WO2019137254A1 - 基于iq两路不平衡产生的信号校准方法、装置及设备 - Google Patents

基于iq两路不平衡产生的信号校准方法、装置及设备 Download PDF

Info

Publication number
WO2019137254A1
WO2019137254A1 PCT/CN2018/125259 CN2018125259W WO2019137254A1 WO 2019137254 A1 WO2019137254 A1 WO 2019137254A1 CN 2018125259 W CN2018125259 W CN 2018125259W WO 2019137254 A1 WO2019137254 A1 WO 2019137254A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
gain
phase
amplitude
Prior art date
Application number
PCT/CN2018/125259
Other languages
English (en)
French (fr)
Inventor
张留安
张宁
冯海刚
戴思特
檀聿麟
Original Assignee
深圳锐越微技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳锐越微技术有限公司 filed Critical 深圳锐越微技术有限公司
Priority to US16/959,437 priority Critical patent/US11082082B2/en
Publication of WO2019137254A1 publication Critical patent/WO2019137254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0042Digital filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signal calibration method, apparatus, and device based on IQ two-way imbalance.
  • RF radio frequency
  • the image signal is usually generated after the RF portion is mixed.
  • the accuracy of the time is generally too low.
  • the present application provides a signal calibration method, device and device based on IQ two-way imbalance, and the main purpose is to solve the problem of image signal calibration caused by the current two-way imbalance, which is not available in the prior art.
  • a more suitable solution leads to the problem that the accuracy of the existing image signal is generally too low.
  • a signal calibration method based on IQ two-way imbalance comprising:
  • the signal to be calibrated When receiving the signal to be calibrated, the signal to be calibrated is sent through a configurable signal amplitude and phase signal generator to generate a cosine signal and a sinusoidal signal, and are respectively configured to be transmitted on both sides of the IQ, wherein each channel corresponds to one signal.
  • the cosine signal and the sinusoidal signal are looped back to the signal receiving direction after passing through the transmitting amplifier;
  • the signal obtained by down-converting the frequency converter in the signal receiving direction is processed by using a preset Fourier transform rule
  • the phase adjustment and the amplitude adjustment are respectively performed by adjusting the gain amplifier of the signal generator, the IQ two-channel analog domain, and the corresponding digital domain adjustment, so as to determine a suitable phase cancellation value and amplitude cancellation value of the image signal;
  • a signal calibration apparatus based on IQ two-way imbalance generation comprising:
  • the configuration unit is configured to: when receiving the signal to be calibrated, send the signal to be calibrated through a configurable signal amplitude and phase signal generator to generate a cosine signal and a sinusoidal signal, and respectively configure the two channels on the IQ for transmission, wherein each path Corresponding to a signal, the cosine signal and the sinusoidal signal are looped back to the signal receiving direction after passing through the transmitting amplifier;
  • the processing unit is configured to process the signal obtained by down-converting the frequency converter in the signal receiving direction by using a preset Fourier transform rule
  • the adjusting unit is configured to perform phase adjustment and amplitude adjustment respectively by adjusting the gain generator of the signal generator, the IQ two-way analog domain, and the corresponding digital domain adjustment according to the processing result, so as to determine a suitable phase cancellation value and amplitude pair of the image signal. Value reduction
  • a calibration unit configured to calibrate the image signal corresponding to the signal to be calibrated according to the phase cancellation value and the amplitude cancellation value.
  • a storage medium having stored thereon a computer program that, when executed by a processor, implements the above-described signal calibration method based on IQ two-way imbalance generation.
  • a signal calibration apparatus based on IQ two-way imbalance generation including a storage medium, a processor, and a computer program stored on the storage medium and operable on the processor, the processor
  • the above-mentioned signal calibration method based on IQ two-way imbalance is implemented when the program is executed.
  • the present invention provides a method, device and device for calibrating a signal based on IQ two-way imbalance.
  • the present application is directed to an image generated after mixing of a radio frequency part.
  • the signal is subjected to a special theoretical analysis, and the signal to be calibrated is sent to the cosine signal and the sinusoidal signal through the signal generator of the configurable signal amplitude and phase, and respectively configured to be transmitted on both sides of the IQ, so that the precise amplitude and phase of the calibration signal can be realized.
  • the processing result of the preset Fourier transform rule is used, and the phase adjustment is respectively performed by adjusting the gain generator of the signal generator, the IQ two-channel analog domain, and the corresponding digital domain adjustment.
  • amplitude adjustment in order to accurately determine the appropriate image phase cancellation value and amplitude cancellation image image signal calibration, so that in the case of IQ two-way imbalance, high-precision mirroring can be achieved (image ) Signal correction and cancellation.
  • FIG. 1 is a schematic flow chart of a method for calibrating a signal based on IQ two-way imbalance provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a signal calibration system based on IQ two-way imbalance generated by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a signal calibration apparatus based on IQ two-way imbalance generated by an embodiment of the present application.
  • a signal calibration method based on IQ two-way imbalance is provided.
  • high-precision image signal correction and cancellation can be realized, as shown in FIG. Show that the method includes:
  • the signal to be calibrated is sent by the signal generator of the configurable signal amplitude and phase to generate a cosine signal and a sinusoidal signal, and are respectively configured to be transmitted on both sides of the IQ.
  • each channel corresponds to a signal
  • the cosine signal and the sinusoidal signal are looped back to the signal receiving direction after passing through the transmitting amplifier.
  • which way to transmit the cosine signal and which way to transmit the sinusoidal signal can be selected according to actual needs.
  • the apparatus may perform an automatic calibration adjustment of the image signal in the case where the IQ is unbalanced.
  • the apparatus uses a signal generator that transmits the amplitude and phase of the signal.
  • the cosine signal and the sinusoidal signal are respectively arranged on the IQ path for transmission, and then looped back to the signal receiving (RX) direction to the receiving amplifier after passing through the transmitting mixer and the transmitting amplifier, and then passed through the receiving mixer, and then passed through Simulate the baseband circuit and reach the analog-to-digital converter.
  • an alternative is to generate sine and cosine waves based on the cordic principle; another alternative is to store the data points of the sine and cosine waves into the random access memory (Random) Access memory, RAM), in order to use the waveform generator to send out the waveforms of sine and cosine waves from RAM, and then send cosine and sinusoidal signals.
  • the embodiment can achieve amplitude and phase configurable.
  • the sinusoidal signal can be configured on the I road or on the Q road
  • the cosine signal can be configured on the I road or the Q road.
  • DACs digital-to-analog converters
  • ADCs analog-to-digital converters
  • the signal obtained by down-converting the frequency converter in the signal receiving direction is processed by using a preset Fourier transform rule.
  • the preset Fourier transform rule may be configured according to actual needs, and as an optional method, the preset Fourier transform rule may be a variable length discrete Fourier transform SFT rule, the rule It can be considered as a simple Discrete Fourier Transform (DFT), which is calculated for a single frequency point or a few frequency points, and the frequency point can be configured.
  • DFT Discrete Fourier Transform
  • the preset Fourier transform rule can also use Fast Fourier Transformation (FFT), in which SFT will save resources.
  • FFT Fast Fourier Transformation
  • the variable length SFT rule is used for processing, and the accuracy of the image signal estimation can be improved under different signal-to-noise ratios, and can be used for more accurate estimation of smaller scales.
  • the received frequency component is used for processing, and the accuracy of the image signal estimation can be improved under different signal-to-noise ratios, and can be used for more accurate estimation of smaller scales.
  • the image signal calibration can be divided into phase calibration and amplitude calibration, and for more accurate amplitude calibration, as an alternative, the amplitude calibration is further divided into analog domain calibration and digital domain calibration.
  • the above amplitude cancellation value includes the gain value of the gain amplifier of the analog domain, and the gain value corresponding to the digital domain.
  • the first step can be to adjust the phase first, find the image minimum on the basis of phase traversal or local traversal, then adjust the amplitude in the second step, perform amplitude traversal or local amplitude traversal to find the image global minimum.
  • the above may be sufficiently small based on the mixer value of the mixer at the image frequency of the received local oscillator (LO), for example, when the difference between the two is 30 db or more.
  • step 103 may specifically include: performing phase adjustment by adjusting the signal generator according to the processing result in step 102, and performing phase local traversal by performing phase Or global traversal, monitoring the minimum value corresponding to the image signal or the maximum value corresponding to the sig signal, so as to record the optimal phase value that the corresponding image signal needs to compensate at this time, as the phase cancellation value of the image signal;
  • the processing result is adjusted by adjusting the gain amplifier of the I or Q analog domain to monitor the minimum value corresponding to the image signal based on the gain amplifier adjustment or the maximum value corresponding to the sig signal, so as to record the corresponding simulation at this time.
  • the gain value of the domain gain amplifier in the digital domain, by performing amplitude local traversal or global traversal, the global minimum corresponding to the image signal or the global maximum corresponding to the sig signal is monitored to record the corresponding digital domain gain value at this time.
  • phase calibration after the signal of the down conversion is subjected to SFT processing, the amount of the corresponding amplitude of the Image signal in the frequency domain is obtained. Then, according to the representation amount, the signal generator based on the cordic principle is adjusted, and all or part of the phase is searched/traversed to obtain the minimum representation amount, and the optimal value to be compensated is obtained.
  • the search for the phase includes a negative phase and a positive phase.
  • a signal generator based on the cordic principle is sent to send a cosine signal to the I path.
  • the sinusoidal signal is sent to the Q path.
  • the mixer After the mixer is transmitted, it passes through an amplifier and then loops back to the receiving amplifier, and then passes through the receiving mixer.
  • the analog baseband circuit reaches the analog-to-digital converter ADC. Local traversal or global traversal of the I-way cosine signal phase of the signal generator.
  • the SFT processing can monitor the size of the image signal or the size of the sig signal. When monitoring the minimum value of the image signal or the maximum value of the sig signal. At this time, the corresponding phase is the optimal phase that needs to be compensated.
  • the minimum value of the image signal or the maximum value of the sig signal based on the adjustment can be obtained by the gain amplifier of the I or Q analog domain.
  • the gain amplifier has accuracy problems.
  • the gain amplifier may only have 0.25 db.
  • Further calibration needs to be performed in the digital domain.
  • the digital domain performs further more accurate traversal or local traversal to obtain the final image signal minimum or the maximum value of the sig signal. .
  • adjusting the gain amplifier of the I or Q analog domain starting the signal generator based on the cordic principle to send the cosine signal to the I path, the sinusoidal signal to the Q path, after transmitting the mixer, after an amplifier loops back to the receiving
  • the amplifier then passes through the receive mixer and then through the analog baseband circuit to the analog-to-digital converter ADC.
  • the SFT processing can be used to monitor the minimum value of the image signal or the maximum value of the sig signal based on the adjustment.
  • the corresponding amplifier gain is recorded as the gain value of the analog domain gain amplifier, but the gain amplifier has accuracy problems. For example, the gain amplifier may only have 0.25db. Further gain or amplitude calibration needs to be performed in the digital domain.
  • the digital domain performs further more accurate traversal or local traversal to obtain the final image signal minimum or the maximum value of the sig signal. Digital domain gain.
  • the minimum value corresponding to the image signal includes:
  • I sft_image 2 +Q sft_image 2 or Or
  • , calculate the minimum value as the evaluation criterion of the minimum value corresponding to the image signal, where I sft_image is the result of the image signal processed by the SFT rule in the I path, and Q sft_image is The result of the image signal processed by the SFT rule in the Q path;
  • the maximum value corresponding to the sig signal including:
  • I sft_sig 2 +Q sft_sig 2 or Or
  • , calculate the maximum value as the evaluation criterion of the maximum value corresponding to the sig signal, where I sft_sig is the result obtained by the SFT rule processing of the sig signal in the I path, and Q sft_sig is The result of the sig signal processed by the SFT rule in the Q path.
  • the amplitude and phase of the image signal corresponding to the calibration signal are compensated and adjusted to offset the influence of the IQ two-way imbalance.
  • step 104 may specifically: refer to the optimal phase value obtained in step 103, and calibrate the phase of the image signal corresponding to the calibration signal; and refer to step 103.
  • the gain value of the analog domain gain amplifier and the digital domain gain value are calibrated to the amplitude of the image signal corresponding to the calibration signal.
  • the gain value of the analog domain gain amplifier includes the gain values of the analog domain gain amplifiers corresponding to the IQ channels respectively.
  • the amplitudes of the image signals corresponding to the calibration signals are calibrated with reference to the gain values of the analog domain gain amplifiers and the digital domain gain values.
  • the step may specifically include: configuring a gain value of an analog domain gain amplifier corresponding to the I channel to an analog domain gain amplifier of the I channel; and configuring a gain value of the analog domain gain amplifier corresponding to the Q channel to an analog domain of the Q channel On the gain amplifier; and using the digital domain gain value as a parameter, using the preset formula, the image signal corresponding to the calibration signal is subjected to amplitude compensation in the digital domain.
  • the factors considered are more comprehensive, and high-precision image signal correction and cancellation can be realized.
  • the preset formula can be set according to actual needs. For example, taking the signal generator to send a cosine signal on the I path and the sinusoidal signal on the Q path as an example, according to the above steps, the optimal phase to be compensated is determined, and the analog phase gain amplifier corresponding to the two phases of the analog phase gain amplifier is labeled as phase offset .
  • the gain values are gain I-ana-offset and gain Q-ana-offset , respectively.
  • the digital domain gain values of IQ are gain I-digital-offset and gain Q-digital-offset , respectively, assuming that the I-channel data to be transmitted is I tx , the Q channel data to be transmitted is Q tx ;
  • I calibrated gain I-digital-offset *I tx *cos(phase offset )+gain I-digital-offset *Q tx *sin(phase offset )
  • Q calibrated gain Q-digital-offset *Q tx compensates for the Q-channel digital domain gain.
  • the data from the digital baseband is calibrated by such digital domain phase and amplitude, and the gain of the analog domain gain amplifier is calibrated to obtain the smallest image signal.
  • the embodiment of the present application comprehensively considers the defects of the prior art theory and implementation, and performs a special theoretical analysis on the image signal generated after the mixing of the radio frequency part, and combines the signal generator based on the cordic principle to accurately measure the signal to be calibrated.
  • Amplitude and phase control, the ADC and DAC are mentioned to a higher clock rate (such as 160M, etc.) to further improve the accuracy of the calibration, while the image signal calibration is divided into phase calibration and amplitude calibration, and the amplitude calibration is divided into analog calibration. And digital calibration.
  • the minimum value of the image signal is found by constantly adjusting the amplitude and phase.
  • a variable-length DFT (herein referred to as SFT) is used to improve the accuracy of image signal estimation at different signal-to-noise ratios, and can be used to estimate the received value with a more accurate smaller scale.
  • SFT variable-length DFT
  • the embodiment of the present application can accurately estimate the image signal, and can obtain an accurate image signal minimum value, and can obtain an accurate phase of the image signal, an analog gain compensation value, and a digital gain compensation value, thereby realizing high-precision image signal correction and pairing. Eliminate.
  • the amplitude of the baseband digital I path is a i_tx_bb
  • the amplitude of the baseband analog part (before the mixer) is a i_tx_abb
  • the amplitude of the transmit mixer is a i_tx_mixer
  • the phase of the baseband is ⁇ itx
  • the phase of the mixer is ⁇ itx ;
  • the amplitude of the baseband digital Q path is a i_tx_bb
  • the amplitude of the baseband analog part (before the mixer) is a i_tx_abb
  • the amplitude of the transmit mixer is a i_tx_mixer
  • the phase of the baseband is ⁇ qtx
  • the phase of the mixer is ⁇ qtx ;
  • phase delay of the mixer in the direction of the transmission direction of the mixer after the mixer is combined is ⁇ ;
  • the baseband frequency emitted by the signal generator based on the cordic principle is ⁇ 0
  • the frequency of the LO LO local oscillator is ⁇ LO
  • the frequency of the receiving local oscillator is ⁇ LO + ⁇ fixed_offset ;
  • TX TX i +TX q ;
  • TX i a i_tx_bb * a i_tx_abb * cos (2 * pi * ⁇ 0 * t + ⁇ itx) * a i_tx_mixer * cos (2 * pi * ⁇ LO * t + ⁇ itx)
  • TX q a q_tx_bb *a q_tx_abb *sin(2*pi* ⁇ 0 *t+ ⁇ qtx )*a q_tx_mixer *sin(2*pi* ⁇ LO *t+ ⁇ qtx )
  • TX1 ⁇ 0.5*a i_tx_bb *a i_tx_abb *a i_tx_mixer *cos[2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ itx + ⁇ itx )]-0.5*a q_tx_bb *a q_tx_abb *a q_tx_mixer *cos [2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ qtx + ⁇ qtx )] ⁇ +
  • the resulting Image signal is:
  • Image1 ⁇ 0.5*a i_tx_bb *a i_tx_abb *a i_tx_mixer *cos[2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ itx + ⁇ itx )]-0.5*a q_tx_bb *a q_tx_abb *a q_tx_mixer *cos [2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ qtx + ⁇ qtx )] ⁇ (Equation 4)
  • Image2 ⁇ 0.5*a i_tx_bb *a i_tx_abb *a i_tx_mixer *cos[2*pi*( ⁇ LO - ⁇ 0 )*t+( ⁇ itx - ⁇ itx )]-0.5*a q_tx_bb *a q_tx_abb *a q_tx_mixer *cos [2*pi*( ⁇ LO - ⁇ 0 )*t+( ⁇ qtx - ⁇ qtx )] ⁇ (Equation 5)
  • Sig2 ⁇ 0.5*a i_tx_bb *a i_tx_abb *a i_tx_mixer *cos[2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ itx + ⁇ itx )]+0.5*a q_tx_bb *a q_tx_abb *a q_tx_mixer *cos [2*pi*( ⁇ LO + ⁇ 0 )*t+( ⁇ qtx + ⁇ qtx )].
  • the I-channel receiver mixer is ideally:
  • the I channel receiving mixer will generate its own image signal
  • the Q-channel receive mixer is ideally:
  • the Q-channel receiving mixer will generate its own image signal
  • mixer irx and mixer qrx can also be written as follows, deriving similar;
  • TX1 TX i +TX q
  • TX2 TX i - TX q
  • TX2 TX i - TX q
  • the I-channel signal arriving at the baseband reception is:
  • the I-channel signal arriving at the baseband reception is:
  • RX2 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b i_rx_mixer * cos (2 * pi * (- ⁇ fixed_offset - ⁇ 0) * t + ⁇ irx - ( ⁇ itx + ⁇ itx)) - 0.25 * a q_tx_bb *a q_tx_abb *a q_tx_mixer *b i_rx_mixer *cos(2*pi*(- ⁇ fixed_offset - ⁇ 0 )*t+ ⁇ irx -( ⁇ qtx + ⁇ qtx )) Equation (11)
  • the I-channel signal arriving at the baseband reception is:
  • RX3 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b i_rx_mixer * cos (2 * pi * ( ⁇ fixed_offset + ⁇ 0) * t + ⁇ irx - ( ⁇ itx - ⁇ itx)) + 0.25 * a q_tx_bb * a q_tx_abb *a q_tx_mixer *b i_rx_mixer *cos(2*pi*( ⁇ fixed_offset + ⁇ 0 )* t+ ⁇ irx -( ⁇ qtx - ⁇ qtx )) Equation (12)
  • the I-channel signal arriving at the baseband reception is:
  • RX4 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b i_rx_mixer * cos (2 * pi * (- ⁇ fixed_offset + ⁇ 0) * t + ⁇ irx - ( ⁇ itx - ⁇ itx)) + 0.25 ** a Q_tx_bb *a q_tx_abb *a q_tx_mixer *b i_rx_mixer *cos(2*pi*(- ⁇ fixed_offset + ⁇ 0 )*t+ ⁇ irx -( ⁇ qtx - ⁇ qtx )) Equation (13)
  • the I-channel signal arriving at the baseband reception is:
  • RX1 q 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer * sin (2 * pi * ( ⁇ fixed_offset - ⁇ 0) * t + ⁇ qrx - ( ⁇ itx + ⁇ itx)) - 0.25 * a q_tx_bb * a q_tx_abb *a q_tx_mixer *b q_rx_mixer *sin(2*pi*( ⁇ fixed_offset - ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx + ⁇ qtx ))
  • the I-channel signal arriving at the baseband reception is:
  • RX2 q 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer * sin (2 * pi * (- ⁇ fixed_offset - ⁇ 0) * t + ⁇ qrx - ( ⁇ itx + ⁇ itx)) - 0.25 * a q_tx_bb *a q_tx_abb *a q_tx_mixer *b i_rx_mixer *sin(2*pi*(- ⁇ fixed_offset - ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx + ⁇ qtx )) Equation (15)
  • the I-channel signal arriving at the baseband reception is:
  • RX3 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer sin (2 * pi * ( ⁇ fixed_offset + ⁇ 0) * t + ⁇ qrx - ( ⁇ itx - ⁇ itx)) + 0.25 * a q_tx_bb * a q_tx_abb *a q_tx_mixer *b q_rx_mixer *sin(2*pi*( ⁇ fixed_offset + ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx - ⁇ qtx )) Equation (16)
  • the I-channel signal arriving at the baseband reception is:
  • RX4 q 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer * sin (2 * pi * (- ⁇ fixed_offset + ⁇ 0) * t + ⁇ qrx - ( ⁇ itx - ⁇ itx)) + 0.25 ** a Q_tx_bb *a q_tx_abb *a q_tx_mixer *b q_rx_mixer *sin(2*pi*(- ⁇ fixed_offset + ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx - ⁇ qtx )) Equation (17)
  • RX1 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b i_rx_mixer * cos (2 * pi * ( ⁇ fixed_offset - ⁇ 0) * t + ⁇ irx - ( ⁇ itx + ⁇ itx)) - 0.25 * a q_tx_bb * a q_tx_abb *a q_tx_mixer *b i_rx_mixer *cos(2*pi*( ⁇ fixed_offset - ⁇ 0 )*t+ ⁇ irx -( ⁇ qtx + ⁇ qtx ))
  • RX4 i 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b i_rx_mixer * cos (2 * pi * (- ⁇ fixed_offset + ⁇ 0) * t + ⁇ irx - ( ⁇ itx - ⁇ itx)) + 0.25 * a q_tx_bb *a q_tx_abb *a q_tx_mixer *b i_rx_mixer *cos(2*pi*(- ⁇ fixed_offset + ⁇ 0 )*t+ ⁇ irx -( ⁇ qtx - ⁇ qtx ))
  • RX1 q 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer * sin (2 * pi * ( ⁇ fixed_offset - ⁇ 0) * t + ⁇ qrx - ( ⁇ itx + ⁇ itx)) - 0.25 * a q_tx_bb * a q_tx_abb *a q_tx_mixer *b q_rx_mixer *sin(2*pi*( ⁇ fixed_offset - ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx + ⁇ qtx ))
  • RX4 q 0.25 * a i_tx_bb * a i_tx_abb * a i_tx_mixer * b q_rx_mixer * sin (2 * pi * (- ⁇ fixed_offset + ⁇ 0) * t + ⁇ qrx - ( ⁇ itx - ⁇ itx)) + 0.25 ** a Q_tx_bb *a q_tx_abb *a q_tx_mixer *b q_rx_mixer *sin(2*pi*(- ⁇ fixed_offset + ⁇ 0 )*t+ ⁇ qrx -( ⁇ qtx - ⁇ qtx ))
  • the signal frequency of TX1 image1 is ⁇ LO + ⁇ 0
  • the frequency of sig1 signal is ⁇ LO - ⁇ fixed_offset
  • the frequency of receiving LO is ⁇ LO + ⁇ fixed_offset
  • the image frequency of receiving LO is ⁇ LO - ⁇ fixed_offset
  • the image1 signal frequency is ⁇ LO + ⁇ 0 and ⁇ LO + ⁇ fixed_offset produces the received image frequency to be observed
  • RX_i RX1_i+RX4_i; this is the amount of image signal on the receiving I road that actually needs to be monitored;
  • RX_q RX1_q+RX4_q; This is the amount of image signal on the receiving Q road that needs to be monitored.
  • a corresponding signal calibration system architecture based on IQ two-way imbalance is given, which is divided into two parts, the left side includes a signal based on the cordic principle.
  • Generator SFT processing module (SFT), analog domain gain compensation module (Analog Gain), digital domain gain compensation module (Digital Gain), phase compensation module (PHASE) and other main modules, on the right is a typical RF link part
  • the emission signal needs to be returned to the signal receiving direction through the switch ring after the amplifier amplifier (amplify), and is calibrated with the image signal.
  • the RF link section includes a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), an amplifier, a low-pass filter (Lowpass), and a local oscillator (LO) and a mixer.
  • DAC digital-to-analog converter
  • ADC analog-to-digital converter
  • Lowpass low-pass filter
  • LO local oscillator
  • the embodiment of the present application provides a signal calibration apparatus based on IQ two-way imbalance.
  • the apparatus includes: a configuration unit 21, a processing unit 22, and an adjustment. Unit 23, calibration unit 24.
  • the configuration unit 21 may be configured to: when receiving the signal to be calibrated, send the signal to be calibrated through the signal generator of the configurable signal amplitude and phase to emit a cosine signal and a sinusoidal signal, and respectively configure the two channels on the IQ for transmission, wherein each path Corresponding to a signal, the cosine signal and the sinusoidal signal are looped back to the signal receiving direction after passing through the transmitting amplifier;
  • the processing unit 22 may be configured to process the signal obtained by the down-converter in the signal receiving direction by using a preset Fourier transform rule;
  • the adjusting unit 23 can be configured to perform phase adjustment and amplitude adjustment respectively by adjusting the signal generator, the gain amplifier of the IQ two-path analog domain, and the corresponding digital domain adjustment according to the processing result, so as to determine a suitable phase cancellation value and amplitude pair of the image signal. Value reduction
  • the calibration unit 24 can be configured to calibrate the image signal corresponding to the calibration signal according to the phase cancellation value and the amplitude cancellation value.
  • the amplitude cancellation value may include the gain value of the gain amplifier of the analog domain and the gain value corresponding to the digital domain.
  • the adjusting unit 23 can be specifically configured to perform phase adjustment by adjusting the signal generator according to the processing result, and monitor the minimum value corresponding to the image signal or the maximum value corresponding to the sig signal by performing phase local traversal or global traversal.
  • the amplitude adjustment is performed by adjusting the gain amplifier of the I or Q analog domain, and the monitoring is based on the gain amplifier adjustment.
  • the minimum value corresponding to the image signal or the maximum value corresponding to the sig signal in order to record the gain value of the corresponding analog domain gain amplifier at this time; in the digital domain, by performing amplitude local traversal or global traversal, the corresponding image signal is monitored.
  • the global minimum or the global maximum corresponding to the sig signal is used to record the corresponding digital domain gain value at this time.
  • the calibration unit 24 may be specifically configured to calibrate the phase of the image signal corresponding to the calibration signal with reference to the optimal phase value; and to be calibrated with reference to the gain value and the digital domain gain value of the analog domain gain amplifier. The amplitude of the image signal corresponding to the signal is calibrated.
  • the gain value of the analog domain gain amplifier includes the gain values of the analog domain gain amplifiers corresponding to the IQ channels respectively.
  • the calibration module 24 can also be set to the analog domain gain amplifier corresponding to the I channel.
  • the gain value is configured to the analog domain gain amplifier of the I channel; and the gain value of the analog domain gain amplifier corresponding to the Q channel is configured to the analog domain gain amplifier of the Q channel; and the digital domain gain value is used as a parameter, and the preset is utilized.
  • the image signal corresponding to the calibration signal is subjected to amplitude compensation of the digital domain.
  • the calibration module 24 may be specifically configured to use a formula if the signal generator emits a cosine signal on the I path and a sinusoidal signal on the Q path.
  • I calibrated gain I-digital-offset *I tx *cos(phase offset )+gain I-digital-offset *Q tx *sin(phase offset ) Compensates for the I-channel digital domain gain;
  • Q calibrated gain Q-digital-offset *Q tx to compensate the Q-channel digital domain gain
  • I tx is the I-channel data to be transmitted
  • Q tx is the Q-channel data to be transmitted
  • the phase offset is needed.
  • the optimal phase value of the compensation, gain I-digital-offset is the digital domain gain value of the I channel
  • gain Q-digital-offset is the digital domain gain value of the Q channel
  • I calibrated is the compensation of the I domain digital domain gain.
  • the value, Q calibrated is the value that needs to compensate for the gain of the Q digital domain.
  • the signal generator can generate sine and cosine waves based on the cordic principle, or store the data points of the sine and cosine waves in the random access memory RAM to transmit the sine and cosine waves from the RAM using the waveform generator.
  • the waveform, the preset Fourier transform rule is a variable length discrete Fourier transform SFT rule.
  • the adjustment unit is specifically set to use I sft_image 2 + Q sft_image 2 , or Or
  • the result of the image signal being processed by the SFT rule using I sft_sig 2 +Q sft_sig 2 , or Or
  • I sft_sig is the result of the sig signal processed by the SFT rule in the I path
  • Q sft_sig is the Q path.
  • the embodiment of the present application further provides a storage medium, where the computer program is stored, and when the program is executed by the processor, the IQ-based two-way as shown in FIG. 1 is implemented. Signal calibration method resulting from imbalance.
  • an embodiment of the present application further provides a physical device based on IQ two-way imbalance generated signal calibration, where the physical device includes a storage medium and processing.
  • a storage medium configured to store a computer program, and a processor configured to execute the computer program to implement the signal calibration method based on the IQ two-way imbalance generated as described above in FIGS.
  • a variable-length SFT is used to improve the accuracy of the image signal estimation at different signal-to-noise ratios, and can be used to estimate the received frequency components with a more accurate smaller scale.
  • the embodiment of the present application can accurately estimate the image signal, and can obtain an accurate image signal minimum value, and can obtain an accurate phase of the image signal, an analog gain compensation value, and a digital gain compensation value, thereby realizing high-precision image signal correction and pairing. Eliminate.
  • the present application can be implemented by hardware, or by software plus a necessary general hardware platform.
  • the technical solution of the present application may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of various implementation scenarios of the present application.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本申请公开了一种基于IQ两路不平衡产生的信号校准方法、装置及设备。其中方法包括:将待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,余弦信号和正弦信号在经过发射放大器后环回到信号接收方向;将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;依据处理结果通过调节信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定image信号适合的相位对消值和幅度对消值;根据相位对消值和幅度对消值,对待校准信号对应的image信号进行校准。

Description

基于IQ两路不平衡产生的信号校准方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其是涉及到一种基于IQ两路不平衡产生的信号校准方法、装置及设备。
背景技术
随着无线技术的快速发展,无线通信系统产品越来越普及。射频(Radio Frequency,RF)发射机的结构和性能直接影响着整个通信系统。通常发射机所发送的IQ信号可以分别通过I、Q两路模拟滤波器、混频器等实现对同相分量I路信号与正交分量Q路信号的信号处理与传输。
数字通信中,射频发射机所发送的IQ信号在通过I、Q两路模拟滤波器时,由于I、Q两路模拟滤波器冲击响应的极点和零点的不一致,甚至可能存在较大或可观的偏差,会造成I、Q两路的合成信号时产生频域选择性的IQ不平衡的问题。
镜像(image)信号通常是对射频部分混频后产生的,然而目前对于IQ两路不平衡导致的image信号校准问题,现有技术中还没有较为合适的解决方案,进而导致现有image信号校准时的精度普遍过低的问题。
申请内容
有鉴于此,本申请提供了一种基于IQ两路不平衡产生的信号校准方法、装置及设备,主要目的在于解决目前对于IQ两路不平衡导致的image信号校准问题,现有技术中还没有较为合适的解决方案,进而导致现有image信号校准时的精度普遍过低的问题。
根据本申请的一个方面,提供了一种基于IQ两路不平衡产生的信号校准方法,该方法包括:
当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行 处理;
依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;
根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
根据本申请的另一方面,提供了一种基于IQ两路不平衡产生的信号校准装置,该装置包括:
配置单元,设置为当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
处理单元,设置为将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
调整单元,设置为依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;
校准单元,设置为根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
依据本申请又一个方面,提供了一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述基于IQ两路不平衡产生的信号校准方法。
依据本申请再一个方面,提供了一种基于IQ两路不平衡产生的信号校准设备,包括存储介质、处理器及存储在存储介质上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述基于IQ两路不平衡产生的信号校准方法。
借由上述技术方案,本申请提供的一种基于IQ两路不平衡产生的信号校准方法、装置及设备,与目前现有技术相比,本申请针对射频部分混频后产生的镜像(image)信号进行了专门的理论分析,将待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,可以实现对校准信号的精确幅度和相位控制,然后根据信号接 收方向上降频变频器得到的信号利用预设傅里叶变换规则的处理结果,通过调节信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便精确确定镜像(image)信号适合的相位对消值和幅度对消值进行镜像(image)信号校准,进而在IQ两路不平衡的情况下,可以实现高精度的镜像(image)信号校正和对消。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请实施例提供的一种基于IQ两路不平衡产生的信号校准方法的流程示意图;
图2示出了本申请实施例提供的基于IQ两路不平衡产生的信号校准系统的架构示意图;
图3示出了本申请实施例提供的一种基于IQ两路不平衡产生的信号校准装置的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种基于IQ两路不平衡产生的信号校准方法,在IQ两路不平衡的情况下,可以实现高精度的镜像(image)信号校正和对消,如图1所示,该方法包括:
101、当接收到待校准信号时,将待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递。
其中,每一路对应一种信号,余弦信号和正弦信号在经过发射放大器后环回到信号接收方向。在本实施例中,具体哪一路传递余弦信号,哪一路传递正弦信号可以根据实际需求选择设定。
为了适应不同应用场景,环回至信号接收方向有多种可选方式,作为一种可选方式,对于本实施例还可以在经过发射放大器后边其它部件之后环回至信号接收方向。
对于本实施例的执行主体可以为在IQ两路不平衡的情况下进行image信号自动校准调整的装置,在信号发射(TX)方向,该装置利用通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,然后在经过发射混频器、发射放大器后环回至信号接收(RX)方向到接收放大器上,然后经过接收混频器,再经过模拟基带电路,到达模数转换器。
为了实现通过信号发生器发出余弦信号和正弦信号,一种可选方式是通过基于cordic原理产生正弦和余弦波;另一种可选方式是将正弦和余弦波的数据点存储到随机存储器(Random access memory,RAM)中,以便从RAM中利用波形发生器发送出正弦和余弦波的波形,进而发出余弦信号和正弦信号。同时本实施例可以做到幅度和相位可配置,如正弦信号在I路上或者在Q路上可配置,余弦信号在I路上或者Q路上可配置。
进一步的,为了提高发出余弦信号和正弦信号的相位精度,定点化时至少需要16位来表示360度来达到更高的校准精度,也不排除在某些场合降低位宽来不计精度的场合。还可以将数模转换器(DAC)和模数转换器(ADC)提到较高的时钟速率(如160M等)来进一步提高校准的精度。
102、将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理。
其中,预设傅里叶变换规则可以根据实际需求选择合适算法进行配置,作为一种可选方式,该预设傅里叶变换规则可以为可变长的离散傅里叶变换SFT规则,该规则可以认为是简单的离散傅里叶变换(Discrete Fourier Transform,DFT),针对单个频点或者少数几个频点进行计算,频点可以配置。当然预设傅里叶变换规则也可以使用快速傅氏变换(Fast Fourier Transformation,FFT),在此校准中,SFT会更省资源。对于本实施例,在image信号估计方面,采用可变长的SFT规则进行处理,在不同的信噪比下 可以提高image信号估计的准确性,并可以用来更精确的更小刻度的来估计接收到的频率分量。
103、依据处理结果通过调节信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定image信号适合的相位对消值和幅度对消值。
在本实施例中,可以将image信号校准区分为相位校准和幅度校准,而为了更准确的进行幅度校准,作为一种可选方式,在幅度校准方面又分为模拟域校准和数字域校准,相应的,上述幅度对消值包含模拟域的增益放大器的增益值,和数字域相应的增益值。
对于一个信号
Figure PCTCN2018125259-appb-000001
来说,其中a1、a2、ω、t为余弦型或正弦型函数中的参数,当
Figure PCTCN2018125259-appb-000002
时,s在相位调节的基础上达到最小,当a1=a2时,s在相位和幅度相等的基础上进一步达到全局最小。
因此,第一步可以先调节相位,在进行相位遍历或者局部遍历的基础上找到image最小值,然后第二步再调节幅度,进行幅度遍历或者局部幅度遍历找到image全局最小值。这样就可以得到全局的相位和幅度的对消值。当然,也可以进行相位遍历或者局部遍历的基础上找到sig局部最大值,进一步进行幅度遍历或者局部幅度遍历找到sig全局最大值。
以上可以基于接收本振(LO)的镜像频率下的混频器(mixer)值相对LO的mixer值足够小,例如两者相差30db以上时。
基于上述求解思路,为了说明步骤103的具体实施过程,在一种可选方式中,步骤103具体可以包括:依据步骤102中的处理结果通过调节信号发生器进行相位调整,并通过进行相位局部遍历或全局遍历,监测image信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的image信号需要补偿的最佳相位值,作为image信号的相位对消值;依据步骤102中的处理结果通过调节I路或Q路模拟域的增益放大器进行幅度调整,监测在增益放大器调节基础上的image信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的模拟域增益放大器的增益值;在数字域中通过进行幅度局部遍历或全局遍历,监测image信号相对应的全局最小值或sig信号相对应 的全局最大值,以便记录此时对应的数字域增益值。
关于相位的校准,对降频变频器(down conversion)的信号经过SFT处理后,得到频域上的Image信号对应幅度的表示量。然后根据这个表示量来调节基于cordic原理的信号发生器,搜索/遍历全部或者局部的相位,得到最小的表示量,就得到了需要补偿的最佳值。其中相位的搜索包括负相位和正相位。
例如,启动基于cordic原理的信号发生器发送余弦信号到I路上,正弦信号到Q路上,发射混频器后,经过一个放大器后环回到接收的放大器上,然后经过接收混频器,再经过模拟基带电路,到达模数转换器ADC。局部遍历或者全局遍历信号发生器的I路余弦信号相位,在ADC后,通过SFT处理,可以监测image信号的大小或者sig信号的大小,在监测出image信号的最小值或者sig信号的最大值时,此时对应的相位就是需要进行补偿的最佳相位。
关于幅度的校准,通过I路或者Q路模拟域的增益放大器,就可以得到在此调节基础上的image信号最小值或者sig信号的最大值。但是增益放大器有精度问题,例如增益放大器可能只有0.25db,进一步的校准需要在数字域进行,数字域进行进一步的更精确的遍历或者局部遍历,得到最终的image信号最小值或者sig信号的最大值。
例如,调节I路或者Q路模拟域的增益放大器,启动基于cordic原理的信号发生器发送余弦信号到I路上,正弦信号到Q路上,发射混频器后,经过一个放大器后环回到接收的放大器上,然后经过接收混频器,再经过模拟基带电路,到达模数转换器ADC。在ADC后,通过SFT处理,可以监测在此调节基础上的image信号最小值或者sig信号的最大值,记录此时对应的放大器增益作为模拟域增益放大器的增益值,但是增益放大器有精度问题,例如增益放大器可能只有0.25db,进一步的增益或者幅度校准需要在数字域进行,数字域进行进一步的更精确的遍历或者局部遍历,得到最终的image信号最小值或者sig信号的最大值,记录这个时候的数字域增益。
在上述各个监测过程中,需要监测image信号最小值或者sig信号的最大值,为了更加精确的对其进行监测,作为一种其表示量的可选方式,image信 号相对应的最小值,包括:
利用I sft_image 2+Q sft_image 2,或者
Figure PCTCN2018125259-appb-000003
或者|I sft_image|,或者|Q sft_image|,计算最小值,作为所述image信号相对应的最小值的评估标准,其中I sft_image为I路中image信号经过SFT规则处理得到的结果,Q sft_image为Q路中image信号经过SFT规则处理得到的结果;
sig信号相对应的最大值,包括:
利用I sft_sig 2+Q sft_sig 2,或者
Figure PCTCN2018125259-appb-000004
或者|I sft_sig|,或者|Q sft_sig|,计算最大值,作为所述sig信号相对应的最大值的评估标准,其中I sft_sig为I路中sig信号经过SFT规则处理得到的结果,Q sft_sig为Q路中sig信号经过SFT规则处理得到的结果。
需要说明的是,上述表示量的形式并不唯一,只是作为几种可选方式列出,还可以有其他不同的变形,具体可以根据实际需求进行设定,例如,增添参数或倍数值等。
104、根据确定的相位对消值和幅度对消值,对待校准信号对应的image信号进行校准。
例如,按照上述确定的相位对消值和幅度对消值,对待校准信号对应的image信号的幅度和相位进行补偿调整,以抵消IQ两路不平衡的影响。
为了说明步骤104具体实施过程,作为一种可选方式,步骤104具体可以包括:参照步骤103中得到的最佳相位值,对待校准信号对应的image信号的相位进行校准;及参照步骤103中得到的模拟域增益放大器的增益值和数字域增益值,对待校准信号对应的image信号的幅度进行校准。
模拟域增益放大器的增益值包含IQ两路分别对应的模拟域增益放大器的增益值,相应的,参照模拟域增益放大器的增益值和数字域增益值,对待校准信号对应的image信号的幅度进行校准的步骤,具体可以包括:将I路对应的模拟域增益放大器的增益值配置到I路的模拟域增益放大器上;及将Q路对应的模拟域增益放大器的增益值配置到Q路的模拟域增益放大器上;及以数字域增益值为参数,利用预设公式,对待校准信号对应的image信号进行 数字域的幅度补偿。对于本实施例,通过这种利用模拟域增益放大器和数字域分别进行幅度补偿的方式,考虑的因素更加全面,可以实现高精度的image信号校正和对消。
其中预设公式可以根据实际需求进行设定。例如,以信号发生器在I路发出余弦信号并在Q路发出正弦信号为例,依据上述步骤确定得到需要进行补偿的最佳相位,标记为phase offset,IQ两路对应的模拟域增益放大器的增益值分别为gain I-ana-offset和gain Q-ana-offset,IQ两路的数字域增益值分别为gain I-digital-offset,gain Q-digital-offset,假设需要发送的I路数据为I tx,需要发送的Q路数据为Q tx
(1)模拟域补偿
将gain I-ana-offset配置到I路的模拟域增益放大器上;
将gain Q-ana-offset配置到Q路的模拟域增益放大器上。
(2)数字域补偿
利用下述公式
I calibrated=gain I-digital-offset*I tx*cos(phase offset)+gain I-digital-offset*Q tx*sin(phase offset)对I路数字域增益进行补偿,以及利用公式Q calibrated=gain Q-digital-offset*Q tx对Q路数字域增益进行补偿。通过这两个公式可以精确对IQ两路数字域增益进行补偿。
由此,从数字基带出来的数据经过这样的数字域相位和幅度的校准,以及模拟域增益放大器的增益校准后,就可以得到最小的image信号了。
需要说明的是,上述各个公式并不是实现本申请的唯一公式,仅作为实施例的一种实现方式。技术人员可以根据业务需要对公式做适当变形,依然落在本申请的范围之内,例如增添参数或倍数值等。
本申请实施例综合考虑了目前现有技术理论及实现方面的缺陷,针对射频部分混频后产生的image信号进行了专门的理论分析,并结合基于cordic原理的信号发生器对待校准信号进行精确的幅度和相位控制,将ADC和DAC提到较高的时钟速率(如160M等)来进一步提高校准的精度,同时将image信号校准区分为相位校准和幅度校准,在幅度校准方面又分为模拟校准和数 字校准。通过对幅度和相位的不断调整来找到image信号的最小值。在image信号估计方面,采用可变长的DFT(本文称作SFT)来在不同的信噪比下提高image信号估计的准确性,并可以用来更精确的更小刻度的来估计接收到的频率分量。本申请实施例可以实现对image信号的精确估计,可以得到精确的image信号最小值,可以得到image信号精确的相位,模拟增益补偿值和数字增益补偿值,从而实现高精度的image信号校正和对消。
进一步的,作为上述实施例具体实施方式的细化和扩展,为了说明上述实施方式的可行性,下面具体进行合理的公式推导:
首先进行混频公式推导:
发送方向:
假设基带数字I路的幅度为a i_tx_bb,基带模拟部分(混频器前)的幅度为a i_tx_abb,发送mixer的幅度为a i_tx_mixer;基带的相位为θ itx,mixer的相位为β itx
假设基带数字Q路的幅度为a i_tx_bb,基带模拟部分(混频器前)的幅度为a i_tx_abb,发送mixer的幅度为a i_tx_mixer;基带的相位为θ qtx,mixer的相位为β qtx
假设发送方向mixer合路后的信号到达接收方向的mixer的相位延迟为τ;
接收方向:
假设接收I路mixer的幅度为b i_rx_mixer,mixer的相位为β i_rx,;
假设接收Q路mixer的幅度为b q_rx_mixer,mixer的相位为β q_rx,;
假设基于cordic原理的信号发生器发出的基带频率为ω 0,发射LO本振的频率为ω LO,接收本振的频率为ω LOfixed_offset
I路的混频信号TX i=a i_tx_bb*a i_tx_abb*cos(2*pi*ω 0*t+θ itx)*a i_tx_mixer*cos(2*pi*ω LO*t+β itx)
Q路的混频信号
Figure PCTCN2018125259-appb-000005
Figure PCTCN2018125259-appb-000006
然后Image信号公式推导:
I路的混频信号和Q路的混频信号合路后TX=TX i+TX q
TX i=a i_tx_bb*a i_tx_abb*cos(2*pi*ω 0*t+θ itx)*a i_tx_mixer*cos(2*pi*ω LO*t+ β itx)
=0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*{cos[2*pi*(ω LO0)*t+(β itxitx)]+cos[2*pi*(ω LO0)*t+(β itxitx)]}   (公式1)
TX q=a q_tx_bb*a q_tx_abb*sin(2*pi*ω 0*t+θ qtx)*a q_tx_mixer*sin(2*pi*ω LO*t+β qtx)
=0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*{-cos[2*pi*(ω LO0)*t+(β qtxqtx)]+cos[2*pi*(ω LO0)*t+(β qtxqtx)]}   (公式2)
TX1={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}+
{0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}  (公式3)
由此导出Image信号为:
Image1={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}   (公式4)
导出Sig信号为:
Sig1={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}  (公式4-1)
如果TX2=TX i-TX q,则image信号为:
Image2={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}   (公式5)
Sig2={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]。
接收混频器信号公式推导:
I路接收混频器理想情况下为:
LOfixed_offset)*t+β i_rx)  (公式6)
实际过程中,I路接收混频器会产生一个自己的镜像信号;
mixer irx_image=b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β i_rx)(公式7)
Q路接收混频器理想情况下为:
mixer qrx=b q_rx_mixer*sin[2*pi*(ω LOfixed_offset)*t+β q_rx)(公式8)
实际过程中,Q路接收混频器会产生一个自己的镜像信号;
mixer qrx=b q_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β q_rx)(公式9)
备注:mixer irx和mixer qrx也可以写成如下形成,推导类似;
mixer irx=b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β i_rx)
mixer qrx=b q_rx_mixer*sin[2*pi*(ω LOfixed_offset)*t+β q_rx)。
这样整个系统发射和接收一共有四种组合(A、B、C、D):
A:TX1=TX i+TX q
RX’s LO Freqency=ω LOfixed_offset
B:TX1=TX i+TX q
RX’s LO Freqency=ω LOfixed_offset
C:TX2=TX i-TX q
RX’s LO Freqency=ω LOfixed_offset
D:TX2=TX i-TX q
RX’s LO Freqency=ω LOfixed_offset
这四种的镜像分析类似,不做一一列举,现只以组合A来分析:
Rx mixer下image1混频mixer irx产生的RX1 i信号:
RX1 i=image1*mixer irx={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2* pi*(ω LO0)*t+(β qtxqtx)]}*b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β irx)
经过低通滤波,到达基带接收的I路信号为:
Figure PCTCN2018125259-appb-000007
(此处简化了基带接收对信号的包括幅度和相位的改变,假定没有任何变化,后公式类似)(公式10)
Rx mixer下image1混频mixer irx_image产生的RX2 i信号:
RX2 i=image1*mixer irx_image={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β irx)
经过低通滤波,到达基带接收的I路信号为:
RX2 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β itxitx))–0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β qtxqtx))  公式(11)
Rx mixer下sig1混频mixer irx产生的RX3 i信号:
RX3 i=sig1*mixer irx={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β irx)
经过低通滤波,到达基带接收的I路信号为:
RX3 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b i_rx_mixer*cos(2*pi*(ω fixed_offset0)*t+β irx-(β itxitx))+0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*cos(2*pi*(ω fixed_offset0)* t+β irx-(β qtxqtx))  公式(12)
Rx mixer下sig1混频mixer irx_image产生的RX4 i信号:
RX4 i=sig1*mixer irx=0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b i_rx_mixer*cos[2*pi*(ω LOfixed_offset)*t+β irx)
经过低通滤波,到达基带接收的I路信号为:
RX4 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β itxitx))+0.25**a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β qtxqtx))    公式(13)
Rx mixer下image1混频mixer irx产生的RX1 q信号:
RX1 q=image1*mixer qrx={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b q_rx_mixer*sin[(ω LOfixed_offset)*t+β qrx)
经过低通滤波,到达基带接收的I路信号为:
RX1 q=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixer*sin(2*pi*(ω fixed_offset0)*t+β qrx-(β itxitx))–0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b q_rx_mixer*sin(2*pi*(ω fixed_offset0)*t+β qrx-(β qtxqtx))
(此处简化了基带接收对信号的包括幅度和相位的改变,假定没有任何变化,后公式类似)  (公式14)
Rx mixer下image1混频mixer irx_image产生的RX2 q信号:
RX2 q=image1*mixer irx_image={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[2*pi*(ω LO0)*t+(β itxitx)]-0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b q_rx_mixer*sin[(ω LOfixed_offset)*t+β qrx)
经过低通滤波,到达基带接收的I路信号为:
RX2 q=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β itxitx))–0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β qtxqtx))    公式(15)
Rx mixer下sig1混频mixer irx产生的RX3 q信号:
RX3 q=sig1*mixer qrx={0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b q_rx_mixer*sin[(ω LOfixed_offset)*t+β qrx)
经过低通滤波,到达基带接收的I路信号为:
RX3 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixersin(2*pi*(ω fixed_offset+ω0)*t+β qrx-(β itxitx))+0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b q_rx_mixer*sin(2*pi*(ω fixed_offset0)*t+β qrx-(β qtxqtx))  公式(16)
Rx mixer下sig1混频mixer irx_image产生的RX4 q信号:
RX4 q=sig1*mixer irx=0.5*a i_tx_bb*a i_tx_abb*a i_tx_mixer*cos[(ω LO0)*t+(β itxitx)]+0.5*a q_tx_bb*a q_tx_abb*a q_tx_mixer*cos[2*pi*(ω LO0)*t+(β qtxqtx)]}*b q_rx_mixer*sin[(ω LOfixed_offset)*t+β qrx)
经过低通滤波,到达基带接收的I路信号为:
RX4 q=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β itxitx))+0.25**a q_tx_bb*a q_tx_abb*a q_tx_mixer*b q_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β qtxqtx))  公式(17)
根据上述这些公式,确定需要监测的image信号的公式:
公式(10):
RX1 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b i_rx_mixer*cos(2*pi*(ω fixed_offset0)*t+β irx-(β itxitx))–0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*cos(2*pi*(ω fixed_offset0)*t+ β irx-(β qtxqtx))
公式(13):
RX4 i=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β itxitx))+0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b i_rx_mixer*cos(2*pi*(-ω fixed_offset0)*t+β irx-(β qtxqtx))
公式(14):
RX1 q=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixer*sin(2*pi*(ω fixed_offset0)*t+β qrx-(β itxitx))–0.25*a q_tx_bb*a q_tx_abb*a q_tx_mixer*b q_rx_mixer*sin(2*pi*(ω fixed_offset0)*t+β qrx-(β qtxqtx))
公式(17):
RX4 q=0.25*a i_tx_bb*a i_tx_abb*a i_tx_mixer*b q_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β itxitx))+0.25**a q_tx_bb*a q_tx_abb*a q_tx_mixer*b q_rx_mixer*sin(2*pi*(-ω fixed_offset0)*t+β qrx-(β qtxqtx))
TX1 image1信号频率为ω LO0,sig1信号频率为ω LOfixed_offset,接收LO的频率为ω LOfixed_offset,接收LO的镜像频率为ω LOfixed_offset
image1信号频率为ω LO0和ω LOfixed_offset产生需要观察的接收镜像频率|ω fixed_offset0|,sig1信号频率为ω LOfixed_offset和LO的镜像频率为ω LOfixed_offset产生需要观察的接收镜像频率|ω fixed_offset0|,这两个信号叠加在一起。
RX_i=RX1_i+RX4_i;此为实际需要监测的接收I路上的image信号表示量;
RX_q=RX1_q+RX4_q;此为实际需要监测的接收Q路上的image信号表示量。
这里需要监测RX_i以及RX_q,就可以评估出最小的image信号,进而得到需要对消的幅度和相位。在image信号足够小时,根据图1所示方法就能够精确的计算出相位和幅度的对消值进行image信号校准。
为了更好的帮助理解本实施例的实施过程,如图2所示,给出相应的基于IQ两路不平衡产生的信号校准系统架构,分为左右两个部分,左边包括基于cordic原理的信号发生器,SFT处理模块(SFT),模拟域增益补偿模块(Analog Gain),数字域增益补偿模块(Digital Gain),相位补偿模块(PHASE)等几个主要模块,右边是典型的射频链路部分,需要在放射放大器(amplify)后边将发射信号通过开关环回到信号接收方向,配合image信号校准。射频链路部分包括数模转换器(DAC),模数转换器(ADC),放大器,低通滤波器(Lowpass)和本振(LO)及混频器(mixer)。
通过上述各个模块之间的协同操作,在IQ两路不平衡的情况下,可以实现高精度的image信号校正和对消。
需要说明的是,上述各个公式并不是实现本申请的唯一公式,仅作为实施例的一种实现方式。技术人员可以根据业务需要对公式做适当变形,依然落在本申请的范围之内,例如增添参数或倍数值等。
进一步的,作为图1方法的具体实现,本申请实施例提供了一种基于IQ两路不平衡产生的信号校准装置,如图3所示,该装置包括:配置单元21、处理单元22、调整单元23、校准单元24。
配置单元21,可以设置为当接收到待校准信号时,将待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,余弦信号和正弦信号在经过发射放大器后环回到信号接收方向;
处理单元22,可以设置为将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
调整单元23,可以设置为依据处理结果通过调节信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定image信号适合的相位对消值和幅度对消值;
校准单元24,可以设置为根据相位对消值和幅度对消值,对待校准信号对应的image信号进行校准。
在具体的应用场景中,幅度对消值可以包含模拟域的增益放大器的增益 值,和数字域相应的增益值。
相应的,调整单元23,具体可以设置为依据处理结果通过调节信号发生器进行相位调整,并通过进行相位局部遍历或全局遍历,监测image信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的image信号需要补偿的最佳相位值,作为image信号的相位对消值;依据处理结果通过调节I路或Q路模拟域的增益放大器进行幅度调整,监测在增益放大器调节基础上的image信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的模拟域增益放大器的增益值;在数字域中通过进行幅度局部遍历或全局遍历,监测image信号相对应的全局最小值或sig信号相对应的全局最大值,以便记录此时对应的数字域增益值。
在具体的应用场景中,校准单元24,具体可以设置为参照最佳相位值,对待校准信号对应的image信号的相位进行校准;及参照模拟域增益放大器的增益值和数字域增益值,对待校准信号对应的image信号的幅度进行校准。
在具体的应用场景中,模拟域增益放大器的增益值包含IQ两路分别对应的模拟域增益放大器的增益值,相应的,校准模块24,具体还可以设置为将I路对应的模拟域增益放大器的增益值配置到I路的模拟域增益放大器上;及将Q路对应的模拟域增益放大器的增益值配置到Q路的模拟域增益放大器上;及以数字域增益值为参数,利用预设公式,对待校准信号对应的image信号进行数字域的幅度补偿。
在具体的应用场景中,校准模块24,具体还可以设置为若信号发生器在I路发出余弦信号并在Q路发出正弦信号,则利用公式
I calibrated=gain I-digital-offset*I tx*cos(phase offset)+gain I-digital-offset*Q tx*sin(phase offset)对I路数字域增益进行补偿;
以及利用公式Q calibrated=gain Q-digital-offset*Q tx对Q路数字域增益进行补偿,其中,I tx为需要发送的I路数据,Q tx为需要发送的Q路数据,phase offset为需要补偿的最佳相位值,gain I-digital-offset为I路的数字域增益值,gain Q-digital-offset为Q路的数字域增益值,I calibrated为需要对I路数字域增益进行补偿的值,Q calibrated为需要对Q路数字域增益进行补偿的值。通过这两个公式可以精确 对IQ两路数字域增益进行补偿。
在具体的应用场景中,信号发生器可以基于cordic原理产生正弦和余弦波,或将正弦和余弦波的数据点存储到随机存储器RAM,以便从RAM中利用波形发生器发送出正弦和余弦波的波形,预设傅里叶变换规则为可变长的离散傅里叶变换SFT规则。
在具体的应用场景中,调整单元,具体还设置为利用I sft_image 2+Q sft_image 2,或者
Figure PCTCN2018125259-appb-000008
或者|I sft_image|,或者|Q sft_image|,计算最小值,作为image信号相对应的最小值的评估标准,其中I sft_image为I路中image信号经过SFT规则处理得到的结果,Q sft_image为Q路中image信号经过SFT规则处理得到的结果;利用I sft_sig 2+Q sft_sig 2,或者
Figure PCTCN2018125259-appb-000009
或者|I sft_sig|,或者|Q sft_sig|,计算最大值,作为sig信号相对应的最大值的评估标准,其中I sft_sig为I路中sig信号经过SFT规则处理得到的结果,Q sft_sig为Q路中sig信号经过SFT规则处理得到的结果。
需要说明的是,本申请实施例提供的一种基于IQ两路不平衡产生的信号校准装置所涉及各功能单元的其他相应描述,可以参考图1中的对应描述,在此不再赘述。
基于上述如图1所示方法,相应的,本申请实施例还提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述如图1所示的基于IQ两路不平衡产生的信号校准方法。
基于上述如图1至图2所示的实施例,为了实现上述目的,本申请实施例还提供了一种基于IQ两路不平衡产生的信号校准的实体设备,该实体设备包括存储介质和处理器;存储介质,设置为存储计算机程序;处理器,设置为执行计算机程序以实现上述如图1至图2所示的基于IQ两路不平衡产生的信号校准方法。
通过应用本申请的技术方案,针对射频部分混频后产生的image信号进行了专门的理论分析,并结合基于cordic原理的信号发生器对待校准信号进行精确的幅度和相位控制,将ADC和DAC提到较高的时钟速率(如160M 等)来进一步提高校准的精度,同时将image信号校准区分为相位校准和幅度校准,在幅度校准方面又分为模拟校准和数字校准。通过对幅度和相位的不断调整来找到image信号的最小值。在image信号估计方面,采用可变长的SFT来在不同的信噪比下提高image信号估计的准确性,并可以用来更精确的更小刻度的来估计接收到的频率分量。本申请实施例可以实现对image信号的精确估计,可以得到精确的image信号最小值,可以得到image信号精确的相位,模拟增益补偿值和数字增益补偿值,从而实现高精度的image信号校正和对消。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施场景的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本申请所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本申请序号仅仅为了描述,不代表实施场景的优劣。
以上公开的仅为本申请的几个具体实施场景,但是,本申请并非局限于此,任何本领域的技术人员能思之的变化都应落入本申请的保护范围。

Claims (20)

  1. 一种基于IQ两路不平衡产生的信号校准方法,其中,包括:
    当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
    将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
    依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;及
    根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
  2. 根据权利要求1所述的方法,其中,所述幅度对消值包含模拟域的增益放大器的增益值,和数字域相应的增益值,所述依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值,包括:
    依据处理结果通过调节所述信号发生器进行相位调整,并通过进行相位局部遍历或全局遍历,监测镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的镜像信号需要补偿的最佳相位值,作为镜像信号的相位对消值;
    依据处理结果通过调节I路或Q路模拟域的增益放大器进行幅度调整,监测在所述增益放大器调节基础上的镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的模拟域增益放大器的增益值;及
    在数字域中通过进行幅度局部遍历或全局遍历,监测镜像信号相对应的全局最小值或sig信号相对应的全局最大值,以便记录此时对应的数字域增益值。
  3. 根据权利要求2所述的方法,其中,根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准,包括:
    参照所述最佳相位值,对所述待校准信号对应的镜像信号的相位进行校准;及
    参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准。
  4. 根据权利要求3所述的方法,其中,所述模拟域增益放大器的增益值包含IQ两路分别对应的模拟域增益放大器的增益值,参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准,包括:
    将所述I路对应的模拟域增益放大器的增益值配置到I路的模拟域增益放大器上;
    将所述Q路对应的模拟域增益放大器的增益值配置到Q路的模拟域增益放大器上;及
    以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿。
  5. 根据权利要求4所述的方法,其中,若所述信号发生器在I路发出余弦信号并在Q路发出正弦信号,则以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿,包括:
    利用公式I calibrated=gain I-digital-offset*I tx*cos(phase offset)+gain I-digital-offset*Q tx*sin(phase offset)对I路数字域增益进行补偿;及利用公式Q calibrated=gain Q-digital-offset*Q tx对Q路数字域增益进行补偿;
    其中,I tx为需要发送的I路数据,Q tx为需要发送的Q路数据,phase offset为需要补偿的最佳相位值,gain I-digital-offset为I路的数字域增益值,gain Q-digital-offset为Q路的数字域增益值,I calibrated为需要对I路数字域增益进行补偿的值,Q calibrated为需要对Q路数字域增益进行补偿的值。
  6. 根据权利要求4所述的方法,其中,所述信号发生器基于cordic原理产生正弦和余弦波,或将正弦和余弦波的数据点存储到随机存储器RAM,以便从RAM中利用波形发生器发送出正弦和余弦波的波形;所述预设傅里叶变换规则为可变长的离散傅里叶变换SFT规则。
  7. 根据权利要求6所述的方法,其中,所述镜像信号相对应的最小值,包括:
    利用I sft_image 2+Q sft_image 2,或者
    Figure PCTCN2018125259-appb-100001
    或者|I sft_image|,或者|Q sft_image|,计算最小值,作为所述镜像信号相对应的最小值的评估标准,其中I sft_image为I路中镜像信号经过SFT规则处理得到的结果,Q sft_image为Q路中镜像信号经过SFT规则处理得到的结果;
    所述sig信号相对应的最大值,包括:
    利用I sft_sig 2+Q sft_sig 2,或者
    Figure PCTCN2018125259-appb-100002
    或者|I sft_sig|,或者|Q sft_sig|,计算最大值,作为所述sig信号相对应的最大值的评估标准,其中I sft_sig为I路中sig信号经过SFT规则处理得到的结果,Q sft_sig为Q路中sig信号经过SFT规则处理得到的结果。
  8. 一种基于IQ两路不平衡产生的信号校准装置,其中,包括:
    配置单元,设置为当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
    处理单元,设置为将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
    调整单元,设置为依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;及
    校准单元,设置为根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
  9. 一种存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现基于IQ两路不平衡产生的信号校准方法,所述基于IQ两路不平衡产生的信号校准方法包括:
    当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
    将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
    依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;及
    根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
  10. 根据权利要求9所述的存储介质,其中,所述幅度对消值包含模拟域的增益放大器的增益值,和数字域相应的增益值,所述依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值,包括:
    依据处理结果通过调节所述信号发生器进行相位调整,并通过进行相位局部遍历或全局遍历,监测镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的镜像信号需要补偿的最佳相位值,作为镜像信号的相位对消值;
    依据处理结果通过调节I路或Q路模拟域的增益放大器进行幅度调整,监测在所述增益放大器调节基础上的镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的模拟域增益放大器的增益值;及
    在数字域中通过进行幅度局部遍历或全局遍历,监测镜像信号相对应的全局最小值或sig信号相对应的全局最大值,以便记录此时对应的数字域增益值。
  11. 根据权利要求10所述的存储介质,其中,根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准,包括:
    参照所述最佳相位值,对所述待校准信号对应的镜像信号的相位进行校准;及
    参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准。
  12. 根据权利要求11所述的存储介质,其中,所述模拟域增益放大器的增益值包含IQ两路分别对应的模拟域增益放大器的增益值,参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准,包括:
    将所述I路对应的模拟域增益放大器的增益值配置到I路的模拟域增益放大器上;
    将所述Q路对应的模拟域增益放大器的增益值配置到Q路的模拟域增益放大器上;及
    以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿。
  13. 根据权利要求12所述的存储介质,其中,若所述信号发生器在I路发出余弦信号并在Q路发出正弦信号,则以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿,包括:
    利用公式I calibrated=gain I-digital-offset*I tx*cos(phase offset)+gain I-digital-offset*Q tx*sin(phase offset)对I路数字域增益进行补偿;及利用公式Q calibrated=gain Q-digital-offset*Q tx对Q路数字域增益进行补偿;
    其中,I tx为需要发送的I路数据,Q tx为需要发送的Q路数据,phase offset为需要补偿的最佳相位值,gain I-digital-offset为I路的数字域增益值,gain Q-digital-offset为Q路的数字域增益值,I calibrated为需要对I路数字域增益进行补偿的值,Q calibrated为需要对Q路数字域增益进行补偿的值。
  14. 根据权利要求12所述的存储介质,其中,所述信号发生器基于cordic原理产生正弦和余弦波,或将正弦和余弦波的数据点存储到随机存储器RAM,以便从RAM中利用波形发生器发送出正弦和余弦波的波形;所述预设傅里叶变换规则为可变长的离散傅里叶变换SFT规则。
  15. 根据权利要求14所述的存储介质,其中,所述镜像信号相对应的最小值,包括:
    利用I sft_image 2+Q sft_image 2,或者
    Figure PCTCN2018125259-appb-100003
    或者|I sft_image|,或者|Q sft_image|,计算最小值,作为所述镜像信号相对应的最小值的评估标准,其中I sft_image为I路中镜像信号经过SFT规则处理得到的结果,Q sft_image为Q路中镜像信号经过SFT规则处理得到的结果;
    所述sig信号相对应的最大值,包括:
    利用I sft_sig 2+Q sft_sig 2,或者
    Figure PCTCN2018125259-appb-100004
    或者|I sft_sig|,或者|Q sft_sig|,计算最大值,作为所述sig信号相对应的最大值的评估标准,其中I sft_sig为I路中sig信号经过SFT规则处理得到的结果,Q sft_sig为Q路中sig 信号经过SFT规则处理得到的结果。
  16. 一种基于IQ两路不平衡产生的信号校准设备,包括存储介质、处理器及存储在存储介质上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现基于IQ两路不平衡产生的信号校准方法,所述基于IQ两路不平衡产生的信号校准方法包括:
    当接收到待校准信号时,将所述待校准信号通过可配置信号幅度和相位的信号发生器发出余弦信号和正弦信号,并分别配置在IQ两路上进行传递,其中每一路对应一种信号,所述余弦信号和所述正弦信号在经过发射放大器后环回到信号接收方向;
    将信号接收方向上降频变频器得到的信号利用预设傅里叶变换规则进行处理;
    依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值;及
    根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准。
  17. 根据权利要求16所述的基于IQ两路不平衡产生的信号校准设备,其中,所述幅度对消值包含模拟域的增益放大器的增益值,和数字域相应的增益值,所述依据处理结果通过调节所述信号发生器、IQ两路模拟域的增益放大器和相应数字域调节分别进行相位调整和幅度调整,以便确定镜像信号适合的相位对消值和幅度对消值,包括:
    依据处理结果通过调节所述信号发生器进行相位调整,并通过进行相位局部遍历或全局遍历,监测镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的镜像信号需要补偿的最佳相位值,作为镜像信号的相位对消值;
    依据处理结果通过调节I路或Q路模拟域的增益放大器进行幅度调整,监测在所述增益放大器调节基础上的镜像信号相对应的最小值或sig信号相对应的最大值,以便记录此时对应的模拟域增益放大器的增益值;及
    在数字域中通过进行幅度局部遍历或全局遍历,监测镜像信号相对应的全局最小值或sig信号相对应的全局最大值,以便记录此时对应的数字域增益 值。
  18. 根据权利要求17所述的基于IQ两路不平衡产生的信号校准设备,其中,根据所述相位对消值和幅度对消值,对所述待校准信号对应的镜像信号进行校准,包括:
    参照所述最佳相位值,对所述待校准信号对应的镜像信号的相位进行校准;及
    参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准。
  19. 根据权利要求18所述的基于IQ两路不平衡产生的信号校准设备,其中,所述模拟域增益放大器的增益值包含IQ两路分别对应的模拟域增益放大器的增益值,参照所述模拟域增益放大器的增益值和所述数字域增益值,对所述待校准信号对应的镜像信号的幅度进行校准,包括:
    将所述I路对应的模拟域增益放大器的增益值配置到I路的模拟域增益放大器上;
    将所述Q路对应的模拟域增益放大器的增益值配置到Q路的模拟域增益放大器上;及
    以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿。
  20. 根据权利要求19所述的基于IQ两路不平衡产生的信号校准设备,其中,若所述信号发生器在I路发出余弦信号并在Q路发出正弦信号,则以所述数字域增益值为参数,利用预设公式,对所述待校准信号对应的镜像信号进行数字域的幅度补偿,包括:
    利用公式I calibrated=gain I-digital-offset*I tx*cos(phase offset)+gain I-digital-offset*Q tx*sin(phase offset)对I路数字域增益进行补偿;及利用公式Q calibrated=gain Q-digital-offset*Q tx对Q路数字域增益进行补偿;
    其中,I tx为需要发送的I路数据,Q tx为需要发送的Q路数据,phase offset为需要补偿的最佳相位值,gain I-digital-offset为I路的数字域增益值,gain Q-digital-offset为Q路的数字域增益值,I calibrated为需要对I路数字域增益进行补偿的值,Q calibrated为需要对Q路数字域增益进行补偿的值;且/或
    所述信号发生器基于cordic原理产生正弦和余弦波,或将正弦和余弦波 的数据点存储到随机存储器RAM,以便从RAM中利用波形发生器发送出正弦和余弦波的波形;所述预设傅里叶变换规则为可变长的离散傅里叶变换SFT规则。
PCT/CN2018/125259 2018-01-12 2018-12-29 基于iq两路不平衡产生的信号校准方法、装置及设备 WO2019137254A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,437 US11082082B2 (en) 2018-01-12 2018-12-29 Signal calibration method, and device generated based on imbalance of I path and Q path, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810033342.1A CN108259404B (zh) 2018-01-12 2018-01-12 基于iq两路不平衡产生的信号校准方法、装置及设备
CN201810033342.1 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019137254A1 true WO2019137254A1 (zh) 2019-07-18

Family

ID=62727064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125259 WO2019137254A1 (zh) 2018-01-12 2018-12-29 基于iq两路不平衡产生的信号校准方法、装置及设备

Country Status (3)

Country Link
US (1) US11082082B2 (zh)
CN (1) CN108259404B (zh)
WO (1) WO2019137254A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259404B (zh) * 2018-01-12 2020-01-17 深圳锐越微技术有限公司 基于iq两路不平衡产生的信号校准方法、装置及设备
EP3754360A1 (en) * 2019-06-21 2020-12-23 NXP USA, Inc. Built in self test transmitter phase calibration
US11212157B1 (en) * 2020-06-26 2021-12-28 Rohde & Schwarz Gmbh & Co. Kg Calibration method and calibration system
CN113132028B (zh) * 2021-04-25 2022-07-15 成都天奥测控技术有限公司 发端iq矫正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025666A (zh) * 2010-12-15 2011-04-20 中兴通讯股份有限公司 一种基站发信机设备实现iq信号校准的方法及装置
EP2693633A1 (en) * 2012-08-03 2014-02-05 Broadcom Corporation Calibration for power amplifier predistortion
CN105490759A (zh) * 2014-10-13 2016-04-13 展讯通信(上海)有限公司 Iq信号校准方法及装置
CN105490973A (zh) * 2014-10-13 2016-04-13 展讯通信(上海)有限公司 Iq信号校准方法及装置
CN108259404A (zh) * 2018-01-12 2018-07-06 深圳锐越微技术有限公司 基于iq两路不平衡产生的信号校准方法、装置及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340883B1 (en) * 1998-09-03 2002-01-22 Sony/Tektronik Corporation Wide band IQ splitting apparatus and calibration method therefor with balanced amplitude and phase between I and Q
US20040165678A1 (en) * 2002-08-27 2004-08-26 Zivi Nadiri Method for measuring and compensating gain and phase imbalances in quadrature modulators
CN1984101B (zh) * 2005-12-13 2010-04-21 联芯科技有限公司 一种tdd系统中收信机i/q校准方法以及收发信机平台
US8290458B2 (en) * 2008-06-30 2012-10-16 Entropic Communications, Inc. System and method for IQ imbalance estimation using loopback with frequency offset
US8374297B2 (en) * 2008-09-15 2013-02-12 Intel Corporation Circuit, controller and methods for dynamic estimation and cancellation of phase and gain imbalances in quadrature signal paths of a receiver
CN101540618A (zh) * 2009-04-27 2009-09-23 电子科技大学 高线性linc发射机
EP2894823B1 (en) * 2014-01-10 2016-04-06 Nxp B.V. Coefficient estimation for digital IQ calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025666A (zh) * 2010-12-15 2011-04-20 中兴通讯股份有限公司 一种基站发信机设备实现iq信号校准的方法及装置
EP2693633A1 (en) * 2012-08-03 2014-02-05 Broadcom Corporation Calibration for power amplifier predistortion
CN105490759A (zh) * 2014-10-13 2016-04-13 展讯通信(上海)有限公司 Iq信号校准方法及装置
CN105490973A (zh) * 2014-10-13 2016-04-13 展讯通信(上海)有限公司 Iq信号校准方法及装置
CN108259404A (zh) * 2018-01-12 2018-07-06 深圳锐越微技术有限公司 基于iq两路不平衡产生的信号校准方法、装置及设备

Also Published As

Publication number Publication date
CN108259404A (zh) 2018-07-06
US11082082B2 (en) 2021-08-03
US20200373964A1 (en) 2020-11-26
CN108259404B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2019137254A1 (zh) 基于iq两路不平衡产生的信号校准方法、装置及设备
US9621337B2 (en) Adaptive I/O mismatch calibration
CN103905128B (zh) 具有绝对延迟量和方向估计的信号延迟估计器及方法
US8711905B2 (en) Calibration of quadrature imbalances using wideband signals
US8478222B2 (en) I/Q calibration for walking-IF architectures
WO2019137253A1 (zh) 接收机iq两路不平衡的补偿方法、装置及设备
US9160584B1 (en) Spur cancellation using auxiliary synthesizer
US8295845B1 (en) Transceiver I/Q mismatch calibration
US20090175398A1 (en) I/q imbalance estimation and correction in a communication system
WO2015139474A1 (zh) 一种校准射频收发机的系统、方法和计算机存储介质
CN109936415A (zh) I/q不平衡校准装置、方法及使用其装置的发射机系统
US8279975B2 (en) Method to suppress undesired sidebands in a receiver
KR20190143035A (ko) 무선 통신 시스템에서 동위상 성분 및 직교위상 성분의 부정합 보정을 위한 방법 및 장치
CN202583450U (zh) 新型的超短波校正信号源
KR20170066246A (ko) 트랜시버 내 국부 발진기의 위상 동기화를 위한 장치 및 방법
Chang et al. Calibration techniques for fully parallel 24× 24 MIMO sounder
TWI657671B (zh) 一種i/q不平衡校準裝置
TWI657670B (zh) 一種i/q不平衡校準裝置
WO2024032538A1 (zh) 校准方法、信息传输方法、装置及通信设备
KR102001739B1 (ko) I/q 불균형 교정 장치, 해당 교정 장치를 이용한 방법 및 송신기 시스템
US20230269125A1 (en) Electronic device and operating method to compensate for in-phase/quadrature imbalance
EP3503440A1 (en) I/q imbalance calibration apparatus, method and transmitter system using the same
EP3503488A1 (en) I/q imbalance calibration apparatus, method and transmitter system using the same
US20180269995A1 (en) Phase Alignment Among Multiple Transmitters
GB2406984A (en) Method and arrangement for I-Q balancing and radio receiver incorporating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18899438

Country of ref document: EP

Kind code of ref document: A1