WO2023080034A1 - 特定ユーザ装置、及び通信制御方法 - Google Patents

特定ユーザ装置、及び通信制御方法 Download PDF

Info

Publication number
WO2023080034A1
WO2023080034A1 PCT/JP2022/039986 JP2022039986W WO2023080034A1 WO 2023080034 A1 WO2023080034 A1 WO 2023080034A1 JP 2022039986 W JP2022039986 W JP 2022039986W WO 2023080034 A1 WO2023080034 A1 WO 2023080034A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
ssb
base station
bwp
initial
Prior art date
Application number
PCT/JP2022/039986
Other languages
English (en)
French (fr)
Inventor
治彦 曽我部
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023080034A1 publication Critical patent/WO2023080034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a specific user equipment and a communication control method.
  • cell selection or cell reselection may be performed in user equipment (UE) in RRC (Radio Resource Control) idle state or RRC inactive state.
  • UE user equipment
  • RRC Radio Resource Control
  • Cell selection allows a user equipment to be served by a suitable cell
  • cell reselection allows a user equipment to be served by a neighboring cell adjacent to the serving cell.
  • the 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, defines the bandwidth part (BWP: Band With Part).
  • BWP Band With Part
  • a BWP is a fraction of the total bandwidth used in a cell.
  • the BWP includes the initial BWP.
  • the initial BWP is used at least for the initial access of the user equipment. Also, the initial BWP can be commonly used in multiple user equipments.
  • Redcap UE is a UE with middle-range performance and price for IoT (Internet of Things).
  • the separation initial BWP includes a separate initial BWP for downlink communication (separate initial DL BWP) and a separate initial BWP for uplink communication (separate initial UL BWP).
  • the former is sometimes referred to as a separate initial downstream BWP. Also, the latter may be referred to as separation initial uplink BWP.
  • 3GPP proposes transmitting an additional SSB in the separate initial downlink BWP for Redcap UE.
  • Redcap UE in RRC idle state or RRC inactive state when cell selection and / or cell reselection is performed, even if additional SSB is used, since the frequency is different between the initial downlink BWP and the initial downlink BWP after separation , frequency retuning may occur.
  • frequency readjustment may cause delays and increase power consumption.
  • an object of the present disclosure is to provide a specific user apparatus and a communication control method capable of reducing power consumption.
  • a specific user device is a specific user device having reduced capabilities compared to a predetermined user device.
  • the specific user equipment receives the first initial BWP from the base station in a second initial BWP for the specific user equipment that is different from a first initial bandwidth portion (BWP) that is part of the bandwidth of the cell of the base station.
  • BWP bandwidth portion
  • a communication control method is a communication control method in a specific user device having reduced capabilities compared to a predetermined user device.
  • the communication control method in a second initial BWP for the specific user equipment different from a first initial bandwidth part (BWP) that is part of a bandwidth of a cell of a base station, for cell selection and/or cell reselection in RRC idle state or RRC inactive state; and measuring the non-cell defined SSB.
  • BWP initial bandwidth part
  • FIG. 1 is a diagram showing a configuration example of a mobile communication system according to the first embodiment
  • FIG. 2 is a diagram showing a configuration example of a protocol stack according to the first embodiment
  • FIG. 3 is a diagram showing a configuration example of a UE according to the first embodiment
  • FIG. 4 is a diagram showing a configuration example of the base station 200 according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration example of the SSB according to the first embodiment
  • FIGS. 6A to 6D are diagrams showing configuration examples of the SSB according to the first embodiment
  • FIG. 7A is a diagram showing an example of a cell selection procedure according to the first embodiment
  • FIG. 7B is a diagram showing an example of a cell reselection procedure according to the first embodiment
  • FIG. 8 is a diagram showing a configuration example of the initial separation BWP according to the first embodiment
  • 9A is a diagram showing a configuration example of an initial separation BWP according to the first embodiment
  • FIG. 9B is a diagram showing a configuration example of an additional SSB according to the first embodiment
  • FIG. 10 is a diagram showing a configuration example of the SSB according to the first embodiment
  • FIG. 11 is a flowchart showing a first operation example according to the first embodiment
  • FIG. 12 is a diagram showing a first operation example in terms of specifications according to the first embodiment
  • FIG. 13 is a diagram showing a first operation example in terms of specifications according to the first embodiment
  • FIG. 14 is a diagram showing a first operation example in terms of specifications according to the first embodiment
  • FIG. 15 is a diagram showing a flowchart showing a second operation example according to the first embodiment
  • FIG. 16 is a diagram showing a configuration example of the SSB according to the second operation example of the first embodiment
  • FIG. 17 is a diagram showing a second operation example according to the specifications according to the first embodiment
  • FIG. 18 is a flowchart showing a second operation example according to the first embodiment
  • FIG. 19 is a diagram showing a third operation example according to the specifications according to the first embodiment
  • FIG. 20 is a diagram showing a third operation example according to the specifications according to the first embodiment
  • FIG. 21 is a diagram showing a third operation example according to specifications according to the first embodiment.
  • FIG. 1 is a configuration example of a mobile communication system 1 according to the first embodiment.
  • the mobile communication system 1 is, for example, a 3GPP 5G (5th Generation) system.
  • the mobile communication system 1 may be a sixth generation or later mobile communication system.
  • the mobile communication system 1 may include a system conforming to standards other than 3GPP.
  • the mobile communication system 1 has a network 10 and a user equipment (UE: User Equipment) 100 that communicates with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • UE 100 is a communication device that communicates via base station 200 .
  • UE 100 is a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • the NR UE 100 includes a general UE (general user equipment: general UE or predetermined user equipment) 100-1 and a specific UE (or specific user equipment) 100-2.
  • the specific UE 100-2 is a UE with reduced capabilities compared to the general UE 100-1.
  • the specific UE 100-2 is a UE that has reduced communication capacity, battery capacity, or processing capacity compared to the general UE 100-1.
  • the specific UE 100-2 may be the Redcap UE described above. Below, the specific UE 100-2 may be referred to as Redcap UE 100-2.
  • the general UE 100-1 is a UE having advanced communication capabilities such as high-speed, large-capacity (eMBB: enhanced mobile broadband) and ultra-reliable and low-delay (URLLC: Ultra-Reliable and Low Latency Communication) characteristics of NR. . Therefore, the general UE 100-1 has higher communication capability than the Redcap UE 100-2.
  • the general UE 100-1 may be referred to as a non-Redcap (non-RedCap) UE.
  • the general UE 100-1 may be an existing UE, ie, a UE prior to Release 16 (so-called legacy UE).
  • the general UE 100-1 and the Redcap UE 100-2 may be used without distinction. That is, the general UE 100-1 in the first embodiment may be replaced with the UE 100. Also, the Redcap UE 100-2 in the first embodiment may be replaced with the UE 100.
  • RedcapUE100-2 conforms to the LPWA (Low Power Wide Area) standard, for example, LTE Cat. 1/1bis, LTE Cat. M1 (LTE-M), LTE Cat. It may be possible to communicate at a communication speed equal to or higher than the communication speed specified by NB1 (NB-IoT).
  • the RedcapUE 100-2 may be able to communicate with a bandwidth equal to or greater than the bandwidth defined by the LPWA standard.
  • the Redcap UE 100-2 may have a limited bandwidth for communication compared to Rel-15 or Rel-16 UEs. For example, for FR1 (Frequency Range 1), the maximum bandwidth supported by Redcap UE 100-2 (also referred to as UE maximum bandwidth) may be 20 MHz.
  • RedcapUE 100-2 may be 100 MHz.
  • the RedcapUE 100-2 may have only one receiver for receiving radio signals.
  • RedcapUE 100-2 may be, for example, a wearable device or a sensor device.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a "cell” constitutes the minimum unit of a communication area.
  • One "cell” belongs to one frequency (carrier frequency).
  • a “cell” may represent a wireless communication resource.
  • a “cell” may represent a communication target of the UE 100 .
  • “frequency” may include a frequency band having a certain width that includes the frequency.
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack. Details of the protocol stack will be described later.
  • Base station 200-1 is also connected to another base station 200-2 (which may be referred to as a neighboring base station) via an Xn interface.
  • Base station 200-1 communicates with neighboring base station 200-2 via the Xn interface.
  • the base station 200 also provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
  • Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
  • gNB gNodeB
  • base station 200-1 and the base station 200-2 may also be referred to as the base station 200 when they are not particularly distinguished.
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for U-plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
  • PHY Physical
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS: Modulation and Coding Scheme)) and resources to be allocated to UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP layer maps an IP flow, which is a unit of QoS (Quality of Service) control by the core network, and a radio bearer, which is a unit of QoS control by AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer in the UE 100 performs session management and mobility management for the UE 100.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • UE 100 includes antenna 101 , communication section 120 and control section 130 .
  • the antenna 101 converts the radio signal from the communication unit 120 into radio waves and radiates the radio waves into space. Also, the antenna 101 receives radio waves in space and converts the radio waves into radio signals. Antenna 101 outputs the converted radio signal to communication section 120 .
  • the communication unit 120 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 120 has at least one reception unit 121 and at least one transmission unit 122 .
  • Receiving section 121 converts a radio signal received by antenna 101 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 130 .
  • Transmitter 122 performs signal processing on a transmission signal, which is a baseband signal output from controller 130 , converts the signal into a radio signal, and transmits the radio signal from antenna 101 .
  • the receiving unit 121 and the transmitting unit 122 may be configured including an RF circuit in order to perform such processing.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the receiving unit 121 may be referred to as a receiver (RX: Receiver).
  • the transmitter 122 may be referred to as a transmitter (TX).
  • TX transmitter
  • UE 100 is general UE 100-1
  • the number of receivers included in communication section 120 may be two to four.
  • UE 100 is Redcap UE 100-2
  • the number of receivers included in communication section 120 may be one or two.
  • the control unit 130 performs various controls in the UE 100.
  • Control unit 130 controls communication with base station 200 via communication unit 120 .
  • the operation or processing of the UE 100 which will be described in the later operation example, may be performed by the control unit 130.
  • the control unit 130 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 130 .
  • the control unit 130 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and RF circuit.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the operation of the functional unit (specifically, at least one of the communication unit 120 and the control unit 130) included in the UE 100 may be described as the operation of the UE 100.
  • the base station 200 has an antenna 201 , a communication section 220 , a control section 230 and a network communication section 240 .
  • the antenna 201 converts the radio signal from the communication unit 220 into radio waves and radiates the radio waves into space. Also, the antenna 201 receives radio waves in space and converts the radio waves into radio signals. Antenna 201 outputs the radio signal after conversion to communication section 220 .
  • the communication unit 220 communicates with the UE 100 via the antenna 201 under the control of the control unit 230.
  • the communication unit 220 has a receiving unit 221 and a transmitting unit 222 .
  • Receiving section 221 converts a radio signal received by antenna 201 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 230 .
  • Transmitting section 222 performs signal processing on the transmission signal, which is a baseband signal output from control section 230 , converts it into a radio signal, and outputs the radio signal to antenna 201 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 220, for example.
  • the control unit 230 controls communication with nodes (for example, the adjacent base station 200-2, the core network device 300) via the network communication unit 240, for example.
  • the operation or processing of the base station 200 in the operation example described later may be performed by the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the controller 230 .
  • the control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna 201 and the RF circuit.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the network communication unit 240 transmits and receives signals to and from the network.
  • Network communication unit 240 receives a signal from adjacent base station 200-2 connected via an Xn interface, which is an interface between base stations, and transmits a signal to adjacent base station 200-2. Also, the network communication unit 240 receives a signal from the core network device 300 connected via the NG interface, for example, and transmits the signal to the core network device 300 .
  • the operation of the functional units provided in the base station 200 may be described as the operation of the base station 200.
  • BWP UE 100 and base station 200 communicate using a bandwidth portion (BWP), which is a portion of the total bandwidth of a cell.
  • the base station 200 configures one or more BWPs for the UE100.
  • the base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs.
  • UE 100 can communicate with base station 200 using the notified BWP.
  • BWP includes the initial BWP (Initial BWP) as described above.
  • the initial BWP is set using parameters common to multiple UEs 100 (cell-specific parameters).
  • the value of the identifier (ie, bwp-id) indicating each of the initial downlink BWP and the initial uplink BWP may be "0".
  • the UE 100 can specify (set) the initial BWP (that is, initial downlink BWP (Initial DL BWP) and initial uplink BWP (Initial UL BWP)) by two methods.
  • initial BWP that is, initial downlink BWP (Initial DL BWP) and initial uplink BWP (Initial UL BWP)
  • the first method is for the UE 100 to specify based on CORESET#0 set using information included in the master information block (MIB) in the physical broadcast channel (PBCH).
  • MIB master information block
  • PBCH physical broadcast channel
  • the second method is for the UE 100 to specify using information included in system information block type 1 (SIB1).
  • SIB1 includes parameters indicating the position and bandwidth in the frequency domain (e.g., locationAndBandwidth), parameters indicating subcarrier spacing (e.g., subcarrierSpacing), and information indicating an extended cyclic prefix (e.g., cyclicPrefix).
  • parameters indicating the position and bandwidth in the frequency domain e.g., locationAndBandwidth
  • parameters indicating subcarrier spacing e.g., subcarrierSpacing
  • information indicating an extended cyclic prefix e.g., cyclicPrefix
  • the UE 100 may apply the BWP identified by the first method to communication with the base station 200 until receiving message 4 (MSG4) in the random access procedure. Also, for example, after receiving message 4, UE 100 may apply the BWP identified by the second method to communication with base station 200 .
  • message 4 in the random access procedure may include an RRC setup message, an RRC resume message and/or an RRC (re)establishment message.
  • the BWP includes an individual BWP (Active BWP or Dedicated BWP) that can be set individually for the UE 100.
  • the individual BWP is an individual BWP for downlink communication (hereinafter sometimes referred to as an individual downlink BWP (UE dedicated DL BWP)) and an individual BWP for uplink communication (hereinafter referred to as an individual uplink BWP (UE dedicated UL BWP).
  • UE dedicated DL BWP an individual BWP for uplink communication
  • the value of the identifier indicating each individual downlink BWP and individual uplink BWP may be other than "0".
  • Individual downlink BWP and individual uplink BWP can be set, for example, based on information included in the RRC message.
  • Information included in the RRC message includes, for example, information for BWP downlink (ie BWP-Downlink) and information for BWP uplink (ie BWP-Uplink). These information include at least parameters indicating the position and bandwidth in the frequency domain (e.g., locationAndBandwidth), parameters indicating subcarrier spacing (e.g., subcarrierSpacing), and information indicating extended cyclic prefixes (e.g., cyclicPrefix). Any parameter may be included.
  • the base station 200 transmits a synchronization signal block (hereinafter sometimes referred to as "SSB").
  • SSB synchronization signal block
  • FIG. 5 is a diagram showing a configuration example of the SSB according to the first embodiment.
  • the SSB consists of 4 OFDM symbols in the time domain and 240 consecutive subcarriers in the frequency domain.
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a physical broadcast channel (PBCH), and a demodulation reference signal for PBCH (DMRS for PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DMRS for PBCH demodulation reference signal for PBCH
  • Each of PSS and SSS occupies 1 OFDM symbol and 127 subcarriers.
  • the control unit 130 of the UE 100 can synchronize with the base station 200 using the PSS and SSS.
  • the PBCH spans 3 OFDM symbols and 240 subcarriers.
  • the receiving section 121 of the UE 100 demodulates the PBCH included in the SSB using the channel estimation result of the PBCH demodulation reference signal (DMRS for PBCH) included in the SSB.
  • DMRS for PBCH PBCH demodulation reference signal
  • the receiving section 121 of the UE 100 can receive the MIB (Master Information Block) notified from the base station 200 using the PBCH.
  • the MIB includes a common control resource set (CORESET), a common search space, and an information element (pdcch-ConfigSIB1) that determines the required PDCCH (Physical Downlink Control Channel).
  • pdcch-ConfigSIB1 contains an information element (controlResourceSetZero) used to set CORESET#0 of the initial BWP.
  • controlResourceSetZero is indicated by an integer value from "0" to "15".
  • the MIB on the PBCH includes parameters (eg, pdcch-ConfigSIB1) for monitoring the PDCCH that schedules SIB1 for the UE 100. That is, UE 100 monitors the scheduling information of SIB1 on PDCCH using the parameters included in MIB. Then, the UE 100 can acquire SIB1 using the scheduling information.
  • the SSB that can acquire SIB1 from the SSB may be referred to as "SSB related to SIB1".
  • "SSB associated with SIB1" is called a cell-defining SSB (CD-SSB (Cell-Defining SSB)).
  • CD-SSB Cell-Defining SSB
  • the PBCH included in the SSB may indicate something that is not related to SIB1.
  • the UE 100 can acquire SIB1 by searching the frequency range where SSBs related to SIB1 (ie, CD-SSB) exist.
  • some SSBs cannot acquire SIB1. That is, some SSBs have SSBs that are not associated with SIB1.
  • the “SSB not related to SIB1” may be an SSB in which the UE 100 cannot acquire SIB1.
  • "SSB not related to SIB1" is called non-cell-defining SSB (NCD-SSB).
  • NCD-SSB non-cell-defining SSB
  • FIGS. 6A to 6D are diagrams showing configuration examples of the SSB according to the first embodiment.
  • one carrier can include multiple SSBs.
  • one carrier may include CD-SSB and NCD-SSB.
  • “SSB1" and “SSB3” are CD-SSBs
  • “SSB2" and “SSB4" are NCD-SSBs.
  • NCGI NR Cell Global Identifier
  • the UE 100 can perform RRM measurement (Radio Resource Management measurement) using multiple SSBs.
  • the UE 100 can measure SSB (CD-SSB or NCD-SSB) for cell selection and/or cell reselection in RRC idle state or RRC inactive state.
  • the UE 100 can measure using at least one of SSB1 to SSB4.
  • FIG. 7A is a diagram showing an example of a cell selection procedure according to the first embodiment.
  • a UE 100 in RRC idle state or RRC inactive state can select a suitable cell by a cell selection procedure and select the cell. For example, when the UE 100 is powered on, or when the PLMN is selected, a cell selection procedure is performed.
  • step S10 the UE 100 searches the NR frequency band and identifies the strongest cell for each CD-SSB for each carrier frequency. UE 100 searches each carrier in turn.
  • step S11 the UE 100 identifies a suitable cell using cell selection criteria. If the UE 100 fails to identify an appropriate cell, it identifies an acceptable cell.
  • step S12 when the UE 100 identifies an appropriate cell or identifies an acceptable cell, it selects the cell and camps on the cell.
  • the UE 100 transitions to the RRC connected state in the camped cell.
  • the UE 100 searches each carrier using the stored information instead of the order in step S10.
  • the UE 100 identifies a suitable cell in step S11
  • the UE 100 selects the cell in step S12.
  • the UE 100 proceeds to step S10 in the case of not using accumulated information, and repeats the above-described processing.
  • CD-SSB measurement is performed.
  • FIG. 7B is a diagram showing an example of a cell reselection procedure according to the first embodiment.
  • UE 100 in RRC idle state or RRC inactive state moves from the current serving cell (eg, cell # 1) to a neighboring cell (eg, cell # 2 or cell # 3) as the cell reselection procedure is performed. I do.
  • UE 100 identifies a neighboring cell (eg, cell #2) that itself camps on by a cell reselection procedure, and reselects the identified neighboring cell.
  • the current serving cell and neighboring cells may be managed by the same base station 200-1. Also, the current serving cell and neighboring cells may be managed by different base stations 200-1 and 200-2.
  • a case where the frequency (carrier frequency) is the same between the current serving cell and the adjacent cell is called an intra frequency
  • a case where the frequency (carrier frequency) is different between the current serving cell and the adjacent cell is called an inter frequency.
  • step S21 the UE 100 performs measurement processing for measuring the radio quality of each of the serving cell and neighboring cells.
  • UE 100 performs measurement processing by measuring CD-SSB transmitted from the serving cell and CD-SSB transmitted from the neighboring cell.
  • step S22 the UE 100 reselects a cell to camp on based on the measurement result.
  • Cell reselection is based on cell selection criteria including measurements. For example, for intra frequencies, reselection is done based on ranked cells. Also, for example, in the case of inter-frequency, it may be done on an absolute priority basis and camp on the highest priority cell available.
  • CD-SSB measurements are also performed in cell reselection in RRC idle state or RRC inactive state.
  • an initial BWP having a narrower bandwidth than the initial BWP for the general UE 100-1 (hereinafter referred to as “separation initial BWP”) is set independently of the initial BWP for generic UE 100-1.
  • FIGS. 8 and 9A are diagrams showing configuration examples of the initial separation BWP according to the first embodiment.
  • FIGS. 8 and 9(A) show examples in which CD-SSB 502 is transmitted in initial downlink BWP 501 (Initial BWP).
  • a separate initial downlink BWP 503 (Separate Initial BWP) is set for the target cell independently of the initial downlink BWP 501 .
  • the split initial downlink BWP 503 is set by SIB1 that can be obtained from CD-SSB 502 .
  • the Redcap UE 100-2 transmits and receives data using the separated initial downlink BWP 503 in the RRC connected state, and then enters the RRC idle state or RRC inactive state. Then, it is assumed that the Redcap UE 100-2 in the RRC idle state or RRC inactive state performs the cell selection described above.
  • the RedcapUE 100-2 retunes the frequency from the isolated initial downlink BWP 503 to the initial downlink BWP 501.
  • RedcapUE 100-2 measures the CD-SSB transmitted from base station 200 in initial downlink BWP 501 in the cell selection procedure.
  • RedcapUE 100-2 then performs a cell selection procedure to select a suitable cell.
  • the RedcapUE 100-2 readjusts the frequency from the initial downlink BWP 501 to the separated initial downlink BWP 503, and performs communication in the separated initial downlink BWP 503.
  • FIG. 9A the RedcapUE 100-2 retunes the frequency from the isolated initial downlink BWP 503 to the initial downlink BWP 501.
  • RedcapUE 100-2 measures the CD-SSB transmitted from base station 200 in initial downlink BWP 501 in the cell selection procedure.
  • RedcapUE 100-2 then performs a cell selection procedure to select a suitable cell.
  • the RedcapUE 100-2 readjusts the frequency from the initial downlink B
  • the RedcapUE 100-2 readjusts the frequency.
  • FIG. 9(B) is a diagram showing a configuration example of the additional SSB 504 (denoted as "Second SSB" in FIG. 9(B)) according to the first embodiment.
  • the RedcapUE 100-2 does not readjust the frequency from the separation initial downlink BWP 503 to the initial downlink BWP 501, and the additional SSB 504 received in the separation initial downlink BWP 503 can be measured.
  • FIG. 10 is a diagram showing a configuration example when the additional SSB 505 is an NCD-SSB.
  • the UE 100 measures CD-SSB. Therefore, even when the separation initial downlink BWP 503 is set and additional SSBs are transmitted in the BWP 503, the Redcap UE 100-2 does not add the additional SSB 505 (NCD -SSB) to CD-SSB 502. Also, the RedcapUE 100-2 performs frequency readjustment from the CD-SSB 502 to the additional SSB 505 (NCD-SSB) after cell selection or cell reselection.
  • Redcap UE 100-2 may readjust the frequency if the SSB 505 is NCD-SSB. In this case, in the RedcapUE 100-2, frequency readjustment may cause a delay and increase power consumption.
  • the RedcapUE 100-2 is in the RRC idle state or RRC inactive state.
  • NCD-SSB 505 is measured when performing cell selection and/or cell reselection in a state.
  • the first embodiment relates to a specific user equipment (eg, Redcap UE 100-2) having reduced capabilities compared to a predetermined user equipment (eg, general UE 100-1).
  • the specific user equipment is a specific user device different from the first initial bandwidth part (BWP) (eg, initial downlink BWP 501) that is part of the bandwidth of the cell of the base station (eg, base station 200-1).
  • BWP first initial bandwidth part
  • the cell-defined synchronization signal block (SSB) transmitted from the base station in the first initial BWP (eg, CD-SSB 502) and a non-cell-defined SSB For example, it has a communication unit (eg, communication unit 120) that receives the NCD-CCD 505) from the base station.
  • a controller eg, controller 130
  • the RedcapUE 100-2 can reduce power consumption.
  • the first initial BWP eg, initial downlink BWP 501
  • general user equipment eg, general UE 100-1
  • a specific user equipment eg, Redcap UE 100-2
  • the specific user equipment uses the first initial BWP (eg, initial You may communicate in downstream BWP501).
  • An operation example according to the first embodiment will be described below.
  • an operation example of cell selection in the RRC idle state or RRC inactive state will be described as a first operation example.
  • an operation example of cell reselection in the RRC idle state or RRC inactive state will be described.
  • FIG. 11 is a flowchart showing a first operation example according to the first embodiment.
  • FIG. 11 is mainly performed by the control unit 130 of the UE 100 (or Redcap UE 100-2). It is assumed that UE 100 (or Redcap UE 100-2) is in RRC idle state or RRC inactive state.
  • step S30 the UE 100 determines whether it is the Redcap UE 100-2. If the UE 100 is the Redcap UE 100-2 (YES in step S30), the process proceeds to step S31. On the other hand, if the UE 100 is not the Redcap UE 100-2 in step S30 (NO in step S30), the process proceeds to step S33.
  • step S31 the Redcap UE 100-2 determines whether or not the separation initial downlink BWP 503 is set for the candidate cell and whether or not the BWP 503 has received the NCD-SSB 505. If the separation initial downstream BWP 503 is set and the BWP 503 receives the NCD-SSB 505 (YES in step S31), the process proceeds to step S32. On the other hand, if the separation initial downlink BWP 503 is not set, or if the separation initial downlink BWP 503 is set but the BWP 503 does not receive the NCD-SSB 505, the process proceeds to step S34.
  • step S32 the RedcapUE 100-2 measures the NCD-SSB 505. After that, the Redcap UE 100-2 moves to step S10 of the cell selection procedure and executes the cell selection procedure after the measurement process.
  • step S34 the RedcapUE 100-2 measures CD-SSB. For example, as shown in FIG. 9(A) , even if the separation initial downlink BWP 503 is set, the RedcapUE 100-2 does not receive the NCD-SSB 505 in the BWP 503, the transmission is performed in the initial downlink BWP 501. CD-SSB502 is measured. Also, for example, as shown in FIG. 9B, when the CD-SSB 504 is received in the separation initial downlink BWP 503, the Redcap UE 100-2 measures the CD-SSB 504. After that, the Redcap UE 100-2 moves to step S10 (FIG. 7A) of the cell selection procedure and executes the cell selection procedure after the measurement process.
  • step S10 FIG. 7A
  • step S33 the UE 100 performs normal cell selection processing.
  • the UE 100 executes step S10 (FIG. 7(A)) of the cell selection procedure from the beginning.
  • FIGS. 12 to 14 are diagrams showing a first operation example according to specifications according to the first embodiment.
  • UEs 100 other than Redcap UE 100-2 perform normal cell selection based on CD-SSB.
  • the RedcapUE 100-2 uses the NCD-SSB for the candidate cell for cell selection. take measurements.
  • the RedcapUE 100-2 does not , CD-SSB-based cell selection.
  • the separation initial downlink BWP is set as a candidate cell, and the NCD-SSB is broadcast in the separation initial downlink BWP. If it does, do the following: That is, RedcapUE 100-2 measures the received power and received quality based on NCD-SSB. On the other hand, if such conditions are not met, RedcapUE 100-2 measures the received power and received quality based on CD-SSB.
  • the second operation example is an operation example in the case of cell reselection.
  • the control unit of RedcapUE 100-2 measures the non-cell defined SSB for cell reselection for the serving cell, and the cell for cell reselection for neighboring cells adjacent to the serving cell Measure the definition SSB.
  • the non-cell-defined SSB corresponds to NCD-SSB515, and the cell-defined SSB corresponds to CD-SSB522.
  • the communication unit (eg, communication unit) 120 of RedcapUE 100-2 receives a cell definition SSB from a base station having an adjacent cell (eg, base station 200-1) or another base station (eg, base station 200-2). and a non-cell-defined SSB from the base station having the serving cell (eg, base station 200-1).
  • FIG. 15 is a flowchart showing a second operation example according to the first embodiment. Also in the second operation example, the RedcapUE 100-2 is assumed to be in the RRC idle state or the RRC inactive state. The processing shown in FIG. 15 is performed, for example, by the control unit 130 of the RedcapUE 100-2.
  • step S41 the Redcap UE 100-2 receives the first NCD-SSB from the base station 200-1 having the serving cell and the neighboring cell, in which the separated initial downlink BWP is set, and the base station 200-having the neighboring cell. 1 (or base station 200-2) has received the second NCD-SSB.
  • step S41 the RedcapUE 100-2 proceeds to step S42 if the determination is satisfied (YES in step S41), and proceeds to step S44 if the determination is not satisfied (NO in step S41).
  • FIG. 16 is a diagram showing a configuration example of the SSB according to the second operation example of the first embodiment.
  • a separate initial downlink BWP 513 is set for the serving cell, and NCD-SSB 515 is transmitted from the base station 200-1 having the serving cell in this BWP 513.
  • a separate initial downlink BWP 523 is set for the adjacent cell, and in this BWP 523, the NCD-SSB 525 is transmitted from the base station 200-1 (or the base station 200-2) having the adjacent cell.
  • CD-SSB 512 is transmitted in initial downlink BWP 511 in the serving cell
  • CD-SSB 522 is transmitted in initial downlink BWP 521 in the adjacent cell.
  • step S41 it is determined whether or not the Redcap UE 100-2 receives the NCD-SSB 515 (eg, the first NCD-SSB) in the serving cell and receives the NCD-SSB 525 (eg, the second NCD-SSB) in the neighboring cell. be done.
  • the NCD-SSB 515 eg, the first NCD-SSB
  • the NCD-SSB 525 eg, the second NCD-SSB
  • the Redcap UE 100-2 measures NCD-SSB 515 for the serving cell and measures CD-SSB 522 for the neighboring cells when performing cell selection and/or cell reselection.
  • Redcap UE 100-2 measures CD-SSB 522 for neighboring cells in order to receive SIB1 from CD-SSB 512 and obtain parameters such as threshold values used in the cell reselection procedure from SIB1.
  • the RedcapUE 100-2 measures the NCD-SSD 515 at least for the serving cell, it can use the separation initial downlink BWP 513 as it is, and does not need to readjust the frequency.
  • step S44 the Redcap UE 100-2 measures CD-SSB 512 for the serving cell and measures CD-SSB 522 for the neighbor cell.
  • step S42 and step S44 the process moves to step S21 (FIG. 7(B)) of the cell reselection procedure, and the process after the measurement process is performed.
  • step S43 the general UE 100-1 performs normal cell reselection processing.
  • FIGS. 17 and 14 are diagrams showing a second operation example according to the specifications according to the first embodiment.
  • the general UE 100-1 undergoes cell reselection based on CD-SSB.
  • the split initial downlink BWP is set and the NCD-SSB is broadcast in the split initial downlink BWP
  • the measurement of the neighboring cell in cell reselection is performed based on the CD-SSB
  • the serving cell measurement in cell reselection is based on the NCD-SSB.
  • the reception level and reception quality of the neighboring cells are CD- It is measured based on SSB, and the reception level and reception quality of the serving cell are measured based on NCD-SSB. Otherwise, each reception level and each reception quality are measured based on CD-SSB for both the serving cell and neighboring cells.
  • Redcap UE 100-2 measures NCD-SSB 515 for the serving cell and measures CD-SSB 522 for the neighboring cell.
  • the third operation example is an example in which Redcap UE 100-2 measures NCD-SSB 515 for the serving cell and also measures NCD-SSB 525 for neighboring cells.
  • the control unit 130 of RedcapUE 100-2 measures the first non-cell defined SSB (eg, NCD-SSB 515) for cell reselection for the serving cell, and for cell reselection for neighboring cells, A second non-cell defined SSB (eg, NCD-SSB 525) is measured.
  • the communication unit of RedcapUE 100-2 receives the first non-cell-defined SSB from the base station having the serving cell (eg, base station 200-1), and the base station having the adjacent cell (eg, base station 200-1) or from another base station (eg, base station 200-2).
  • FIG. 18 is a flowchart showing a second operation example according to the first embodiment. The following description will focus on differences from the second operation example.
  • Step S51 of FIG. 18 is the same as step S41 (FIG. 15) of the second operation example.
  • step S52 the RedcapUE 100-2 measures NCD-SSB515 for the serving cell and measures NCD-SSB525 for the neighboring cell.
  • step S54 the Redcap UE 100-2 measures CD-SSB 512 for the serving cell and measures CD-SSB 522 for the neighbor cell.
  • 19 to 21 are diagrams showing a third operation example according to specifications according to the first embodiment.
  • the general UE 100-1 undergoes cell reselection based on CD-SSB.
  • the separation initial downlink BWP is set and NCD-SSB is broadcast in the BWP
  • the measurement of the neighboring cells in cell reselection is performed based on NCD-SSB
  • cell reselection Serving cell measurements are made based on the NCD-SSB.
  • each reception of the serving cell and the neighboring cell Levels and respective reception qualities are measured based on NCD-SSB. Otherwise, each reception level and each reception quality are measured based on CD-SSB for both the serving cell and neighboring cells.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided to cause a computer to perform the operation of the components.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the base station 200 is integrated, and at least a part of the UE 100 or the base station 200 is configured as a semiconductor integrated circuit (chipset, SoC (System-on-a-Chip)). good too.
  • the terms “based on” and “depending on,” unless expressly stated otherwise, “based only on.” does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Also, “obtain/acquire” may mean obtaining information among stored information, or it may mean obtaining information among information received from other nodes. or it may mean obtaining the information by generating the information.
  • the terms “include,” “comprise,” and variations thereof are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items.
  • references to elements using the "first,” “second,” etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used herein as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

所定ユーザ装置(100-1)と比較して低減された能力を有する特定ユーザ装置(100-2)であって、基地局(200-1)のセルの帯域幅の一部である第1初期帯域幅部分(BWP)と異なる前記特定ユーザ装置(100-2)向けの第2初期BWP(503,513,523)において、前記基地局(200-1)から前記第1初期BWP(501,511,521)で送信されるセル定義同期信号ブロック(SSB)(502,512,522)と異なる非セル定義SSB(505,515,525)を、前記基地局(200-1)から受信する通信部(110)と、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、前記非セル定義SSB(505,515,525)を測定する制御部(130)と、を備える。

Description

特定ユーザ装置、及び通信制御方法
 本開示は、特定ユーザ装置、及び通信制御方法に関する。
関連出願への相互参照
 本出願は、2021年11月2日に出願された特許出願番号2021-179787号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 従来から、RRC(Radio Resource Control)アイドル状態又はRRCインアクティブ状態のユーザ装置(UE:User Equipment)では、セル選択(cell selection)又はセル再選択(cell reselection)が行われる場合がある。ユーザ装置は、セル選択により、適切なセル(suitable cell)からサービスの提供を受けることが可能となり、セル再選択により、サービングセルと隣接する隣接セルからサービスの提供を受けることが可能となる。
 一方、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)では、帯域幅部分(BWP:Band With Part)について規定している。BWPは、セルで用いられる全帯域幅のうち、一部の帯域幅部分である。ユーザ装置は、BWPを用いて基地局と通信することで、セルの全帯域幅を用いて通信する場合と比較して、ユーザ装置の消費電力の削減等を図ることが可能となる。
 BWPは、初期BWPを含む。初期BWPは、少なくともユーザ装置の初期アクセスに用いられる。また、初期BWPは、複数のユーザ装置において共通に用いられることが可能である。
 また、3GPPにおいて、「Reduced capability NR device」(以下、「RedcapUE」と称する場合がある。)が検討されている。RedcapUEは、IoT(Internet of Things)向けのミドルレンジの性能及び価格を有するUEとなっている。
 3GPPでは、RedcapUEを導入するに際し、RedcapUE向けの初期BWPとして、分離初期BWP(Separate Initial BWP)を、一般ユーザ装置用の初期BWPとは独立に設定することについて合意している。分離初期BWPには、下り通信用の分離初期BWP(separate initial DL BWP)と、上り通信用の分離初期BWP(separate initial UL BWP)とがある。前者を、分離初期下りBWPと称する場合がある。また、後者を、分離初期上りBWPと称する場合がある。
 また、3GPPでは、RedcapUE向けの分離初期下りBWPにおいて、付加的なSSB(additional SSB)を送信することについて提案されている。
3GPP TS 38.300 V16.7.0(2021-09) 3GPP寄書:R1-2106563 3GPP寄書:R1-2106601
 RRCアイドル状態又はRRCインアクティブ状態のRedcapUEにおいて、セル選択及び/又はセル再選択が行われる際、付加的なSSBを用いた場合でも、分離初期下りBWPと初期下りBWPとで周波数が異なることから、周波数の再調整(retuning)が行われる場合がある。
 RedcapUEでは、周波数の再調整により、遅延が発生し、消費電力が増加する場合がある。
 そこで、本開示は、消費電力を削減することが可能な特定ユーザ装置、及び通信制御方法を提供することを目的する。
 本開示の一態様に係る特定ユーザ装置は、所定ユーザ装置と比較して低減された能力を有する特定ユーザ装置である。前記特定ユーザ装置は、基地局のセルの帯域幅の一部である第1初期帯域幅部分(BWP)と異なる前記特定ユーザ装置向けの第2初期BWPにおいて、前記基地局から前記第1初期BWPで送信されるセル定義同期信号ブロック(SSB)と異なる非セル定義SSBを、前記基地局から受信する通信部と、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、前記非セル定義SSBを測定する制御部と、を備える。
 本開示の一態様に係る通信制御方法は、所定ユーザ装置と比較して低減された能力を有する特定ユーザ装置における通信制御方法である。前記通信制御方法は、基地局のセルの帯域幅の一部である第1初期帯域幅部分(BWP)と異なる前記特定ユーザ装置向けの第2初期BWPにおいて、前記基地局から前記第1初期BWPで送信されるセル定義同期信号ブロック(SSB)と異なる非セル定義SSBを、前記基地局から受信するステップと、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、前記非セル定義SSBを測定するステップと、を有する。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る移動通信システムの構成例を表す図であり、 図2は、第1実施形態に係るプロトコルスタックの構成例を表す図であり、 図3は、第1実施形態に係るUEの構成例を表す図であり、 図4は、第1実施形態に係る基地局200の構成例を表す図であり、 図5は、第1実施形態に係るSSBの構成例を表す図であり、 図6(A)から図6(D)は、第1実施形態に係るSSBの構成例を表す図であり、 図7(A)は第1実施形態に係るセル選択プロシージャ、図7(B)は第1実施形態に係るセル再選択プロシージャの例を夫々表す図であり、 図8は、第1実施形態に係る分離初期BWPの構成例を表す図であり、 図9(A)は第1実施形態に係る分離初期BWP、図9(B)は第1実施形態に係る付加的なSSBの構成例を夫々表す図であり、 図10は、第1実施形態に係るSSBの構成例を表す図であり、 図11は、第1実施形態に係る第1動作例を表すフローチャートであり、 図12は、第1実施形態に係る仕様上の第1動作例を表す図であり、 図13は、第1実施形態に係る仕様上の第1動作例を表す図であり、 図14は、第1実施形態に係る仕様上の第1動作例を表す図であり、 図15は、第1実施形態に係る第2動作例を表すフローチャートを表す図であり、 図16は、第1実施形態の第2動作例に係るSSBの構成例を表す図であり、 図17は、第1実施形態に係る仕様上の第2動作例を表す図であり、 図18は、第1実施形態に係る第2動作例を表すフローチャートであり、 図19は、第1実施形態に係る仕様上の第3動作例を表す図であり、 図20は、第1実施形態に係る仕様上の第3動作例を表す図であり、 図21は、第1実施形態に係る仕様上の第3動作例を表す図である。
 以下、図面を参照して、本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一又は類似を付すことにより重複説明が省略され得る。
 [第1実施形態]
 (1.1)移動通信システムの構成例
 図1は、第1実施形態に係る移動通信システム1の構成例である。移動通信システム1は、例えば、3GPPの5G(5th Generation)システムである。移動通信システム1は、第6世代以降の移動通信システムであってもよい。また、移動通信システム1は、3GPP以外の規格に準拠したシステムが含まれてもよい。
 図1に示すように、移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(UE:User Equipment)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
 UE100は、基地局200を介して通信する通信装置である。UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 本実施形態において、NRのUE100として、一般的なUE(一般ユーザ装置:一般UE又は所定ユーザ装置)100-1と、特定UE(又は特定ユーザ装置)100-2とがある。特定UE100-2は、一般UE100-1に比べて低減された能力を有するUEである。なお、特定UE100-2は、一般UE100-1に比べて低減された通信能力、電池能力又は処理能力を有するUEである。特定UE100-2は、上述したRedcapUEであってよい。以下では、特定UE100-2を、RedcapUE100-2と称する場合がある。他方、一般UE100-1は、NRの特徴である高速大容量(eMBB:enhanced Mobile Broadband)及び超高信頼低遅延(URLLC:Ultra-Reliable and Low Latency Communication)といった高度な通信能力を有するUEである。従って、一般UE100-1は、RedcapUE100-2よりも高い通信能力を有する。一般UE100-1は、非Redcap(non-RedCap)UEと称されてもよい。一般UE100-1は、既存のUE、すなわち、リリース16以前のUE(いわゆる、レガシーUE)であってもよい。
 以下では、一般UE100-1とRedcapUE100-2とを区別しないで用いる場合がある。すなわち、第1実施形態における一般UE100-1は、UE100と置き換えられてもよい。また、第1実施形態におけるRedcapUE100-2は、UE100と置き換えられてもよい。
 RedcapUE100-2は、LPWA(Low Power Wide Area)規格、例えば、LTE Cat.1/1bis、LTE Cat.M1(LTE-M)、LTE Cat.NB1(NB-IoT)で規定されている通信速度以上の通信速度で通信可能であってもよい。RedcapUE100-2は、LPWA規格で規定されている帯域幅以上の帯域幅で通信可能であってよい。RedcapUE100-2は、Rel-15又はRel-16のUEと比較して、通信に用いる帯域幅が限定されていてよい。例えば、FR1(Frequency Range 1)について、RedcapUE100-2によってサポートされる最大帯域幅(UE最大帯域幅とも称される)は、20MHzであってよい。また、FR2(Frequency Range 2)について、RedcapUE100-2によってサポートされる最大帯域幅は、100MHzであってよい。RedcapUE100-2は、無線信号を受信する受信機を1つのみ有していてよい。RedcapUE100-2は、例えば、ウェアラブル装置又はセンサ装置等であってよい。
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。「セル」は、通信エリアの最小単位を構成する。1つの「セル」は、1つの周波数(キャリア周波数)に属する。「セル」は、無線通信リソースを表してもよい。また、「セル」は、UE100の通信対象を表してもよい。また、「周波数」は、当該周波数を含む一定の幅を有する周波数帯域も含んでもよい。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックの詳細については後述する。また、基地局200-1は、Xnインターフェイスを介して他の基地局200-2(隣接基地局と称されてもよい)に接続される。基地局200-1は、Xnインターフェイスを介して隣接基地局200-2と通信する。また、基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
 なお、基地局200-1と基地局200-2についても、特に区別しない場合は、基地局200と称する場合がある。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、U-plane処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 (1.2)プロトコルスタックの構成例
 次に、図2を参照して、第1実施形態に係るプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 UE100においてRRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (1.3)ユーザ装置の構成例
 次に、図3を参照して、第1実施形態に係るUE100の構成例について説明する。UE100は、アンテナ101と、通信部120と、制御部130とを備える。
 アンテナ101は、通信部120からの無線信号を電波に変換し、当該電波を空間に放射する。また、アンテナ101は、空間における電波を受信し、当該電波を無線信号に変換する。アンテナ101は、変換後の無線信号を、通信部120へ出力する。
 通信部120は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部120は、少なくとも1つの受信部121と、少なくとも1つの送信部122とを有する。受信部121は、アンテナ101が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部130に出力する。送信部122は、制御部130が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ101から送信する。受信部121及び送信部122は、このような処理を行うため、RF回路を含んで構成されてもよい。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 また、受信部121は、受信機(RX:Receiver)と称されてよい。送信部122は、送信機(TX:Transmitter)と称されてよい。UE100が一般UE100-1である場合、通信部120が有する受信機の数は、2つ乃至4つであってもよい。UE100がRedcapUE100-2である場合、通信部120が有する受信機の数は、1つ又は2つであってもよい。
 制御部130は、UE100における各種の制御を行う。制御部130は、通信部120を介した基地局200との通信を制御する。後述する動作例で説明するUE100の動作又は処理は、制御部130が行うものであってもよい。
 制御部130は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部130の動作を行ってもよい。
 制御部130は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 なお、UE100が備える機能部(具体的には、通信部120と、制御部130との少なくともいずれか)の動作を、UE100の動作として説明する場合がある。
(1.4)基地局の構成例
 次に、図4を参照して、第1実施形態に係る基地局200の構成例について説明する。基地局200は、アンテナ201と、通信部220と、制御部230と、ネットワーク通信部240とを有する。
 アンテナ201は、通信部220からの無線信号を電波に変換し、当該電波を空間に放射する。また、アンテナ201は、空間における電波を受信し、当該電波を無線信号に変換する。アンテナ201は、変換後の無線信号を、通信部220へ出力する。
 通信部220は、制御部230の制御下で、アンテナ201を介してUE100との通信を行う。通信部220は、受信部221と、送信部222とを有する。受信部221は、アンテナ201が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部230に出力する。送信部222は、制御部230が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ201へ出力する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部220を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワーク通信部240を介したノード(例えば、隣接基地局200-2、コアネットワーク装置300)との通信を制御する。後述する動作例における基地局200の動作又は処理は、制御部230が行うものであってもよい。
 制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。 制御部230は、アンテナ201及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 ネットワーク通信部240は、信号をネットワークと送受信する。ネットワーク通信部240は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局200-2から信号を受信し、隣接基地局200-2へ信号を送信する。また、ネットワーク通信部240は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 なお、基地局200が備える機能部(具体的には、通信部220と、制御部230との少なくともいずれか)の動作を、基地局200の動作として説明する場合がある。
 (1.5)BWP
 UE100と基地局200とは、セルの全帯域幅の一部分である帯域幅部分(BWP)を用いて通信を行う。具体的には、基地局200は、1つ又は複数のBWPをUE100に設定する。基地局200は、設定された1つ又は複数のBWPのうち、基地局200との通信に用いるBWP(すなわち、アクティブBWP)をUE100へ通知できる。UE100は、通知されたBWPを用いて、基地局200と通信ができる。
 BWPは、上述したように初期BWP(Initial BWP)を含む。例えば、初期BWPは、複数のUE100に共通のパラメータ(セルスペシフィックパラメータ)を用いて設定される。初期下りBWP及び初期上りBWPのそれぞれを示す識別子(すなわち、bwp-id)の値は、「0」であってもよい。
 UE100は、例えば、2つの方法で、初期BWP(すなわち、初期下りBWP(Initial DL BWP)及び初期上りBWP(Initial UL BWP))を特定(設定)できる。
 第1の方法は、UE100が、物理ブロードキャストチャネル(PBCH)内のマスタ情報ブロック(MIB:Master Information Block)に含まれる情報を用いて設定されるCORESET#0に基づいて、特定する方法である。
 第2の方法は、UE100が、システム情報ブロックタイプ1(SIB1)に含まれる情報を用いて特定する方法である。SIB1に含まれる情報としては、周波数ドメインにおける位置及び帯域幅を示すパラメータ(例えば、locationAndBandwidth)、サブキャリア間隔を示すパラメータ(例えば、subcarrierSpacing)、及び、拡張サイクリックプレフィックスを示す情報(例えば、cyclicPrefix)の少なくともいずれかのパラメータが含まれてよい。
 UE100は、例えば、ランダムアクセス手順におけるメッセージ4(MSG4)の受信までは、第1の方法により特定されたBWPを、基地局200との通信に適用してよい。また、UE100は、例えば、メッセージ4の受信後は、第2の方法により特定されたBWPを、基地局200との通信に適用してよい。ここで、ランダムアクセス手順におけるメッセージ4は、RRCセットアップメッセージ、RRC再開メッセージ、及び/又は、RRC(再)確立メッセージを含んでもよい。
 また、BWPは、UE100個別に設定可能な個別BWP(Active BWP又はDedicated BWP)を含む。個別BWPは、下り通信用の個別BWP(以下、個別下りBWP(UE dedicated DL BWP)と称する場合がある。)と上り通信用の個別BWP(以下、個別上りBWP(UE dedicated UL BWP)と称する場合がある。)とを含む。例えば、個別下りBWP及び個別上りBWPのそれぞれを示す識別子の値は「0」以外であってもよい。
 個別下りBWPと個別上りBWPは、例えば、RRCメッセージに含まれる情報に基づいて、設定可能である。RRCメッセージに含まれる情報としては、例えば、下りBWP用の情報(すなわち、BWP-Downlink)と、上りBWP用の情報(すなわち、BWP-Uplink)とがある。これらの情報には、周波数ドメインにおける位置及び帯域幅を示すパラメータ(例えば、locationAndBandwidth)、サブキャリア間隔を示すパラメータ(例えば、subcarrierSpacing)、及び、拡張サイクリックプレフィックスを示す情報(例えば、cyclicPrefix)の少なくともいずれかのパラメータが含まれてよい。
 (1.6)SSB
 基地局200(送信部222)は、同期信号ブロック(以下、「SSB」と称する場合がある。)を送信する。UE100の受信部121は、SSBを基地局200から受信する。
 図5は、第1実施形態に係るSSBの構成例を表す図である。図5に示すように、SSBは、時間ドメインでは、4OFDMシンボルで構成され、周波数ドメインでは、「240」の連続するサブキャリアで構成される。SSBは、プライマリ同期信号(以下、PSS)及びセカンダリ同期信号(以下、SSS)と、物理報知チャネル(PBCH(Physical Broadcast Channel))と、PBCH用復調用参照信号(DMRS for PBCH)を含む。
 PSS及びSSSのそれぞれは、1OFDMシンボル及び127サブキャリアを占有する。UE100の制御部130は、PSS及びSSSを利用して、基地局200と同期をとることができる。
 PBCHは、3つのOFDMシンボル及び240サブキャリアに及んでいる。UE100の受信部121は、SSBに含まれるPBCH用復調用参照信号(DMRS for PBCH)のチャネル推定結果を利用して、SSBに含まれるPBCHを復調する。
 UE100の受信部121では、PBCHを利用して基地局200から報知されたMIB(Master Information Block)を受信できる。MIBは、共通コントロールリソースセット(CORESET)、共通サーチスペース及び必要なPDCCH(Physical Downlink Control Channel)を決定する情報要素(pdcch-ConfigSIB1)を含む。pdcch-ConfigSIB1は、初期BWPのCORESET#0を設定するために用いられる情報要素(controlResourceSetZero)を含む。controlResourceSetZeroは、「0」から「15」までの整数値で示される。
 SSBには、SIB1に関連するSSBがある。PBCH上のMIBは、UE100に対して、SIB1をスケジューリングするPDCCHを監視するためのパラメータ(例えば、pdcch-ConfigSIB1)を含む。すなわち、UE100は、MIBに含まれる当該パラメータを用いて、SIB1のスケジューリング情報をPDCCH上で監視する。そして、UE100は、当該スケジューリング情報を利用して、SIB1を取得できる。このように、UE100において、SSBからSIB1を取得することができる当該SSBのことを、「SIB1に関連するSSB」と称してもよい。「SIB1に関連するSSB」を、セル定義SSB(CD-SSB(Cell-Defining SSB))と呼ぶ。以下では、セル定義SSBを、CD-SSBと称する場合がある。
 一方、SSBに含まれるPBCHは、SIB1に関連しないものを示す場合がある。この場合、UE100は、SIB1に関連するSSB(すなわち、CD-SSB)が存在する周波数範囲をサーチして、SIB1を取得することができる。このように、SSBには、SIB1を取得することができないSSBも存在する。すなわち、SSBには、SIB1に関連しないSSBもある。「SIB1に関連しないSSB」とは、UE100においてSIB1を取得することができないSSBであってもよい。「SIB1に関連しないSSB」を、非セル定義SSB(NCD-SSB(non-Cell-Defining SSB))と呼ぶ。以下では、非セル定義SSBを、NCD-SSBと称する場合がある。
 図6(A)から図6(D)は、第1実施形態に係るSSBの構成例を表す図である。図6(A)に示すように、1つのキャリアには、複数のSSBが含まれ得る。また、1つのキャリアには、CD-SSBとNCD-SSBとが含まれる場合もある。図6(A)の例では、「SSB1」と「SSB3」がCD-SSBであり、「SSB2」と「SSB4」がNCD-SSBである。
 図6(A)に示すように、「SSB1」と「SSB3」には、グローバルセルID(NCGI(NR Cell Global Identifier))が示されている。「SSB1」と「SSB3」は、CD-SSBであるため、UE100は、「SSB1」又は「SSB3」からSIB1を取得できる。SIB1には、グローバルセルIDを構成するPLMN(Public Land Mobile Network) IDとNCGI(NR Cell Global Identifier)が含まれる。したがって、UE100は、「SSB1」又は「SSB3」を取得すると、各セルのグローバルセルIDを取得できる。図6(A)の例では、「SSB1」では、グローバルセルID=「5」、「SSB3」では、グローバルセルID=「6」となっている。
 UE100は、複数のSSBを用いて、RRM測定(Radio Resource Management measurement)を実行することができる。例えば、UE100は、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、SSB(CD-SSB又はNCD-SSB)を測定することができる。図6(A)の例では、UE100は、SSB1からSSB4の少なくともいずれかを用いて測定することができる。
(1.7)セル選択プロシージャ
 図7(A)は、第1実施形態に係るセル選択プロシージャの例を表す図である。
 RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、セル選択プロシージャにより、適切なセル(suitable cell)を選択し、当該セルを選択することができる。例えば、UE100の電源が投入された場合、又は、PLMNが選択された場合において、セル選択プロシージャが行われる。
 セル選択プロシージャには、蓄積情報を利用しない場合(初期セル選択)と、蓄積情報を利用する場合(蓄積情報セル選択)がある。最初に、蓄積情報を利用しない場合について説明する。
 図7(A)に示すように、ステップS10において、UE100は、NR周波数帯をサーチし、各キャリア周波数について、CD-SSB毎に最も強いセルを特定する。UE100は、順番に、各キャリアをサーチする。
 ステップS11において、UE100は、セル選択基準を用いて、適切なセルを特定する。UE100は、適切なセルを特定できなかった場合、許容可能なセル(acceptable cell)を特定する。
 ステップS12において、UE100は、適切なセルを特定した場合、又は許容可能なセルを特定した場合、当該セルを選択し、当該セルにキャンプする。
 その後、UE100は、キャンプしたセルにおいて、RRCコネクティッド状態へ移行する。
 一方、蓄積情報を利用する場合、UE100は、ステップS10において、順番ではなく、蓄積情報を利用して、各キャリアをサーチする。ステップS11において、UE100は、適切なセルを特定した場合、ステップS12において、UE100はそのセルを選択する。一方、ステップS11において、UE100は、適切なセルを特定することができなかった場合、蓄積情報を利用しない場合におけるステップS10へ移行して、上述した処理を繰り返す。
 このように、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択は、CD-SSBの測定が行われる。
 (1.8)セル再選択プロシージャ
 図7(B)は、第1実施形態に係るセル再選択プロシージャの例を表す図である。
 RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、移動に伴って、現在のサービングセル(例えば、セル#1)から隣接セル(例えば、セル#2又はセル#3)へ移行するためセル再選択プロシージャを行う。UE100は、自身がキャンプオンする隣接セル(例えば、セル#2)をセル再選択プロシージャにより特定し、特定した隣接セルを再選択する。現在のサービングセル及び隣接セルは、同一の基地局200-1により管理されてもよい。また、当該現在のサービングセル及び隣接セルは、互いに異なる基地局200-1と基地局200-2とにより管理されてもよい。なお、現在のサービングセルと隣接セルとで周波数(キャリア周波数)が同じである場合をイントラ周波数と呼び、現在のサービングセルと隣接セルとで周波数(キャリア周波数)が異なる場合をインター周波数と呼ぶ。
 図7(B)に示すように、ステップS21において、UE100は、サービングセルと隣接セルのそれぞれについて無線品質を測定する測定処理を行う。この場合、UE100は、サービングセルから送信されるCD-SSBと、隣接セルから送信されるCD-SSBとを測定することで、測定処理を行う。
 ステップS22において、UE100は、測定結果に基づいて、自身がキャンプオンするセルを再選択する。セル再選択は、測定結果を含むセル選択基準に基づいて行われる。例えば、イントラ周波数の場合、ランキングしたセルに基づいて再選択が行われる。また、例えば、インター周波数の場合、絶対的優先度に基づいて行われ、利用可能な最高優先度のセルにキャンプオンすることができる。
 このように、RRCアイドル状態又はRRCインアクティブ状態におけるセル再選択においても、CD-SSBの測定が行われる。
 (1.9)分離初期BWP(Separate Initial BWP)
 上述したように、3GPPでは、RedcapUE100-2を導入するにあたって、RedcapUE100-2用の初期BWPとして、一般UE100-1用の初期BWPよりも帯域幅が狭い初期BWP(以下、「分離初期BWP」と称する場合がある。)を一般UE100-1用の初期BWPとは独立に設定することが合意されている。
 図8と図9(A)は、第1実施形態に係る分離初期BWPの構成例を表す図である。図8と図9(A)は、初期下りBWP501(Initial BWP)において、CD-SSB502が送信される例を表している。図8と図9(A)に示すように、対象セルに対して、初期下りBWP501とは独立して、分離初期下りBWP503(Separate Initial BWP)が設定されている。上述したように、分離初期下りBWP503は、CD-SSB502から取得可能なSIB1により設定される。
 ここで、以下のように仮定した場合を考える。すなわち、RedcapUE100-2が、RRCコネクティッド状態において、分離初期下りBWP503を用いて、データの送受信を行い、その後、RRCアイドル状態又はRRCインアクティブ状態となった場合を仮定する。そして、RRCアイドル状態又はRRCインアクティブ状態のRedcapUE100-2が、上述したセル選択を行う場合を仮定する。
 この場合、図9(A)に示すように、RedcapUE100-2は、分離初期下りBWP503から、初期下りBWP501へ、周波数の再調整(retuning)を行う。そして、RedcapUE100-2は、セル選択プロシージャにおいて、初期下りBWP501において基地局200から送信されたCD-SSBを測定する。その後、RedcapUE100-2は、セル選択プロシージャを実行して、適切なセルを選択する。RedcapUE100-2は、初期下りBWP501から分離初期下りBWP503へ、周波数の再調整を行い、分離初期下りBWP503において通信を行う。
 このように、分離初期下りBWP503が設定された場合、RedcapUE100-2は、周波数の再調整を行う。
 そのため、3GPPでは、上述したように、付加的なSSBを導入することについて提案されている。図9(B)は、第1実施形態に係る付加的なSSB504(図9(B)では「Second SSB」と表記される)の構成例を表す図である。
 例えば、図9(B)において、付加的なSSB504がCD-SSBであると仮定する。この場合、RedcapUE100-2は、上述したセル選択を行う場合であっても、分離初期下りBWP503から初期下りBWP501への周波数の再調整を行うことなく、分離初期下りBWP503で受信した付加的なSSB504を測定できる。
 ここで、付加的なSSBがNCD-SSBの場合を仮定する。図10は、付加的なSSB505がNCD-SSBの場合の構成例を表す図である。
 上述したように、セル選択プロシージャ及びセル再選択プロシージャでは、UE100は、CD-SSBを測定する。そのため、RedcapUE100-2は、分離初期下りBWP503が設定され、当該BWP503において、付加的なSSBが送信される場合であっても、セル選択又はセル再選択を行う際に、付加的なSSB505(NCD-SSB)からCD-SSB502へ、周波数の再調整を行う。また、RedcapUE100-2は、セル選択又はセル再選択後、CD-SSB502から付加的なSSB505(NCD-SSB)へ、周波数の再調整を行う。
 このように、分離初期下りBWP503において付加的なSSB505が送信される場合であっても、当該SSB505がNCD-SSBの場合、RedcapUE100-2は、周波数の再調整を行う場合がある。この場合、RedcapUE100-2では、周波数の再調整により、遅延が発生し、消費電力が増加する場合がある。
 そこで、第1実施形態では、RedcapUE100-2に分離初期下りBWP503が設定され、分離初期下りBWP503においてNCD-SSBが送信される場合であっても、RedcapUE100-2は、RRCアイドル状態又はRRCインアクティブ状態でセル選択及び/又はセル再選択を行う場合に、NCD-SSB505(付加的なSSB)を測定する。
 具体的には、第1実施形態は、所定ユーザ装置(例えば、一般UE100-1)と比較して低減された能力を有する特定ユーザ装置(例えば、RedcapUE100-2)に関する。第1に、特定ユーザ装置は、基地局(例えば、基地局200-1)のセルの帯域幅の一部である第1初期帯域幅部分(BWP)(例えば、初期下りBWP501)と異なる特定ユーザ装置向けの第2初期BWP(例えば、分離初期下りBWP503)において、基地局から第1初期BWPで送信されるセル定義同期信号ブロック(SSB)(例えば、CD-SSB502)と異なる非セル定義SSB(例えば、NCD-CCD505)を、基地局から受信する通信部(例えば、通信部120)を有する。第2に、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、非セル定義SSBを測定する制御部(例えば、制御部130)を有する。
 これにより、例えば、RedcapUE100-2では、NCD-SSBを測定するため、CD-SSBへ周波数調整を行うこともなくなる。そのため、RedcapUE100-2では、消費電力の削減を図ることが可能となる。なお、第1初期BWP(例えば、初期下りBWP501)を一般ユーザ装置(例えば、一般UE100-1)向けと記載したが、第1初期BWPにおいて特定ユーザ装置(例えば、RedcapUE100-2)が通信してもよい。例えば、特定ユーザ装置向けの第2初期BWP(例えば、分離初期下りBWP503)が設定されていないセルで通信する場合、特定ユーザ装置(例えば、RedcapUE100-2)は、第1初期BWP(例えば、初期下りBWP501)において通信してもよい。
 以下では、第1実施形態に係る動作例について説明する。動作例は、第1動作例として、RRCアイドル状態又はRRCインアクティブ状態におけるセル選択の動作例について説明する。次に、第2動作例として、RRCアイドル状態又はRRCインアクティブ状態におけるセル再選択の動作例について説明する。
 (2)動作例
 (2.1)第1動作例
 第1動作例では、RRCアイドル状態又はRRCインアクティブ状態のRedcapUE100-2が、候補セルに対するセル選択のために、NCD-SSBを測定する例について説明する。
 図11は、第1実施形態に係る第1動作例を表すフローチャートである。図11は、主に、UE100(又はRedcapUE100-2)の制御部130で行われる。なお、UE100(又はRedcapUE100-2)は、RRCアイドル状態又はRRCインアクティブ状態にあるものとする。
 図11に示すように、ステップS30において、UE100は、自身がRedcapUE100-2であるか否かを判定する。UE100がRedcapUE100-2の場合(ステップS30でYES)、処理はステップS31へ移行する。一方、ステップS30において、UE100がRedcapUE100-2ではない場合(ステップS30でNO)、処理はステップS33へ移行する。
 なお、第1動作例では、UE100がRedcapUE100-2である場合(ステップS30においてYES)として、以下説明する。
 ステップS31において、RedcapUE100-2は、候補セルについて分離初期下りBWP503が設定され、かつ、当該BWP503においてNCD-SSB505を受信したか否かを判定する。分離初期下りBWP503が設定され、かつ、当該BWP503においてNCD-SSB505を受信した場合(ステップS31でYES)、処理はステップS32へ移行する。一方、分離初期下りBWP503が設定されていない場合、又は、分離初期下りBWP503が設定されていても、当該BWP503においてNCD-SSB505を受信していない場合、処理はステップS34へ移行する。
 ステップS32において、RedcapUE100-2は、NCD-SSB505を測定する。以降、RedcapUE100-2は、セル選択プロシージャのステップS10へ移行して、測定処理以後のセル選択プロシージャを実行する。
 ステップS34において、RedcapUE100-2は、CD-SSBを測定する。例えば、図9(A)に示すように、RedcapUE100-2は、分離初期下りBWP503が設定されていても、当該BWP503において、NCD-SSB505を受信していない場合、初期下りBWP501において送信されているCD-SSB502を測定する。また、例えば、図9(B)に示すように、当該分離初期下りBWP503において、CD-SSB504を受信した場合、RedcapUE100-2は、当該CD-SSB504を測定する。以降、RedcapUE100-2は、セル選択プロシージャのステップS10(図7(A))へ移行して、測定処理以後のセル選択プロシージャを実行する。
 図11に戻り、ステップS33において、UE100は、通常のセル選択処理を行う。例えば、UE100は、セル選択プロシージャのステップS10(図7(A))を最初から実行する。
 図12から図14は、第1実施形態に係る仕様上の第1動作例を表す図である。
 図12の点線で示されるように、RedcapUE100-2以外のUE100は、CD-SSBに基づく通常のセル選択を行う。一方、RedcapUE100-2は、候補セルについて分離初期下りBWPが設定され、NCD-SSBが当該分離初期下りBWPにおいて報知される場合、候補セルについては、NCD-SSBに基づいて、セル選択のための測定を行う。また、RedcapUE100-2は、候補セルについて分離初期下りBWPが設定されていない場合、又は、当該設定がなされていてもNCD-SSBが当該分離初期下りBWPにおいて報知されていない場合、候補セルについては、CD-SSBに基づくセル選択のための測定を行う。
 また、図13と図14の(X)に示すように、RedcapUE100-2がセル選択を行う場合において、分離初期下りBWPが候補セルに設定され、NCD-SSBが当該分離初期下りBWPにおいて報知される場合、以下の動作を行う。すなわち、RedcapUE100-2は、NCD-SSBに基づいて、受信電力と受信品質とを測定する。他方、このような条件を満たさない場合、RedcapUE100-2は、CD-SSBに基づいて、受信電力と受信品質とを測定する。
 (2.2)第2動作例
 次に、第2動作例について説明する。第2動作例は、セル再選択の場合の動作例である。
 具体的には、RedcapUE100-2の制御部(例えば、制御部130)は、サービングセルに対するセル再選択のために非セル定義SSBを測定し、サービングセルと隣接する隣接セルに対するセル再選択のためにセル定義SSBを測定する。ここで、例えば、非セル定義SSBは、NCD-SSB515に相当し、セル定義SSBは、CD-SSB522に相当する。この場合、RedcapUE100-2の通信部(例えば、通信部)120は、隣接セルを有する基地局(例えば、基地局200-1)又は他の基地局(例えば基地局200-2)からセル定義SSBを受信するとともに、サービングセルを有する基地局(例えば、基地局200-1)から非セル定義SSBを受信する。
 図15は、第1実施形態に係る第2動作例を表すフローチャートである。第2動作例においても、RedcapUE100-2は、RRCアイドル状態又はRRCインアクティブ状態にあるものとする。図15に示す処理は、例えば、RedcapUE100-2の制御部130で行われる。
 以下では、第1動作例との相違点を主に説明する。
 ステップS41において、RedcapUE100-2は、サービングセル及び隣接セルについて、分離初期下りBWPが設定され、かつ、サービングセルを有する基地局200-1から第1NCD-SSBを受信し、隣接セルを有する基地局200-1(又は基地局200-2)から第2NCD-SSBを受信したか否かを判定する。ステップS41において、RedcapUE100-2は、当該判定を満たす場合(ステップS41でYES)、ステップS42へ移行し、当該判定を満たさない場合(ステップS41でNO)、ステップS44へ移行する。
 図16は、第1実施形態の第2動作例に係るSSBの構成例を表す図である。
 図16に示す例では、サービングセルについて分離初期下りBWP513が設定され、当該BWP513において、サービングセルを有する基地局200-1からNCD-SSB515が送信される。また、隣接セルについて分離初期下りBWP523が設定され、当該BWP523において、隣接セルを有する基地局200-1(又は基地局200-2)からNCD-SSB525が送信される。
 なお、図16の例において、サービングセルにおいては、初期下りBWP511でCD-SSB512が送信され、隣接セルにおいては、初期下りBWP521において、CD-SSB522が送信されているものとする。
 ステップS41では、RedcapUE100-2が、サービングセルにおいてNCD-SSB515(例えば、第1NCD-SSB)を受信し、かつ、隣接セルにおいてNCD-SSB525(例えば、第2NCD-SSB)を受信したか否かが判定される。
 図15に戻り、ステップS42において、RedcapUE100-2は、セル選択及び/又はセル再選択を行うに際して、サービングセルについてはNCD-SSB515を測定し、隣接セルについてはCD-SSB522を測定する。RedcapUE100-2が隣接セルについて、CD-SSB522を測定するのは、CD-SSB512からSIB1を受信し、SIB1から、セル再選択プロシージャで用いる閾値等のパラメータを取得するためである。しかし、RedcapUE100-2は、少なくとも、サービングセルについては、NCD-SSD515を測定するため、そのまま、分離初期下りBWP513を用いることができ、周波数の再調整を行わなくてもよい。
 一方、ステップS44において、RedcapUE100-2は、サービングセルに対して、CD-SSB512を測定し、隣接セルに対して、CD-SSB522を測定する。
 ステップS42とステップS44以降では、セル再選択プロシージャのステップS21(図7(B))へ移行し、測定処理以後の処理が行われる。
 なお、ステップS43において、一般UE100-1は、通常のセル再選択処理を行う。
 図17と図14は、第1実施形態に係る仕様上の第2動作例を表す図である。
 図17に示すように、一般UE100-1は、CD-SSBに基づくセル再選択が行われる。一方、分離初期下りBWPが設定され、NCD-SSBが分離初期下りBWPで報知される場合、セル再選択における隣接セルの測定は、CD-SSBに基づいて行われ、セル再選択におけるサービングセルの測定は、NCD-SSBに基づいて行われる。
 図14の(Y)に示すように、セル再選択評価プロセスにおいて、分離初期下りBWPが設定され、当該BWPにおいてNCD-SSBが報知される場合、隣接セルの受信レベルと受信品質は、CD-SSBに基づいて測定され、サービングセルの受信レベルと受信品質は、NCD-SSBに基づいて測定される。それ以外の場合、サービングセルと隣接セルについてはともにCD-SSBに基づいて、各受信レベルと各受信品質とが測定される。
 (2.3)第3動作例
 次に、第3動作例について説明する。
 第2動作例では、セル再選択について説明した。そして、RedcapUE100-2は、サービングセルについてはNCD-SSB515を測定し、隣接セルについてはCD-SSB522を測定した。第3動作例では、RedcapUE100-2が、サービングセルについてはNCD-SSB515を測定し、隣接セルについてもNCD-SSB525を測定する例である。
 具体的には、RedcapUE100-2の制御部130は、サービングセルに対するセル再選択のために、第1非セル定義SSB(例えば、NCD-SSB515)を測定し、隣接セルに対するセル再選択のために、第2非セル定義SSB(例えば、NCD-SSB525)を測定する。ここで、RedcapUE100-2の通信部(例えば、通信部120)は、サービングセルを有する基地局(例えば、基地局200-1)から第1非セル定義SSBを受信するとともに、隣接セルを有する基地局(例えば、基地局200-1)又は他の基地局(例えば、基地局200-2)から第2非セル定義SSBを受信する。
 図18は、第1実施形態に係る第2動作例を表すフローチャートである。以下では、第2動作例との相違点を中心に説明する。
 図18のステップS51は、第2動作例のステップS41(図15)と同一である。
 ステップS52において、RedcapUE100-2は、サービングセルに対して、NCD-SSB515を測定し、隣接セルに対して、NCD-SSB525を測定する。
 一方、ステップS54において、RedcapUE100-2は、サービングセルに対して、CD-SSB512を測定し、隣接セルに対して、CD-SSB522を測定する。
 図19から図21は、第1実施形態に係る仕様上の第3動作例を表す図である。
 図19に示すように、一般UE100-1は、CD-SSBに基づくセル再選択が行われる。一方、RedcapUE100-2は、分離初期下りBWPが設定され、当該BWPにおいてNCD-SSBが報知される場合、セル再選択における隣接セルの測定は、NCD-SSBに基づいて行われ、セル再選択におけるサービングセルの測定は、NCD-SSBに基づいて行われる。
 また、図20と図21の(Y)に示すように、セル再選択評価プロセスにおいて、分離初期下りBWPが設定され、当該BWPにおいてNCD-SSBが報知される場合、サービングセルと隣接セルの各受信レベルと各受信品質は、NCD-SSBに基づいて測定される。それ以外の場合、サービングセルと隣接セルについてはともにCD-SSBに基づいて、各受信レベルと各受信品質とが測定される。
[その他の実施形態]
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200少なくとも一部を半導体集積回路(チップセット、SoC(System-on-a-Chip))として構成してもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  所定ユーザ装置(100-1)と比較して低減された能力を有する特定ユーザ装置(100-2)であって、
     基地局(200-1)のセルの帯域幅の一部である第1初期帯域幅部分(BWP)と異なる前記特定ユーザ装置(100-2)向けの第2初期BWP(503,513,523)において、前記基地局(200-1)から前記第1初期BWP(501,511,521)で送信されるセル定義同期信号ブロック(SSB)(502,512,522)と異なる非セル定義SSB(505,515,525)を、前記基地局(200-1)から受信する通信部(120)と、
     RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、前記非セル定義SSB(505,515,525)を測定する制御部(130)と、を備える、
     特定ユーザ装置。
  2.  前記制御部(130)は、候補セルに対する前記セル選択のために、前記非セル定義SSB(505)を測定する、
     請求項1記載の特定ユーザ装置。
  3.  前記制御部(130)は、サービングセルに対する前記セル再選択のために前記非セル定義SSB(515)を測定し、前記サービングセルと隣接する隣接セルに対する前記セル再選択のために前記セル定義SSB(522)を測定する、
     請求項1記載の特定ユーザ装置。
  4.  前記通信部(120)は、前記隣接セルを有する前記基地局(200-1)又は前記基地局とは異なる他の基地局(200-2)から前記セル定義SSB(522)を受信するとともに、前記サービングセルを有する前記基地局(200-1)から前記非セル定義SSB(515)を受信する、
     請求項3記載の特定ユーザ装置。
  5.  前記通信部(120)は、サービングセルを有する前記基地局(200-1)から第1非セル定義SSB(515)を受信するとともに、前記サービングセルと隣接する隣接セルを有する前記基地局(200-1)又は前記基地局(200-1)と異なる他の基地局(200-2)から第2非セル定義SSB(525)を受信し、
     前記制御部(120)は、前記サービングセルに対する前記セル再選択のために、前記第1非セル定義SSB(515)を測定し、前記隣接セルに対する前記セル再選択のために、前記第2非セル定義SSB(525)を測定する、
     請求項1記載の特定ユーザ装置。
  6.  所定ユーザ装置(100-1)と比較して低減された能力を有する特定ユーザ装置(100-2)における通信制御方法であって、
     基地局(200-1)のセルの帯域幅の一部である第1初期帯域幅部分(BWP)と異なる前記特定ユーザ装置(100-2)向けの第2初期BWP(503,513,523)において、前記基地局(200-1)から前記第1初期BWP(501,511,521)で送信されるセル定義同期信号ブロック(SSB)(502,512,522)と異なる非セル定義SSB(505,515,525)を、前記基地局(200-1)から受信するステップと、
     RRCアイドル状態又はRRCインアクティブ状態におけるセル選択及び/又はセル再選択のために、前記非セル定義SSB(505,515,525)を測定するステップと、を有する、
     通信制御方法。
PCT/JP2022/039986 2021-11-02 2022-10-26 特定ユーザ装置、及び通信制御方法 WO2023080034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179787 2021-11-02
JP2021-179787 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080034A1 true WO2023080034A1 (ja) 2023-05-11

Family

ID=86241021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039986 WO2023080034A1 (ja) 2021-11-02 2022-10-26 特定ユーザ装置、及び通信制御方法

Country Status (1)

Country Link
WO (1) WO2023080034A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510966A (ja) * 2018-01-12 2021-04-30 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 情報指示方法、情報特定方法、端末及び基地局
WO2021193251A1 (ja) * 2020-03-27 2021-09-30 ソニーグループ株式会社 通信装置および通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510966A (ja) * 2018-01-12 2021-04-30 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 情報指示方法、情報特定方法、端末及び基地局
WO2021193251A1 (ja) * 2020-03-27 2021-09-30 ソニーグループ株式会社 通信装置および通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE: "Making ND-SSB work for RedCap in Rel-17", 3GPP DRAFT; R2-2110095, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20211101 - 20211112, 26 October 2021 (2021-10-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066547 *
ERICSSON: "Use of NCD-SSB instead of CD-SSB for RedCap UEs", 3GPP DRAFT; R2-2110773, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20211101 - 20211112, 29 October 2021 (2021-10-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052071997 *
MODERATOR (ERICSSON): "FL summary #5 on reduced maximum UE bandwidth for RedCap", 3GPP DRAFT; R1-2110381, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 19 October 2021 (2021-10-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052061577 *
QUALCOMM INCORPORATED: "Use of NCD-SSB for Reduced Capability UE", 3GPP DRAFT; R4-2119559, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052061911 *

Similar Documents

Publication Publication Date Title
JP6295316B2 (ja) 基地局及びプロセッサ
JP6328132B2 (ja) 移動通信システム及びユーザ端末
US9642172B2 (en) Mobile communication system, base station, user terminal, and processor
TWI709343B (zh) 頻率間的lte-d探索
CN110771207B (zh) 用于服务小区和邻居小区测量的接收机波束成形
JP2019525584A (ja) CIoT(cellular internet of things)機能の非互換性による登録拒否
US20160242201A1 (en) Mobile communication system and user terminal
US9877351B2 (en) Mobile communication system, user terminal, and base station
US20220400470A1 (en) Terminal device, base station apparatus, and communication method
US10531378B2 (en) User equipment detection for energy saving cell activation
WO2023080034A1 (ja) 特定ユーザ装置、及び通信制御方法
KR20200018118A (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
WO2023204171A1 (ja) スライスサポート有無確認方法及びユーザ装置
WO2023127638A1 (ja) 基地局及び通信方法
WO2022230703A1 (ja) ユーザ装置、基地局、及びセル再選択方法
WO2023068355A1 (ja) 通信装置、基地局、及び通信方法
WO2023127639A1 (ja) 基地局及び通信方法
US20230262826A1 (en) Communication control method
WO2023068356A1 (ja) 通信装置、基地局、及び通信方法
WO2023068350A1 (ja) 通信装置、基地局、及び通信方法
WO2024024739A1 (ja) 通信制御方法
WO2023132291A1 (ja) 通信装置、基地局及び通信制御方法
US20240114470A1 (en) Method and device for wireless communication
US20240015559A1 (en) User equipment, and communication control method
WO2023132292A1 (ja) 通信装置、基地局及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889854

Country of ref document: EP

Kind code of ref document: A1