WO2019139015A1 - 二重管式製氷機 - Google Patents

二重管式製氷機 Download PDF

Info

Publication number
WO2019139015A1
WO2019139015A1 PCT/JP2019/000259 JP2019000259W WO2019139015A1 WO 2019139015 A1 WO2019139015 A1 WO 2019139015A1 JP 2019000259 W JP2019000259 W JP 2019000259W WO 2019139015 A1 WO2019139015 A1 WO 2019139015A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
double
center
inner pipe
making machine
Prior art date
Application number
PCT/JP2019/000259
Other languages
English (en)
French (fr)
Inventor
亮児 松江
啓介 中塚
悟 大倉
荒井 哲
植野 武夫
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019139015A1 publication Critical patent/WO2019139015A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/145Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Definitions

  • the present disclosure relates to a double tube ice maker. More particularly, the present invention relates to a double-tube type ice making machine for producing a sherbet-like ice slurry.
  • a sherbet ice slurry may be used.
  • a double-tube type ice making machine provided with an inner pipe and an outer pipe is known.
  • the conventional double-tube type ice making machine comprises an inner pipe and an outer pipe provided radially outside the inner pipe.
  • the seawater or brine which is the object to be cooled flows into the inner pipe from the inlet provided at one end of the inner pipe and flows out from the outlet provided at the other end of the inner pipe.
  • a refrigerant that cools seawater or brine is jetted into the annular space between the inner pipe and the outer pipe through a plurality of nozzles.
  • a blade mechanism is provided inside the inner tube for scraping the ice formed on the inner circumferential surface of the inner tube and dispersing it in the inner tube.
  • the blade mechanism comprises a blade in contact with the inner circumferential surface of the inner tube, and a rotating shaft on which the blade is mounted. This blade mechanism is driven during ice making operation to scrape the sherbet ice formed on the inner circumferential surface of the inner pipe at any time, thereby causing the inner circumferential surface to freeze and the rotation of the blade mechanism becomes impossible (ice lock ) Is suppressed.
  • the blade is formed only on the inner circumferential surface of the inner pipe portion surrounded by the outer pipe. If the length of the blade is set so as to make contact, ice may grow on the inner circumferential surface of the inner pipe portion (the extended portion) not in contact with the blade, and ice lock may occur due to the grown ice. This is because the inner circumferential surface of the inner pipe near the end of the outer pipe is cooled by heat conduction even if it is not surrounded by the annular space from which the refrigerant is ejected.
  • an ice making machine has been proposed in which the entire length of the outer pipe is slightly shorter than the entire length of the inner pipe, and a blade capable of contacting substantially the entire inner peripheral surface of the inner pipe is provided inside the inner pipe.
  • a lid is attached to an end portion of a first cylindrical body (inner pipe) 51 provided radially inward of a second cylindrical body (outer pipe) 50.
  • a member 52 is provided, and the lid 52 is formed with an outlet 53 for taking out the ice-containing fluid.
  • a lid member having an inlet formed therein is provided at the other end (not shown) of the first cylindrical body 51.
  • an ice scraping member 54 in contact with the inner peripheral surface of the first cylindrical body 51 is provided.
  • the ice-containing fluid moves laterally (axially) in the narrow space 55 in the lid member 52, and then the outlet 53 is configured through the opening 56 of the outlet 53. It needs to flow into the pipe.
  • ice-containing fluid is given kinetic energy in the circumferential direction or rotational direction in the first cylindrical body 51 by the ice scraping member 54, it is difficult to move laterally and tends to stay in the space 55. . As a result, ice accumulation in which ice is accumulated in the space 55 may occur.
  • An object of the present disclosure is to provide a double-tube type ice making machine capable of suppressing the occurrence of ice locks and ice accumulation.
  • the double-tube ice maker of the present disclosure is (1) An inner pipe and an outer pipe provided radially outward of the inner pipe, the object to be cooled is allowed to flow in the inner pipe, and the refrigerant is supplied to the space between the inner pipe and the outer pipe.
  • Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) is set for each of the dimensions Ci, Li, Pi, and Di on the inlet pipe side described above.
  • the number of the inlet pipe and the number of the outlet pipe are one each, the contact length Ci and the contact length Co are equal, the distances Li and Lo are equal, and the distances Pi and Po Can be equal, and the inner diameters Di and Do can be equal.
  • the configuration of the double-tube ice-making machine can be simplified.
  • the outer pipe can be provided coaxially with the inner pipe.
  • the configuration of the double-tube ice-making machine can be simplified.
  • FIG. 1 is a schematic block diagram of an ice making system including the dual tube ice maker of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is side explanatory drawing of the double pipe
  • FIG. 1 is a schematic configuration diagram of an ice making system A including a double-tube type ice making machine 1 according to a first embodiment of the present disclosure.
  • the ice making system A uses seawater as the object to be cooled, and in addition to the double-tube type ice making machine 1 which is the use side heat exchanger, the compressor 2, the heat source side heat exchanger 3, the four way switching valve 4, the expansion valve 5, A heater 25, a receiver 7, a seawater tank 8, and a pump 9 are provided.
  • the double-tube type ice making machine 1, the compressor 2, the heat source side heat exchanger 3, the circuit switching valve 4, the expansion valves 5, 25, the superheater 6, and the receiver 7 are connected by piping to constitute a refrigerant circuit .
  • the double-tube type ice making machine 1, the seawater tank 8, and the pump 9 are also connected by piping similarly to constitute a seawater circulation path.
  • the four-way switching valve 4 is held in the state shown by the solid line in FIG.
  • the high temperature / high pressure gaseous refrigerant discharged from the compressor 2 flows through the four-way switching valve 4 into the heat source side heat exchanger 3 functioning as a condenser, and exchanges heat with air by the operation of the blower fan 10 to condense Liquefy.
  • the liquefied refrigerant flows into the expansion valve 5 through the fully opened expansion valve 25, the receiver 7 and the superheater 6.
  • the refrigerant is depressurized to a predetermined low pressure by the expansion valve 5, and the inner pipe 12 (see FIG. 2) which constitutes the double-pipe type ice making machine 1 from the jet nozzle of the nozzle (not shown) of the double-pipe type ice making machine 1 ) And the outer tube 13 into the annular space 14.
  • the refrigerant ejected into the annular space 14 exchanges heat with the seawater flowing into the inner pipe 12 by the pump 9 and evaporates.
  • the seawater cooled by the evaporation of the refrigerant flows out of the inner pipe 12 and returns to the seawater tank 8.
  • the refrigerant evaporated and vaporized in the double-tube type ice making machine 1 is sucked into the compressor 2. At that time, if the refrigerant containing the liquid without being evaporated by the double-tube type ice-making machine 1 enters the compressor 2, a rapid high pressure is applied (liquid compression), which causes the compressor 2 to break down.
  • the refrigerant leaving the double-tube type ice making machine 1 is heated by the superheater 6 and returned to the compressor 2.
  • the superheater 6 is a double-pipe type, and the refrigerant leaving the double-pipe type ice making machine 1 is heated while passing through the space between the inner pipe and the outer pipe of the superheater 6, and returns to the compressor 2 .
  • the double-pipe type ice making machine 1 can not operate. . In this case, a defrost operation is performed to melt the ice in the inner pipe 12. At this time, the four-way switching valve 4 is held in the state shown by the broken line in FIG.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 2 passes through the four-way switching valve 4 and the superheater 6 and is in the annular space 14 between the inner pipe 12 and the outer pipe 13 which constitute the double-tube type ice making machine 1 , And heat exchange with seawater including ice in the inner pipe 12 to condense and liquefy.
  • the liquefied refrigerant flows into the expansion valve 25 through the fully opened expansion valve 5, the superheater 6, and the receiver 7, is decompressed to a predetermined low pressure by the expansion valve 25, and functions as an evaporator.
  • the refrigerant flowing into the heat source side heat exchanger 3 functioning as an evaporator exchanges heat with air by the operation of the blower fan 10, is vaporized, and is sucked into the compressor 2.
  • FIG. 2 is a side view of the double-tube type ice making machine 1 according to the first embodiment of the present disclosure shown in FIG.
  • the double-tube type ice making machine 1 of the present embodiment is provided with an inner tube 12 and an outer tube 13, and the axis of the inner tube 12 is horizontal to the installation surface on which the double-tube type ice making machine 1 is installed. It is a horizontal installation type double-tube type ice maker that is.
  • the inner pipe 12 is an element through which seawater, which is an object to be cooled, passes through, and is made of a metal material such as stainless steel. Both ends of the inner pipe 12 are closed, and a blade mechanism 15 for scraping the sherbet-like ice slurry generated on the inner peripheral surface of the inner pipe 12 into the inner pipe 12 (see FIG. 3) ) Are arranged.
  • the axial direction one end side (right side in FIG. 2) of the inner pipe 12 is extended outward from the end of the outer pipe 13 to constitute an extended portion 12a, and seawater is contained in the extended portion 12a.
  • Two seawater inlet pipes 16a, 16b are provided which are fed into the pipe 12.
  • the seawater inlet pipe 16b provided on the end side of the inner pipe 12 has a larger pipe diameter than the seawater inlet pipe 16a provided on the outer pipe 13 side. Further, the other axial end (left side in FIG. 2) of the inner pipe 12 is also extended outward beyond the end of the outer pipe 13 to form an extended portion 12b, and the extended portion 12b A seawater outlet pipe 17 through which seawater is discharged from the inner pipe 12 is provided.
  • the axial length of the extending portion 12a is longer than the axial length of the extending portion 12b.
  • the outer pipe 13 is provided coaxially with the inner pipe 12 at the radially outer side of the inner pipe 12 and is made of a metal material such as iron.
  • a plurality of (three in the present embodiment) refrigerant inlet pipes 18 are provided in the lower part of the outer pipe 13, and a plurality of (two in the present embodiment) refrigerant outlet pipes 19 are provided in the upper part of the outer pipe 13. It is provided.
  • the wall 13 a of the outer pipe 13 is provided with a nozzle for injecting a refrigerant for cooling the seawater in the inner pipe 12 in the annular space 14 between the outer pipe 13 and the inner pipe 12.
  • the nozzle is provided in communication with the refrigerant inlet pipe 18.
  • the blade mechanism 15 includes a rotating shaft 20, a support bar 21, and a blade 22, as shown in FIG.
  • One end of the rotating shaft 20 in the axial direction is extended to the outside from a flange 23 provided at the other axial end of the inner pipe 12 and is connected to a motor 24 constituting a drive unit for driving the blade mechanism 15.
  • Support bars 21 are erected on the circumferential surface of the rotating shaft 20 at predetermined intervals, and a blade 22 is attached to the tip of the support bar 21.
  • the blade 22 is, for example, a strip-shaped member made of metal, and the side edge on the front side in the rotational direction is tapered.
  • each including a pair of blades 22 and 22 and a pair of support bars 21 and 21 are provided along the axial direction of the rotation shaft 20.
  • a pair of blades 22, 22 constituting a set of scraper assemblies have the same axial position and a 180 ° rotational position offset.
  • the pair of blades 22, 22 that make up a set of scraper assemblies are circumferentially 90 ° out of phase with each other blade 22, 22 of the other axially adjacent scraper assembly.
  • FIG. 4 is a schematic explanatory view for explaining the dimensional relationship of the inner pipe 12, the outer pipe 13, the blade 22, and the seawater inlet pipe 16a and the seawater outlet pipe 17 provided in the inner pipe 12 shown in FIG. It is.
  • the contact length between the blade 22 and the inner peripheral surface of the inner pipe on the side of the seawater inlet pipe 16a, 16b is Ci based on the axial center Oi of the inner pipe 12, and the seawater inlet pipe 16a,
  • the distance from the center Oi to the pipe axis of the seawater inlet pipe 16a closest to the center Oi is Pi, and the inner diameter of the nearest seawater inlet pipe 16a is Di
  • FIG. 4 is a schematic explanatory view for explaining the dimensional relationship of the inner pipe 12, the outer pipe 13, the blade 22, and the seawater inlet pipe 16a and the seawater outlet pipe 17 provided in the inner pipe 12 shown in FIG. It is.
  • the contact length between the blade 22 on the side of the seawater outlet pipe 17 and the circumferential surface of the inner pipe relative to the axial center Oi of the inner pipe 12 is Co, and the side of the seawater outlet pipe 17 from the center Oi.
  • the distance from the center Oi to the pipe axis of the seawater outlet pipe 17 that is the seawater outlet pipe closest to the center Oi is Po, and the inner diameter of the seawater outlet pipe 17 is It is supposed to be Do.
  • the length or distance represented by Ci, Li, etc. is set to satisfy Li ⁇ Ci ⁇ (Pi ⁇ Di / 2). Further, it is set such that Lo ⁇ Co ⁇ (Po ⁇ Do / 2).
  • the former defines the contact length Ci of the blade 22 on the seawater inlet pipe 16 side
  • the latter defines the contact length Co of the blade 22 on the seawater outlet pipe 17 side.
  • the end on the one end side in the axial direction of the blade 22 (the end on the seawater inlet pipe 16a, 16b side) is outward from the end 13b of the outer pipe 13, and the hole of the seawater inlet pipe 16a Is located inward from the edge of the outer tube 13 side of the Further, an end (an end on the seawater outlet pipe 17 side) of the other end side of the blade 22 in the axial direction is outward from the end 13 c of the outer pipe 13 and the outer pipe 13 of the hole of the seawater outlet pipe 17 It is located inward from the side edge.
  • outward means a direction away from the center Oi along the axial direction with the axial center Oi of the inner pipe 12 as a reference, and “inward” means in the axial direction The direction toward the center Oi is said.
  • six sets of assemblies are provided, and the blade 22 is not a single continuous blade along the axial direction, and six sets of blades are in contact with the inner circumferential surface of the inner pipe 12.
  • the blades 22 in adjacent assemblies have a length that can be continuous in the axial direction assuming that there is no 90 ° phase shift as described above. Therefore, in the present specification, the term "contact length" means, in the case of a blade mechanism consisting of a plurality of assemblies with such a phase shift, when assuming an axially continuous state without the aforementioned 90 ° phase shift.
  • the contact length Ci on the seawater inlet pipe side of the blade 22 and the contact length Co on the seawater outlet pipe side are respectively Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / 2). It is set to be). For this reason, the influence on the flow of seawater flowing into or out of the inner pipe 12 is reduced, and seawater stagnates in the vicinity of the inlet / outlet of the seawater to the inner pipe 12, particularly in the vicinity of the outlet. Can be suppressed. Moreover, it can suppress that the internal peripheral surface of extension part 12a, 12b of the inner pipe 12 freezes, and an ice lock generate
  • Seals are provided at both ends of the outer pipe 13 to prevent the refrigerant in the annular space 14 from leaking, and the axial end of the annular space 14 is the axial end of the outer pipe 13 Rather, they are positioned inwardly by the axial size of the seal portion. Therefore, by making Li ⁇ Ci and Lo ⁇ Co, and making the axial end of the blade 22 the same as the position of the axial end of the outer tube 13 or by positioning the outer end of this, It is possible to suppress the occurrence of ice lock in the extended portions 12a and 12b of the inner pipe 12. However, from the viewpoint of improving the suppression effect, (Ci-Li) and (Co-Lo) preferably have a value exceeding 0 mm, and more preferably 60 mm or more.
  • ⁇ (Pi-Di / 2) -Ci ⁇ is a seawater inlet pipe closer to the axial center Oi of the inner pipe from the end on the seawater inlet pipe side of the blade 22 as shown in FIG. The distance from the edge of the hole 16a to the outer tube 13 side is shown.
  • ⁇ (Po ⁇ Do / 2) ⁇ Co ⁇ represents the distance from the end of the blade 22 on the seawater outlet pipe side to the edge of the hole of the seawater outlet pipe 17 on the outer tube 13 side.
  • the respective distances are set to 0 (zero) or more.
  • the distance is preferably set to a value exceeding 0 mm, and more preferably set to 60 mm or more.
  • FIG. 5 is a side view showing a double-tube type ice making machine 1 according to a second embodiment of the present disclosure.
  • the configuration (elements of the double-tube type ice making machine 1 according to the first embodiment
  • the same reference symbols are attached to configurations that are the same as or equivalent to the components or components). And, for the sake of simplicity, the description of these configurations is omitted.
  • the double-tube type ice making machine 1 according to the second embodiment is different from the double-tube type ice making machine 1 according to the first embodiment shown in FIGS. 1 to 4 in the number of seawater inlet pipes.
  • the double-tube type ice making machine 1 according to the first embodiment two seawater inlet pipes 16a and 16b having different tube diameters are provided, but in the double-tube type ice making machine 1 according to the second embodiment, 1 Only a book water outlet pipe 16 is provided.
  • the number of inlet pipes (seawater inlet pipe) and outlet pipes (seawater outlet pipe) of the object to be cooled is not limited.
  • the number of inlet pipes may be one, or two or more.
  • the number of outlet pipes may be one, or two or more.
  • the inner diameters of the respective tubes may be the same or may be different from each other.
  • the inner diameters of the two seawater inlet pipes 16a and 16b are different from each other.
  • the inner diameters of the two seawater inlet pipes 16a and 16b are the same.
  • the contact length Ci on the seawater inlet pipe side of the blade 22 and the contact length Co on the seawater outlet pipe side are respectively Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / It is set to be 2).
  • the inner pipe 12 is reduced in the influence on the flow of the seawater flowing into or out of the inner pipe 12 to reduce the inner pipe It is possible to suppress the accumulation of seawater and the occurrence of ice accumulation in the vicinity of the inlet / outlet of seawater to 12, particularly in the vicinity of the outlet. Moreover, it can suppress that the internal peripheral surface of extension part 12a, 12b of the inner pipe 12 freezes, and an ice lock generate
  • the seawater inlet pipe 16 and the seawater outlet pipe 17 are one each, the contact length Ci and the contact length Co are equal, the distances Li and Lo are equal, the distances Pi and Po are equal, and the inner diameter Di and Do are equal.
  • the contact length with which the blade 22 contacts the inner circumferential surface of the inner pipe 12 is C (Ci + Co)
  • the total length of the outer pipe 13 is X (Li + Lo)
  • the inner diameters of the seawater inlet tube 16 and the seawater outlet tube 17 are D
  • Di Do
  • the center-to-center distance between the two tubes 16 and 17 is Y (Pi + Po)
  • the Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / 2) Can be expressed by one expression of (Y-X-D) / 2 ⁇ (C-X) / 2 ⁇ 0.
  • the seawater inlet pipe 16 and the seawater outlet pipe 17 are respectively one, and the contact length Ci, the distance Li, the distance Pi and the inner diameter Di on the seawater inlet pipe 16 side are respectively the contact length Co on the seawater outlet pipe 17 and the distance Lo
  • the configuration of the double-tube type ice making machine 1 can be simplified.
  • FIG. 6 is a side view showing a double-tube ice maker 1 according to a third embodiment of the present disclosure.
  • the double-tube type ice making machine 1 according to the present embodiment is a modification of the double-tube type ice making machine 1 according to the second embodiment shown in FIG.
  • the double-tube type ice making machine 1 according to the third embodiment is characterized in that the axis of the outer pipe 13 provided on the radially outer side of the inner pipe 12 is eccentric with respect to the axis of the inner pipe 12. It differs from the double-tube type ice making machine 1 according to the embodiment.
  • the outer tube 13 in the double-tube type ice making machine 1 according to the second embodiment is provided coaxially with the inner tube 12 at the radially outer side of the inner tube 12.
  • the other configuration of the double-tube ice maker 1 according to the present embodiment is the same as the configuration of the double-tube ice maker 1 according to the second embodiment.
  • the contact length Ci on the seawater inlet pipe side of the blade 22 and the contact length Co on the seawater outlet pipe side are respectively Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / It is set to be 2).
  • the influence on the flow of seawater flowing into or out of the inner pipe 12 is reduced similarly to the double-tube type ice making machine 1 according to the first and second embodiments described above, It is possible to suppress the accumulation of seawater and generation of ice accumulation in the vicinity of the inlet / outlet of seawater to the inner pipe 12, particularly in the vicinity of the outlet.
  • FIG. 7 is a side view showing a double-tube type ice making machine 1 according to a fourth embodiment of the present disclosure.
  • the double-tube type ice making machine 1 according to the present embodiment is a modification of the double-tube type ice making machine 1 according to the second embodiment shown in FIG.
  • the double-tube type ice making machine 1 according to the fourth embodiment is characterized in that the end face of the outer pipe 13 on the side of the seawater inlet pipe 16 is inclined at an angle ⁇ with respect to the plane orthogonal to the axis of the outer pipe 13.
  • the second embodiment differs from the double-tube type ice making machine 1 according to the second embodiment.
  • the end face of the outer pipe 13 on the side of the seawater inlet pipe 16 in the double-tube type ice making machine 1 according to the second embodiment is a plane orthogonal to the axial center of the outer pipe 13.
  • the portion indicated by reference numeral 13 b is the outer pipe end portion on the seawater inlet pipe 16 side when calculating the distance Li.
  • the other configuration of the double-tube ice maker 1 according to the present embodiment is the same as the configuration of the double-tube ice maker 1 according to the second embodiment.
  • the contact length Ci on the seawater inlet pipe side of the blade 22 and the contact length Co on the seawater outlet pipe side are respectively Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / It is set to be 2).
  • the influence on the flow of seawater flowing into or out of the inner pipe 12 is reduced similarly to the double-tube type ice making machine 1 according to the first and second embodiments described above, It is possible to suppress the accumulation of seawater and generation of ice accumulation in the vicinity of the inlet / outlet of seawater to the inner pipe 12, particularly in the vicinity of the outlet.
  • FIG. 8 is a side view showing a double-tube ice maker 1 according to a fifth embodiment of the present disclosure.
  • the double-tube type ice making machine 1 according to the present embodiment is a modification of the double-tube type ice making machine 1 according to the second embodiment shown in FIG.
  • the double-tube type ice making machine 1 according to the fifth embodiment is characterized in that the axis of the outer pipe 13 provided on the radially outer side of the inner pipe 12 is eccentric to the axis of the inner pipe 12, the outer pipe 13 In that the end face on the side of the seawater inlet pipe 16 is inclined at an angle .theta. With respect to the plane orthogonal to the axis of the outer pipe 13, and that two seawater inlet pipes 16a and 16b are provided.
  • the second embodiment differs from the double-tube type ice making machine 1 according to the second embodiment.
  • the inner diameter of the seawater inlet pipe 16a which is the inlet pipe closest to the axial center Oi of the inner pipe 12, and the inner diameter of the seawater inlet pipe 16b are the same. Further, the inner diameter of the seawater outlet pipe 17 is larger than the inner diameters of the seawater inlet pipes 16a and 16b.
  • the outer tube 13 in the double-tube type ice making machine 1 according to the second embodiment is provided coaxially with the inner tube 12 at the radially outer side of the inner tube 12.
  • the end face of the outer pipe 13 on the side of the seawater inlet pipe 16 in the double-tube type ice making machine 1 according to the second embodiment is a plane orthogonal to the axial center of the outer pipe 13. Further, in the double-tube type ice making machine 1 according to the second embodiment, the numbers of the seawater inlet pipe 16 and the seawater outlet pipe 17 are one each, and the inner diameters of the seawater inlet pipe 16 and the seawater outlet pipe 17 are the same. .
  • the other configuration of the double-tube ice maker 1 according to the present embodiment is the same as the configuration of the double-tube ice maker 1 according to the second embodiment.
  • the contact length Ci on the seawater inlet pipe side of the blade 22 and the contact length Co on the seawater outlet pipe side are respectively Li ⁇ Ci ⁇ (Pi ⁇ Di / 2) and Lo ⁇ Co ⁇ (Po ⁇ Do / It is set to be 2).
  • the influence on the flow of seawater flowing into or out of the inner pipe 12 is reduced similarly to the double-tube type ice making machine 1 according to the first and second embodiments described above, It is possible to suppress the accumulation of seawater and generation of ice accumulation in the vicinity of the inlet / outlet of seawater to the inner pipe 12, particularly in the vicinity of the outlet.
  • the blade mechanism is configured of six sets of assemblies, but the blade mechanism can also be configured of five or less sets or seven or more sets of assemblies. Furthermore, it is also possible to have a blade mechanism that includes one continuous blade without dividing into a plurality.
  • the double-tube type ice making machine a horizontal type in which the axis of the inner tube is horizontal to the installation surface on which the double-tube type ice making machine is installed is exemplified.
  • the present invention can also be applied to a vertical installation type in which the axis of the inner pipe is perpendicular to the installation surface on which the double-tube type ice making machine is installed.
  • one double-tube type ice making machine is used in the ice making system, but two or more double-tube type ice making machines may be used in series or in parallel.
  • Double-tube type ice making machine 2 Compressor 3: Heat source side heat exchanger 4: Four-way selector valve 5: Expansion valve 6: Superheater 7: Receiver 8: Sea water tank 9: Pump 10: Blower fan 12: Inside Pipe 12a: Extension part 12b: Extension part 13: Outer pipe 13a: Wall 13b: End 13: End 14: Annular space 15: Blade mechanism 16: Sea water inlet pipe 16a: Sea water inlet pipe 16b: Sea water inlet pipe 17 Seawater outlet pipe 18: refrigerant inlet pipe 19: refrigerant outlet pipe 20: rotating shaft 21: support bar 22: blade 23: flange 24: motor 25: expansion valve A: ice making system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

内管12と、この内管12の径方向外側に設けられた外管13とを備えており、内管12内に被冷却物を流し、内管12と外管13との間のスペース14に冷媒を流す二重管式製氷機1。外管13の軸方向両端には内管12が外方に延設された延設部12a、12bが設けられる。一方の延設部12aに1又は複数の被冷却物の入口管16が接続されるとともに、他方の延設部12bに1又は複数の被冷却物の出口管17が接続される。内管12内には当該内管12の内周面と接触して当該内周面に形成される氷を内周面から離反させるブレード22が内管12の軸方向に沿って設けられる。内管12の軸方向中心Oiを基準とした、入口管16側におけるブレード22と内管内周面との接触長をCiとし、中心Oiから入口管16側の外管端部13bまでの距離をLiとし、中心Oiから当該中心Oiに最も近い入口管16,16aの管軸までの距離をPiとし、当該最も近い入口管16,16aの内径をDiとすると、Li≦Ci≦(Pi-Di/2)であり、且つ、内管12の軸方向中心Oiを基準とした、出口管17側におけるブレード22と内管内周面との接触長をCoとし、中心Oiから出口管17側の外管端部13cまでの距離をLoとし、中心Oiから当該中心Oiに最も近い出口管17の管軸までの距離をPoとし、当該最も近い出口管17の内径をDoとすると、Lo≦Co≦(Po-Do/2)である。

Description

二重管式製氷機
 本開示は二重管式製氷機に関する。さらに詳しくは、シャーベット状の氷スラリーを製造する二重管式製氷機に関する。
 魚等を冷蔵するためにシャーベット状の氷スラリーを用いる場合がある。かかる氷スラリーを製造する装置として、内管と外管とを備えた二重管式製氷機が知られている。従来の二重管式製氷機は、内管と、この内管の径方向外側に設けられた外管とを備えている。被冷却物である海水又はブラインは、内管の一端に設けられた入口から内管内に流入し、内管の他端に設けられた出口から流出する。一方、海水又はブラインを冷却する冷媒は、複数のノズルを介して内管と外管との間の環状スペース内に噴出される。
 前述した二重管式製氷機では、通常、内管の内周面に形成される氷を掻き上げて当該内管内に分散させるブレード機構が内管の内部に設けられている。ブレード機構は、内管の内周面と接触するブレードと、このブレードが取り付けられる回転軸とを備えている。かかるブレード機構を製氷運転時に駆動させて内管の内周面に生成されたシャーベット状の氷を随時掻き取ることで、当該内周面が凍り付いてブレード機構の回転が不可となる現象(アイスロック)が発生することが抑制される。
 しかし、内管の全長が外管の全長より長く、外管の両端から内管が外方に延設されている構成において、外管により囲まれている内管部分の内周面だけにブレードが接触するようにブレード長さを設定すると、ブレードが接触しない内管部分(延設された部分)の内周面で氷が成長し、成長した氷によってアイスロックが発生するおそれがある。冷媒が噴出される環状スペースに囲まれていなくても、外管の端部近傍の内管の内周面は熱伝導によって冷却されるからである。
 これに対し、外管の全長を内管の全長よりも若干短い程度とし、内管の内部に当該内管の内周面のほぼ全体と接触し得るブレードを設けた製氷機が提案されている(特許文献1参照)。特許文献1記載の製氷機では、図9に示されるように、第2の円筒体(外管)50の径方向内側に設けられた第1の円筒体(内管)51の端部に蓋部材52が設けられており、この蓋部材52に氷含有流体を取り出す出口53が形成されている。第1の円筒体51の図示しない他方の端部には、入口が形成された蓋部材が設けられている。また、第1の円筒体51の内部には、当該第1の円筒体51の内周面と接触する氷掻き取り部材54が設けられている。
特許第3251187号明細書
 しかし、特許文献1記載の製氷機では、蓋部材52内の狭いスペース55内を氷含有流体が横方向(軸方向)に移動し、ついで出口53の開口56を通って当該出口53を構成する管内に流れ込む必要がある。しかし、氷含有流体は第1の円筒体51内において氷掻き取り部材54によって周方向又は回転方向の運動エネルギが付与されているので、横への移動は難しく、前記スペース55内において滞留し易い。その結果、前記スペース55において氷が蓄積されるアイスアキュームレーションが発生するおそれがある。
 また、蓋部材に入口及び出口を構成する管を取り付けているので、製氷機をメンテナンスするときに、前記入口及び出口を構成する管に接続されている、被冷却物を循環させる配管も取り外す必要があり作業が煩雑になる。
 本開示は、アイスロック及びアイスアキュームレーションの発生を抑制することができる二重管式製氷機を提供することを目的としている。
 本開示の二重管式製氷機は、
(1)内管と、この内管の径方向外側に設けられた外管とを備えており、前記内管内に被冷却物を流し、前記内管と外管との間のスペースに冷媒を流す二重管式製氷機であって、
前記外管の軸方向両端には前記内管が外方に延設された延設部が設けられ、
一方の延設部に1又は複数の被冷却物の入口管が接続されるとともに、他方の延設部に1又は複数の被冷却物の出口管が接続され、
前記内管内には当該内管の内周面と接触して当該内周面に形成される氷を内周面から離反させるブレードが内管の軸方向に沿って設けられ、
前記内管の軸方向中心Oiを基準とした、入口管側における前記ブレードと内管内周面との接触長をCiとし、前記中心Oiから入口管側の外管端部までの距離をLiとし、前記中心Oiから当該中心Oiに最も近い入口管の管軸までの距離をPiとし、当該最も近い入口管の内径をDiとすると、Li≦Ci≦(Pi-Di/2)であり、且つ、
前記内管の軸方向中心Oiを基準とした、出口管側における前記ブレードと内管内周面との接触長をCoとし、前記中心Oiから出口管側の外管端部までの距離をLoとし、前記中心Oiから当該中心Oiに最も近い出口管の管軸までの距離をPoとし、当該最も近い出口管の内径をDoとすると、Lo≦Co≦(Po-Do/2)である。
 本開示の二重管式製氷機では、前述した入口管側の各寸法Ci、Li、Pi及びDiについて、Li≦Ci≦(Pi-Di/2)となるように設定されている。また、前述した出口管側の各寸法Co、Lo、Po及びDoについて、Lo≦Co≦(Po-Do/2)となるように設定されている。すなわち、内管の軸方向中心Oiを基準として入口管側及び出口管側において、ブレードの軸方向の端部は、外管の端部より外方であって、入口管又は出口管の外管側の縁より内方に位置している。このため、内管内に流入するか又は内管から流出する被冷却物の流れに対する影響を低減してアイスアキュームレーションが発生するのを抑制することができる。また、内管の延設部の内周面が凍り付いてアイスロックが発生するのを抑制することができる。
 前記(1)の二重管式製氷機において、前記入口管及び出口管は各1本であり、前記接触長Ciと接触長Coが等しく、前記距離LiとLoが等しく、前記距離PiとPoが等しく、且つ、前記内径DiとDoが等しいものとすることができる。この場合、二重管式製氷機の構成を簡略化することができる。
 前記(1)又は(2)の二重管式製氷機において、前記外管を、前記内管と同軸に設けることができる。この場合、二重管式製氷機の構成を簡略化することができる。
本開示の二重管式製氷機を含む製氷システムの概略構成図である。 本開示の第1実施形態に係る二重管式製氷機の側面説明図である。 図2に示される二重管式製氷機におけるブレード機構の断面説明図である。 図2に示される二重管式製氷機の概略説明図である。 本開示の第2実施形態に係る二重管式製氷機の側面説明図である。 本開示の第3実施形態に係る二重管式製氷機の側面説明図である。 本開示の第4実施形態に係る二重管式製氷機の側面説明図である。 本開示の第5実施形態に係る二重管式製氷機の側面説明図である。 従来の製氷機の部分断面説明図である。
 以下、添付図面を参照しつつ、本開示の二重管式製氷機を詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 まず、本開示の二重管式製氷機を含む製氷システムについて説明する。図1は、本開示の第1実施形態に係る二重管式製氷機1を含む製氷システムAの概略構成図である。
 製氷システムAは海水を被冷却物としており、利用側熱交換器である二重管式製氷機1以外に、圧縮機2、熱源側熱交換器3、四路切換弁4、膨張弁5、25、過熱器6、レシーバ7、海水タンク8、及びポンプ9を備えている。二重管式製氷機1、圧縮機2、熱源側熱交換器3、回路切換弁4、膨張弁5、25、過熱器6、及びレシーバ7は配管により接続されて冷媒回路を構成している。また、二重管式製氷機1、海水タンク8、及びポンプ9も同じく配管により接続されて海水循環路を構成している。
 通常の製氷運転時には、四路切換弁4が、図1において実線で示される状態に保持される。圧縮機2から吐出された高温高圧のガス状冷媒は四路切換弁4を経て凝縮器として機能する熱源側熱交換器3に流入し、送風ファン10の作動により空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態にされた膨張弁25、レシーバ7、過熱器6を経て膨張弁5に流入する。冷媒は、膨張弁5により所定の低圧に減圧され、二重管式製氷機1のノズル(図示せず)の噴出口から当該二重管式製氷機1を構成する内管12(図2参照)と外管13との間の環状スペース14内に噴出される。
 環状スペース14内に噴出された冷媒は、ポンプ9により内管12内に流入された海水と熱交換して蒸発する。冷媒の蒸発により冷却された海水は、内管12から流出して海水タンク8に戻る。二重管式製氷機1で蒸発して気化した冷媒は圧縮機2に吸い込まれる。その際、二重管式製氷機1で蒸発しきれずに液体を含んだ状態の冷媒が圧縮機2に入ると、急激な高圧力がかかり(液圧縮)、圧縮機2が故障する原因となることから、当該圧縮機2を保護するために二重管式製氷機1を出た冷媒は、過熱器6により過熱して圧縮機2に戻すようにしている。過熱器6は二重管式であり、二重管式製氷機1を出た冷媒は、過熱器6の内管と外管との間のスペースを通る間に過熱され、圧縮機2に戻る。
 また、二重管式製氷機1の内管12内の海水の流れが滞り、内管12内に氷が蓄積される(アイスアキュームレーション)と、当該二重管式製氷機1が運転できなくなる。この場合、内管12内の氷を溶かすためにデフロスト運転が行われる。このとき、四路切換弁4は、図1において破線で示される状態に保持される。圧縮機2から吐出された高温高圧のガス状冷媒は四路切換弁4、過熱器6を経て二重管式製氷機1を構成する内管12と外管13との間の環状スペース14内に流入し、内管12内の氷を含む海水と熱交換して凝縮・液化する。液化した冷媒は、全開状態にされた膨張弁5、過熱器6、レシーバ7を経て膨張弁25に流入し、当該膨張弁25により所定の低圧に減圧され、蒸発器として機能する熱源側熱交換器3に流入する。デフロスト運転時には蒸発器として機能する熱源側熱交換器3に流入した冷媒は送風ファン10の作動により空気と熱交換して気化し、圧縮機2に吸い込まれる。
〔第1実施形態〕
 図2は、図1に示される、本開示の第1実施形態に係る二重管式製氷機1の側面説明図である。本実施形態の二重管式製氷機1は、内管12と、外管13とを備えており、当該二重管式製氷機1を設置する設置面に対して内管12の軸が水平である横置き型の二重管式製氷機である。
 内管12は、内部を被冷却物である海水が通過する要素でありステンレス等の金属材料で作製されている。内管12の両端は閉止されており、その内部には当該内管12の内周面に生成されたシャーベット状の氷スラリーを掻き上げて内管12内に分散させるブレード機構15(図3参照)が配設されている。内管12の軸方向一端側(図2において右側)は外管13の端部よりも外方に延設されて延設部12aを構成しており、この延設部12aに海水が当該内管12内に供給される2本の海水入口管16a,16bが設けられている。内管12の端部側に設けられる海水入口管16bは、外管13側に設けられる海水入口管16aよりも管径が大きい。また、内管12の軸方向他端側(図2において左側)は同じく外管13の端部よりも外方に延設されて延設部12bを構成しており、この延設部12bに内管12から海水が排出される海水出口管17が設けられている。延設部12aの軸方向の長さは、延設部12bの軸方向の長さよりも長い。
 外管13は、内管12の径方向外側において当該内管12と同軸に設けられ、鉄等の金属材料で作製されている。外管13の下部には複数の(本実施形態では3つ)冷媒入口管18が設けられており、外管13の上部には複数の(本実施形態では2つ)の冷媒出口管19が設けられている。外管13の壁13aには、外管13と内管12との間の環状スペース14に内管12内の海水を冷却するための冷媒を噴出するノズルが設けられている。ノズルは、冷媒入口管18と連通するように設けられている。
 ブレード機構15は、図3に示されるように、回転軸20と、支持バー21と、ブレード22とを備えている。回転軸20の軸方向の一端は内管12の軸方向他端に設けられたフランジ23から外部に延びて設けられ、ブレード機構15を駆動させる駆動部を構成するモータ24に接続されている。回転軸20の周面には所定間隔で支持バー21が立設されており、この支持バー21の先端にブレード22が取り付けられている。ブレード22は、例えば金属で作製された帯板状の部材であり、回転方向の前方側の側縁は先細形状とされている。
 本実施形態では、一対のブレード22、22と一対の支持バー21、21とからなるスクレーパーアセンブリが回転軸20の軸方向に沿って6組設けられている。1組のスクレーパーアセンブリを構成する一対のブレード22、22は、軸方向位置が同じで回転方向位置が180°ずれている。また、1組のスクレーパーアセンブリを構成する一対のブレード22、22は、軸方向で隣接する他のスクレーパーアセンブリの各ブレード22、22に対して周方向で90°だけ位相がずれている。これにより、内管12の内周面に形成されたシャーベット状の氷スラリーの分散効率を高めるとともに、回転軸20に掛かる負荷を低減させることができる。
 図4は、図2に示される内管12、外管13、ブレード22、並びに内管12に設けられた海水入口管16a及び海水出口管17の寸法関係を分かり易く説明するための概略説明図である。図4において、内管12の軸方向中心Oiを基準とした、海水入口管16a,16b側における前記ブレード22と内管内周面との接触長をCiとし、前記中心Oiから海水入口管16a,16b側の外管端部13bまでの距離をLiとし、前記中心Oiから当該中心Oiに最も近い海水入口管16aの管軸までの距離をPiとし、当該最も近い海水入口管16aの内径をDiとしている。また、図4において、内管12の軸方向中心Oiを基準とした、海水出口管17側における前記ブレード22と内管内周面との接触長をCoとし、前記中心Oiから海水出口管17側の外管端部13cまでの距離をLoとし、前記中心Oiから当該中心Oiに最も近い海水出口管である海水出口管17の管軸までの距離をPoとし、当該海水出口管17の内径をDoとしている。本実施形態では、前記Ci、Li等で表される長さ又は距離をLi≦Ci≦(Pi-Di/2)となるように設定されている。また、Lo≦Co≦(Po-Do/2)となるように設定されている。前者は海水入口管16側のブレード22の接触長Ciを規定しており、後者は海水出口管17側のブレード22の接触長Coを規定している。
 本実施形態では、ブレード22の軸方向の一端側の端部(海水入口管16a,16b側の端部)が、外管13の端部13bより外方であって、海水入口管16aの孔の外管13側の縁より内方に位置している。また、ブレード22の軸方向の他端側の端部(海水出口管17側の端部)が、外管13の端部13cより外方であって、海水出口管17の孔の外管13側の縁より内方に位置している。なお、本明細書において「外方」とは、内管12の軸方向の中心Oiを基準として、軸方向に沿って当該中心Oiから離れる方向をいい、「内方」とは、軸方向に沿って当該中心Oiに近づく方向をいう。また、本実施形態では6組のアセンブリが設けられており、ブレード22は軸方向に沿って連続した1本のブレードではなく、内管12の内周面には6組のブレードが接触している。しかし、隣接するアセンブリにおけるブレード22は、前述した90°の位相ずれがないと仮定した場合には軸方向において連続し得る長さである。したがって、本明細書において「接触長」とは、このような位相ずれを伴う複数のアセンブリからなるブレード機構の場合は、前述した90°の位相ずれがなく軸方向に連続した状態を想定したときの長さをいう。
 本実施形態では、ブレード22の海水入口管側の接触長Ci及び海水出口管側の接触長Coが、それぞれLi≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)となるように設定されている。このため、内管12内に流入するか又は当該内管12から流出する海水の流れに対する影響を低減して、内管12への海水の出入口付近、特に出口付近において海水が滞留してアイスアキュームレーションが発生するのを抑制することができる。また、内管12の延設部12a、12bの内周面が凍り付いてアイスロックが発生するのを抑制することができる。外管13の両端には、環状スペース14内の冷媒が漏れるのを防ぐシール部(図示せず)が設けられており、環状スペース14の軸方向端部は外管13の軸方向の端部よりも当該シール部の軸方向のサイズ分だけ内方に位置している。このため、Li≦Ci及びLo≦Coとし、ブレード22の軸方向の端部を外管13の軸方向の端部の位置と同じにするか、又はこれよりも外方に位置させることで、内管12の延設部12a、12bにおけるアイスロック発生を抑制することができる。ただ、抑制効果を向上させるという観点からは、(Ci-Li)及び(Co-Lo)は0mmを超える値とすることが好ましく、60mm以上とすることがさらに好ましい。
 本実施形態において、{(Pi-Di/2)-Ci}は、図4に示されるように、ブレード22の海水入口管側の端部から、内管の軸方向中心Oiに近い海水入口管16aの孔の外管13側の縁までの距離を表している。また、{(Po-Do/2)-Co}は、ブレード22の海水出口管側の端部から、海水出口管17の孔の外管13側の縁までの距離を表している。前記各距離は、0(ゼロ)以上に設定されている。ただ、ブレード22の回転による海水への影響の低減効果を向上させるという観点からは、かかる距離は0mmを超える値とすることが好ましく、60mm以上とすることがさらに好ましい。
 〔第2実施形態〕
 図5は、本開示の第2実施形態に係る二重管式製氷機1の側面説明図である。第2実施形態に係る二重管式製氷機1及び後述する第3~5実施形態に係る二重管式製氷機1において、第1実施形態に係る二重管式製氷機1の構成(要素若しくは部材)と共通するか又は同等の構成に対しては、同一の参照符号を付している。そして、簡単のため、これらの構成に対する説明は省略する。
第2実施形態に係る二重管式製氷機1は、海水入口管の数において、図1~4に示される第1実施形態に係る二重管式製氷機1と相違している。第1実施形態に係る二重管式製氷機1では互いに管径が異なる2本の海水入口管16a、16bが設けられているが、第2実施形態に係る二重管式製氷機1では1本の海水出口管16だけが設けられている。
 本開示の二重管式製氷機では、被冷却物の入口管(海水入口管)及び出口管(海水出口管)の数は限定されない。入口管の数は、1本であってもよいし、2以上の複数本であってもよい。同様に、出口管の数は、1本であってもよいし、2以上の複数本であってもよい。また、複数本である場合、各管の内径は同一であってもよいし、互いに異なっていてもよい。第1実施形態に係る二重管式製氷機1では、2本の海水入口管16a、16bの内径は互いに異なっている。後述する第5実施形態に係る二重管式製氷機1では、2本の海水入口管16a、16bの内径は同じである。
 本実施形態においても、ブレード22の海水入口管側の接触長Ci及び海水出口管側の接触長Coが、それぞれLi≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)となるように設定されている。このため、前述した第1実施形態に係る二重管式製氷機1と同様に、内管12内に流入するか又は当該内管12から流出する海水の流れに対する影響を低減して、内管12への海水の出入口付近、特に出口付近において海水が滞留してアイスアキュームレーションが発生するのを抑制することができる。また、内管12の延設部12a、12bの内周面が凍り付いてアイスロックが発生するのを抑制することができる。
 また、本実施形態では、海水入口管16及び海水出口管17は各1本であり、接触長Ciと接触長Coが等しく、距離LiとLoが等しく、距離PiとPoが等しく、且つ、内径DiとDoが等しい。このため、ブレード22が内管12の内周面と接触する接触長をC(Ci+Co)とし、外管13の全長をX(Li+Lo)とし、海水入口管16及び海水出口管17の内径をD(=Di=Do)とし、前記両管16,17の中心間距離をY(Pi+Po)とすると、前記Li≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)は、(Y-X-D)/2≧(C-X)/2≧0という一つの式で表現することができる。また、海水入口管16及び海水出口管17を各1本とし、海水入口管16側の接触長Ci、距離Li、距離Pi及び内径Diを、それぞれ海水出口管17側の接触長Co、距離Lo、距離Po及び内径Doと等しくすることで、二重管式製氷機1の構成を簡略化することができる。
 〔第3実施形態〕
 図6は、本開示の第3実施形態に係る二重管式製氷機1の側面説明図である。本実施形態に係る二重管式製氷機1は、図5に示される第2実施形態に係る二重管式製氷機1の変形例である。第3実施形態に係る二重管式製氷機1は、内管12の径方向外側に設けられる外管13の軸心が当該内管12の軸心に対して偏心している点において、第2実施形態に係る二重管式製氷機1と異なっている。第2実施形態に係る二重管式製氷機1における外管13は、内管12の径方向外側において当該内管12と同軸に設けられている。本実施形態に係る二重管式製氷機1のその他の構成は、第2実施形態に係る二重管式製氷機1の構成と同じである。
 本実施形態においても、ブレード22の海水入口管側の接触長Ci及び海水出口管側の接触長Coが、それぞれLi≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)となるように設定されている。このため、前述した第1~2実施形態に係る二重管式製氷機1と同様に、内管12内に流入するか又は当該内管12から流出する海水の流れに対する影響を低減して、内管12への海水の出入口付近、特に出口付近において海水が滞留してアイスアキュームレーションが発生するのを抑制することができる。また、内管12の延設部12a、12bの内周面が凍り付いてアイスロックが発生するのを抑制することができる。
 〔第4実施形態〕
 図7は、本開示の第4実施形態に係る二重管式製氷機1の側面説明図である。本実施形態に係る二重管式製氷機1は、図5に示される第2実施形態に係る二重管式製氷機1の変形例である。第4実施形態に係る二重管式製氷機1は、外管13の海水入口管16側の端面が当該外管13の軸心と直交する面に対して角度θだけ傾斜している点において、第2実施形態に係る二重管式製氷機1と異なっている。第2実施形態に係る二重管式製氷機1における外管13の海水入口管16側の端面は当該外管13の軸心と直交する面である。本実施形態に係る二重管式製氷機1では、図7において、符号13bで示される部分が距離Liを算出するときの海水入口管16側の外管端部となる。本実施形態に係る二重管式製氷機1のその他の構成は、第2実施形態に係る二重管式製氷機1の構成と同じである。
本実施形態においても、ブレード22の海水入口管側の接触長Ci及び海水出口管側の接触長Coが、それぞれLi≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)となるように設定されている。このため、前述した第1~2実施形態に係る二重管式製氷機1と同様に、内管12内に流入するか又は当該内管12から流出する海水の流れに対する影響を低減して、内管12への海水の出入口付近、特に出口付近において海水が滞留してアイスアキュームレーションが発生するのを抑制することができる。また、内管12の延設部12a、12bの内周面が凍り付いてアイスロックが発生するのを抑制することができる。
 〔第5実施形態〕
 図8は、本開示の第5実施形態に係る二重管式製氷機1の側面説明図である。本実施形態に係る二重管式製氷機1は、図5に示される第2実施形態に係る二重管式製氷機1の変形例である。第5実施形態に係る二重管式製氷機1は、内管12の径方向外側に設けられる外管13の軸心が当該内管12の軸心に対して偏心している点、外管13の海水入口管16側の端面が当該外管13の軸心と直交する面に対して角度θだけ傾斜している点、及び、2本の海水入口管16a,16bが設けられている点において、第2実施形態に係る二重管式製氷機1と異なっている。内管12の軸方向中心Oiに最も近い入口管である海水入口管16aの内径と、海水入口管16bの内径とは同じである。また、海水出口管17の内径は、海水入口管16a,16bの各内径よりも大きい。第2実施形態に係る二重管式製氷機1における外管13は、内管12の径方向外側において当該内管12と同軸に設けられている。また、第2実施形態に係る二重管式製氷機1における外管13の海水入口管16側の端面は当該外管13の軸心と直交する面である。また、第2実施形態に係る二重管式製氷機1では、海水入口管16及び海水出口管17の数はそれぞれ1本であり、海水入口管16及び海水出口管17の内径は同じである。本実施形態に係る二重管式製氷機1のその他の構成は、第2実施形態に係る二重管式製氷機1の構成と同じである。
 本実施形態においても、ブレード22の海水入口管側の接触長Ci及び海水出口管側の接触長Coが、それぞれLi≦Ci≦(Pi-Di/2)及びLo≦Co≦(Po-Do/2)となるように設定されている。このため、前述した第1~2実施形態に係る二重管式製氷機1と同様に、内管12内に流入するか又は当該内管12から流出する海水の流れに対する影響を低減して、内管12への海水の出入口付近、特に出口付近において海水が滞留してアイスアキュームレーションが発生するのを抑制することができる。また、内管12の延設部12a、12bの内周面が凍り付いてアイスロックが発生するのを抑制することができる。
 前述した各実施形態では、内管12の両端のフランジないし蓋部材に被冷却物である海水の出入口を設けた構成ではないので、ブレード機構15等のメンテナンスをするときに、海水循環路を構成する配管を取り外す必要がないのでメンテナンス作業を簡素化することができる。
〔その他の変形例〕
 本開示は前述した実施形態に限定されるものではなく、特許請求の範囲内において種々の変更が可能である。
 例えば、前述した実施形態では、6組のアセンブリからブレード機構が構成されているが、5組以下、又は、7組以上のアセンブリからブレード機構を構成することもできる。さらに、複数に分割することなく、連続する1本のブレードを含むブレード機構とすることもできる。
 また、前述した実施形態では、二重管式製氷機として、当該二重管式製氷機を設置する設置面に対して内管の軸が水平である横置き型のものを例示しているが、二重管式製氷機を設置する設置面に対して内管の軸が垂直である縦置き型のものにも本発明を適用することができる。
 また、前述した説明では、製氷システム内に1台の二重管式製氷機が用いられているが、2台以上の二重管式製氷機を直列又は並列に配置して用いることもできる。
 1 : 二重管式製氷機
 2 : 圧縮機
 3 : 熱源側熱交換器
 4 : 四路切換弁
 5 : 膨張弁
 6 : 過熱器
 7 : レシーバ
 8 : 海水タンク
 9 : ポンプ
10 : 送風ファン
12 : 内管
12a: 延設部
12b: 延設部
13 : 外管
13a: 壁
13b: 端部
13c: 端部
14 : 環状スペース
15 : ブレード機構
16 : 海水入口管
16a: 海水入口管
16b: 海水入口管
17 : 海水出口管
18 : 冷媒入口管
19 : 冷媒出口管
20 : 回転軸
21 : 支持バー
22 : ブレード
23 : フランジ
24 : モータ
25 : 膨張弁
 A : 製氷システム
 
 

Claims (3)

  1.  内管(12)と、この内管(12)の径方向外側に設けられた外管(13)とを備えており、前記内管(12)内に被冷却物を流し、前記内管(12)と外管(13)との間のスペース(14)に冷媒を流す二重管式製氷機(1)であって、
    前記外管(13)の軸方向両端には前記内管(12)が外方に延設された延設部(12a、12b)が設けられ、
    一方の延設部(12a)に1又は複数の被冷却物の入口管(16)が接続されるとともに、他方の延設部(12b)に1又は複数の被冷却物の出口管(17)が接続され、
    前記内管(12)内には当該内管(12)の内周面と接触して当該内周面に形成される氷を内周面から離反させるブレード(22)が内管(12)の軸方向に沿って設けられ、
    前記内管(12)の軸方向中心Oiを基準とした、入口管(16)側における前記ブレード(22)と内管内周面との接触長をCiとし、前記中心Oiから入口管(16)側の外管端部(13b)までの距離をLiとし、前記中心Oiから当該中心Oiに最も近い入口管(16,16a)の管軸までの距離をPiとし、当該最も近い入口管(16,16a)の内径をDiとすると、Li≦Ci≦(Pi-Di/2)であり、且つ、
    前記内管(12)の軸方向中心Oiを基準とした、出口管(17)側における前記ブレード(22)と内管内周面との接触長をCoとし、前記中心Oiから出口管(17)側の外管端部(13c)までの距離をLoとし、前記中心Oiから当該中心Oiに最も近い出口管(17)の管軸までの距離をPoとし、当該最も近い出口管(17)の内径をDoとすると、Lo≦Co≦(Po-Do/2)である、二重管式製氷機(1)。
  2.  前記入口管(16)及び出口管(17)は各1本であり、前記接触長Ciと接触長Coが等しく、前記距離LiとLoが等しく、前記距離PiとPoが等しく、且つ、前記内径DiとDoが等しい、請求項1に記載の二重管式製氷機(1)。
  3.  前記外管(13)は、前記内管(12)と同軸に設けられている、請求項1又は請求項2に記載の二重管式製氷機(1)。
     
PCT/JP2019/000259 2018-01-15 2019-01-08 二重管式製氷機 WO2019139015A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003974 2018-01-15
JP2018-003974 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019139015A1 true WO2019139015A1 (ja) 2019-07-18

Family

ID=67218328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000259 WO2019139015A1 (ja) 2018-01-15 2019-01-08 二重管式製氷機

Country Status (2)

Country Link
JP (1) JP6864702B2 (ja)
WO (1) WO2019139015A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210781A (ja) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd 回転式熱交換器
JPH0453177U (ja) * 1990-09-12 1992-05-07
JP2001133091A (ja) * 1999-11-04 2001-05-18 Takenaka Komuten Co Ltd 製氷方法および製氷装置
JP2003148841A (ja) * 2001-11-07 2003-05-21 Kansai Electric Power Co Inc:The スラリー氷の製氷方法とその製氷装置
JP2006029609A (ja) * 2004-07-12 2006-02-02 Takuma Co Ltd 製氷装置
CN104075515A (zh) * 2013-11-28 2014-10-01 王飞波 多节模块化刮片组合式流态冰冰晶器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210781A (ja) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd 回転式熱交換器
JPH0453177U (ja) * 1990-09-12 1992-05-07
JP2001133091A (ja) * 1999-11-04 2001-05-18 Takenaka Komuten Co Ltd 製氷方法および製氷装置
JP2003148841A (ja) * 2001-11-07 2003-05-21 Kansai Electric Power Co Inc:The スラリー氷の製氷方法とその製氷装置
JP2006029609A (ja) * 2004-07-12 2006-02-02 Takuma Co Ltd 製氷装置
CN104075515A (zh) * 2013-11-28 2014-10-01 王飞波 多节模块化刮片组合式流态冰冰晶器

Also Published As

Publication number Publication date
JP2019124450A (ja) 2019-07-25
JP6864702B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
US8132424B2 (en) Ice machines with extruded heat exchanger
EP2235464B1 (en) Heat exchanger
US5431027A (en) Flake ice-making apparatus
KR20000017696A (ko) 유동성빙축냉식시스템의제빙장치
WO2019139015A1 (ja) 二重管式製氷機
JP7007573B2 (ja) 製氷システム
EP3742088B1 (en) Double-piped ice-making machine
JP6954137B2 (ja) 二重管式製氷機
KR20020091086A (ko) 냉동기용 증발기 및 냉동장치
WO2020136997A1 (ja) 製氷機の運転制御方法
JP6614250B2 (ja) 製氷システム
KR101545508B1 (ko) 조립 분해 결합식 외부 냉매팽창용 빙삭기
KR101891634B1 (ko) 고온 냉각수를 이용한 스크레퍼 고착 방지 및 고착 해결 기능을 갖는 샤베트 아이스 제조장치
KR101939048B1 (ko) 2중관형 해수 샤베트 아이스 제조장치
JP4994111B2 (ja) 冷凍装置及び該冷凍装置を用いた製氷機
JP2020038039A (ja) 二重管式の満液式蒸発器及び製氷機
KR20100103205A (ko) 제빙기용 드럼, 그 제조 방법 및 제빙기용 드럼을 갖는 제빙기
KR100489933B1 (ko) 아이스슬러리용 교반제빙기 및 그 제빙기를 이용한 빙축열시스템
KR20180031952A (ko) 액화 촉진기가 내장된 냉방장치
WO2006008203A1 (en) Cooling cylinder for ice-flake making apparatus
JP2016056979A (ja) ターボ冷凍機
CN116839272A (zh) 过冷解除装置及过冷水制冰装置
JP2020026924A (ja) 製氷機の運転制御方法
JP2000274919A (ja) 冷却装置
JP2003279206A (ja) フレーク製氷機の高効率な蒸発器のコイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738572

Country of ref document: EP

Kind code of ref document: A1