WO2019135330A1 - エネルギー需給システム - Google Patents

エネルギー需給システム Download PDF

Info

Publication number
WO2019135330A1
WO2019135330A1 PCT/JP2018/043649 JP2018043649W WO2019135330A1 WO 2019135330 A1 WO2019135330 A1 WO 2019135330A1 JP 2018043649 W JP2018043649 W JP 2018043649W WO 2019135330 A1 WO2019135330 A1 WO 2019135330A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
station
target
unit
supply
Prior art date
Application number
PCT/JP2018/043649
Other languages
English (en)
French (fr)
Inventor
由似子 古賀
武政 幸一郎
宮島 一嘉
山田 隆之
滝川 桂一
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2019135330A1 publication Critical patent/WO2019135330A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to an energy supply and demand system.
  • Patent Document 1 Japanese Patent Application Publication No. 2014-056589
  • Patent Document 2 Japanese Patent Application Publication No. 2004-215468
  • Patent Document 3 Japanese Patent Application Publication No. 2015-071014
  • Patent Document 3 grasping the energy amount in block units or performing energy management (CEMS (Community Energy Management System)) has been carried out, but to exhaustion of energy in the community It is desirable to provide technology that can eliminate energy shortages in the community.
  • CEMS Common Energy Management System
  • an energy supply and demand system may include a time specifying unit that specifies the predicted energy shortage time of the target energy station based on the weather forecast of the area to which the target energy station belongs.
  • the energy supply and demand system may include a station identification unit that identifies an energy station whose energy surplus is predicted at the energy shortage predicted time based on the weather forecast of the region other than the region.
  • the energy supply and demand system includes a station selection unit for selecting a supply energy station capable of supplying energy by energy transfer from the energy station specified by the station specification unit to the target energy station by the energy shortage predicted time. May be equipped.
  • the time identification unit may identify the predicted energy shortage time based on past energy usage results including weather information in the target energy station.
  • the station selection unit may have a cost deriving unit that derives the energy transportation cost from the energy station identified by the station identification unit to the target energy station, and the station selection unit identifies by the station identification unit. Among the plurality of energy stations, the energy station with the lowest energy transportation cost may be selected as the supply energy station.
  • the cost deriving unit includes: position information of the energy station; an amount of energy used to transport energy from the energy station identified by the station identifying unit to the target energy station; and an energy station identified by the station identifying unit
  • the energy transportation cost may be derived based on traffic information between the vehicle and the target energy station and / or energy charging time.
  • the energy supply and demand system may include a price determination unit that determines an energy sales price of the target energy station, and the price determination unit determines that the energy at the target energy station is the energy shortage forecast time of the target energy station. If it is surplus, the energy sales price may be reduced.
  • the station selecting unit transfers the target energy station to an energy station in the vicinity of the target energy station. It may be selected as a supply energy station capable of supplying energy by transportation of energy.
  • the energy supply and demand system causes the target energy station to convert the energy into electric power when the energy in the target energy station is surplus at the energy shortage predicted time of the target energy station, and the outside of the target energy station is An energy management unit may be provided to be sold to the market.
  • An example of the information processing apparatus 100 is schematically shown. The flow of selection of a supply energy station is shown roughly. 1 schematically shows an example of a functional configuration of an information processing apparatus 100. An example of the performance information table 500 is shown roughly. An example of the traffic information table 510 is shown roughly. 1 schematically shows an example of the hardware configuration of a computer 1000 functioning as an information processing apparatus 100. FIG.
  • FIG. 1 schematically illustrates an example of the information processing apparatus 100.
  • the information processing apparatus 100 manages the energy supply and demand among the plurality of energy stations 200.
  • the information processing apparatus 100 may be an example of an energy supply and demand system.
  • Energy station 200 may be any community.
  • the energy station 200 is a community in a Community Energy Management System (CEMS).
  • CEMS Community Energy Management System
  • the system 10 including the information processing apparatus 100 and the plurality of energy stations 200 may also be an example of the energy supply and demand system.
  • the energy station 200 may receive the power generated by the power plant 21 via the power grid 22.
  • the power plant 21 and the power grid 22 are called a power grid.
  • the energy station 200 is connected to the communication network 30.
  • the communication network 30 may include at least one of the Internet, a mobile telephone network, and a dedicated network such as a LAN (Local Area Network).
  • LAN Local Area Network
  • the energy station 200 includes a management device 210, a solar power generation device 220, a charging device 230, an EV (Electric Vehicle) 240, and a charging facility 250.
  • the management device 210 may manage supply and demand of power in the energy station 200.
  • the solar power generation device 220 supplies the generated power to the energy station 200.
  • the solar power generation device 220 may supply the generated power to the outside of the energy station 200.
  • the energy station 200 may have a power generation device using natural energy other than solar light, such as a wind power generation device or a hydroelectric power generation device, instead of the solar power generation device 220.
  • the energy station 200 may include a wind power generation device, a hydroelectric power generation device, and the like in addition to the solar power generation device 220.
  • the charging device 230 supplies power to the EV 240 to charge the EV 240.
  • the charging device 230 may supply the power received from the power system to the EV 240.
  • the charging device 230 may supply the electric power generated by the solar power generation device 220 to the EV 240.
  • the charging facility 250 charges the replaceable battery 252.
  • the charging facility 250 may supply the power received from the power system to the replaceable battery 252.
  • the charging facility 250 may supply the power generated by the photovoltaic device 220 to the replaceable battery 252.
  • the management device 210 may cause the charging device 230 to supply the electric power stored in the replaceable battery 252 to the EV 240.
  • the management device 210 may supply the power stored in the replaceable battery 252 to the outside of the energy station 200.
  • the information processing apparatus 100 uses one of the plurality of energy stations 200 as a target energy station, and predicts that the energy of the target energy station is insufficient based on the weather forecast of the area to which the target energy station belongs. Specify the time when it is scheduled (sometimes referred to as the energy shortage predicted time). Next, the information processing apparatus 100 specifies the energy station 200 for which the energy surplus is predicted at the energy shortage predicted time, based on the weather forecast of the area other than the area to which the target energy station belongs. Then, the information processing apparatus 100 may be described as an energy station (supply energy station) capable of supplying energy from the identified energy station 200 to the target energy station by the energy shortage predicted time. Select).
  • supply energy station supply energy station
  • the information processing apparatus 100 may transmit a transport instruction instructing transport of energy to the selected energy supply station via the communication network 30.
  • the transportation instruction is received, for example, by the management device 210 of the supply energy station. Under the control of the management device 210, transportation of energy may be performed.
  • the management device 210 causes the EV 240 to transport energy. If the EV 240 is an autonomous vehicle, the management device 210 may transmit an energy transportation instruction to the EV 240. When the EV 240 is not an automatic driving vehicle, the management device 210 may transmit request information for requesting transportation of energy to the EV 240 to notify the EV 240 of the request information to the driver of the EV 240.
  • the EV 240 moves to the target energy station and supplies the power stored in its own drive battery to the target energy station.
  • the EV 240 for example, mounts the replaceable battery 252 and moves to the target energy station to provide the replaceable battery 252 to the target energy station.
  • the energy shortage predicted time is specified based on the weather forecast of the area to which the target energy station belongs, and the supply is performed based on the weather forecast of the area other than the area An energy station is selected. For example, when the car share service is provided in the energy station 200, the share car is used more frequently in the case where the weather is rainy as compared to the case where the weather in the area is fine, and the energy station 200 becomes rainy. There is a risk that the energy in the house will be depleted.
  • energy is transported from the energy station 200 in the area where the fine weather is predicted to the energy station 200 in the area where the rainy weather is predicted. It is possible to prevent the exhaustion of energy.
  • FIG. 1 exemplifies that the information processing apparatus 100 is disposed outside the energy station 200, the present invention is not limited to this.
  • the information processing apparatus 100 may be disposed in any of the energy stations 200.
  • the management device 210 may function as the information processing device 100.
  • the energy station 200 does not need to be connected to the electric power grid. That is, the energy station 200 may be a so-called off-grid energy station.
  • FIG. 2 schematically shows the flow of selection of the supply energy station.
  • the flow of processing when selecting a supply energy station to the target station 300 from four energy stations will be described as an example.
  • the information processing apparatus 100 first specifies the predicted energy shortage time of the target station 300 based on the weather forecast of the area to which the target station 300 belongs.
  • the information processing apparatus 100 specifies the predicted energy shortage time by, for example, referring to the relationship between the past weather and the energy usage record in the target station 300.
  • the information processing apparatus 100 runs out of energy when assuming that it uses the same amount of energy as the energy used in the past when the weather indicated by the weather forecast of the area to which the target station 300 belongs indicates the same weather. Identify the time.
  • the explanation will be continued assuming that 8:00 is specified as the energy shortage predicted time.
  • the information processing apparatus 100 identifies an energy station whose energy surplus is predicted at 8:00, based on the weather forecast of the area to which each of the A station 310, the B station 320, the C station 330, and the D station 340 belongs.
  • the energy surplus of A station 310 at 8:00 is +5
  • the energy surplus of B station 320 is 0
  • the energy surplus of C station 330 is +10
  • the energy surplus of D station 340 is -5.
  • the unit of energy surplus may be an arbitrarily set rank representing the amount of energy, or may be an amount of energy such as kwh.
  • the information processing apparatus 100 identifies the A station 310 and the C station 330 where the energy surplus is positive.
  • the information processing apparatus 100 selects, of the A station 310 and the C station 330, an energy station capable of supplying energy to the target station 300 by transport of energy by 8:00.
  • the information processing apparatus 100 specifies, for example, the estimated arrival time when energy is transported from the A station 310 to the target station 300 and the estimated arrival time when energy is transported from the C station 330 to the target station 300, and arrives An energy station 200 whose predicted time is earlier than 8:00 is selected.
  • the estimated arrival time may be determined based on the distance between the stations and the traveling speed of the energy transportation means.
  • the estimated arrival time may be obtained by accessing a service that provides an estimated time of movement between two points via the communication network 30.
  • the former estimated arrival time is 7:30 and the latter estimated arrival time is 8:30.
  • the A station 310 is selected as a supply energy station.
  • FIG. 3 schematically illustrates an example of a functional configuration of the information processing apparatus 100.
  • the information processing apparatus 100 includes a time specifying unit 102, a station specifying unit 104, a station selecting unit 106, a transport instruction transmitting unit 110, a price determining unit 112, and an energy management unit 114. Note that the information processing apparatus 100 is not necessarily required to have all of these configurations.
  • the time specifying unit 102 specifies the predicted energy shortage time of the target energy station based on the weather forecast of the area to which the target energy station belongs.
  • the time specifying unit 102 may receive, via the communication network 30, information on weather prediction of the area to which the target energy station belongs.
  • the time specifying unit 102 receives, for example, information on weather prediction of the area to which the target energy station belongs from a server that distributes information on weather prediction.
  • the time specifying unit 102 may specify the predicted energy shortage time based on the past energy use result including the information on the weather at the target energy station. By identifying the energy shortage predicted time based on the past energy usage results, the energy shortage predicted time can be more accurately identified.
  • the time specifying unit 102 may receive the past energy use results from the management device 210 of the target energy station. In addition, the time specifying unit 102 manages the past energy use results of the plurality of energy stations 200, and when the target energy station 200 is specified, the energy use results of the energy station 200 are referred to. It is also good.
  • the time specifying unit 102 specifies, for example, the amount of energy used when it is the same weather as the weather indicated by the weather forecast, and from the relationship between the specified amount of energy used and the amount of energy supplied to the target energy station, energy Identify the missing forecast time.
  • the time specifying unit 102 predicts the amount of energy supplied into the target energy station based on the history of the amount of energy supplied in the past.
  • the time specifying unit 102 determines the amount of energy supplied into the target energy station, the amount of power generated by the solar power generation device 220, the amount of power stored in the EV 240, and the amount of power stored in the replaceable battery 252 It may be predicted from The time specifying unit 102 compares, for example, the energy supplied to the target energy station with the specified energy usage amount in time series, and specifies the time when the latter exceeds the former as the energy shortage predicted time.
  • the station specifying unit 104 specifies the energy station 200 whose energy surplus is predicted at the energy shortage predicted time specified by the time specifying unit 102 based on the weather forecast of the area other than the area to which the target energy station belongs.
  • the station specifying unit 104 may receive, via the communication network 30, information on weather prediction of the area to which each of the plurality of energy stations 200 belongs.
  • the time specifying unit 102 may receive information on weather prediction from a server that distributes information on weather prediction.
  • the station specifying unit 104 may determine whether or not the energy surplus is predicted at the energy shortage predicted time, based on the past energy use result including the information on the weather at the energy station 200.
  • the station identification unit 104 may receive past energy usage results from the management device 210 of the energy station 200. In addition, the station identification unit 104 may manage past energy use results of the plurality of energy stations 200.
  • the station specifying unit 104 specifies, for example, the energy usage when the weather indicated by the weather forecast is the same, and from the relationship between the specified energy usage and the energy supplied to the energy station 200, the energy It is determined whether the energy surplus is predicted at the predicted shortage time.
  • the station specifying unit 104 may predict the amount of energy supplied into the energy station 200 based on the history of the amount of energy supplied in the past.
  • the station specifying unit 104 controls the amount of energy supplied into the energy station 200, the amount of power generated by the solar power generation device 220, the amount of power stored in the EV 240, and the amount of power stored in the replaceable battery 252 It may be predicted from The station specifying unit 104 compares, for example, the amount of energy supplied into the energy station 200 at the predicted energy shortage time with the specified amount of energy usage, and it is assumed that the energy surplus is predicted if the former exceeds the latter. judge.
  • the station selection unit 106 selects, from among the energy stations 200 identified by the station identification unit 104, a supply energy station capable of supplying energy to the target energy station by the energy shortage predicted time.
  • the station selection unit 106 may have a cost deriving unit 108.
  • the cost deriving unit 108 derives the energy transportation cost from the energy station 200 identified by the station identifying unit 104 to the target energy station.
  • the cost deriving unit 108 may derive the energy transportation cost for one predetermined energy transportation means among the plurality of energy transportation means.
  • the cost deriving unit 108 may derive the energy transportation cost for all of the plurality of energy transportation means. For example, when the energy station 200 has a plurality of EVs 240, the cost deriving unit 108 derives the energy transportation cost for all of the plurality of EVs 240. In addition, when the energy station 200 includes the EV 240 and the unmanned aerial vehicle, the cost deriving unit 108 may derive the energy transportation cost by the EV 240 and the energy transported cost by the unmanned aerial vehicle.
  • the station selecting unit 106 may select the energy station 200 having the lowest energy transportation cost derived by the cost deriving unit 108 among the energy stations 200 identified by the station identifying unit 104 as the supplied energy station. By selecting the supply energy station based on the energy transportation cost, it is possible to select the energy station 200 that can supply energy to the target energy station most efficiently among the plurality of energy stations 200.
  • the cost deriving unit 108 includes position information of the target energy station, position information of the energy station 200, an amount of energy used to transport energy from the energy station 200 to the target energy station, and the energy station 200 and the target energy station.
  • the energy transportation cost may be derived based on the traffic information between and the charging time of the energy charging the energy to the target energy station.
  • the cost deriving unit 108 may derive a higher energy transportation cost as the movement distance between the target energy station and the energy station 200 is longer.
  • the cost deriving unit 108 may derive higher energy transport costs as the amount of energy used to transport the energy from the energy station 200 to the target energy station increases.
  • the cost deriving unit 108 may derive higher energy transportation costs as traffic conditions between the energy station 200 and the target energy station are congested.
  • the cost deriving unit 108 may derive a higher energy transportation cost as the charging time of the energy for charging the energy to the target energy station is longer.
  • the cost deriving unit 108 may derive the energy transportation cost in consideration of the plurality of conditions.
  • the transport instruction transmission unit 110 transmits the transport instruction to the supply energy station.
  • the transportation instruction transmission unit 110 may transmit the transportation instruction to the energy supply station via the communication network 30.
  • the transportation instruction includes information of the target energy station.
  • the shipping instruction may include identification information identifying the energy station of interest.
  • the transport instructions may include location information of the energy station of interest.
  • the transportation instruction may include information indicating the amount of energy to be transported to the target energy station.
  • the transport instruction transmission unit 110 determines the amount of energy to be transported based on the surplus energy amount of the supplied energy station and the energy amount predicted to be insufficient at the target energy station at the energy shortage predicted time, and includes it in the transport instruction. You may
  • the price determination unit 112 determines the energy sales price of the energy station 200.
  • the price determination unit 112 may determine the energy sales price when the energy station 200 supplies energy to the outside.
  • the price determination unit 112 may determine the energy sales price when the energy station 200 supplies energy to the inside.
  • the price determination unit 112 may reduce the energy sales price of the target energy station when the energy of the target energy station is surplus at the predicted energy shortage time of the target energy station. As a result, if the energy in the target energy station is left behind unexpectedly, energy consumption can be promoted by reducing the energy sales price, and energy is wasted. It can be prevented.
  • the station selecting unit 106 sets the target energy station as a supply energy station to the energy station 200 in the vicinity of the target energy station. You may choose. As a result, if energy in the target energy station is unexpectedly reserved, energy can be supplied to the energy station 200 having energy shortage in the vicinity, which wastes energy in the target energy station. In addition, energy shortage of the neighboring energy stations 200 can be prevented.
  • the energy management unit 114 manages the energy supply from the energy station 200 to the outside.
  • the energy management unit 114 may cause the target energy station to supply energy to the outside of the target energy station when the energy in the target energy station is surplus at the predicted energy shortage time of the target energy station. For example, when the energy is power, the energy management unit 114 causes the target energy station to sell the power via the power grid 22. Further, for example, when the energy is other than power, the energy management unit 114 causes the target energy station to convert the energy into power and sell the power via the power network 22.
  • FIG. 4 schematically shows an example of the record information table 500.
  • the performance information table 500 illustrated in FIG. 4 includes information on weather and power consumption for each day.
  • the performance information table 500 may include information on morning and afternoon weather and the amount of used power. Further, the performance information table 500 may include information on weather and power consumption for each predetermined time.
  • the time specifying unit 102 uses the amount of used power corresponding to the rain in the performance information table 500 of the target energy station, the amount of energy supplied to the inside of the target energy station, The energy shortage predicted time may be specified from the relationship of
  • the time specifying unit 102 may specify the energy shortage predicted time on the basis of weather forecasts of a plurality of consecutive days in the region to which the target energy station belongs. For example, when the weather forecast for the area to which the target energy station belongs is all rainy for three days, the time specifying unit 102 uses the amount of power used when rain continues for three consecutive days in the performance information table 500. It specifies and the energy shortage predicted time is specified using the said electric power consumption.
  • FIG. 5 schematically illustrates an example of the traffic information table 510.
  • the traffic information table 510 illustrated in FIG. 5 is an estimated time for transferring energy from each energy station 200 to the target energy station derived based on the distance from each energy station 200 to the target energy station, and the distance and traffic information. And the amount of power required for transportation.
  • the distance from the energy station 200 to the target energy station may be a linear distance or a movement distance by the EV 240.
  • the information processing apparatus 100 may specify the distance from the position information of the target energy station and the position information of the energy station 200 and register the distance in the traffic information table 510.
  • the information processing apparatus 100 acquires the estimated time by accessing the service for providing the estimated time of movement by the car between the two points in consideration of the traffic information between the two points via the communication network 30, thereby obtaining the traffic information It may be registered in the table 510.
  • the information processing apparatus 100 derives an estimated time based on the distance from the energy station 200 to the target energy station and traffic information from the energy station 200 to the target energy station, and registers it in the traffic information table 510. It is also good.
  • the information processing apparatus 100 may derive the necessary power and register it in the traffic information table 510 based on the distance between the target energy station and the energy station 200, the fuel efficiency of the EV 240 that the energy station 200 has, and the like.
  • the cost deriving unit 108 may derive the energy transportation cost with reference to the traffic information table 510.
  • FIG. 6 schematically illustrates an example of a computer 1000 that functions as the information processing apparatus 100.
  • a computer 1000 includes a CPU peripheral unit having a CPU 1010, a RAM 1030, and a graphic controller 1085 mutually connected by a host controller 1092, a ROM 1020 connected to a host controller 1092 by an input / output controller 1094, and a communication I / O. It comprises an input / output unit having an F 1040, a hard disk drive 1050, a DVD drive 1070 and an input / output chip 1080.
  • the CPU 1010 operates based on programs stored in the ROM 1020 and the RAM 1030 to control each part.
  • the graphic controller 1085 acquires image data generated by the CPU 1010 or the like on a frame buffer provided in the RAM 1030 and causes the display 1090 to display the image data.
  • the graphic controller 1085 may internally include a frame buffer for storing image data generated by the CPU 1010 or the like.
  • the communication I / F 1040 communicates with other devices via a network by wire or wirelessly.
  • the communication I / F 1040 also functions as hardware for performing communication.
  • the hard disk drive 1050 stores programs and data used by the CPU 1010.
  • the DVD drive 1070 reads a program or data from the DVD-ROM 1072 and provides it to the hard disk drive 1050 through the RAM 1030.
  • the ROM 1020 stores a boot program executed when the computer 1000 starts up, a program depending on the hardware of the computer 1000, and the like.
  • the input / output chip 1080 connects various input / output devices to the input / output controller 1094 via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program provided to the hard disk drive 1050 via the RAM 1030 is stored in a recording medium such as the DVD-ROM 1072 or an IC card and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive 1050 via the RAM 1030, and executed by the CPU 1010.
  • a program installed in the computer 1000 and causing the computer 1000 to function as the information processing apparatus 100 may operate on the CPU 1010 or the like to cause the computer 1000 to function as each part of the information processing apparatus 100.
  • the information processing described in these programs is read by the computer 1000, and the time specifying unit 102, the station specifying unit 104, which are concrete means in which the software and the various hardware resources described above cooperated. It functions as the station selection unit 106, the transport instruction transmission unit 110, the price determination unit 112, and the energy management unit 114. Then, by realizing calculation or processing of information according to the purpose of use of the computer 1000 in this embodiment by these specific means, a unique information processing apparatus 100 according to the purpose of use is constructed.
  • energy interchange when energy is used as electricity is taken as a specific example, but the energy to be exchanged is not limited to electricity, but may be hydrogen, natural gas or the like.
  • the energy to be exchanged is not limited to electricity, but may be hydrogen, natural gas or the like.
  • gas it may be stored and transported as in the case of electric power, or gas may be moved between energy stations by a pipeline or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Power Engineering (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

対象エネルギーステーションが属する地域の天気予測に基づいて対象エネルギーステーションのエネルギー不足予測時刻を特定する時刻特定部と、地域以外の地域の天気予測に基づいてエネルギー不足予測時刻にエネルギー余剰が予測されるエネルギーステーションを特定するステーション特定部と、ステーション特定部によって特定されたエネルギーステーションの中から、エネルギー不足予測時刻までに対象エネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションを選定するステーション選定部とを備えるエネルギー需給システムを提供する。

Description

エネルギー需給システム
 本発明は、エネルギー需給システムに関する。
 天気情報を用いて電気の売買価格を決定するシステム、拠点間でバッテリーを輸送するシステム、及び天気情報を用いて街区の消費エネルギーの量、供給エネルギーの量を算出するシステムが知られていた(例えば、特許文献1、特許文献2、特許文献3参照)。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2014-056589号公報
 [特許文献2]特開2004-215468号公報
 [特許文献3]特開2015-077014号公報
解決しようとする課題
 最近時においては、特許文献3のように街区単位でエネルギー量を把握したり、エネルギーマネジメントを行うこと(CEMS(Community Energy Management System))が行われているが、コミュニティ内でのエネルギーの枯渇への対策については改良の余地があり、コミュニティのエネルギー不足を解消できる技術を提供することが望ましい。
一般的開示
 本発明の第1の態様によれば、エネルギー需給システムが提供される。エネルギー需給システムは、対象エネルギーステーションが属する地域の天気予測に基づいて対象エネルギーステーションのエネルギー不足予測時刻を特定する時刻特定部を備えてよい。エネルギー需給システムは、上記地域以外の地域の天気予測に基づいて上記エネルギー不足予測時刻にエネルギー余剰が予測されるエネルギーステーションを特定するステーション特定部を備えてよい。エネルギー需給システムは、上記ステーション特定部によって特定されたエネルギーステーションの中から、上記エネルギー不足予測時刻までに上記対象エネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションを選定するステーション選定部を備えてよい。
 上記時刻特定部は、上記対象エネルギーステーションにおける、天気の情報を含む過去のエネルギー使用実績に基づいて上記エネルギー不足予測時刻を特定してよい。上記ステーション選定部は、上記ステーション特定部によって特定されたエネルギーステーションから上記対象エネルギーステーションへのエネルギー輸送コストを導出するコスト導出部を有してよく、上記ステーション選定部は、上記ステーション特定部によって特定された複数のエネルギーステーションのうち、上記エネルギー輸送コストが最も少ないエネルギーステーションを上記供給エネルギーステーションとして選定してよい。上記コスト導出部は、上記エネルギーステーションの位置情報と、上記ステーション特定部によって特定されたエネルギーステーションから上記対象エネルギーステーションへのエネルギーの輸送に使用するエネルギー量、上記ステーション特定部によって特定されたエネルギーステーションと上記対象エネルギーステーションとの間の交通情報、及びエネルギーの充電時間の少なくともいずれかとに基づいて上記エネルギー輸送コストを導出してよい。
 上記エネルギー需給システムは、上記対象エネルギーステーションのエネルギー販売価格を決定する価格決定部を備えてよく、上記価格決定部は、上記対象エネルギーステーションの上記エネルギー不足予測時刻において、上記対象エネルギーステーションにおけるエネルギーが余剰である場合に、上記エネルギー販売価格を減額してよい。上記ステーション選定部は、上記対象エネルギーステーションの上記エネルギー不足予測時刻において、上記対象エネルギーステーションにおけるエネルギーが余剰である場合に、上記対象エネルギーステーションを、上記対象エネルギーステーションの近隣のエネルギー不足のエネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションとして選定してよい。上記エネルギー需給システムは、上記対象エネルギーステーションの上記エネルギー不足予測時刻において、上記対象エネルギーステーションにおけるエネルギーが余剰である場合に、上記対象エネルギーステーションに、エネルギーを電力に変換させて、上記対象エネルギーステーション外へ売電させるエネルギー管理部を備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
情報処理装置100の一例を概略的に示す。 供給エネルギーステーションの選定の流れを概略的に示す。 情報処理装置100の機能構成の一例を概略的に示す。 実績情報テーブル500の一例を概略的に示す。 交通情報テーブル510の一例を概略的に示す。 情報処理装置100として機能するコンピュータ1000のハードウエア構成の一例を概略的に示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、情報処理装置100の一例を概略的に示す。本実施形態に係る情報処理装置100は、複数のエネルギーステーション200の間のエネルギー需給を管理する。情報処理装置100は、エネルギー需給システムの一例であってよい。
 エネルギーステーション200は、任意のコミュニティであってよい。例えば、エネルギーステーション200は、CEMS(Community Energy Management System)におけるコミュニティである。情報処理装置100と複数のエネルギーステーション200とを含むシステム10も、エネルギー需給システムの一例であってよい。
 エネルギーステーション200は、発電所21によって発電された電力を、電力網22を介して受領してよい。発電所21及び電力網22は、電力系統と呼ばれる。
 エネルギーステーション200は、通信網30に接続されている。通信網30は、インターネット、携帯電話網、及びLAN(Local Area Network)等の専用網の少なくともいずれかを含んでよい。
 エネルギーステーション200は、管理装置210、太陽光発電機器220、充電機器230、EV(Electric Vehicle)240、及び充電設備250を備える。管理装置210は、エネルギーステーション200内の電力の需給を管理してよい。
 太陽光発電機器220は、発電した電力をエネルギーステーション200に供給する。また、太陽光発電機器220は、発電した電力をエネルギーステーション200外に供給してもよい。エネルギーステーション200は、太陽光発電機器220に代えて、風力発電機器及び水力発電機器等の、太陽光以外の自然エネルギーを利用した発電機器を有してもよい。エネルギーステーション200は、太陽光発電機器220に加えて、風力発電機器及び水力発電機器等を有してもよい。
 充電機器230は、EV240に電力を供給してEV240を充電する。充電機器230は、電力系統から受領した電力をEV240に供給してよい。充電機器230は、太陽光発電機器220によって発電された電力をEV240に供給してもよい。
 充電設備250は、交換型バッテリー252を充電する。充電設備250は、電力系統から受領した電力を交換型バッテリー252に供給してよい。充電設備250は、太陽光発電機器220によって発電された電力を交換型バッテリー252に供給してもよい。
 管理装置210は、充電機器230に、交換型バッテリー252に蓄積されている電力を、EV240に供給させてもよい。管理装置210は、交換型バッテリー252に蓄積されている電力をエネルギーステーション200外に供給させてもよい。
 本実施形態に係る情報処理装置100は、複数のエネルギーステーション200のうちの1つを対象エネルギーステーションとし、対象エネルギーステーションが属する地域の天気予測に基づいて対象エネルギーステーションのエネルギーが不足することが予測される時刻(エネルギー不足予測時刻と記載する場合がある。)を特定する。次に、情報処理装置100は、対象エネルギーステーションが属する地域以外の地域の天気予測に基づいて、当該エネルギー不足予測時刻にエネルギー余剰が予測されるエネルギーステーション200を特定する。そして、情報処理装置100は、特定したエネルギーステーション200の中から、当該エネルギー不足予測時刻までに対象エネルギーステーションへエネルギーの輸送によりエネルギーを供給可能なエネルギーステーション(供給エネルギーステーションと記載する場合がある。)を選定する。
 情報処理装置100は、通信網30を介して、選定した供給エネルギーステーションにエネルギーの輸送を指示する輸送指示を送信してよい。輸送指示は、例えば、供給エネルギーステーションの管理装置210が受信する。管理装置210の管理のもと、エネルギーの輸送が実行されてよい。
 例えば、管理装置210は、EV240にエネルギーを輸送させる。EV240が自動運転車である場合、管理装置210は、エネルギーの輸送指示をEV240に送信してよい。EV240が自動運転車でない場合、管理装置210は、エネルギーの輸送を依頼する依頼情報をEV240に送信して、EV240に、EV240の運転者に対して当該依頼情報を通知させてよい。
 EV240は、例えば、対象エネルギーステーションへ移動して、自らの駆動バッテリーに蓄積されている電力を対象エネルギーステーションへ供給する。また、EV240は、例えば、交換型バッテリー252を搭載して対象エネルギーステーションへ移動して、交換型バッテリー252を対象エネルギーステーションに提供する。
 上述したように、本実施形態に係る情報処理装置100によれば、対象エネルギーステーションが属する地域の天気予測に基づいてエネルギー不足予測時刻が特定され、当該地域以外の地域の天気予測に基づいて供給エネルギーステーションが選定される。例えば、エネルギーステーション200内においてカーシェアサービスが提供される場合、その地域の天気が晴天である場合と比較して雨天である場合の方がシェアカーの利用頻度が高く、雨天になるとエネルギーステーション200内のエネルギーが枯渇する恐れがある。
 それに対して、本実施形態に係る情報処理装置100によれば、例えば、雨天が予測されている地域のエネルギーステーション200に対して、晴天が予測されている地域のエネルギーステーション200からエネルギーを輸送させることができ、エネルギーの枯渇を防止することができる。
 図1では、情報処理装置100がエネルギーステーション200外に配置されている例を挙げているが、これに限らない。情報処理装置100は、いずれかのエネルギーステーション200内に配置されてもよい。また、管理装置210が情報処理装置100として機能してもよい。
 また、図1では、エネルギーステーション200が電力系統に接続されている場合を例に挙げて説明したが、これに限らず、エネルギーステーション200は電力系統に接続されていなくてもよい。すなわち、エネルギーステーション200は、いわゆるオフグリッド型のエネルギーステーションであってもよい。
 図2は、供給エネルギーステーションの選定の流れを概略的に示す。ここでは、対象ステーション300に対する供給エネルギーステーションを、4つのエネルギーステーションから選定するときの処理の流れを例に挙げる。
 情報処理装置100は、まず、対象ステーション300が属する地域の天気予測に基づいて、対象ステーション300のエネルギー不足予測時刻を特定する。情報処理装置100は、例えば、対象ステーション300における過去の天気とエネルギー使用実績との関係を参照することによって、エネルギー不足予測時刻を特定する。具体例として、情報処理装置100は、対象ステーション300が属する地域の天気予測が示す天気と同じ天気だったときの過去のエネルギー使用量と同量のエネルギーを使用すると仮定した場合にエネルギーが不足する時刻を特定する。ここでは、エネルギー不足予測時刻として8:00を特定したものとして説明を続ける。
 情報処理装置100は、Aステーション310、Bステーション320、Cステーション330、及びDステーション340のそれぞれの属する地域の天気予測に基づいて、8:00にエネルギー余剰が予測されるエネルギーステーションを特定する。図2に示す例では、8:00におけるAステーション310のエネルギー余剰が+5、Bステーション320のエネルギー余剰が0、Cステーション330のエネルギー余剰が+10、Dステーション340のエネルギー余剰が-5である。エネルギー余剰の単位は、エネルギーの量を表す任意に設定されたランクであってよく、また、kwh等のエネルギー量であってもよい。ここでは、情報処理装置100は、エネルギー余剰がプラスであるAステーション310及びCステーション330を特定する。
 情報処理装置100は、Aステーション310及びCステーション330のうち、8:00までに対象ステーション300へエネルギーの輸送によりエネルギーを供給することが可能なエネルギーステーションを選定する。情報処理装置100は、例えば、Aステーション310から対象ステーション300へエネルギーを輸送した場合の到着予想時刻と、Cステーション330から対象ステーション300へエネルギーを輸送した場合の到着予想時刻とを特定し、到着予想時刻が8:00より前であるエネルギーステーション200を選定する。到着予想時刻は、ステーション間の距離及びエネルギーの輸送手段の移動速度に基づいて決定されてよい。また、到着予想時刻は、通信網30を介して、2地点間の移動予想時間を提供するサービスにアクセスすることによって取得してもよい。ここでは、前者の到着予想時刻が7:30、後者の到着予想時刻が8:30であり、その結果、Aステーション310が供給エネルギーステーションとして選定される。
 図3は、情報処理装置100の機能構成の一例を概略的に示す。情報処理装置100は、時刻特定部102、ステーション特定部104、ステーション選定部106、輸送指示送信部110、価格決定部112、及びエネルギー管理部114を備える。なお、情報処理装置100がこれらのすべての構成を備えることは必須とは限らない。
 時刻特定部102は、対象エネルギーステーションが属する地域の天気予測に基づいて、対象エネルギーステーションのエネルギー不足予測時刻を特定する。時刻特定部102は、対象エネルギーステーションが属する地域の天気予測の情報を、通信網30を介して受信してよい。時刻特定部102は、例えば、天気予測の情報を配信するサーバから、対象エネルギーステーションが属する地域の天気予測の情報を受信する。
 時刻特定部102は、対象エネルギーステーションにおける天気の情報を含む過去のエネルギー使用実績に基づいて、エネルギー不足予測時刻を特定してよい。過去のエネルギー使用実績に基づいてエネルギー不足予測時刻を特定することによって、エネルギー不足予測時刻をより正確に特定することができる。
 時刻特定部102は、対象エネルギーステーションの管理装置210から、過去のエネルギー使用実績を受信してよい。また、時刻特定部102は、複数のエネルギーステーション200の過去のエネルギー使用実績を管理しておき、対象となるエネルギーステーション200が特定された場合に、当該エネルギーステーション200のエネルギー使用実績を参照してもよい。
 時刻特定部102は、例えば、天気予測が示す天気と同じ天気だったときのエネルギー使用量を特定し、特定したエネルギー使用量と、対象エネルギーステーション内に供給されるエネルギー量との関係から、エネルギー不足予測時刻を特定する。時刻特定部102は、対象エネルギーステーション内に供給されるエネルギー量を、過去の供給されたエネルギー量の履歴によって予測する。また、時刻特定部102は、対象エネルギーステーション内に供給されるエネルギー量を、太陽光発電機器220による発電量、EV240に蓄積されている電力量、及び交換型バッテリー252に蓄積されている電力量から予測してもよい。時刻特定部102は、例えば、対象エネルギーステーション内に供給されるエネルギーと、特定したエネルギー使用量とを時系列に比較していき、後者が前者を上回る時刻を、エネルギー不足予測時刻として特定する。
 ステーション特定部104は、対象エネルギーステーションの属する地域以外の地域の天気予測に基づいて、時刻特定部102が特定したエネルギー不足予測時刻にエネルギー余剰が予測されるエネルギーステーション200を特定する。ステーション特定部104は、複数のエネルギーステーション200のそれぞれが属する地域の天気予測の情報を、通信網30を介して受信してよい。時刻特定部102は、天気予測の情報を配信するサーバから、天気予測の情報を受信してよい。
 ステーション特定部104は、エネルギーステーション200における天気の情報を含む過去のエネルギー使用実績に基づいて、エネルギー不足予測時刻においてエネルギー余剰が予測されるか否かを判定してよい。ステーション特定部104は、エネルギーステーション200の管理装置210から、過去のエネルギー使用実績を受信してよい。また、ステーション特定部104は、複数のエネルギーステーション200の過去のエネルギー使用実績を管理しておいてもよい。
 ステーション特定部104は、例えば、天気予測が示す天気と同じ天気だったときのエネルギー使用量を特定し、特定したエネルギー使用量と、エネルギーステーション200内に供給されるエネルギー量との関係から、エネルギー不足予測時刻においてエネルギー余剰が予測されるか否かを判定する。ステーション特定部104は、エネルギーステーション200内に供給されるエネルギー量を、過去に供給されたエネルギー量の履歴によって予測してよい。また、ステーション特定部104は、エネルギーステーション200内に供給されるエネルギー量を、太陽光発電機器220による発電量、EV240に蓄積されている電力量、及び交換型バッテリー252に蓄積されている電力量から予測してもよい。ステーション特定部104は、例えば、エネルギー不足予測時刻における、エネルギーステーション200内に供給されるエネルギー量と、特定したエネルギー使用量と比較し、前者が後者を上回る場合に、エネルギー余剰が予測されると判定する。
 ステーション選定部106は、ステーション特定部104によって特定されたエネルギーステーション200の中から、エネルギー不足予測時刻までに対象エネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションを選定する。ステーション選定部106は、コスト導出部108を有してよい。
 コスト導出部108は、ステーション特定部104によって特定されたエネルギーステーション200から対象エネルギーステーションへのエネルギー輸送コストを導出する。コスト導出部108は、エネルギーステーション200が複数のエネルギー輸送手段を有している場合、複数のエネルギー輸送手段のうち、予め定められた1つのエネルギー輸送手段についてエネルギー輸送コストを導出してよい。
 また、コスト導出部108は、複数のエネルギー輸送手段のすべてについてエネルギー輸送コストを導出してもよい。例えば、エネルギーステーション200が複数のEV240を有している場合、コスト導出部108は、複数のEV240のすべてについてエネルギー輸送コストを導出する。また、エネルギーステーション200が、EV240及び無人航空機を有している場合、コスト導出部108は、EV240によるエネルギー輸送コストと、無人航空機によるエネルギー輸送コストとを導出してよい。
 ステーション選定部106は、ステーション特定部104によって特定されたエネルギーステーション200のうち、コスト導出部108によって導出されたエネルギー輸送コストが最も低いエネルギーステーション200を、供給エネルギーステーションとして選定してよい。エネルギー輸送コストに基づいて供給エネルギーステーションを選定することによって、複数のエネルギーステーション200のうち最も効率的にエネルギーを対象エネルギーステーションに供給できるエネルギーステーション200を選定することができる。
 コスト導出部108は、対象エネルギーステーションの位置情報と、エネルギーステーション200の位置情報と、エネルギーステーション200から対象エネルギーステーションへのエネルギーの輸送に使用するエネルギー量と、エネルギーステーション200と対象エネルギーステーションとの間の交通情報と、対象エネルギーステーションに対してエネルギーを充電するエネルギーの充電時間とに基づいて、エネルギー輸送コストを導出してよい。
 コスト導出部108は、対象エネルギーステーションとエネルギーステーション200との間の移動距離が長いほど高いエネルギー輸送コストを導出してよい。コスト導出部108は、エネルギーステーション200から対象エネルギーステーションへのエネルギーの輸送に使用するエネルギー量が多いほど高いエネルギー輸送コストを導出してよい。コスト導出部108は、エネルギーステーション200と対象エネルギーステーションとの間の交通状況が混雑しているほど高いエネルギー輸送コストを導出してよい。コスト導出部108は、対象エネルギーステーションに対してエネルギーを充電するエネルギーの充電時間が長いほど高いエネルギー輸送コストを導出してよい。コスト導出部108は、これら複数の条件を考慮して、エネルギー輸送コストを導出してよい。
 輸送指示送信部110は、供給エネルギーステーションに輸送指示を送信する。輸送指示送信部110は、通信網30を介して、供給エネルギーステーションに輸送指示を送信してよい。輸送指示は、対象エネルギーステーションの情報を含む。輸送指示は、対象エネルギーステーションを識別する識別情報を含んでよい。輸送指示は、対象エネルギーステーションの位置情報を含んでよい。輸送指示は、対象エネルギーステーションに輸送するエネルギー量を示す情報を含んでよい。輸送指示送信部110は、エネルギー不足予測時刻における、供給エネルギーステーションの余剰エネルギー量と、対象エネルギーステーションにおいて不足すると予測されたエネルギー量とに基づいて、輸送するエネルギー量を決定して輸送指示に含めてよい。
 価格決定部112は、エネルギーステーション200のエネルギー販売価格を決定する。価格決定部112は、エネルギーステーション200が外部にエネルギーを供給するときのエネルギー販売価格を決定してよい。また、価格決定部112は、エネルギーステーション200が内部にエネルギーを供給するときのエネルギー販売価格を決定してもよい。
 価格決定部112は、対象エネルギーステーションのエネルギー不足予測時刻において、対象エネルギーステーションにおけるエネルギーが余剰である場合に、対象エネルギーステーションのエネルギー販売価格を低減してよい。これにより、予想に反して対象エネルギーステーション内のエネルギーが余ってしまった場合に、エネルギー販売価格を低減することによって、エネルギーの消費を促すことができ、エネルギーを無駄に浪費してしまうことなどを防止することができる。
 対象エネルギーステーションのエネルギー不足予測時刻において、対象エネルギーステーションにおけるエネルギーが余剰である場合に、ステーション選定部106が、対象エネルギーステーションを、対象エネルギーステーションの近隣のエネルギー不足のエネルギーステーション200に対する供給エネルギーステーションとして選定してもよい。これにより、予想に反して対象エネルギーステーション内のエネルギーが余ってしまった場合に、近隣のエネルギー不足のエネルギーステーション200にエネルギーを供給させることができ、対象エネルギーステーションのエネルギーを無駄に浪費してしまうことを防止し、かつ、近隣のエネルギーステーション200のエネルギー不足を防止することができる。
 エネルギー管理部114は、エネルギーステーション200から外部へのエネルギー供給を管理する。エネルギー管理部114は、対象エネルギーステーションのエネルギー不足予測時刻において、対象エネルギーステーションにおけるエネルギーが余剰である場合に、対象エネルギーステーションに、対象エネルギーステーション外へエネルギーを供給させてよい。エネルギー管理部114は、例えば、エネルギーが電力である場合は、対象エネルギーステーションに、その電力を、電力網22を介して売電させる。また、エネルギー管理部114は、例えば、エネルギーが電力以外である場合、対象エネルギーステーションにエネルギーを電力に変換させて、その電力を、電力網22を介して売電させる。
 図4は、実績情報テーブル500の一例を概略的に示す。図4に例示する実績情報テーブル500は、日毎の天気と使用電力量の情報を含む。なお、実績情報テーブル500は、午前、午後の天気と使用電力量の情報を含んでもよい。また、実績情報テーブル500は、予め定められた時間毎の天気と使用電力量の情報を含んでもよい。
 時刻特定部102は、対象エネルギーステーションが属する地域の天気予測が雨である場合、対象エネルギーステーションの実績情報テーブル500における雨に対応する使用電力量と、対象エネルギーステーション内に供給されるエネルギー量との関係から、エネルギー不足予測時刻を特定してよい。
 時刻特定部102は、対象エネルギーステーションが属する地域の連続する複数の日の天気予測に基づいて、エネルギー不足予測時刻を特定してもよい。例えば、時刻特定部102は、対象エネルギーステーションが属する地域の3日分の天気予測がすべて雨であった場合、実績情報テーブル500のうち、3日連続で雨が続いたときの使用電力量を特定して、当該使用電力量を用いてエネルギー不足予測時刻を特定する。
 図5は、交通情報テーブル510の一例を概略的に示す。図5に例示する交通情報テーブル510は、各エネルギーステーション200から対象エネルギーステーションまでの距離と、当該距離及び交通情報に基づいて導出された各エネルギーステーション200から対象エネルギーステーションにエネルギーを輸送する予測時間と、輸送に必要な電力量とを含む。エネルギーステーション200から対象エネルギーステーションまでの距離は、直線距離であっても、EV240による移動距離であってもよい。
 情報処理装置100は、対象エネルギーステーションの位置情報と、エネルギーステーション200の位置情報とから、距離を特定して交通情報テーブル510に登録してよい。情報処理装置100は、2地点間の交通情報を考慮して2地点間の車による移動予想時間を提供するサービスに、通信網30を介してアクセスすることによって、予想時間を取得して交通情報テーブル510に登録してよい。情報処理装置100は、エネルギーステーション200から対象エネルギーステーションまでの距離と、エネルギーステーション200から対象エネルギーステーションまでの間の交通情報とに基づいて、予想時間を導出して交通情報テーブル510に登録してもよい。情報処理装置100は、対象エネルギーステーションとエネルギーステーション200との間の距離と、エネルギーステーション200が有するEV240の燃費等に基づいて、必要電力を導出して交通情報テーブル510に登録してよい。コスト導出部108は、交通情報テーブル510を参照して、エネルギー輸送コストを導出してよい。
 図6は、情報処理装置100として機能するコンピュータ1000の一例を概略的に示す。本実施形態に係るコンピュータ1000は、ホストコントローラ1092により相互に接続されるCPU1010、RAM1030、及びグラフィックコントローラ1085を有するCPU周辺部と、入出力コントローラ1094によりホストコントローラ1092に接続されるROM1020、通信I/F1040、ハードディスクドライブ1050、DVDドライブ1070及び入出力チップ1080を有する入出力部を備える。
 CPU1010は、ROM1020及びRAM1030に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィックコントローラ1085は、CPU1010などがRAM1030内に設けたフレーム・バッファ上に生成する画像データを取得し、ディスプレイ1090上に表示させる。これに代えて、グラフィックコントローラ1085は、CPU1010などが生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。
 通信I/F1040は、有線又は無線によりネットワークを介して他の装置と通信する。また、通信I/F1040は、通信を行うハードウエアとして機能する。ハードディスクドライブ1050は、CPU1010が使用するプログラム及びデータを格納する。DVDドライブ1070は、DVD-ROM1072からプログラム又はデータを読み取り、RAM1030を介してハードディスクドライブ1050に提供する。
 ROM1020は、コンピュータ1000が起動時に実行するブート・プログラム及びコンピュータ1000のハードウエアに依存するプログラムなどを格納する。入出力チップ1080は、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポートなどを介して各種の入出力装置を入出力コントローラ1094へと接続する。
 RAM1030を介してハードディスクドライブ1050に提供されるプログラムは、DVD-ROM1072、又はICカードなどの記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM1030を介してハードディスクドライブ1050にインストールされ、CPU1010において実行される。
 コンピュータ1000にインストールされ、コンピュータ1000を情報処理装置100として機能させるプログラムは、CPU1010などに働きかけて、コンピュータ1000を、情報処理装置100の各部としてそれぞれ機能させてよい。これらのプログラムに記述された情報処理は、コンピュータ1000に読込まれることにより、ソフトウエアと上述した各種のハードウエア資源とが協働した具体的手段である時刻特定部102、ステーション特定部104、ステーション選定部106、輸送指示送信部110、価格決定部112、及びエネルギー管理部114として機能する。そして、これらの具体的手段によって、本実施形態におけるコンピュータ1000の使用目的に応じた情報の演算又は加工を実現することにより、使用目的に応じた特有の情報処理装置100が構築される。
 上記実施形態では、エネルギーを電気とした場合のエネルギー融通を具体例としたが、やりとりするエネルギーは電気に限らず、水素や天然ガス等であってもよい。ガスの場合には電力の場合のように貯蔵して移送する、もしくはパイプライン等でエネルギーステーション間のガスの移動を行ってもよい。
 また、コミュニティ内に水電解装置を有してもよい。太陽光発電による電力を用いた水電解装置を有する場合、エネルギー不足が予測される対象コミュニティ以外であって、天気情報により太陽光発電が見込める場合には予め対象コミュニティへの移送を想定して水電解装置による水素製造を行ってもよい。水素製造を行うことにより、バッテリーのみならず多様な手段でコミュニティ内のエネルギーを貯蔵することが可能となり、種々のエネルギー不足状況への対応が可能となる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 システム、21 発電所、22 電力網、30 通信網、100 情報処理装置、102 時刻特定部、104 ステーション特定部、106 ステーション選定部、108 コスト導出部、110 輸送指示送信部、112 価格決定部、114 エネルギー管理部、200 エネルギーステーション、210 管理装置、220 太陽光発電機器、230 充電機器、240 EV、250 充電設備、300 対象ステーション、310 Aステーション、320 Bステーション、330 Cステーション、340 Dステーション、500 実績情報テーブル、510 交通情報テーブル、1000 コンピュータ、1010 CPU、1020 ROM、1030 RAM、1040 通信I/F、1050 ハードディスクドライブ、1070 DVDドライブ、1072 DVD-ROM、1080 入出力チップ、1085 グラフィックコントローラ、1090 ディスプレイ、1092 ホストコントローラ、1094 入出力コントローラ

Claims (14)

  1.  対象エネルギーステーションが属する地域の天気予測に基づいて対象エネルギーステーションのエネルギー不足予測時刻を特定する時刻特定部と、
     前記地域以外の地域の天気予測に基づいて前記エネルギー不足予測時刻にエネルギー余剰が予測されるエネルギーステーションを特定するステーション特定部と、
     前記ステーション特定部によって特定されたエネルギーステーションの中から、前記エネルギー不足予測時刻までに前記対象エネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションを選定するステーション選定部と、
     を備えるエネルギー需給システム。
  2.  前記時刻特定部は、前記対象エネルギーステーションにおける、天気の情報を含む過去のエネルギー使用実績に基づいて前記エネルギー不足予測時刻を特定する、
     請求項1に記載のエネルギー需給システム。
  3.  前記時刻特定部は、前記対象エネルギーステーションが属する地域の天気予測が示す天気と同じ天気だったときのエネルギー使用量を特定し、特定したエネルギー使用量と、前記対象エネルギーステーション内に供給されるエネルギー量との関係から、前記エネルギー不足予測時刻を特定する、請求項2に記載のエネルギー需給システム。
  4.  前記時刻特定部は、前記対象エネルギーステーションが属する地域の連続する複数の日の天気予測に基づいて、前記エネルギー不足予測時刻を特定する、請求項1から3のいずれか一項に記載のエネルギー需給システム。
  5.  前記ステーション選定部は、前記ステーション特定部によって特定されたエネルギーステーションから前記対象エネルギーステーションへのエネルギー輸送コストを導出するコスト導出部を有し、
     前記ステーション選定部は、前記ステーション特定部によって特定された複数のエネルギーステーションのうち、前記エネルギー輸送コストが最も少ないエネルギーステーションを前記供給エネルギーステーションとして選定する、
     請求項1から4のいずれか一項に記載のエネルギー需給システム。
  6.  前記コスト導出部は、前記ステーション特定部によって特定されたエネルギーステーションが有する複数のエネルギー輸送手段のすべてについて、前記エネルギー輸送コストを導出し、
     前記ステーション選定部は、前記ステーション特定部によって特定された複数のエネルギーステーションのうち、前記エネルギー輸送コストが最も少ないエネルギー輸送手段を有するエネルギーステーションを前記供給エネルギーステーションとして選定する、請求項5に記載のエネルギー需給システム。
  7.  前記コスト導出部は、前記エネルギーステーションの位置情報と、前記ステーション特定部によって特定されたエネルギーステーションから前記対象エネルギーステーションへのエネルギーの輸送に使用するエネルギー量、前記ステーション特定部によって特定されたエネルギーステーションと前記対象エネルギーステーションとの間の交通情報、及びエネルギーの充電時間の少なくともいずれかとに基づいて前記エネルギー輸送コストを導出する、
     請求項5に記載のエネルギー需給システム。
  8.  前記コスト導出部は、前記ステーション特定部によって特定されたエネルギーステーションと前記対象エネルギーステーションとの間の移動距離が長いほど高いエネルギー輸送コストを導出する、請求項7に記載のエネルギー需給システム。
  9.  前記コスト導出部は、前記ステーション特定部によって特定されたエネルギーステーションから前記対象エネルギーステーションへのエネルギーの輸送に使用するエネルギー量が多いほど高いエネルギー輸送コストを導出する、請求項7又は8に記載のエネルギー需給システム。
  10.  前記コスト導出部は、前記ステーション特定部によって特定されたエネルギーステーションと前記対象エネルギーステーションとの間の交通状況が混雑しているほど高いエネルギー輸送コストを導出する、請求項7から9のいずれか一項に記載のエネルギー需給システム。
  11.  前記コスト導出部は、前記対象エネルギーステーションに対してエネルギーを充電するエネルギーの充電時間が長いほど高いエネルギー輸送コストを導出する、請求項7から10のいずれか一項に記載のエネルギー需給システム。
  12.  前記対象エネルギーステーションのエネルギー販売価格を決定する価格決定部を備え、
     前記価格決定部は、前記対象エネルギーステーションの前記エネルギー不足予測時刻において、前記対象エネルギーステーションにおけるエネルギーが余剰である場合に、前記エネルギー販売価格を減額する、
     請求項1から11のいずれか一項に記載のエネルギー需給システム。
  13.  前記ステーション選定部は、前記対象エネルギーステーションの前記エネルギー不足予測時刻において、前記対象エネルギーステーションにおけるエネルギーが余剰である場合に、前記対象エネルギーステーションを、前記対象エネルギーステーションの近隣のエネルギー不足のエネルギーステーションへエネルギーの輸送によりエネルギーを供給可能な供給エネルギーステーションとして選定する、
     請求項1から11のいずれか一項に記載のエネルギー需給システム。
  14.  前記対象エネルギーステーションの前記エネルギー不足予測時刻において、前記対象エネルギーステーションにおけるエネルギーが余剰である場合に、前記対象エネルギーステーションに、エネルギーを電力に変換させて、前記対象エネルギーステーション外へ売電させるエネルギー管理部、
     を備える、
     請求項1から11のいずれか一項に記載のエネルギー需給システム。
PCT/JP2018/043649 2018-01-05 2018-11-27 エネルギー需給システム WO2019135330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000871 2018-01-05
JP2018000871A JP2021067958A (ja) 2018-01-05 2018-01-05 エネルギー需給システム

Publications (1)

Publication Number Publication Date
WO2019135330A1 true WO2019135330A1 (ja) 2019-07-11

Family

ID=67143675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043649 WO2019135330A1 (ja) 2018-01-05 2018-11-27 エネルギー需給システム

Country Status (2)

Country Link
JP (1) JP2021067958A (ja)
WO (1) WO2019135330A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097558A (ja) * 2019-12-19 2021-06-24 株式会社 シリコンプラス 太陽電池充電ユニットのネットワークシステム
CN113570891A (zh) * 2021-07-09 2021-10-29 轻程(上海)物联网科技有限公司 一种基于大数据的加氢站工作计划智能提醒方法及系统
DE102022205107A1 (de) 2022-05-23 2023-11-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Steuern eines Ladens einer jeweiligen Antriebsbatterie mehrerer Elektrokraftfahrzeuge
JP7405068B2 (ja) 2020-12-15 2023-12-26 トヨタ自動車株式会社 情報処理装置、情報処理システム、およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047483A1 (ja) * 2021-09-22 2023-03-30 株式会社日立製作所 支援システム及び支援方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108085A (ja) * 2006-10-26 2008-05-08 Hitachi Ltd スポット価格予測システム,スポット取引支援システム及びスポット価格予測・取引支援システム
JP2012200065A (ja) * 2011-03-21 2012-10-18 Denso Corp エネルギ輸送システム
JP2017211836A (ja) * 2016-05-25 2017-11-30 株式会社日立製作所 電力託送制御システム
JP2017225299A (ja) * 2016-06-17 2017-12-21 積水ハウス株式会社 エネルギーマネジメントシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108085A (ja) * 2006-10-26 2008-05-08 Hitachi Ltd スポット価格予測システム,スポット取引支援システム及びスポット価格予測・取引支援システム
JP2012200065A (ja) * 2011-03-21 2012-10-18 Denso Corp エネルギ輸送システム
JP2017211836A (ja) * 2016-05-25 2017-11-30 株式会社日立製作所 電力託送制御システム
JP2017225299A (ja) * 2016-06-17 2017-12-21 積水ハウス株式会社 エネルギーマネジメントシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097558A (ja) * 2019-12-19 2021-06-24 株式会社 シリコンプラス 太陽電池充電ユニットのネットワークシステム
JP7461012B2 (ja) 2019-12-19 2024-04-03 株式会社 シリコンプラス カーポート型太陽電池充電ユニットのネットワークシステム
JP7405068B2 (ja) 2020-12-15 2023-12-26 トヨタ自動車株式会社 情報処理装置、情報処理システム、およびプログラム
CN113570891A (zh) * 2021-07-09 2021-10-29 轻程(上海)物联网科技有限公司 一种基于大数据的加氢站工作计划智能提醒方法及系统
CN113570891B (zh) * 2021-07-09 2022-09-30 轻程(上海)物联网科技有限公司 一种基于大数据的加氢站工作计划智能提醒方法及系统
DE102022205107A1 (de) 2022-05-23 2023-11-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Steuern eines Ladens einer jeweiligen Antriebsbatterie mehrerer Elektrokraftfahrzeuge

Also Published As

Publication number Publication date
JP2021067958A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2019135330A1 (ja) エネルギー需給システム
Tang et al. Robust scheduling strategies of electric buses under stochastic traffic conditions
US10857899B1 (en) Behind-the-meter branch loads for electrical vehicle charging
Ye et al. Learning to operate an electric vehicle charging station considering vehicle-grid integration
US11087422B2 (en) Method and device for determining a configuration for deployment of a public transportation system
US10320203B2 (en) Adaptive charging algorithms for a network of electric vehicles
US20130103378A1 (en) Electricity demand prediction
US20120053742A1 (en) Information processing apparatus, information processing method, information processing system, and transportation means
CN102509167B (zh) 基于虚拟电厂的光伏发电能量管理系统
CN103299340A (zh) 用于管理车辆能量的系统及其方法和设备
US11400827B2 (en) Power network management
US20210339647A1 (en) Managing the Charging of a Fleet of Vehicles to Align with a Renewable Energy Supply Curve for an Electric Grid
WO2020255507A1 (ja) 配車管理方法、及び配車管理装置
US20170129354A1 (en) Self-managing charging foles
JP2021002940A (ja) エネルギマネージメント方法、及びエネルギマネージメント装置
EP3716436A1 (en) System-operator-side computer, power-generation-company-side computer, power system, control method, and program
CN114638155A (zh) 一种基于智能机场的无人机任务分配与路径规划方法
Wang et al. Admission and scheduling mechanism for electric vehicle charging with renewable energy
Yuan et al. Source: Towards solar-uncertainty-aware e-taxi coordination under dynamic passenger mobility
EP3696747A1 (en) Electric vehicles operation management equipment
Szcześniak et al. Optimal electric bus charging scheduling for local balancing of fluctuations in PV generation
CN117893360B (zh) 一种智慧能源控制方法及系统
EP4371807A1 (en) Optimized control of power depots using multi-tenant charging system-of-systems
US20240100983A1 (en) Method for Electrically Charging Vehicle Batteries for a Group of Vehicles
EP4372942A1 (en) System and method for peak load power management for charging of an electric vehicle fleet and/or operation of a microgrid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP