JP4172171B2 - Room temperature curable water repellent composition - Google Patents
Room temperature curable water repellent composition Download PDFInfo
- Publication number
- JP4172171B2 JP4172171B2 JP2001311519A JP2001311519A JP4172171B2 JP 4172171 B2 JP4172171 B2 JP 4172171B2 JP 2001311519 A JP2001311519 A JP 2001311519A JP 2001311519 A JP2001311519 A JP 2001311519A JP 4172171 B2 JP4172171 B2 JP 4172171B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- repellent
- fine particles
- room temperature
- silica fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、常温におけるガラス等の表面を改質する常温硬化型撥水性組成物に関して、より詳しくはガラス等の表面に高い撥水性・膜耐久性・防汚性・低流体抵抗性・防錆性などの機能性を付与した撥水性被膜を形成することを可能にした常温硬化型撥水性組成物である。
【0002】
【従来の技術】
従来、常温の下で120°以上の優れた撥水性被膜を有するものは、特開平8−176451に示されているように、熱もしくは光硬化性樹脂100重量%、メタノール20重量%に分散した後静置した際に、底部に沈降する部分の重量が最初に加えた全重量の50%以下となる疎水性シリカ微粒子20〜200重量%、および一般式が下式で表されるシラン化合物の少なくとも1種類以上の混合物0.5〜200重量%からなる撥水性樹脂組成物で開示されている。
(R6)a(R7)bSi(X)c
(式中、R6、R7はそれぞれ独立して、上記熱もしくは光硬化性樹脂を反応しうる基を含む有機基または炭素数6以下のアルキル基を示し、a、b、cはそれぞれ0以上の整数を示し、a+b+c=4である。)
【0003】
しかしながら、光硬化性樹脂や熱硬化性樹脂からなる前記撥水性樹脂組成物は、光エネルギーや熱エネルギーが必要なため、それらのエネルギーを照射させる装置を使用しなければ、常温で硬化させて撥水性被膜を得ることはできない。また、130°未満の撥水性能の劣る撥水性被膜は水をはじきにくく水滴が付着し、乾くと雨滴中の汚れが付着してしまい防汚性に劣る。常温で容易に、130°以上の撥水性能の優れた撥水性被膜を得るには、耐久性に問題が大きく実用化には至っていない。
【0004】
【発明が解決しようとする課題】
本発明は以上のような課題を考慮したものであり、その目的とするところは常温で容易に撥水性被膜を形成することができ、130°以上の高い撥水性・低い転落角・耐久性・防汚性の優れた撥水性被膜を形成することを可能にした常温硬化型撥水性組成物を提供することにある。
【0005】
【課題を解決するための手段】
以上のような課題を達成するために、鋭意研究開発を重ねた結果、撥水処理表面における表面構造・形態(表面粗さ)を制御すると共に、疎水性のシリカ微粒子の凝集を押えて施工するまで均一に分散させてガラス等の基材表面に常温で乾燥密着させることで、容易に施工可能な高い撥水性・低い転落角・耐久性に優れたガラスの表面改質を可能にした常温硬化型撥水性組成物の実現に成功し、本発明を完成するに至った。
【0006】
本発明の常温硬化型撥水性組成物は、
ジメチルジクロロシラン処理またはヘキサメチルジシラザン処理による疎水性表面処理を施した一次粒子平均直径が20nm以下であり、固形分濃度が重量百分率で0.2〜4.0wt%であるシリカ微粒子と、
一般式が下式(1)で表されるジアルコキシシランの中から選ばれた少なくとも1種と、
一般式が下式(2)で表されるテトラアルコキシシラン、一般式が下式(3)で表されるトリアルコキシシラン、一般式(2)(3)のいずれかのアルコキシシランの加水分解液体、一般式(2)(3)のいずれかのアルコキシシランのオリゴマー液体、からなる群から選ばれた少なくとも1種のシラン化合物と、
酸触媒と、アルコール溶媒と、を含み、
前記シリカ微粒子と前記一般式(1)で表されるジアルコキシシランの重量比(前記シリカ微粒子/前記ジアルコキシシラン)が1/3〜5/2であり、かつ、前記シリカ微粒子と前記シラン化合物の固形分濃度比(前記シリカ微粒子/前記シラン化合物)が0.95〜52であることを特徴とする常温硬化型撥水性組成物。
(R1)2Si(OR2)2 (1)
(式中、R1はメチル基、R2は炭素数1〜4のアルキル基である)
Si(OR3)4 (2)
(式中、R3は炭素数1〜4のアルキル基である)
R4Si(OR5)3 (3)
(式中、R4はメチル基、エチル基、フェニル基、トリフルオロプロピル基、から選ばれた1つ、R5はメチル基またはエチル基である)
である。
【0007】
本発明の常温硬化型撥水性組成物の好ましい一態様によれば、基材表面に形成された撥水性被膜の水滴との接触角が130°以上である。
【0008】
本発明の常温硬化型撥水性組成物の好ましい一態様によれば、基材表面に形成された撥水性被膜における蒸留水5mgの水滴の転落角が20°以下である。
【0009】
本発明の撥水性複合材の製造方法は、前記常温硬化型撥水性組成物を基材表面に塗布する工程と、該工程後に常温にて硬化させる工程により、基材表面に撥水性被膜を形成することを特徴とする。
【0010】
本発明の撥水性複合材は、前記の製造方法により、基材表面に撥水性被膜を形成したものである。
【0011】
本発明の撥水性複合材の好ましい一態様によれば、基材がガラス物品である。
【0012】
【発明の実施の形態】
以下、本発明を容易に理解するために、本発明の実施の形態について具体的かつ詳細に説明する。
【0013】
本件発明の常温硬化型撥水性組成物に使用するシリカ微粒子はシリカ表面に疎水性処理したものである。その疎水性処理は、高い疎水性を示す炭素数が少ない官能基を持ち、シリカ微粒子表面と強固に化学結合可能なジメチルジクロロシラン処理やヘキサメチルジシラザン処理であり、また、アルコール溶媒に分散したときのシリカ微粒子表面の化学結合による安定性が良いため、製膜したときに高い撥水性能を得ることができる。
【0014】
前記シリカ微粒子の一次粒子平均直径は20nm以下にすることが高い撥水性能を得るのに最適である。その一次平均直径が20nmを超えると、製膜したとき高い撥水性能を得ることは困難であり、表面抵抗が大きくなって転落角も高くなり膜が剥離し易くなる。
【0015】
また、前記シリカ微粒子の固形分濃度が重量百分率で0.2〜4.0wt%であることが高い撥水性能と膜の耐久性能を得るのに最適である。0.2wt%未満になると膜表面に占める前記シリカ微粒子の割合が少なくなって撥水性能が低下し、表面抵抗が大きくなって転落角も高くなり膜が剥離し易くなる。4.0wt%を超えると前記シリカ微粒子をアルコール溶媒に分散したとき、一次粒子の状態で安定しにくくなり、前記シリカ微粒子が凝集して二次粒子になり易くなることで、撥水性能が低下すると共に表面抵抗が大きくなって転落角も高くなり膜が剥離し易くなる。
【0016】
本件発明の常温硬化型撥水性組成物に使用する前記シリカ微粒子とガラス等の表面を化学結合により固定する前記ジアルコキシシランは一般式が下式(1)で表されるジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシランが挙げられる。また、前記シラン化合物はテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン等のシラン化合物や、これらの加水分解液体やオリゴマー液体が挙げられる。前記ジアルコキシシランに前記シラン化合物を少なくとも1種類以上を含むと優れた撥水性能と耐久性能を有する撥水性被膜を形成するのに好適である。
(R1)2Si(OR2)2 (1)
(式中、R1はメチル基、R2は炭素数1〜4のアルキル基である)
【0017】
特に、前記シラン化合物は一般式(2)で表されるテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランのテトラアルコキシシラン、または一般式(3)で表されるメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン等のトリアルコキシシラン、一般式(2)〜(3)のいずれかのアルコキシシランの加水分解液体、一般式(2)〜(3)のいずれかのアルコキシシランのオリゴマー液体であることが、優れた撥水性能と耐久性能を有する撥水性被膜を形成するのに好適である。
Si(OR3)4 (2)
(式中、R3は炭素数1〜4のアルキル基である)
R4Si(OR5)3 (3)
(式中、R4はメチル基、エチル基、フェニル基、トリフルオロプロピル基、から選ばれた1つ、R5はメチル基またはエチル基である)
【0018】
前記シリカ微粒子と前記ジアルコキシシランの重量比(前記シリカ微粒子/前記ジアルコキシシラン)が1/3〜5/2であり、かつ、前記シリカ微粒子と前記シラン化合物の固形分濃度比(前記シリカ微粒子/前記シラン化合物)が0.95〜52であることが、優れた撥水性能と耐久性能を有する撥水性被膜を形成するのに好適である。
【0019】
前記シリカ微粒子に対して前記ジアルコキシシランと前記シラン化合物のいずれかが少なすぎても、前記シリカ微粒子とガラス等の表面の化学結合が弱くなり、優れた撥水性能と耐久性能を有する撥水性被膜を得られない。また、前記シリカ微粒子に対して前記ジアルコキシシランと前記シラン化合物が多すぎても、被膜表面に占める前記シリカ微粒子の割合が少なくなり表面の抵抗が大きく転落角が高くなり優れた撥水性能と耐久性能を有する撥水性被膜を得られない。
【0020】
また、前記ジアルコキシシランを単独で使用しても、初期撥水性能の有する膜を得ることは可能であるが、耐久性能を有する膜を得ることは困難である。
【0021】
本件発明の常温硬化型撥水性組成物に使用するアルコール溶媒は特に限定されないが、表面被膜における前記シリカ微粒子とガラス等の表面とを前記ジアルコキシシランと前記シラン化合物の加水分解による重縮合で化学結合させるとき、沸点が低い揮発性の高いものは前記シリカ微粒子が膜表面に集まり易くなり、前記シリカ微粒子とガラス等の表面との化学結合が少なくなり、また、沸点が高すぎると乾燥や前記ジアルコキシシランと前記シラン化合物の加水分解による重縮合に時間を要するため、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、ブタノール等の沸点が70〜150°程度のアルコール類が好適である。
【0022】
本件発明の常温硬化型撥水性組成物に使用する触媒は触媒作用を持つ塩酸、硫酸、硝酸、酢酸等の酸触媒に限定され、前記シリカ微粒子とガラス等の表面とを前記ジアルコキシシランと前記シラン化合物の加水分解による重縮合で化学結合させる際、酸触媒を添加すると反応を促進させて膜の硬化できる。この時、酸触媒の量は濃硝酸−比重1.38を使用した場合、アルコール溶媒がイソプロピルアルコールでは、重量百分率で0.05〜1.50wt%であることが好適であり、また、アルコール溶媒がノルマルプロピルアルコールでは、重量百分率で0.05〜0.60wt%であることが好適である。
【0023】
また、アンモニア水等のアルカリ触媒をしても、前記ジアルコキシシランと前記シラン化合物の加水分解による重縮合を促進させて膜の硬化を促進して撥水性被膜を得ることは困難である。
【0024】
本発明の常温硬化型撥水性組成物の調合方法は、前記シリカ微粒子で1.0〜5.0wt%程度のアルコール分散溶媒を作って約5時間超音波分散による分散液を調合し、その分散液、前記ジアルコキシシラン、前記シラン化合物、アルコール溶媒、酸触媒の順で配合し、10〜30分程度攪拌すると、容易に調合することが可能である。
【0025】
本発明の常温硬化型撥水性組成物からなる撥水性被膜が形成される基材としては、各種の材質へ使用でき、例えばガラス、鏡、タイル等の無機基材や、アクリル、ポリプロピレン、ポリカーポネート、人工大理石等の樹脂基材などが挙げられる。
【0026】
本発明の常温硬化型撥水性組成物の用途としては、自動車のウィンドウ、建材用窓ガラス、建材用タイル、交通標識、道路用遮音壁、屋外照明カバー、太陽電池カバー、太陽熱温水集熱カバー、屋内照明カバー、道路用反射板、車両用ミラー、カメラ等のレンズ、浴室用タイルや人工大理石の壁、浴室用ミラー等で利用可能であり、着水防止効果に特に優れる。
【0027】
本発明の常温硬化型撥水性組成物の塗布方法としては、スプレーコート、スピンコート、ディップコート、フローコート等の塗工法が適用可能である。
【0028】
本発明の常温硬化型撥水性組成物により形成される撥水性被膜は前記シリカ微粒子、前記ジアルコキシシラン、前記シラン化合物、溶質調整用の溶媒、酸触媒の選択や組み合わせ、混合比率、混合分散方法、処理液の塗工条件、乾燥条件、下地処理等を考慮して選ぶことにより、撥水性、耐久性、密着性、耐候性に優れた膜が得られる。
【0029】
【実施例】
次に、具体的な実施例について、実施例より説明する。
【0030】
今回、使用した原材料を表1に示す。
【0031】
【表1】
【0032】
(実施例1)
疎水性処理がジメチルジクロロシラン処理で一次粒子平均直径約7nmのシリカ微粒子(R976S:0.5wt%)、前記ジアルコキシシラン(ジメチルジメトキシシラン:0.315wt%)、前記シラン化合物(エチルシリケート48:0.035wt%)、アルコール溶媒(ノルマルプロピルアルコール:98.95wt%)、酸触媒(濃硝酸−比重1.38:0.2wt%)の各成分の内、2.0wt%の前記シリカ微粒子のノルマルプロピルアルコール分散液を調合してPE製の容器に密閉して(株)カイジョー製のフェニックスシリーズ26kHz超音波発振器用いた超音波洗浄装置にて約5時間分散させた液を作製する。この分散液を使用して、前記疎水性シリカ分散液、前記ジアルコキシシラン、前記シラン化合物、アルコール溶媒、酸触媒の順で調合して約10分攪拌して、常温硬化型撥水性組成物を得た。この組成物を評価サンプルのすず未付着面にフローコートにて塗布して撥水性の被膜を有するガラス板を作成した。また、評価サンプルはサイズ65mm×150mm×2mmのソーダ石灰ガラス板のすず未付着面を油膜処理後、スポンジで流水洗浄し、さらに、蒸留水にて洗浄後、エアーブローを行い自然乾燥したものを使用した。
【0033】
(実施例2)
疎水性処理がヘキサメチルジシラザン処理で一次粒子平均直径約7nmのシリカ微粒子(RX300:0.5wt%)に変更したこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0034】
(実施例3)
疎水性処理がヘキサメチルジシラザン処理で一次粒子平均直径約20nmのシリカ微粒子(NX90:0.5wt%)に変更したこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0035】
(比較例1)
疎水性処理がヘキサメチルジシラザン処理で一次粒子平均直径約30nmのシリカ微粒子(NAX50:0.5wt%)に変更したこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0036】
(比較例2)
疎水性処理がジメチルシリコーンオイル処理で一次粒子平均直径約12nmのシリカ微粒子(RY200:0.5wt%)に変更したこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0037】
上記の実施例、比較例で得られた撥水性の被膜を有するガラス板につき、水に対する接触角を協和界面科学(株)製の接触角計CAV−V型を使用して測定し、水に対する転落角はガラス板に約5mgの水滴を3滴置いて、0°から傾斜角度を上昇していき、3滴中2滴転がり出す角度を測定して、そのガラス板の転落角として表示した。また、膜の耐久性能評価はガラス板試験片を1200mm×1200mmの板に固定して暴露面として地面と暴露面の角度を約80°で設置し、シャワーノズルから暴露面まで約1500mmの距離で暴露面における直径約600mmのシャワーで1分間あたり10〜11Lのシャワーノズルによる散水を行って、10min、20min、30minの時間毎の水滴付着と水はじきを評価した。このとき、水はじきが良く水滴が付着しないものは○とし、水はじきが悪く水滴になり膜が一部剥離しているものは×と表示した。
【0038】
実施例1〜3、比較例1、2の評価結果を表2に示す。
【0039】
【表2】
【0040】
表2より、(実施例1〜3)試験結果のように、疎水性シリカ微粒子の表面処理においは、ジメチルジクロロシラン処理とヘキサメチルジシラザン処理で、かつ、その時のシリカ微粒子の一次粒子平均直径は20nm以下の微粒子粒子で140°以上の耐久性のある優れた撥水性被膜を得ることができた。
【0041】
(実施例4)
ジメチルジメトキシシランの重量百分率を0.35wt%として、エチルシリケート48の重量百分率を0.05wt%に変更して、さらにノルマルプロピルアルコールをイソプロピルアルコールに変更して重量百分率を98.9wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0042】
(実施例5)
ジメチルジメトキシシランをジメチルジエトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0043】
(比較例3)
ジメチルジメトキシシランをトリメチルメトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0044】
(比較例4)
ジメチルジメトキシシランをメチルトリメトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0045】
(比較例5)
ジメチルジメトキシシランをフェニルトリメトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0046】
(比較例6)
ジメチルジメトキシシランをトリフルオロプロピルトリメトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0047】
(比較例7)
ジメチルジメトキシシランをテトラメトキシシランに変更して重量百分率を0.35wt%としたこと以外は、実施例4と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0048】
実施例1と同様な評価をした実施例4、5、比較例3〜7の評価結果を表3に示す。
【0049】
【表3】
【0050】
表3より、(実施例4、5)、(比較例3〜7)の試験結果のように、官能基が2つのジメチルジメトキシシラン、ジメチルジエトキシシランは150°以上の耐久性のある優れた撥水性被膜を得ることができた。
【0051】
(実施例6)
ジメチルジメトキシシランの重量百分率を0.35wt%として、エチルシリケート48をメチルトリメトキシシランに変更して重量百分率を0.05wt%として、さらにノルマルプロピルアルコールをイソプロピルアルコールに変更して重量百分率を98.9wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0052】
(実施例7)
エチルシリケート48をNプロピルシリケートに変更して重量百分率を0.073wt%として、ノルマルプロピルアルコールの重量百分率を98.912wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0053】
(実施例8)
エチルシリケート48をNブチルシリケートに変更して重量百分率を0.089wt%として、ノルマルプロピルアルコールの重量百分率を98.896wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0054】
(実施例9)
エチルシリケート48をHAS−1に変更して重量百分率を0.080wt%として、ノルマルプロピルアルコールの重量百分率を98.905wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0055】
(実施例10)
疎水性処理がジメチルジクロロシラン処理で一次粒子平均直径約7nmのシリカ微粒子(R976S):0.5重量部、ジメチルジメトキシシラン:0.315重量部、シラン化合物として、HAS−6:0.093重量部、ノルマルプロピルアルコール:98.905重量部、酸触媒(濃硝酸−比重1.38):0.2重量部にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0056】
(実施例11)
エチルシリケート48をエチルシリケート28に変更して重量百分率を0.068wt%として、ノルマルプロピルアルコールの重量百分率を98.917wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0057】
(実施例12)
疎水性処理がジメチルジクロロシラン処理で一次粒子平均直径約7nmのシリカ微粒子(R976S):0.5重量部、ジメチルジメトキシシラン:0.315重量部、シラン化合物として、エチルシリケート48を0.018重量部およびNプロピルシリケート0.037重量部、ノルマルプロピルアルコール:98.931重量部、酸触媒(濃硝酸−比重1.38):0.2重量部にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0058】
(実施例13)
エチルシリケート48のみをエチルシリケート48(重量百分率0.018wt%)とHAS−1(重量百分率0.040wt%)に変更して、ノルマルプロピルアルコールの重量百分率を98.927wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0059】
(比較例8)
ジメチルジメトキシシランの重量百分率を0.40wt%としてエチルシリケート48無くし、ノルマルプロピルアルコールをイソプロピルアルコールに変更して重量百分率を98.9wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0060】
実施例1と同様な評価をした実施例6〜13、比較例8の評価結果を表4に示す。
【0061】
【表4】
【0062】
表4より、(実施例6〜13)のように2官能のジアルコキシシランを必ず含むと、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランのようなテトラアルコキシシランやメチルトリメトキシシランのようなトリメトキシシラン、テトラエトキシシランの加水分解体・オリゴマー液体、また、それらを複合した混合物をシリカ微粒子とガラス等の表面を化学結合により固定するシラン化合物として用いると、140°以上の耐久性のある優れた撥水性被膜を得ることができた。
【0063】
(実施例14)
シリカ微粒子(R976S)の重量百分率を0.2wt%に変更して、ジメチルジメトキシシランの重量百分率を0.126wt%として、さらにエチルシリケート48の重量百分率を0.014wt%、ノルマルプロピルアルコールの重量百分率を99.46wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0064】
(実施例15)
シリカ微粒子(R976S)の重量百分率を4.0wt%に変更して、ジメチルジメトキシシランの重量百分率を2.52wt%として、さらにエチルシリケート48の重量百分率を0.28wt%、ノルマルプロピルアルコールの重量百分率を93.00wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0065】
(比較例9)
シリカ微粒子(R976S)の重量百分率を0.1wt%に変更して、ジメチルジメトキシシランの重量百分率を0.063wt%として、さらにエチルシリケート48の重量百分率を0.007wt%、ノルマルプロピルアルコールの重量百分率を99.63wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0066】
(比較例10)
シリカ微粒子(R976S)の重量百分率を5.0wt%に変更して、ジメチルジメトキシシランの重量百分率を3.15wt%として、さらにエチルシリケート48の重量百分率を0.35wt%、ノルマルプロピルアルコールの重量百分率を91.30wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0067】
実施例1と同様な評価をした実施例14、15、比較例9、10の評価結果を表5に示す。
【0068】
【表5】
【0069】
表5より、(実施例14、15)のようにシリカ微粒子の固形分濃度が0.2〜4.0wt%の範囲において130°以上の耐久性のある優れた撥水性被膜を得ることができた。
【0070】
(実施例16)
ジメチルジメトキシシランの重量百分率を0.2wt%に変更して、エチルシリケート48の重量百分率を0.03wt%にして、さらにノルマルプロピルアルコールの重量百分率を99.07wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0071】
(実施例17)
ジメチルジメトキシシランの重量百分率を1.5wt%に変更して、ノルマルプロピルアルコールの重量百分率を97.77wt%にしたこと以外は、実施例16と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0072】
(実施例18)
ジメチルジメトキシシランの重量百分率を0.5wt%に変更して、エチルシリケート48の重量百分率を0.02wt%にして、さらにノルマルプロピルアルコールの重量百分率を98.78wt%にしたこと以外は、実施例1と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0073】
(実施例19)
エチルシリケート48の重量百分率を1.10wt%にして、ノルマルプロピルアルコールの重量百分率を97.70wt%にしたこと以外は、実施例18と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0074】
(比較例11)
ジメチルジメトキシシランの重量百分率を0.1wt%に変更して、ノルマルプロピルアルコールの重量百分率を99.17wt%にしたこと以外は、実施例16と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0075】
(比較例12)
ジメチルジメトキシシランの重量百分率を1.6wt%に変更して、ノルマルプロピルアルコールの重量百分率を97.67wt%にしたこと以外は、実施例16と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0076】
(比較例13)
エチルシリケート48の重量百分率を0.01wt%にして、ノルマルプロピルアルコールの重量百分率を98.79wt%にしたこと以外は、実施例18と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0077】
(比較例14)
エチルシリケート48の重量百分率を1.20wt%にして、ノルマルプロピルアルコールの重量百分率を97.60wt%にしたこと以外は、実施例18と同様にして常温硬化型撥水性組成物を調製した後、実施例1と同様の工程で撥水性の被膜を有するガラス板を作成した。
【0078】
実施例1と同様な評価をした実施例16〜19、比較例11〜14の評価結果を表6に示す。
【0079】
【表6】
【0080】
【発明の効果】
以上、説明したように、本発明によれば、常温において130°以上の高い撥水性、低い転落角の状態を長時間にわたって維持することのできる優れた撥水性能、耐久性能を有する撥水性被膜を容易に作製することができる。
【図面の簡単な説明】
【図1】 基材と水の接触角を表す図
【図2】 水が転がり出す基材の転落角を表す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a room temperature curable water repellent composition that modifies the surface of glass or the like at room temperature. More specifically, the surface of glass or the like has high water repellency, film durability, antifouling properties, low fluid resistance, and rust prevention. It is a room temperature curable water repellent composition that makes it possible to form a water repellent film imparted with functionality such as properties.
[0002]
[Prior art]
Conventionally, those having an excellent water-repellent coating of 120 ° or more at room temperature were dispersed in 100% by weight of a heat or photocurable resin and 20% by weight of methanol as disclosed in JP-A-8-176451. Of the silane compound represented by the following formula: hydrophobic silica fine particles having a weight of the portion that settles to the bottom at 50% or less of the total weight initially added, It is disclosed as a water repellent resin composition comprising 0.5 to 200% by weight of at least one mixture.
(R6) A (R7) BSi (X) c
(Wherein R6, R7Each independently represents an organic group containing a group capable of reacting with the above-mentioned heat or photocurable resin or an alkyl group having 6 or less carbon atoms, a, b and c each represents an integer of 0 or more, and a + b + c = 4 It is. )
[0003]
However, the water-repellent resin composition comprising a photo-curable resin or a thermosetting resin requires light energy or heat energy. Therefore, if a device that irradiates the energy is not used, it is cured at room temperature and repelled. An aqueous film cannot be obtained. In addition, a water-repellent film having a poor water repellency performance of less than 130 ° is difficult to repel water, and water droplets adhere to it. When dried, dirt in raindrops adheres and the antifouling property is poor. In order to easily obtain a water-repellent coating having an excellent water repellency of 130 ° or more at room temperature, there is a problem in durability and it has not been put into practical use.
[0004]
[Problems to be solved by the invention]
The present invention takes the above-mentioned problems into consideration, and the object is to form a water-repellent film easily at room temperature, with a high water repellency of 130 ° or more, a low falling angle, durability, An object of the present invention is to provide a room temperature curable water repellent composition capable of forming a water repellent coating having excellent antifouling properties.
[0005]
[Means for Solving the Problems]
As a result of intensive research and development to achieve the above-mentioned problems, the surface structure and morphology (surface roughness) on the water-repellent treated surface are controlled, and the agglomeration of hydrophobic silica fine particles is suppressed. Room temperature curing that enables easy surface modification of glass with high water repellency, low falling angle, and durability that can be easily applied by uniformly dispersing to glass and other substrate surfaces at room temperature. The present invention has been completed by successfully realizing the mold water-repellent composition.
[0006]
Of the present inventionRoom temperature curable water repellent compositionIs
Silica fine particles having an average primary particle diameter of 20 nm or less subjected to a hydrophobic surface treatment by dimethyldichlorosilane treatment or hexamethyldisilazane treatment, and a solid content concentration of 0.2 to 4.0 wt% by weight percentage;
At least one selected from dialkoxysilanes represented by the following general formula (1):
Tetraalkoxysilane represented by general formula (2) below, trialkoxysilane represented by general formula (3) below, or hydrolyzed liquid of any alkoxysilane of general formula (2) (3) And at least one silane compound selected from the group consisting of oligomer liquids of alkoxysilanes of general formulas (2) and (3)When,
An acid catalyst and an alcohol solvent,
Of the silica fine particles and the dialkoxysilane represented by the general formula (1)Weight ratio(The silica fine particles / the dialkoxysilane) is 1/3 to 5/2, and the silica fine particlesWhenThe room temperature curable water-repellent composition, wherein the solid content concentration ratio of the silane compound (silica fine particles / silane compound) is 0.95 to 52.
(R1)2Si (OR2)2 (1)
(Wherein R1Is a methyl group, R2Is an alkyl group having 1 to 4 carbon atoms)
Si (OR3)4 (2)
(Wherein R3Is an alkyl group having 1 to 4 carbon atoms)
R4Si (OR5)3 (3)
(Wherein R4Is methyl group, ethyl group, phenyl group, trifluoropropyl groupFromSelected one, R5Is a methyl group or an ethyl group)
It is.
[0007]
Of the present inventionAccording to a preferred embodiment of the room temperature curable water repellent composition, the water repellent coating formed on the substrate surfaceContact angle with water dropsIs 130 °Aboveis there.
[0008]
Of the present inventionAccording to a preferred embodiment of the room temperature curable water repellent composition, in the water repellent coating formed on the substrate surfaceDrop angle of 5 mg of distilled waterIs 20 °Inis there.
[0009]
Of the present inventionMethod for producing water repellent compositeBeforeUsualA water-repellent film is formed on the surface of the substrate by a step of applying the thermosetting water-repellent composition to the surface of the substrate and a step of curing at room temperature after the step.With featuresTo do.
[0010]
Of the present inventionWater repellent compositeIsAboveA water-repellent film was formed on the substrate surface by the manufacturing methodIs a thing.
[0011]
Of the present inventionAccording to a preferred embodiment of the water repellent composite material,The substrate is a glass articleis there.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to easily understand the present invention, embodiments of the present invention will be described specifically and in detail.
[0013]
Silica fine particles used in the room temperature curable water-repellent composition of the present invention are obtained by subjecting the silica surface to a hydrophobic treatment. The hydrophobic treatment is a dimethyldichlorosilane treatment or hexamethyldisilazane treatment that has a high hydrophobicity functional group with a small number of carbon atoms and can be chemically bonded to the surface of silica fine particles, and is dispersed in an alcohol solvent. Since the stability due to chemical bonding on the surface of the silica fine particles is good, high water repellency can be obtained when the film is formed.
[0014]
The average primary particle diameter of the silica fine particles is optimally 20 nm or less to obtain high water repellency. When the primary average diameter exceeds 20 nm, it is difficult to obtain high water repellency when the film is formed, the surface resistance increases, the falling angle increases, and the film is easily peeled off.
[0015]
In addition, it is optimum that the solid content concentration of the silica fine particles is 0.2 to 4.0 wt% in terms of weight percentage in order to obtain high water repellency and durability of the film. When the amount is less than 0.2 wt%, the ratio of the silica fine particles occupying the film surface is reduced, the water repellency is lowered, the surface resistance is increased, the falling angle is increased, and the film is easily peeled. If it exceeds 4.0 wt%, when the silica fine particles are dispersed in an alcohol solvent, it becomes difficult to stabilize in the state of primary particles, and the silica fine particles are likely to aggregate to become secondary particles, thereby reducing water repellency. At the same time, the surface resistance is increased, the falling angle is increased, and the film is easily peeled off.
[0016]
The dialkoxysilane for fixing the silica fine particles and the surface of glass or the like used for the room temperature curable water repellent composition of the present invention by chemical bonding is represented by the following formula (1): dimethyldimethoxysilane, dimethyldimethoxysilane Examples include ethoxysilane, dimethyldipropoxysilane, and dimethyldibutoxysilane.TheThe silane compound is tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxy. Silane, decyltrimethoxysilane, trifluoropropyltrimethoxysilaEtc.Silane compounds,theseHydrolyzed liquid and oligomer liquid. When the dialkoxysilane contains at least one kind of the silane compound, it is suitable for forming a water-repellent film having excellent water repellency and durability.
(R1)2Si (OR2)2 (1)
(Wherein R1Is a methyl group, R2Is an alkyl group having 1 to 4 carbon atoms)
[0017]
In particular, the silane compound is tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane tetraalkoxysilane represented by the general formula (2), or methyltrimethoxysilane represented by the general formula (3), Trialkoxysilanes such as methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, trifluoropropyltrimethoxysilane,2) To (3), a hydrolyzed liquid of alkoxysilane, represented by the general formula (2It is suitable for forming a water-repellent film having excellent water-repellent performance and durability performance to be an oligomer liquid of alkoxysilane of any one of (1) to (3).
Si (OR3)4 (2)
(Wherein R3Is an alkyl group having 1 to 4 carbon atoms)
R4Si (OR5)3 (3)
(Wherein R4Is methyl group, ethyl group, phenyl group, trifluoropropyl groupFromSelected one, R5Is a methyl group or an ethyl group)
[0018]
The weight ratio of the silica fine particles to the dialkoxysilane (the silica fine particles / the dialkoxysilane) is 1/3 to 5/2, and the silica fine particlesWhenA solid content concentration ratio of the silane compound (silica fine particles / silane compound) of 0.95 to 52 is suitable for forming a water-repellent film having excellent water repellency and durability.
[0019]
Even if either the dialkoxysilane or the silane compound is too small relative to the silica fine particles, the chemical bond between the silica fine particles and the surface of the glass or the like becomes weak, and the water repellency has excellent water repellency and durability. A film cannot be obtained. In addition, even if the dialkoxysilane and the silane compound are too much with respect to the silica fine particles, the ratio of the silica fine particles occupying the coating surface is reduced, the surface resistance is large and the tumbling angle is high, and the excellent water repellency performance A water-repellent film having durability can not be obtained.
[0020]
Even if the dialkoxysilane is used alone, it is possible to obtain a film having initial water repellency, but it is difficult to obtain a film having durability.
[0021]
The alcohol solvent used in the room temperature curable water repellent composition of the present invention is not particularly limited, but the silica fine particles and the surface of glass or the like in the surface coating are chemically synthesized by polycondensation by hydrolysis of the dialkoxysilane and the silane compound. When bonding, those having a low boiling point and high volatility make the silica fine particles easily gather on the film surface, the chemical bond between the silica fine particles and the surface of glass or the like is reduced, and if the boiling point is too high, drying or the Alcohols having a boiling point of about 70 to 150 °, such as methanol, ethanol, isopropyl alcohol, normal propyl alcohol, and butanol, are suitable because polycondensation by hydrolysis of dialkoxysilane and the silane compound takes time.
[0022]
The catalyst used in the room temperature curable water repellent composition of the present invention is limited to acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid and acetic acid having a catalytic action, and the silica fine particles and the surface of glass or the like are combined with the dialkoxysilane and the above. When chemically bonding by polycondensation by hydrolysis of a silane compound, the addition of an acid catalyst can accelerate the reaction and cure the film. At this time, when the concentration of the acid catalyst is concentrated nitric acid-specific gravity of 1.38, the alcohol solvent is preferably isopropyl alcohol, and the weight percentage is preferably 0.05 to 1.50 wt%. However, in the case of normal propyl alcohol, the weight percentage is preferably 0.05 to 0.60 wt%.
[0023]
Further, even when an alkaline catalyst such as aqueous ammonia is used, it is difficult to obtain a water-repellent coating by promoting polycondensation by hydrolysis of the dialkoxysilane and the silane compound to promote film curing.
[0024]
The preparation method of the room temperature curable water repellent composition of the present invention is to prepare an alcohol dispersion solvent of about 1.0 to 5.0 wt% with the silica fine particles, prepare a dispersion by ultrasonic dispersion for about 5 hours, and disperse the dispersion. When the liquid, the dialkoxysilane, the silane compound, the alcohol solvent, and the acid catalyst are blended in this order and stirred for about 10 to 30 minutes, they can be easily blended.
[0025]
The base material on which the water-repellent film made of the room temperature curable water-repellent composition of the present invention is formed can be used for various materials, for example, inorganic base materials such as glass, mirrors and tiles, acrylic, polypropylene, and polycarbonate. Examples thereof include resin base materials such as nate and artificial marble.
[0026]
Applications of the room temperature curable water-repellent composition of the present invention include automobile windows, window glass for building materials, tiles for building materials, traffic signs, sound insulation walls for roads, outdoor lighting covers, solar cell covers, solar hot water collecting covers, indoors It can be used for lighting covers, road reflectors, vehicle mirrors, camera lenses, bathroom tiles and artificial marble walls, bathroom mirrors, etc., and is particularly excellent in preventing water landing.
[0027]
As a method for applying the room temperature curable water repellent composition of the present invention, a coating method such as spray coating, spin coating, dip coating, and flow coating can be applied.
[0028]
The water-repellent coating formed by the room temperature curable water-repellent composition of the present invention includes the silica fine particles, the dialkoxysilane, the silane compound, the solvent for adjusting the solute, the selection and combination of the acid catalyst, the mixing ratio, and the mixing and dispersing method. A film excellent in water repellency, durability, adhesion, and weather resistance can be obtained by selecting in consideration of the coating conditions of the treatment liquid, the drying conditions, the base treatment, and the like.
[0029]
【Example】
Next, specific examples will be described from the examples.
[0030]
The raw materials used this time are shown in Table 1.
[0031]
[Table 1]
[0032]
Example 1
Silica fine particles (R976S: 0.5 wt%) having an average primary particle diameter of about 7 nm by hydrophobic treatment with dimethyldichlorosilane treatment, the dialkoxysilane (dimethyldimethoxysilane: 0.315 wt%), the silane compound (ethyl silicate 48: 0.035 wt%), alcohol solvent (normal propyl alcohol: 98.95 wt%), acid catalyst (concentrated nitric acid-specific gravity 1.38: 0.2 wt%), 2.0 wt% of the silica fine particles. A normal propyl alcohol dispersion liquid is prepared and sealed in a PE container, and a liquid dispersed for about 5 hours by an ultrasonic cleaning apparatus using a Phoenix series 26 kHz ultrasonic oscillator manufactured by Kaijo Co., Ltd. is prepared. Using this dispersion, the hydrophobic silica dispersion, the dialkoxysilane, the silane compound, the alcohol solvent, and the acid catalyst were prepared in this order and stirred for about 10 minutes to obtain a room temperature curable water repellent composition. Obtained. This composition was applied to the tin-unattached surface of the evaluation sample by flow coating to prepare a glass plate having a water-repellent coating. In addition, the evaluation sample is a soda-lime glass plate with a size of 65 mm x 150 mm x 2 mm, which is treated with oil film, washed with running water with a sponge, washed with distilled water, air blown, and naturally dried. used.
[0033]
(Example 2)
A room temperature curable water repellent composition was prepared in the same manner as in Example 1 except that the hydrophobic treatment was changed to silica fine particles (RX300: 0.5 wt%) with an average primary particle diameter of about 7 nm by hexamethyldisilazane treatment. After that, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0034]
(Example 3)
A room-temperature-curable water-repellent composition was prepared in the same manner as in Example 1 except that the hydrophobic treatment was changed to silica fine particles (NX90: 0.5 wt%) with an average primary particle diameter of about 20 nm by hexamethyldisilazane treatment. After that, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0035]
(Comparative Example 1)
A room temperature-curing water-repellent composition was prepared in the same manner as in Example 1 except that the hydrophobic treatment was changed to silica fine particles (NAX50: 0.5 wt%) with an average primary particle diameter of about 30 nm by hexamethyldisilazane treatment. After that, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0036]
(Comparative Example 2)
A room-temperature-curable water-repellent composition was prepared in the same manner as in Example 1 except that the hydrophobic treatment was changed to silica fine particles (RY200: 0.5 wt%) having an average primary particle diameter of about 12 nm by dimethylsilicone oil treatment. Thereafter, a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0037]
About the glass plate which has the water-repellent film obtained by said Example and comparative example, the contact angle with respect to water was measured using Kyowa Interface Science Co., Ltd. contact angle meter CAV-V type, The drop angle was expressed as the drop angle of the glass plate by placing 3 drops of water of about 5 mg on the glass plate, increasing the tilt angle from 0 °, and measuring the angle at which 2 drops of 3 drops roll out. In addition, the durability performance evaluation of the membrane was performed by fixing a glass plate test piece to a 1200 mm × 1200 mm plate and setting the exposed surface as an exposed surface at an angle of about 80 ° from the shower nozzle to the exposed surface at a distance of about 1500 mm. Water spraying with a shower nozzle of 10 to 11 L per minute was performed in a shower having a diameter of about 600 mm on the exposed surface, and water droplet adhesion and water repellency were evaluated every 10 min, 20 min, and 30 min. At this time, the case where water repellency was good and water droplets were not attached was indicated as ◯, and the case where water repellency was poor and water droplets were partially peeled off was indicated as x.
[0038]
The evaluation results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 2.
[0039]
[Table 2]
[0040]
From Table 2, (Examples 1 to 3) As shown in the test results, the surface treatment of the hydrophobic silica fine particles was performed by dimethyldichlorosilane treatment and hexamethyldisilazane treatment, and the primary particle average diameter of the silica fine particles at that time Was able to obtain an excellent water-repellent coating having a durability of 140 ° or more with fine particles of 20 nm or less.
[0041]
Example 4
The weight percentage of dimethyldimethoxysilane was changed to 0.35 wt%, the weight percentage of ethyl silicate 48 was changed to 0.05 wt%, and normal propyl alcohol was changed to isopropyl alcohol to make the weight percentage 98.9 wt%. Except for the above, after preparing a room temperature curable water repellent composition in the same manner as in Example 1, a glass plate having a water repellent film was prepared in the same manner as in Example 1.
[0042]
(Example 5)
A room temperature-curable water-repellent composition was prepared in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to dimethyldiethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was produced in the process.
[0043]
(Comparative Example 3)
The same process as in Example 1, after preparing a room temperature curable water repellent composition in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to trimethylmethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was prepared.
[0044]
(Comparative Example 4)
A room temperature curable water repellent composition was prepared in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to methyltrimethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was produced in the process.
[0045]
(Comparative Example 5)
A room temperature curable water repellent composition was prepared in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to phenyltrimethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was produced in the process.
[0046]
(Comparative Example 6)
A room temperature curable water repellent composition was prepared in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to trifluoropropyltrimethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was prepared in the same process.
[0047]
(Comparative Example 7)
The same process as in Example 1 was carried out after preparing a room temperature curable water repellent composition in the same manner as in Example 4 except that dimethyldimethoxysilane was changed to tetramethoxysilane and the weight percentage was 0.35 wt%. A glass plate having a water-repellent coating was prepared.
[0048]
Table 3 shows the evaluation results of Examples 4 and 5 and Comparative Examples 3 to 7 that were evaluated in the same manner as Example 1.
[0049]
[Table 3]
[0050]
From Table 3, as in the test results of (Examples 4 and 5) and (Comparative Examples 3 to 7), dimethyldimethoxysilane having two functional groups and dimethyldiethoxysilane have excellent durability of 150 ° or more. A water-repellent coating could be obtained.
[0051]
(Example 6)
The weight percentage of dimethyldimethoxysilane was changed to 0.35 wt%, ethyl silicate 48 was changed to methyltrimethoxysilane to change the weight percentage to 0.05 wt%, and normal propyl alcohol was changed to isopropyl alcohol to give a weight percentage of 98.%. A normal temperature curable water repellent composition was prepared in the same manner as in Example 1 except that the content was 9 wt%, and then a glass plate having a water repellent film was prepared in the same steps as in Example 1.
[0052]
(Example 7)
Change the ethyl silicate 48 to N propyl silicate to 0.073 weight percentwThe normal temperature curable water repellent composition was prepared in the same manner as in Example 1 except that the weight percentage of normal propyl alcohol was changed to 98.912 wt% as t%. A glass plate having the following coating was prepared.
[0053]
(Example 8)
Change the ethyl silicate 48 to N butyl silicate to 0.089 weight percentwA normal temperature curable water repellent composition was prepared in the same manner as in Example 1 except that the weight percentage of normal propyl alcohol was changed to 98.896 wt% as t%. A glass plate having the following coating was prepared.
[0054]
Example 9
Change the ethyl silicate 48 to HAS-1 and change the weight percentage to 0.080wA normal temperature curable water repellent composition was prepared in the same manner as in Example 1 except that the weight percentage of normal propyl alcohol was 98.905 wt% as t%. A glass plate having the following coating was prepared.
[0055]
(Example 10)
Hydrophobic treatment is dimethyldichlorosilane treatment, silica fine particles (R976S) having an average primary particle diameter of about 7 nm: 0.5 parts by weight, dimethyldimethoxysilane: 0.315 parts by weight, HAS-6: 0.093 weight by weight as a silane compound Parts, normal propyl alcohol: 98.905 parts by weight, acid catalyst (concentrated nitric acid-specific gravity 1.38): 0.2 parts by weight After the preparation, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0056]
(Example 11)
The room temperature curable water repellent composition was the same as in Example 1 except that the ethyl silicate 48 was changed to the ethyl silicate 28, the weight percentage was changed to 0.068 wt%, and the weight percentage of normal propyl alcohol was changed to 98.917 wt%. After preparing the product, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0057]
(Example 12)
Hydrophobic treatment treated with dimethyldichlorosilane and silica fine particles (R976S) having an average primary particle diameter of about 7 nm: 0.5 parts by weight, dimethyldimethoxysilane: 0.315 parts by weight, 0.018 weight of ethyl silicate 48 as a silane compound And N-propyl silicate 0.037 parts by weight, normal propyl alcohol: 98.931 parts by weight, acid catalyst (concentrated nitric acid-specific gravity 1.38): 0.2 parts by weight After preparing the room temperature curable water repellent composition, a glass plate having a water repellent film was prepared in the same manner as in Example 1.
[0058]
(Example 13)
Except that only ethyl silicate 48 was changed to ethyl silicate 48 (weight percentage 0.018 wt%) and HAS-1 (weight percentage 0.040 wt%), and the weight percentage of normal propyl alcohol was changed to 98.927 wt%. After preparing a room-temperature-curable water-repellent composition in the same manner as in Example 1, a glass plate having a water-repellent film was prepared in the same steps as in Example 1.
[0059]
(Comparative Example 8)
Room temperature curing type in the same manner as in Example 1 except that the weight percentage of dimethyldimethoxysilane was changed to 0.40 wt%, the ethyl silicate 48 was eliminated, and the normal percentage alcohol was changed to isopropyl alcohol to change the weight percentage to 98.9 wt%. After preparing the water-repellent composition, a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0060]
Table 4 shows the evaluation results of Examples 6 to 13 and Comparative Example 8 that were evaluated in the same manner as in Example 1.
[0061]
[Table 4]
[0062]
From Table 4, when bifunctional dialkoxysilane is necessarily included as in (Examples 6 to 13), tetraalkoxysilane such as tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and methyltrimethoxysilane are used. When a hydrolyzate / oligomer liquid of trimethoxysilane or tetraethoxysilane, or a mixture of them is used as a silane compound that fixes the surface of silica fine particles and glass or the like by chemical bonding, it has a durability of 140 ° or more. An excellent water-repellent coating could be obtained.
[0063]
(Example 14)
The weight percentage of silica fine particles (R976S) was changed to 0.2 wt%, the weight percentage of dimethyldimethoxysilane was changed to 0.126 wt%, the weight percentage of ethyl silicate 48 was 0.014 wt%, and the weight percentage of normal propyl alcohol A normal temperature curable water-repellent composition was prepared in the same manner as in Example 1 except that the amount was 99.46 wt%, and then a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0064]
(Example 15)
The weight percentage of silica fine particles (R976S) was changed to 4.0 wt%, the weight percentage of dimethyldimethoxysilane was changed to 2.52 wt%, the weight percentage of ethyl silicate 48 was 0.28 wt%, and the weight percentage of normal propyl alcohol. A normal temperature curable water-repellent composition was prepared in the same manner as in Example 1 except that the amount was changed to 93.00 wt%, and then a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0065]
(Comparative Example 9)
The weight percentage of silica fine particles (R976S) was changed to 0.1 wt%, the weight percentage of dimethyldimethoxysilane was changed to 0.063 wt%, the weight percentage of ethylsilicate 48 was 0.007 wt%, and the weight percentage of normal propyl alcohol A normal temperature curable water-repellent composition was prepared in the same manner as in Example 1 except that the amount was changed to 99.63 wt%, and then a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0066]
(Comparative Example 10)
The weight percentage of silica fine particles (R976S) was changed to 5.0 wt%, the weight percentage of dimethyldimethoxysilane was changed to 3.15 wt%, the weight percentage of ethyl silicate 48 was 0.35 wt%, and the weight percentage of normal propyl alcohol. A normal temperature curable water-repellent composition was prepared in the same manner as in Example 1 except that the content was changed to 91.30 wt%, and then a glass plate having a water-repellent film was prepared in the same process as in Example 1.
[0067]
Table 5 shows the evaluation results of Examples 14 and 15 and Comparative Examples 9 and 10, which were evaluated in the same manner as in Example 1.
[0068]
[Table 5]
[0069]
From Table 5, an excellent water-repellent coating having a durability of 130 ° or more can be obtained when the solid content concentration of the silica fine particles is in the range of 0.2 to 4.0 wt% as in (Examples 14 and 15). It was.
[0070]
(Example 16)
Example 1 except that the weight percentage of dimethyldimethoxysilane was changed to 0.2 wt%, the weight percentage of ethyl silicate 48 was 0.03 wt%, and the weight percentage of normal propyl alcohol was 99.07 wt%. After preparing a room-temperature-curable water-repellent composition in the same manner as in Example 1, a glass plate having a water-repellent film was prepared in the same steps as in Example 1.
[0071]
(Example 17)
A room temperature curable water repellent composition was prepared in the same manner as in Example 16 except that the weight percentage of dimethyldimethoxysilane was changed to 1.5 wt% and the weight percentage of normal propyl alcohol was changed to 97.77 wt%. Thereafter, a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0072]
(Example 18)
Example 1 except that the weight percentage of dimethyldimethoxysilane was changed to 0.5 wt%, the weight percentage of ethyl silicate 48 was 0.02 wt%, and the weight percentage of normal propyl alcohol was 98.78 wt%. After preparing a room-temperature-curable water-repellent composition in the same manner as in Example 1, a glass plate having a water-repellent film was prepared in the same steps as in Example 1.
[0073]
(Example 19)
After preparing the room temperature curable water-repellent composition in the same manner as in Example 18 except that the weight percentage of ethyl silicate 48 was 1.10 wt% and the weight percentage of normal propyl alcohol was 97.70 wt%, A glass plate having a water-repellent coating was prepared in the same process as in Example 1.
[0074]
(Comparative Example 11)
A room temperature curable water repellent composition was prepared in the same manner as in Example 16 except that the weight percentage of dimethyldimethoxysilane was changed to 0.1 wt% and the weight percentage of normal propyl alcohol was changed to 99.17 wt%. Thereafter, a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0075]
(Comparative Example 12)
A room temperature curable water repellent composition was prepared in the same manner as in Example 16 except that the weight percentage of dimethyldimethoxysilane was changed to 1.6 wt% and the weight percentage of normal propyl alcohol was changed to 97.67 wt%. Thereafter, a glass plate having a water-repellent film was prepared in the same manner as in Example 1.
[0076]
(Comparative Example 13)
After preparing the room temperature curable water-repellent composition in the same manner as in Example 18 except that the weight percentage of ethyl silicate 48 was 0.01 wt% and the weight percentage of normal propyl alcohol was 98.79 wt%, A glass plate having a water-repellent coating was prepared in the same process as in Example 1.
[0077]
(Comparative Example 14)
After preparing the room temperature curable water-repellent composition in the same manner as in Example 18 except that the weight percentage of ethyl silicate 48 was 1.20 wt% and the weight percentage of normal propyl alcohol was 97.60 wt%, A glass plate having a water-repellent coating was prepared in the same process as in Example 1.
[0078]
Table 6 shows the evaluation results of Examples 16 to 19 and Comparative Examples 11 to 14 that were evaluated in the same manner as Example 1.
[0079]
[Table 6]
[0080]
【The invention's effect】
As described above, according to the present invention, the water-repellent coating having excellent water repellency and durability capable of maintaining a high water repellency of 130 ° or more at room temperature and a low falling angle state for a long time. Can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the contact angle between a substrate and water
FIG. 2 is a diagram showing the falling angle of a base material from which water rolls out.
Claims (6)
一般式が下式(1)で表されるジアルコキシシランの中から選ばれた少なくとも1種と、
一般式が下式(2)で表されるテトラアルコキシシラン、一般式が下式(3)で表されるトリアルコキシシラン、一般式(2)(3)のいずれかのアルコキシシランの加水分解液体、一般式(2)(3)のいずれかのアルコキシシランのオリゴマー液体、からなる群から選ばれた少なくとも1種のシラン化合物と、
酸触媒と、アルコール溶媒と、を含み、
前記シリカ微粒子と前記一般式(1)で表されるジアルコキシシランの重量比(前記シリカ微粒子/前記ジアルコキシシラン)が1/3〜5/2であり、かつ、前記シリカ微粒子と前記シラン化合物の固形分濃度比(前記シリカ微粒子/前記シラン化合物)が0.95〜52であることを特徴とする常温硬化型撥水性組成物。
(R1)2Si(OR2)2 (1)
(式中、R1はメチル基、R2は炭素数1〜4のアルキル基である)
Si(OR3)4 (2)
(式中、R3は炭素数1〜4のアルキル基である)
R4Si(OR5)3 (3)
(式中、R4はメチル基、エチル基、フェニル基、トリフルオロプロピル基、から選ばれた1つ、R5はメチル基またはエチル基である)Silica fine particles having an average primary particle diameter of 20 nm or less subjected to a hydrophobic surface treatment by dimethyldichlorosilane treatment or hexamethyldisilazane treatment, and a solid content concentration of 0.2 to 4.0 wt% by weight percentage;
At least one selected from dialkoxysilanes represented by the following general formula (1):
Tetraalkoxysilane represented by general formula (2) below, trialkoxysilane represented by general formula (3) below, or hydrolyzed liquid of any alkoxysilane of general formula (2) (3) At least one silane compound selected from the group consisting of oligomer liquids of alkoxysilanes of general formulas (2) and (3) ,
An acid catalyst and an alcohol solvent,
The weight ratio of the silica fine particles to the dialkoxysilane represented by the general formula (1) (the silica fine particles / the dialkoxysilane) is 1/3 to 5/2, and the silica fine particles and the silane compound The solid content concentration ratio (the silica fine particles / the silane compound) of 0.95 to 52 is a room temperature curable water repellent composition.
(R 1 ) 2 Si (OR 2 ) 2 (1)
(Wherein R 1 is a methyl group and R 2 is an alkyl group having 1 to 4 carbon atoms)
Si (OR 3 ) 4 (2)
(Wherein R 3 is an alkyl group having 1 to 4 carbon atoms)
R 4 Si (OR 5 ) 3 (3)
(Wherein R 4 is one selected from a methyl group, an ethyl group, a phenyl group, and a trifluoropropyl group , and R 5 is a methyl group or an ethyl group)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311519A JP4172171B2 (en) | 2001-10-09 | 2001-10-09 | Room temperature curable water repellent composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311519A JP4172171B2 (en) | 2001-10-09 | 2001-10-09 | Room temperature curable water repellent composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003119384A JP2003119384A (en) | 2003-04-23 |
JP4172171B2 true JP4172171B2 (en) | 2008-10-29 |
Family
ID=19130340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001311519A Expired - Fee Related JP4172171B2 (en) | 2001-10-09 | 2001-10-09 | Room temperature curable water repellent composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4172171B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102432186A (en) * | 2011-09-21 | 2012-05-02 | 叶旭林 | Automobile glass windshield |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004002633T2 (en) † | 2003-08-15 | 2007-08-16 | Hoden Seimitsu Kako Kenkyusho Co., Ltd., Atsugi | Chromium-free agent for the treatment of metal surfaces |
JP4778714B2 (en) * | 2005-02-22 | 2011-09-21 | 株式会社Snt | Coating solutions and their use |
JP2007138144A (en) * | 2005-10-18 | 2007-06-07 | Hitachi Chem Co Ltd | Silica-based coated film-forming composition |
JP5291293B2 (en) * | 2006-02-08 | 2013-09-18 | 日華化学株式会社 | Hydrophobic coating film forming composition, hydrophobic coating film, method for forming the same, and functional material including the same |
JP3857720B1 (en) * | 2006-02-28 | 2006-12-13 | コニシ株式会社 | Water repellent for textile products |
JP4654443B2 (en) * | 2006-06-28 | 2011-03-23 | 国立大学法人 香川大学 | Manufacturing method of solar energy utilization device |
JP2008050380A (en) * | 2006-08-22 | 2008-03-06 | Snt Co | Water repellent and use thereof |
JP5219597B2 (en) * | 2007-04-25 | 2013-06-26 | 大同塗料株式会社 | Water absorption prevention material for civil engineering and building materials |
JP5441891B2 (en) * | 2007-05-18 | 2014-03-12 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Curable coating composition providing articles coated with antistatic and abrasion resistance |
JP5194563B2 (en) * | 2007-05-28 | 2013-05-08 | 信越化学工業株式会社 | Scratch resistant coating composition and coated article |
JP5358935B2 (en) * | 2007-12-06 | 2013-12-04 | 小川 一文 | Water and oil repellent and antifouling treatment agent, method for producing the same, article produced using the same, method for producing the same, and product equipped with the article |
JP2010100819A (en) * | 2008-09-25 | 2010-05-06 | Panasonic Electric Works Co Ltd | Method of inhibiting fingerprint soil, anti-fingerprint coating material composition, and coated article thereof |
JP2010121021A (en) * | 2008-11-19 | 2010-06-03 | Soft99 Corporation | Water-repellent treatment composition for non-smooth surface |
WO2011116005A1 (en) * | 2010-03-15 | 2011-09-22 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
CN102199395A (en) * | 2010-03-23 | 2011-09-28 | 上海沪正纳米科技有限公司 | Colorless transparent self-cleaning paint and preparation method thereof |
JP2012213689A (en) * | 2011-03-31 | 2012-11-08 | Panasonic Corp | Water treating material and water treating apparatus |
JP2012214676A (en) * | 2011-03-31 | 2012-11-08 | Nisshin Steel Co Ltd | Coated metal plate and method of manufacturing the same |
JP6269255B2 (en) * | 2014-03-31 | 2018-01-31 | 凸版印刷株式会社 | Packaging materials and packaging containers |
JP6354491B2 (en) * | 2014-09-24 | 2018-07-11 | 凸版印刷株式会社 | Packaging materials and packaging containers |
CN105440747B (en) * | 2016-01-26 | 2018-05-08 | 东南大学 | A kind of super-hydrophobic nano coating, production method and the coating of super-hydrophobic nano coating |
JP6849475B2 (en) * | 2017-02-22 | 2021-03-24 | 株式会社ソフト99コーポレーション | Water repellent |
-
2001
- 2001-10-09 JP JP2001311519A patent/JP4172171B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102432186A (en) * | 2011-09-21 | 2012-05-02 | 叶旭林 | Automobile glass windshield |
Also Published As
Publication number | Publication date |
---|---|
JP2003119384A (en) | 2003-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4172171B2 (en) | Room temperature curable water repellent composition | |
US9461185B2 (en) | Anti-reflective and anti-soiling coatings with self-cleaning properties | |
US7744953B2 (en) | Method for forming self-cleaning coating comprising hydrophobically-modified particles | |
JP5954716B2 (en) | Self-cleaning antireflective and antifouling coating | |
JP5347124B2 (en) | Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display | |
JP3599358B2 (en) | Composition for coating | |
US20080026163A1 (en) | Treatment For Forming Waterdrop Slidable Films And Process For Forming Waterdrop Slidable Films | |
JP2003147340A (en) | Super water repellent and super-water-repellent material made by using it | |
KR20150021896A (en) | Hollow silica particles, method of manufacturing the same, composition including the same and sheet with inner cavities | |
JP2017160117A (en) | Silica particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure | |
WO2017073726A1 (en) | Stain-proof article and production method for stain-proof article | |
US7781064B2 (en) | Substrate coated with a coating | |
JP2002097192A (en) | Compound for surface treatment agent, surface treatment agent, functional glass and method for producing the same | |
JPH10140047A (en) | Additive for powder coating and powder coating composition | |
KR101772549B1 (en) | Insulation coating composition and manufacturing method thereof | |
JP4826226B2 (en) | Treatment agent for obtaining water slidable film and method for producing water slidable film | |
JP4876424B2 (en) | Manufacturing method for water slidable articles | |
JP3992949B2 (en) | Coating liquid for forming sol-gel film for base film having pit-like or uneven surface shape, and method for obtaining sol-gel film for base film | |
JPH10245505A (en) | Coating film resistant to rain flow mark, coating composition, method for forming coating film and coated article | |
JP3961349B2 (en) | High durability sliding coating and method for producing the same | |
JP3929321B2 (en) | Highly slidable coating and method for producing the same | |
JP3929328B2 (en) | High water-sliding coating and coating method thereof | |
JP4152769B2 (en) | Method for producing highly durable water slidable coating | |
JP3298439B2 (en) | Photocatalytic hydrophilic coating liquid | |
JP3929313B2 (en) | High lubricity coating and coating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140822 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |