WO2019137228A1 - 信息指示方法、信息确定方法、终端及基站 - Google Patents

信息指示方法、信息确定方法、终端及基站 Download PDF

Info

Publication number
WO2019137228A1
WO2019137228A1 PCT/CN2018/124271 CN2018124271W WO2019137228A1 WO 2019137228 A1 WO2019137228 A1 WO 2019137228A1 CN 2018124271 W CN2018124271 W CN 2018124271W WO 2019137228 A1 WO2019137228 A1 WO 2019137228A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
value
rmsi
base station
grid
Prior art date
Application number
PCT/CN2018/124271
Other languages
English (en)
French (fr)
Inventor
达人
赵铮
任斌
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP23157273.6A priority Critical patent/EP4203572A1/en
Priority to KR1020207022693A priority patent/KR102375644B1/ko
Priority to JP2020538632A priority patent/JP7305655B2/ja
Priority to US16/961,625 priority patent/US11425667B2/en
Priority to EP18899354.7A priority patent/EP3726895A4/en
Publication of WO2019137228A1 publication Critical patent/WO2019137228A1/zh
Priority to US17/877,820 priority patent/US11985610B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to an information indication method, an information determination method, a terminal, and a base station.
  • the system synchronization block (SSB) sent from the base station may or may not have associated residual minimum system information (RMSI). If an SSB carries an associated RMSI, it is called a cell-defined cell-defining SSB (CD-SSB). If an SSB does not have an associated RMSI, the SSB is used for radio resource management (RRM) measurements, referred to herein as RRM-SSB.
  • RRM-SSB radio resource management
  • the CD-SSB must be transmitted at a frequency location defined as a sync-raster.
  • the RRM-SSB can be transmitted at a frequency location of a common resource block (CRB) or at a frequency location of a sync-raster. At the same time, the frequency of the sync-raster and the frequency of the CRB overlap at some frequencies.
  • CRB common resource block
  • the UE When a UE attempts to access a certain cell, the UE needs to first search for the CD-SSB at the frequency position of each sync-raster to obtain the RMSI of the access cell. Since the frequency position of the sync-raster overlaps with the frequency of the CRB at some frequency positions, the UE may detect the RRM-SSB (radio resource management SSB) before detecting the CD-SSB.
  • RRM-SSB radio resource management SSB
  • the frequency location of the next sync-raster with the CD-SSB is directly notified to the UE through the RRM-SSB, the time for the UE to search for the CD-SSB one by one will be greatly reduced, but at present, how to utilize the non-cell definition
  • the SSB notifies the UE of the frequency location of the sync-raster where the SSB of the next cell is located has not yet proposed a related scheme.
  • An object of the present disclosure is to provide an information indication method, an information determination method, a terminal, and a base station, which are used to solve the current problem of how to use the non-cell defined SSB to notify the UE that the frequency of the sync-raster of the next cell defined SSB is not present. Problems with related programs.
  • an information indication method which is applied to a base station, and includes:
  • the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB indicating whether the first SSB has the associated remaining minimum system information RMSI, or indicating that the first SSB has no associated remaining minimum system information RMSI and the second SSB Frequency offset information of the synchronization grid;
  • the second SSB refers to an SSB with an associated RMSI.
  • the using the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, indicating whether the first SSB has the associated remaining minimum system information RMSI includes:
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to indicate whether the first SSB has an associated RMSI.
  • the step of using the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, indicating that the first SSB has no associated remaining minimum system information RMSI and frequency offset information of the synchronization grid where the second SSB is located includes:
  • the step of using the value of the physical resource block PRB raster offset PRB-grid-offsets parameter to indicate whether the first SSB has an associated RMSI includes:
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band in which the base station operates.
  • the frequency offset information of the synchronization grid where the second SSB is located is determined by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, including:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • an embodiment of the present disclosure further provides an information determining method, which is applied to a terminal, including:
  • the second SSB refers to an SSB with an associated RMSI.
  • the determining, by using the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, whether the first SSB has the associated remaining minimum system information RMSI includes:
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to determine whether the first SSB has an associated RMSI.
  • the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the frequency offset information of the sync grid Using the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter, determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the step of determining whether the first SSB has an associated RMSI by using a value of a physical resource block PRB raster offset PRB-grid-offsets parameter includes:
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band that is operated by the base station.
  • the frequency offset information of the synchronization grid where the second SSB is located is determined by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, including:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • an embodiment of the present disclosure further provides a base station, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, wherein the processor performs the The program implements the following steps:
  • the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB indicating whether the first SSB has the associated remaining minimum system information RMSI, or indicating that the first SSB has no associated remaining minimum system information RMSI and the second SSB Frequency offset information of the synchronization grid;
  • the second SSB refers to an SSB with an associated RMSI.
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to indicate whether the first SSB has an associated RMSI.
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band that is operated by the base station.
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a program that, when executed by a processor, implements the steps of the information indicating method as described above.
  • an embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, where the processor implements the program The following steps:
  • the second SSB refers to an SSB with an associated RMSI.
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to determine whether the first SSB has an associated RMSI.
  • the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the frequency offset information of the sync grid Using the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter, determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band that is operated by the base station.
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a program which, when executed by a processor, implements the steps of the information determining method as described above.
  • an embodiment of the present disclosure further provides a base station, including:
  • an indication module configured to use the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, to indicate whether the first SSB has the associated remaining minimum system information RMSI, or to indicate that the first SSB has no associated remaining minimum system information RMSI And frequency offset information of the synchronization grid where the second SSB is located;
  • the second SSB refers to an SSB with an associated RMSI.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a determining module configured to determine, by using a predetermined parameter of a physical broadcast channel PBCH in the first system synchronization block SSB, whether the first SSB has an associated remaining minimum system information RMSI, or determine that the first SSB has no associated remaining minimum system information RMSI And frequency offset information of the synchronization grid where the second SSB is located;
  • the second SSB refers to an SSB with an associated RMSI.
  • the predetermined parameter of the physical broadcast channel PBCH in a system synchronization block SSB defined by the non-cell indicates that the SSB has no associated remaining minimum system information RMSI and the next associated RMSI SSB.
  • the frequency offset information of the synchronization grid is located, so that the terminal can quickly acquire the RMSI of the access cell according to the predetermined parameter, and implement the non-cell-defined SSB to notify the UE of the frequency location of the sync-raster where the SSB of the next cell is located. the goal of.
  • FIG. 1 is a flowchart of an information indication method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of an information determining method according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a terminal according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an information indication method, which is applied to a base station, and includes:
  • Step 101 Using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, indicating whether the first SSB has the associated remaining minimum system information RMSI, or indicating that the first SSB has no associated remaining minimum system information RMSI and Frequency offset information of the synchronization grid where the second SSB is located;
  • the second SSB refers to an SSB with an associated RMSI.
  • the first SSB may be associated with an associated RMSI according to a value of a predetermined parameter of the PBCH in the first SSB.
  • the first SSB is a CD-SSB.
  • the BS transmits the RRM-SSB at the same sync-raster frequency position as the CD-SSB;
  • the BS transmits the RRM-SSB at a certain CRB frequency position, and the CRB frequency position is also at the frequency position of the sync-raster.
  • the network needs to notify the terminal UE by using a predetermined parameter of the PBCH in the RRM-SSB, and the detected SSB is RRM-SSB without RMSI, but the CD-SSB is the same as the detected RRM-SSB.
  • the sync-raster frequency location That is, the frequency offset to the next CD-SSB sync-raster is zero.
  • the network needs to notify the UE through a predetermined parameter of the PBCH in the RRM-SSB, and the detected SSB is the RRM-SSB.
  • the network also needs to inform the UE to the frequency offset of the next sync-raster with CD-SSB.
  • the information indicating method of the embodiment of the present disclosure indicates that the SSB has no associated remaining minimum system information RMSI and a next associated RMSI SSB by a predetermined parameter of the physical broadcast channel PBCH in a system synchronization block SSB defined by the non-cell.
  • the frequency offset information of the synchronization grid is located, so that the terminal can quickly acquire the RMSI of the access cell according to the predetermined parameter, and implement the non-cell-defined SSB to notify the UE of the frequency location of the sync-raster where the SSB of the next cell is located. the goal of.
  • the foregoing step 101 includes:
  • Step 1011 Use the value of the physical resource block PRB raster offset PRB-grid-offsets parameter to indicate whether the first SSB has an associated RMSI.
  • the UE may directly acquire the access cell.
  • RMSI the PRB trellis offset in the embodiment of the present disclosure may also be referred to as a synchronous subcarrier offset ssb-subcarrier-offset in the PBCH.
  • the subcarrier offset between the boundary of the SSB PRB with the associated RMSI and the RMSI PRB has 24 possible values.
  • the NR indicates a possible subcarrier offset value with 5 bits of PRB-grid-offsets. Since 5 bits can indicate 32 possible values, in addition to indicating the above 24 possible values, the remaining 8 possible values can be used to indicate that the SSB has no associated RMSI.
  • the NR indicates a possible subcarrier offset value with 4 bits of PRB-grid-offsets. Since 4 bits can indicate 16 possible values, in addition to indicating the above 12 possible values, the remaining 4 possible values can be used to indicate that the SSB has no associated RMSI.
  • step 1011 may further include:
  • Step 10111 When the NR band of the base station operation is less than the preset frequency threshold and g is greater than the first preset threshold, indicating that the first SSB has no associated RMSI;
  • Step 10112 When the NR band of the base station operation is greater than the preset frequency threshold and g is greater than the second preset threshold, indicating that the first SSB has no associated RMSI;
  • g represents the value of the PRB-grid-offsets parameter.
  • the preset frequency threshold in the embodiment of the present disclosure may be specifically 6 GHz, the first preset threshold may be specifically 23, and the second preset threshold may be specifically 11.
  • step 10111 and step 10112 are two parallel execution steps.
  • the foregoing step 101 may further include:
  • Step 1012 Using the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter, indicating that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel, indicating The frequency offset information of the synchronization grid where the second SSB is located.
  • the NR indicates a possible subcarrier offset value with 5 bits of PRB-grid-offsets.
  • the remaining 8 possible values can be used to indicate that the SSB has no associated RMSI, and can also be used with RMSI-PDCCH-Config (8 bits) to indicate the frequency offset of the sync-raster.
  • the NR When the carrier frequency is higher than 6 GHz, the NR indicates a possible subcarrier offset value with 4 bits of PRB-grid-offsets. The remaining 4 possible values can be used to indicate that the SSB has no associated RMSI, and can also be used with RMSI-PDCCH-Config (8 bits) to indicate the frequency offset of the sync-raster.
  • NR defines a sync-raster in each of three frequency ranges 0 GHz - 2.65 GHz, 2.4 GHz - 24.25 GHz, and 24.25 GHz - 100 GHz. Since NR is not defined in the frequency range of 6-24.25 GHz, it is only necessary to consider the following frequency ranges: 0 GHz - 2.65 GHz, 2.4 GHz - 6 GHz and 24.25 GHz - 100 GHz, how to pass the PBCH in RRM-SSB
  • the parameter, the RMSI-PDCCH-Config parameter indicates the frequency offset to the next sync-raster with CD-SSB.
  • the total number of sync-raster in the three frequency ranges of 0 GHz - 2.65 GHz, 2.4 GHz - 24.25 GHz, and 24.25 GHz - 100 GHz are: 8832, 15174, and 4384, respectively.
  • the parameter of the PBCH in the RRM-SSB indicates the limitation of the frequency offset range of the next sync-raster with the CD-SSB, that is, when the carrier frequency is lower than 6 GHz, the frequency offset position of the sync-raster can be indicated.
  • the present embodiment uses the parameters of the PBCH in the SSB to indicate the frequency offset position of the sync-raster within the bandwidth of the band within the frequency range.
  • the maximum bandwidth of the NR band and the NR are in the three frequency ranges 0GHz-2.65GHz, 2.4GHz-24.25GHz and 24.25GHz-100GHz.
  • the sync-raster definition can be used to determine the maximum number of sync-raster positions in an NR band for each frequency range. details as follows:
  • the frequency offset information of the synchronization grid in which the second SSB is located is frequency offset information in the NR band in which the base station operates.
  • the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB is used to indicate the frequency offset information of the synchronization grid where the second SSB is located, including:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • the embodiment can be applied to the following three application scenarios.
  • N 300;
  • N the range of possible values of the next sync-raster is [-N+1, N-1].
  • N is not limited to the number of sync-raster positions that need to be indicated in the above application scenario.
  • the information indicating method of the embodiment of the present disclosure indicates that the SSB has no associated remaining minimum system information RMSI and a next associated RMSI SSB by a predetermined parameter of the physical broadcast channel PBCH in a system synchronization block SSB defined by the non-cell.
  • the frequency offset information of the synchronization grid is located, so that the terminal can quickly acquire the RMSI of the access cell according to the predetermined parameter, and implement the non-cell-defined SSB to notify the UE of the frequency location of the sync-raster where the SSB of the next cell is located. the goal of.
  • an embodiment of the present disclosure further provides an information determining method, which is applied to a terminal, where the determining method includes:
  • Step 201 Determine, by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, whether the first SSB has the associated remaining minimum system information RMSI, or determine that the first SSB has no associated remaining minimum system information RMSI and Frequency offset information of the synchronization grid where the second SSB is located;
  • the second SSB refers to an SSB with an associated RMSI.
  • the foregoing step 201 includes:
  • Step 2011 Determine whether the first SSB has an associated RMSI by using a value of a physical resource block PRB raster offset PRB-grid-offsets parameter.
  • step 2011 may further include:
  • Step 20111 When the NR band working by the base station is less than the preset frequency threshold and g is greater than the first preset threshold, determining that the first SSB has no associated RMSI;
  • Step 20112 When the NR band working by the base station is greater than the preset frequency threshold and g is greater than the second preset threshold, determining that the first SSB has no associated RMSI;
  • g represents the value of the PRB-grid-offsets parameter.
  • Steps 20111 and 20112 are two parallel execution steps.
  • the foregoing step 201 may further include:
  • the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the frequency offset information of the sync grid Using the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter, determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the PRB trellis offset in the embodiment of the present disclosure may also be referred to as a synchronous subcarrier offset ssb-subcarrier-offset in the PBCH.
  • the embodiment of the present disclosure utilizes the parameters of the PBCH in the SSB to indicate the frequency offset position of the sync-raster within the bandwidth of the band within the frequency range. Therefore, in this embodiment, the frequency offset information of the synchronization grid in which the second SSB is located is frequency offset information in the NR band in which the base station operates.
  • the frequency offset information of the synchronization grid where the second SSB is located is determined by using the predetermined parameters of the physical broadcast channel PBCH in the first system synchronization block SSB, including:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • the information determining method of the embodiment of the present disclosure determines whether the first SSB has the associated remaining minimum system information RMSI, or determines that the first SSB has no associated remaining, by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB.
  • the minimum system information RMSI and the frequency offset information of the synchronization grid where the second SSB is located implements the purpose of using the non-cell defined SSB to notify the UE of the frequency location of the sync-raster where the next cell defined SSB is located.
  • an embodiment of the present disclosure further provides a base station, including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer
  • the program implements the following steps:
  • the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB indicating whether the first SSB has the associated remaining minimum system information RMSI, or indicating that the first SSB has no associated remaining minimum system information RMSI and the second SSB Frequency offset information of the synchronization grid;
  • the second SSB refers to an SSB with an associated RMSI.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 300 and various circuits of memory represented by memory 320.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 310 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 300 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 300 in performing operations.
  • the processor 300 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 300 in performing operations.
  • the processor 300 is further configured to read a program in the memory 320, and perform the following steps:
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to indicate whether the first SSB has an associated RMSI.
  • the processor 300 is further configured to read a program in the memory 320, and perform the following steps:
  • the processor 300 is further configured to read a program in the memory 320, and perform the following steps:
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band that is operated by the base station.
  • the processor 300 is further configured to read a program in the memory 320, and perform the following steps:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB indicating whether the first SSB has the associated remaining minimum system information RMSI, or indicating that the first SSB has no associated remaining minimum system information RMSI and the second SSB Frequency offset information of the synchronization grid;
  • the second SSB refers to an SSB with an associated RMSI.
  • an embodiment of the present disclosure further provides a base station, including:
  • the indicating module 401 is configured to use the predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, to indicate whether the first SSB has the associated remaining minimum system information RMSI, or to indicate that the first SSB has no associated remaining minimum system information.
  • the second SSB refers to an SSB with an associated RMSI.
  • the indication module 401 is configured to use the value of the physical resource block PRB grid offset PRB-grid-offsets parameter to indicate whether the first SSB has an associated RMSI.
  • the indication module 401 is configured to use the value of the physical resource block PRB grid offset PRB-grid-offsets parameter, indicating that the first SSB has no associated RMSI, and utilizes RMSI physics.
  • the downlink control channel configures an RMSI-PDCCH-Config parameter, indicating frequency offset information of the synchronization grid where the second SSB is located.
  • the indicating module 401 is configured to indicate that the first SSB has no associated RMSI when the NR band of the base station is smaller than the preset frequency threshold and g is greater than the first preset threshold.
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in the NR band in which the base station operates.
  • the indication module 401 is configured to indicate, by using the following formula, a difference d between a label of the synchronization grid where the second SSB is located and a label of the current synchronization grid;
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • the base station of the embodiment of the present disclosure indicates that the SSB has no associated remaining minimum system information RMSI and the next associated RMSI SSB by using a predetermined parameter of the physical broadcast channel PBCH in a system synchronization block SSB defined by the non-cell.
  • Frequency offset information of the grid so that the terminal can quickly acquire the RMSI of the access cell according to the predetermined parameter, and achieve the purpose of using the non-cell defined SSB to notify the UE of the frequency location of the sync-raster where the SSB of the next cell is located.
  • an embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, where the processor executes the program
  • a terminal including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, where the processor executes the program
  • the second SSB refers to an SSB with an associated RMSI.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 530 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the value of the physical resource block PRB raster offset PRB-grid-offsets parameter is used to determine whether the first SSB has an associated RMSI.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the frequency offset information of the sync grid Using the value of the physical resource block PRB trellis offset PRB-grid-offsets parameter, determining that the first SSB has no associated RMSI, and configuring the RMSI-PDCCH-Config parameter by using the RMSI physical downlink control channel to determine the second SSB.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is frequency offset information in an NR band that is operated by the base station.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the second SSB refers to an SSB with an associated RMSI.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the determining module 601 is configured to determine, by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, whether the first SSB has an associated remaining minimum system information RMSI, or determine that the first SSB has no associated remaining minimum system information. Frequency offset information of the synchronization grid where the RMSI and the second SSB are located;
  • the second SSB refers to an SSB with an associated RMSI.
  • the determining module is configured to determine whether the first SSB has an associated RMSI by using a value of a physical resource block PRB raster offset PRB-grid-offsets parameter.
  • the determining module is configured to determine, by using a value of a physical resource block PRB grid offset PRB-grid-offsets parameter, that the first SSB has no associated RMSI, and utilize RMSI physical downlink control.
  • the channel configures the RMSI-PDCCH-Config parameter to determine the frequency offset information of the synchronization grid where the second SSB is located.
  • the determining module is configured to determine that the first SSB has no associated RMSI when the NR band of the base station is less than the preset frequency threshold and g is greater than the first preset threshold;
  • g represents the value of the PRB-grid-offsets parameter.
  • the frequency offset information of the synchronization grid where the second SSB is located is the frequency offset information in the NR band in which the base station operates.
  • the determining module is configured to determine, by using the following formula, a difference d between a label of the synchronization grid where the second SSB is located and a label of the current synchronization grid;
  • n m
  • n m+c1;
  • g represents the value of the PRB-grid-offsets parameter
  • m represents the value of the RMSI-PDCCH-Config parameter
  • c1 and c2 are preset values
  • c1 and c2 are both positive numbers
  • c1 ⁇ c2 the first The value, the third value, and the fifth value are both greater than a first predetermined threshold
  • the second value and the fourth value are both greater than a second predetermined threshold.
  • the terminal of the embodiment of the present disclosure determines whether the first SSB has the associated remaining minimum system information RMSI by using a predetermined parameter of the physical broadcast channel PBCH in the first system synchronization block SSB, or determines that the first SSB has no associated remaining minimum system.
  • the frequency offset information of the synchronization grid where the information RMSI and the second SSB are located implements the purpose of using the non-cell defined SSB to notify the UE of the frequency location of the sync-raster where the SSB of the next cell is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息指示方法、信息确定方法、终端及基站。信息指示方法包括:利用第一SSB中PBCH的预定参数,指示第一SSB有无相关联的RMSI,或者指示第一SSB没有相关联的RMSI和第二SSB所在同步栅格的频率偏移信息;其中,所述第二SSB是指有关联的RMSI的SSB。

Description

信息指示方法、信息确定方法、终端及基站
相关申请的交叉引用
本申请主张在2018年1月12日在中国提交的中国专利申请No.201810032530.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种信息指示方法、信息确定方法、终端及基站。
背景技术
在新一代的无线电空中接口中,从基站发送的系统同步块(system synchronization block,简称SSB)可能带有也可能不带有相关的剩余最低系统信息(remaining minimum system information,简称RMSI)。如果一个SSB带有相关的RMSI,则称为小区定义cell-defining的SSB(CD-SSB)。如果一个SSB没带有关联的RMSI,则该SSB用于无线电资源管理(radio resource management,简称RRM)测量,这里称之为RRM-SSB。CD-SSB必须在定义为同步光栅(sync-raster)的频率位置上传输。RRM-SSB可在共同的资源块(common resource block,简称CRB)的频率位置传输,也可在sync-raster的频率位置传输。同时,sync-raster的频率与CRB的频率在一些频率上会重叠。
当一个UE试图接入某个小区时,UE需要先在逐个sync-raster的频率位置上搜索CD-SSB,以获取接入小区的RMSI。由于某些频率位置上,sync-raster的频率位置与CRB的频率会位置重叠,则UE可能在检测到CD-SSB之前先检测到RRM-SSB(radio resource management SSB)。在这种情况下,若通过RRM-SSB来直接通知UE下一个带有CD-SSB的sync-raster的频率位置,将大大减少UE逐个搜索CD-SSB的时间,但目前关于如何利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置还没有提出相关方案。
发明内容
本公开的目的在于提供一种信息指示方法、信息确定方法、终端及基站,用以解决目前关于如何利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置还没有相关方案的问题。
为了实现上述目的,本公开提供了一种信息指示方法,应用于基站,包括:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,包括:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
其中所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息的步骤,包括:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
其中利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI的步骤,包括:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR 波段内的频率偏移信息。
其中,利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第二SSB所在同步栅格的频率偏移信息,包括:
通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000001
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
为了实现上述目的,本公开实施例还提供了一种信息确定方法,应用于终端,包括:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,包括:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅 格的频率偏移信息的步骤,包括:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
其中,利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI的步骤,包括:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
其中,利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第二SSB所在同步栅格的频率偏移信息,包括:
通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000002
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
为了实现上述目的,本公开的实施例还提供了一种基站,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,所述处理器执行所述程序时还可实现以下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
其中,所述处理器执行所述程序时还可实现以下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
其中,所述处理器执行所述程序时还可实现以下步骤:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
其中,所述处理器执行所述程序时还可实现以下步骤:
通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000003
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或 者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述信息指示方法的步骤。
为了实现上述目的,本公开实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,所述处理器执行所述程序时还可实现以下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
其中,所述处理器执行所述程序时还可实现以下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
其中,所述处理器执行所述程序时还可实现以下步骤:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
其中,所述处理器执行所述程序时还可实现以下步骤:
通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000004
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述信息确定方法的步骤。
为了实现上述目的,本公开实施例还提供了一种基站,包括:
指示模块,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
为了实现上述目的,本公开实施例还提供了一种终端,包括:
确定模块,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一 SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,通过非小区定义的一系统同步块SSB中的物理广播信道PBCH的预定参数来指示该SSB没有相关联的剩余最低系统信息RMSI和下一个有关联的RMSI的SSB所在同步栅格的频率偏移信息,以使得终端根据该预定参数能够快速获取接入小区的RMSI,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
附图说明
图1为本公开实施例的信息指示方法的流程图;
图2为本公开实施例的信息确定方法的流程图;
图3为本公开实施例的基站的结构框图;
图4为本公开实施例的基站的模块示意图;
图5为本公开实施例的终端的结构框图;
图6为本公开实施例的终端的模块示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
如图1所示,本公开实施例提供了一种信息指示方法,应用于基站,包括:
步骤101:利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
这里,可根据第一SSB中PBCH的预定参数的取值指示该第一SSB有无相关联的RMSI。
若第一SSB中PBCH的预定参数的取值指示该第一SSB有相关联的RMSI,则说明该第一SSB为CD-SSB。
需要说明的是,利用第一SSB中PBCH的预定参数来指示第一SSB没有相关联的RMSI,并指示第二SSB所在同步栅格的频率偏移信息时,本实施例已考虑到以下两种情况:
1)由于基站BS配置的SSB发送周期短于RMSI发送周期,因此BS在与CD-SSB相同的sync-raster频率位置上发送RRM-SSB;
2)BS在某个CRB频率位置发送RRM-SSB,该CRB频率位置正好也在sync-raster的频率位置上。
其中,对于第一种情况,网络需要通过RRM-SSB中的PBCH的预定参数通知终端UE,检测到的SSB是RRM-SSB,不带RMSI,但CD-SSB与检测到的RRM-SSB有相同的sync-raster频率位置。即,到下一个CD-SSB sync-raster的频率偏移为零。
对于第二种情况,网络需要通过RRM-SSB中的PBCH的预定参数通知UE,检测到的SSB是RRM-SSB。同时,网络还需要通知UE到下一个有CD-SSB的sync-raster的频率偏移。
本公开实施例的信息指示方法,通过非小区定义的一系统同步块SSB中的物理广播信道PBCH的预定参数来指示该SSB没有相关联的剩余最低系统信息RMSI和下一个有关联的RMSI的SSB所在同步栅格的频率偏移信息,以使得终端根据该预定参数能够快速获取接入小区的RMSI,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
作为一种可选的实现方式,上述步骤101包括:
步骤1011:利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
这里,当物理资源块PRB栅格偏移PRB-grid-offsets参数的取值指示所述第一SSB有相关联的RMSI时,表明第一SSB为CD-SSB,UE可直接获取 接入小区的RMSI。本公开实施例中的PRB栅格偏移也可称为PBCH中的同步子载波偏移ssb-subcarrier-offset。
需说明的是,当载波频率低于6GHz时,有相关联RMSI的SSB PRB的边界和RMSI PRB之间的子载波偏移有24个可能值。NR用5个比特的PRB-grid-offsets指示可能的子载波偏移值。由于5个比特可以指示32个可能值,除了用于指示上述24个可能值之外,剩余的8个可能值可用于指示SSB无相关的RMSI。
当载波频率高于6GHz时,有相关联RMSI的SSB PRB的边界和RMSI PRB之间的子载波偏移有12个可能值。NR用4个比特的PRB-grid-offsets指示可能的子载波偏移值。由于4个比特可以指示16个可能值,除了用于指示上述12个可能值之外,剩余的4个可能值可用于指示SSB无相关的RMSI。
所以,可选地,步骤1011还可具体包括:
步骤10111:在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
步骤10112:在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
本公开实施例中的预设频率阈值可具体为6GHz,第一预设阈值可具体为23,第二预设阈值可具体为11。
其中,步骤10111和步骤10112为两个并列的执行步骤。
作为另一种可选的实现方式,上述步骤101还可包括:
步骤1012,利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
需说明的是,除了利用PBCH中RMSI-PDCCH-Config参数之外,还可利用PBCH中的其他参数指示第二SSB所在同步栅格的频率偏移信息。
这里,上述步骤1011中提到当载波频率低于6GHz时,NR用5个比特的PRB-grid-offsets指示可能的子载波偏移值。其中,剩余的8个可能值可用于指示SSB无相关的RMSI,还可与RMSI-PDCCH-Config(8个比特)一起 使用,指示sync-raster的频率偏移。其中,可以指示的sync-raster的频率偏移位置的最大数目是8*2 8=8*256=2048。
当载波频率高于6GHz时,NR用4个比特的PRB-grid-offsets指示可能的子载波偏移值。其中,剩余的4个可能值可用于指示SSB无相关的RMSI,还可与RMSI-PDCCH-Config(8个比特)一起使用,指示sync-raster的频率偏移。其中,可以指示的sync-raster的频率偏移位置的最大数目是4*2 8=4*256=1024。
这里,NR在三个频率范围0GHz-2.65GHz,2.4GHz-24.25GHz和24.25GHz-100GHz里,各自定义sync-raster。由于NR没有定义在频率范围6-24.25GHz的频带,因此,实际上只需要考虑在下列频率范围:0GHz-2.65GHz,2.4GHz-6GHz和24.25GHz-100GHz里,如何通过RRM-SSB中PBCH的参数,即RMSI-PDCCH-Config参数指示到下一个有CD-SSB的sync-raster的频率偏移。
还有,在0GHz-2.65GHz,2.4GHz-24.25GHz和24.25GHz-100GHz的三个频率范围的sync-raster总的个数分别是:8832、15174和4384。由于通过RRM-SSB中PBCH的参数指示到下一个有CD-SSB的sync-raster的频率偏移范围的限制,即当载波频率低于6GHz时,可以指示的sync-raster的频率偏移位置的最大数目仅限于8*256=2048,当载波频率高于6GHz时,可以指示的sync-raster的频率偏移位置的最大数目仅限于4*256=1024,可知利用SSB中PBCH的参数将不可能指示在频率范围0GHz-2.65GHz,2.4GHz-6GHz和24.25GHz-100GHz里所有的sync-raster。
而在频率范围0GHz-2.65GHz,2.4GHz-6GHz和24.25GHz-100GHz的NR波段的最大带宽分别为90MHz,900MHz和3.25GHz。因此,本实施例利用SSB中PBCH的参数指示在频率范围内波段的带宽内sync-raster的频率偏移位置。
具体的,根据频率范围0GHz-2.65GHz,2.4GHz-6GHz和24.25GHz-100GHz内,NR波段的最大带宽以及NR在三个频率范围0GHz-2.65GHz,2.4GHz-24.25GHz和24.25GHz-100GHz的sync-raster定义,可以得出各个频率范围一个NR波段中sync-raster位置的最大个数。具体如 下:
对于频率范围0GHz-2.65GHz,sync-raster位置的最大个数为90MHz/900kHz*3=300;
对于频率范围2.4GHz-6GHz,sync-raster位置的最大个数为900MHz/1.44MHz/3=208;
对于频率范围24.25GHz-100GHz,sync-raster位置的最大个数为3.25GHz/17.28MHz=188。
所以,本实施例可选地,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
在此基础上,作为一可选的实现方式,步骤101中利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第二SSB所在同步栅格的频率偏移信息,包括:
通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000005
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
这里,本实施例可适用于以下三种应用场景。
a)根据3个不同频率范围来指示下一个有CD-SSB的sync-raster的频率偏移位置。
则频率范围0GHz-2.65GHz,需要指示的sync-raster位置的个数为N=300;
频率范围2.4GHz-6GHz,需要指示的sync-raster位置的个数为N=208;
频率范围24.25GHz-100GHz,需要指示的sync-raster位置的个数为N=188;
b)根据2个不同频率范围来指示下一个有CD-SSB的sync-raster的频率偏移位置。
则频率范围6GHz以下时,需要指示的sync-raster位置的个数为N=300;
频率范围6GHz以上时,需要指示的sync-raster位置的个数为N=188;
c)指示的下一个有CD-SSB的sync-raster的频率偏移位置不依赖于频率范围。
则需要指示的sync-raster位置的个数为N=300;
具体的,设某个频率范围内sync-raster位置的个数为N,则下一个sync-raster可能值的范围为[-N+1,N-1]。这里,N不仅限于上述应用场景中需要指示的sync-raster位置的个数。
可选地,c1为256;c2为512。
这里,具体的实施方案,如表1所示。
表1
Figure PCTCN2018124271-appb-000006
需要说明的是,上表中,频率范围6GHz以下时,参数PRB grid offset 中有8个剩余值{24,25,…,31}可用。对于频率范围6GHz以上时,参数PRB grid offset中有4个剩余值{12,13,14,15}可用。表1中所用的参数PRB grid offset中的剩余值可用其他值剩余值代替。
本公开实施例的信息指示方法,通过非小区定义的一系统同步块SSB中的物理广播信道PBCH的预定参数来指示该SSB没有相关联的剩余最低系统信息RMSI和下一个有关联的RMSI的SSB所在同步栅格的频率偏移信息,以使得终端根据该预定参数能够快速获取接入小区的RMSI,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
如图2所示,本公开的实施例还提供了一种信息确定方法,应用于终端,该确定方法包括:
步骤201:利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
作为一种可选的实现方式,上述步骤201包括:
步骤2011:利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
可选地,步骤2011还可具体包括:
步骤20111:在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
步骤20112:在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
其中,步骤20111和步骤20112为两个并列的执行步骤。
作为另一种可选的实现方式,上述步骤201还可包括:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置 RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
本公开实施例中的PRB栅格偏移也可称为PBCH中的同步子载波偏移ssb-subcarrier-offset。
需说明的是,除了利用PBCH中RMSI-PDCCH-Config参数之外,还可利用PBCH中的的其他参数确定第二SSB所在同步栅格的频率偏移信息。
另外,根据上述描述可知,本公开实施例利用SSB中PBCH的参数指示在频率范围内波段的带宽内sync-raster的频率偏移位置。所以,本实施例可选地,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
在此基础上,作为一可选的实现方式,上述步骤201中利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第二SSB所在同步栅格的频率偏移信息,包括:
通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000007
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
该公式已在基站侧的方法实施例中进行详细描述,此处不再赘述。
本公开实施例的信息确定方法,利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI, 或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
如图3所示,本公开的实施例还提供一种基站,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器300代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机310可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
处理器300还用于读取存储器320中的程序,执行如下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
处理器300还用于读取存储器320中的程序,执行如下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
处理器300还用于读取存储器320中的程序,执行如下步骤:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指 示所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
可选的,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
处理器300还用于读取存储器320中的程序,执行如下步骤:
通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000008
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
该程序被处理器执行时能实现上述应用于终端侧的信息指示方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图4所示,本公开的实施例还提供了一种基站,包括:
指示模块401,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
本公开实施例的基站,所述指示模块401,用于利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
本公开实施例的基站,所述指示模块401,用于利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
本公开实施例的基站,所述指示模块401,用于在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
本公开实施例的基站,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
本公开实施例的基站,所述指示模块401用于通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000009
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
本公开实施例的基站,通过非小区定义的一系统同步块SSB中的物理广播信道PBCH的预定参数来指示该SSB没有相关联的剩余最低系统信息RMSI和下一个有关联的RMSI的SSB所在同步栅格的频率偏移信息,以使得终端根据该预定参数能够快速获取接入小区的RMSI,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
如图5所示,本公开的实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500还用于读取存储器520中的程序,执行如下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
处理器500还用于读取存储器520中的程序,执行如下步骤:
利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
处理器500还用于读取存储器520中的程序,执行如下步骤:
在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
可选的,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
处理器500还用于读取存储器520中的程序,执行如下步骤:
通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000010
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
该程序被处理器执行时能实现上述应用于终端侧的信息确定方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图6所示,本公开的实施例还提供了一种终端,包括:
确定模块601,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
其中,所述第二SSB是指有关联的RMSI的SSB。
本公开实施例的终端,所述确定模块用于利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
本公开实施例的终端,所述确定模块用于利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
本公开实施例的终端,所述确定模块用于在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
g表示PRB-grid-offsets参数的取值。
本公开实施例的终端,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
本公开实施例的终端,所述确定模块用于通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
Figure PCTCN2018124271-appb-000011
其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
本公开实施例的终端,利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息,实现了利用非小区定义的SSB来通知UE下一个小区定义的SSB所在sync-raster的频率位置的目的。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种信息指示方法,应用于基站,包括:
    利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
  2. 根据权利要求1所述的信息指示方法,其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,包括:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
  3. 根据权利要求1所述的信息指示方法,其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息的步骤,包括:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
  4. 根据权利要求2所述的信息指示方法,其中,利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI的步骤,包括:
    在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
    在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
    g表示PRB-grid-offsets参数的取值。
  5. 根据权利要求1所述的信息指示方法,其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
  6. 根据权利要求5所述的信息指示方法,其中,利用第一系统同步块 SSB中物理广播信道PBCH的预定参数,指示第二SSB所在同步栅格的频率偏移信息,包括:
    通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
    Figure PCTCN2018124271-appb-100001
    其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
    在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
    在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
    g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
  7. 一种信息确定方法,应用于终端,包括:
    利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
  8. 根据权利要求7所述的信息确定方法,其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,包括:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
  9. 根据权利要求7所述的信息确定方法,其中,所述利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息的步骤,包括:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
  10. 根据权利要求7所述的信息确定方法,其中,利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI的步骤,包括:
    在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
    在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
    g表示PRB-grid-offsets参数的取值。
  11. 根据权利要求7所述的信息确定方法,其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
  12. 根据权利要求11所述的信息确定方法,其中,利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第二SSB所在同步栅格的频率偏移信息,包括:
    通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
    Figure PCTCN2018124271-appb-100002
    其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
    在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
    在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
    g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数 值和所述第四数值均大于第二预设阈值。
  13. 一种基站,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
  14. 根据权利要求13所述的基站,其中,所述处理器执行所述程序时还可实现以下步骤:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB有无相关联的RMSI。
  15. 根据权利要求13所述的基站,其中,所述处理器执行所述程序时还可实现以下步骤:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,指示所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置RMSI-PDCCH-Config参数,指示第二SSB所在同步栅格的频率偏移信息。
  16. 根据权利要求13所述的基站,其中,所述处理器执行所述程序时还可实现以下步骤:
    在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,指示所述第一SSB无相关联的RMSI;
    在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,指示所述第一SSB无相关联的RMSI;
    g表示PRB-grid-offsets参数的取值。
  17. 根据权利要求13所述的基站,其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
  18. 根据权利要求17所述的基站,其中,所述处理器执行所述程序时还可实现以下步骤:
    通过以下公式指示第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
    Figure PCTCN2018124271-appb-100003
    其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
    在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
    在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
    g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至6中任一项所述信息指示方法的步骤。
  20. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
  21. 根据权利要求20所述的终端,其中,所述处理器执行所述程序时还可实现以下步骤:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB有无相关联的RMSI。
  22. 根据权利要求20所述的终端,其中,所述处理器执行所述程序时还可实现以下步骤:
    利用物理资源块PRB栅格偏移PRB-grid-offsets参数的取值,确定所述第一SSB没有相关联的RMSI,并利用RMSI物理下行控制信道配置 RMSI-PDCCH-Config参数,确定第二SSB所在同步栅格的频率偏移信息。
  23. 根据权利要求20所述的终端,其中,所述处理器执行所述程序时还可实现以下步骤:
    在基站工作的NR波段小于预设频率阈值且g大于第一预设阈值时,确定所述第一SSB无相关联的RMSI;
    在基站工作的NR波段大于预设频率阈值且g大于第二预设阈值时,确定所述第一SSB无相关联的RMSI;
    g表示PRB-grid-offsets参数的取值。
  24. 根据权利要求20所述的终端,其中,所述第二SSB所在同步栅格的频率偏移信息为在基站工作的NR波段内的频率偏移信息。
  25. 根据权利要求24所述的终端,其中,所述处理器执行所述程序时还可实现以下步骤:
    通过以下公式确定第二SSB所在同步栅格的标号与当前同步栅格的标号之间的差值d;
    Figure PCTCN2018124271-appb-100004
    其中,在基站工作的NR波段小于预设频率阈值且g为第一数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第二数值时,n=m;
    在基站工作的NR波段小于预设频率阈值且g为第三数值时,或者,在基站工作的NR波段大于预设频率阈值且g为第四数值时,n=m+c1;
    在基站工作的NR波段小于预设频率阈值且g为第五数值时,n=m+c2;
    g表示PRB-grid-offsets参数的取值,m表示RMSI-PDCCH-Config参数的取值,c1和c2为预先设置的数值,c1和c2均为正数,且c1<c2,所述第一数值、所述第三数值以及所述第五数值均大于第一预设阈值,所述第二数值和所述第四数值均大于第二预设阈值。
  26. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求7至12中任一项所述信息确定方法的步骤。
  27. 一种基站,包括:
    指示模块,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,指示第一SSB有无相关联的剩余最低系统信息RMSI,或者指示第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
  28. 一种终端,包括:
    确定模块,用于利用第一系统同步块SSB中物理广播信道PBCH的预定参数,确定第一SSB有无相关联的剩余最低系统信息RMSI,或者确定第一SSB没有相关联的剩余最低系统信息RMSI和第二SSB所在同步栅格的频率偏移信息;
    其中,所述第二SSB是指有关联的RMSI的SSB。
PCT/CN2018/124271 2018-01-12 2018-12-27 信息指示方法、信息确定方法、终端及基站 WO2019137228A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP23157273.6A EP4203572A1 (en) 2018-01-12 2018-12-27 Information indicating method, information determining method, terminal and base station
KR1020207022693A KR102375644B1 (ko) 2018-01-12 2018-12-27 정보 지시 방법, 정보 확정 방법, 단말 및 기지국
JP2020538632A JP7305655B2 (ja) 2018-01-12 2018-12-27 情報指示方法、情報特定方法、端末及び基地局
US16/961,625 US11425667B2 (en) 2018-01-12 2018-12-27 Information indicating method, information determining method, terminal and base station
EP18899354.7A EP3726895A4 (en) 2018-01-12 2018-12-27 INFORMATION DISPLAY PROCEDURE, INFORMATION DETERMINATION PROCEDURE, TERMINAL DEVICE AND BASE STATION
US17/877,820 US11985610B2 (en) 2018-01-12 2022-07-29 Information indicating method, information determining method, terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032530.2 2018-01-12
CN201810032530.2A CN110035493B (zh) 2018-01-12 2018-01-12 一种信息指示、确定方法、终端及基站

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/961,625 A-371-Of-International US11425667B2 (en) 2018-01-12 2018-12-27 Information indicating method, information determining method, terminal and base station
US17/877,820 Continuation US11985610B2 (en) 2018-01-12 2022-07-29 Information indicating method, information determining method, terminal and base station

Publications (1)

Publication Number Publication Date
WO2019137228A1 true WO2019137228A1 (zh) 2019-07-18

Family

ID=67219303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124271 WO2019137228A1 (zh) 2018-01-12 2018-12-27 信息指示方法、信息确定方法、终端及基站

Country Status (7)

Country Link
US (2) US11425667B2 (zh)
EP (2) EP3726895A4 (zh)
JP (2) JP7305655B2 (zh)
KR (1) KR102375644B1 (zh)
CN (1) CN110035493B (zh)
TW (1) TWI700950B (zh)
WO (1) WO2019137228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099769A4 (en) * 2020-03-13 2023-04-05 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING BLOCKS OF A SYNCHRONIZATION SIGNAL AND ASSOCIATED APPARATUS

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352364B1 (ko) * 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
WO2019215921A1 (ja) 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019213955A1 (zh) * 2018-05-11 2019-11-14 Oppo广东移动通信有限公司 一种信息的指示方法及装置、计算机存储介质
KR20220053640A (ko) * 2019-09-30 2022-04-29 후지쯔 가부시끼가이샤 신호 송신 방법 및 장치, 및 통신 시스템
KR102491331B1 (ko) 2019-09-30 2023-01-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 단말 장치
CN114175795A (zh) * 2019-11-08 2022-03-11 Oppo广东移动通信有限公司 同步信号块位置指示方法及相关设备
CN112788731B (zh) * 2019-11-08 2022-07-08 大唐移动通信设备有限公司 一种信息的发送、接收方法、装置及终端
CN113556688B (zh) * 2020-04-23 2022-09-13 大唐移动通信设备有限公司 一种广播组播业务数据的接收方法、终端及基站
CN115516910A (zh) * 2020-04-29 2022-12-23 联想(北京)有限公司 用于ue的初始接入的方法及设备
CN113596981B (zh) * 2020-04-30 2022-05-06 维沃移动通信有限公司 频域偏移的确定方法及装置、通信设备和可读存储介质
WO2023080034A1 (ja) * 2021-11-02 2023-05-11 株式会社デンソー 特定ユーザ装置、及び通信制御方法
CN114125999B (zh) * 2021-12-03 2024-02-09 星思连接(上海)半导体有限公司 一种小区接入方法及装置、小区广播方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217719A1 (en) * 2016-06-12 2017-12-21 Lg Electronics Inc. Method for receiving signals and wireless device thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615897B2 (en) * 2016-06-01 2020-04-07 Qualcomm Incorporated Time division multiplexing of synchronization channels
EP3602853B1 (en) * 2017-05-02 2022-11-02 Samsung Electronics Co., Ltd. Method and apparatus of initial access in next generation cellular networks
US10897743B2 (en) * 2017-06-04 2021-01-19 Lg Electronics Inc. Method and apparatus for receiving system information in the wireless communication
WO2018225989A1 (ko) * 2017-06-04 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서, 시스템 정보를 수신하는 방법 및 이를 위한 장치
CN110521146B (zh) * 2017-07-28 2021-05-11 Lg电子株式会社 接收同步信号块的方法及其设备
US10728916B2 (en) * 2017-11-17 2020-07-28 Qualcomm Incorporated Designs for remaining minimum system information (RMSI) control resource set (CORESET) and other system information (OSI) CORESET
US11324009B2 (en) * 2017-11-17 2022-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Efficient CORESET configuration
US11070333B2 (en) * 2017-12-21 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block frequency location indication
EP3739832A4 (en) * 2018-01-11 2021-07-21 Ntt Docomo, Inc. USER TERMINAL DEVICE AND RADIO COMMUNICATION PROCEDURES
WO2020024102A1 (en) * 2018-07-31 2020-02-06 Panasonic Intellectual Property Corporation Of America Apparatuses and methods for establishing an initial access

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217719A1 (en) * 2016-06-12 2017-12-21 Lg Electronics Inc. Method for receiving signals and wireless device thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Details on PRB Grid Offset Indication", 3GPP TSG RAN WG1 MEETING 91 R1-1720581, 18 November 2017 (2017-11-18), XP051370048 *
QUALCOMM: "WF on RMSI Presence Flag", 3GPP TSG RAN WG1 #91 R1-1721684, 4 December 2017 (2017-12-04), XP051370764 *
See also references of EP3726895A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099769A4 (en) * 2020-03-13 2023-04-05 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING BLOCKS OF A SYNCHRONIZATION SIGNAL AND ASSOCIATED APPARATUS

Also Published As

Publication number Publication date
TW201931908A (zh) 2019-08-01
EP4203572A1 (en) 2023-06-28
CN110035493A (zh) 2019-07-19
EP3726895A1 (en) 2020-10-21
JP2021510966A (ja) 2021-04-30
EP3726895A4 (en) 2021-01-20
TWI700950B (zh) 2020-08-01
US20200359343A1 (en) 2020-11-12
KR102375644B1 (ko) 2022-03-17
CN110035493B (zh) 2022-04-15
US11425667B2 (en) 2022-08-23
JP7305655B2 (ja) 2023-07-10
KR20200105509A (ko) 2020-09-07
JP2023103411A (ja) 2023-07-26
US20220386251A1 (en) 2022-12-01
US11985610B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2019137228A1 (zh) 信息指示方法、信息确定方法、终端及基站
EP3817479B1 (en) Communication method and communication apparatus
CN109152013B (zh) 一种公共下行控制信道信号传输方法和相关设备
US11096131B2 (en) Wireless communication method and device
WO2020233299A1 (zh) 数据传输方法、装置、相关设备及存储介质
TWI696366B (zh) 傳輸控制通道的方法、網路設備和終端設備
US20230388168A1 (en) Compensation of residual time-frequency errors in communications
WO2019015456A1 (zh) 非授权频段下的传输方法、设备及计算机可读存储介质
JP2021535650A (ja) 無線リンク品質を評価する方法、パラメータ設定方法、装置及びシステム
US20200221471A1 (en) Resource indication method, communications apparatus, and network device
CN114337757A (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
KR102649879B1 (ko) Rrm 측정 구성을 결정하는 방법 및 장치
US20190207688A1 (en) Method and Apparatus for Measuring Interference Between Terminal Devices
KR20230122668A (ko) 직류 위치 처리 방법 및 관련 기기
WO2015149639A1 (zh) 调度无线资源的方法、控制节点和系统
WO2019084924A1 (zh) 传输数据的方法和设备
US10966079B2 (en) Device-to-device communication method, resource assignment method, and apparatuses thereof
WO2018195777A1 (zh) 处理信号的方法和设备
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
CN113839728A (zh) Dci检测方法、发送方法及相关设备
US20240040421A1 (en) Measurement Gap Pattern Configuration Method and Apparatus, Terminal, and Network-Side Device
US20240137781A1 (en) Spatial relation indication method and device
US20230396398A1 (en) Method and device for indicating scs of initial downlink bwp
WO2023125824A1 (zh) 控制信道监测方法、终端及网络侧设备
WO2022078253A1 (zh) 调度资源的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899354

Country of ref document: EP

Effective date: 20200716

ENP Entry into the national phase

Ref document number: 20207022693

Country of ref document: KR

Kind code of ref document: A