WO2019136678A1 - 上行信号发送方法、上行信号接收方法、装置和系统 - Google Patents

上行信号发送方法、上行信号接收方法、装置和系统 Download PDF

Info

Publication number
WO2019136678A1
WO2019136678A1 PCT/CN2018/072297 CN2018072297W WO2019136678A1 WO 2019136678 A1 WO2019136678 A1 WO 2019136678A1 CN 2018072297 W CN2018072297 W CN 2018072297W WO 2019136678 A1 WO2019136678 A1 WO 2019136678A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink signal
transmission filter
spatial domain
information
signal
Prior art date
Application number
PCT/CN2018/072297
Other languages
English (en)
French (fr)
Inventor
陈哲
王昕�
张磊
宋磊
张国玉
Original Assignee
富士通株式会社
陈哲
王昕�
张磊
宋磊
张国玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 王昕�, 张磊, 宋磊, 张国玉 filed Critical 富士通株式会社
Priority to CN201880075642.4A priority Critical patent/CN111373809B/zh
Priority to JP2020531776A priority patent/JP7047913B2/ja
Priority to EP18900236.3A priority patent/EP3739982A4/en
Priority to PCT/CN2018/072297 priority patent/WO2019136678A1/zh
Priority to KR1020207016789A priority patent/KR20200083589A/ko
Publication of WO2019136678A1 publication Critical patent/WO2019136678A1/zh
Priority to US16/896,639 priority patent/US11310675B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present invention relates to the field of communications, and in particular, to an uplink signal transmitting method, an uplink signal receiving method, apparatus, and system.
  • the spatial relationship of PUCCH resources is determined by the parameter PUCCH-Spatial-relation-info configured by Radio Resource Control (RRC) signaling.
  • the PUCCH-Spatial-relation-info is a list, which includes one or more entries, and each entry may be a single sideband identifier (SSB ID), and a channel state information reference signal resource indication (CSI-RS Resource Indication, CRI) Or the SRS Resource Indication (SRI) is used to indicate the spatial relationship of the PUCCH.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control Unit
  • FIG. 1a shows the case where the PUCCH-Spatial-relation-info contains a plurality of entries and one entry, respectively.
  • each entry may have a number, and each entry indicates a spatial relationship, for example, RS1 indicates Tx1.
  • RS2 indicates Tx2
  • RS3 indicates Tx3
  • RS4 indicates Tx4, where RS1 to RS4 may be SSB ID, CRI or SRI.
  • the network device activates or indicates one of the entries through the MAC-CE, for example, activates or indicates RS2, whereby the terminal device can apply the spatial relationship Tx2 indicated by the RS2 to transmit the uplink signal.
  • the network device in the case that the PUCCH-Spatial-relation-info includes an entry (RS1), the network device does not need to perform other configurations, and the terminal device can directly apply the spatial relationship Tx3 indicated by the entry RS1 to send an uplink signal.
  • the inventor has found that when the network device configures the PUCCH-Spatial-relation-info for the terminal device, where the PUCCH-Spatial-relation-info contains multiple entries, as shown in FIG. 1a, the PUCCH-Spatial is configured for the terminal device from the network device.
  • -relation-info RRC configuration complete
  • the network device's indication of the uplink beam of the terminal device is blurred, as shown in Figure 2, in this case, the terminal device It is not clear which beam to use for uploading.
  • the terminal device may also be unclear which beam to use for uploading.
  • an embodiment of the present invention provides an uplink signal sending method, an uplink signal receiving method, apparatus, and system.
  • an uplink signal sending method includes:
  • the terminal device configures the first information related to the spatial relationship of the uplink signal in the network device, but if the spatial relationship of the uplink signal is not yet valid, the same spatial domain transmission filter as the transmitted signal or the received signal is used or The uplink signal is transmitted using a spatial domain transmission filter associated with the predetermined entry in the first information.
  • an uplink signal receiving method includes:
  • the network device configures the first information related to the spatial relationship of the uplink signal for the terminal device, but if the spatial relationship of the uplink signal is not yet valid, the same spatial domain transmission filter as the received signal or the transmitted signal is used. Or the airspace transmission filter associated with the default entry in the first information receives the uplink signal.
  • an uplink signal sending method includes:
  • the terminal device sends an uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal before the network device configures the second information related to the spatial relationship of the uplink signal, the second information including an entry, the entry Indicates a spatial relationship.
  • an uplink signal receiving method includes:
  • the network device configures, for the terminal device, second information related to a spatial relationship of the uplink signal, the second information includes an entry, the entry indicating a spatial relationship;
  • the network device receives the uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal prior to the configuration.
  • an uplink signal sending apparatus which is configured in a terminal device, where the device includes:
  • a sending unit configured to configure, by the network device, first information related to a spatial relationship of the uplink signal, but in a case where the spatial relationship of the uplink signal is not yet valid, using the same spatial domain transmission filtering as the transmitted signal or the received signal
  • the transmitter transmits the uplink signal using a spatial domain transmission filter associated with the predetermined entry in the first information.
  • an uplink signal receiving apparatus configured in a network device, where the apparatus includes:
  • a receiving unit configured to configure, by the network device, first information related to a spatial relationship of an uplink signal, but if the spatial relationship of the uplink signal is not yet valid, use and received signals or sent signals.
  • the same spatial domain transmission filter or the spatial domain transmission filter associated with the default entry in the first information receives the uplink signal.
  • an uplink signal sending apparatus which is configured in a terminal device, where the method includes:
  • a sending unit that sends an uplink signal using a same spatial domain transmission filter as the transmitted signal or the received signal before the network device configures the second information related to the spatial relationship of the uplink signal, the second information including an entry, The entry indicates a spatial relationship.
  • an uplink signal receiving apparatus configured in a network device, where the apparatus includes:
  • a configuration unit configured to configure, by the terminal device, second information related to a spatial relationship of the uplink signal, where the second information includes an entry, the entry indicating a spatial relationship;
  • a transmitting unit that receives an uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal prior to the configuration.
  • a network device wherein the network device comprises the apparatus of the sixth aspect or the eighth aspect.
  • a terminal device wherein the terminal device comprises the apparatus of the foregoing fifth aspect or seventh aspect.
  • a communication system comprising the terminal device of the aforementioned tenth aspect and the network device of the foregoing ninth aspect.
  • a computer readable program is provided, wherein when the program is executed in a network device, the program causes a computer to perform the aforementioned second or fourth aspect in the network device Said method.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the method of the aforementioned second or fourth aspect in a network device.
  • a computer readable program is provided, wherein when the program is executed in a terminal device, the program causes a computer to execute the aforementioned first aspect or third aspect in the terminal device Said method.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the method of the first aspect or the third aspect described above in a terminal device.
  • the terminal device can use the appropriate airspace transmission filter to send an uplink signal when the uplink beam is determined according to the configuration of the network device, and the terminal device is determined to be in an uncertain uplink. In the case of a beam, the problem of the uplink signal cannot be transmitted.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • 3 is a schematic diagram of uplink beam configuration and indication or activation
  • FIG. 5 is a schematic diagram of a scenario for configuring first information
  • FIG. 6 is a schematic diagram of another scenario for configuring first information
  • Figure 7a is a schematic diagram of still another scenario of configuring the first information
  • Figure 7b is a schematic diagram of still another scenario for configuring the first information
  • FIG. 9 is a schematic diagram of an uplink signal transmission method of Embodiment 3.
  • FIG. 10 is a schematic diagram of an uplink signal receiving method of Embodiment 4.
  • Figure 11 is a schematic diagram of an uplink signal transmitting apparatus of Embodiment 5.
  • Figure 12 is a schematic diagram of an uplink signal receiving apparatus of Embodiment 6;
  • Figure 13 is a schematic diagram of an uplink signal transmitting apparatus of Embodiment 7.
  • Figure 14 is a schematic diagram of an uplink signal receiving apparatus of Embodiment 8.
  • Figure 15 is a schematic diagram of a terminal device of Embodiment 8.
  • FIG. 16 is a schematic diagram of a network device of Embodiment 10.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, a device in a communication system that accesses a terminal device to a communication network and provides a service for the terminal device.
  • the network device may include, but is not limited to, a device: a base station (BS, a base station), an access point (AP, an Access Point), a transmission and reception point (TRP), a broadcast transmitter, and a mobility management entity (MME, Mobile). Management Entity), gateway, server, Radio Network Controller (RNC), Base Station Controller (BSC), and so on.
  • BS base station
  • AP access point
  • TRP transmission and reception point
  • MME mobility management entity
  • Management Entity gateway
  • server Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functionality, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” refers to, for example, a device that accesses a communication network through a network device and receives a network service, and may also be referred to as a "Terminal Equipment” (TE).
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a user, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, etc. Wait.
  • the terminal device may include but is not limited to the following devices: a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem Wireless Fidelity
  • a wireless communication device a handheld device
  • a machine type communication device a laptop computer
  • Cordless phones smart phones, smart watches, digital cameras, and more.
  • the terminal device may be a device or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal.
  • MTC Machine Type Communication
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the terminal device and the network device are taken as an example.
  • the communication system 300 may include: a network device 301 and a terminal device 302.
  • FIG. 3 is described by taking only one terminal device as an example.
  • the network device 301 is, for example, a network device gNB in the NR system.
  • an existing service or a service that can be implemented in the future can be performed between the network device 301 and the terminal device 302.
  • these services include, but are not limited to, enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and high reliability low latency communication (URLLC, Ultra-Reliable and Low- Latency Communication), and more.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the terminal device 302 can transmit data to the network device 301, for example, using an unlicensed transmission mode.
  • the network device 301 can receive data sent by one or more terminal devices 302 and feed back information (for example, acknowledge ACK/non-acknowledgement NACK) information to the terminal device 302.
  • the terminal device 302 can confirm the end of the transmission process according to the feedback information, or can further Perform new data transfer or data retransmission.
  • This embodiment provides an uplink signal sending method, which is applied to a terminal device.
  • 4 is a schematic diagram of an uplink signal sending method according to this embodiment. Referring to FIG. 4, the method includes:
  • Step 401 The terminal device configures the first information related to the spatial relationship of the uplink signal in the network device, but if the spatial relationship of the uplink signal is not yet valid, the same airspace transmission as the transmitted signal or the received signal is used.
  • the filter transmits the uplink signal using a spatial domain transmission filter associated with the predetermined entry in the first information.
  • the first information is, for example, the foregoing PUCCH-Spatial-relation-info.
  • the first information may have multiple entries, or may have one entry, and each entry indicates or associates one. Spatial Relations.
  • the present embodiment will be described only for the case where the first information includes a plurality of entries.
  • the terminal device may use the same spatial domain transmission filter or the same as the received signal or received.
  • the airspace transmission filter associated with the predetermined entry in the first information transmits an uplink signal. Therefore, the terminal device can use the appropriate airspace transmission filter to transmit the uplink signal when the uplink beam is not determined according to the configuration of the network device, thereby solving the problem that the terminal device cannot transmit the uplink signal when the uplink beam is uncertain.
  • the spatial relationship of the uplink signal is not yet valid, and may be other situations.
  • the terminal device does not receive the foregoing configuration of the network device, or the terminal device does not successfully obtain the above configuration of the network device.
  • the first information described above, etc., in these cases, the terminal device can also transmit the uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal.
  • the network device may configure the foregoing first information for the terminal device by using RRC signaling, but the embodiment does not limit the foregoing, and the foregoing first information may also be configured by using other signaling.
  • RRC signaling is taken as an example, and the configuration of the first information is referred to as an RRC configuration.
  • the RRC configuration herein cannot be understood as a configuration of RRC signaling except the first information.
  • the foregoing configuration may be an initial configuration of the first information, or may be a reconfiguration of the first information after the beam fails and successfully recovered, or may be the first information after the cell handover succeeds.
  • Initial configuration means that the first information is not configured for the terminal device before the configuration.
  • FIG. 5 is a schematic diagram of initial configuration of the first information (PUCCH-Spatial-relation-info).
  • the terminal device may just complete the initial access process, and complete the first information.
  • the initial configuration to the network device indicates or activates one of the entries through the MAC-CE.
  • the indication of the uplink beam by the network device is ambiguous, which is called the fuzzy interval 1, in which the terminal device can use and send
  • the airwave transmission filter of the same signal or received signal or the airspace transmission filter associated with the predetermined entry in the first information transmits the uplink signal.
  • the terminal device can transmit the uplink signal using the same airspace transmission filter as the first message (msg.1) in the random access procedure.
  • the initial access success indicates that the uplink beam of msg1 is reliable, and the use of the msg1 beam in the above time period (fuzzy interval) can ensure the success rate.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the third message (msg.3) in the random access procedure.
  • the initial access success indicates that the uplink beam of msg3 is reliable, and the use of the msg3 beam in the above time period (fuzzy interval) can also ensure the success rate.
  • the terminal device can transmit the uplink signal using the airspace transmission filter associated with the pre-specified entry in the first information.
  • the pre-designated entry may be predefined or pre-configured, for example pre-defined or pre-configured as the first entry, whereby the terminal device may use the airspace transmission filter associated with the first entry to transmit in the fuzzy interval described above. Uplink signal. Therefore, not only the problem that the terminal device cannot determine the uplink beam in the above fuzzy interval but also the signaling overhead is reduced.
  • the terminal device can transmit the uplink signal using the airspace transmission filter associated with the default entry configured in the first information.
  • the network device may further configure a default entry for the first information, and the terminal device may send the uplink in the fuzzy interval using the airspace transmission filter associated with the configured default entry. signal. Therefore, the uplink beam can have a larger selection range, and the configuration of the first information is more flexible.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH).
  • PBCH received broadcast signal
  • the principle of channel reciprocity is utilized. In the presence of channel reciprocity, the corresponding uplink beam transmitted by the spatial transmission filter that successfully receives the PBCH is reliable, and the terminal equipment can use the spatial domain transmission filter. Therefore, the success rate can be guaranteed.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the reception synchronization signal (SS).
  • SS reception synchronization signal
  • the principle of channel reciprocity is also utilized, and the same spatial domain transmission filter as the receiving SS can be used to ensure the success rate.
  • the network device does not have any indication of the spatial relationship (uplink beam) of the uplink signal.
  • the indication of the uplink beam by the network device is also blurred.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal.
  • the terminal device can transmit the uplink signal using the same airspace transmission filter as the first message (msg.1) in the random access procedure.
  • the terminal device does not obtain the configuration about the first information, so the indication of the network device about the uplink beam is also blurred, but at this time, the terminal device may have completed the initial access, therefore, During this time, it can send an upstream signal using the same spatial domain transmission filter as msg.1.
  • the terminal device can also transmit the uplink signal using the same airspace transmission filter as the third message (msg.3) in the random access procedure.
  • the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the terminal device may transmit the uplink signal using the same spatial domain filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the uplink signal may be an uplink control signal (PUCCH), which may be used to carry information such as ACK/NACK feedback of the downlink data channel (PDSCH), CSI reporting, and the like.
  • the uplink signal may also be a sounding reference signal (SRS) or the like.
  • FIG. 6 is a schematic diagram of reconfiguring the first information after the beam fails and successfully recovers.
  • the terminal device has successfully recovered from the beam failure, and the original uplink beam indication (for example, The uplink beam indication for the uplink control signal (PUCCH) and/or the uplink data signal (PUSCH) is already unreliable, and the uplink beam indication for the PUCCH and/or PUSCH needs to be reconfigured and/or activated and/or indicated.
  • the uplink beam indication is ambiguous, referred to as blur interval 3 and blur interval 4, respectively.
  • the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal or using the airspace transmission filter associated with the predetermined entry in the first information.
  • the terminal device can transmit an uplink signal using the same airspace transmission filter as the Transmit Beam Failure Recovery Request (BFRQ).
  • BFRQ Transmit Beam Failure Recovery Request
  • the terminal device has successfully recovered from the beam failure, indicating that the uplink beam of the BFRQ is reliable, and the BFRQ beam is used to transmit the uplink signal in the fuzzy interval 4, which can ensure the success rate.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the successful reception beam failure recovery response control resource set (BFR-CORESET).
  • BFR-CORESET the successful reception beam failure recovery response control resource set
  • the principle of channel reciprocity is also utilized, and the successful reception of BFR-CORESET in the downlink ensures the transmission of the uplink signal.
  • the terminal device may also send the uplink signal by using the airspace transmission filter associated with the pre-specified entry in the first information, or the terminal device may also send the airspace transmission filter associated with the default entry configured in the first information.
  • the uplink signal, or the terminal device may also use the same spatial domain transmission filter as the receiving PBCH to transmit the uplink signal, or the terminal device may also use the same spatial domain transmission filter as the receiving SS to transmit the uplink signal.
  • the principle of the implementation is the same as described above, and the description is omitted here.
  • the terminal device in the blur interval 3, can transmit the uplink signal using the same spatial domain transmission filter as the transmitted signal or the received signal.
  • the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the transmit beam failure recovery request (BFRQ), or the terminal device may use the same airspace transmission as the successful reception beam failure recovery response control resource set (BFR-CORESET).
  • BFRQ transmit beam failure recovery request
  • BFR-CORESET successful reception beam failure recovery response control resource set
  • the filter sends an upstream signal.
  • the uplink signal that needs the uplink beam indication may be a PUCCH, a PUSCH, or both.
  • the PUCCH can carry functions such as RRC configuration response, beam training, and beam reporting, and the PUSCH can carry uplink data.
  • FIG. 7a and 7b are schematic diagrams of initial configuration of the first information in a cell handover scenario.
  • the cell handover succeeds before the initial configuration of the first information, that is, the terminal device successfully switches the cell, and the initial configuration of the first information is completed in the new cell.
  • the scenario is After the cell handover is completed until the initial configuration of the first information is completed, and from the initial configuration of the first information to the network device activation or indicating which of the entries is used, the indication of the uplink beam by the network device is also blurred, respectively called a fuzzy interval. 5 and blur interval 6.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the received signal.
  • the terminal device may transmit the uplink signal using the same spatial domain filter as the received broadcast signal (PBCH), or the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the received signal or using the spatial domain transmission filter associated with the predetermined entry in the first information.
  • the terminal device may transmit the uplink signal using the airspace transmission filter associated with the pre-specified entry in the first information, or the terminal device may transmit using the airspace transmission filter associated with the default entry configured in the first information.
  • the uplink signal, or the terminal device may transmit the uplink signal using the same spatial domain filter as the received broadcast signal (PBCH), or the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the cell handover succeeds after the initial configuration of the first information, that is, the terminal device completes the initial configuration of the first information, and then switches the cell, and in the scenario, the cell is switched.
  • the network device's indication of the uplink beam is also ambiguous, referred to as the blur interval 7.
  • the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the received signal or using the spatial domain transmission filter associated with the predetermined entry in the first information.
  • the terminal device may transmit the uplink signal by using the airspace transmission filter associated with the pre-specified entry in the first information, or the terminal device may send the uplink signal by using the airspace transmission filter associated with the default entry configured in the first information.
  • the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the uplink signal that needs to be indicated by the uplink beam is generally an uplink control signal (PUCCH), but this embodiment is not limited thereto.
  • an uplink signal that needs an uplink beam indication may also be SRS.
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter when the uplink beam is determined according to the configuration of the network device, and the terminal device cannot send the uplink signal when the uplink beam is uncertain. The problem.
  • FIG. 8 is a schematic diagram of an uplink signal receiving method according to this embodiment. As shown in FIG. 8, the method includes:
  • Step 801 The network device configures the first information related to the spatial relationship of the uplink signal for the terminal device, but if the spatial relationship of the uplink signal is not yet valid, the same spatial domain transmission filter as the received signal or the transmitted signal is used.
  • the airspace transmission filter associated with the default entry in the first information receives the uplink signal.
  • the first information includes a plurality of items for explanation.
  • the network device may configure, for the terminal device, first information related to a spatial relationship of the uplink signal, where the first information includes multiple entries, and each entry indicates a spatial relationship.
  • the network device may configure the first information by using RRC signaling, but the embodiment is not limited thereto. Moreover, this embodiment does not limit the specific configuration manner.
  • the network device may also indicate or activate an entry in the first information that the terminal device needs to use for the terminal device.
  • the network device may indicate or activate an entry that the terminal device needs to use through the MAC-CE. This embodiment does not limit the manner of indication or activation.
  • the network device may configure the first information related to the spatial relationship of the uplink signal for the terminal device, but if the spatial relationship of the uplink signal has not yet taken effect, the use and the The spatial domain transmission filter, which is the same as the received signal or the transmitted signal, or the airspace transmission filter associated with the default entry in the first information, receives the uplink signal.
  • the configuration is for an initial configuration of the first information.
  • the network device may receive the uplink signal using the same airspace transmission filter as the first message (msg.1) in the random access procedure, or the network device may use The airspace transmission filter that is the same as the third message (msg.3) in the process of receiving the random access receives the uplink signal, or the network device can receive the uplink signal by using the airspace transmission filter associated with the pre-specified entry in the first information.
  • the network device may receive the uplink signal by using the airspace transmission filter associated with the default entry configured in the first information, or the network device may receive the uplink signal by using the same spatial domain filter as the broadcast broadcast signal (PBCH), or The network device can receive the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • PBCH broadcast broadcast signal
  • SS transmission synchronization signal
  • the network device can use the received signal or has transmitted
  • the same spatial domain filter receives the upstream signal.
  • the network device may receive the uplink signal using the same airspace transmission filter as the first message (msg.1) in the random access procedure, or the network device may use and receive the third message in the random access procedure ( Msg.3)
  • Msg.3 The same spatial domain transmission filter receives the uplink signal, or the network device can receive the uplink signal using the same spatial domain filter as the transmitted broadcast signal (PBCH), or the network device can use the same as the transmission synchronization signal (SS).
  • the airspace transmission filter receives the uplink signal.
  • the reconfiguring of the first information after the configuration is a beam failure and successful recovery.
  • the network device can receive the uplink signal using the same spatial domain transmission filter as the receive beam failure recovery request (BFRQ).
  • the network device may receive the uplink signal using the same spatial domain filter as the successful transmit beam failure recovery response control resource set (BFR-CORESET).
  • the network device may receive the uplink signal using the same spatial domain filter as the receive beam failure recovery request (BFRQ), or the network device may use the transmit beam failure recovery response control resource set.
  • BFR-CORESET the same spatial domain filter receives the uplink signal
  • the network device can receive the uplink signal using the airspace transmission filter associated with the pre-specified entry in the first information, or the network device can use the The airspace transmission filter associated with the default entry configured in the information receives the uplink signal, or the network device can receive the uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or the network device can use and transmit the synchronization.
  • the same spatial domain transmission filter of the signal (SS) receives the upstream signal.
  • the initial configuration of the first information occurs after the configuration is successful for cell handover.
  • the network device may receive the uplink signal using the same spatial domain transmission filter as the broadcast broadcast signal (PBCH), or the network device may The uplink signal is received using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • the network device may receive the uplink signal using the airspace transmission filter associated with the pre-specified entry in the first information, or the network device may use the default entry configured in the first information.
  • the airspace transmission filter receives the uplink signal, or the network device can receive the uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or the network device can receive using the same spatial domain transmission filter as the transmission synchronization signal (SS). Uplink signal.
  • the network device may receive the uplink signal by using the airspace transmission filter associated with the pre-specified entry in the first information, Alternatively, the network device may receive the uplink signal by using the airspace transmission filter associated with the default entry configured in the first information, or the network device may receive the uplink signal by using the same spatial domain transmission filter as the broadcast broadcast signal (PBCH). Alternatively, the network device can receive the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • PBCH broadcast broadcast signal
  • SS transmission synchronization signal
  • the network device may further configure a default entry in the first information, where the terminal device configures the first information in the first information and does not indicate or activate an entry in the first information.
  • the uplink signal can be transmitted using the airspace transmission filter associated with the default entry, whereby the network device can receive the uplink signal using the airspace transmission filter associated with the default entry.
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter when the uplink beam is determined according to the configuration of the network device, and the terminal device cannot send the uplink signal when the uplink beam is uncertain. The problem.
  • FIG. 9 is a schematic diagram of an uplink signal sending method according to this embodiment. Referring to FIG. 9, the method includes:
  • Step 901 The terminal device sends an uplink signal by using a same airspace transmission filter as the transmitted signal or the received signal before the network device configures the second information related to the spatial relationship of the uplink signal, where the second information includes an entry.
  • the entry indicates a spatial relationship.
  • the second information is, for example, the foregoing PUCCH-Spatial-relation-info.
  • the second information may have multiple entries, or may have one entry, and each entry indicates or associates one. Spatial Relations. For convenience of explanation, the present embodiment will be described only for the case where the first information includes one entry.
  • the configuration is completed. That is, the uplink beam is indicated.
  • the indication of the uplink beam by the network device is still blurred, and the terminal device can use and The same airspace transmission filter of the first message (msg.1) in the random access process transmits an uplink signal, or the terminal device can use the same spatial domain transmission filter as the third message (msg.3) in the random access procedure.
  • the uplink signal is transmitted by the terminal device, or the terminal device can transmit the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the terminal device can transmit the uplink signal using the same spatial domain filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the terminal device may transmit the uplink signal using the same airspace transmission filter as the transmit beam failure recovery request (BFRQ), or the terminal device may use the successful receive beam failure recovery response.
  • BFRQ transmit beam failure recovery request
  • BFR-CORESET transmits an uplink signal.
  • the terminal device may transmit the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or The terminal device can transmit the uplink signal using the same spatial domain transmission filter as the reception synchronization signal (SS).
  • PBCH received broadcast signal
  • SS reception synchronization signal
  • the terminal device can send the uplink signal by using the appropriate airspace transmission filter without obtaining the configuration of the second information by the network device, and the terminal device cannot send the uplink when the uplink beam is uncertain. Signal problem.
  • FIG. 10 is a schematic diagram of an uplink signal receiving method according to this embodiment. As shown in FIG. 10, the method includes:
  • Step 1001 The network device receives an uplink signal by using a same airspace transmission filter as the transmitted signal or the received signal, before the second information about the spatial relationship of the uplink signal is configured for the terminal device, where the second information includes an entry.
  • the entry indicates a spatial relationship.
  • the foregoing configuration is an initial configuration of the second information, corresponding to the scenario shown in FIG. 5, in the fuzzy interval 1, the network device can use and receive the random access process.
  • the same airspace transmission filter of a message (msg.1) receives the uplink signal, or the network device can receive the uplink signal using the same airspace transmission filter as the third message (msg.3) in the process of receiving the random access, or
  • the network device may receive the uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or the network device may receive the uplink signal using the same spatial domain filter as the transmission synchronization signal (SS).
  • PBCH transmitted broadcast signal
  • SS transmission synchronization signal
  • the foregoing configuration is that the second information is reconfigured after the beam fails and is successfully restored, corresponding to the scenario shown in FIG. 6, in the blur interval 3, that is, in the beam failure.
  • the network device may receive the uplink signal using the same spatial domain transmission filter as the Receive Beam Failure Recovery Request (BFRQ), or the network device may use the transmit beam failure recovery response control resource.
  • BFRQ Receive Beam Failure Recovery Request
  • the same spatial domain transmission filter of the set (BFR-CORESET) receives the upstream signal.
  • the foregoing configuration is an initial configuration of the second information that occurs after a cell handover succeeds, and the cell handover succeeds before the initial configuration, corresponding to FIG. 7a.
  • the network device in the blur interval 5, that is, after the cell handover succeeds, and before the initial configuration, can receive the uplink signal using the same spatial domain transmission filter as the broadcast broadcast signal (PBCH), or the network The device can receive the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • PBCH broadcast broadcast signal
  • SS transmission synchronization signal
  • the network device may further configure, for the terminal device, second information related to the spatial relationship of the uplink signal, the second information including an entry indicating a spatial relationship.
  • the specific configuration method is not limited in this embodiment.
  • the network device may configure the foregoing second information by using RRC signaling, but this embodiment is not limited thereto.
  • the terminal device can send the uplink signal by using the appropriate airspace transmission filter without obtaining the configuration of the second information by the network device, and the terminal device cannot send the uplink when the uplink beam is uncertain. Signal problem.
  • This embodiment provides an uplink signal sending apparatus, where the apparatus is configured in a terminal device. Since the principle of solving the problem is similar to the method of the first embodiment, the specific implementation can refer to the implementation of the method of the first embodiment, and the details are not repeated.
  • the uplink signal transmitting apparatus 1100 includes:
  • the sending unit 1101 configured to use the first information related to the spatial relationship of the uplink signal, but the spatial relationship of the uplink signal is not yet valid, using the same airspace transmission as the transmitted signal or the received signal
  • the filter transmits the uplink signal using a spatial domain transmission filter associated with the predetermined entry in the first information.
  • the first information includes an entry or a plurality of entries, each entry indicating a spatial relationship, and the spatial relationship of the uplink signal is not yet valid, indicating that the network device has not been activated or indicated.
  • the configuration is an initial configuration of the first information (the scenario shown in FIG. 5).
  • the sending unit 1101 uses the first message in the random access procedure (msg. 1)
  • the same spatial domain transmission filter transmits an uplink signal
  • the transmitting unit 1101 transmits an uplink signal using the same spatial domain transmission filter as the third message (msg.3) in the random access procedure
  • the transmitting unit 1101 uses the The airspace transmission filter associated with the pre-specified entry in the first information transmits an uplink signal
  • the transmitting unit 1101 sends an uplink signal by using a spatial domain transmission filter associated with the default entry configured in the first information, or
  • the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the configuration is a reconfiguration of the first information after the beam fails and is successfully restored (the scenario shown in FIG. 6).
  • the sending unit 1101 uses the transmit beam failure recovery request.
  • BFRQ The same airspace transmission filter transmits an uplink signal, or the transmitting unit 1101 transmits an uplink signal using the same spatial domain transmission filter as the successful reception beam failure recovery response control resource set (BFR-CORESET), or the transmitting unit 1101 uses The airspace transmission filter associated with the pre-specified entry in the first information sends an uplink signal, or the sending unit 1101 sends an uplink signal by using a spatial domain transmission filter associated with the default entry configured in the first information, or The transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the receiving PBCH, or the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the receiving SS.
  • the transmitting unit 1101 transmits an uplink signal using the same spatial domain transmission filter as the transmit beam failure recovery request (BFRQ), or The transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the successful reception beam failure recovery response control resource set (BFR-CORESET).
  • BFRQ transmit beam failure recovery request
  • BFR-CORESET successful reception beam failure recovery response control resource set
  • the configuration is an initial configuration of the first information (the scenario shown in FIG. 7a and FIG. 7b) that occurs after a cell handover succeeds, in the blur interval 6 or the blur interval 7, the sending unit 1101 Transmitting an uplink signal by using a spatial domain transmission filter associated with the pre-specified entry in the first information, or transmitting unit 1101 transmitting an uplink signal by using a spatial domain transmission filter associated with a default entry configured in the first information, Alternatively, the transmitting unit 1101 transmits the uplink signal using the same spatial domain filter as the received broadcast signal (PBCH), or the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the received synchronization signal (SS).
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH). Or, the transmitting unit 1101 transmits the uplink signal using the same spatial domain transmission filter as the reception synchronization signal (SS).
  • PBCH received broadcast signal
  • SS reception synchronization signal
  • the configuration is an initial configuration of the first information
  • the sending unit 1101 uses the same airspace transmission as the first message (msg.1) in the random access procedure.
  • the filter transmits an uplink signal, or the transmitting unit 1101 transmits an uplink signal using the same spatial domain transmission filter as the third message (msg. 3) in the random access procedure, or the transmitting unit 1101 uses and receives a broadcast signal (PBCH).
  • PBCH broadcast signal
  • the same spatial domain transmission filter transmits the uplink signal, or the transmitting unit 1101 transmits the uplink signal using the same spatial domain filter as the reception synchronization signal (SS).
  • SS reception synchronization signal
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter when the uplink beam is determined according to the configuration of the network device, and the terminal device cannot send the uplink signal when the uplink beam is uncertain. The problem.
  • This embodiment provides an uplink signal receiving apparatus, where the apparatus is configured in a network device. Since the principle of solving the problem is similar to the method of the second embodiment, the specific implementation can refer to the implementation of the method of the second embodiment, and the description of the same portions will not be repeated.
  • FIG. 12 is a schematic diagram of an uplink signal receiving apparatus according to this embodiment. As shown in FIG. 12, the apparatus 1200 includes:
  • the receiving unit 1201 is configured to configure, by the network device, the first information related to the spatial relationship of the uplink signal, but if the spatial relationship of the uplink signal is not yet valid, use the received signal or have sent
  • the spatial domain transmission filter having the same signal or the spatial domain transmission filter associated with the default entry in the first information receives the uplink signal.
  • the configuration is that for the initial configuration of the first information, the receiving unit 1201 receives the uplink using the same airspace transmission filter as the first message (msg.1) in the receiving random access procedure. a signal, or the receiving unit 1201 receives an uplink signal using a same spatial domain transmission filter as the third message (msg.3) in the random access procedure, or the receiving unit 1201 uses the first information.
  • the airspace transmission filter associated with the pre-designated entry receives the uplink signal, or the receiving unit 1204 receives the uplink signal using the airspace transmission filter associated with the default entry configured in the first information, or the receiving The unit 1201 receives the uplink signal using the same spatial domain filter as the transmitted broadcast signal (PBCH), or the receiving unit 1201 receives the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • PBCH transmitted broadcast signal
  • SS transmission synchronization signal
  • the configuration is to reconfigure the first information after the beam fails and successfully recovers, and the receiving unit 1201 receives the uplink signal by using the same spatial domain filter as the Receive Beam Failure Recovery Request (BFRQ). Or, the receiving unit 1201 receives the uplink signal using the same spatial domain filter as the transmit beam failure recovery response control resource set (BFR-CORESET), or the receiving unit 1201 uses the pre-specified entry in the first information.
  • BFRQ Receive Beam Failure Recovery Request
  • BFR-CORESET transmit beam failure recovery response control resource set
  • the associated airspace transmission filter receives the uplink signal, or the receiving unit 1201 receives the uplink signal by using the airspace transmission filter associated with the default entry configured in the first information, or the receiving unit 1201 uses
  • PBCH transmission broadcast signal
  • SS transmission synchronization signal
  • the receiving unit 1201 receives the uplink signal using the same spatial domain transmission filter as the receive beam failure recovery request (BFRQ), or The receiving unit 1201 receives the uplink signal using the same spatial domain filter as the successfully transmitted beam failure recovery response control resource set (BFR-CORESET).
  • BFRQ receive beam failure recovery request
  • BFR-CORESET successfully transmitted beam failure recovery response control resource set
  • the configuration is an initial configuration of the first information that occurs after a cell handover succeeds, and the receiving unit 1201 uses a spatial domain transmission filter associated with a pre-specified entry in the first information.
  • Receiving an uplink signal or the receiving unit 1201 receives an uplink signal using a spatial domain transmission filter associated with a default entry configured in the first information, or the receiving unit 1201 uses the same as a broadcast broadcast signal (PBCH)
  • PBCH broadcast broadcast signal
  • the airspace transmission filter receives the uplink signal, or the receiving unit 1201 receives the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • the receiving unit 1201 uses the same airspace transmission as the broadcast broadcast signal (PBCH) after the cell handover succeeds and before the reconfiguration.
  • PBCH broadcast broadcast signal
  • the filter receives the uplink signal, or the receiving unit 1201 receives the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • SS transmission synchronization signal
  • the receiving unit 1201 receives using the airspace transmission filter associated with the pre-specified entry in the first information.
  • Uplink signal or the receiving unit 1201 receives an uplink signal using a spatial domain transmission filter associated with a default entry configured in the first information, or the receiving unit 1201 uses the same airspace as a broadcast broadcast signal (PBCH)
  • PBCH broadcast broadcast signal
  • the transmission filter receives the uplink signal, or the receiving unit 1201 receives the uplink signal using the same spatial domain transmission filter as the transmission synchronization signal (SS).
  • the receiving unit 1201 receives the uplink signal by using the same spatial domain filter as the received signal or the transmitted signal, if the network device does not configure the first information related to the spatial relationship of the uplink signal for the terminal device. .
  • the receiving unit 1201 receives an uplink signal using the same spatial domain transmission filter as the first message (msg.1) in the random access procedure, or the receiving unit 1201 uses and receives the random access procedure.
  • the third message receives the uplink signal from the same spatial domain transmission filter, or the receiving unit 1201 receives the uplink signal using the same spatial domain filter as the transmitted broadcast signal (PBCH), or the receiving unit 1201 uses The same spatial domain transmission filter that transmits the synchronization signal (SS) receives the uplink signal.
  • PBCH transmitted broadcast signal
  • SS synchronization signal
  • the apparatus 1200 may further include:
  • a first configuration unit 1202 configured to configure, by the terminal device, first information related to a spatial relationship of the uplink signal, where the first information includes multiple entries, each entry indicating a spatial relationship;
  • the second configuration unit 1203 indicates, for the terminal device, an entry in the first information that the terminal device needs to use.
  • the apparatus 1200 may further include:
  • a third configuration unit 1204 configured to configure a default entry in the first information, where the terminal device configures the first information in the first configuration unit 1201 for the terminal device and does not indicate or activate through the second configuration unit 1202.
  • the upstream signal is transmitted using the spatial domain transmission filter associated with the default entry.
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter when the uplink beam is determined according to the configuration of the network device, and the terminal device cannot send the uplink signal when the uplink beam is uncertain. The problem.
  • This embodiment provides an uplink signal sending apparatus, where the apparatus is configured in a terminal device. Since the principle of solving the problem is similar to the method of the embodiment 3, the specific implementation can refer to the implementation of the method of the embodiment 3, and the description of the same portions is not repeated.
  • FIG. 13 is a schematic diagram of an uplink signal sending apparatus according to this embodiment. As shown in FIG. 13, the apparatus 1300 includes:
  • the sending unit 1301 sends an uplink signal by using a same airspace transmission filter as the transmitted signal or the received signal before the network device configures the second information related to the spatial relationship of the uplink signal, where the second information includes an entry.
  • the entry indicates a spatial relationship.
  • the configuration is an initial configuration of the second information
  • the sending unit 1301 sends an uplink signal by using a same airspace transmission filter as the first message (msg.1) in the random access procedure.
  • the transmitting unit 1301 transmits an uplink signal using the same spatial domain transmission filter as the third message (msg.3) in the random access procedure, or the transmitting unit 1301 uses the same as the received broadcast signal (PBCH).
  • the airspace transmission filter transmits an uplink signal, or the transmitting unit 1301 transmits the uplink signal using the same spatial domain filter as the reception synchronization signal (SS).
  • SS reception synchronization signal
  • the configuration is a reconfiguration of the second information after a beam failure and successful recovery, after the beam fails and successfully recovers, and before the reconfiguration, the sending unit 1301 uses The same spatial domain transmission filter of the transmit beam failure recovery request (BFRQ) transmits an uplink signal, or the transmitting unit 1301 transmits an uplink signal using the same spatial domain transmission filter as the successful reception beam failure recovery response control resource set (BFR-CORESET). .
  • BFRQ transmit beam failure recovery request
  • BFR-CORESET successful reception beam failure recovery response control resource set
  • the configuring is an initial configuration of the second information that occurs after a cell handover succeeds, and the cell handover succeeds before the initial configuration, after a cell handover succeeds, and Before the initial configuration, the transmitting unit 1301 transmits an uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the transmitting unit 1301 transmits using the same spatial domain transmission filter as the received synchronization signal (SS). Uplink signal.
  • PBCH received broadcast signal
  • SS received synchronization signal
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter without obtaining the configuration of the second information by the network device, and the terminal device cannot send the uplink when the uplink beam is uncertain. Signal problem.
  • This embodiment provides an uplink signal receiving apparatus, where the apparatus is configured in a network device. Since the principle of solving the problem is similar to the method of the embodiment 4, the specific implementation can refer to the implementation of the method of the embodiment 4, and the description of the same portions will not be repeated.
  • FIG. 14 is a schematic diagram of an uplink signal receiving apparatus according to the embodiment. As shown in FIG. 14, the apparatus 1400 includes:
  • the receiving unit 1401 before the network device configures the terminal device with the second information related to the spatial relationship of the uplink signal, receives the uplink signal by using the same spatial domain transmission filter as the transmitted signal or the received signal, where the second information includes An entry that indicates a spatial relationship.
  • the configuration is an initial configuration of the second information
  • the receiving unit 1402 receives the uplink using the same spatial domain transmission filter as the first message (msg.1) in the random access procedure.
  • Signal or the receiving unit 1402 receives an uplink signal using the same spatial domain transmission filter as the third message (msg.3) in the random access procedure, or the receiving unit 1402 uses and transmits a broadcast signal (PBCH)
  • PBCH broadcast signal
  • the same spatial domain transmission filter receives the uplink signal
  • the receiving unit 1402 receives the uplink signal using the same spatial domain filter as the transmission synchronization signal (SS).
  • SS transmission synchronization signal
  • the configuration is a reconfiguration of the second information after a beam failure and successful recovery, after the beam fails and successfully recovers, and before the reconfiguration, the receiving unit 1402 uses The same spatial domain transmission filter of the receive beam failure recovery request (BFRQ) receives the uplink signal, or the receiving unit 1402 receives the uplink signal using the same spatial domain transmission filter as the transmit beam failure recovery response control resource set (BFR-CORESET).
  • BFRQ receive beam failure recovery request
  • BFR-CORESET transmit beam failure recovery response control resource set
  • the configuring is an initial configuration of the second information that occurs after a cell handover succeeds, and the cell handover succeeds before the initial configuration, after a cell handover succeeds, and Before the initial configuration, the receiving unit 1402 receives an uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or the receiving unit 1402 receives using the same spatial domain transmission filter as the transmission synchronization signal (SS). Uplink signal.
  • PBCH transmitted broadcast signal
  • SS transmission synchronization signal
  • the device 1400 may further include:
  • the configuration unit 1401 configures the terminal device with second information related to the spatial relationship of the uplink signal, and the second information includes an entry indicating a spatial relationship.
  • the terminal device can send an uplink signal by using a suitable airspace transmission filter without obtaining the configuration of the second information by the network device, and the terminal device cannot send the uplink when the uplink beam is uncertain. Signal problem.
  • the embodiment of the invention further provides a terminal device, wherein the terminal device comprises the device described in Embodiment 5 or 7.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 1500 can include a central processor 1501 and a memory 1502; the memory 1502 is coupled to the central processor 1501.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functions of the apparatus described in Embodiment 5 or 7 may be integrated into the central processing unit 1501, and the functions of the apparatus described in Embodiment 5 or 7 are implemented by the central processing unit 1501, wherein regarding Embodiment 5
  • the functions of the device described in or 7 are incorporated herein and will not be described again.
  • the apparatus described in Embodiment 5 or 7 may be configured separately from the central processing unit 1501.
  • the apparatus described in Embodiment 5 or 7 may be configured as a chip connected to the central processing unit 1501.
  • the control of the central processor 1501 implements the functions of the apparatus described in the embodiment 5 or 7.
  • the terminal device 1500 may further include: a communication module 1503, an input unit 1504, an audio processing unit 1505, a display 1506, and a power source 1507. It is to be noted that the terminal device 1500 does not necessarily have to include all of the components shown in FIG. 15; further, the terminal device 1500 may further include components not shown in FIG. 15, and reference may be made to the related art.
  • central processor 1501 also sometimes referred to as a controller or operational control, may include a microprocessor or other processor device and/or logic device that receives input and controls each of terminal devices 1500. The operation of the part.
  • the memory 1502 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable device.
  • the above configuration-related information can be stored, and a program for executing the related information can be stored.
  • the central processing unit 1501 can execute the program stored by the memory 1502 to implement information storage or processing and the like.
  • the functions of other components are similar to those of the existing ones and will not be described here.
  • the various components of terminal device 1500 may be implemented by special purpose hardware, firmware, software or a combination thereof without departing from the scope of the invention.
  • the terminal device of the present embodiment when the device of Embodiment 5 is included, it is possible to transmit an uplink signal using a suitable airspace transmission filter in the case where the uplink beam is not determined according to the configuration of the network device; when the device of Embodiment 7 is included
  • the uplink signal can be transmitted using a suitable airspace transmission filter without obtaining the configuration of the second information by the network device.
  • the problem that the terminal device cannot transmit the uplink signal when the uplink beam is uncertain is solved.
  • the embodiment of the present invention further provides a network device, where the network device includes the device described in Embodiment 6 or Embodiment 7.
  • FIG. 16 is a schematic structural diagram of an embodiment of a network device according to an embodiment of the present invention.
  • network device 1600 can include a central processing unit (CPU) 1601 and memory 1602; and memory 1602 coupled to central processor 1601.
  • the memory 1602 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 1601 to receive various information transmitted by the terminal device and to transmit various information to the terminal device.
  • the functions of the apparatus described in Embodiment 6 or Embodiment 8 may be integrated into the central processing unit 1601, and the functions of the apparatus described in Embodiment 6 or Embodiment 8 are implemented by the central processing unit 1601, wherein The functions of the apparatus described in Embodiment 6 or Embodiment 7 are incorporated herein, and are not described herein again.
  • the apparatus described in Embodiment 6 or Embodiment 8 may be configured separately from the central processing unit 1601.
  • the apparatus described in Embodiment 6 or Embodiment 8 may be connected to the central processing unit 1601.
  • the chip, the function of the apparatus described in Embodiment 6 or Embodiment 8 is implemented by the control of the central processing unit 1601.
  • the network device 1600 may further include: a transceiver 1603, an antenna 1604, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the network device 1600 does not necessarily have to include all of the components shown in FIG. 16; in addition, the network device 1600 may also include components not shown in FIG. 16, and reference may be made to the prior art.
  • the terminal device when the device of Embodiment 6 is included, the terminal device can transmit an uplink signal using a suitable airspace transmission filter if the uplink beam is not determined according to the configuration of the network device; when the embodiment 8 is included In the case of the device, the terminal device can transmit the uplink signal using a suitable airspace transmission filter without obtaining the configuration of the second information by the network device. Thereby, the problem that the terminal device cannot transmit the uplink signal when the uplink beam is uncertain is solved.
  • the embodiment of the present invention further provides a communication system, which includes a network device and a terminal device.
  • the network device is, for example, the network device 1600 described in Embodiment 10.
  • the terminal device is, for example, the terminal device 1500 described in Embodiment 9.
  • the terminal device is, for example, a UE of the gNB service, which includes the conventional components and functions of the terminal device in addition to the functions of the device described in Embodiment 5 or 7, as described in Embodiment 9, This will not be repeated here.
  • the network device may be, for example, a gNB in the NR, which includes the conventional components and functions of the network device in addition to the functions of the device described in Embodiment 6 or 8, as described in Embodiment 10. I will not repeat them here.
  • the problem that the terminal device cannot transmit the uplink signal when the uplink beam is uncertain is solved.
  • An embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a terminal device, the program causes a computer to execute the method described in Embodiment 1 or 3 in the terminal device.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the method described in Embodiment 1 or 3 in a terminal device.
  • Embodiments of the present invention also provide a computer readable program, wherein when the program is executed in a network device, the program causes a computer to execute the method described in Embodiment 2 or 4 in the network device.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the method described in Embodiment 2 or 4 in a network device.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the method/apparatus described in connection with the embodiments of the invention may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional blocks shown in the figures and/or one or more combinations of the functional blocks may correspond to the various software modules of the computer program flow or to the various hardware modules.
  • These software modules may correspond to the respective steps shown in the figures.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.
  • an uplink signal transmitting device configured in a terminal device, wherein the device includes:
  • a sending unit that sends an uplink signal using a same spatial domain transmission filter as the transmitted signal or the received signal before the network device configures the second information related to the spatial relationship of the uplink signal, the second information including an entry, The entry indicates a spatial relationship.
  • the transmitting unit sends the uplink signal by using the same airspace transmission filter as the first message (msg.1) in the random access procedure, or
  • the transmitting unit transmits the uplink signal by using the same airspace transmission filter as the third message (msg.3) in the random access procedure, or
  • the transmitting unit transmits the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or
  • the transmitting unit transmits the uplink signal using the same spatial domain filter as the reception synchronization signal (SS).
  • SS reception synchronization signal
  • the transmitting unit transmits the uplink signal using the same spatial domain transmission filter as the transmit beam failure recovery request (BFRQ), or the transmitting unit uses the same airspace as the successfully received beam failure recovery response control resource set (BFR-CORESET)
  • BFRQ transmit beam failure recovery request
  • BFR-CORESET successfully received beam failure recovery response control resource set
  • the transmitting unit transmits the uplink signal using the same spatial domain transmission filter as the received broadcast signal (PBCH), or the transmitting unit uses the same as the reception synchronization signal (SS)
  • PBCH received broadcast signal
  • SS reception synchronization signal
  • Supplementary note 5 is an uplink signal receiving device, configured in a network device, where the device includes:
  • the network device configures, for the terminal device, the second information related to the spatial relationship of the uplink signal, receiving the uplink signal by using the same spatial domain transmission filter as the transmitted signal or the received signal, the second information Includes an entry that indicates a spatial relationship.
  • the receiving unit receives the uplink signal by using the same spatial domain transmission filter as the first message (msg.1) in the random access procedure, or
  • the receiving unit receives the uplink signal by using the same spatial domain transmission filter as the third message (msg.3) in the random access procedure, or
  • the receiving unit receives the uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or
  • the receiving unit receives the uplink signal using the same spatial domain filter as the transmission synchronization signal (SS).
  • SS transmission synchronization signal
  • the receiving unit receives the uplink signal using the same spatial domain transmission filter as the receive beam failure recovery request (BFRQ), or the receiving unit uses the same airspace transmission as the transmit beam failure recovery response control resource set (BFR-CORESET)
  • BFRQ receive beam failure recovery request
  • BFR-CORESET transmit beam failure recovery response control resource set
  • the configuration is an initial configuration of the second information that occurs after a cell handover succeeds, and the cell handover succeeds before the initial configuration
  • the receiving unit receives the uplink signal using the same spatial domain transmission filter as the transmitted broadcast signal (PBCH), or the receiving unit uses the same as the transmission synchronization signal (SS)
  • PBCH transmitted broadcast signal
  • SS transmission synchronization signal
  • a configuration unit that configures, for the terminal device, second information related to a spatial relationship of the uplink signal, the second information including an entry indicating a spatial relationship.

Abstract

一种上行信号发送方法、上行信号接收方法、装置和系统,所述上行信号发送方法包括:终端设备在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。通过该方法,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号。

Description

上行信号发送方法、上行信号接收方法、装置和系统 技术领域
本发明涉及通信领域,特别涉及一种上行信号发送方法、上行信号接收方法、装置和系统。
背景技术
为了推进第三代合作伙伴计划第五代(3GPP 5G)标准的进展,举办了若干与该标准相关的会议。在最近的RAN1#91次会议中,关于上行控制信道(PUCCH)的波束指示机制已经确定。PUCCH资源的空间关系是由无线资源控制(RRC)信令配置的参数PUCCH-Spatial-relation-info决定。其中,PUCCH-Spatial-relation-info是一个列表,包含一个或者多个条目,每个条目可以是单边带标识(SSB ID),信道状态信息参考信号资源指示(CSI-RS Resource Indication,CRI)或者是探测参考信号资源指示(SRS Resource Indication,SRI),用以指示PUCCH的空间关系。如果PUCCH-Spatial-relation-info中配置了多个条目,需要媒体接入控制单元(MAC-CE)信号指示,将PUCCH的空间关系与其中的一个条目相关联,终端设备即可根据MAC-CE指示的条目所关联的PUCCH的空间关系发送上行信号;如果PUCCH-Spatial-relation-info中只包含一个条目,终端设备将直接应用其中的配置,无需使用MAC-CE信号激活。
图1a和图1b分别示出了该PUCCH-Spatial-relation-info包含多个条目和包含一个条目的情况。如图1a所示,在PUCCH-Spatial-relation-info包含多个条目(RS1~RS4)的情况下,每个条目可以具有一个编号,并且每个条目指示了一个空间关系,例如RS1指示了Tx1,RS2指示了Tx2,RS3指示了Tx3,RS4指示了Tx4,其中,RS1~RS4可以是SSB ID、CRI或者SRI。在这种配置下,网络设备通过MAC-CE来激活或指示其中一个条目,例如激活或指示RS2,由此,终端设备可以应用该RS2所指示的空间关系Tx2来发送上行信号。如图1b所示,在PUCCH-Spatial-relation-info包含一个条目(RS1)的情况下,网络设备无需进行其他配置,终端设备可以直接应用该条目RS1所指示的空间关系Tx3来发送上行信号。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,当网络设备为终端设备配置了PUCCH-Spatial-relation-info,其中PUCCH-Spatial-relation-info包含多个条目时,如图1a所示,从网络设备为终端设备配置PUCCH-Spatial-relation-info(RRC配置完成)到MAC-CE信号激活或指示其中一个条目的过程中,网络设备对于终端设备的上行波束的指示是模糊的,如图2所示,这种情况,终端设备不清楚用哪个波束上传。此外,当网络设备没有为终端设备配置PUCCH-Spatial-relation-info时,终端设备也有可能不清楚用哪个波束上传。
为了解决上述问题中的至少一个或者解决其他类似问题,本发明实施例提供了一种上行信号发送方法、上行信号接收方法、装置和系统。
根据本发明实施例的第一方面,提供了一种上行信号发送方法,其中,所述方法包括:
终端设备在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
根据本发明实施例的第二方面,提供了一种上行信号接收方法,其中,所述方法包括:
网络设备在为终端设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已接收信号或已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
根据本发明实施例的第三方面,提供了一种上行信号发送方法,其中,所述方法包括:
终端设备在网络设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
根据本发明实施例的第四方面,提供了一种上行信号接收方法,其中,所述方法包括:
网络设备为终端设备配置与上行信号的空间关系相关的第二信息,所述第二信息包括一个条目,所述条目指示了一个空间关系;
所述网络设备在所述配置之前使用与已发送信号或已接收信号相同的空域传输滤波器接收上行信号。
根据本发明实施例的第五方面,提供了一种上行信号发送装置,配置于终端设备,其中,所述装置包括:
发送单元,其在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
根据本发明实施例的第六方面,提供了一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
接收单元,其在所述网络设备为终端设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已接收信号或已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
根据本发明实施例的第七方面,提供了一种上行信号发送装置,配置于终端设备,其中,所述方法包括:
发送单元,其在网络设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
根据本发明实施例的第八方面,提供了一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
配置单元,其为终端设备配置与上行信号的空间关系相关的第二信息,所述第二信息包括一个条目,所述条目指示了一个空间关系;
发送单元,其在所述配置之前使用与已发送信号或已接收信号相同的空域传输滤波器接收上行信号。
根据本发明实施例的第九方面,提供了一种网络设备,其中,所述网络设备包括前述第六方面或第八方面所述的装置。
根据本发明实施例的第十方面,提供了一种终端设备,其中,所述终端设备包括前述第五方面或第七方面所述的装置。
根据本发明实施例的第十一方面,提供了一种通信系统,所述通信系统包括前述第十方面所述的终端设备和前述第九方面所述的网络设备。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行前述第二方面或第四方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行前述第二方面或第四方面所述的方法。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行前述第一方面或第三方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行前述第一方面或第三方面所述的方法。
本发明实施例的有益效果在于:通过本发明实施例,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本发明实施例的通信系统的示意图;
图2是PUCCH-Spatial-relation-info的示意图;
图3是上行波束配置和指示或激活的示意图;
图4是实施例1的上行信号发送方法的示意图;
图5是对第一信息进行配置的一个场景的示意图;
图6是对第一信息进行配置的另一个场景的示意图;
图7a是对第一信息进行配置的再一个场景的示意图;
图7b是对第一信息进行配置的又一个场景的的示意图;
图8是实施例2的上行信号接收方法的示意图;
图9是实施例3的上行信号发送方法的示意图;
图10是实施例4的上行信号接收方法的示意图;
图11是实施例5的上行信号发送装置的示意图;
图12是实施例6的上行信号接收装置的示意图;
图13是实施例7的上行信号发送装置的示意图;
图14是实施例8的上行信号接收装置的示意图;
图15是实施例8的终端设备的示意图;
图16是实施例10的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包 括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站 可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明实施例不限于此。
图3是本发明实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图3所示,通信系统300可以包括:网络设备301和终端设备302。为简单起见,图3仅以一个终端设备为例进行说明。网络设备301例如为NR系统中的网络设备gNB。
在本发明实施例中,网络设备301和终端设备302之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备302可以向网络设备301发送数据,例如使用免授权传输方式。网络设备301可以接收一个或多个终端设备302发送的数据,并向终端设备302反馈信息(例如确认ACK/非确认NACK)信息,终端设备302根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本实施例提供了一种上行信号发送方法,该方法应用于终端设备。图4是本实施例的上行信号发送方法的示意图,请参照图4,该方法包括:
步骤401:终端设备在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
在本实施例中,第一信息例如为前述的PUCCH-Spatial-relation-info,如前所述,该第一信息可以具有多个条目,也可以具有一个条目,每个条目指示或关联了一个空间关系。为了方便说明,本实施例仅针对第一信息包括多个条目的情况进行说明。
在本实施例中,如背景技术所述,在该第一信息具有多个条目的情况下,因为使用哪个条目还需要网络设备通过MAC-CE指示或激活,因此,在网络设备还未激活或指示需要使用的条目的情况下,也即该上行信号的空间关系还未生效的情况下,终端设备可以使用与已发送信号或者与已接收相同的空域传输滤波器(spatial domain transmission filter)或者使用该第一信息中预定的条目所关联的空域传输滤波器来发送上行信号。由此,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
在其他实施例中,上行信号的空间关系还未生效也可以是其他情况,例如终端设备没有接收到网络设备的上述配置,或者,终端设备尽管接收到了网络设备的上述配置,但并没有成功获得上述第一信息,等等,在这些情况下,终端设备也可以使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号。
在本实施例中,网络设备可以通过RRC信令为终端设备配置上述第一信息,但本实施例并不以此作为限制,上述第一信息也可以通过其他信令配置。为了方便说明,本实施例以RRC信令为例,将对上述第一信息的配置称为RRC配置,这里的RRC配置不能被理解为除了配置上述第一信息以外的RRC信令的配置。
在本实施例中,上述配置可以是对第一信息的初始配置,也可以是在波束失败并 成功恢复后对该第一信息的重新配置,还可以是在小区切换成功后对该第一信息的初始配置。上述初始配置是指在此次配置之前并未为该终端设备配置过该第一信息。
图5是对第一信息(PUCCH-Spatial-relation-info)进行初始配置的示意图,如图5所示,在该场景下,终端设备可能刚刚完成了初始接入过程,从完成对第一信息的初始配置到网络设备通过MAC-CE指示或激活其中一个条目,这段时间网络设备对上行波束的指示是模糊的,称为模糊区间1,在该模糊区间1,终端设备可以使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
例如,终端设备可以使用与发送随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号。在图5所示的场景中,初始接入成功说明msg1的上行波束是可靠的,在以上时间段(模糊区间)中使用msg1的波束,可以保证成功率。
再例如,终端设备可以使用与发送随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号。在图5所示的场景中,与msg.1类似,初始接入成功说明msg3的上行波束是可靠的,在以上时间段(模糊区间)中使用msg3的波束,也可以保证成功率。
再例如,终端设备可以使用第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号。该预先指定的条目可以是预定义或预配置的,例如预定义或预配置为第一个条目,由此,终端设备在上述模糊区间可以使用第一个条目所关联的空域传输滤波器来发送上行信号。由此,不仅解决了终端设备在上述模糊区间无法确定上行波束的问题,还减少了信令的开销。
再例如,终端设备可以使用第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号。在这个例子中,与前一个例子不同的是,网络设备还可以进一步为第一信息配置缺省条目,终端设备可以在上述模糊区间使用配置的该缺省条目所关联的空域传输滤波器发送上行信号。由此,上行波束可以有更大的选择范围,第一信息的配置会更加灵活。
再例如,终端设备可以使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号。在这个例子中,利用了信道互易性的原理,在存在信道互易性的情况下,成功接收PBCH的空域传输滤波器所发射的相应上行波束是可靠的,终端设备可以使用该空域传输滤波器,由此可以保证成功率。
再例如,终端设备可以使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。在这个例子中,与前一个例子类似,也利用了信道互易性的原理,使用与接收SS相同的空域传输滤波器,也可以保证成功率。
此外,在图5所示的场景中,在初始配置之前,网络设备对于上行信号的空间关系(上行波束)没有任何指示,在这种情况下,网络设备对上行波束的指示也是模糊的,称为模糊区间2,在该模糊区间2,终端设备可以使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号。
例如,终端设备可以使用与发送随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号。在这个例子中,在上述初始配置之前,终端设备没有获得关于上述第一信息的配置,因此网络设备关于上行波束的指示也是模糊的,然而此时终端设备可能已经完成了初始接入,因此,在这段时间,其可以使用与发送msg.1相同的空域传输滤波器发送上行信号。同理,终端设备也可以使用与发送随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号。或者,终端设备可以使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在图5所示的场景中,上行信号可以是上行控制信号(PUCCH),其可以用于承载下行数据信道(PDSCH)的ACK/NACK反馈,CSI上报等信息。并且,该上行信号也可以是探测参考信号(SRS)等。
图6是在波束失败并成功恢复后对该第一信息进行重新配置的示意图,如图6所示,在该场景下,终端设备刚刚从波束失败中成功恢复,原有的上行波束指示(例如对上行控制信号(PUCCH)和/或上行数据信号(PUSCH)的上行波束指示)已经不可靠,针对PUCCH和/或PUSCH的上行波束指示需要重新配置和/或激活和/或指示。由此,从成功恢复到重新配置第一信息之间,以及从重新配置第一信息到激活或指示其中一个条目之间,上行波束指示是模糊的,分别称为模糊区间3和模糊区间4。
在本实施例中,在模糊区间4,终端设备可以使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
例如,终端设备可以使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤 波器发送上行信号。在图6所示的场景中,终端设备刚刚从波束失败中成功恢复,说明BFRQ的上行波束是可靠的,在模糊区间4使用BFRQ的波束发送上行信号,可以保证成功率。
再例如,终端设备可以使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。在这个例子中,同样利用了信道互易性的原理,下行成功接收BFR-CORESET能确保上行信号的传输。
此外,终端设备也可以使用第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,终端设备也可以使用第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,终端设备也可以使用与接收PBCH相同空域传输滤波器发送上行信号,或者,终端设备也可以使用与接收SS相同的空域传输滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在本实施例中,在模糊区间3,终端设备可以使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号。
例如,终端设备可以使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,终端设备可以使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在图6所示的场景中,由于对上述第一信息的重新配置发生在波束失败并成功恢复之后,因此需要上行波束指示的上行信号可能是PUCCH,也可能是PUSCH,或者两者都有,并且,PUCCH可以承载RRC配置响应,波束训练,波束上报等功能,PUSCH可以承载上行数据。
图7a和图7b是小区切换场景下对该第一信息进行初始配置的示意图。
在图7a所示的场景中,小区切换成功发生在对第一信息进行初始配置之前,也即,终端设备成功切换小区,在新小区完成对第一信息的初始配置,在该场景中,从小区切换完成到对第一信息的初始配置完成,以及从对第一信息的初始配置完成到网络设备激活或指示使用其中哪个条目,网络设备对上行波束的指示也是模糊的,分别称为模糊区间5和模糊区间6。
在模糊区间5,终端设备可以使用与已接收信号相同的空域传输滤波器发送上行信号。例如,终端设备可以使用与接收广播信号(PBCH)相同空域滤波器发送上行 信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在模糊区间6,终端设备可以使用与已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。例如,终端设备可以使用第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,终端设备可以使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,终端设备可以使用与接收广播信号(PBCH)相同空域滤波器发送上行信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在图7b所示的场景中,小区切换成功发生在对第一信息进行初始配置之后,也即,终端设备先完成对第一信息的初始配置,再切换小区,在该场景中,从小区切换完成到到网络设备激活或指示使用其中哪个条目,网络设备对上行波束的指示也是模糊的,称为模糊区间7。
在模糊区间7,终端设备可以使用与已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。例如,终端设备可以使用第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,终端设备可以使用第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,终端设备可以使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。实施的原理与前述相同,此处省略说明。
在图7a和图7b所示的场景中,需要上行波束指示的上行信号一般为上行控制信号(PUCCH),但本实施例并不以此作为限制,例如需要上行波束指示的上行信号也可能是SRS。
通过本实施例的方法,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例2
本实施例提供了一种上行信号接收方法,该方法应用于网络设备,其是对应实施 例1的方法的网络侧的处理,其中与实施例1相同的内容不再重复说明。图8是本实施例的上行信号接收方法的示意图,如图8所示,该方法包括:
步骤801:网络设备在为终端设备配置了与上行信号的空间关系相关的第一信息,但上行信号的空间关系还未生效的情况下,使用与已接收信号或已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
在本实施例中,与实施例1类似,仅针对第一信息包括多个条目进行说明。
在本实施例中,网络设备可以为终端设备配置与上行信号的空间关系相关的第一信息,所述第一信息包括多个条目,每个条目指示了一个空间关系。在本实施例中,如前所述,网络设备可以通过RRC信令配置上述第一信息,但本实施例并不以此作为限制。并且,本实施例对具体的配置方式不作限制。
此外,网络设备还可以为终端设备指示或激活所述终端设备需要使用的第一信息中的条目。在本实施例中,如前所述,网络设备可以通过MAC-CE来指示或激活该终端设备需要使用的条目,本实施例对指示或激活的方式不作限制。
在本实施例中,与实施例1对应的,网络设备可以在为终端设备配置了与上行信号的空间关系相关的第一信息,但上行信号的空间关系还未生效的情况下,使用与已接收信号或已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
在一个实施方式中,在所述配置为针对所述第一信息的初始配置的情况下。
对应于图5所示的场景中的模糊区间1,网络设备可以使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
对应于图5所示的场景的模糊区间2,也即,在网络设备没有为终端设备配置与上行信号的空间关系相关的第一信息的情况下,网络设备可以使用与已接收信号或已 发送信号相同的空域滤波器接收上行信号。例如,网络设备可以使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在一个实施方式中,在所述配置为波束失败并成功恢复后对所述第一信息的重新配置的情况下。
对应于图6所示的场景的模糊区间3,在波束失败并成功恢复之后并且在所述重新配置之前,网络设备可以使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与成功发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号。
对应于图6所示的场景的模糊区间4,网络设备可以使用与接收波束失败恢复请求(BFRQ)相同的空域滤波器接收上行信号,或者,网络设备可以使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号,或者,网络设备可以使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在一个实施方式中,在所述配置为小区切换成功后发生的对所述第一信息的初始配置的情况下。
对应于图7a所示的小区切换成功发生在所述初始配置之前的场景,在模糊区间5,网络设备可以使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。在模糊区间6,网络设备可以使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS) 相同的空域传输滤波器接收上行信号。
对应于图7b所示的小区切换成功发生在所述初始配置之后的场景,在模糊区间7,网络设备可以使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施例中,网络设备还可以配置第一信息中的缺省条目,终端设备在网络设备为其配置了上述第一信息并且并未指示或激活第一信息中需要使用的条目的情况下,可以使用该缺省条目所关联的空域传输滤波器发送上行信号,由此,网络设备可以使用该缺省条目所关联的空域传输滤波器接收上行信号。
通过本实施例的方法,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例3
本实施例提供了一种上行信号发送方法,该方法应用于终端设备。图9是本实施例的上行信号发送方法的示意图,请参照图9,该方法包括:
步骤901:终端设备在网络设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
在本实施例中,第二信息例如为前述的PUCCH-Spatial-relation-info,如前所述,该第二信息可以具有多个条目,也可以具有一个条目,每个条目指示或关联了一个空间关系。为了方便说明,本实施例仅针对第一信息包括一个条目的情况进行说明。
在本实施例的一个实施方式中,与图5所示的场景类似,当上述配置为对第二信息的初始配置的情况下,由于该第二信息中仅包括一个条目,则该配置的完成即指示了上行波束。但在该配置之前,或者说,在网络设备没有给终端设备配置上述第二信息的情况下,也即在模糊区间1,网络设备对上行波束的指示仍然是模糊的,则终端设备可以使用与随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上 行信号,或者,终端设备可以使用与随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,终端设备可以使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域滤波器发送上行信号。实施的原理已经在实施例1中做了说明,此处不再赘述。
在本实施的另一个实施方式中,与图6所示的场景类似,当上述配置为波束失败并成功恢复之后对所述第二信息的重新配置时,在模糊区间3,也即,在波束失败并成功恢复之后,并且在所述重新配置之前,终端设备可以使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,终端设备可以使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。实施的原理已经在实施例1中做了说明,此处不再赘述。
在本实施例的又一个实施方式中,与图7a所示的场景类似,当上述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前时,在模糊区间5,也即,在小区切换成功之后,并且在所述初始配置之前,终端设备可以使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,终端设备可以使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。实施的原理已经在实施例1中做了说明,此处不再赘述。
通过本实施例的方法,终端设备能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例4
本实施例提供了一种上行信号接收方法,该方法应用于网络设备。该方法是与实施例3所述的方法对应的网络侧的处理,其中与实施例3相同的内容不再重复说明。图10是本实施例的上行信号接收方法的示意图,如图10所示,该方法包括:
步骤1001:网络设备在为终端设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器接收上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
在本实施例的一个实施方式中,上述配置为对所述第二信息的初始配置,对应于 图5所示的场景,在模糊区间1,网络设备可以使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送广播信号(PBCH)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域滤波器接收上行信号。
在本实施例的另一个实施方式中,上述配置为波束失败并成功恢复之后对所述第二信息的重新配置,对应于图6所示的场景,在模糊区间3,也即,在波束失败并成功恢复之后,并且在所述重新配置之前,网络设备可以使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,网络设备可以使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器接收上行信号。
在本实施例的又一个实施方式中,上述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前,对应于图7a所示的场景中,在模糊区间5,也即,在小区切换成功之后,并且在所述初始配置之前,网络设备可以使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,网络设备可以使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施中,如前所述,网络设备还可以为终端设备配置与上行信号的空间关系相关的第二信息,所述第二信息包括一个条目,所述条目指示了一个空间关系。本实施例对具体的配置方法不作限制,例如,网络设备可以通过RRC信令配置上述第二信息,但本实施例并不以此作为限制。
通过本实施例的方法,终端设备能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例5
本实施例提供了一种上行信号发送装置,所述装置配置于终端设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1的方法的实施,内容相同之处不再重复说明。
图11是本实施例的上行信号发送装置的示意图,请参照图11,该上行信号发送 装置1100包括:
发送单元1101,其在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
在本实施例中,所述第一信息包括一个条目或多个条目,每个条目指示了一个空间关系,所述上行信号的空间关系还未生效是指所述网络设备还未激活或指示所述终端设备需要使用的第一信息中的条目。
在一个实施方式中,所述配置为对所述第一信息的初始配置(图5所示的场景),在模糊区间2,发送单元1101使用与随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,发送单元1101使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
在另一个实施方式中,所述配置为波束失败并成功恢复后对所述第一信息的重新配置(图6所示的场景),在模糊区间4,发送单元1101使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用与接收PBCH相同空域传输滤波器发送上行信号,或者,发送单元1101使用与接收SS相同的空域传输滤波器发送上行信号。
在本实施方式中,在波束失败并成功恢复之后并且在所述重新配置之前(模糊区间3),发送单元1101使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与成功接收波束失败恢复响应控制资源 集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。
在又一个实施方式中,所述配置为小区切换成功后发生的对所述第一信息的初始配置(图7a和图7b所示的场景),在模糊区间6或模糊区间7,发送单元1101使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,发送单元1101使用与接收广播信号(PBCH)相同空域滤波器发送上行信号,或者,发送单元1101使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。在模糊区间5,也即,小区切换成功发生在初始配置之前,则在小区切换成功之后并且在所述初始配置之前,发送单元1101使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,发送单元1101使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
在又一个实施方式中,所述配置为对所述第一信息的初始配置,在所述配置之前,发送单元1101使用与随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,发送单元1101使用与接收同步信号(SS)相同的空域滤波器发送上行信号。
通过本实施例的装置,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例6
本实施例提供了一种上行信号接收装置,该装置配置于网络设备。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2的方法的实施,内容相同之处不再重复说明。
图12是本实施例的上行信号接收装置的示意图,如图12所示,该装置1200包括:
接收单元1201,其在网络设备为所述终端设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已接收信号或 已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
在一个实施方式中,所述配置为针对所述第一信息的初始配置,所述接收单元1201使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,所述接收单元1201使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1204使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者,所述接收单元1201使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在另一个实施方式中,所述配置为波束失败并成功恢复后对所述第一信息的重新配置,所述接收单元1201使用与接收波束失败恢复请求(BFRQ)相同的空域滤波器接收上行信号,或者,所述接收单元1201使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号,或者,所述接收单元1201使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施方式中,在波束失败并成功恢复之后并且在所述重新配置之前,所述接收单元1201使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与成功发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号。
在又一个实施方式中,所述配置为小区切换成功后发生的对所述第一信息的初始配置,所述接收单元1201使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元1201使用与 发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施方式中,如果所述小区切换成功发生在所述初始配置之前,则在小区切换成功之后并且在所述重新配置之前,所述接收单元1201使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施方式中,如果所述小区切换成功发生在所述初始配置之后,则在小区切换之后,所述接收单元1201使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在又一个实施方式中,接收单元1201在网络设备没有为终端设备配置与上行信号的空间关系相关的第一信息的情况下,使用与已接收信号或已发送信号相同的空域滤波器接收上行信号。例如,所述接收单元1201使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,所述接收单元1201使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者,所述接收单元1201使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施例中,如图12所示,该装置1200还可以包括:
第一配置单元1202,其为终端设备配置与上行信号的空间关系相关的第一信息,所述第一信息包括多个条目,每个条目指示了一个空间关系;以及
第二配置单元1203,其为所述终端设备指示或激活所述终端设备需要使用的第一信息中的条目。
在一个实施方式中,如图12所示,该装置1200还可以包括:
第三配置单元1204,其配置所述第一信息中的缺省条目,所述终端设备在第一配置单元1201为终端设备配置了上述第一信息并且并未通过第二配置单元1202指示或激活需要使用的条目的情况下,使用所述缺省条目所关联的空域传输滤波器发送上行信号。
通过本实施例的装置,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例7
本实施例提供了一种上行信号发送装置,该装置配置于终端设备。由于该装置解决问题的原理与实施例3的方法类似,因此其具体的实施可以参照实施例3的方法的实施,内容相同之处不再重复说明。
图13是本实施例的上行信号发送装置的示意图,如图13所示,该装置1300包括:
发送单元1301,其在网络设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
在一个实施方式中,所述配置为对所述第二信息的初始配置,所述发送单元1301使用与随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,所述发送单元1301使用与随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,所述发送单元1301使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,所述发送单元1301使用与接收同步信号(SS)相同的空域滤波器发送上行信号。
在另一个实施方式中,所述配置为波束失败并成功恢复之后对所述第二信息的重新配置,在波束失败并成功恢复之后,并且在所述重新配置之前,所述发送单元1301使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,所述发送单元1301使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。
在又一个实施方式中,所述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前,在小区切换成功之后,并且在所述初始配置之前,所述发送单元1301使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,所述发送单元1301使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
通过本实施例的装置,终端设备能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例8
本实施例提供了一种上行信号接收装置,该装置配置于网络设备。由于该装置解决问题的原理与实施例4的方法类似,因此其具体的实施可以参照实施例4的方法的实施,内容相同之处不再重复说明。
图14是本实施例的上行信号接收装置的示意图,如图14所示,该装置1400包括:
接收单元1401,其在网络设备为终端设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器接收上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
在一个实施方式中,所述配置为对所述第二信息的初始配置,所述接收单元1402使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,所述接收单元1402使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,所述接收单元1402使用与发送广播信号(PBCH)相同的空域传输滤波器接收上行信号,或者,所述接收单元1402使用与发送同步信号(SS)相同的空域滤波器接收上行信号。
在另一个实施方式中,所述配置为波束失败并成功恢复之后对所述第二信息的重新配置,在波束失败并成功恢复之后,并且在所述重新配置之前,所述接收单元1402使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,所述接收单元1402使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器接收上行信号。
在又一个实施方式中,所述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前,在小区切换成功之后,并且在所述初始配置之前,所述接收单元1402使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元1402使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
在本实施例中,如图14所示,该装置1400还可以包括:
配置单元1401,其为终端设备配置与上行信号的空间关系相关的第二信息,所述第二信息包括一个条目,所述条目指示了一个空间关系。
通过本实施例的装置,终端设备能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例9
本发明实施例还提供了一种终端设备,其中,该终端设备包括实施例5或7所述的装置。
图15是本发明实施例的终端设备的示意图。如图15所示,该终端设备1500可以包括中央处理器1501和存储器1502;存储器1502耦合到中央处理器1501。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一个实施方式中,实施例5或7所述的装置的功能可以被集成到中央处理器1501中,由中央处理器1501实现实施例5或7所述的装置的功能,其中关于实施例5或7所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例5或7所述的装置可以与中央处理器1501分开配置,例如可以将该实施例5或7所述的装置配置为与中央处理器1501连接的芯片,通过中央处理器1501的控制来实现该实施例5或7所述的装置的功能。
如图15所示,该终端设备1500还可以包括:通信模块1503、输入单元1504、音频处理单元1505、显示器1506、电源1507。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件;此外,终端设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
如图15所示,中央处理器1501有时也称为控制器或操作控件,可以包括微处理器或其它处理器装置和/或逻辑装置,该中央处理器1501接收输入并控制终端设备1500的各个部件的操作。
其中,存储器1502,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与配置有关的 信息,此外还可存储执行有关信息的程序。并且中央处理器1501可执行该存储器1502存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。终端设备1500的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
通过本实施例的终端设备,当包含实施例5的装置时,能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号;当包含实施例7的装置时,能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号。由此,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例10
本发明实施例还提供了一种网络设备,其中,该网络设备包括实施例6或实施例7所述的装置。
图16是本发明实施例的网络设备的一个实施方式的构成示意图。如图16所示,网络设备1600可以包括:中央处理器(CPU)1601和存储器1602;存储器1602耦合到中央处理器1601。其中该存储器1602可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1601的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,实施例6或实施例8所述的装置的功能可以被集成到中央处理器1601中,由中央处理器1601实现实施例6或实施例8所述的装置的功能,其中关于实施例6或实施例7所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例6或实施例8所述的装置可以与中央处理器1601分开配置,例如可以将该实施例6或实施例8所述的装置为与中央处理器1601连接的芯片,通过中央处理器1601的控制来实现该实施例6或实施例8所述的装置的功能。
此外,如图16所示,网络设备1600还可以包括:收发机1603和天线1604等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1600也并不是必须要包括图16中所示的所有部件;此外,网络设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
通过本实施例的网络设备,当包含实施例6的装置时,终端设备能够在根据网络设备的配置不确定上行波束的情况下使用合适的空域传输滤波器发送上行信号;当包含实施例8的装置时,终端设备能够在没有获得网络设备对第二信息的配置的情况下使用合适的空域传输滤波器发送上行信号。由此,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
实施例11
本发明实施例还提供一种通信系统,该通信系统包括网络设备和终端设备,网络设备例如为实施例10所述的网络设备1600,终端设备例如为实施例9所述的终端设备1500。
在本实施例中,该终端设备例如是gNB服务的UE,其除了包含实施例5或7所述的装置的功能以外,还包括终端设备的常规组成和功能,如实施例9所述,在此不再赘述。
在本实施例中,该网络设备例如可以是NR中的gNB,其除了包含实施例6或8所述的装置的功能以外,还包括网络设备的常规组成和功能,如实施例10所述,在此不再赘述。
通过本实施例的通信系统,解决了终端设备在不确定上行波束的情况下无法发送上行信号的问题。
本发明实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行实施例1或3所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行实施例1或3所述的方法。
本发明实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行实施例2或4所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行实施例2或4所述的方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
附记1、一种上行信号发送装置,配置于终端设备,其中,所述装置包括:
发送单元,其在网络设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器发送上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
附记2、根据附记1所述的装置,其中,所述配置为对所述第二信息的初始配置,
所述发送单元使用与发送随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,
所述发送单元使用与发送随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,
所述发送单元使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,
所述发送单元使用与接收同步信号(SS)相同的空域滤波器发送上行信号。
附记3、根据附记1所述的装置,其中,所述配置为波束失败并成功恢复之后对所述第二信息的重新配置,在波束失败并成功恢复之后,并且在所述重新配置之前,所述发送单元使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,所述发送单元使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。
附记4、根据附记1所述的装置,其中,所述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前,在小区切换成功之后,并且在所述初始配置之前,所述发送单元使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,所述发送单元使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
附记5、一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
接收单元,其在所述网络设备为终端设备配置与上行信号的空间关系相关的第二信息之前,使用与已发送信号或已接收信号相同的空域传输滤波器接收上行信号,所述第二信息包括一个条目,所述条目指示了一个空间关系。
附记6、根据附记5所述的装置,其中,所述配置为对所述第二信息的初始配置,
所述接收单元使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,
所述接收单元使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,
所述接收单元使用与发送广播信号(PBCH)相同的空域传输滤波器接收上行信号,或者,
所述接收单元使用与发送同步信号(SS)相同的空域滤波器接收上行信号。
附记7、根据附记5所述的装置,其中,所述配置为波束失败并成功恢复之后对所述第二信息的重新配置,在波束失败并成功恢复之后,并且在所述重新配置之前,所述接收单元使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,所述接收单元使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器接收上行信号。
附记8、根据附记5所述的装置,其中,所述配置为小区切换成功后发生的对所述第二信息的初始配置,并且,所述小区切换成功发生在所述初始配置之前,在小区切换成功之后,并且在所述初始配置之前,所述接收单元使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
附记9、根据附记5所述的装置,其中,所述装置还包括:
配置单元,其为终端设备配置与上行信号的空间关系相关的第二信息,所述第二信息包括一个条目,所述条目指示了一个空间关系。

Claims (20)

  1. 一种上行信号发送装置,配置于终端设备,其中,所述装置包括:
    发送单元,其在网络设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已发送信号或已接收信号相同的空域传输滤波器或者使用所述第一信息中预定的条目所关联的空域传输滤波器发送上行信号。
  2. 根据权利要求1所述的装置,其中,所述第一信息包括多个条目,每个条目指示了一个空间关系,所述上行信号的空间关系还未生效是指所述网络设备还未激活或指示所述终端设备需要使用的第一信息中的条目。
  3. 根据权利要求1或2所述的装置,其中,在所述配置为对所述第一信息的初始配置的情况下,
    所述发送单元使用与发送随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与发送随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者
    所述发送单元使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
  4. 根据权利要求1或2所述的装置,其中,在所述配置为波束失败并成功恢复后对所述第一信息的重新配置的情况下,
    所述发送单元使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号,或者
    所述发送单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用与接收PBCH相同空域传输滤波器发送上行信号,或者
    所述发送单元使用与接收SS相同的空域传输滤波器发送上行信号。
  5. 根据权利要求4所述的装置,其中,在波束失败并成功恢复之后并且在所述重新配置之前,
    所述发送单元使用与发送波束失败恢复请求(BFRQ)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与成功接收波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域传输滤波器发送上行信号。
  6. 根据权利要求1或2所述的装置,其中,在所述配置为小区切换成功后发生的对所述第一信息的初始配置的情况下,
    所述发送单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者
    所述发送单元使用与接收广播信号(PBCH)相同空域滤波器发送上行信号,或者
    所述发送单元使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
  7. 根据权利要求6所述的装置,其中,如果所述小区切换成功发生在所述初始配置之前,则在小区切换成功之后并且在所述初始配置之前,所述发送单元使用与接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,所述发送单元使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
  8. 根据权利要求6所述的装置,其中,如果所述小区切换成功发生在所述初始配置之后,则在小区切换成功之后,所述发送单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器发送上行信号,或者,所述发送单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器发送上行信号,或者,所述发送单元使用与 接收广播信号(PBCH)相同空域传输滤波器发送上行信号,或者,所述发送单元使用与接收同步信号(SS)相同的空域传输滤波器发送上行信号。
  9. 根据权利要求1或2所述的方法,其中,所述配置为对所述第一信息的初始配置,在所述配置之前,
    所述发送单元使用与发送随机接入过程中的第一消息(msg.1)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与发送随机接入过程中的第三消息(msg.3)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与接收广播信号(PBCH)相同的空域传输滤波器发送上行信号,或者,
    所述发送单元使用与接收同步信号(SS)相同的空域滤波器发送上行信号。
  10. 一种上行信号接收装置,配置于网络设备,其中,所述装置包括:
    接收单元,其在所述网络设备为终端设备配置了与上行信号的空间关系相关的第一信息,但所述上行信号的空间关系还未生效的情况下,使用与已接收信号或已发送信号相同的空域传输滤波器或者所述第一信息中默认的条目所关联的空域传输滤波器接收上行信号。
  11. 根据权利要求10所述的装置,其中,所述配置为针对所述第一信息的初始配置,
    所述接收单元使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,
    所述接收单元使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,
    所述接收单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者
    所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  12. 根据权利要求10所述的装置,其中,所述配置为波束失败并成功恢复后对所述第一信息的重新配置,
    所述接收单元使用与接收波束失败恢复请求(BFRQ)相同的空域滤波器接收上行信号,或者,
    所述接收单元使用与发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号,或者
    所述接收单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者
    所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  13. 根据权利要求12所述的装置,其中,在波束失败并成功恢复之后并且在所述重新配置之前,
    所述接收单元使用与接收波束失败恢复请求(BFRQ)相同的空域传输滤波器接收上行信号,或者,
    所述接收单元使用与成功发送波束失败恢复响应控制资源集合(BFR-CORESET)相同的空域滤波器接收上行信号。
  14. 根据权利要求10所述的装置,其中,所述配置为小区切换成功后发生的对所述第一信息的初始配置,
    所述接收单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者
    所述接收单元使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者
    所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  15. 根据权利要求14所述的装置,其中,
    如果所述小区切换成功发生在所述初始配置之前,则在小区切换成功之后并且在所述重新配置之前,所述接收单元使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  16. 根据权利要求14所述的装置,其中
    如果所述小区切换成功发生在所述初始配置之后,则在小区切换之后,所述接收单元使用所述第一信息中预先指定的条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元使用所述第一信息中配置的缺省条目所关联的空域传输滤波器接收上行信号,或者,所述接收单元使用与发送广播信号(PBCH)相同空域传输滤波器接收上行信号,或者,所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  17. 根据权利要求10所述的装置,其中,
    所述接收单元在所述网络设备没有为所述终端设备配置与上行信号的空间关系相关的第一信息的情况下,使用与已接收信号或已发送信号相同的空域滤波器接收上行信号。
  18. 根据权利要求17所述的装置,其中,
    所述接收单元使用与接收随机接入过程中的第一消息(msg.1)相同的空域传输滤波器接收上行信号,或者,
    所述接收单元使用与接收随机接入过程中的第三消息(msg.3)相同的空域传输滤波器接收上行信号,或者,
    所述接收单元使用与发送广播信号(PBCH)相同空域滤波器接收上行信号,或者
    所述接收单元使用与发送同步信号(SS)相同的空域传输滤波器接收上行信号。
  19. 根据权利要求10所述的装置,其中,所述装置还包括:
    第一配置单元,其为所述终端设备配置与上行信号的空间关系相关的第一信息,所述第一信息包括多个条目,每个条目指示了一个空间关系;
    第二配置单元,其为所述终端设备指示或激活所述终端设备需要使用的第一信息中的条目。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    第三配置单元,其配置所述第一信息中的缺省条目,所述终端设备在所述第一配置单元为所述终端设备配置了上述第一信息并且并未通过所述第二配置单元指示或激活需要使用的条目的情况下,使用所述缺省条目所关联的空域传输滤波器发送上行信号。
PCT/CN2018/072297 2018-01-11 2018-01-11 上行信号发送方法、上行信号接收方法、装置和系统 WO2019136678A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880075642.4A CN111373809B (zh) 2018-01-11 2018-01-11 上行信号发送方法、上行信号接收方法、装置和系统
JP2020531776A JP7047913B2 (ja) 2018-01-11 2018-01-11 上りリンク信号送信方法、上りリンク信号受信方法、装置及びシステム
EP18900236.3A EP3739982A4 (en) 2018-01-11 2018-01-11 UPRIGHT SIGNAL TRANSMISSION METHOD, UPRIGHT LINK SIGNAL RECEPTION PROCESS, DEVICE, AND SYSTEM
PCT/CN2018/072297 WO2019136678A1 (zh) 2018-01-11 2018-01-11 上行信号发送方法、上行信号接收方法、装置和系统
KR1020207016789A KR20200083589A (ko) 2018-01-11 2018-01-11 업링크 신호 전송 방법, 업링크 신호 수신 방법, 디바이스, 및 시스템
US16/896,639 US11310675B2 (en) 2018-01-11 2020-06-09 Uplink signal transmission method and apparatus, uplink signal reception method and apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072297 WO2019136678A1 (zh) 2018-01-11 2018-01-11 上行信号发送方法、上行信号接收方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/896,639 Continuation US11310675B2 (en) 2018-01-11 2020-06-09 Uplink signal transmission method and apparatus, uplink signal reception method and apparatus and system

Publications (1)

Publication Number Publication Date
WO2019136678A1 true WO2019136678A1 (zh) 2019-07-18

Family

ID=67218364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072297 WO2019136678A1 (zh) 2018-01-11 2018-01-11 上行信号发送方法、上行信号接收方法、装置和系统

Country Status (6)

Country Link
US (1) US11310675B2 (zh)
EP (1) EP3739982A4 (zh)
JP (1) JP7047913B2 (zh)
KR (1) KR20200083589A (zh)
CN (1) CN111373809B (zh)
WO (1) WO2019136678A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208247A (zh) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 终端以及通信方法
JP2023514228A (ja) * 2020-02-12 2023-04-05 アップル インコーポレイテッド Pucch、pusch、及びsrs用のul空間関係スイッチ
EP4014631A4 (en) * 2019-08-16 2023-08-30 Hannibal IP LLC METHODS AND DEVICES FOR MANAGING UPLINK TRANSMISSIONS
JP7483903B2 (ja) 2020-02-12 2024-05-15 アップル インコーポレイテッド Pucch、pusch、及びsrs用のul空間関係スイッチ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646849B2 (en) * 2018-01-12 2023-05-09 Ntt Docomo, Inc. User terminal and radio communication method
EP3741050A4 (en) * 2018-01-19 2021-08-18 Lenovo (Beijing) Limited METHOD AND DEVICE FOR BEAM MANAGEMENT
JP2022503933A (ja) * 2018-10-31 2022-01-12 富士通株式会社 信号送信方法、アンテナパネル情報の指示方法、装置及びシステム
CA3071735A1 (en) * 2019-02-08 2020-08-08 Comcast Cable Communications, Llc Failure recovery in wireless communications
JP2023516531A (ja) * 2020-03-06 2023-04-20 オッポ広東移動通信有限公司 リソース指示方法、端末装置、及びネットワーク装置
WO2023164825A1 (en) * 2022-03-02 2023-09-07 Qualcomm Incorporated Techniques for multiple prach transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154955A1 (en) * 2011-05-10 2012-11-15 Interdigital Patent Holdings Inc. Method and apparatus for obtaining uplink timing alignment on a secondary cell
WO2013025547A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Flexible bandwidth operation in wireless systems
CN103036691A (zh) * 2011-12-17 2013-04-10 微软公司 选择性的空间音频通信

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
WO2017208282A1 (en) * 2016-06-01 2017-12-07 Nec Corporation Base station, directional reception method and medium
EP3264631B1 (en) 2016-07-01 2023-08-02 ASUSTek Computer Inc. Method and apparatus for managing communication when a serving beam becomes invalid in a wireless communication system
EP3568946A1 (en) * 2017-10-26 2019-11-20 Ofinno, LLC Bandwidth part inactivity timer
US10897752B2 (en) * 2019-06-14 2021-01-19 Qualcomm Incorporated Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154955A1 (en) * 2011-05-10 2012-11-15 Interdigital Patent Holdings Inc. Method and apparatus for obtaining uplink timing alignment on a secondary cell
WO2013025547A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Flexible bandwidth operation in wireless systems
CN103036691A (zh) * 2011-12-17 2013-04-10 微软公司 选择性的空间音频通信

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"RAN1 NR-Adhoc#3 (September 2017", LIST OF RAN1 AGREEMENTS, RP-172461, 13 December 2017 (2017-12-13), pages 140, XP051365144 *
NTT DOCOMO; INC: "Email Discussions on UL Transmission Procedures", 3GPP TSG RAN WG1 MEETING 90BIS R1-1718814, 13 October 2017 (2017-10-13), XP051341970 *
See also references of EP3739982A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208247A (zh) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 终端以及通信方法
EP4014631A4 (en) * 2019-08-16 2023-08-30 Hannibal IP LLC METHODS AND DEVICES FOR MANAGING UPLINK TRANSMISSIONS
JP2023514228A (ja) * 2020-02-12 2023-04-05 アップル インコーポレイテッド Pucch、pusch、及びsrs用のul空間関係スイッチ
JP7483903B2 (ja) 2020-02-12 2024-05-15 アップル インコーポレイテッド Pucch、pusch、及びsrs用のul空間関係スイッチ

Also Published As

Publication number Publication date
CN111373809B (zh) 2023-07-21
US11310675B2 (en) 2022-04-19
EP3739982A4 (en) 2020-12-30
JP2021507581A (ja) 2021-02-22
JP7047913B2 (ja) 2022-04-06
CN111373809A (zh) 2020-07-03
EP3739982A1 (en) 2020-11-18
KR20200083589A (ko) 2020-07-08
US20200305007A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2019136678A1 (zh) 上行信号发送方法、上行信号接收方法、装置和系统
WO2018224013A1 (zh) 波束失败处理方法、终端及网络设备
JP7168028B2 (ja) 命令指示方法及び装置、情報交換方法及び装置
WO2018170885A1 (zh) 网络连接恢复方法及其装置、通信系统
WO2019213921A1 (zh) 波束指示方法、装置和系统
WO2020042123A1 (zh) 发送上行信号的方法和设备
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
JP6984667B2 (ja) ビーム失敗回復要求の伝送リソース設定装置、ビーム失敗回復要求の応答装置、方法及び通信システム
US20220060290A1 (en) Wireless communication method, receiving-end device, and sending-end device
JP7408633B2 (ja) 信号送信方法、信号受信方法及び装置
WO2018112918A1 (zh) 上行传输控制方法及其装置、通信系统
US20210168636A1 (en) Method for assessing radio link quality, parameter configuration method, apparatuses thereof and system
EP3567930B1 (en) Wireless communication method and device
CN113286331B (zh) 重建立的方法和通信装置
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
US20200322943A1 (en) Method and Apparatus for Confirming Media Access Control Control Element and Communication System
US20190379519A1 (en) Confirmation apparatus for activation command, report apparatus for data transmission mode and methods thereof
WO2019028861A1 (zh) 波束失败事件的触发条件的配置方法、装置和通信系统
WO2019076347A1 (zh) 通信方法和通信装置
WO2020220342A1 (zh) 参考信号的发送方法、装置和通信系统
JP2022528626A (ja) ビーム失敗回復方法、装置及び通信システム
WO2021027660A1 (zh) 无线通信的方法和通信装置
WO2020211095A1 (zh) 一种信号加扰方法及装置、通信设备
WO2019157664A1 (zh) 用于波束失败恢复的资源选择方法、装置和通信系统
WO2019095211A1 (zh) 部分带宽的切换和配置方法、装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531776

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207016789

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018900236

Country of ref document: EP

Effective date: 20200811