to water is 90 ° or more.
(12) The film according to any one of the above (9) to (11), which has a haze of 50% or less.
(1)表面が疎水化処理剤で被覆された針状構造の無機化合物からなり、長軸方向に直交する方向の径の平均値が100nm以下である疎水性微粒子。
(2)前記無機化合物が、中空針状構造を有している、前記(1)に記載の疎水性微粒子。
(3)前記無機化合物が、ケイ酸塩化合物である、前記(1)又は(2)に記載の疎水性微粒子。
(4)前記ケイ酸塩化合物が、アタパルガイト、ハロイサイト、イモゴライト、ウォラストナイト、セピオライト及びパリゴルスカイトからなる群から選択される少なくとも1種の針状鉱物である、前記(3)に記載の疎水性微粒子。
(5)前記疎水化処理剤が、シランカップリング剤、リン酸カップリング剤及びチオールカップリング剤からなる群から選択される少なくとも1種のカップリング剤である、前記(1)~(4)のいずれか1つに記載の疎水性微粒子。
(6)トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の全光線の各波長における透過率が80%以上である、前記(1)~(5)のいずれか1つに記載の疎水性微粒子。
(7)トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の曇り度が50%以下である、前記(1)~(6)のいずれか1つに記載の疎水性微粒子。
(8)前記(1)~(7)のいずれか1つに記載の疎水性微粒子を含有する撥水剤組成物。
(9)前記(1)~(7)のいずれか1つに記載の疎水性微粒子を含有する膜。
(10)全光線の各波長における透過率が80%以上である、前記(9)に記載の膜。
(11)水に対する接触角が90°以上である、前記(9)又は(10)に記載の膜。
(12)曇り度が50%以下である、前記(9)~(11)のいずれか1つに記載の膜。 That is, the present invention is characterized by the following (1) to (12).
(1) Hydrophobic fine particles comprising an inorganic compound having a needle-like structure whose surface is coated with a hydrophobizing agent and having an average diameter of 100 nm or less in the direction orthogonal to the long axis direction.
(2) The hydrophobic fine particles according to (1), wherein the inorganic compound has a hollow needle-like structure.
(3) The hydrophobic fine particles according to (1) or (2), wherein the inorganic compound is a silicate compound.
(4) The hydrophobic fine particles according to (3), wherein the silicate compound is at least one needle-like mineral selected from the group consisting of attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite .
(5) The (1) to (4) above, wherein the hydrophobizing agent is at least one coupling agent selected from the group consisting of a silane coupling agent, a phosphoric acid coupling agent and a thiol coupling agent. The hydrophobic particle as described in any one of the above.
(6) A composition in which 60 mg of the hydrophobic fine particles are dispersed in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm. The hydrophobic fine particle according to any one of the above (1) to (5), wherein the transmittance at each wavelength of is 80% or more.
(7) The composition obtained by dispersing 60 mg of the hydrophobic fine particles in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm, the haze of the film The hydrophobic fine particle according to any one of the above (1) to (6), wherein is 50% or less.
(8) A water repellent composition containing the hydrophobic fine particles according to any one of the above (1) to (7).
(9) A membrane containing the hydrophobic fine particle according to any one of the above (1) to (7).
(10) The film according to (9) above, wherein the transmittance at each wavelength of the total light is 80% or more.
(11) The membrane according to (9) or (10) above, wherein the contact angle to water is 90 ° or more.
(12) The film according to any one of the above (9) to (11), which has a haze of 50% or less.
本発明の疎水性微粒子は、疎水化前の無機化合物の形状や大きさを損なうことなく疎水化されているので、無機化合物が本来有する性質を損なうことなく疎水性を有している。前記無機化合物が中空針状であると、該無機化合物を含有する組成物を用いて形成された膜に優れた防曇性を与えるので、本発明の疎水性微粒子を含有する撥水剤組成物により形成された膜は、優れた撥水性と透明性を有することができる。
The hydrophobic fine particles of the present invention are made hydrophobic without impairing the shape and size of the inorganic compound before being hydrophobized, and therefore, have hydrophobicity without impairing the inherent properties of the inorganic compound. A water repellent composition containing the hydrophobic fine particles of the present invention, because the inorganic compound in the form of a hollow needle gives excellent antifogging properties to a film formed using a composition containing the inorganic compound. The film formed by the above can have excellent water repellency and transparency.
以下、本発明の実施形態をさらに詳しく説明するが、本発明は下記実施形態に何ら制限されるものではない。
尚、本明細書において、「質量」は「重量」と同義である。 Hereinafter, the embodiment of the present invention will be described in more detail, but the present invention is not limited to the following embodiment.
In the present specification, “mass” is synonymous with “weight”.
尚、本明細書において、「質量」は「重量」と同義である。 Hereinafter, the embodiment of the present invention will be described in more detail, but the present invention is not limited to the following embodiment.
In the present specification, “mass” is synonymous with “weight”.
(疎水性微粒子)
本実施形態の疎水性微粒子は、表面が疎水化処理剤で被覆された針状構造の無機化合物からなる。なお、本発明において「疎水性」とは、25℃の環境下において材料上に水(例えば、純水)の液滴を滴下したときに90°以上の接触角を示す性質をいう。 (Hydrophobic fine particles)
The hydrophobic fine particles of the present embodiment are made of an inorganic compound having a needle-like structure whose surface is coated with a hydrophobic treatment. In the present invention, “hydrophobic” refers to the property of exhibiting a contact angle of 90 ° or more when droplets of water (eg, pure water) are dropped on the material under an environment of 25 ° C.
本実施形態の疎水性微粒子は、表面が疎水化処理剤で被覆された針状構造の無機化合物からなる。なお、本発明において「疎水性」とは、25℃の環境下において材料上に水(例えば、純水)の液滴を滴下したときに90°以上の接触角を示す性質をいう。 (Hydrophobic fine particles)
The hydrophobic fine particles of the present embodiment are made of an inorganic compound having a needle-like structure whose surface is coated with a hydrophobic treatment. In the present invention, “hydrophobic” refers to the property of exhibiting a contact angle of 90 ° or more when droplets of water (eg, pure water) are dropped on the material under an environment of 25 ° C.
本実施形態で用いる無機化合物としては、例えば、アタパルガイト、ハロイサイト、イモゴライト、ウォラストナイト、セピオライト及びパリゴルスカイト等の針状鉱物に代表されるケイ酸塩化合物(ケイ酸塩鉱物)が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合せて使用してもよい。
Examples of the inorganic compound used in the present embodiment include silicate compounds (silicate minerals) represented by needle-like minerals such as attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite. One of these may be used alone, or two or more of these may be used in combination.
本実施形態において、前記無機化合物は中空であることが好ましい。無機化合物が中空針状構造であると、本実施形態の疎水性微粒子を含有する膜が撥水性だけでなく、優れた透明性も備えることができる。無機化合物は、高アスペクト比の中空針状構造を有し、表面疎水修飾の容易さから、アタパルガイトを用いることが好ましい。
In the present embodiment, the inorganic compound is preferably hollow. When the inorganic compound has a hollow needle-like structure, the film containing the hydrophobic fine particles of the present embodiment can have not only water repellency but also excellent transparency. The inorganic compound has a hollow needle-like structure with a high aspect ratio, and it is preferable to use attapulgite because of the ease of surface hydrophobic modification.
本実施形態において、無機化合物は長軸方向に直交する方向の径(以下、「断面の直径」ともいう。)が100nm以下であるものを用いる。無機化合物の断面の直径が100nm以下であると、その表面を疎水化処理した際に、断面の直径の平均値が100nm以下の疎水性微粒子とすることができるので、該疎水性微粒子の溶媒に対する分散性が良好となり、また本発明の所望の効果が得られやすくなる。無機化合物の断面の直径は、10~100nmであることが好ましく、その下限は、20nm以上であることがより好ましく、30nm以上がさらに好ましく、また上限は85nm以下であることがより好ましく、70nm以下がさらに好ましい。
In the present embodiment, as the inorganic compound, one having a diameter in a direction orthogonal to the long axis direction (hereinafter, also referred to as “diameter of cross section”) of 100 nm or less is used. When the diameter of the cross section of the inorganic compound is 100 nm or less, when the surface is subjected to a hydrophobization treatment, hydrophobic fine particles having an average value of the diameter of the cross section of 100 nm or less can be obtained. The dispersibility is improved, and the desired effects of the present invention can be easily obtained. The diameter of the cross section of the inorganic compound is preferably 10 to 100 nm, the lower limit is more preferably 20 nm or more, further preferably 30 nm or more, and the upper limit is more preferably 85 nm or less, and 70 nm or less Is more preferred.
また、無機化合物は、長軸の長さが0.2~20μmであることが好ましい。無機化合物の長軸長さが前記範囲であると、その表面を疎水化処理して得られる疎水性微粒子が溶媒に対して良好な分散性を示し、また本発明の所望の効果が得られやすくなるので好ましい。無機化合物の長軸の長さは、下限は1μm以上であることがより好ましく、また、上限は15μm以下であることがより好ましく、10μm以下がさらに好ましい。
The inorganic compound preferably has a major axis of 0.2 to 20 μm. When the long axis length of the inorganic compound is in the above range, hydrophobic fine particles obtained by hydrophobizing the surface exhibit good dispersibility in a solvent, and the desired effect of the present invention can be easily obtained. It is preferable because As for the length of the major axis of the inorganic compound, the lower limit is more preferably 1 μm or more, the upper limit is more preferably 15 μm or less, and 10 μm or less is more preferable.
特に、無機化合物がアタパルガイトの場合、アタパルガイトは長軸の長さが1~2μmであり、断面の直径が10~50nmであることが好ましい。
In particular, when the inorganic compound is attapulgite, the attapulgite preferably has a major axis of 1 to 2 μm and a cross-sectional diameter of 10 to 50 nm.
無機化合物の断面の直径と長軸長さとの比は、断面の直径1に対して長軸長さが10以上であることが好ましく、10~100であることがより好ましく、30~80がさらに好ましい。断面の直径と長軸長さとの比が10以上であると、本実施形態の疎水性微粒子を含有する撥水剤組成物により形成された膜の表面の凹凸構造が粗くなるため、該膜の撥水性が高くなる。
The ratio of the diameter of the cross section of the inorganic compound to the long axis length is preferably 10 or more, more preferably 10 to 100, still more preferably 30 to 80, with respect to the diameter 1 of the cross section. preferable. When the ratio of the diameter of the cross section to the major axis length is 10 or more, the uneven structure on the surface of the film formed of the water repellent composition containing the hydrophobic fine particles of the present embodiment is roughened. Water repellency is high.
なお、上記針状構造の無機化合物は、市販品として入手でき、例えば、ユニオン化成株式会社製「アタゲル」(中空針状のアタパルガイト、長軸長さ:1~2μm、断面の直径:10~50nm)、ユニオン化成株式会社製「ASHAGEL SF」(中空針状のアタパルガイト、長軸長さ:1~2μm、断面の直径10~50nm)、林化成株式会社製「ATTAGEL50」(中空針状のアタパルガイト、長軸長さ:1~2μm、断面の直径10~50nm)等が挙げられる。
In addition, the inorganic compound of the said needle-like structure can be obtained as a commercial item, for example, "Atagel" by Union Chemical Co., Ltd. (hollow needle-like attapulgite, long axis length: 1 to 2 μm, cross-sectional diameter: 10 to 50 nm ), Union Chemical Co., Ltd. "ASHAGEL SF" (hollow needle-like attapulgite, long axis length: 1 to 2 μm, cross-sectional diameter 10 to 50 nm), Hayashi Kasei Co., Ltd. "ATTAGEL 50" (hollow needle-like attapulgite, Long axis length: 1 to 2 μm, diameter of cross section 10 to 50 nm) and the like.
無機化合物を被覆する疎水化処理剤としては、例えば、シランカップリング剤、リン酸カップリング剤、チオールカップリング剤等の疎水性のカップリング剤が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
Examples of the hydrophobizing agent for coating the inorganic compound include hydrophobic coupling agents such as silane coupling agents, phosphoric acid coupling agents, and thiol coupling agents, and one of these may be used alone or in combination. More than species can be used in combination.
前記シランカップリング剤としては、例えば、アルコキシシラン、シラザン、クロロシラン、特殊シリル化剤等が挙げられ、具体的に、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン、ヘキサデシルトリメトキシシラン(HDMS)、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、N,O-(ビストリメチルシリル)アセトアミド、N,N-ビス(トリメチルシリル)ウレア、tert-ブチルジメチルクロロシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランなどが挙げられる。
Examples of the silane coupling agent include alkoxysilanes, silazanes, chlorosilanes, special silylating agents, etc. Specifically, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltrimethoxysilane Ethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane, hexadecyltrimethoxysilane (HDMS), methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltriethoxysilane Chlorosilane, diphenyldichlorosilane, N, O- (bistrimethylsilyl) acetamide, N, N-bis (trimethylsilyl) urea, tert-butyl Methylchlorosilane, Vinyltrichlorosilane, Vinyltrimethoxysilane, Vinyltriethoxysilane, γ-Methacryloxypropyltrimethoxysilane, β- (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, γ-Glycidoxypropyltrimethoxysilane And γ-glycidoxypropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, and γ-aminopropyltriethoxysilane.
前記リン酸カップリング剤としては、例えば、11-アミノウンデシルホスホン酸、10-カルボキシデシルホスホン酸、11-ヒドロキシウンデシルホスホン酸、オクタデシルホスホン酸、11-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ウンデシルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-ヘキシルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-オクチルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-デシルホスホン酸、リン酸モノオクチルエステル、リン酸フェニル、リン酸2水素2-(1-メチルグアニジノ)エチル、およびリン酸モノ(2-メタクリロキシプロピル)エステルなどが挙げられる。
Examples of the phosphoric acid coupling agent include 11-aminoundecylphosphonic acid, 10-carboxydecylphosphonic acid, 11-hydroxyundecylphosphonic acid, octadecylphosphonic acid, 11- [2- [2- (2-methoxy] Ethoxy) ethoxy] ethoxy] undecylphosphonic acid, 1H, 1H, 2H, 2H-perfluoro-n-hexylphosphonic acid, 1H, 1H, 2H, 2H-perfluoro-n-octylphosphonic acid, 1H, 1H, 2H , 2H-perfluoro-n-decylphosphonic acid, monooctyl ester phosphate, phenyl phosphate, 2- (1-methylguanidino) ethyl dihydrogenphosphate, and mono (2-methacryloxypropyl) ester phosphate It can be mentioned.
前記チオールカップリング剤としては、例えば、アルキルチオールおよびその誘導体、トリアジンチオール及びその誘導体などが挙げられる。
Examples of the thiol coupling agent include alkyl thiols and derivatives thereof, triazine thiols and derivatives thereof and the like.
中でも、疎水化処理剤のより安定で容易な表面修飾を達成するという観点から、シランカップリング剤を使用することが好ましく、疎水性の高い表面処理が容易に行えるものとしてヘキサデシルトリメトキシシラン(HDMS)を用いることが好ましい。
Among them, it is preferable to use a silane coupling agent from the viewpoint of achieving more stable and easy surface modification of the hydrophobization treatment agent, and hexadecyltrimethoxysilane (as a substance that can be easily subjected to highly hydrophobic surface treatment) It is preferred to use HDMS).
なお、本実施形態において、撥水性の調整のために親水性のシランカップリング剤や親水性高分子材料を併用して無機化合物の表面を被覆してもよい。親水性のシランカップリング剤としては、例えば、テトラメトキシシラン、テトラエトキシシラン(TEOS)等が挙げられる。
In the present embodiment, the surface of the inorganic compound may be coated with a hydrophilic silane coupling agent or a hydrophilic polymer material in combination to adjust water repellency. Examples of hydrophilic silane coupling agents include tetramethoxysilane and tetraethoxysilane (TEOS).
表面が疎水化処理剤で被覆された本実施形態の疎水性微粒子は、長軸方向に直交する方向の径(断面の直径)の平均値が100nm以下である。本実施形態の疎水性微粒子は、疎水化処理前の無機化合物の形状とほぼ等しい形状を有することを特徴とする。よって、疎水化後の微粒子が疎水化前の無機化合物の性質を備えつつ疎水性を備えたといえる。よって、疎水性微粒子を含有する撥水剤組成物により形成された膜は、撥水性を備えるとともに優れた透明性も備えることができる。疎水性微粒子の断面の直径の平均値が100nm以下であることで、溶媒に対する分散性が良好となるので、塗膜を形成した際に疎水性微粒子が均一に分散し、膜面に優れた撥水性と透明性を付与することができる。疎水性微粒子の断面の直径の平均値は、下限は10nm以上であることが好ましく、20nm以上がより好ましく、30nm以上がさらに好ましく、また、上限は85nm以下であることが好ましく、70nm以下がより好ましい。
The hydrophobic fine particles of the present embodiment, the surfaces of which are coated with a hydrophobization treatment agent, have an average diameter of 100 nm or less in the direction (cross-sectional diameter) in the direction orthogonal to the long axis direction. The hydrophobic fine particles of the present embodiment are characterized by having a shape substantially equal to the shape of the inorganic compound before the hydrophobization treatment. Therefore, it can be said that the fine particles after hydrophobization have hydrophobicity while having the property of the inorganic compound before hydrophobization. Therefore, a film formed of a water repellent composition containing hydrophobic fine particles can be provided with water repellency and also excellent transparency. When the average value of the cross-sectional diameter of the hydrophobic fine particles is 100 nm or less, the dispersibility in a solvent is good, so that when the coating is formed, the hydrophobic fine particles are uniformly dispersed, and the repellence excellent on the film surface It can be water-based and transparent. The lower limit is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, and the upper limit is preferably 85 nm or less, and more preferably 70 nm or less. preferable.
また、本実施形態の疎水性微粒子は、長軸の長さが0.2~20μmであることが好ましい。長軸の長さが前記範囲であると、同じく疎水化処理する前の無機化合物の形状とほぼ等しいと言えるので、疎水化後の微粒子が疎水化前の無機化合物の性質を備えつつ疎水性を備えることができる。また、溶媒に対する分散性が良好であり、均一な塗膜を形成することができるので、本発明の所望の効果が得られやすい。長軸の長さは、下限は1μm以上であることがより好ましく、また、上限は15μm以下であることがより好ましく、10μm以下がさらに好ましい。
The hydrophobic fine particles of the present embodiment preferably have a major axis length of 0.2 to 20 μm. If the length of the major axis is in the above range, it can be said that the shape of the inorganic compound before the hydrophobization treatment is also substantially the same, so the fine particles after hydrophobization have the hydrophobicity while having the properties of the inorganic compound before hydrophobization. It can be equipped. Moreover, since the dispersibility to a solvent is good and a uniform coating film can be formed, the desired effect of the present invention can be easily obtained. As for the length of the major axis, the lower limit is more preferably 1 μm or more, and the upper limit is more preferably 15 μm or less, and further preferably 10 μm or less.
本発明において、疎水性微粒子は、膜を形成した際に該膜の表面の水に対する接触角が90°以上であることが好ましい。膜表面の水に対する接触角が90°以上であると、膜表面が低い表面自由エネルギーを有していることを示しており、汚れを付き難くすることができる。接触角は、下限は100°以上であることがより好ましく、105°以上がさらに好ましく、また、上限は170°以下であることが好ましい。
In the present invention, the hydrophobic fine particles preferably have a contact angle of 90 ° or more with respect to water on the surface of the film when the film is formed. If the contact angle of the film surface with water is 90 ° or more, it indicates that the film surface has low surface free energy, and it is possible to make the film difficult to be soiled. The lower limit of the contact angle is more preferably 100 ° or more, further preferably 105 ° or more, and the upper limit is preferably 170 ° or less.
なお、接触角は、トルエン3.5gに、疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、環境制御型接触角測定装置を用いて、前記膜の水(例えば、純水)に対する接触角を測定することにより測定できる。
The contact angle was controlled by applying a composition in which 60 mg of hydrophobic fine particles were dispersed in 3.5 g of toluene on a transparent substrate with a thickness of 2 mm and forming a film with a thickness of 30 μm. It can measure by measuring the contact angle with respect to water (for example, pure water) of the said film | membrane using a type | mold contact angle measuring device.
また、本発明において、疎水性微粒子は、膜を形成した際に該膜の透過率が80%以上となることが好ましい。膜の透過率が80%以上であると、透明性が高いので、対象物に塗布して塗膜を形成した場合に該対象物を遮ることなく該対象物の視認性が良好となる。透過率は、下限は85%以上であることがより好ましく、90%以上がさらに好ましく、また、上限は100%以下であることが好ましい。
In the present invention, the hydrophobic fine particles preferably have a permeability of 80% or more when the film is formed. When the film has a transmittance of 80% or more, the transparency is high, so that when the coating is formed on a target to form a coating film, the target has good visibility without blocking the target. The lower limit of the transmittance is more preferably 85% or more, further preferably 90% or more, and the upper limit is preferably 100% or less.
なお、透過率は、トルエン3.5gに、疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、反射・透過率計(例えば、株式会社村上色彩技術研究所製ヘイズメーター「HR-100型」)を用いて、前記膜の全光線の各波長における透過率を測定することにより測定できる。
The transmittance is obtained by applying a composition in which 60 mg of hydrophobic fine particles are dispersed in 3.5 g of toluene on a transparent substrate having a thickness of 2 mm and drying to form a film having a thickness of 30 μm. It can be measured by measuring the transmittance at each wavelength of the total light beam of the film using a transmittance meter (for example, a haze meter “HR-100 type” manufactured by Murakami Color Research Laboratory, Inc.).
また、本発明において、疎水性微粒子は、膜を形成した際に曇り度(ヘイズ)が50%以下となることが好ましい。膜の曇り度が50%以下であると、透明性が高いので、対象物の視認性が良好となる。曇り度は、上限は45%以下であることがより好ましく、30%以下がさらに好ましく、また、下限は0%以上であることが好ましい。
In the present invention, the hydrophobic fine particles preferably have a haze of 50% or less when the film is formed. When the haze of the film is 50% or less, the transparency is high, and the visibility of the object is good. The upper limit of the haze is more preferably 45% or less, still more preferably 30% or less, and the lower limit is preferably 0% or more.
なお、曇り度は、トルエン3.5gに、疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、ヘイズメーターを用いて、前記膜のヘイズ値を測定することにより測定できる。
The haze value is a haze meter when a composition in which 60 mg of hydrophobic fine particles are dispersed in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm. It can measure by measuring the haze value of the said film using.
次に、本実施形態の疎水性微粒子の製造方法について述べる。
Next, the method for producing the hydrophobic fine particles of the present embodiment will be described.
本実施形態の疎水性微粒子は、公知の方法を使用し、製造することができる。例えば、懸濁重合法、乳化重合法、分散重合法、シード重合法、混練粉砕法等が好適に用いられる。
例えば、懸濁重合法により疎水性微粒子を作製する場合、まず、溶媒中に針状構造の無機化合物と疎水化処理剤(例えば、ヘキサデシルトリメトキシシラン(HDMS)を含有するシランカップリング剤)を懸濁させた後、撹拌下で超音波処理したのち、洗浄乾燥することにより、無機化合物の表面を疎水基(具体的に、HDMS)で修飾した疎水性微粒子を得ることができる。 The hydrophobic fine particles of the present embodiment can be produced using a known method. For example, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, a seed polymerization method, a kneading and pulverizing method, and the like are suitably used.
For example, in the case of producing hydrophobic fine particles by suspension polymerization, first, an inorganic compound having a needle-like structure and a hydrophobizing agent (for example, a silane coupling agent containing hexadecyltrimethoxysilane (HDMS)) in a solvent The suspension is subjected to ultrasonic treatment under stirring and then washed and dried to obtain hydrophobic fine particles in which the surface of the inorganic compound is modified with a hydrophobic group (specifically, HDMS).
例えば、懸濁重合法により疎水性微粒子を作製する場合、まず、溶媒中に針状構造の無機化合物と疎水化処理剤(例えば、ヘキサデシルトリメトキシシラン(HDMS)を含有するシランカップリング剤)を懸濁させた後、撹拌下で超音波処理したのち、洗浄乾燥することにより、無機化合物の表面を疎水基(具体的に、HDMS)で修飾した疎水性微粒子を得ることができる。 The hydrophobic fine particles of the present embodiment can be produced using a known method. For example, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, a seed polymerization method, a kneading and pulverizing method, and the like are suitably used.
For example, in the case of producing hydrophobic fine particles by suspension polymerization, first, an inorganic compound having a needle-like structure and a hydrophobizing agent (for example, a silane coupling agent containing hexadecyltrimethoxysilane (HDMS)) in a solvent The suspension is subjected to ultrasonic treatment under stirring and then washed and dried to obtain hydrophobic fine particles in which the surface of the inorganic compound is modified with a hydrophobic group (specifically, HDMS).
無機化合物と疎水化処理剤を懸濁させる溶媒としては、例えば、エタノール、メタノール、イソプロピルアルコール等が挙げられる。
Examples of the solvent for suspending the inorganic compound and the hydrophobization treatment agent include ethanol, methanol, isopropyl alcohol and the like.
前記溶媒の使用量は、疎水化処理剤の加水分解に必要な溶媒量(質量)の5~50倍量であり、より好ましくは10~20倍量である。また、疎水化処理剤は、無機化合物に対し1:1の重量比で使用することが好ましい。
The amount of the solvent used is 5 to 50 times, preferably 10 to 20 times, the amount (mass) of the solvent necessary for the hydrolysis of the hydrophobizing agent. The hydrophobizing agent is preferably used in a weight ratio of 1: 1 to the inorganic compound.
溶媒に無機化合物と疎水化処理剤を懸濁させた懸濁液を超音波処理する条件としては、20~100℃の温度範囲で3~72時間程度行うことが好ましい。温度は50~80℃がより好ましく、60~70℃がさらに好ましく、時間は6~48時間がより好ましく、18~24時間がさらに好ましい。
As a condition for subjecting a suspension in which an inorganic compound and a hydrophobizing agent are suspended in a solvent to ultrasonication, it is preferable to carry out in a temperature range of 20 to 100 ° C. for about 3 to 72 hours. The temperature is more preferably 50 to 80 ° C., further preferably 60 to 70 ° C., the time is more preferably 6 to 48 hours, and further preferably 18 to 24 hours.
加水分解反応のために添加する溶液としては、例えば、水が挙げられる。
水は、疎水化処理剤の質量に対して50~100倍量で使用することが好ましく、60~80倍量であることがより好ましい。 As a solution added for a hydrolysis reaction, water is mentioned, for example.
Water is preferably used in an amount of 50 to 100 times, and more preferably 60 to 80 times, the weight of the hydrophobizing agent.
水は、疎水化処理剤の質量に対して50~100倍量で使用することが好ましく、60~80倍量であることがより好ましい。 As a solution added for a hydrolysis reaction, water is mentioned, for example.
Water is preferably used in an amount of 50 to 100 times, and more preferably 60 to 80 times, the weight of the hydrophobizing agent.
加水分解反応促進のために添加する触媒溶液としては、例えば、アンモニア水が挙げられる。
アンモニア水は、疎水化処理剤の質量に対して5~25倍量で使用することが好ましく、10~20倍量であることがより好ましい。 As a catalyst solution to be added to accelerate the hydrolysis reaction, for example, aqueous ammonia can be mentioned.
Ammonia water is preferably used in an amount of 5 to 25 times, more preferably 10 to 20 times, the weight of the hydrophobizing agent.
アンモニア水は、疎水化処理剤の質量に対して5~25倍量で使用することが好ましく、10~20倍量であることがより好ましい。 As a catalyst solution to be added to accelerate the hydrolysis reaction, for example, aqueous ammonia can be mentioned.
Ammonia water is preferably used in an amount of 5 to 25 times, more preferably 10 to 20 times, the weight of the hydrophobizing agent.
アンモニア水溶液を添加した後、再度超音波処理することにより、無機化合物の表面を疎水基(HDMS)で修飾する。超音波処理の条件としては、20~100℃の温度範囲で3~72時間程度行うことが好ましい。温度は50~80℃がより好ましく、60~80℃がさらに好ましく、時間は6~48時間がより好ましく、18~24時間がさらに好ましい。
After adding an aqueous ammonia solution, the surface of the inorganic compound is modified with a hydrophobic group (HDMS) by ultrasonication again. As conditions for the ultrasonic treatment, it is preferable to carry out at a temperature range of 20 to 100 ° C. for about 3 to 72 hours. The temperature is more preferably 50 to 80 ° C., further preferably 60 to 80 ° C., the time is more preferably 6 to 48 hours, and further preferably 18 to 24 hours.
反応後は、ペレットを溶媒から分離し、エタノールで洗浄して、乾燥することにより、本実施形態の疎水性微粒子を得ることができる。
なお、乾燥の条件としては、例えば、60~100℃の温度範囲で1~3時間程度行うことが好ましい。 After the reaction, the pellet is separated from the solvent, washed with ethanol, and dried to obtain the hydrophobic fine particles of the present embodiment.
The drying conditions are preferably carried out, for example, in a temperature range of 60 to 100 ° C. for about 1 to 3 hours.
なお、乾燥の条件としては、例えば、60~100℃の温度範囲で1~3時間程度行うことが好ましい。 After the reaction, the pellet is separated from the solvent, washed with ethanol, and dried to obtain the hydrophobic fine particles of the present embodiment.
The drying conditions are preferably carried out, for example, in a temperature range of 60 to 100 ° C. for about 1 to 3 hours.
上記により得られた疎水性微粒子は、無機化合物の表面が疎水基で修飾されており、またその修飾部は鎖長が極めて短い直鎖アルキル基であるのでその厚みは無機化合物の大きさに比してほとんど考慮されず、疎水性微粒子は無機化合物の形状とほぼ等しい形状を有する。よって、疎水性微粒子は、無機化合物が有する透明性を備えつつ、撥水性を有することができる。
In the hydrophobic fine particles obtained as described above, the surface of the inorganic compound is modified with a hydrophobic group, and since the modified portion is a linear alkyl group having a very short chain length, the thickness is in proportion to the size of the inorganic compound With little consideration, hydrophobic microparticles have a shape approximately equal to the shape of the inorganic compound. Thus, the hydrophobic fine particles can have water repellency while having the transparency of the inorganic compound.
(撥水性組成物)
本実施形態の撥水性組成物は、基材成分と本実施形態の疎水性微粒子を含有する。 (Water-repellent composition)
The water repellent composition of the present embodiment contains a base component and the hydrophobic fine particles of the present embodiment.
本実施形態の撥水性組成物は、基材成分と本実施形態の疎水性微粒子を含有する。 (Water-repellent composition)
The water repellent composition of the present embodiment contains a base component and the hydrophobic fine particles of the present embodiment.
撥水剤組成物の基材成分としては、形成する塗膜の性質により適宜選択すればよいが、例えば、トルエン、酢酸、メタノール、エタノール、酢酸エチル、酢酸ブチル等が挙げられる。
The base component of the water repellent composition may be appropriately selected depending on the properties of the coating film to be formed, and examples thereof include toluene, acetic acid, methanol, ethanol, ethyl acetate, butyl acetate and the like.
本実施形態の撥水剤組成物には、本発明の効果を損なわない範囲において、撥水剤組成物において通常使用される添加剤を使用することができる。添加剤としては、例えば、紫外線防止剤、界面活性剤、顔料、充填剤、補強材等が挙げられる。
In the water repellent composition of the present embodiment, additives which are usually used in the water repellent composition can be used as long as the effects of the present invention are not impaired. Examples of the additive include an ultraviolet light inhibitor, a surfactant, a pigment, a filler, and a reinforcing material.
撥水剤組成物は、基材成分に、本実施形態の疎水性微粒子と、必要により各種添加剤を添加し、高分子溶液等を用いて従来の方法で混合することにより得ることができる。
撥水剤組成物は、対象物への適用方法により、液状、ジェル状、クリーム状等任意の形態とすればよい。 The water repellent composition can be obtained by adding the hydrophobic fine particles of the present embodiment and, if necessary, various additives to the base component, and mixing them using a polymer solution or the like according to a conventional method.
The water repellent composition may be in any form such as liquid, gel or cream depending on the method of application to the object.
撥水剤組成物は、対象物への適用方法により、液状、ジェル状、クリーム状等任意の形態とすればよい。 The water repellent composition can be obtained by adding the hydrophobic fine particles of the present embodiment and, if necessary, various additives to the base component, and mixing them using a polymer solution or the like according to a conventional method.
The water repellent composition may be in any form such as liquid, gel or cream depending on the method of application to the object.
本実施形態の撥水剤組成物の塗布方法としては、対象物の表面に対して、スプレーコーティング、ロールコーティング、グラビアコーティング、バーコーティング、キスリバースコーティング、ダイコーティング、ドクターブレードコーティング、刷毛塗り、ディップコーティング等用いて塗布することができる。
As a method of applying the water repellent composition of the present embodiment, spray coating, roll coating, gravure coating, bar coating, kiss reverse coating, die coating, doctor blade coating, brush coating, dip on the surface of an object It can be applied using a coating or the like.
本実施形態の撥水剤組成物により形成される膜(撥水膜)は、本実施形態の疎水性微粒子が均一に分散されている。よって、対象物の表面に本実施形態の撥水剤組成物により膜を形成することにより、対象物の表面に撥水性を与え、氷や雪等が付着するのを抑制できるとともに、対象物の模様や色彩等を遮ることがない。
In the film (water repellent film) formed by the water repellent composition of the present embodiment, the hydrophobic fine particles of the present embodiment are uniformly dispersed. Therefore, by forming a film on the surface of the object using the water repellent composition of the present embodiment, it is possible to impart water repellency to the surface of the object, and to suppress adhesion of ice, snow, etc. It does not interrupt the pattern or color.
撥水膜は、十分な撥水性能を発揮するために十分な膜厚を有することが好ましい。撥水膜の膜厚は、10~100μmであることが好ましく、下限は15μm以上がより好ましく、30μm以上がさらに好ましく、また、上限は50μm以下がより好ましく、40μm以下がさらに好ましい。膜厚が10μm以上であると、十分な撥水性を発揮することができ、30μm以上であれば、さらに十分な強度を有することができる。また、膜厚が100μm以下であると、良好な透明性を有することができ、40μm以下であれば、撥水膜にクラックが入る等の不具合が生じ難い。
The water repellent film preferably has a film thickness sufficient to exhibit sufficient water repellency. The film thickness of the water repellent film is preferably 10 to 100 μm, the lower limit is more preferably 15 μm or more, further preferably 30 μm or more, and the upper limit is more preferably 50 μm or less, still more preferably 40 μm or less. When the film thickness is 10 μm or more, sufficient water repellency can be exhibited, and when the film thickness is 30 μm or more, a further sufficient strength can be provided. When the film thickness is 100 μm or less, good transparency can be obtained, and when the film thickness is 40 μm or less, problems such as cracking of the water repellent film are unlikely to occur.
また、撥水膜は水に対する接触角が90°以上であることが好ましい。撥水膜の水に対する接触角が90°以上であると、膜表面に対して汚れを付き難くすることができる。接触角は、下限は100°以上であることがより好ましく、105°以上がさらに好ましく、また、上限は170°以下であることが好ましい。
なお、接触角の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a contact angle to water of 90 ° or more. When the contact angle to water of the water repellent film is 90 ° or more, it is possible to make the film surface difficult to be soiled. The lower limit of the contact angle is more preferably 100 ° or more, further preferably 105 ° or more, and the upper limit is preferably 170 ° or less.
The contact angle can be measured by the method described above.
なお、接触角の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a contact angle to water of 90 ° or more. When the contact angle to water of the water repellent film is 90 ° or more, it is possible to make the film surface difficult to be soiled. The lower limit of the contact angle is more preferably 100 ° or more, further preferably 105 ° or more, and the upper limit is preferably 170 ° or less.
The contact angle can be measured by the method described above.
また、撥水膜は全光線の各波長における透過率が80%以上であることが好ましい。撥水膜の透過率が80%以上であると、透明性が高いので、対象物に塗布して膜を形成した場合に該対象物を遮ることなく該対象物の視認性が良好となる。透過率は、下限は85%以上であることがより好ましく、90%以上がさらに好ましく、また、上限は100%以下であることが好ましい。
なお、透過率の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a transmittance of 80% or more at each wavelength of the total light. Since the transparency is high when the transmittance of the water repellent film is 80% or more, when the film is formed by applying to a target, the visibility of the target becomes good without blocking the target. The lower limit of the transmittance is more preferably 85% or more, further preferably 90% or more, and the upper limit is preferably 100% or less.
In addition, the measuring method of the transmittance | permeability can be performed by the above-mentioned method.
なお、透過率の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a transmittance of 80% or more at each wavelength of the total light. Since the transparency is high when the transmittance of the water repellent film is 80% or more, when the film is formed by applying to a target, the visibility of the target becomes good without blocking the target. The lower limit of the transmittance is more preferably 85% or more, further preferably 90% or more, and the upper limit is preferably 100% or less.
In addition, the measuring method of the transmittance | permeability can be performed by the above-mentioned method.
また、撥水膜は曇り度が50%以下であることが好ましい。撥水膜の曇り度が50%以下であると、透明性が高いので、対象物の視認性が良好となる。曇り度は、上限は45%以下であることがより好ましく、30%以下がさらに好ましく、また、下限は0%以上であることが好ましい。
なお、曇り度の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a haze of 50% or less. When the haze of the water repellent film is 50% or less, the transparency is high, so that the visibility of the object becomes good. The upper limit of the haze is more preferably 45% or less, still more preferably 30% or less, and the lower limit is preferably 0% or more.
In addition, the measuring method of haze can be performed by the above-mentioned method.
なお、曇り度の測定方法は上記した方法により行うことができる。 The water repellent film preferably has a haze of 50% or less. When the haze of the water repellent film is 50% or less, the transparency is high, so that the visibility of the object becomes good. The upper limit of the haze is more preferably 45% or less, still more preferably 30% or less, and the lower limit is preferably 0% or more.
In addition, the measuring method of haze can be performed by the above-mentioned method.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。
Hereinafter, the present invention will be further described by way of examples and comparative examples, but the present invention is not limited to the following examples.
各例における疎水性微粒子の物性は以下により測定した。
The physical properties of the hydrophobic fine particles in each example were measured by the following.
(疎水性微粒子の長軸長さと断面の直径)
走査型電子顕微鏡を用いて600μm2の範囲内の疎水性微粒子を観察し、微粒子全ての長軸長さとその長軸方向に直交する方向の径(断面の直径)を測定して、その平均値を求めた。 (Long-axis length and cross-sectional diameter of hydrophobic particles)
Observe hydrophobic fine particles in the range of 600 μm 2 using a scanning electron microscope, measure the major axis length of all the fine particles and the diameter in the direction orthogonal to the major axis direction (diameter of cross section), and average value thereof I asked for.
走査型電子顕微鏡を用いて600μm2の範囲内の疎水性微粒子を観察し、微粒子全ての長軸長さとその長軸方向に直交する方向の径(断面の直径)を測定して、その平均値を求めた。 (Long-axis length and cross-sectional diameter of hydrophobic particles)
Observe hydrophobic fine particles in the range of 600 μm 2 using a scanning electron microscope, measure the major axis length of all the fine particles and the diameter in the direction orthogonal to the major axis direction (diameter of cross section), and average value thereof I asked for.
(ヘキサデシルトリメトキシシランとアタパルガイトの比率)
疎水性微粒子のヘキサデシルトリメトキシシラン(HDMS)とアタパルガイトの比率は、赤外分光スペクトル(IRスペクトル、サーモフィッシャーサイエンティフィック社製、NICOLETIS5)を用いて算出した。初めに、室温下、得られた微粒子のIRスペクトルを取得した。次に、アタパルガイトに由来する980cm-1の吸収強度をサンプル間で正規化し、ヘキサデシルトリメトキシシランに由来する2917cm-1の吸収強度からヘキサデシルトリメトキシシランとアタパルガイトの比率を算出した。
なお、このように求められるアタパルガイトに対するヘキサデシルトリメトキシシランの割合(ヘキサデシルトリメトキシシラン/アタパルガイト)は、30以上であることが好ましい。 (Ratio of hexadecyltrimethoxysilane to attapulgite)
The ratio of hexadecyltrimethoxysilane (HDMS) to attapulgite of the hydrophobic fine particles was calculated using an infrared spectrum (IR spectrum, manufactured by Thermo Fisher Scientific, NICOLETIS 5). First, an IR spectrum of the obtained microparticles was obtained at room temperature. Next, the absorption intensity at 980 cm -1 derived from attapulgite was normalized between the samples, and the ratio of hexadecyltrimethoxysilane to attapulgite was calculated from the absorption intensity at 2917 cm -1 derived from hexadecyltrimethoxysilane.
In addition, it is preferable that the ratio (hexadecyl trimethoxysilane / attapulgite) with respect to the attapulgite calculated | required in this way (hexadecyl trimethoxysilane / attapulgite) is 30 or more.
疎水性微粒子のヘキサデシルトリメトキシシラン(HDMS)とアタパルガイトの比率は、赤外分光スペクトル(IRスペクトル、サーモフィッシャーサイエンティフィック社製、NICOLETIS5)を用いて算出した。初めに、室温下、得られた微粒子のIRスペクトルを取得した。次に、アタパルガイトに由来する980cm-1の吸収強度をサンプル間で正規化し、ヘキサデシルトリメトキシシランに由来する2917cm-1の吸収強度からヘキサデシルトリメトキシシランとアタパルガイトの比率を算出した。
なお、このように求められるアタパルガイトに対するヘキサデシルトリメトキシシランの割合(ヘキサデシルトリメトキシシラン/アタパルガイト)は、30以上であることが好ましい。 (Ratio of hexadecyltrimethoxysilane to attapulgite)
The ratio of hexadecyltrimethoxysilane (HDMS) to attapulgite of the hydrophobic fine particles was calculated using an infrared spectrum (IR spectrum, manufactured by Thermo Fisher Scientific, NICOLETIS 5). First, an IR spectrum of the obtained microparticles was obtained at room temperature. Next, the absorption intensity at 980 cm -1 derived from attapulgite was normalized between the samples, and the ratio of hexadecyltrimethoxysilane to attapulgite was calculated from the absorption intensity at 2917 cm -1 derived from hexadecyltrimethoxysilane.
In addition, it is preferable that the ratio (hexadecyl trimethoxysilane / attapulgite) with respect to the attapulgite calculated | required in this way (hexadecyl trimethoxysilane / attapulgite) is 30 or more.
(実施例1)
<疎水性微粒子の作製>
使用した材料は以下のとおりである。
1.アタパルガイト(ATP、ユニオン化成株式会社製「アタゲル」(商品名)、粒子形状:中空針状、粒子長(平均):1~2μm、軸方向に直交する方向の径(平均):10~50nm
2.テトラエトキシシラン(TEOS、東京化成工業株式会社製、比重0.933~0.9370、屈折率1.3810~1.3850)
3.ヘキサデシルトリメトキシシラン(HDMS、Sigma-Aldrich社製、比重0.8890~0.8930、屈折率1.4340~1.4380) Example 1
<Preparation of hydrophobic fine particles>
The materials used are as follows.
1. Attapulgite (ATP, “Atagel” (trade name) manufactured by Union Kasei Co., Ltd., particle shape: hollow needle, particle length (average): 1 to 2 μm, diameter in a direction orthogonal to the axial direction (average): 10 to 50 nm
2. Tetraethoxysilane (TEOS, manufactured by Tokyo Chemical Industry Co., Ltd., specific gravity 0.933 to 0.9370, refractive index 1.3810 to 1.3850)
3. Hexadecyltrimethoxysilane (HDMS, manufactured by Sigma-Aldrich, specific gravity 0.8890 to 0.8930, refractive index 1.4340 to 1.4380)
<疎水性微粒子の作製>
使用した材料は以下のとおりである。
1.アタパルガイト(ATP、ユニオン化成株式会社製「アタゲル」(商品名)、粒子形状:中空針状、粒子長(平均):1~2μm、軸方向に直交する方向の径(平均):10~50nm
2.テトラエトキシシラン(TEOS、東京化成工業株式会社製、比重0.933~0.9370、屈折率1.3810~1.3850)
3.ヘキサデシルトリメトキシシラン(HDMS、Sigma-Aldrich社製、比重0.8890~0.8930、屈折率1.4340~1.4380) Example 1
<Preparation of hydrophobic fine particles>
The materials used are as follows.
1. Attapulgite (ATP, “Atagel” (trade name) manufactured by Union Kasei Co., Ltd., particle shape: hollow needle, particle length (average): 1 to 2 μm, diameter in a direction orthogonal to the axial direction (average): 10 to 50 nm
2. Tetraethoxysilane (TEOS, manufactured by Tokyo Chemical Industry Co., Ltd., specific gravity 0.933 to 0.9370, refractive index 1.3810 to 1.3850)
3. Hexadecyltrimethoxysilane (HDMS, manufactured by Sigma-Aldrich, specific gravity 0.8890 to 0.8930, refractive index 1.4340 to 1.4380)
アタパルガイト(ATP)2.77gを50mL容ビーカーに秤り取り、テトラエトキシシラン(TEOS)1.04g(0.1M)、ヘキサデシルトリメトキシシラン(HDMS)3.46g(0.2M)、及びエタノール30.9gを添加し、室温(約25℃)下、超音波分散装置(アズワン社製「USクリーナー」(商品名)、出力80W、発振周波数40KHz)で1時間超音波分散を行った。続いて、水3.02g、30質量%アンモニア水4.55gを添加し、60℃下で72時間超音波処理して反応させた。
その後、吸引ろ過によりろ過し、残渣を約100mLのエタノールで洗浄し、60℃で1時間乾燥させて、微粒子(粉末)を得た(収率71%)。 2.77 g of attapulgite (ATP) is weighed in a 50 mL beaker, and 1.04 g (0.1 M) of tetraethoxysilane (TEOS), 3.46 g (0.2 M) of hexadecyltrimethoxysilane (HDMS), and ethanol 30.9 g was added, and ultrasonic dispersion was performed at room temperature (about 25 ° C.) for 1 hour with an ultrasonic dispersion apparatus (“US Cleaner” manufactured by As One Corporation (trade name), output 80 W, oscillation frequency 40 KHz). Subsequently, 3.02 g of water and 4.55 g of 30% by mass ammonia water were added, and reaction was performed by ultrasonication at 60 ° C. for 72 hours.
Thereafter, the resultant was filtered by suction filtration, and the residue was washed with about 100 mL of ethanol and dried at 60 ° C. for 1 hour to obtain fine particles (powder) (yield 71%).
その後、吸引ろ過によりろ過し、残渣を約100mLのエタノールで洗浄し、60℃で1時間乾燥させて、微粒子(粉末)を得た(収率71%)。 2.77 g of attapulgite (ATP) is weighed in a 50 mL beaker, and 1.04 g (0.1 M) of tetraethoxysilane (TEOS), 3.46 g (0.2 M) of hexadecyltrimethoxysilane (HDMS), and ethanol 30.9 g was added, and ultrasonic dispersion was performed at room temperature (about 25 ° C.) for 1 hour with an ultrasonic dispersion apparatus (“US Cleaner” manufactured by As One Corporation (trade name), output 80 W, oscillation frequency 40 KHz). Subsequently, 3.02 g of water and 4.55 g of 30% by mass ammonia water were added, and reaction was performed by ultrasonication at 60 ° C. for 72 hours.
Thereafter, the resultant was filtered by suction filtration, and the residue was washed with about 100 mL of ethanol and dried at 60 ° C. for 1 hour to obtain fine particles (powder) (yield 71%).
得られた疎水性微粒子の粒子長(平均)は2μm、長軸方向に直交する方向の平均径は62.4±16nmであった。なお、±で示す値は標準偏差である。また、ヘキサデシルトリメトキシシランとアタパルガイトの比率(ヘキサデシルトリメトキシシラン/アタパルガイト)は32.8であった。得られた疎水性微粒子を走査型電子顕微鏡で撮影したSEM画像を図1に示す。
The particle length (average) of the obtained hydrophobic fine particles was 2 μm, and the average diameter in the direction orthogonal to the long axis direction was 62.4 ± 16 nm. The value indicated by ± is a standard deviation. The ratio of hexadecyltrimethoxysilane to attapulgite (hexadecyltrimethoxysilane / attapulgite) was 32.8. The SEM image which image | photographed the obtained hydrophobic microparticles | fine-particles with the scanning electron microscope is shown in FIG.
<組成物の作製>
上記で得られた疎水性微粒子60mgを13mL容ビーカーに秤り取り、トルエン3.5gを添加し、超音波分散装置(アズワン社製「USクリーナー」(商品名)、出力80W、発振周波数40KHz)で1時間超音波分散を行い、組成物を得た。 <Preparation of a composition>
60 mg of the hydrophobic fine particles obtained above are weighed in a 13 mL beaker, 3.5 g of toluene is added, and an ultrasonic dispersion apparatus ("US Cleaner" (trade name) manufactured by As One Corporation, output 80 W, oscillation frequency 40 KHz) The mixture was ultrasonically dispersed for 1 hour to obtain a composition.
上記で得られた疎水性微粒子60mgを13mL容ビーカーに秤り取り、トルエン3.5gを添加し、超音波分散装置(アズワン社製「USクリーナー」(商品名)、出力80W、発振周波数40KHz)で1時間超音波分散を行い、組成物を得た。 <Preparation of a composition>
60 mg of the hydrophobic fine particles obtained above are weighed in a 13 mL beaker, 3.5 g of toluene is added, and an ultrasonic dispersion apparatus ("US Cleaner" (trade name) manufactured by As One Corporation, output 80 W, oscillation frequency 40 KHz) The mixture was ultrasonically dispersed for 1 hour to obtain a composition.
<膜の形成>
透明アクリル板(縦5cm、横5cm、厚み2mm)に、三菱ケミカル株式会社製「アクリライト」(商品名)を用いて乾燥後の塗膜が30μmとなるようにスプレーして塗膜を形成し(スプレー量:6.7g/m2)、60℃で30分乾燥させて膜付き試験片を作製した。 <Formation of film>
A transparent acrylic plate (length 5 cm, width 5 cm, thickness 2 mm) is sprayed using Mitsubishi Chemical Co., Ltd. “Acrilite” (trade name) to form a coated film so that the coating after drying is 30 μm. (Spray amount: 6.7 g / m 2 ) It was dried at 60 ° C. for 30 minutes to prepare a test piece with a membrane.
透明アクリル板(縦5cm、横5cm、厚み2mm)に、三菱ケミカル株式会社製「アクリライト」(商品名)を用いて乾燥後の塗膜が30μmとなるようにスプレーして塗膜を形成し(スプレー量:6.7g/m2)、60℃で30分乾燥させて膜付き試験片を作製した。 <Formation of film>
A transparent acrylic plate (length 5 cm, width 5 cm, thickness 2 mm) is sprayed using Mitsubishi Chemical Co., Ltd. “Acrilite” (trade name) to form a coated film so that the coating after drying is 30 μm. (Spray amount: 6.7 g / m 2 ) It was dried at 60 ° C. for 30 minutes to prepare a test piece with a membrane.
<接触角の測定>
膜付き試験片の膜が形成された側の表面に、5μLの純水の水滴を着滴させ、環境制御型接触角測定装置(協和界面科学株式会社製「DropMaster」(商品名))を用いて、着滴後30秒後の水に対する接触角を測定した。結果を表1に示す。なお、±で示す値は標準偏差である。 <Measurement of contact angle>
Drop water droplets of 5 μL of pure water on the surface of the film-coated test piece on which the film was formed, and use an environment-controlled contact angle measurement device (DropMaster (trade name) manufactured by Kyowa Interface Science Co., Ltd.) The contact angle to water was measured 30 seconds after landing. The results are shown in Table 1. The value indicated by ± is a standard deviation.
膜付き試験片の膜が形成された側の表面に、5μLの純水の水滴を着滴させ、環境制御型接触角測定装置(協和界面科学株式会社製「DropMaster」(商品名))を用いて、着滴後30秒後の水に対する接触角を測定した。結果を表1に示す。なお、±で示す値は標準偏差である。 <Measurement of contact angle>
Drop water droplets of 5 μL of pure water on the surface of the film-coated test piece on which the film was formed, and use an environment-controlled contact angle measurement device (DropMaster (trade name) manufactured by Kyowa Interface Science Co., Ltd.) The contact angle to water was measured 30 seconds after landing. The results are shown in Table 1. The value indicated by ± is a standard deviation.
<透過率の測定>
膜付き試験片について、JIS K 7361-1に従い、株式会社村上色彩技術研究所製ヘイズメーター「HR-100型」(商品名)を用いて、全光線の透過率を測定した。結果を表1に示す。 <Measurement of transmittance>
With respect to the film-coated test piece, the total light transmittance was measured using a haze meter “HR-100 type” (trade name) manufactured by Murakami Color Research Laboratory, in accordance with JIS K 7361-1. The results are shown in Table 1.
膜付き試験片について、JIS K 7361-1に従い、株式会社村上色彩技術研究所製ヘイズメーター「HR-100型」(商品名)を用いて、全光線の透過率を測定した。結果を表1に示す。 <Measurement of transmittance>
With respect to the film-coated test piece, the total light transmittance was measured using a haze meter “HR-100 type” (trade name) manufactured by Murakami Color Research Laboratory, in accordance with JIS K 7361-1. The results are shown in Table 1.
<曇り度の測定>
膜付き試験片を、60℃の乾燥機に30分放置した後、JIS K 7136に従い、膜の表面を株式会社村上色彩技術研究所製ヘイズメーター「HR-100」(商品名)を用いて、曇り度を測定した。結果を表1に示す。 <Measurement of haze>
After leaving the test piece with a film in a dryer at 60 ° C. for 30 minutes, according to JIS K 7136, using the haze meter “HR-100” (trade name) manufactured by Murakami Color Research Laboratory, according to JIS K 7136 The haze was measured. The results are shown in Table 1.
膜付き試験片を、60℃の乾燥機に30分放置した後、JIS K 7136に従い、膜の表面を株式会社村上色彩技術研究所製ヘイズメーター「HR-100」(商品名)を用いて、曇り度を測定した。結果を表1に示す。 <Measurement of haze>
After leaving the test piece with a film in a dryer at 60 ° C. for 30 minutes, according to JIS K 7136, using the haze meter “HR-100” (trade name) manufactured by Murakami Color Research Laboratory, according to JIS K 7136 The haze was measured. The results are shown in Table 1.
(実施例2~5、比較例1~11)
シランカップリング剤に対するアタパルガイトの含有比、テトラエトキシシランとヘキサデシルトリメトキシシランの含有比を表1に記載の通りに変更した以外は実施例1と同様にして疎水性微粒子を得た。 (Examples 2 to 5, Comparative Examples 1 to 11)
Hydrophobic fine particles were obtained in the same manner as in Example 1, except that the content ratio of attapulgite to the silane coupling agent and the content ratio of tetraethoxysilane to hexadecyltrimethoxysilane were changed as described in Table 1.
シランカップリング剤に対するアタパルガイトの含有比、テトラエトキシシランとヘキサデシルトリメトキシシランの含有比を表1に記載の通りに変更した以外は実施例1と同様にして疎水性微粒子を得た。 (Examples 2 to 5, Comparative Examples 1 to 11)
Hydrophobic fine particles were obtained in the same manner as in Example 1, except that the content ratio of attapulgite to the silane coupling agent and the content ratio of tetraethoxysilane to hexadecyltrimethoxysilane were changed as described in Table 1.
実施例2~5、比較例1~11について、実施例1と同様に、疎水性微粒子のアタパルガイトに対するヘキサデシルトリメトキシシランの割合、並びに、膜の水に対する接触角、透過率、曇り度を測定し、結果を表1に示す。
また、実施例2、3、比較例1で得られた疎水性微粒子を走査型電子顕微鏡で撮影したSEM画像を図2~4に示す。 For Examples 2 to 5 and Comparative Examples 1 to 11, as in Example 1, the ratio of hexadecyltrimethoxysilane to atapulgite of hydrophobic fine particles, and the contact angle, permeability, and haze of the membrane to water were measured. The results are shown in Table 1.
Further, SEM images of the hydrophobic fine particles obtained in Examples 2 and 3 and Comparative Example 1 taken with a scanning electron microscope are shown in FIGS.
また、実施例2、3、比較例1で得られた疎水性微粒子を走査型電子顕微鏡で撮影したSEM画像を図2~4に示す。 For Examples 2 to 5 and Comparative Examples 1 to 11, as in Example 1, the ratio of hexadecyltrimethoxysilane to atapulgite of hydrophobic fine particles, and the contact angle, permeability, and haze of the membrane to water were measured. The results are shown in Table 1.
Further, SEM images of the hydrophobic fine particles obtained in Examples 2 and 3 and Comparative Example 1 taken with a scanning electron microscope are shown in FIGS.
表1の結果から、実施例1~5は、塗膜とした際の水に対する接触角が90°以上である疎水性微粒子であり、且つ透過率も高いため透明性にも優れることがわかった。
From the results in Table 1, it is found that Examples 1 to 5 are hydrophobic fine particles having a contact angle to water of 90 ° or more when formed into a coating film, and since the transmittance is also high, the transparency is also excellent. .
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2018年1月11日出願の日本特許出願(特願2018-002912)に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application No. 2018-002912 filed on Jan. 11, 2018, the contents of which are incorporated herein by reference.
本発明の疎水性微粒子は、航空機、鉄道、自動車、風力発電機、住宅、信号機、看板等の表面への雪や氷の付着の防止に有用である。
The hydrophobic fine particles of the present invention are useful for preventing the adhesion of snow or ice to the surface of an aircraft, a railway, a car, a wind power generator, a house, a traffic light, a signboard and the like.
Claims (12)
- 表面が疎水化処理剤で被覆された針状構造の無機化合物からなり、長軸方向に直交する方向の径の平均値が100nm以下である疎水性微粒子。 Hydrophobic fine particles comprising an inorganic compound having a needle-like structure whose surface is coated with a hydrophobizing agent and having an average diameter of 100 nm or less in a direction orthogonal to the long axis direction.
- 前記無機化合物が、中空針状構造を有している、請求項1に記載の疎水性微粒子。 The hydrophobic fine particle according to claim 1, wherein the inorganic compound has a hollow needle-like structure.
- 前記無機化合物が、ケイ酸塩化合物である、請求項1又は2に記載の疎水性微粒子。 The hydrophobic fine particle according to claim 1 or 2, wherein the inorganic compound is a silicate compound.
- 前記ケイ酸塩化合物が、アタパルガイト、ハロイサイト、イモゴライト、ウォラストナイト、セピオライト及びパリゴルスカイトからなる群から選択される少なくとも1種の針状鉱物である、請求項3に記載の疎水性微粒子。 The hydrophobic fine particles according to claim 3, wherein the silicate compound is at least one needle-like mineral selected from the group consisting of attapulgite, halloysite, imogolite, wollastonite, sepiolite and palygorskite.
- 前記疎水化処理剤が、シランカップリング剤、リン酸カップリング剤及びチオールカップリング剤からなる群から選択される少なくとも1種のカップリング剤である、請求項1~4のいずれか1項に記載の疎水性微粒子。 The said hydrophobization treatment agent is at least 1 sort (s) of coupling agent selected from the group which consists of a silane coupling agent, a phosphoric acid coupling agent, and a thiol coupling agent in any one of Claims 1-4. Hydrophobic microparticles described.
- トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の全光線の各波長における透過率が80%以上である、請求項1~5のいずれか1項に記載の疎水性微粒子。 A composition in which 60 mg of the hydrophobic fine particles are dispersed in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm. The hydrophobic fine particle according to any one of claims 1 to 5, which has a transmittance of at least 80%.
- トルエン3.5gに前記疎水性微粒子60mgを分散させた組成物を、厚み2mmの透明基材に塗布し乾燥させて、膜厚30μmの膜を形成したときに、前記膜の曇り度が50%以下である、請求項1~6のいずれか1項に記載の疎水性微粒子。 The composition obtained by dispersing 60 mg of the hydrophobic fine particles in 3.5 g of toluene is applied to a transparent substrate having a thickness of 2 mm and dried to form a film having a thickness of 30 μm, the haze of the film is 50% The hydrophobic fine particle according to any one of claims 1 to 6, which is the following.
- 請求項1~7のいずれか1項に記載の疎水性微粒子を含有する撥水剤組成物。 A water repellent composition containing the hydrophobic fine particles according to any one of claims 1 to 7.
- 請求項1~7のいずれか1項に記載の疎水性微粒子を含有する膜。 A film containing the hydrophobic fine particles according to any one of claims 1 to 7.
- 全光線の各波長における透過率が80%以上である、請求項9に記載の膜。 The film according to claim 9, wherein the transmittance at each wavelength of the total light is 80% or more.
- 水に対する接触角が90°以上である、請求項9又は10に記載の膜。 The membrane according to claim 9 or 10, wherein the contact angle to water is 90 ° or more.
- 曇り度が50%以下である、請求項9~11のいずれか1項に記載の膜。 A membrane according to any one of claims 9 to 11 having a haze of 50% or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-002912 | 2018-01-11 | ||
JP2018002912 | 2018-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019139092A1 true WO2019139092A1 (en) | 2019-07-18 |
Family
ID=67219577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000559 WO2019139092A1 (en) | 2018-01-11 | 2019-01-10 | Hydrophobic fine particles and water repellent agent composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019123660A (en) |
TW (1) | TW201934488A (en) |
WO (1) | WO2019139092A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210032750A1 (en) * | 2019-07-31 | 2021-02-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Deposition apparatus and method of forming metal oxide layer using the same |
IT201900024754A1 (en) * | 2019-12-19 | 2021-06-19 | Consiglio Nazionale Ricerche | MULTIFUNCTIONAL HYBRID MATERIAL BASED ON SEPIOLITE FOR ENVIRONMENTAL RECOVERY AND BIORESANAMATION |
IT201900024802A1 (en) * | 2019-12-19 | 2021-06-19 | Consiglio Nazionale Ricerche | MULTIFUNCTIONAL HYBRID MATERIAL BASED ON NATURAL CLAYS FOR ENVIRONMENTAL RECOVERY AND BIORETANNING |
CN117138837A (en) * | 2023-08-30 | 2023-12-01 | 淮安中顺环保科技有限公司 | Modified halloysite composite material, halloysite-based three-phase interface catalytic membrane, and preparation methods and applications thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023167251A1 (en) * | 2022-03-01 | 2023-09-07 | ダイキン工業株式会社 | Surface treatment agent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508700A (en) * | 2011-02-01 | 2014-04-10 | トルサ・ソシエダッド・アノニマ | Process for producing a compound based on pseudo-layered silicate and its use as a filler for polymer materials |
WO2014175369A1 (en) * | 2013-04-24 | 2014-10-30 | Dic株式会社 | Inorganic fine particle composite body, method for producing same, composition and cured product |
WO2016171151A1 (en) * | 2015-04-21 | 2016-10-27 | 昭和電工株式会社 | Radical-polymerizable resin composition, curing method thereof, method of producing same, use of radical-polymerizable resin composition, and use method of thereof |
CN106811114A (en) * | 2016-12-21 | 2017-06-09 | 中国科学院兰州化学物理研究所 | A kind of preparation method of aqueous super-hydrophobic/super-amphiphobic coating |
-
2019
- 2019-01-10 WO PCT/JP2019/000559 patent/WO2019139092A1/en active Application Filing
- 2019-01-10 JP JP2019002523A patent/JP2019123660A/en active Pending
- 2019-01-11 TW TW108101171A patent/TW201934488A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014508700A (en) * | 2011-02-01 | 2014-04-10 | トルサ・ソシエダッド・アノニマ | Process for producing a compound based on pseudo-layered silicate and its use as a filler for polymer materials |
WO2014175369A1 (en) * | 2013-04-24 | 2014-10-30 | Dic株式会社 | Inorganic fine particle composite body, method for producing same, composition and cured product |
WO2016171151A1 (en) * | 2015-04-21 | 2016-10-27 | 昭和電工株式会社 | Radical-polymerizable resin composition, curing method thereof, method of producing same, use of radical-polymerizable resin composition, and use method of thereof |
CN106811114A (en) * | 2016-12-21 | 2017-06-09 | 中国科学院兰州化学物理研究所 | A kind of preparation method of aqueous super-hydrophobic/super-amphiphobic coating |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210032750A1 (en) * | 2019-07-31 | 2021-02-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Deposition apparatus and method of forming metal oxide layer using the same |
IT201900024754A1 (en) * | 2019-12-19 | 2021-06-19 | Consiglio Nazionale Ricerche | MULTIFUNCTIONAL HYBRID MATERIAL BASED ON SEPIOLITE FOR ENVIRONMENTAL RECOVERY AND BIORESANAMATION |
IT201900024802A1 (en) * | 2019-12-19 | 2021-06-19 | Consiglio Nazionale Ricerche | MULTIFUNCTIONAL HYBRID MATERIAL BASED ON NATURAL CLAYS FOR ENVIRONMENTAL RECOVERY AND BIORETANNING |
WO2021124103A1 (en) * | 2019-12-19 | 2021-06-24 | Consiglio Nazionale Delle Ricerche | Multi-functional hybrid material based on natural clays for environmental recovery and bio-remediation |
WO2021124097A1 (en) * | 2019-12-19 | 2021-06-24 | Consiglio Nazionale Delle Ricerche | Multi-functional hybrid material based on sepiolite for environmental recovery and bio-remediation |
CN117138837A (en) * | 2023-08-30 | 2023-12-01 | 淮安中顺环保科技有限公司 | Modified halloysite composite material, halloysite-based three-phase interface catalytic membrane, and preparation methods and applications thereof |
CN117138837B (en) * | 2023-08-30 | 2024-05-28 | 淮安中顺环保科技有限公司 | Modified halloysite composite material, halloysite-based three-phase interface catalytic membrane, and preparation methods and applications thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2019123660A (en) | 2019-07-25 |
TW201934488A (en) | 2019-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019139092A1 (en) | Hydrophobic fine particles and water repellent agent composition | |
EP2942380B1 (en) | Coating composition, method for producing same, and coated article | |
JP5078620B2 (en) | Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film | |
JP4790003B2 (en) | Coating film forming method and coating liquid | |
JP5378771B2 (en) | Base material with antireflection film and coating liquid for forming antireflection film | |
CA2720927A1 (en) | Surface modified silicon dioxide particles | |
JP4172171B2 (en) | Room temperature curable water repellent composition | |
JP2009035594A (en) | Base material with transparent coating, and coating material for forming transparent coating | |
JP2010138021A (en) | Porous silica particle and producing method of the same | |
KR101244205B1 (en) | Surface-modified nanoparticles from aluminum oxide and oxides of elements of the first and second main group of the periodic system and the production thereof | |
JP6112753B2 (en) | Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles | |
KR101864767B1 (en) | Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder | |
TWI751608B (en) | Functional coatings comprising microbeads and nanofibers | |
WO2016189828A1 (en) | Zinc oxide-containing composite particles, composition for blocking uv rays, and cosmetic material | |
JP5241199B2 (en) | Method for producing fibrous hollow silica fine particles and substrate with antireflection coating | |
US20210277260A1 (en) | Surface coating composition with long durability | |
JP2004204175A (en) | Coating containing colored pigment particle and substrate with visible light-shading film | |
CN111867974B (en) | Precipitated white carbon black and preparation method thereof | |
JP2018100679A (en) | Heat insulation material | |
JP6195524B2 (en) | Hydrophobic silica powder and method for producing the same | |
JP2020019700A (en) | Organic-inorganic hybrid film, surface stress sensor, and method for producing organic-inorganic hybrid film | |
WO2022107878A1 (en) | Anti-fogging method for vehicle lamp structure, anti-fogging agent, hydrophilizing agent, anti-fogging film, and vehicle lamp structure | |
CN109987609A (en) | A kind of preparation method of hydrophobic titanium dioxide silica solution | |
EP3394175A1 (en) | Composition, method of making composition, and article | |
JP6451424B2 (en) | High durability low refractive index film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19738365 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19738365 Country of ref document: EP Kind code of ref document: A1 |