WO2019139085A1 - 人工肺の製造方法 - Google Patents

人工肺の製造方法 Download PDF

Info

Publication number
WO2019139085A1
WO2019139085A1 PCT/JP2019/000545 JP2019000545W WO2019139085A1 WO 2019139085 A1 WO2019139085 A1 WO 2019139085A1 JP 2019000545 W JP2019000545 W JP 2019000545W WO 2019139085 A1 WO2019139085 A1 WO 2019139085A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
blood
fiber membrane
artificial lung
polymer compound
Prior art date
Application number
PCT/JP2019/000545
Other languages
English (en)
French (fr)
Inventor
隆行 城戸
崇王 安齊
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019564739A priority Critical patent/JP7241034B2/ja
Publication of WO2019139085A1 publication Critical patent/WO2019139085A1/ja
Priority to US16/920,877 priority patent/US11305041B2/en
Priority to US17/693,630 priority patent/US11779690B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1623Disposition or location of membranes relative to fluids
    • A61M1/1625Dialyser of the outside perfusion type, i.e. blood flow outside hollow membrane fibres or tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1645Constructional aspects thereof with mechanically linked peristaltic dialysis fluid pumps one upstream, the other one downstream of the dialyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3672Means preventing coagulation
    • A61M1/3673Anticoagulant coating, e.g. Heparin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0225Carbon oxides, e.g. Carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • A61M2207/10Device therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/68Biocompatibility of parts of the module

Definitions

  • the present invention relates to a method of producing an artificial lung. More particularly, the present invention relates to a method for producing a hollow fiber external blood perfusion oxygenator for removing carbon dioxide in blood and adding oxygen in blood in extracorporeal blood circulation, and an artificial lung.
  • a hollow fiber type artificial lung using a porous membrane is generally and widely used as an extracorporeal circulation device at the time of open heart surgery for heart disease and an artificial heart-lung device for circulatory support.
  • the membrane-type artificial lung mainly uses a hollow fiber membrane, and performs gas exchange of blood through the hollow fiber membrane.
  • As a method of perfusion of blood to an artificial lung blood is flowed to the inside of the hollow fiber membrane and gas is flowed to the outside of the hollow fiber membrane, and blood is flowed to the outside of the hollow fiber membrane conversely.
  • the inner surface or the outer surface of the hollow fiber membrane is in contact with the blood, so the inner surface or the outer surface of the hollow fiber membrane in contact with the blood affects the adhesion (adhesion) or activation of the platelet system.
  • adhesion adhesion
  • activation of the platelet system There is a risk of giving.
  • an external perfusion type artificial lung in which the outer surface of the hollow fiber membrane is in contact with the blood causes disturbance in the blood flow, and thus easily affects adhesion (adhesion) and activation of the platelet system.
  • the external alkylation type of alkoxyalkyl (meth) acrylate as an antithrombogenic material is conventionally used by utilizing the suppression and prevention effect of adhesion and activation of platelet type of alkoxyalkyl (meth) acrylate. It was used to coat hollow fiber membranes for artificial lungs.
  • a coating solution is prepared by dissolving an outer surface or outer surface layer of a hollow fiber membrane in a mixed solvent of water, methanol and ethanol with a polymer consisting mainly of alkoxyalkyl (meth) acrylate. And a coating method of drying after coating with
  • the coating solution penetrates from the outer surface of the hollow fiber membrane to the pores (openings) during the coating, and a part of the inner wall of the pore near the blood channel side It is coated with an antithrombotic polymer compound (antithrombogenic polymer material).
  • an antithrombotic polymer compound antithrombogenic polymer material
  • the present inventors prepared a colloid solution containing an antithrombogenic polymer compound having a predetermined particle size, and used a method of coating the surface of a hollow fiber membrane using the colloid solution. I tried. However, according to the method, it has been found that a new problem arises that it is difficult to coat a sufficient amount of the antithrombogenic polymer compound on the surface of the hollow fiber membrane.
  • the present invention has been made in view of the above circumstances, and in a method of producing an artificial lung using a colloid solution containing an antithrombogenic polymer compound, the coating amount of the antithrombogenic polymer compound on a hollow fiber membrane
  • the purpose is to provide a means by which
  • the present inventors conducted intensive studies to solve the above problems, and as a result, after filling the blood channel with a colloid solution of the antithrombogenic polymer compound, the hollow fiber membrane was moved while moving the colloid solution. By coating, it turned out that the above-mentioned subject could be solved and completed the present invention.
  • the above object is a hollow fiber comprising a plurality of porous hollow fiber membranes for gas exchange having an outer surface, an inner surface forming a lumen, and an opening communicating the outer surface with the inner surface.
  • a membrane bundle is accommodated in a housing, and the outside of the hollow fiber membrane bundle in the housing is a blood flow channel, and a blood inlet and a blood outlet are respectively provided on the upstream side and the downstream side of the blood flow channel.
  • FIG. 1 is a cross-sectional view showing an embodiment of a hollow fiber external blood perfusion oxygenator according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a hollow fiber membrane used for an external blood-perfusion-type artificial lung according to the present invention.
  • FIG. 3 is a cross-sectional view showing another embodiment of a hollow fiber external blood perfusion oxygenator according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a front view showing an example of an inner cylindrical member used for the hollow fiber external blood perfusion oxygenator according to the present invention.
  • 6 is a central longitudinal cross-sectional view of the inner cylindrical member shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 8 is a graph showing the amount of coating in the example and the comparative example.
  • FIG. 9 is a graph showing the colloid utilization efficiency in the example and the comparative example.
  • the present invention is a hollow fiber membrane bundle comprising a plurality of porous hollow fiber membranes for gas exchange having an outer surface, an inner surface forming a lumen, and an opening communicating the outer surface with the inner surface.
  • Is contained in a housing, and the outside of the hollow fiber membrane bundle in the housing is a blood flow channel, and has a blood inlet and a blood outlet respectively on the upstream side and the downstream side of the blood flow channel.
  • a method of artificial oxygenation comprising filling the blood flow path with a colloidal solution containing an antithrombotic polymer compound and moving the colloidal solution between the blood inlet and the blood outlet. It relates to the manufacturing method.
  • the coating amount of the antithrombogenic polymer compound on the hollow fiber membrane can be increased.
  • the blood channel is filled with a colloid liquid containing an antithrombogenic polymer compound, and the colloid liquid is used as a blood inlet and a blood flow.
  • the coating amount of the antithrombotic polymer compound can be increased.
  • colloidal particles particle surface
  • the surface of the hollow fiber membrane in the colloidal solution containing the antithrombogenic polymer compound are negatively charged.
  • the colloidal particles repel the other colloidal particles present around them and also repel the surface of the hollow fiber membrane, so that a sufficient amount of colloidal particles (antithrombogenic polymer compound) is formed on the surface of the hollow fiber membrane ) Was difficult to coat.
  • the colloidal particles can collide with the surface of the hollow fiber membrane by filling the blood flow path with a colloidal solution and moving the colloidal solution between the blood inlet and the blood outlet.
  • the colloidal particles collide with the surface of the hollow fiber membrane with energy larger than the electrical repulsive force, the colloidal particles are easily fixed to the surface of the hollow fiber membrane, and the coating of the antithrombogenic polymer compound It is believed that the amount will increase.
  • the number of times the colloidal particles contact the surface of the hollow fiber membrane can be increased more than when the colloidal solution is allowed to stand. Therefore, even when using a colloidal solution having a low concentration of colloid, it is possible to coat the surface of the hollow fiber membrane with a sufficient amount of the antithrombogenic polymer compound (ie, in the colloidal solution). It is possible to improve the utilization efficiency of colloids).
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurements of operations and physical properties etc. are conducted under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • One embodiment of the present invention is a hollow comprising a plurality of porous hollow fiber membranes for gas exchange having an outer surface, an inner surface forming a lumen, and an opening communicating the outer surface with the inner surface.
  • a tufted membrane bundle is housed in a housing, and an outer side of the hollow fiber membrane bundle in the housing is a blood flow channel, and a blood inlet and a blood outlet are provided on the upstream side and the downstream side of the blood flow channel respectively
  • a method for producing a lung comprising filling the blood flow channel with a colloid solution containing an antithrombotic polymer compound, and moving the colloid solution between the blood inlet and the blood outlet. It is a manufacturing method of an artificial lung.
  • FIG. 1 is a cross-sectional view of an embodiment of a hollow fiber external blood perfusion oxygenator according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a porous hollow fiber membrane for gas exchange used in a hollow fiber outer blood perfusion oxygenator according to the present invention.
  • FIG. 3 is a cross-sectional view of another embodiment of the artificial lung according to the present invention.
  • the artificial lung 1 houses a large number of porous hollow fiber membranes 3 for gas exchange in a housing 2, blood flows on the outer surface side of the hollow fiber membranes 3, and oxygen-containing gas inside the hollow fiber membranes 3. Is a flowing type of artificial lung.
  • the antithrombogenic polymer compound 18 is coated on the outer surface (the outer surface 3a 'or the outer surface 3a' and the outer surface layer 3a) of the hollow fiber 3 to be a blood contact portion.
  • a coating (coating) of the antithrombogenic polymer compound 18 is selectively formed on the outer surface 3 a ′ of the hollow fiber membrane 3.
  • FIG. 2 shows a form in which a coating (coating) of the antithrombogenic polymer compound 18 is formed on the outer surface 3a 'of the hollow fiber membrane used for the blood perfusion external type oxygenating lung of the hollow fiber membrane.
  • a coating (coating) of the antithrombogenic polymer compound 18 is formed on the outer surface 3a 'of the hollow fiber membrane used for the blood perfusion external type oxygenating lung of the hollow fiber membrane.
  • blood comes in contact with the outer surface 3a 'side, and an oxygen-containing gas is circulated in the inner surface 3c' side.
  • the antithrombotic polymer compound coats the outer surface of the hollow fiber membrane means that the coating (coating) of the antithrombotic polymer compound is the outer surface of the hollow fiber membrane (the surface on which blood flows), or It is intended to be formed on the outer surface and the outer surface layer.
  • the antithrombotic polymer compound coats the outer surface of the hollow fiber membrane means that the coating (coating) of the antithrombotic polymer compound is applied to the outer surface (the surface on the blood flow side) of the hollow fiber membrane. Intended to be formed.
  • the antithrombotic polymer compound coats the outer surface layer of the hollow fiber membrane
  • the antithrombotic polymer compound partially penetrates into the outer surface layer (near the outer surface of the pores) of the hollow fiber membrane. It is intended to form a coating.
  • the coating (coating) of the antithrombotic polymer compound may be formed on at least a part of the blood contact portion (outer surface) of the hollow fiber membrane, but the antithrombotic biocompatibility (platelet adhesion / adhesion)
  • the antithrombogenic polymer compound preferably covers the entire blood contact portion (outer surface) of the artificial lung.
  • the antithrombogenic polymer compound may be present in the inner layer 3 b or the inner surface layer 3 c of the hollow fiber membrane 3, but in the inner layer 3 b or the inner surface layer 3 c of the hollow fiber membrane 3 It is preferably substantially absent.
  • the antithrombogenic polymer compound is substantially absent in the inner layer 3b or the inner layer 3c of the hollow fiber membrane 3” means the inner surface of the hollow fiber membrane (the side where the oxygen-containing gas flows In the vicinity of (surface of the), it means that the penetration of the antithrombotic polymer compound is not observed.
  • the antithrombogenic polymer compound is applied to the inner layer 3b or the inner layer 3c of the hollow fiber membrane 3 to form a film by applying a colloid solution of the antithrombotic polymer.
  • the hollow fiber membrane type artificial lung 1 comprises a housing 2 having a blood inlet 6 and a blood outlet 7 and a large number of porous hollow fiber membranes 3 for gas exchange housed in the housing 2.
  • a hollow fiber membrane bundle and a pair of partition walls 4 and 5 which support both ends of the hollow fiber membrane bundle to the housing 2 in a liquid tight manner, and between the partition walls 4 and 5 and the inner surface of the housing 2 and the outer surface of the hollow fiber membrane 3
  • the hollow fiber membrane type artificial lung 1 of the present embodiment comprises a cylindrical housing 2, an assembly of the hollow fiber membranes 3 for gas exchange housed in the cylindrical housing 2, and a hollow fiber membrane 3. It has partitions 4 and 5 which keep both ends fluid-tight to the housing 2, and the inside of the cylindrical housing 2 is divided into a blood chamber 12 which is a first fluid chamber and a gas chamber which is a second fluid chamber.
  • the cylindrical housing 2 is provided with a blood inlet 6 and a blood outlet 7 in communication with the blood chamber 12.
  • a cap-like gas inflow having a gas inflow port 8 which is a second fluid inflow port communicating with the gas chamber which is an internal space of the hollow fiber membrane 3 above the partition wall 4 which is an end portion of the cylindrical housing 2 Side header 10 is attached.
  • the gas inflow chamber 13 is formed by the outer surface of the partition wall 4 and the inner surface of the gas inflow side header 10.
  • the gas inflow chamber 13 is in communication with a gas chamber formed by the internal space of the hollow fiber membrane 3.
  • a cap-like gas outlet side header 11 having a gas outlet 9 which is a second fluid outlet provided below the partition 5 and in communication with the internal space of the hollow fiber membrane 3 is attached.
  • the gas outflow chamber 14 is formed by the outer surface of the partition wall 5 and the inner surface of the gas outflow side header 11.
  • the hollow fiber membrane 3 is a porous membrane made of a hydrophobic polymer material, and the same hollow fiber membrane used for a known artificial lung is used, and is not particularly limited.
  • the hollow fiber membrane (in particular, the inner surface of the hollow fiber membrane) is made of a hydrophobic polymer material, whereby leakage of plasma components can be suppressed.
  • the inner diameter of the hollow fiber membrane is not particularly limited, but is preferably 50 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, and still more preferably 150 to 200 ⁇ m.
  • the outer diameter of the hollow fiber membrane is not particularly limited, but is preferably 100 to 400 ⁇ m, more preferably 200 to 350 ⁇ m, and still more preferably 250 to 300 ⁇ m.
  • the thickness (film thickness) of the hollow fiber membrane is preferably 20 ⁇ m to 100 ⁇ m, more preferably 25 to 80 ⁇ m, still more preferably 25 to 70 ⁇ m, and particularly preferably 25 to 60 ⁇ m.
  • the thickness (film thickness) of the hollow fiber membrane means the thickness between the inner surface and the outer surface of the hollow fiber membrane, and the formula: [(outside of the hollow fiber membrane Diameter)-(inner diameter of hollow fiber membrane)] / 2.
  • the porosity of the hollow fiber membrane is preferably 5 to 90% by volume, more preferably 10 to 80% by volume, and particularly preferably 30 to 60% by volume.
  • the pore diameter of the hollow fiber membrane (ie, the pore diameter of the opening of the hollow fiber) is preferably 10 nm to 5 ⁇ m, more preferably 50 nm to 1 ⁇ m, and particularly preferably 50 nm to 100 nm.
  • the diameter of the opening of the hollow fiber membrane means the opening (the outer surface side in the present embodiment) on the side coated with the antithrombogenic polymer compound (in the present specification, It simply refers to the average diameter of "pore”. Also, the average diameter of the openings (sometimes referred to herein simply as “pore size” or “pore size”) is measured by the method described below.
  • the side (in this embodiment, the outer surface) to be coated with the antithrombogenic polymer compound is photographed for the hollow fiber membrane with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • image processing is performed on the obtained SEM image, and the hole portion (opening portion) is white, the other is black inverted, and the number of pixels in the white portion is measured.
  • the boundary level of binarization is a value intermediate between the difference between the whitest part and the blackest part.
  • the number of pixels of the holes (openings) displayed in white is measured.
  • the hole area is calculated based on the number of pixels of each hole thus determined and the resolution ( ⁇ m / pixel) of the SEM image. From the obtained hole area, the diameter of each hole is calculated by regarding the holes as a circle, and statistically, a statistically significant number, for example, the diameter of 500 holes is extracted, and the arithmetic mean is It is referred to as "the diameter of the opening of the hollow fiber".
  • the material similar to the hollow fiber membrane used for well-known artificial lung can be used.
  • specific examples thereof include polyolefin resins such as polypropylene and polyethylene, and hydrophobic polymer materials such as polysulfone, polyacrylonitrile, polytetrafluoroethylene and cellulose acetate.
  • polyolefin resins are preferably used, and polypropylene is more preferable.
  • the method for producing the hollow fiber membrane is not particularly limited, and any known method for producing the hollow fiber membrane can be applied in the same or appropriately modified manner.
  • the material which comprises the cylindrical housing 2 can also be used the same material as used for the housing of a well-known artificial lung. Specifically, hydrophobic synthetic resins such as polycarbonate, acrylic / styrene copolymer, acrylic / butylene / styrene copolymer and the like can be mentioned.
  • the shape of the housing 2 is not particularly limited, it is preferably, for example, cylindrical and transparent. By forming a transparent body, it is possible to easily check the inside.
  • the storage amount of the hollow fiber membrane in the present embodiment is not particularly limited, and the same amount as that of a known artificial lung can be applied.
  • about 5,000 to 100,000 porous hollow fiber membranes 3 are accommodated in the housing 2 in parallel in the axial direction.
  • the hollow fiber membrane 3 is fixed in a liquid-tight state by the partition walls 4 and 5 in a state in which both ends of the hollow fiber membrane 3 are respectively opened at both ends of the housing 2.
  • the partition walls 4 and 5 are formed of a potting agent such as polyurethane and silicone rubber.
  • the portion sandwiched by the partitions 4 and 5 in the housing 2 is partitioned into a gas chamber on the inner side of the hollow fiber membrane 3 and a blood chamber 12 outside the hollow fiber membrane 3.
  • a gas inlet side header 10 having a gas inlet 8 and a gas outlet side header 11 having a gas outlet 9 are attached to the housing 2 in a liquid tight manner.
  • These headers may also be formed of any material, but may be formed of, for example, the hydrophobic synthetic resin used for the above-mentioned housing.
  • the header may be attached by any method, for example, the header may be a housing 2 by welding using ultrasonic wave, high frequency, induction heating or the like, bonding using an adhesive, or mechanical fitting. Attached to Alternatively, a clamping ring (not shown) may be used. It is preferable that the blood contact portion (the inner surface of the housing 2 and the outer surface of the hollow fiber membrane 3) of the hollow fiber type oxygenator 1 is all formed of a hydrophobic material.
  • the outer surface 3a '(further optionally, the outer surface layer 3a; the same applies hereinafter) of the hollow fiber membrane 3 to be at least the blood contact portion of the hollow fiber type artificial lung 1 is The thrombogenic polymer compound 18 is coated.
  • the antithrombogenic polymer compound is substantially absent in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane. Since the antithrombogenic polymer compound is substantially absent, the hydrophobic property of the inner layer 3b or the inner layer 3c of the hollow fiber membrane is maintained as it is, and leakage of plasma components (leakage (leakage) ) Can be effectively prevented.
  • the hollow fiber membrane 3 is provided with a passage (a lumen) 3d that forms a gas chamber at the center.
  • the hollow fiber membrane 3 has an opening 3e communicating the outer surface 3a 'with the inner surface 3c'. In the hollow fiber membrane having such a configuration, blood comes in contact with the outer surface 3a 'side coated with the antithrombogenic polymer compound 18, while the oxygen-containing gas is circulated to the inner surface 3c' side. used.
  • the coating (coating) of the antithrombogenic polymer compound is selectively formed on the outer surface (external perfusion type) of the hollow fiber membrane. For this reason, blood (especially plasma components) hardly penetrates or does not penetrate inside the pores of the hollow fiber membrane. Therefore, the leakage of blood (especially plasma component) from the hollow fiber membrane can be effectively suppressed / prevented.
  • the antithrombotic polymer compound is substantially absent from the inner layer 3b of the hollow fiber membrane and the inner layer 3c of the hollow fiber membrane, the inner layer 3b of the hollow fiber membrane and the inner layer 3c of the hollow fiber membrane are Since the hydrophobic state of the material is maintained, leakage of high blood (particularly plasma components) can be more effectively suppressed / prevented. Therefore, the artificial lung obtained by the method of the present invention can maintain high gas exchange capacity over a long period of time.
  • the coating of the antithrombotic polymer compound according to the present embodiment is essentially formed on the outer surface of the hollow fiber membrane of the artificial lung, but in addition to the outer surface, other components (for example, the entire blood contact portion) May be formed.
  • other components for example, the entire blood contact portion
  • platelet adhesion / adhesion and activation can be further effectively suppressed / prevented in the entire blood contact portion of the artificial lung.
  • the contact angle of the blood contact surface is low, the priming operation becomes easy.
  • the coating of the antithrombotic polymer compound according to the present invention is preferably formed on another component which is in contact with blood, but the hollow fiber membrane or hollow fiber membrane other than the blood contact portion
  • the other part (for example, the part buried in the partition wall) may not be coated with the antithrombotic polymer compound. Such a portion is not in contact with blood, so it does not matter particularly if the antithrombogenic polymer compound is not coated.
  • the artificial lung obtained by the method of the present invention may be of the type as shown in FIG.
  • FIG. 3 is a cross-sectional view showing another embodiment of the artificial lung obtained by the method of the present invention.
  • 4 is a cross-sectional view taken along the line AA of FIG.
  • an artificial lung (hollow fiber external blood perfusion type artificial lung) 20 has an inner cylindrical member 31 having an opening 32 for blood flow on the side and a large number of gases wound around the outer surface of the inner cylindrical member 31.
  • a tubular hollow fiber membrane bundle 22 consisting of the porous hollow fiber membrane 3 for replacement, a housing 23 for housing the tubular hollow fiber membrane bundle 22 together with the inner tubular member 31, and the hollow fiber membrane 3 open at both ends , Partitions 25 and 26 for fixing both ends of the tubular hollow fiber membrane bundle 22 to the housing, a blood inlet 28 and a blood outlet 29a, 29b communicating with the blood chamber 17 formed in the housing 23, hollow fibers It has a gas inlet 24 and a gas outlet 27 in communication with the interior of the membrane 3.
  • the housing 23 includes an outer cylindrical member 33 for housing the inner cylindrical member 31, and the cylindrical hollow fiber membrane bundle 22 is an inner cylinder.
  • the housing 23 is housed between the cylindrical member 31 and the outer tubular member 33, and further, the housing 23 communicates with one of a blood inlet or a blood outlet communicating with the inside of the inner tubular member and blood communicating with the inside of the outer tubular member. And the other of the inlet and the blood outlet.
  • the housing 23 is housed in the outer cylindrical member 33 and the inner cylindrical member 31, and the inner cylinder 35 whose tip is open in the inner cylindrical member 31 is used.
  • a blood inlet 28 is formed at one end (lower end) of the inner cylindrical body 35, and two outwardly extending blood outlets 29a and 29b are formed on the side surface of the outer cylindrical member 33.
  • the blood outlet may be single or plural.
  • the cylindrical hollow fiber membrane bundle 22 is wound around the outer surface of the inner cylindrical member 31. That is, the inner cylindrical member 31 is the core of the cylindrical hollow fiber membrane bundle 22.
  • the tip of the inner cylindrical body 35 housed inside the inner cylindrical member 31 is opened in the vicinity of the first partition wall 25.
  • a blood inlet 28 is formed at the lower end portion of the inner cylindrical member 31 that protrudes.
  • the inner cylindrical member 35, the inner cylindrical member 31 with the hollow fiber membrane bundle 22 wound around the outer surface, and the outer cylindrical member 33 are arranged substantially concentrically.
  • the second partition 26 maintains the concentric positional relationship between the two, and the space formed between the inner cylindrical body 35 and the inner cylindrical member 31 and the outer cylindrical member 33 and the hollow fiber
  • the space formed by the outer surface of the membrane is in a fluid-tight state not communicating with the outside.
  • the partition walls 25 and 26 are formed of a potting agent such as polyurethane and silicone rubber.
  • the blood inlet 17 a formed by the inside of the inner cylinder 35, and the substantially cylindrical space formed between the inner cylinder 35 and the inner cylindrical member 31.
  • a chamber 17 is formed.
  • the blood flowing in from the blood inlet 28 flows into the blood inlet 17a, rises in the inner cylinder 35 (blood inlet 17a), and flows out from the upper end 35a (open end) of the inner cylinder 35.
  • Flows into the first blood chamber 17b passes through the opening 32 formed in the inner cylindrical member 31, contacts the hollow fiber membrane, and after gas exchange is performed, flows into the second blood chamber 17c Flow out of the blood outlet 29a, 29b.
  • a gas inlet member 41 having a gas inlet 24 is fixed to one end of the outer cylindrical member 33, and similarly, a gas having a gas outlet 27 at the other end of the outer cylindrical member 33 is similarly provided.
  • the outflow member 42 is fixed.
  • the blood inlet 28 of the inner cylindrical body 35 penetrates the gas outflow member 42 and protrudes to the outside.
  • the outer cylindrical member 33 is not particularly limited, but a cylindrical body, a polygonal cylinder, an oval cross section, or the like can be used. Preferably it is a cylindrical body.
  • the inner diameter of the outer cylindrical member is not particularly limited and may be the same as the inner diameter of the outer cylindrical member used for a known artificial lung, but is preferably about 32 to 164 mm.
  • the effective length of the outer cylindrical member (the length of a portion of the total length not embedded in the partition wall) is also not particularly limited, and is the same as the effective length of the outer cylindrical member used for a known artificial lung. Although it is possible, about 10 to 730 mm is preferable.
  • the shape of the inner cylindrical member 31 is not particularly limited, but, for example, a cylindrical body, a polygonal cylinder, an oval cross section, or the like can be used. Preferably it is a cylindrical body.
  • the outer diameter of the inner cylindrical member is not particularly limited, and may be the same as the outer diameter of the inner cylindrical member used for a known artificial lung, but is preferably about 20 to 100 mm.
  • the effective length of the inner tubular member (the length of a portion of the total length not embedded in the partition wall) is also not particularly limited, and is the same as the effective length of the inner tubular member used for a known artificial lung. Although it is possible, about 10 to 730 mm is preferable.
  • the inner tubular member 31 is provided with a large number of blood circulation openings 32 on the side surface.
  • the size of the opening 32 is preferably large in total area as long as the necessary strength of the tubular member is maintained.
  • FIG. 5 which is a front view
  • FIG. 6 which is a central longitudinal sectional view of FIG. 5
  • FIG. 7 which is a BB sectional view of FIG.
  • the annular arrangement opening provided with a plurality (for example, 4 to 24, for example, 8 in the longitudinal direction in the figure) of the opening 32 at equal angular intervals on the outer peripheral surface of the cylindrical member It is preferable that a plurality of sets (eight sets per round in the drawing) be provided.
  • the shape of the opening may be a circle, a polygon, an ellipse or the like, but an oval shape as shown in FIG. 5 is preferable.
  • the shape of the inner cylindrical body 35 is not particularly limited, but, for example, a cylindrical body, a polygonal cylinder, an oval cross section, or the like can be used. Preferably it is a cylindrical body.
  • the distance between the tip opening of the inner cylinder 35 and the first partition 25 is not particularly limited, and the same distance as that used for a known artificial lung can be applied, but about 20 to 50 mm is preferable. is there.
  • the inner diameter of the inner cylinder 35 is also not particularly limited, and may be the same as the inner diameter of the inner cylinder used for a known artificial lung, but preferably about 10 to 30 mm.
  • the thickness of the cylindrical hollow fiber membrane bundle 22 is not particularly limited and may be the same as the thickness of the cylindrical hollow fiber membrane bundle used for a known artificial lung, but is preferably 5 to 35 mm, particularly 10 mm to 28 mm Is preferred.
  • the filling ratio of the hollow fiber membrane to the cylindrical space formed by the outer surface and the inner surface of the cylindrical hollow fiber membrane bundle 22 is not particularly limited either, and the filling ratio in a known artificial lung is applied similarly although it is possible, it is preferably 40 to 85%, particularly preferably 45 to 80%.
  • the outer diameter of the hollow fiber membrane bundle 22 may be the same as the outer diameter of a hollow fiber membrane bundle used for a known artificial lung, but is preferably 30 to 170 mm, and particularly preferably 70 to 130 mm.
  • the gas exchange membrane those described above are used.
  • the hollow fiber membrane bundle 22 is formed by winding a hollow fiber membrane around the inner cylindrical member 31.
  • a hollow fiber membrane bobbin is formed by using the inner cylindrical member 31 as a core, and the hollow fiber membrane formed. Both ends of the bobbin can be formed by cutting the both ends of the hollow fiber membrane bobbin together with the inner cylindrical member 31 as a core after fixing by the partition wall. The hollow fiber membrane is opened at the outer surface of the partition wall by this cutting.
  • the formation method of a hollow fiber membrane is not limited to the said method, You may modify the other well-known formation method of a hollow fiber membrane similarly, or you may use it suitably.
  • one or more hollow fiber membranes be simultaneously wound around the inner cylindrical member 31 so that substantially parallel adjacent hollow fiber membranes have a substantially constant interval. Thereby, the deviation of blood can be suppressed more effectively.
  • the distance between the adjacent hollow fiber membranes is not limited to the following, but is preferably 1/10 to 1/1 of the outer diameter of the hollow fiber membrane. Furthermore, the distance between the hollow fiber membrane and the adjacent hollow fiber membrane is preferably 30 to 200 ⁇ m.
  • the hollow fiber membrane bundle 22 has one or more (preferably, 2 to 16) hollow fiber membranes at the same time and an inner side such that all adjacent hollow fiber membranes have a substantially constant interval.
  • the hollow fiber membrane is formed by being wound around the cylindrical member 31, and when the hollow fiber membrane is wound on the inner cylindrical member, a rotating body for rotating the inner cylindrical member 31 and the hollow fiber membrane are used. It is preferable that the winder for knitting be formed by being wound around the inner cylindrical member 31 by moving under the condition of the following formula (1).
  • n between the number of revolutions of the winding rotary member and the number of reciprocations of the winder at this time is not particularly limited, but is usually 1 to 5, preferably 2 to 4.
  • the hollow fiber type artificial lung 20 as shown in FIG. 2, according to the present invention, at least the outer surface 3a '(further, the outer surface layer 3a) of the hollow fiber type artificial lung 1 is used.
  • the antithrombogenic polymer compound 18 is coated.
  • the antithrombotic polymer compound may be present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane 3, but is substantially present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane Preferably not.
  • the hollow fiber membrane 3 is provided with a passage (a lumen) 3d that forms a gas chamber at the center.
  • the hollow fiber membrane 3 has an opening 3e communicating the outer surface 3a 'with the inner surface 3c'.
  • preferable forms (inner diameter, outer diameter, thickness, porosity, pore diameter of pores, etc.) of the hollow fiber membrane are not particularly limited, but the same forms as those described in FIG. 1 can be adopted.
  • the hollow fiber membranes 3 are in the form of so-called bobbins which are in contact with each other and stacked in multiple layers.
  • the coating with the antithrombogenic polymer compound is selectively formed uniformly on the outer surface 3a 'of the hollow fiber membrane.
  • the inner layer 3b and the inner surface layer 3c of the hollow fiber membrane are hydrophobic Since the sexual state is maintained, leakage of high blood (especially plasma components) can be more effectively suppressed / prevented.
  • the blood flow path is complicated and provided with many narrow parts and is excellent in gas exchange ability, it is an external blood perfusion type artificial that is not a bobbin type in terms of adhesion / adhesion and activation of platelets. It may be inferior to the lungs.
  • the coating of the antithrombogenic polymer compound is uniform, there is less adhesion / adhesion and activation of platelets at the blood contact portion of the hollow fiber membrane. In addition, it is possible to suppress or prevent peeling of the coating (in particular, the uneven coating portion) from the hollow fiber membrane.
  • the coating of the antithrombogenic polymer compound is formed essentially on the outer surface of the hollow fiber membrane of the artificial lung, in addition to the outer surface, it is formed on other components (for example, the whole blood contact portion) May be By adopting this configuration, platelet adhesion / adhesion and activation can be further effectively suppressed / prevented in the entire blood contact portion of the artificial lung. In addition, since the contact angle of the blood contact surface is low, the priming operation becomes easy.
  • the coating of the antithrombogenic polymer compound is formed on another component which is in contact with blood, the hollow fiber membrane other than the blood contact portion or the other part of the hollow fiber membrane
  • the part to be buried in the partition wall, the contact part between hollow fibers may not be coated with the antithrombotic polymer compound.
  • Such a portion is not in contact with blood, so it does not matter particularly if the antithrombogenic polymer compound is not coated.
  • a method of manufacturing an artificial lung according to the present invention comprises a plurality of porous hollow fibers for gas exchange, having an outer surface, an inner surface forming a lumen, and an opening communicating the outer surface with the inner surface.
  • a hollow fiber membrane bundle consisting of a membrane is accommodated in a housing, and the outer side of the hollow fiber membrane bundle in the housing is a blood flow path, and a blood inlet and a blood outlet respectively on the upstream side and the downstream side of the blood flow path
  • a method of producing an artificial lung comprising: filling the blood flow channel with a colloid solution containing an antithrombotic polymer compound; and moving the colloid solution between the blood inlet and the blood outlet. It is characterized by
  • a solution (colloidal liquid) containing an antithrombogenic polymer compound is prepared. Then, the colloid solution is filled in the blood flow path, and the outer surface of the hollow fiber membrane is coated while moving the colloid solution.
  • preparation process of a colloid liquid and (2) coating (coating) process of a colloid liquid, respectively.
  • a colloidal liquid to be coated on the outer surface of the hollow fiber membrane is prepared.
  • the colloid solution used in the method according to the present invention comprises an antithrombogenic polymer compound.
  • antithrombotic polymer compound used in the preparation of the colloid liquid according to the present invention will be described.
  • the antithrombotic polymer compound used in the present invention is a compound that imparts antithrombotic properties to an artificial lung by being applied to a hollow fiber membrane. Also, “antithrombotic” refers to the property of reducing blood clotting at the surface in contact with blood.
  • the antithrombotic polymer compound can be used without particular limitation as long as it has antithrombotic properties and biocompatibility.
  • the antithrombogenic polymer compound has the following formula (I):
  • R 3 represents a hydrogen atom or a methyl group
  • R 1 represents an alkylene group having 1 to 4 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms
  • the compound having the constitutional unit represented by the above-mentioned formula (I) has antithrombotic biocompatibility (inhibition effect of platelet adhesion / adhesion / inhibition and platelet activation / inhibition effect), especially platelet adhesion / It is excellent in the control / prevention effect of adhesion.
  • antithrombotic biocompatibility inhibittion effect / inhibition effect of adhesion / adhesion of platelets and activation / deactivation of platelets
  • adhesion / adhesion of platelets It becomes possible to manufacture an artificial lung excellent in the suppression / prevention effect.
  • (meth) acrylate means “acrylate and / or methacrylate”. That is, “alkoxy alkyl (meth) acrylate” includes only alkoxy alkyl acrylate, only alkoxy alkyl methacrylate, and all cases of alkoxy alkyl acrylate and alkoxy alkyl methacrylate.
  • R 1 represents an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group having 1 to 4 carbon atoms is not particularly limited, and includes a linear or branched alkylene group of methylene group, ethylene group, trimethylene group, tetramethylene group, and propylene group.
  • ethylene group and propylene group are preferable, and ethylene group is particularly preferable in consideration of the further improvement effect of antithrombotic property and biocompatibility.
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl linear or There is a branched alkyl group.
  • a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable in consideration of the effect of further improving the antithrombotic property and the biocompatibility.
  • R 3 represents a hydrogen atom or a methyl group.
  • alkoxyalkyl (meth) acrylate examples include methoxymethyl acrylate, methoxyethyl acrylate, methoxypropyl acrylate, ethoxymethyl acrylate, ethoxyethyl acrylate, ethoxypropyl acrylate, ethoxybutyl acrylate, propoxymethyl acrylate, butoxyethyl acrylate, Examples thereof include methoxybutyl acrylate, methoxymethyl methacrylate, methoxyethyl methacrylate, ethoxymethyl methacrylate, ethoxyethyl methacrylate, propoxymethyl methacrylate, butoxyethyl methacrylate and the like.
  • the antithrombotic polymer compound according to the present invention is preferably polymethoxyethyl acrylate (PMEA).
  • PMEA polymethoxyethyl acrylate
  • the above alkoxyalkyl (meth) acrylates may be used alone or in combination of two or more.
  • the antithrombotic polymer compound according to the present invention preferably has a constitutional unit derived from an alkoxyalkyl (meth) acrylate, and is composed of one or more kinds of a constitutional unit derived from an alkoxyalkyl (meth) acrylate Structural units derived from one or more alkoxyalkyl (meth) acrylates and one or more copolymerizable with the alkoxyalkyl (meth) acrylates
  • the polymer (copolymer) comprised from the structural unit (other structural unit) derived from a monomer may be sufficient.
  • the structure of the polymer (copolymer) is not particularly limited, and a random copolymer or an alternating copolymer is used. It may be any of combined, cyclic copolymer, and block copolymer.
  • the terminal of the polymer is not particularly limited and is appropriately defined depending on the type of the raw material used, but is usually a hydrogen atom.
  • a monomer which can be copolymerized with an alkoxyalkyl (meth) acrylate when the antithrombotic polymer compound according to the present invention has another constitutional unit in addition to a constitutional unit derived from an alkoxyalkyl (meth) acrylate
  • the (copolymerizable monomer) is not particularly limited.
  • the copolymerizable monomer one having no hydroxyl group or cationic group in the molecule is preferable.
  • the copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer, and can be synthesized by a known method such as radical polymerization, ionic polymerization, or polymerization using a macromer.
  • the ratio of the structural unit derived from the copolymerizable monomer to the total structural unit of the copolymer is not particularly limited, but in consideration of antithrombotic property, biocompatibility and the like, the copolymerizable monomer It is preferable that the structural unit (other structural unit) derived from is more than 0 mol% and 50 mol% or less in all the structural units of a copolymer. If it exceeds 50 mol%, the effect of the alkoxyalkyl (meth) acrylate may be reduced.
  • the weight average molecular weight of the antithrombotic polymer compound is not particularly limited, but is preferably 80,000 or more.
  • the antithrombogenic polymer compound is applied to the outer surface or the inner surface of the hollow fiber membrane in the form of a colloid liquid. Therefore, the weight average molecular weight of the antithrombotic polymer compound is preferably less than 800,000 from the viewpoint of easy preparation of a desired colloidal solution. By setting it as the said range, it can suppress that the said compound aggregates or precipitates in the solution containing an antithrombogenic high molecular compound, and can prepare a stable colloid liquid.
  • the weight average molecular weight of the antithrombotic polymer compound is preferably more than 200,000 and less than 800,000, more preferably 210,000 to 600,000, and 220,000 to 500,000. It is even more preferable, and particularly preferably 230,000 to 450,000.
  • weight average molecular weight is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard substance and tetrahydrofuran (THF) as a mobile phase.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • a polymer to be analyzed is dissolved in THF to prepare a 1 mg / ml solution.
  • attach GPC column LF-804 manufactured by Shodex Co., Ltd. to GPC system LC-20 manufactured by Shimadzu Corporation, flow THF as a mobile phase, use polystyrene as a standard substance, The GPC of the resulting polymer is measured.
  • the weight average molecular weight of the polymer to be analyzed is calculated based on this curve.
  • the content of the relatively small molecular weight polymer contained in the coating can be reduced, and as a result, the relatively small molecular weight polymer is eluted into the blood. It is presumed that the effect of suppressing and preventing Therefore, when the weight average molecular weight of the antithrombotic polymer compound is included in the above range, elution of the coating (particularly, low molecular weight polymer) into the blood can be more effectively suppressed / prevented. Moreover, it is also preferable from the point of antithrombotic and biocompatibility. Further, in the present specification, the "low molecular weight polymer” means a polymer having a weight average molecular weight of less than 60,000. In addition, the measuring method of a weight average molecular weight is as above-mentioned.
  • the antithrombogenic polymer compound containing the structural unit derived from the alkoxy alkyl (meth) acrylate shown by said formula (I) can be manufactured by a well-known method. Specifically, the following formula (II):
  • an alkoxyalkyl (meth) acrylate represented by and a monomer (copolymerizable monomer) copolymerizable with the above-mentioned alkoxyalkyl (meth) acrylate optionally added By stirring with a polymerization initiator in a polymerization solvent to prepare a monomer solution, and heating the above monomer solution, an alkoxyalkyl (meth) acrylate or an alkoxyalkyl (meth) acrylate and optionally, The method of (co) polymerizing the copolymerizable monomer to be added is preferably used.
  • the substituents R 1 , R 2 and R 3 are the same as the definition of the above formula (I), the description thereof is omitted here.
  • the polymerization solvent which can be used in the preparation of the above monomer solution is particularly any solvent which can dissolve the alkoxyalkyl (meth) acrylate of the above formula (II) used and the copolymerizable monomer which is optionally added It is not restricted.
  • alcohols such as water, methanol, ethanol, propanol and isopropanol
  • aqueous solvents such as polyethylene glycols
  • aromatic solvents such as toluene, xylene and tetralin
  • halogens such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene
  • methanol is preferable in consideration of the solubility of the alkoxyalkyl (meth) acrylate and the easiness of obtaining a polymer having a weight average molecular weight as described above.
  • the monomer concentration in the monomer solution is not particularly limited, but the weight average molecular weight of the obtained antithrombogenic polymer compound can be increased by setting the concentration relatively high. Therefore, in consideration of the easiness of obtaining a polymer having a weight average molecular weight as described above, the monomer concentration in the monomer solution is preferably less than 50% by mass, more preferably 15% by mass. More than 50% by mass. Furthermore, the monomer concentration in the monomer solution is more preferably 20% by mass to 48% by mass, and particularly preferably 25% by mass to 45% by mass. In addition, the said monomer concentration means the sum total concentration of these monomers, when using 2 or more types of monomers.
  • the polymerization initiator is not particularly limited, and known ones may be used.
  • it is a radical polymerization initiator in that it is excellent in polymerization stability, and specifically, persulfates such as potassium persulfate (KPS), sodium persulfate, ammonium persulfate, etc .; hydrogen peroxide, t-butyl peroxy Oxides, peroxides such as methyl ethyl ketone peroxide; azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,2, 4-Dimethylvaleronitrile), 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] Disulfate dihydrate, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2
  • the above radical polymerization initiator may be combined with a reducing agent such as sodium sulfite, sodium bisulfite, ascorbic acid or the like to be used as a redox initiator.
  • the blending amount of the polymerization initiator is 0.0001 to 1 mole relative to the total amount of the monomers (alkoxyalkyl (meth) acrylate and copolymerizable monomer optionally added; hereinafter, the same) % Is preferable, 0.001 to 0.8 mol% is more preferable, and 0.01 to 0.5 mol% is particularly preferable.
  • the blending amount of the polymerization initiator is preferably 0.005 to 2 parts by mass, and more preferably 100 parts by mass of the monomer (in the case of using plural kinds of monomers, the whole). Is 0.05 to 0.5 parts by mass. If it is the compounding quantity of such a polymerization initiator, the polymer which has a desired weight average molecular weight can be manufactured more efficiently.
  • the polymerization initiator may be mixed with the monomer and the polymerization solvent as it is, but may be mixed with the monomer and the polymerization solvent in the form of a solution previously dissolved in another solvent.
  • the other solvent is not particularly limited as long as it can dissolve the polymerization initiator, but the same solvent as the above-mentioned polymerization solvent can be exemplified.
  • the other solvent may be the same as or different from the above-mentioned polymerization solvent, but in consideration of easiness of control of the polymerization, etc., it is preferable that the same solvent as the above-mentioned polymerization solvent.
  • the concentration of the polymerization initiator in the other solvent in this case is not particularly limited, but the amount of the polymerization initiator added is preferably 100 parts by mass of the other solvent in consideration of ease of mixing and the like. Is 0.1 to 10 parts by mass, more preferably 0.15 to 5 parts by mass, and still more preferably 0.2 to 1.8 parts by mass.
  • the alkoxyalkyl (meth) acrylate or alkoxyalkyl (meth) acrylate and the other monomer are (co) polymerized by heating the monomer solution.
  • a polymerization method for example, known polymerization methods such as radical polymerization, anion polymerization, and cation polymerization can be adopted, and preferably, radical polymerization which is easy to manufacture is used.
  • the polymerization conditions are not particularly limited as long as the above-mentioned monomers (alkoxyalkyl (meth) acrylate or alkoxyalkyl (meth) acrylate and copolymerizable monomer) can be polymerized.
  • the polymerization temperature is preferably 30 to 60 ° C., more preferably 40 to 55 ° C.
  • the polymerization time is preferably 1 to 24 hours, preferably 3 to 12 hours. Under such conditions, a high molecular weight polymer as described above can be produced more efficiently. In addition, gelation in the polymerization step can be effectively suppressed and prevented, and high production efficiency can be achieved.
  • chain transfer agents may be appropriately used in polymerization, as necessary.
  • the atmosphere in which the polymerization reaction is performed is not particularly limited, and the polymerization reaction may be performed in an atmosphere of inert gas such as nitrogen gas or argon gas. In addition, during the polymerization reaction, the reaction solution may be stirred.
  • the polymer after polymerization can be purified by a general purification method such as reprecipitation method, dialysis method, ultrafiltration method and extraction method.
  • a general purification method such as reprecipitation method, dialysis method, ultrafiltration method and extraction method.
  • it is preferable to carry out purification by reprecipitation method because a (co) polymer suitable for preparation of a colloidal solution can be obtained.
  • the polymer after purification can be dried by any method such as lyophilization, vacuum drying, spray drying, or heat drying, lyophilization or vacuum drying from the viewpoint of having less influence on the physical properties of the polymer. Is preferred.
  • the solvent used for preparation of the solution (colloidal liquid) containing the antithrombotic polymer compound is not particularly limited as long as the antithrombotic polymer compound can be appropriately dispersed to prepare a colloidal liquid.
  • the solvent preferably contains water from the viewpoint of more effectively preventing the permeation of the colloid solution to the outer surface or the inner surface (surface on the side where the oxygen-containing gas flows) of the pores of the hollow fiber membrane.
  • water is preferably pure water, ion exchange water or distilled water, and more preferably pure water (RO water) purified by a reverse osmosis membrane.
  • solvents other than water used for preparation of the colloidal solution are not particularly limited, but are preferably methanol and acetone in consideration of ease of control of dispersibility of the antithrombogenic polymer compound and the like.
  • the solvents other than water may be used alone or in the form of a mixture of two or more.
  • methanol is preferred in view of the ease of further control of the dispersibility of the antithrombotic polymer compound and the like. That is, the solvent is preferably composed of water and methanol.
  • the mixing ratio of water and methanol is not particularly limited, but considering the dispersibility of the antithrombogenic polymer compound and the ease of further control of the average particle size of colloid, the mixing ratio of water: methanol (mass)
  • the ratio is preferably 6 to 32: 1, more preferably 10 to 30: 1. That is, the solvent preferably comprises water and methanol in a mixing ratio (mass ratio) of 6 to 32: 1, and comprises water and methanol in a mixing ratio (mass ratio) of 10 to 30: 1. Is more preferred.
  • the order in which the solvent (for example, water and methanol) and the antithrombotic polymer compound are added is not particularly limited.
  • a colloidal solution by a method of adding a solution. According to such a method, the antithrombotic polymer compound is easily dispersed.
  • a colloid having a uniform particle diameter can be formed, and there is also an advantage that a uniform film can be easily formed.
  • the addition rate of the antithrombogenic polymer compound-containing solution to water is not particularly limited, but it is preferable to add the antithrombogenic polymer compound-containing solution to water at a rate of 10 to 10000 g / min.
  • the stirring time and the stirring temperature at the time of preparing the colloidal solution are not particularly limited, but from the viewpoint that colloids having a uniform particle diameter can be easily formed and the colloids can be dispersed uniformly, the antithrombogenic polymer compound containing solution After the addition, stirring for 1 to 30 minutes is preferable, and stirring for 5 to 15 minutes is more preferable.
  • the stirring temperature is preferably 10 to 40 ° C., and more preferably 20 to 30 ° C.
  • the concentration of the antithrombotic polymer compound in the colloid solution is not particularly limited, but is preferably 0.005% by mass or more from the viewpoint of easily increasing the amount of coating.
  • the colloid liquid more preferably contains the antithrombogenic polymer compound at a concentration of 0.01 mass% or more, and further preferably at a concentration of 0.03 mass% or more, 0.04 mass% It is particularly preferable to include the above concentration.
  • the upper limit of the concentration of the antithrombogenic polymer compound in the colloid solution is not particularly limited, but is preferably 0.3% by mass or less in consideration of the easiness of forming a film, the reduction effect of coating unevenness, etc. And 0.2 mass% or less is more preferable. Moreover, if it is such a range, the fall of the gas exchange capacity by the film of an antithrombogenic high molecular compound becoming thick too much is also suppressed.
  • the colloid liquid prepared as mentioned above is coated on the outer surface of a hollow fiber membrane.
  • the colloid liquid prepared in the above step (1) is filled in the blood flow path,
  • the outer surface of the hollow fiber membrane is coated with the antithrombotic polymer compound by moving the H.sub.2O.sub.2 between the blood inlet and the blood outlet.
  • the method for moving the colloid liquid between the blood inlet and the blood outlet is not particularly limited.
  • a method of circulating the colloid liquid in the blood flow path of the artificial lung a method of circulating the colloid liquid
  • a method of reciprocating between the inlet and the blood outlet a method of reciprocating movement is preferable from the viewpoint of the cost of equipment.
  • the method of circulating the colloid fluid in the blood flow channel of the artificial lung is not particularly limited as long as the colloid fluid can be circulated and moved.
  • a roller pump is used to transfer the colloid fluid into the blood channel of the artificial lung It can circulate at a constant flow rate.
  • the flow rate of the colloid solution in the blood channel is preferably 0.1 L / min or more, more preferably 1 L / min or more, and still more preferably 3 L / min or more. Within this range, the time required for the coating process can be shortened.
  • the flow rate of the colloid solution in the blood flow channel is preferably 10 L / min or less, more preferably 8 L / min or less, and still more preferably 5 L / min or less.
  • the time for circulating the colloid solution in the blood channel is not particularly limited, and can be appropriately adjusted according to the flow rate. From the viewpoint of the time required for the coating process and the balance of the coating amount, the time during which the colloid solution circulates in the blood flow path is preferably 1 minute or more and 1 hour or less, and more preferably 3 minutes or more and 30 minutes or less Preferably, it is more preferably 5 minutes to 10 minutes.
  • the method of reciprocating the colloid liquid between the blood inlet and the blood outlet is not particularly limited as long as the colloid liquid can be reciprocated, for example, at the blood inlet and the blood outlet of the artificial lung.
  • the colloid solution in the blood flow path can be reciprocated by connecting a tube, holding the tube connected to the blood inlet or blood outlet with two push plates, and further moving the push plate back and forth with a motor .
  • the inner diameter of the tube or the length of the push plate, or the frequency at which the push plate moves back and forth it is possible to control the reciprocating flow velocity of the colloid liquid.
  • the inner diameter of the tube is preferably 3.0 mm or more, more preferably 5.0 mm or more, and still more preferably 9.0 mm or more.
  • the inner diameter of the tube is preferably 20.0 mm or less, more preferably 15 mm or less, and still more preferably 11.0 mm or less. Within the above range, the reciprocating speed of the colloid liquid can be easily adjusted.
  • the shape or material of the pressing plate is not particularly limited. A plate or cylinder may be used, or a metal such as aluminum or iron may be used.
  • a plate-like push plate is preferably used from the viewpoint of easy control of the reciprocating flow rate of the colloid liquid. Further, in terms of availability of the material, a plate made of aluminum is more preferably used. In the case of using the plate-like push plate, by adjusting the length of the push plate, it is possible to control the reciprocating flow velocity of the colloid liquid.
  • the length of the pressing plate is preferably 10 mm or more, more preferably 30 mm or more, and still more preferably 60 mm or more. Also, if the length of the pressing plate is short, the coating process can proceed smoothly. From this viewpoint, the length of the pressing plate is preferably 200 mm or less, more preferably 160 mm or less, and still more preferably 120 mm or less.
  • the frequency at which the pressing plate moves back and forth is preferably 0.5 to 5 reciprocations per second, more preferably 1 to 4 reciprocations per second, and more than 1 to 2 reciprocations per second It is further preferred that Within the above range, the efficiency and smoothness of the coating process can be balanced. By means of the above, etc., it is possible to appropriately adjust the flow velocity at which the colloid solution in the blood flow path reciprocates, and to optimize conditions for improving the amount of coating. Furthermore, when the colloidal fluid is reciprocated between the blood inlet and the blood outlet, the amount of colloidal fluid to be moved is not particularly limited, but 1 L / m 2 of the hollow fiber membrane area (m 2 ).
  • the colloid solution preferably min ⁇ m 2 or more 10L / min ⁇ m 2 or less, 2L / min, more preferably ⁇ m 2 or more 8L / min ⁇ m 2 or less, 3L / min ⁇ m 2 or more 5L / min ⁇ More preferably, it is m 2 or less.
  • the "membrane area” refers to the area of the outer surface of the hollow fiber membrane, and is calculated from the product of the outer diameter of the hollow fiber membrane, the circumference ratio, the number and the effective length.
  • the time for moving the colloidal solution is also not particularly limited, but is preferably 30 seconds to 100 minutes, taking into consideration the coating amount, the ease of forming a coating film, the reduction effect of coating unevenness, etc., and 1 minute It is more preferable that it is 70 minutes or less, and more preferable that it is 1 minute or more and 30 minutes or less.
  • the contact temperature between the colloid solution and the hollow fiber membrane takes into consideration the amount of coating, the ease of forming a coating, the reduction effect of coating unevenness, etc. 5 to 40 ° C. is preferred, and 15 to 30 ° C. is more preferred.
  • the lumen of the hollow fiber membrane is used as a gas flow path while moving the colloid solution between the blood inlet and the blood outlet. It is preferable to circulate carbon dioxide gas in the gas flow path.
  • the aggregation of the colloidal particles in the colloidal solution and the adsorption on the outer surface of the hollow fiber membrane further progress.
  • the mechanism is presumed as follows. That is, the colloid particle (particle surface) of the antithrombogenic polymer compound contained in the colloid solution is negatively charged, and cations are present around the colloid particle so as to neutralize this charge. Conceivable. That is, it is inferred that the colloidal particles are in the state of forming an electric double layer.
  • DLVO Densiguin-Landau-Verwey-Overbeek
  • the total potential energy of the force acting between the colloid particles is the sum of the potential energy of the electrical repulsion and the potential energy of the van der Waals attraction.
  • the particles In order for the particles to approach and aggregate, they must exceed the peak of the total potential energy. Since the peak of this potential energy can not be exceeded if it is very high compared to the thermal kinetic energy of the particle, the particle is repelled and does not aggregate even if it approaches, and the colloid is stable.
  • the electrical repulsion is stronger as the thickness of the electric double layer is larger, but as the electrolyte concentration in the solution is larger, the diffusion layer is compressed and the thickness of the electric double layer becomes thinner. Therefore, when blowing carbon dioxide gas into a colloidal solution containing colloidal particles having an electric double layer, carbon dioxide is dissolved in water, bicarbonate ions (HCO 3 -) and carbonate ions (CO 3 2-), hydrogen ions (H + ) Occurs, the thickness of the electric double layer is reduced, the electric repulsive force is reduced, and the colloidal particles are easily aggregated. At this time, the same phenomenon occurs not only between the colloidal particles but also between the outer surface of the hollow fiber membrane and the colloidal particles, and it is considered that the outer surface of the hollow fiber membrane is easily adsorbed by the colloidal particles.
  • the flow rate of carbon dioxide gas is not particularly limited, but is preferably 0.5 L / min ⁇ m 2 or more and 20 L / min ⁇ m 2 or less relative to the membrane area (m 2 ) of the hollow fiber membrane, and 1 L / min. More preferably, min ⁇ m 2 or more and 10 L / min ⁇ m 2 or less, and still more preferably 2 L / min ⁇ m 2 or more and 5 L / min ⁇ m 2 or less.
  • the volume (L) of a carbon dioxide gas means the volume in 25 degreeC and 1 atm.
  • the carbon dioxide gas When the carbon dioxide gas is circulated, in addition to the carbon dioxide gas, another gas (for example, an inert gas such as a nitrogen gas) may be circulated.
  • another gas for example, an inert gas such as a nitrogen gas
  • the proportion of the other gas be smaller than that of carbon dioxide gas.
  • the flow rate (volume) of the other gas is preferably 0% by volume or more and 50% by volume or less, and is 0% by volume or more and 20% by volume or less with respect to the flow rate (volume) of carbon dioxide gas More preferably, it is 0% by volume.
  • the coating film is dried to form a coating (coating) with the antithrombotic polymer compound according to the present invention on the outer surface of the hollow fiber membrane.
  • the drying conditions are not particularly limited as long as the coating (coating) with the antithrombogenic polymer compound according to the present invention can be formed on the outer surface (further, the outer surface layer) of the hollow fiber membrane.
  • the drying temperature is preferably 5 to 50 ° C., and more preferably 15 to 40 ° C.
  • the drying time is preferably 60 to 300 minutes, and more preferably 120 to 240 minutes.
  • the coating may be dried by continuously or stepwise passing a gas of preferably 5 to 40 ° C., more preferably 15 to 30 ° C. through the hollow fiber membrane.
  • a gas preferably 5 to 40 ° C., more preferably 15 to 30 ° C.
  • the type of gas is not particularly limited as long as it can dry the coating without affecting the coating at all.
  • air (air) and inert gas such as nitrogen gas, argon gas and the like can be mentioned.
  • the flow rate of the gas is not particularly limited as long as it can sufficiently dry the coating film, but is preferably 5 to 150 L / min, more preferably 30 to 100 L / min, and still more preferably 50 to 90 L / min. It is.
  • a hollow-fiber outer-perfusion-type artificial lung (hereinafter referred to as a hollow-fiber membrane having a coating containing a sufficient amount of an antithrombotic polymer compound formed on the outer surface of the hollow fiber membrane) It can be manufactured simply as an artificial lung.
  • the outer surface of the hollow fiber is coated with the antithrombogenic polymer compound in an amount of 5 mg / m 2 or more and 100 mg / m 2 or less.
  • a hollow fiber external blood perfusion oxygenator is also provided.
  • the amount of the antithrombotic polymer compound in the coating is more preferably 10 mg / m 2 or more and 60 mg / m 2 or less, and further preferably 15 mg / m 2 or more and 50 mg / m 2 or less. preferable.
  • the coating amount of the antithrombotic polymer compound is 5 mg / m 2 surface or more, an artificial lung having excellent antithrombotic properties can be obtained.
  • the upper limit of the coating amount is not particularly limited, but is preferably 100 mg / m 2 or less. With such a coating amount, a decrease in gas exchange ability due to an excessively thick film containing the antithrombogenic polymer compound is suppressed, and an artificial lung having excellent gas exchange ability can be obtained.
  • the said coating amount employ adopts the value measured by the method as described in the following Example.
  • the platelet count maintenance rate of the circulating blood is improved.
  • the platelet count maintenance rate after circulating blood for 30 minutes is preferably 70%, more preferably 80% or more, and particularly preferably 90% or more (upper limit: 100%) .
  • this polymerization initiator solution was added to the monomer solution, and a polymerization reaction was performed at 50 ° C. for 5 hours. After polymerization for a predetermined time, the polymerization solution was dropped into ethanol, and the precipitated polymer (PMEA) was recovered. In addition, it was 350,000 when the weight average molecular weight of the collect
  • Example 1 Tubes (inner diameter 9.5 mm x outer diameter 14.2 mm) are respectively connected to the blood inlet and the blood outlet of the above-mentioned artificial lung, and the tube connected to the blood inlet is sandwiched between two aluminum plates.
  • An artificial lung, 96 g of the colloidal solution prepared above was placed in a tube, and the end of the tube connected to the blood inlet was clamped.
  • the distance between the two aluminum plates closest to each other was 4.5 mm.
  • the amount of the colloid solution moved was 3 L / min ⁇ m 2 with respect to the membrane area (m 2 ) of the hollow fiber membrane.
  • RO water 200 ml of RO water is placed in a closed circuit consisting of a blood external perfusion type hollow fiber artificial lung, a bag made of polyvinyl chloride, and a tube, and carbon dioxide gas 2 L / L from the gas inlet of the blood external perfusion type hollow fiber artificial lung to the gas outlet It was circulated at min (4 L / min ⁇ m 2 ). Before circulation, RO water 5 minutes after the start of circulation was sampled respectively, and it measured with a blood gas analyzer and a conductivity meter.
  • RO water before distribution could not be measured because it was below the measurement lower limit of 5 mmHg of the blood gas analyzer.
  • RO water after 5 minutes of circulation start could not be measured because it exceeded the upper measurement limit of 250 mmHg, but conductivity was 42.1 ⁇ S / cm, so the partial pressure of carbon dioxide gas was calculated from equation 1 as 544 (mmHg) did.
  • the concentration of carbon dioxide gas in the coating solution is also about 5 mmHg or less when carbon dioxide gas is not flowed and about 544 (mmHg) when carbon dioxide gas is flowed, similarly to the concentration of carbon dioxide gas in water.
  • the housing of the above-mentioned artificial lung was cut and disassembled with an ultrasonic cutter, and the hollow fiber membrane was cut out with a cutter.
  • the whole hollow fiber membrane was placed in a capped glass bottle, acetone was added, and extraction was carried out with an ultrasonic cleaner for 1 hour.
  • the acetone extract was recovered in a separate capped glass bottle, and 46 g was collected.
  • 10 mL of tetrahydrofuran was added to the evaporated dried substance to dissolve it. After shaking for 1 hour with a shaker, it was dissolved for 1 hour with an ultrasonic cleaner.
  • Colloid utilization efficiency After coating, a portion of 32 mL of the colloid solution was discharged, and the discharged colloid solution was dried by heat block and vacuum drying, and then dissolved in 1.5 mL of tetrahydrofuran. After shaking for 1 hour with a shaker, it was dissolved for 1 hour with an ultrasonic cleaner. After filtration through a 0.45 ⁇ m filter, it was quantified by gel permeation chromatography (GPC). Specifically, the amount of PMEA in the discharged colloid liquid was calculated by the same method as the above equation (3). Thereafter, using the following equation (6), the amount of PMEA in all the colloid solutions after coating was calculated, and the colloid utilization efficiency was further calculated by the following equation (7).
  • GPC gel permeation chromatography
  • Example 2 A tube (inner diameter: 9.5 ⁇ outer diameter: 14.2 mm) is connected to the blood inflow portion and blood outflow portion of the above-mentioned artificial lung, and the tube connected to the blood inflow portion is sandwiched between two aluminum plates.
  • the lung was filled with the above-mentioned colloid solution in a tube, and the end of the tube connected to the blood inlet was clamped. No carbon dioxide was used, and one side (length 91 mm) of an aluminum plate was moved back and forth twice a second by a motor to reciprocate the coating liquid for 1 minute. The distance between the two aluminum plates closest to each other was 4.5 mm. After the tube was removed from the oxygenating lung and the fluid was drained and collected, air was blown at 80 L / min to further recover the fluid. The air was kept flowing and dried.
  • Comparative Example A tube (inner diameter 9.5 ⁇ outer diameter 14.2 mm) was connected to the blood inflow part and blood outflow part of the above-mentioned artificial lung, the above-mentioned colloid solution was put in the artificial lung and the tube, and the coating liquid was held for 1 minute. After the tube was removed from the oxygenating lung and the fluid was drained and collected, air was blown at 80 L / min to further recover the fluid. The air was kept flowing and dried.
  • Example 1 The measurement results of the coating amount are shown in FIG. 8 and the measurement results of the colloid utilization efficiency are shown in FIG. It was found that in Examples 1 and 2 the colloid utilization efficiency was improved and the amount of coating on the hollow fiber was increased as compared with the comparative example. Further, among the examples, Example 1 further increases the colloid utilization efficiency. It can be inferred that the movement of the coating solution increased the colloid utilization efficiency, and the addition of carbon dioxide to it further increased the colloid utilization efficiency.
  • This application is based on Japanese Patent Application No. 2018-001806 filed on Jan. 10, 2018, the disclosure of which is incorporated by reference in its entirety.
  • hollow fiber external blood perfusion type artificial lung 22 ... Tubular hollow fiber membrane bundle, 23 ... housing, 24 ... gas inlet, 25, 26 ... partition wall, 27 ... gas outlet, 28 ... blood inlet, 29a, 29b ... blood outlet, 31 ... inner cylindrical member, 32 ... opening for blood circulation, 33: Outer tubular part, 35 ... inner cylinder, 41 ... Parts for gas inflow, 42: Parts for gas outflow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)

Abstract

中空糸膜に対する抗血栓性高分子材料(抗血栓性高分子化合物)のコーティング量を増加させる、人工肺の製造方法を提供する。本発明に係る人工肺の製造方法は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを特徴とする。

Description

人工肺の製造方法
 本発明は、人工肺の製造方法に関する。詳しくは、本発明は、体外血液循環において、血液中の二酸化炭素を除去し、血液中に酸素を添加するための中空糸膜外部血液灌流型人工肺の製造方法および人工肺に関する。
 多孔質膜を使用した中空糸膜型人工肺は、心臓疾患の開心術時における体外循環装置や循環補助用人工心肺装置として、一般に広く使用されている。膜型人工肺は主に中空糸膜を用い、その中空糸膜を介して血液のガス交換を行うものである。人工肺への血液の灌流方式として、中空糸膜の内側に血液を流し、中空糸膜の外側にガスを流す内部灌流方式と、逆に血液を中空糸膜の外側へ流し、ガスを中空糸膜の内側へ流す外部灌流方式とがある。
 中空糸膜型人工肺は、中空糸膜の内表面または外表面が血液と触れるため、血液と接触する中空糸膜の内表面または外表面が血小板系の粘着(付着)や活性化に影響を与える虞がある。特に、中空糸膜の外表面が血液と触れる外部灌流型人工肺は、血液の流れに乱れを発生させるため、血小板系の粘着(付着)や活性化に影響を与えやすい。
 このような課題を考慮して、アルコキシアルキル(メタ)アクリレートの血小板系の粘着や活性化の抑制・防止効果を利用して、従来、アルコキシアルキル(メタ)アクリレートを抗血栓性材料として外部灌流型人工肺用中空糸膜のコーティングに使用していた。例えば、特開平11-114056号公報では、中空糸膜の外面または外面層を、水、メタノールおよびエタノールの混合溶媒にアルコキシアルキル(メタ)アクリレートを主成分としてなる高分子を溶解してなるコート液でコーティングした後、乾燥させるコーティング方法が記載されている。
 特開平11-114056号公報の技術によると、上記コーティングの際に、コート液が中空糸膜の外表面から細孔(開口部)に浸透し、血液流路側に近い一部の細孔内壁が抗血栓性高分子化合物(抗血栓性高分子材料)により被覆される。このような人工肺に血液を循環させると、抗血栓性高分子化合物の親水性に起因して、血漿成分が細孔内壁に被覆された抗血栓性高分子化合物を伝って細孔内にしみ込み、血液流路側からガス流路側へリークするという問題を有していた。
 この問題を解決するために、本発明者らは、所定の粒径を有する抗血栓性高分子化合物を含むコロイド溶液を調製し、当該コロイド溶液を用いて中空糸膜の表面をコーティングする手法を試みた。しかしながら、当該手法によると、十分な量の抗血栓性高分子化合物を中空糸膜の表面に被覆させることが困難であるという、新たな問題が生じることが判明した。
 したがって、本発明は、上記事情を鑑みてなされたものであり、抗血栓性高分子化合物を含むコロイド溶液を用いた人工肺の製造方法において、中空糸膜に対する抗血栓性高分子化合物のコーティング量を増加させうる手段を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、血液流路に抗血栓性高分子化合物のコロイド液を充填した後、当該コロイド液を運動させながら中空糸膜をコーティングすることにより、上記課題を解決できることを知得し、本発明を完成させた。
 すなわち、上記目的は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを有する、人工肺の製造方法によって達成できる。
図1は、本発明に係る中空糸膜外部血液灌流型人工肺の一実施形態を示す断面図である。 図2は、本発明に係る中空糸膜外部血液灌流型人工肺に使用される中空糸膜の拡大断面図である。 図3は、本発明に係る中空糸膜外部血液灌流型人工肺の他の実施形態を示す断面図である。 図4は、図3のA-A線断面図である。 図5は、本発明に係る中空糸膜外部血液灌流型人工肺に使用される内側筒状部材の一例を示す正面図である。 図6は、図5に示した内側筒状部材の中央縦断面図である。 図7は、図5のB-B線断面図である。 図8は、実施例および比較例におけるコーティング量を表すグラフである。 図9は、実施例および比較例におけるコロイド利用効率を表すグラフである。
 本発明は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを有する、人工肺の製造方法に関する。本発明によれば、抗血栓性高分子化合物を含むコロイド溶液を用いた人工肺の製造方法において、中空糸膜に対する抗血栓性高分子化合物のコーティング量を増加させることができる。
 本発明に係る人工肺の製造方法では、中空糸膜外部血液灌流型人工肺において、血液流路に抗血栓性高分子化合物を含むコロイド液を充填し、前記コロイド液を血液流入口と血液流出口との間で運動させることにより、抗血栓性高分子化合物のコーティング量を増加させることができる。このような工程を経ることにより上記効果が発揮されるメカニズムは定かではないが、本発明者らは以下のように推測している。なお、本発明は下記メカニズムに限定されるものではない。
 抗血栓性高分子化合物を含むコロイド溶液中のコロイド粒子(粒子表面)および中空糸膜の表面は、いずれも負に帯電している。このため、コロイド粒子は、周囲に存在する他のコロイド粒子と反発するとともに、中空糸膜の表面とも反発することから、中空糸膜の表面に十分な量のコロイド粒子(抗血栓性高分子化合物)を被覆することが困難であった。本発明では、血液流路にコロイド溶液を充填し、血液流入口と血液流出口との間で当該コロイド溶液を運動させることにより、コロイド粒子が中空糸膜の表面に衝突しうる。このように、電気的な反発力よりも大きなエネルギーでコロイド粒子が中空糸膜の表面に衝突することにより、中空糸膜の表面にコロイド粒子が固着しやすくなり、抗血栓性高分子化合物のコーティング量が増大すると考えられる。
 また、コロイド溶液を運動させることにより、コロイド溶液を静置させた場合よりも、コロイド粒子が中空糸膜の表面に接触する回数が増大しうる。このため、コロイドの濃度が低いコロイド溶液を用いた場合であっても、中空糸膜の表面に十分な量の抗血栓性高分子化合物をコーティングすることが可能となる(すなわち、コロイド溶液中の、コロイドの利用効率を向上させることが可能となる)。
 以下、本発明の好ましい実施の形態を説明する。なお、本発明は、以下の実施の形態のみに限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 本発明の一形態は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを有する、人工肺の製造方法である。
 以下、本発明の人工肺の製造方法について詳細に説明するが、本明細書では便宜上、先ず本発明の製造方法により得られる人工肺について説明した後、本発明の製造方法について説明することとする。
 [人工肺]
 本発明に係る人工肺の詳細を、図面を参照しながら以下で説明する。
 図1は、本発明に係る中空糸膜外部血液灌流型人工肺の一実施形態の断面図である。図2は、本発明に係る中空糸膜外部血液灌流型人工肺に使用されているガス交換用多孔質中空糸膜の拡大断面図である。図3は、本発明に係る人工肺の他の実施形態の断面図である。
 図1において、人工肺1は、多数のガス交換用多孔質中空糸膜3をハウジング2内に収納し、中空糸膜3の外面側に血液が流れ、中空糸膜3の内部に酸素含有ガスが流れるタイプの人工肺である。そして、図2において、血液接触部となる中空糸膜3の外面(外表面3a’、または外表面3a’および外面層3a)に抗血栓性高分子化合物18が被覆されている。抗血栓性高分子化合物18の被覆(被膜)は、中空糸膜3の外表面3a’に選択的に形成される。図2では、中空糸膜外部血液灌流型人工肺に使用される中空糸膜の外表面3a’に抗血栓性高分子化合物18の被覆(被膜)が形成された形態を示している。かような形態の中空糸膜は、外表面3a’側に血液が接触し、内表面3c’側に酸素含有ガスが流通される。
 なお、「抗血栓性高分子化合物が中空糸膜の外面を被覆する」とは、抗血栓性高分子化合物の被覆(被膜)が中空糸膜の外表面(血液が流れる側の表面)、または外表面および外面層に形成されることを意図する。一方、「抗血栓性高分子化合物が中空糸膜の外表面を被覆する」とは、抗血栓性高分子化合物の被覆(被膜)が中空糸膜の外表面(血液が流れる側の表面)に形成されることを意図する。また、「抗血栓性高分子化合物が中空糸膜の外面層を被覆する」とは、抗血栓性高分子化合物が一部中空糸膜の外面層(細孔の外表面近傍)内に浸透して被覆(被膜)を形成することを意図する。なお、抗血栓性高分子化合物の被覆(被膜)は、中空糸膜の血液接触部(外表面)の少なくとも一部に形成されればよいが、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)などの観点から、中空糸膜の血液接触部(外表面)全体に形成されることが好ましい。すなわち、抗血栓性高分子化合物は、人工肺の血液接触部(外表面)全体を被覆することが好ましい。
 図2に係る実施形態において、抗血栓性高分子化合物は、中空糸膜3の内部層3bまたは内面層3cに存在してもよいが、中空糸膜3の内部層3bまたは内面層3cには実質的に存在していないことが好ましい。本明細書において、「抗血栓性高分子化合物が中空糸膜3の内部層3bまたは内面層3cには実質的に存在していない」とは、中空糸膜の内面(酸素含有ガスが流れる側の表面)付近に、抗血栓性高分子化合物の浸透が観察されないことを意味する。本発明に係る人工肺の製造方法では、抗血栓性高分子のコロイド液を塗布することで被膜を形成するため、抗血栓性高分子化合物が中空糸膜3の内部層3bまたは内面層3cには実質的に存在していない形態とすることができる。
 本実施形態に係る中空糸膜型人工肺1は、血液流入口6と血液流出口7とを有するハウジング2と、ハウジング2内に収納された多数のガス交換用多孔質中空糸膜3からなる中空糸膜束と、中空糸膜束の両端部をハウジング2に液密に支持する一対の隔壁4,5とを有し、隔壁4,5とハウジング2の内面および中空糸膜3の外面間に形成された血液室12と、中空糸膜3の内部に形成されたガス室と、ガス室と連通するガス流入口8およびガス流出口9とを有するものである。
 具体的には、本実施形態の中空糸膜型人工肺1は、筒状ハウジング2と、筒状ハウジング2内に収納されたガス交換用中空糸膜3の集合体と、中空糸膜3の両端部をハウジング2に液密に保持する隔壁4,5とを有し、筒状ハウジング2内は、第1の流体室である血液室12と第2の流体室であるガス室とに区画され、筒状ハウジング2には血液室12と連通する血液流入口6および血液流出口7が設けられている。
 そして、筒状ハウジング2の端部である隔壁4の上方には中空糸膜3の内部空間であるガス室に連通する第2の流体流入口であるガス流入口8を有するキャップ状のガス流入側ヘッダー10が取り付けられている。よって、隔壁4の外面とガス流入側ヘッダー10の内面により、ガス流入室13が形成されている。このガス流入室13は、中空糸膜3の内部空間により形成されるガス室と連通している。
 同様に、隔壁5の下方に設けられ中空糸膜3の内部空間に連通する第2の流体流出口であるガス流出口9を有するキャップ状のガス流出側ヘッダー11が取り付けられている。よって、隔壁5の外面とガス流出側ヘッダー11の内面により、ガス流出室14が形成されている。
 中空糸膜3は、疎水性高分子材料からなる多孔質膜であり、公知の人工肺に使用される中空糸膜と同様のものが使用され、特に制限されない。このように中空糸膜(特に中空糸膜の内面)が疎水性高分子材料からなることにより、血漿成分の漏出を抑制することができる。
 ここで、中空糸膜の内径は、特に制限されないが、好ましくは50~300μm、より好ましくは100~250μm、さらに好ましくは150~200μmである。中空糸膜の外径は、特に制限されないが、好ましくは100~400μm、より好ましくは200~350μm、さらに好ましくは250~300μmである。中空糸膜の肉厚(膜厚)は、好ましくは20μm~100μm、より好ましくは25~80μm、さらに好ましくは25~70μm、特に好ましくは25~60μmである。なお、本明細書において、「中空糸膜の肉厚(膜厚)」とは、中空糸膜の内表面と外表面との間の肉厚を意図し、式:[(中空糸膜の外径)-(中空糸膜の内径)]/2で算出される。ここで、中空糸膜の肉厚の下限を上記のようにすることによって、中空糸膜の強度を十分確保できる。また、製造上の手間やコストの点でも満足でき、大量生産の観点からも好ましい。また、中空糸膜の空孔率は、好ましくは5~90体積%、より好ましくは10~80体積%、特に好ましくは30~60体積%である。中空糸膜の細孔径(すなわち、中空糸の開口部の孔径)は、好ましくは10nm~5μm、より好ましくは50nm~1μm、特に好ましくは50nm~100nmである。
 なお、本明細書中、「中空糸膜の開口部の直径」とは、抗血栓性高分子化合物によって被覆される側(本実施形態では、外表面側)の開口部(本明細書中、単に「細孔」とも称することがある)の平均直径を指す。また、開口部の平均直径(本明細書中、単に「孔径」または「細孔径」とも称することがある)は、以下に記載の方法によって測定される。
 まず、走査型電子顕微鏡(SEM)で中空糸膜について、抗血栓性高分子化合物によって被覆される側(本実施形態では、外表面)を撮影する。次に、得られたSEM像について画像処理を行い、孔部分(開口部)を白く、それ以外を黒く反転させ、白い部分のピクセル数を測定する。なお、二値化の境界レベルは、最も白い部分と最も黒い部分の差の中間の値とする。
 続いて、白く表示された孔(開口部)のピクセル数を測定する。このようにして求めた各孔のピクセル数およびSEM像の解像度(μm/ピクセル)に基づいて孔面積を算出する。得られた孔面積から、孔を円形とみなして各孔の直径を算出し、無作為に、統計学的に有意な数、例えば、500個の孔の直径を抽出し、その算術平均を「中空糸の開口部の直径」とする。
 また、多孔質膜に使用される材質としては、公知の人工肺に使用される中空糸膜と同様の材料が使用できる。具体的には、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、セルロースアセテート等の疎水性高分子材料などが挙げられる。これらのうち、ポリオレフィン樹脂が好ましく使用され、ポリプロピレンがより好ましい。中空糸膜の製造方法は、特に制限されず、公知の中空糸膜の製造方法が同様にしてあるいは適宜修飾して適用できる。例えば、中空糸膜は、延伸法または固液相分離法により壁に微細孔が形成されてなることが好ましい。
 筒状ハウジング2を構成する材料もまた、公知の人工肺のハウジングに使用されるのと同様の材料が使用できる。具体的には、ポリカーボネート、アクリル・スチレン共重合体、アクリル・ブチレン・スチレン共重合体などの疎水性合成樹脂が挙げられる。ハウジング2の形状は、特に制限されないが、例えば円筒状であり、透明体であることが好ましい。透明体で形成することにより、内部の確認を容易に行うことができる。
 本実施形態における中空糸膜の収納量は、特に制限されず、公知の人工肺と同様の量が適用できる。例えば、ハウジング2内に、その軸方向に向けて並列に約5,000~100,000本の多孔質中空糸膜3が収納されている。さらに、中空糸膜3は、ハウジング2の両端に中空糸膜3の両端がそれぞれ開口した状態で隔壁4,5により液密状態に固定されている。隔壁4,5は、ポリウレタン、シリコーンゴムなどのポッティング剤で形成される。ハウジング2内の上記隔壁4,5ではさまれた部分は、中空糸膜3の内部側のガス室と中空糸膜3の外側の血液室12とに仕切られている。
 本実施形態では、ガス流入口8を有するガス流入側ヘッダー10およびガス流出口9を有するガス流出側ヘッダー11が、ハウジング2に液密に取り付けられている。これらヘッダーも、いずれの材料で形成されてもよいが、例えば、上述のハウジングに用いられる疎水性合成樹脂により形成されうる。ヘッダーはいずれの方法によって取り付けられてもよいが、例えば、ヘッダーは、超音波、高周波、誘導加熱などを用いた融着、接着剤を用いた接着または機械的に嵌合させることによって、ハウジング2に取り付けられる。また、締め付けリング(図示しない)を用いて行ってもよい。中空糸膜型人工肺1の血液接触部(ハウジング2の内面、中空糸膜3の外面)は、全て疎水性材料により形成されることが好ましい。
 図2に示されるように、この中空糸膜型人工肺1の少なくとも血液接触部となる中空糸膜3の外表面3a’(さらには場合によっては外面層3a;以下、同様)には、抗血栓性高分子化合物18が被覆されている。上述したように、中空糸膜の内部層3bまたは内面層3cには、この抗血栓性高分子化合物が実質的に存在していないことが好ましい。抗血栓性高分子化合物が実質的に存在していないため、中空糸膜の内部層3bまたは内面層3cが膜の基材自身が持つ疎水性の特性がそのまま保持され、血漿成分の漏出(リーク)を有効に防止できる。特に、中空糸膜の内部層3bおよび内面層3c双方に抗血栓性高分子化合物が実質的に存在していないことが好ましい。また、中空糸膜3は、中央にガス室を形成する通路(内腔)3dを備えている。加えて、中空糸膜3は、その外表面3a’と内表面3c’を連通する開口部3eを有している。かような構成を有する中空糸膜は、抗血栓性高分子化合物18によって被覆された外表面3a’側に血液が接触し、一方、内表面3c’側に酸素含有ガスが流通される形態で使用される。
 本実施形態では、抗血栓性高分子化合物の被覆(被膜)は、中空糸膜の外表面(外部灌流型)に選択的に形成される。このため、血液(特に血漿成分)が中空糸膜の細孔内部に浸透しにくいか、または浸透しない。ゆえに、中空糸膜からの血液(特に血漿成分)の漏出を有効に抑制・防止できる。特に抗血栓性高分子化合物が中空糸膜の内部層3bおよび中空糸膜の内面層3cに実質的に存在しない場合には、中空糸膜の内部層3bおよび中空糸膜の内面層3cは、素材の疎水性状態を維持しているため、高い血液(特に血漿成分)の漏出(リーク)をさらに有効に抑制・防止できる。したがって、本発明の方法により得られる人工肺は、高いガス交換能を長期間にわたって維持できる。
 本実施形態に係る抗血栓性高分子化合物の被覆は、人工肺の中空糸膜の外表面に必須に形成されるが、外表面に加えて、他の構成部材(例えば、血液接触部全体)に形成されてもよい。当該構成をとることにより、人工肺の血液接触部全体において、血小板の粘着/付着および活性化をさらにより有効に抑制・防止できる。また、血液接触面の接触角が低くなるので、プライミング作業が容易となる。なお、この場合には、本発明に係る抗血栓性高分子化合物の被覆は血液が接触する他の構成部材に形成されることが好ましいが、血液接触部以外の中空糸膜もしくは中空糸膜の他の部分(例えば、隔壁中に埋没する部分)には、抗血栓性高分子化合物が被覆されていなくてもよい。このような部分は、血液と接触しないので、抗血栓性高分子化合物を被覆しなくても特に問題とならない。
 また、本発明の方法により得られる人工肺は、図3に示すようなタイプのものであってもよい。図3は、本発明の方法により得られる人工肺の他の実施形態を示す断面図である。また、図4は、図3のA-A線断面図である。
 図3において、人工肺(中空糸膜外部血液灌流型人工肺)20は、側面に血液流通用開口32を有する内側筒状部材31と、内側筒状部材31の外面に巻き付けられた多数のガス交換用多孔質中空糸膜3からなる筒状中空糸膜束22と、筒状中空糸膜束22を内側筒状部材31とともに収納するハウジング23と、中空糸膜3の両端を開口した状態で、筒状中空糸膜束22の両端部をハウジングに固定する隔壁25,26と、ハウジング23内に形成された血液室17と連通する血液流入口28および血液流出口29a、29bと、中空糸膜3の内部と連通するガス流入口24およびガス流出口27とを有するものである。
 本実施形態の人工肺20は、図3および図4に示されるように、ハウジング23は、内側筒状部材31を収納する外側筒状部材33を備え、筒状中空糸膜束22は内側筒状部材31と外側筒状部材33間に収納されており、さらに、ハウジング23は、内側筒状部材内と連通する血液流入口または血液流出口の一方と、外側筒状部材内部と連通する血液流入口または血液流出口の他方とを備えている。
 具体的には、本実施形態の人工肺20では、ハウジング23は、外側筒状部材33、内側筒状部材31内に収納され、先端が内側筒状部材31内で開口する内筒体35を備える。内筒体35の一端(下端)には、血液流入口28が形成されており、外側筒状部材33の側面には、外方に延びる2つの血液流出口29a,29bが形成されている。なお、血液流出口は、一つであってもまたは複数であってもよい。
 そして、筒状中空糸膜束22は、内側筒状部材31の外面に巻き付けられている。つまり、内側筒状部材31が筒状中空糸膜束22のコアとなっている。内側筒状部材31の内部に収納された内筒体35は、先端部が第1の隔壁25付近にて開口している。また、内側筒状部材31より、突出する下端部に血液流入口28が形成されている。
 そして、内筒体35、中空糸膜束22が外面に巻き付けられた内側筒状部材31、さらに、外側筒状部材33は、それぞれがほぼ同心的に配置されている。そして、中空糸膜束22が外面に巻き付けられた内側筒状部材31の一端(上端)および外側筒状部材33の一端(上端)は、第1の隔壁25により、両者の同心的位置関係が維持されるとともに、内側筒状部材内部および外側筒状部材33と中空糸膜の外面との間により形成される空間が外部と連通しない液密状態となっている。
 また、内筒体35の血液流入口28より若干上方となる部分、中空糸膜束22が外面に巻き付けられた内側筒状部材31の他端(下端)および外側筒状部材33の他端(下端)は、第2の隔壁26により、両者の同心的位置関係が維持されるとともに、内筒体35と内側筒状部材31との間に形成される空間および外側筒状部材33と中空糸膜の外面との間により形成される空間が外部と連通しない液密状態となっている。また、隔壁25,26は、ポリウレタン、シリコーンゴムなどのポッティング剤で形成される。
 よって、本実施形態の人工肺20では、内筒体35の内部により形成される血液流入口17a、内筒体35と内側筒状部材31との間に形成される実質的に筒状空間となっている第1の血液室17b、中空糸膜束22と外側筒状部材33との間に形成される実質的に筒状空間となっている第2の血液室17cを備え、これらにより血液室17が形成されている。
 そして、血液流入口28から流入した血液は、血液流入口17a内に流入し、内筒体35(血液流入口17a)内を上昇し、内筒体35の上端35a(開口端)より流出し、第1の血液室17b内に流入し、内側筒状部材31に形成された開口32を通過して、中空糸膜に接触し、ガス交換がなされた後、第2の血液室17cに流入し、血液流出口29a,29bより流出する。
 また、外側筒状部材33の一端には、ガス流入口24を備えるガス流入用部材41が固定されており、同様に、外側筒状部材33の他端には、ガス流出口27を有するガス流出用部材42が固定されている。なお、内筒体35の血液流入口28は、このガス流出用部材42を貫通して外部に突出している。
 外側筒状部材33としては、特に制限されないが、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、外側筒状部材の内径は、特に制限されず、公知の人工肺に使用される外側筒状部材の内径と同様でありうるが、32~164mm程度が好適である。また、外側筒状部材の有効長(全長のうち隔壁に埋もれていない部分の長さ)もまた、特に制限されず、公知の人工肺に使用される外側筒状部材の有効長と同様でありうるが、10~730mm程度が好適である。
 また、内側筒状部材31の形状は、特に制限されないが、例えば、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、内側筒状部材の外径は、特に制限されず、公知の人工肺に使用される内側筒状部材の外径と同様でありうるが、20~100mm程度が好適である。また、内側筒状部材の有効長(全長のうち隔壁に埋もれていない部分の長さ)もまた、特に制限されず、公知の人工肺に使用される内側筒状部材の有効長と同様でありうるが、10~730mm程度が好適である。
 内側筒状部材31は、側面に多数の血液流通用開口32を備えている。開口32の大きさは、筒状部材の必要強度を保持する限り、総面積が大きいことが好ましい。このような条件を満足するものとしては、例えば、正面図である図5、図5の中央縦断面図である図6、さらに図5のB-B線断面図である図7に示されるように、開口32を筒状部材の外周面に等角度間隔で複数(例えば、4~24個、図では、長手方向に8個)設けた環状配置開口を、筒状部材の軸方向に等間隔で複数組(図では、8組/周)設けたものが好適である。さらに、開口形状は、丸、多角形、楕円形などでもよいが、図5に示すような、長円形状のものが好適である。
 また、内筒体35の形状は、特に制限されないが、例えば、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、内筒体35の先端開口と第1の隔壁25との距離は、特に制限されず、公知の人工肺に使用されるのと同様の距離が適用できるが、20~50mm程度が好適である。また、内筒体35の内径もまた、特に制限されず、公知の人工肺に使用される内筒体の内径と同様でありうるが、10~30mm程度が好適である。
 筒状中空糸膜束22の厚さは、特に制限されず、公知の人工肺に使用される筒状中空糸膜束の厚さと同様でありうるが、5~35mmが好ましく、特に10mm~28mmであることが好ましい。また、筒状中空糸膜束22の外側面と内側面間により形成される筒状空間に対する中空糸膜の充填率もまた、特に制限されず、公知の人工肺における充填率が同様にして適用できるが、40~85%が好ましく、特に45~80%が好ましい。また、中空糸膜束22の外径は、公知の人工肺に使用される中空糸膜束の外径と同様でありうるが、30~170mmが好ましく、特に、70~130mmが好ましい。ガス交換膜としては、上述したものが使用される。
 そして、中空糸膜束22は、内側筒状部材31に中空糸膜を巻き付けること、具体的には、内側筒状部材31をコアとして、中空糸膜ボビンを形成させ、形成された中空糸膜ボビンの両端を、隔壁による固定の後、コアである内側筒状部材31とともに中空糸膜ボビンの両端を切断することにより、形成することができる。なお、この切断により、中空糸膜は、隔壁の外面において開口する。なお、中空糸膜の形成方法は、上記方法に限定されるものではなく、他の公知の中空糸膜の形成方法を同様にしてあるいは適宜修飾して使用してもよい。
 特に、中空糸膜は、1本あるいは複数本同時に、実質的に平行でかつ隣り合う中空糸膜が実質的に一定の間隔となるように内側筒状部材31に巻きつけられることが好ましい。これにより、血液の偏流をより有効に抑制できる。また、中空糸膜は、隣り合う中空糸膜との距離が、以下に制限されないが、中空糸膜の外径の1/10~1/1となっていることが好ましい。さらに、中空糸膜は、隣り合う中空糸膜との距離が、30~200μmであると好ましい。
 さらに、中空糸膜束22は、中空糸膜が、1本あるいは複数本(好ましくは、2~16本)同時に、かつ隣り合うすべての中空糸膜が実質的に一定の間隔となるように内側筒状部材31に巻きつけられることによって、形成されたものであるとともに、中空糸膜を内側筒状部材上に巻き付ける際に、内側筒状部材31を回転させるための回転体と中空糸膜を編み込むためのワインダーとが、下記式(1)の条件で動くことによって内側筒状部材31に巻きつけられることにより形成されたものであることが好ましい。
Figure JPOXMLDOC01-appb-M000002
 上記条件とすることによって、血液偏流の形成をより少ないものとすることができる。このときの巻取り用回転体の回転数とワインダー往復数の関係であるnは、特に制限されないが、通常、1~5であり、好ましくは2~4である。
 また、中空糸膜型人工肺20においても、図2に示すように、この中空糸膜型人工肺1の少なくとも中空糸膜3の外表面3a’(さらには外面層3a)に、本発明に係る抗血栓性高分子化合物18が被覆されている。ここで、抗血栓性高分子化合物は、中空糸膜3の内部層3bまたは内面層3cに存在してもよいが、内部層3bまたは中空糸膜の内面層3cには実質的に存在していないことが好ましい。また、中空糸膜3は、中央にガス室を形成する通路(内腔)3dを備えている。加えて、中空糸膜3は、その外表面3a’と内表面3c’を連通する開口部3eを有している。ここで、中空糸膜の好ましい形態(内径、外径、肉厚、空孔率、細孔の孔径など)は、特に制限されないが、上記図1において記載したものと同様の形態が採用できる。
 本実施形態に係る人工肺20では、中空糸膜3は互いに接触するとともに何重にも積み重ねられたいわゆるボビン状となっている。本実施形態では、抗血栓性高分子化合物による被覆は、均一に中空糸膜の外表面3a’に選択的に形成される。このような構成とすることにより、中空糸膜の内面層3cへの血液(特に血漿成分)の漏出も抑制・防止できる。すなわち、血液接触部である中空糸膜3の外表面3a’(さらには外面層3a)が選択的に抗血栓性高分子化合物により被覆されていることにより、血液(特に血漿成分)の漏出(リーク)を有効に抑制・防止できる。特に本発明に係る抗血栓性高分子化合物が中空糸膜3の内部層3bおよび内面層3cに実質的に存在しない場合には、中空糸膜の内部層3bおよび内面層3cは、素材の疎水性状態を維持しているため、高い血液(特に血漿成分)の漏出(リーク)をさらに有効に抑制・防止できる。なお、本実施形態では、血液流路が複雑でかつ狭い部分を多く備え、ガス交換能には優れるが、血小板の粘着/付着および活性化の点においては、ボビンタイプでない外部血液灌流型の人工肺より劣る場合がある。しかしながら、上述したように、抗血栓性高分子化合物の被覆が均一であるため、中空糸膜の血液接触部での血小板の粘着/付着および活性化が少ない。また、被覆(特にコートむら部分)が中空糸膜から剥離することも抑制・防止できる。
 また、抗血栓性高分子化合物の被覆は、人工肺の中空糸膜の外表面に必須に形成されるが、外表面に加えて、他の構成部材(例えば、血液接触部全体)に形成されてもよい。当該構成をとることにより、人工肺の血液接触部全体において、血小板の粘着/付着および活性化をさらにより有効に抑制・防止できる。また、血液接触面の接触角が低くなるので、プライミング作業が容易となる。なお、この場合には、抗血栓性高分子化合物の被覆は血液が接触する他の構成部材に形成されることは好ましいが、血液接触部以外の中空糸膜もしくは中空糸膜の他の部分(例えば、隔壁中に埋没する部分、中空糸相互の接触部)には、抗血栓性高分子化合物が被覆されていなくてもよい。このような部分は、血液と接触しないので、抗血栓性高分子化合物を被覆しなくても特に問題とならない。
 [人工肺の製造方法]
 本発明に係る人工肺の製造方法は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを特徴とする。
 本発明の方法では、まず、抗血栓性高分子化合物を含む溶液(コロイド液)を調製する。そして、当該コロイド液を血液流路に充填し、コロイド液を運動させながら中空糸膜の外表面に対してコーティングを行う。以下では、(1)コロイド液の調製工程および(2)コロイド液のコーティング(被覆)工程として、それぞれ説明する。
 (1)コロイド液の調製工程
 本工程では、中空糸膜の外表面にコーティングするための、コロイド液を調製する。上述のように、本発明に係る方法において用いられるコロイド液は、抗血栓性高分子化合物を含む。
 まず、本発明に係るコロイド液の調製において用いられる抗血栓性高分子化合物について説明する。
 (抗血栓性高分子化合物およびその製造方法)
 本発明において用いられる抗血栓性高分子化合物は、中空糸膜に塗布されることにより、人工肺に抗血栓性を付与する化合物である。また、「抗血栓性」とは、血液と接触する表面において血液の凝固を低減する性質をいう。
 抗血栓性高分子化合物は、抗血栓性や生体適合性を有するものであれば、特に制限なく用いることができる。なかでも、上記特性に優れるという観点から、抗血栓性高分子化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、水素原子またはメチル基を表し、Rは、炭素数1~4のアルキレン基を表し、Rは、炭素数1~4のアルキル基を表す;
で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を有すると好ましい。上記の式(I)で示される構成単位を有する化合物は、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)、特に血小板の粘着/付着の抑制・防止効果に優れる。ゆえに、上記構成単位を有する化合物を用いることにより、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)、特に血小板の粘着/付着の抑制・防止効果に優れた人工肺を製造することが可能となる。
 なお、本明細書において、「(メタ)アクリレート」は「アクリレートおよび/またはメタクリレート」を意味する。すなわち、「アルコキシアルキル(メタ)アクリレート」は、アルコキシアルキルアクリレートのみ、アルコキシアルキルメタクリレートのみ、ならびにアルコキシアルキルアクリレートおよびアルコキシアルキルメタクリレートすべての場合を包含する。
 上記式(I)において、Rは、炭素数1~4のアルキレン基を表す。ここで、炭素数1~4のアルキレン基としては、特に制限されず、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基の直鎖または分岐鎖のアルキレン基がある。これらのうち、エチレン基、プロピレン基が好ましく、抗血栓性および生体適合性のさらなる向上効果を考慮すると、エチレン基が特に好ましい。Rは、炭素数1~4のアルキル基を表す。ここで、炭素数1~4のアルキル基としては、特に制限されず、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基の直鎖または分岐鎖のアルキル基がある。これらのうち、メチル基、エチル基が好ましく、抗血栓性および生体適合性のさらなる向上効果を考慮すると、メチル基が特に好ましい。Rは、水素原子またはメチル基を表す。なお、本発明に係る抗血栓性高分子化合物が2種以上のアルコキシアルキル(メタ)アクリレート由来の構成単位を有する場合には、各構成単位は、同一であってもあるいは異なるものであってもよい。
 アルコキシアルキル(メタ)アクリレートとしては、具体的には、メトキシメチルアクリレート、メトキシエチルアクリレート、メトキシプロピルアクリレート、エトキシメチルアクリレート、エトキシエチルアクリレート、エトキシプロピルアクリレート、エトキシブチルアクリレート、プロポキシメチルアクリレート、ブトキシエチルアクリレート、メトキシブチルアクリレート、メトキシメチルメタクリレート、メトキシエチルメタクリレート、エトキシメチルメタクリレート、エトキシエチルメタクリレート、プロポキシメチルメタクリレート、ブトキシエチルメタクリレート等が挙げられる。これらのうち、抗血栓性および生体適合性のさらなる向上効果の観点から、メトキシエチル(メタ)アクリレート、メトキシブチルアクリレートが好ましく、メトキシエチルアクリレート(MEA)が特に好ましい。すなわち、本発明に係る抗血栓性高分子化合物がポリメトキシエチルアクリレート(PMEA)であることが好ましい。上記アルコキシアルキル(メタ)アクリレートは、単独で使用されてもあるいは2種以上を混合して使用してもよい。
 本発明に係る抗血栓性高分子化合物は、アルコキシアルキル(メタ)アクリレート由来の構成単位を有していると好ましく、アルコキシアルキル(メタ)アクリレート由来の構成単位の1種もしくは2種以上から構成される重合体(単独重合体)であってもまたは1種もしくは2種以上のアルコキシアルキル(メタ)アクリレート由来の構成単位および当該アルコキシアルキル(メタ)アクリレートと共重合し得る1種もしくは2種以上の単量体由来の構成単位(他の構成単位)から構成される重合体(共重合体)であってもよい。なお、本発明に係る抗血栓性高分子化合物が2種以上の構成単位から構成される場合には、高分子(共重合体)の構造は特に制限されず、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。また、重合体の末端は特に制限されず、使用される原料の種類によって適宜規定されるが、通常、水素原子である。
 ここで、本発明に係る抗血栓性高分子化合物がアルコキシアルキル(メタ)アクリレート由来の構成単位に加えて他の構成単位を有する場合の、アルコキシアルキル(メタ)アクリレートと共重合し得る単量体(共重合性単量体)としては、特に制限されない。例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2-エチルヘキシルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、エチレン、プロピレン、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アミノメチルアクリレート、アミノエチルアクリレート、アミノイソプロピルアクリレート、ジアミノメチルアクリレート、ジアミノエチルアクリレート、ジアミノブチルアクリレート、メタアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、アミノメチルメタクリレート、アミノエチルメタクリレート、ジアミノメチルメタクリレート、ジアミノエチルメタクリレート等が挙げられる。これらのうち、共重合性単量体としては、分子内にヒドロキシル基やカチオン性基を有しないものが好ましい。共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれでもよく、ラジカル重合やイオン重合、マクロマーを利用した重合等の公知の方法により合成することができる。ここで、共重合体の全構成単位中、共重合性単量体に由来する構成単位の割合は、特に制限されないが、抗血栓性および生体適合性などを考慮すると、共重合性単量体に由来する構成単位(他の構成単位)が、共重合体の全構成単位中、0モル%を超えて50モル%以下であることが好ましい。50モル%を超えると、アルコキシアルキル(メタ)アクリレートによる効果が低下してしまう可能性がある。
 ここで、抗血栓性高分子化合物の重量平均分子量は特に制限されないが、好ましくは80,000以上である。本発明に係る人工肺の製造方法において、抗血栓性高分子化合物は、コロイド液の形態で中空糸膜の外表面または内表面に塗布される。したがって、所望のコロイド液を調製しやすいという観点から、抗血栓性高分子化合物の重量平均分子量は、800,000未満であると好ましい。上記範囲とすることにより、抗血栓性高分子化合物を含む溶液中で、当該化合物が凝集または沈殿することを抑制し、安定したコロイド液を調製することができる。さらに、抗血栓性高分子化合物の重量平均分子量は、200,000を超えて800,000未満であると好ましく、210,000~600,000であるとより好ましく、220,000~500,000であるとさらにより好ましく、230,000~450,000であると特に好ましい。
 本明細書において、「重量平均分子量」は、標準物質としてポリスチレンを、移動相としてテトラヒドロフラン(THF)をそれぞれ使用するゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)により測定した値を採用するものとする。具体的には、分析対象となるポリマーをTHFに溶解し1mg/mlの溶液を調製する。このように調製されたポリマー溶液について、株式会社島津製作所製GPCシステムLC-20にShodex社製GPCカラムLF-804を取り付け、移動相としてTHFを流し、標準物質としてポリスチレンを用いて、分析対象となるポリマーのGPCを測定する。標準ポリスチレンで較正曲線を作製した後、この曲線に基づいて分析対象となるポリマーの重量平均分子量を算出する。
 抗血栓性高分子化合物の分子量を大きくすることによって、被膜中に含まれる、分子量が比較的小さい高分子の含有量を低減でき、その結果、比較的分子量が小さい高分子が、血液中へ溶出することを抑制・防止するという効果も得られると推測される。したがって、抗血栓性高分子化合物の重量平均分子量が上記範囲に含まれる場合には、被膜(特に低分子量の高分子)の血液中への溶出を更に有効に抑制・防止できる。また、抗血栓性および生体適合性の点からも好ましい。また、本明細書において、「低分子量の高分子」とは、重量平均分子量が60,000未満の高分子を意味する。なお、重量平均分子量の測定方法は、上記の通りである。
 また、上記式(I)で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を含む抗血栓性高分子化合物は、公知の方法によって製造できる。具体的には、下記式(II):
Figure JPOXMLDOC01-appb-C000004
で示されるアルコキシアルキル(メタ)アクリレート、および必要に応じて添加される上記アルコキシアルキル(メタ)アクリレートと共重合し得る単量体(共重合性単量体)の1種または2種以上とを重合溶媒中で重合開始剤と共に撹拌して、単量体溶液を調製し、上記単量体溶液を加熱することにより、アルコキシアルキル(メタ)アクリレート、またはアルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体を(共)重合させる方法が好ましく使用される。なお、上記式(II)において、置換基R、RおよびRは、上記式(I)の定義と同様であるため、ここでは説明を省略する。
 上記単量体溶液の調製で使用できる重合溶媒は、用いられる上記式(II)のアルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体を溶解できるものであれば特に制限されない。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール、ポリエチレングリコール類などの水性溶媒;トルエン、キシレン、テトラリン等の芳香族系溶媒;およびクロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン系溶媒などが挙げられる。これらのうち、アルコキシアルキル(メタ)アクリレートの溶解しやすさ、上記したような重量平均分子量を有する高分子の得やすさなどを考慮すると、メタノールが好ましい。
 単量体溶液中の単量体濃度は、特に制限されないが、濃度を比較的高く設定することによって、得られる抗血栓性高分子化合物の重量平均分子量を大きくすることができる。このため、上記したような重量平均分子量を有する高分子の得やすさなどを考慮すると、単量体溶液中の単量体濃度は、好ましくは50質量%未満であり、より好ましくは15質量%以上50質量%未満である。さらに、単量体溶液中の単量体濃度は、より好ましくは20質量%以上48質量%以下であり、特に好ましくは25質量%以上45質量%以下である。なお、上記単量体濃度は、単量体を2種以上使用する場合には、これらの単量体の合計濃度を意味する。
 重合開始剤は特に制限されず、公知のものを使用すればよい。好ましくは、重合安定性に優れる点で、ラジカル重合開始剤であり、具体的には、過硫酸カリウム(KPS)、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジハイドレート、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)]ハイドレート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、1,1,3,3-テトラブチルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシピバレート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシピバレート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(セカンダリーブチル)パーオキシジカーボネート、アゾビスシアノ吉草酸等のアゾ化合物が挙げられる。また、例えば、上記ラジカル重合開始剤に、亜硫酸ナトリウム、亜硫酸水素ナトリウム、アスコルビン酸等の還元剤を組み合わせてレドックス系開始剤として用いてもよい。重合開始剤の配合量は、単量体(アルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体;以下、同様)の合計量に対して、0.0001~1モル%が好ましく、0.001~0.8モル%であるとより好ましく、0.01~0.5モル%であると特に好ましい。または、重合開始剤の配合量は、100質量部の単量体(複数種の単量体を用いる場合は、その全体)に対して、好ましくは0.005~2質量部であり、より好ましくは0.05~0.5質量部である。このような重合開始剤の配合量であれば、所望の重量平均分子量を有する高分子がより効率よく製造できる。
 上記重合開始剤は、単量体および重合溶媒とそのまま混合されてもよいが、予め他の溶媒に溶解した溶液の形態で単量体および重合溶媒とそのまま混合されてもよい。後者の場合、他の溶媒としては、重合開始剤を溶解できるものであれば特に制限されないが、上記重合溶媒と同様の溶媒が例示できる。また、他の溶媒は、上記重合溶媒と同じであってもまたは異なってもよいが、重合の制御のしやすさなどを考慮すると、上記重合溶媒と同じ溶媒であることが好ましい。また、この場合の他の溶媒における重合開始剤の濃度は、特に制限されないが、混合のしやすさなどを考慮すると、重合開始剤の添加量が、他の溶媒100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.15~5質量部、さらにより好ましくは0.2~1.8質量部である。
 次に、上記単量体溶液を加熱することにより、アルコキシアルキル(メタ)アクリレートまたはアルコキシアルキル(メタ)アクリレートおよび他の単量体を(共)重合する。ここで、重合方法は、例えば、ラジカル重合、アニオン重合、カチオン重合などの公知の重合方法が採用でき、好ましくは製造が容易なラジカル重合を使用する。
 重合条件は、上記単量体(アルコキシアルキル(メタ)アクリレートまたはアルコキシアルキル(メタ)アクリレートおよび共重合性単量体)が重合できる条件であれば特に制限されない。具体的には、重合温度は、好ましくは30~60℃であり、より好ましくは40~55℃である。また、重合時間は、好ましくは1~24時間であり、好ましくは3~12時間である。かような条件であれば、上記したような高分子量の重合体がより効率的に製造できる。また、重合工程におけるゲル化を有効に抑制・防止すると共に、高い製造効率を達成できる。
 また、必要に応じて、連鎖移動剤、重合速度調整剤、界面活性剤、およびその他の添加剤を、重合の際に適宜使用してもよい。
 重合反応を行う雰囲気は特に制限されるものではなく、大気雰囲気下、窒素ガスやアルゴンガス等の不活性ガス雰囲気等で行うこともできる。また、重合反応中は、反応液を攪拌してもよい。
 重合後の重合体は、再沈澱法、透析法、限外濾過法、抽出法など一般的な精製法により精製することができる。コロイド液の調製に適した(共)重合体が得られるという理由から、上記の中でも、再沈殿法による精製を行うと好ましい。このとき、再沈殿を行うために用いる貧溶媒としては、エタノールを用いると好ましい。
 精製後の重合体は、凍結乾燥、減圧乾燥、噴霧乾燥、または加熱乾燥等、任意の方法によって乾燥することもできるが、重合体の物性に与える影響が小さいという観点から、凍結乾燥または減圧乾燥が好ましい。
 次に、本発明に係るコロイド液の調製方法について説明する。
 (コロイド液の調製)
 抗血栓性高分子化合物を含む溶液(コロイド液)の調製に使用される溶媒は、抗血栓性高分子化合物を適度に分散させてコロイド液を調製することができるものであれば特に制限されない。中空糸膜の細孔の外表面または内表面(酸素含有ガスが流れる側の表面)までのコロイド液の浸透をより有効に防止する観点から、溶媒が水を含むことが好ましい。ここで、水は、純水、イオン交換水または蒸留水であると好ましく、なかでも、逆浸透膜により精製した純水(RO水)であると好ましい。
 また、コロイド液の調製に使用される水以外の溶媒は、特に制限されないが、抗血栓性高分子化合物の分散性等の制御のしやすさを考慮すると、メタノール、アセトンであることが好ましい。上記水以外の溶媒は、1種単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。これらのうち、抗血栓性高分子化合物の分散性等のさらなる制御のしやすさを考慮すると、メタノールであることが好ましい。すなわち、溶媒は、水およびメタノールから構成されることが好ましい。ここで、水およびメタノールの混合比は、特に制限されないが、抗血栓性高分子化合物の分散性およびコロイドの平均粒子径のさらなる制御のしやすさを考慮すると、水:メタノールの混合比(質量比)が、6~32:1であることが好ましく、10~30:1であることがより好ましい。すなわち、溶媒は、6~32:1の混合比(質量比)で水およびメタノールから構成されることが好ましく、10~30:1の混合比(質量比)で水およびメタノールから構成されることがより好ましい。
 なお、上記のように、水と水以外の溶媒との混合溶媒を用いてコロイド液を調製する際、溶媒(例えば、水およびメタノール)、抗血栓性高分子化合物を添加する順序は特に制限されないが、以下の手順でコロイド液を調製すると好ましい。すなわち、抗血栓性高分子化合物を水以外の溶媒(好ましくは、メタノール)に添加して抗血栓性高分子化合物含有溶液を調製し、続いて、水に対して上記抗血栓性高分子化合物含有溶液を添加する方法でコロイド液を調製すると好ましい。このような方法によれば、抗血栓性高分子化合物を分散させやすい。また、上記方法によれば、粒子径が均一なコロイドを形成することができ、均一な被膜が形成しやすくなるという利点もある。
 上記方法において、水に対する抗血栓性高分子化合物含有溶液の添加速度は、特に制限されないが、水に対し、上記抗血栓性高分子化合物含有溶液を10~10000g/分の速度で添加すると好ましい。
 コロイド液を調製する際の撹拌時間や撹拌温度は特に制限されないが、粒子径が均一なコロイドを形成しやすく、コロイドを均一に分散できるという観点から、水に抗血栓性高分子化合物含有溶液を添加した後、1~30分間撹拌すると好ましく、5~15分間撹拌するとより好ましい。また、撹拌温度は、10~40℃であると好ましく、20~30℃であるとより好ましい。
 コロイド液中の抗血栓性高分子化合物の濃度は、特に制限されないが、コーティング量を増加させやすいという観点から、0.005質量%以上であると好ましい。さらに上記観点から、コロイド液は、抗血栓性高分子化合物を、0.01質量%以上の濃度で含むとより好ましく、0.03質量%以上の濃度で含むとさらに好ましく、0.04質量%以上の濃度で含むと特に好ましい。一方、コロイド液中の抗血栓性高分子化合物の濃度の上限は、特に制限されないが、被膜の形成しやすさ、コートむらの低減効果などを考慮すると、0.3質量%以下であると好ましく、0.2質量%以下であるとより好ましい。また、このような範囲であれば、抗血栓性高分子化合物の被膜が厚くなりすぎることによる、ガス交換能の低下も抑制される。
 (2)コロイド液のコーティング(被覆)工程
 次に、上記の通り調製したコロイド液を、中空糸膜の外表面にコーティングする。具体的には、人工肺(例えば、前述の図1または図3のような構造のもの)を組み立てた後、上記工程(1)において調製したコロイド液を血液流路に充填し、前記コロイド液を血液流入口と血液流出口との間で運動させることにより、中空糸膜の外表面を抗血栓性高分子化合物でコーティングする。
 ここで、コロイド液を血液流入口と血液流出口との間で運動させる方法として、特に制限されず、例えば、コロイド液を人工肺の血液流路に循環運動する方法や、コロイド液を血液流入口と血液流出口との間で往復運動する方法等が挙げられる。この中でも、コロイド液を血液流入口と血液流出口との間で運動させる方法として、往復運動させる方法は設備のコストの観点から好ましい。
 コロイド液を人工肺の血液流路に循環運動する方法は、コロイド液を循環運動させられる方法であれば特に制限されないが、例えば、ローラーポンプを用いて、コロイド液を人工肺の血液流路に一定の流速で循環することができる。この場合は、コロイド液の血液流路における流速は、0.1L/分以上であることが好ましく、1L/分以上であることがより好ましく、3L/分以上であることがさらに好ましい。この範囲内であれば、コーティング工程の所要時間を短縮できる。また、コロイド液の血液流路における流速は、10L/分以下であることが好ましく、8L/分以下であることがより好ましく、5L/分以下であることがさらに好ましい。この範囲内であれば、ローラーポンプを使用できるため好ましい。コロイド液を血液流路において循環運動させる時間は、特に制限されず、前記流速に合せて適宜調整することができる。コーティング工程の所要時間およびコーティング量のバランスという観点から、コロイド液が血液流路において循環運動する時間は、1分以上1時間以下であることが好ましく、3分以上30分以下であることがより好ましく、5分以上10分以下であることがさらに好ましい。
 コロイド液を血液流入口と血液流出口との間で往復運動する方法は、コロイド液を往復運動させられる方法であれば特に制限されないが、例えば、人工肺の血液流入口と血液流出口にそれぞれチューブを接続し、血液流入口または血液流出口に接続したチューブを2つの押し板ではさみ、さらに押し板をモーターで前後運動させることにより、血液流路中のコロイド液を往復運動させることができる。この場合は、前記チューブの内径または押し板の長さ、または押し板が前後運動する周波数などを調整することにより、コロイド液の往復運動する流速をコントロールすることができる。特に制限されることはないが、前記チューブは、内径が3.0mm以上であることが好ましく、5.0mm以上であることがより好ましく、9.0mm以上であることがさらに好ましい。また、前記チューブは、内径が20.0mm以下であることが好ましく、15mm以下であることがより好ましく、11.0mm以下であることがさらに好ましい。前記範囲内であれば、コロイド液の往復速度を容易に調整することができる。また、前記押し板は、特にその形または材質が制限されない。板状、円筒状のものを使用してもよく、また、アルミニウムや鉄などの金属製のものを使用してもよい。コロイド液の往復運動する流速をコントロールし易いという観点から、板状の押し板が好ましく用いられる。また、材料の入手しやすさの観点から、アルミニウム製の板がより好ましく用いられる。前記板状の押し板を使用する場合に、押し板の長さを調整することにより、コロイド液の往復運動する流速をコントロールすることができる。この際、押し板の長さが長ければ、一回の押し板の前後運動で、より多量のコロイド液を血液流路の中で往復運動させることができる。この観点から、押し板の長さが10mm以上であることが好ましく、30mm以上であることがより好ましく、60mm以上であることがさらに好ましい。また、押し板の長さが短ければ、コーティング工程が円滑に進行できる。この観点から、押し板の長さが200mm以下であることが好ましく、160mm以下であることがより好ましく、120mm以下であることがさらに好ましい。さらに、押し板が前後運動する周波数は、1秒間0.5往復以上5往復以下であることが好ましく、1秒間1往復以上4往復以下であることがより好ましく、1秒間2往復以上3往復以下であることがさらに好ましい。前記範囲内であれば、コーティング工程の効率と円滑性とのバランスが取れる。以上などの手段で、血液流路におけるコロイド液の往復運動する流速を適宜に調整することができ、コーティング量向上のための最適化条件を図ることができる。さらに、コロイド液を血液流入口と血液流出口との間で往復運動させる際に、運動させるコロイド液の量は特に制限されないが、中空糸膜の膜面積(m)に対して、1L/分・m以上10L/分・m以下であることが好ましく、2L/分・m以上8L/分・m以下であることがより好ましく、3L/分・m以上5L/分・m以下であることがさらに好ましい。上記速度でコロイド液を運動させることにより、コロイド粒子の中空糸膜表面への吸着が良好に進行し、コーティング量が十分で、かつ、コートむらを減少することができる。
 なお、本明細書において、「膜面積」とは、中空糸膜の外表面の面積をいい、中空糸膜の外径、円周率、本数および有効長の積から算出される。
 また、コロイド溶液を運動させる時間も、特に制限されないが、コーティング量、塗膜の形成しやすさ、コートむらの低減効果などを考慮すると、30秒以上100分以下であることが好ましく、1分以上70分以下であることがより好ましく、1分以上30分以下であることがさらに好ましい。また、コロイド液と中空糸膜との接触温度(コロイド液の人工肺の血液流通側への流通温度)は、コーティング量、塗膜の形成しやすさ、コートむらの低減効果などを考慮すると、5~40℃が好ましく、15~30℃がより好ましい。
 本発明の一実施形態では、人工肺の製造方法において、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させながら、前記中空糸膜の内腔をガス流路として、当該ガス流路に炭酸ガスを流通させることが好ましい。これにより、コロイド液中のコロイド粒子の凝集および中空糸膜の外表面への吸着がより一層進行する。そのメカニズムは、以下のように推察される。すなわち、コロイド溶液に含まれる抗血栓性高分子化合物のコロイド粒子(粒子表面)は負に帯電し、この電荷を中和するように、コロイド粒子の周囲には、陽イオンが存在していると考えられる。つまり、コロイド粒子は、電気二重層(electric double layer)を形成した状態にあると推測される。電気二重層に基づく静電的反発作用の理論はDLVO(Derjaguin-Landau-Verwey-Overbeek)理論として知られている。この理論によると、コロイド粒子間に働く力の全ポテンシャルエネルギーは、電気的反発力のポテンシャルエネルギーとファンデルワールス引力のポテンシャルエネルギーの和になる。粒子が接近して凝集するためには全ポテンシャルエネルギーの山を越えなければならない。このポテンシャルエネルギーの山が粒子の熱運動エネルギーに比べて非常に高ければ、これを超えることができないから、粒子は近づいてもはねかえされて凝集せず、コロイドは安定である。電気的反発力は電気二重層の厚さが大きいほど強いが、溶液中の電解質濃度が大きくなるほど拡散層が圧縮されて電気二重層の厚さが薄くなる。したがって、電気二重層を有するコロイド粒子を含むコロイド溶液に炭酸ガスを吹き込むと、二酸化炭素が水に溶解し、炭酸水素イオン(HCO )や炭酸イオン(CO 2-)、水素イオン(H)が生じ、電気二重層の厚さが薄くなって電気反発力が小さくなりコロイド粒子が凝集しやすくなる。この時、コロイド粒子同士だけでなく、中空糸膜の外表面とコロイド粒子との間でも同様の現象が起きており、コロイド粒子が中空糸膜の外表面が吸着しやすくなると考えられる。
 炭酸ガスの流通速度は、特に制限されないが、中空糸膜の膜面積(m)に対して、0.5L/分・m以上20L/分・m以下であることが好ましく、1L/分・m以上10L/分・m以下であることがより好ましく、2L/分・m以上5L/分・m以下であることがさらに好ましい。上記速度で炭酸ガスを流通させることにより、コロイド粒子の凝集および中空糸膜外表面への吸着が良好に進行し、コーティング量が十分で、かつ、コートむらを減少することができる。なお、本明細書において、炭酸ガスの体積(L)は、25℃、1atmにおける体積を意味する。
 上記炭酸ガスを流通させる際に、炭酸ガスに加えて、他のガス(例えば、窒素ガスなどの不活性ガス等)を流通させても構わない。ただし、コート量が十分で、かつ、コートむらの少ない人工肺を得る観点から、他のガスの割合は炭酸ガスに対して少ないことが好ましい。具体的には、炭酸ガスの流通量(体積)に対して、他のガスの流通量(体積)は0体積%以上50体積%以下であることが好ましく、0体積%以上20体積%以下であることがより好ましく、0体積%であることが最も好ましい。
 上記コロイド液で中空糸膜にコーティング(被覆)した後、塗膜を乾燥させることによって、本発明に係る抗血栓性高分子化合物による被覆(被膜)を中空糸膜の外表面に形成する。ここで、乾燥条件は、本発明に係る抗血栓性高分子化合物による被覆(被膜)が中空糸膜の外表面(さらには外面層)に形成できる条件であれば特に制限されない。具体的には、乾燥温度は、5~50℃が好ましく、15~40℃がより好ましい。また、乾燥時間は、60~300分が好ましく、120~240分がより好ましい。または、好ましくは5~40℃、より好ましくは15~30℃のガスを中空糸膜に連続してまたは段階的に流通させることによって、塗膜を乾燥させてもよい。ここで、ガスの種類は、塗膜に何ら影響を及ぼさず、塗膜を乾燥できるものであれば特に制限されない。具体的には、空気(エアー)、および窒素ガス、アルゴンガス等の不活性ガスなどが挙げられる。また、ガスの流通量は、塗膜を十分乾燥できる量であれば特に制限されないが、好ましく5~150L/分であり、より好ましく30~100L/分であり、さらに好ましくは50~90L/分である。
 本発明に係る人工肺の製造方法を用いて、中空糸膜の外表面に、十分な量の抗血栓性高分子化合物を含む被膜が形成された中空糸膜外部血液灌流型人工肺(以下、単に人工肺ともいう)を製造できる。当該中空糸膜外部血液灌流型人工肺の製造方法によれば、前記中空糸膜の外表面に抗血栓性高分子化合物を5mg/m表面以上100mg/m表面以下の量で含む被膜を有する、中空糸膜外部血液灌流型人工肺も提供される。当該被膜中の抗血栓性高分子化合物の量は、10mg/m表面以上60mg/m表面以下であることがより好ましく、15mg/m表面以上50mg/m表面以下であることがさらに好ましい。抗血栓性高分子化合物のコーティング量が5mg/m表面以上であれば、抗血栓性に優れた人工肺が得られる。一方、コーティング量の上限は特に制限されないが、100mg/m以下であると好ましい。かようなコーティング量であれば、抗血栓性高分子化合物を含む被膜が厚すぎることによるガス交換能の低下が抑制され、ガス交換能にも優れた人工肺が得られる。なお、上記コーティング量は、下記実施例に記載の方法によって測定される値を採用する。
 本発明に係る人工肺は、上記の通り、抗血栓性高分子材料が十分な量で被覆されるため、中空糸膜の外表面側の抗血栓性が向上する。したがって、当該人工肺を体外循環回路中に組み込み、血液を循環させた際、当該循環血液の血小板数維持率が向上する。具体的には、30分間血液を循環させた後の血小板数維持率が、70%を超えると好ましく、80%以上であるとより好ましく、90%以上であると特に好ましい(上限:100%)。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。
 [抗血栓性高分子化合物の合成]
 製造例1:重量平均分子量35万のPMEAの合成
 2-メトキシエチルアクリレート(MEA)35g(0.27mol)をメタノール160gに溶解し、四ツ口フラスコに入れ、50℃でNバブリングを1時間行い、モノマー溶液を調製した。別途、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業(株)製)0.035gをメタノール5gに溶解して、重合開始剤溶液を調製した。次に、この重合開始剤溶液をモノマー溶液に添加し、50℃で5時間重合反応を行った。所定時間重合後、重合溶液をエタノールに滴下し、析出した重合体(PMEA)を回収した。なお、回収した重合体の重量平均分子量を測定したところ、350,000であった。
 [コロイド液の調製]
 実施例1-1:PMEA濃度0.04質量%のコロイド液
 上記製造例1で合成したPMEA(重量平均分子量=35万)0.48gを、48gのメタノールに溶解した。別の容器にRO水1140gを添加し、上記PMEAのメタノール溶液を2400g/分の添加速度で添加した。その後、25℃で3分間撹拌し、白濁したコロイド液を得た。コロイド液は、PMEAのコロイドが分散されたコロイド液であった。
 [人工肺の作製]
 内径が195μm、外径が295μm、肉厚が50μm、空孔率が約35体積%、外表面の孔径(すなわち、開口部の平均直径)が80nmの多孔質ポリプロピレン製のガス交換用多孔質中空糸膜が巻きつけられた、膜面積(中空糸膜の外表面の面積)が0.5mである血液外部灌流型中空糸膜人工肺を作製した。
 実施例1
 上記人工肺の血液流入口、血液流出口にそれぞれチューブ(内径9.5mm×外径14.2mm)を接続し、血液流入口に接続したチューブをアルミニウム製の2枚板ではさんだ。人工肺、チューブに上記で調製したコロイド液96gを入れ、血液流入口に接続したチューブの端をクランプした。人工肺のガス流入口からガス流出口に炭酸ガスをガスポートから4L/分・mの流量で流しながら、アルミニウム製の板の片方(長さ91mm)をモーターで1秒間に2往復で前後運動して、コロイド液を1分間往復させた。二つのアルミニウムの板が最も近くなった時の距離は4.5mmだった。この際、中空糸膜の膜面積(m)に対して、運動させたコロイド液の量は3L/分・mであった。人工肺からチューブを外して液を排出して回収した後、空気を80L/分で吹送し、さらに液を回収した。そのまま空気を流し続け乾燥した。
 コロイド液中の炭酸ガス濃度の測定
 コロイド液および水は、同程度に炭酸ガスを溶解すると考えられるため、コロイド液中の炭酸ガス濃度を測定する代わりに、同じ条件下での水中の炭酸ガス濃度を測定した。
 先ず、RO水500mlをビーカーに入れ、炭酸ガスを2L/minでバブリングし、炭酸ガスの分圧を血液ガス分析装置で、導電率を導電率計で測定した。そして、導電率を横軸に、炭酸ガス分圧を縦軸にプロットし、近似式式(2)を求めた。
Figure JPOXMLDOC01-appb-M000005
 血液外部灌流型中空糸膜人工肺、塩化ビニル製バッグ、チューブからなる閉鎖回路にRO水200mlを入れ、血液外部灌流型中空糸膜人工肺のガス流入口からガス流出口に炭酸ガスを2L/min(4L/分・m)で流通させた。流通前、流通開始5分後のRO水をそれぞれサンプリングし、血液ガス分析装置、導電計で測定した。
 流通前のRO水は、血液ガス分析装置の測定下限5mmHgを下回ったため測定できなかった。また、流通開始5分後のRO水は測定上限250mmHgを超えたため測定できなかったが、導電率が42.1μS/cmだったので、式1から炭酸ガスの分圧を544(mmHg)と算出した。
 上記結果より、コーティング液中の炭酸ガス濃度も水中の炭酸ガス濃度と同様に、炭酸ガスを流さない場合は5mmHg以下、炭酸ガスを流した場合は544(mmHg)程度と考えられる。
 コーティング量の測定
 上記人工肺のハウジングを超音波カッターで切断、分解し、中空糸膜をカッターで切りだした。中空子糸膜全量をキャップ付きガラス瓶に入れ、アセトンを加え、超音波洗浄機で1時間抽出した。アセトン抽出液を別のキャップ付きガラス瓶に46g回収し、ヒートブロックでアセトンを蒸発させた後、蒸発乾固物にテトラヒドロフラン10mLを添加し溶解させた。振盪機で1時間振盪した後、超音波洗浄機で1時間溶解した。0.45μmフィルターでろ過した後、ゲル浸透クロマトグラフィー(GPC)で定量した。具体的には、1mg/mLのPMEAを含有するTHF溶液(標準液)についてGPCを用いて分析し、PMEAに相当するピークの面積を算出した。続いて蒸発乾固物THF溶解液(試験液)についてGPCを用いて分析し、同様にPMEAに相当するピークの面積を算出した。その後、下記の式(3)を用いて試験液中のPMEA量を、式(5)を用いて人工肺膜1m(中空糸膜の外表面の面積1m)あたりのPMEAコート量をそれぞれ算出した。
Figure JPOXMLDOC01-appb-M000006
 コロイド利用効率
 コーティング後にコロイド液の一部32mLを排出し、排出したコロイド液をヒートブロック、真空乾燥により乾燥した後、テトラヒドロフラン1.5mLに溶解した。振盪機で1時間振盪した後、超音波洗浄機で1時間溶解した。0.45μmフィルターでろ過した後、ゲル浸透クロマトグラフィー(GPC)で定量した。具体的には、上記式(3)と同じ方法で、排出したコロイド液中のPMEA量を算出した。その後、下記の式(6)を用いて、コーティング後の全コロイド液中のPMEA量を算出し、さらに、次式(7)によりコロイド利用効率を計算した。
Figure JPOXMLDOC01-appb-M000007
 実施例2
 上記人工肺の血液流入部、血液流出部にチューブ(内径9.5×外径14.2mm)を接続し、血液流入部に接続したチューブをアルミニウム製の2枚板ではさんだ。人工肺、チューブに上記コロイド液を入れ、血液流入部に接続したチューブの端をクランプした。二酸化炭素は使用せず、アルミニウム製の板の片方(長さ91mm)をモーターで1秒間に2往復で前後運動して、コーティング液を1分間往復させた。二つのアルミニウムの板が最も近くなった時の距離は4.5mmだった。人工肺からチューブを外して液を排出して回収した後、空気を80L/分で吹送し、さらに液を回収した。そのまま空気を流し続け乾燥した。
 コーティング量の測定、コロイド利用効率の測定は実施例1と同様に行った。
 比較例
 上記人工肺の血液流入部、血液流出部にチューブ(内径9.5×外径14.2mm)を接続し、人工肺、チューブに上記コロイド液を入れ、コーティング液を1分間保持した。人工肺からチューブを外して液を排出して回収した後、空気を80L/分で吹送し、さらに液を回収した。そのまま空気を流し続け乾燥した。
 コーティング量の測定、コロイド利用効率の測定は実施例1と同様に行った。
 コーティング量測定結果を図8に、コロイド利用効率の測定結果を図9に示した。実施例1および2は比較例と比較して、コロイド利用効率が向上し、さらに中空糸へのコーティング量が増加していることが分かった。また、実施例の中でも、実施例1はさらにコロイド利用効率が上昇している。これは、コーティング液を運動させることでコロイド利用効率が上昇し、それに二酸化炭素を加えることでさらにコロイド利用効率が上昇したことによると推測できる。
本出願は、2018年1月10日に出願された日本特許出願番号2018-001806号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  1…中空糸膜外部血液灌流型人工肺、
  2…ハウジング、
  3…中空糸膜、
  3a…外面層、
  3a’…外表面、
  3b…内部層、
  3c…内面層、
  3c’…内表面、
  3d…通路、
  3e…開口部、
  4,5…隔壁、
  6…血液流入口、
  7…血液流出口、
  8…ガス流入口、
  9…ガス流出口、
  10…ガス流入側ヘッダー、
  11…ガス流出側ヘッダー、
  12…血液室、
  13…ガス流入室、
  14…ガス流出室、
  17…血液室、
  17a…血液流入口、
  17b…第1の血液室、
  17c…第2の血液室、
  18…抗血栓性高分子化合物、
  20…中空糸膜外部血液灌流型人工肺、
  22…筒状中空糸膜束、
  23…ハウジング、
  24…ガス流入口、
  25,26…隔壁、
  27…ガス流出口、
  28…血液流入口、
  29a,29b…血液流出口、
  31…内側筒状部材、
  32…血液流通用開口、
  33…外側筒状部件、
  35…内筒体、
  41…ガス流入用部件、
  42…ガス流出用部件。

Claims (7)

  1.  外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を有する複数のガス交換用多孔質中空糸膜からなる中空糸膜束がハウジング内に収容され、前記ハウジング内における前記中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ血液流入口および血液流出口を有する、人工肺の製造方法であって、
     前記血液流路に抗血栓性高分子化合物を含むコロイド溶液を充填し、前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させることを有する、人工肺の製造方法。
  2.  前記血液流入口と前記血液流出口との間で前記コロイド溶液を往復運動させる、請求項1に記載の人工肺の製造方法。
  3.  前記血液流入口と前記血液流出口との間で前記コロイド溶液を運動させながら、前記中空糸膜の内腔をガス流路として、当該ガス流路に炭酸ガスを流通させる、請求項1または2に記載の人工肺の製造方法。
  4.  前記炭酸ガスの流通速度は、中空糸膜の膜面積(m)に対して、0.5L/分・m以上20L/分・m以下である、請求項3に記載の人工肺の製造方法。
  5.  前記コロイド溶液は、抗血栓性高分子化合物を0.01質量%以上含む、請求項1~4のいずれか1項に記載の人工肺の製造方法。
  6.  前記抗血栓性高分子化合物は、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    式中、Rは、水素原子またはメチル基を表し、Rは、炭素数1~4のアルキレン基を表し、Rは、炭素数1~4のアルキル基を表す;
    で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を有する、請求項1~5のいずれか1項に記載の人工肺の製造方法。
  7.  前記抗血栓性高分子化合物の重量平均分子量は、200,000を超えて800,000未満である、請求項1~6のいずれか1項に記載の人工肺の製造方法。
PCT/JP2019/000545 2018-01-10 2019-01-10 人工肺の製造方法 WO2019139085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019564739A JP7241034B2 (ja) 2018-01-10 2019-01-10 人工肺の製造方法
US16/920,877 US11305041B2 (en) 2018-01-10 2020-07-06 Oxygenator antithrombotic coating and method of manufacture
US17/693,630 US11779690B2 (en) 2018-01-10 2022-03-14 Oxygenator antithrombotic coating and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-001806 2018-01-10
JP2018001806 2018-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,877 Continuation US11305041B2 (en) 2018-01-10 2020-07-06 Oxygenator antithrombotic coating and method of manufacture

Publications (1)

Publication Number Publication Date
WO2019139085A1 true WO2019139085A1 (ja) 2019-07-18

Family

ID=67218691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000545 WO2019139085A1 (ja) 2018-01-10 2019-01-10 人工肺の製造方法

Country Status (3)

Country Link
US (2) US11305041B2 (ja)
JP (1) JP7241034B2 (ja)
WO (1) WO2019139085A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021257347A1 (en) * 2020-06-17 2021-12-23 Tc1 Llc Extracorporeal blood pump assembly and methods of assembling same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114056A (ja) * 1997-10-09 1999-04-27 Terumo Corp 中空糸膜外部血液灌流型人工肺
JP2006288866A (ja) * 2005-04-13 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
WO2016143752A1 (ja) * 2015-03-10 2016-09-15 テルモ株式会社 人工肺および人工肺の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772639B1 (fr) * 1997-12-24 2000-02-04 Hospal Ind Utilisation d'un polymere neutre ou cationique pour prevenir l'activation de la phase contact du sang ou du plasma en contact avec une membrane semi-permeable
FR2804328B1 (fr) * 2000-01-27 2002-03-15 Hospal Ind Membrane semi-permeable non thrombogene et procede de fabrication
US9103782B2 (en) * 2008-12-02 2015-08-11 Malvern Instruments Incorporated Automatic isothermal titration microcalorimeter apparatus and method of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114056A (ja) * 1997-10-09 1999-04-27 Terumo Corp 中空糸膜外部血液灌流型人工肺
JP2006288866A (ja) * 2005-04-13 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
WO2016143752A1 (ja) * 2015-03-10 2016-09-15 テルモ株式会社 人工肺および人工肺の製造方法

Also Published As

Publication number Publication date
US20220193316A1 (en) 2022-06-23
US11779690B2 (en) 2023-10-10
US20200330669A1 (en) 2020-10-22
US11305041B2 (en) 2022-04-19
JPWO2019139085A1 (ja) 2021-01-14
JP7241034B2 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
US10758658B2 (en) Artificial lung and method for manufacturing artificial lung
JP6883511B2 (ja) 人工肺および人工肺の製造方法
US20150343394A1 (en) Hollow fiber membrane module, method for producing hollow fiber membrane, and method for producing hollow fiber membrane module
USRE48703E1 (en) Performance enhancing additives for fiber formation and polysulfone fibers
US20230001358A1 (en) Oxygenator and method for manufacturing same
JP3908839B2 (ja) 中空糸膜外部血液灌流型人工肺
US11779690B2 (en) Oxygenator antithrombotic coating and method of manufacture
JP7367369B2 (ja) 加湿用中空糸膜およびこれを用いた加湿用中空糸膜モジュール
JP7424873B2 (ja) 人工肺およびその製造方法
JP4317183B2 (ja) 中空糸膜外部血液灌流型人工肺
JP2015136383A (ja) 中空糸膜外部血液灌流型人工肺
JP4162931B2 (ja) 人工心肺回路システム
JP7054689B2 (ja) 人工肺の製造方法及び人工肺
JP6956170B2 (ja) 人工肺の製造方法
JP6956169B2 (ja) 人工肺の製造方法
WO2021182100A1 (ja) 人工肺の製造方法
JP2020141901A (ja) 人工肺
WO2022185962A1 (ja) 人工肺の製造方法
JP2021142162A (ja) 人工肺およびその製造方法
JP6795576B2 (ja) 血液処理フィルター
CN115569517A (zh) 一种基于自由界面聚合的正渗透膜的制备方法
JP2002102626A (ja) 白血球除去用フィルターおよび白血球除去器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739045

Country of ref document: EP

Kind code of ref document: A1