WO2019134691A1 - 自翻正无人船 - Google Patents

自翻正无人船 Download PDF

Info

Publication number
WO2019134691A1
WO2019134691A1 PCT/CN2019/070519 CN2019070519W WO2019134691A1 WO 2019134691 A1 WO2019134691 A1 WO 2019134691A1 CN 2019070519 W CN2019070519 W CN 2019070519W WO 2019134691 A1 WO2019134691 A1 WO 2019134691A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
propeller
unmanned
realigning
unmanned ship
Prior art date
Application number
PCT/CN2019/070519
Other languages
English (en)
French (fr)
Inventor
卢志宏
刘洋
吴广璋
Original Assignee
北京臻迪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京臻迪科技股份有限公司 filed Critical 北京臻迪科技股份有限公司
Publication of WO2019134691A1 publication Critical patent/WO2019134691A1/zh
Priority to US16/920,663 priority Critical patent/US11273889B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/08Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using auxiliary jets or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/008Unmanned surface vessels, e.g. remotely controlled remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H2005/075Arrangements on vessels of propulsion elements directly acting on water of propellers using non-azimuthing podded propulsor units, i.e. podded units without means for rotation about a vertical axis, e.g. rigidly connected to the hull

Definitions

  • the present application relates to the field of unmanned ship technology, and more particularly to a self-renovating unmanned ship.
  • the shipwreck (the unmanned ship is in the reverse state) often occurs. If the unmanned ship is turned over manually (adjusting the unmanned ship from the reversed state to the normal state), it will take time and effort.
  • the propeller is operated for a long time in the case of overturning, which on the one hand leads to waste of energy of the unmanned ship, and on the other hand, there is also damage to the propeller motor caused by the propeller being idling for a long time.
  • the embodiments of the present application provide a self-realigning unmanned ship and a submersible, at least partially solving the problems existing in the prior art.
  • the embodiment of the present application provides a self-renovating unmanned ship, including:
  • the cavity being located on a first side of the unmanned vessel hull
  • closed cavity being located at a second side of the unmanned ship hull, the closed cavity being disposed parallel to the cavity and a head region of the hull;
  • the first propeller is disposed at a tail intersection of the unmanned ship's forward waterline, and the first propeller is reversely rotated when the unmanned ship is in an inverted state.
  • the first propeller is located on a first side of the hull.
  • the self-correcting unmanned ship further includes:
  • the second thruster being located on a second side of the hull.
  • the self-correcting unmanned ship further includes:
  • the float is disposed on the second side of the hull.
  • the first propeller includes a first propeller and a first duct engaged with the first propeller.
  • the first propeller further includes a propeller cover, and an end of the first duct is connected to the propeller cover.
  • the first duct is at a predetermined angle with a plane of rotation of the first propeller.
  • the preset angle ranges from 30 to 60 degrees.
  • the self-correcting unmanned ship further includes:
  • a sensing device that detects whether the unmanned ship is in an inverted state.
  • the self-correcting unmanned ship further includes:
  • a control device that controls the first propeller to reverse when the unmanned ship is in an inverted state.
  • the sensing device is further configured to detect whether the second propeller is in a water discharge state.
  • control device controls the second propeller to stop rotating when the second propeller is in a water discharge state.
  • the second propeller stops rotating.
  • control device transmits the flip information of the unmanned ship detected by the sensing device to the unmanned ship controller.
  • the control device receives a propeller control command sent by the unmanned ship controller, and controls the first propeller and the second propulsion based on the control instruction. The operation of the device.
  • the self-realigning unmanned ship provided by the embodiment of the present application can provide the unmanned ship by using the water entering the cavity when the unmanned ship is provided on the two sides of the unmanned ship by separately providing a cavity and a closed cavity.
  • the inclined state in which the first side sinks and the second side floats upward, and the reverse rotation operation is performed by the first thruster disposed at the tail intersection area of the unmanned waterfront of the unmanned ship, so that the unmanned ship can be quickly executed Correct the operation.
  • FIG. 1 is a schematic structural view of a self-realigning unmanned ship in a plan view according to an embodiment of the present application
  • FIG. 2 is a schematic view showing a mounting position of a first propeller in an unmanned ship according to an embodiment of the present application
  • FIG. 3 is a schematic structural view of an unmanned ship hull according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first propeller according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of communication between an unmanned ship and a controller according to an embodiment of the present application.
  • the shipwreck (the unmanned ship is in the reverse state) often occurs. If the unmanned ship is turned over manually (adjusting the unmanned ship from the reversed state to the normal state), it will take time and effort.
  • the propeller is operated for a long time in the case of overturning, which on the one hand leads to waste of energy of the unmanned ship, and on the other hand, there is also damage to the propeller motor caused by the propeller being idling for a long time. To this end, a new unmanned ship self-correcting solution is needed.
  • an embodiment of the present application provides a self-realigning unmanned ship including: a cavity 1 , a closed cavity 2 , and a first thruster 3 .
  • the cavity 1 is an open space. When the unmanned ship is running normally, the cavity is filled with air. When the unmanned ship is in the inverted state, the cavity will be below the water surface, and the water will gradually flow into the cavity 1. Since the cavity 1 is located on one side of the hull of the unmanned ship, at this time one side of the cavity 1 enters the cavity 1 due to water, and the side of the unmanned ship provided with the cavity 1 sinks, as opposed to the cavity 1 The other side will go up.
  • the closed cavity 2 is a closed component.
  • the sealed cavity may be filled with airtight air, or a small number of components (such as an unmanned ship control circuit board, etc.) may be installed in the sealed cavity, and the closed cavity 2 is located at the On the second side of the unmanned vessel hull, the closed chamber 2 is disposed parallel to the cavity 1 and the head region of the hull.
  • the closed cavity When the unmanned ship is in the inverted state, the closed cavity will be below the water surface, and since the overall density of the closed cavity 2 is lower than the density of the water, at this time, the closed cavity 2 provides the unmanned ship with the buoyancy of the second side, the buoyancy Further, the first side of the unmanned ship is in a sinking state, so that the second side of the unmanned ship is in an up state.
  • the first side of the unmanned ship can be in a sinking state, so that the second side of the unmanned ship is in an up floating state, and the unmanned ship cannot be quickly self-reversed.
  • the first propeller 3 on the unmanned ship can be utilized.
  • the unmanned ship is provided with a first propeller 3 and a second propeller 4 on the first side and the second side, respectively, in order to improve the efficiency of the first propeller 3 and the second propeller 4,
  • the ship is designed with a lighter head and a heavier tail, so that the unmanned ship is in the normal state of the waterline A (the unmanned ship's contact line between the hull and the water surface under normal conditions) and the unmanned ship.
  • the reverse line in the inverted state (the contact line between the hull and the surface of the unmanned ship in the inverted state) forms an intersection region at the tail, and the first thruster 3 is disposed in the intersection region, so that the first thruster 3 can be ensured
  • the normal state or the inverted state can be below the water surface to provide power to the unmanned ship.
  • the second pusher 4 can also be placed in the intersection area.
  • the first propeller 3 performs reverse rotation when the unmanned ship is in the reversed state.
  • the reverse rotation of the unmanned ship can be provided by controlling the propeller 301 in the propeller 3 to reversely rotate in the water.
  • the self-realigning unmanned vessel further includes a second propeller 4, which is located on a second side of the hull.
  • the second propeller 4 provides forward power for the unmanned ship when the unmanned ship is in a normal state.
  • the unmanned ship sinks on the first side and floats on the second side.
  • the second pusher 4 on the second side may be in a water discharge state (the second pusher 4 is not in contact with the water surface).
  • the self-realigning unmanned ship further includes The float 5 is disposed on the second side of the hull.
  • the float 5 can be made of a buoyant material (for example, polyethylene foam) with a lower water density, and the float 5 is set above the water line A, so that when the unmanned ship is in a reverse state, the float 5 is on the water surface.
  • the float 5 and the closed chamber 2 together provide the floating unloading power for the unmanned ship on the second side.
  • Figure 3 provides a schematic view of the structure of the unmanned vessel hull.
  • the cavity 1 and the closed chamber 2 can be formed in the head of the unmanned vessel hull by integral molding (e.g., injection molding).
  • a first pusher bottom case 302 and a second pusher bottom case 402 may be provided, and the first pusher bottom case 302 and the second pusher bottom case 402 are respectively fixed to the hull of the unmanned ship.
  • a thruster member such as a propeller motor may be mounted in the first pusher bottom case 302 and the second pusher bottom case 402.
  • the first propeller 3 includes a first propeller 301 and a first duct 303 that cooperates with the first propeller 301.
  • the first duct 303 is a curved surface having a certain curvature. In order to improve the efficiency of the first duct 303, the end of the first duct 303 is connected to the propeller cover 305 of the first propeller 3, and the first duct 303 is opened.
  • the starting end is connected to the outer surface of the head of the first propeller 3, so that when the first propeller 301 is reversely operated, the reverse flow generated by the first propeller 301 is smoothly discharged along the first duct 303, and the same speed is increased.
  • the reverse force of the first propeller 301 under the condition.
  • the first duct 301 can adopt different inclination angles.
  • the first duct 303 is at a preset angle with the rotation plane of the first propeller 301, and the preset The angle ranges from 30 to 60 degrees.
  • the preset angle is 45 degrees.
  • a similar second duct can also be provided on the second propeller 4.
  • the self-correcting unmanned ship further includes a sensing device 6, and the sensing device 6 detects whether the unmanned ship is in an inverted state.
  • the sensing device 6 can be a gyroscope or similar device capable of locating the position of the unmanned ship. Once the sensing device 6 detects that the unmanned ship is in the reversed state, it can inform the unmanned ship's inversion information to the control device 7 inside the unmanned ship.
  • the control device 7 can send the information to the unmanned ship controller 8 by wireless or wired means, remind the unmanned ship user through the unmanned ship controller 8, and prompt the user to proceed. Self-flip operation.
  • the control device 7 can also decide to let the unmanned ship in the inverted state perform the self-flip operation.
  • control device 7 determines that a self-flip operation is to be performed, the control device 7 controls the first propeller 301 to reverse when the unmanned ship is in an inverted state.
  • the sensing device 6 can also be used to detect whether the second propeller 4 is in a water discharge state.
  • the control device 7 can control the second pusher 4 to stop rotating.
  • control device 7 controls the second propeller 4 to stop rotating once the unmanned ship is in the reversed state.
  • the control device 7 controls the second propeller 4 to perform the forward reversal.
  • the second propeller 4 is rotated in the forward direction, which can improve the speed of the unmanned ship self-correcting.
  • the control device 7 transmits the flip information of the unmanned ship detected by the sensing device 6 to the unmanned ship controller. In this way, the user can view the unmanned ship self-correcting process on the unmanned ship controller (for example, the mobile phone).
  • the control device 7 receives the propeller control command sent by the unmanned ship controller, and based on the control, in addition to the unmanned ship performing the self-correcting operation by itself.
  • the command controls the operation of the first thruster 3 and the second thruster 4.
  • the self-realigning unmanned ship provided by the embodiment of the present application can provide the cavity 1 and the closed cavity 2 on both sides of the unmanned ship, so that the unmanned ship can use the water entering the cavity 1 to make no use when the ship is overturned.
  • the manned ship is in a tilted state in which the first side sinks and the second side floats upward, and the reverse thrust operation is performed by the first propeller 3 disposed at the tail intersection area of the unmanned waterfront of the unmanned ship, thereby enabling the unmanned ship Quickly perform self-correcting operations.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种自翻正无人船,包括:空腔(1),位于无人船船体的第一侧;密闭腔(2),位于无人船船体的第二侧,与空腔(1)平行设置于船体的头部区域;第一推进器(3),设置于无人船正水线(A)、反水线(B)的尾部相交区,在无人船处于翻转状态时进行反向旋转。本自翻正无人船提高了无人船自翻正的效率。

Description

自翻正无人船
本申请要求于2018年1月5日提交中国专利局、申请号为201810013595.2,发明名称为“自翻正无人船”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人船技术领域,尤其涉及一种自翻正无人船。
背景技术
近年来机器人技术发展迅速,大量适用不同环境的无人设备如无人机,无人车,无人船等,但受到技术等因素的限制这些设备还没有广泛进入民用领域。以无人船为例,现有无人船多为军用,如完成侦查任务,远程攻击任务等。也有一些用于科研领域,比如海洋数据监测,实验样本采集等。在工业上用于一些水中设备的远程维护,工业开采等方面。民用方面的应用还很有限,目前除了作为娱乐用途的无人船之外,用于实际作业的无人船在民用市场的需求越来越大,因此对于无人船提出了越来越高的要求。
无人船在实际工作的过程中,由于工作环境(例如,风浪较大)或者无人船自身转弯速度过快等原因,常常会发生翻船(无人船处于翻转状态)的情况。如果通过人工的方式进行无人船的翻正(将无人船由翻转状态调整为正常状态)操作,则会费时费力。推进器在翻船的情况下长时间工作,一方面会导致无人船能源的浪费,另外一方面也存在推进器由于长时间空转而导致的推进器电机损坏。
因此,亟需一种全新的结构简单、易维护且可靠性高的自翻正无人船解决方案。
发明内容
有鉴于此,本申请实施例提供了一种自翻正无人船及潜水器,至少部分的解决现有技术中存在的问题。
本申请实施例提供了一种自翻正无人船,包括:
空腔,所述空腔位于所述无人船船体的第一侧;
密闭腔,所述密闭腔位于所述无人船船体的第二侧,所述密闭腔与所述空腔平行设置与所述船体的头部区域;
第一推进器,所述第一推进器设置于所述无人船正反水线的尾部相交区,所述第一推进器在所述无人船处于翻转状态时进行反向旋转。
根据本申请实施例的一种具体实施情况,所述第一推进器位于所述船体的第一侧。
根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括:
第二推进器,所述第二推进器位于所述船体的第二侧。
根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括:
配浮,所述配浮设置于所述船体的第二侧。
根据本申请实施例的一种具体实施情况,所述第一推进器包括第一螺旋桨及与所述第一螺旋桨配合的第一涵道。
根据本申请实施例的一种具体实施情况,所述第一推进器还包括螺旋桨罩,所述第一涵道的末端与所述螺旋桨罩连接。
根据本申请实施例的一种具体实施情况,所述第一涵道与所述第一螺旋桨的旋转 平面成预设角度。
根据本申请实施例的一种具体实施情况,所述预设角度的范围为30~60度。
根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括:
传感装置,所述传感装置检测所述无人船是否处于翻转状态。
根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括:
控制装置,所述控制装置在所述无人船处于翻转状态时,控制所述第一螺旋桨进行反转。
根据本申请实施例的一种具体实施情况,所述传感装置还用于检测所述第二推进器是否处于出水状态。
根据本申请实施例的一种具体实施情况,当所述第二推进器处于出水状态时,所述控制装置控制所述第二推进器停止转动。
根据本申请实施例的一种具体实施情况,所述无人船处于翻转状态时,所述第二推进器停止转动。
根据本申请实施例的一种具体实施情况,所述控制装置将所述传感装置检测到的所述无人船的翻转信息发送给无人船控制器。
根据本申请实施例的一种具体实施情况,所述控制装置接收所述无人船控制器发送的推进器控制指令,并基于所述控制指令控制所述第一推进器及所述第二推进器的运转。
本申请实施例提供的自翻正无人船,通过在无人船的两侧分别设置空腔及密闭腔,使得无人船在翻船的时候可以利用进入空腔中的水使无人船处于第一侧下沉、第二侧上浮的倾斜状态,通过设置于所述无人船正反水线的尾部相交区的第一推进器执行反向旋转操作,能够使无人船快速的执行自翻正操作。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的自翻正无人船在俯视方向的结构示意图;
图2为本申请实施例提供的第一推进器在无人船中的安装位置示意图;
图3为本申请实施例提供无人船船体结构示意图;
图4为本申请实施例提供第一推进器结构示意图;
图5为本申请实施例提供无人船与控制器之间的通信示意图。
具体实施方式
下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
无人船在实际工作的过程中,由于工作环境(例如,风浪较大)或者无人船自身转弯速度过快等原因,常常会发生翻船(无人船处于翻转状态)的情况。如果通过人工的方式进行无人船的翻正(将无人船由翻转状态调整为正常状态)操作,则会费时 费力。推进器在翻船的情况下长时间工作,一方面会导致无人船能源的浪费,另外一方面也存在推进器由于长时间空转而导致的推进器电机损坏。为此,需要一种全新的无人船自翻正方案。
参见图1,本申请实施例提供了一种自翻正无人船,包括:空腔1、密闭腔2以及第一推进器3。
空腔1为开放式空间,在无人船正常行驶时,空腔内填充的是空气,当无人船处于翻转状态时,空腔会处于水面以下,此时水会逐渐流入空腔1中,由于空腔1位于所述无人船船体的一侧,此时空腔1的一侧由于水进入空腔1,无人船设有空腔1的一侧会下沉,与空腔1相对的另一侧会上浮。
密闭腔2为密闭式组件,可选的,密闭腔内可以充满密闭空气,或者也可以在密闭腔内安装少量的元器件(如无人船控制电路板等),所述密闭腔2位于所述无人船船体的第二侧,所述密闭腔2与所述空腔1平行设置与所述船体的头部区域。当无人船处于翻转状态时,密闭腔会处于水面以下,由于密闭腔2的整体密度低于水的密度,此时,密闭腔2为无人船提供第二侧的上浮力,该上浮力进一步的使无人船的第一侧处于下沉状态,使无人船的第二侧处于上浮状态。
通过设置空腔1及密闭腔2,能使无人船的第一侧处于下沉状态,使无人船的第二侧处于上浮状态,并不能让无人船进行快速的自翻转。此时,可以借助无人船上的第一推进器3。参见图1-2,无人船在第一侧和第二侧分别设置有第一推进器3及第二推进器4,为了提高第一推进器3及第二推进器4的效率,无人船设计为头部较轻、尾部较重的样式,这样一来,无人船在正常状态下的正水线A(无人船在正常状态下船体与水面的接触线)以及无人船在翻转状态下的反水线(无人船在翻转状态下船体与水面的接触线)在尾部形成一个相交区域,将第一推进器3设置在该相交区域,能够保证第一推进器3不论在正常状态或者翻转状态都能处于水面以下,为无人船提供动力。除此之外,也可以将第二推进器4放置在该相交区域。
为了加速处于翻转状态的无人船进行自翻转操作,所述第一推进器3在所述无人船处于翻转状态时进行反向旋转。具体的,可以通过控制推进器3中的螺旋桨301在水中进行反向旋转,为无人船的自翻正提供翻转作用力。
除了第一推进器3之外,所述自翻正无人船还包括第二推进器4,所述第二推进器4位于所述船体的第二侧。第二推进器4在无人船处于正常状态时,为无人船提供前进动力,当无人船处于翻转状态时,由于无人船在第一侧下沉,在第二侧上浮,此时位于第二侧的第二推进器4可能会处于出水状态(第二推进器4与水面不接触)。
除了采用空腔1及密闭腔2的设计之外,为了加速无人船在翻转状态下的自翻转操作,根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括配浮5,所述配浮5设置于所述船体的第二侧。配浮5可以采用比水密度小的浮力材料(例如,聚乙烯泡沫塑料)制作而成,配浮5设置在正水线A以上,这样当无人船处于翻转状态时,配浮5处于水面以下,配浮5和密闭腔2一起在第二侧为无人船提供上浮翻转动力。
图3提供了无人船船体的一个结构示意图,参见图3,可以采用一体成型(例如,注塑成型)的方式在无人船船体的头部形成空腔1以及密闭腔2。除此之外,还可以设置第一推进器底壳302以及第二推进器底壳402,第一推进器底壳302以及第二推 进器底壳402分别与无人船的船体固定在一起。第一推进器底壳302以及第二推进器底壳402内可以安装推进器电机等推进器部件。
由于推进器的动力装置(例如,电机)通常安装在推进器螺旋桨的前面,这样一来,当螺旋桨执行反转操作时,位于螺旋桨前面的电机等部件会挡住螺旋桨反转时产生的水流,影响推进器的反转效率。参见图4,根据本申请实施例的一种具体实施情况,所述第一推进器3包括第一螺旋桨301及与所述第一螺旋桨301配合的第一涵道303。第一涵道303为具有一定弯度的曲面,为了提高第一涵道303的效率,所述第一涵道303的末端与第一推进器3的螺旋桨罩305连接,第一涵道303的起始端与第一推进器3的头部外表面相连接,这样一来当第一螺旋桨301进行反向运转时,其产生的反向水流会沿着第一涵道303顺滑排出,提高了相同转速条件下第一螺旋桨301的反向作用力。
第一涵道301可以采用不同的倾斜角度,根据本申请实施例的一种具体实施情况,所述第一涵道303与所述第一螺旋桨301的旋转平面成预设角度,所述预设角度的范围为30~60度。作为一个例子,该预设角度为45度。
与在第一推进器3上设置第一涵道303类似,也可以在第二推进器4上设置类似的第二涵道。
传统的无人船自翻正操作通常是通过人工观察的方式进行,这种方式通常依赖于用户,通常会产生较大的延迟,效率不高。参见图5,根据本申请实施例的一种具体实施情况,所述自翻正无人船还包括传感装置6,所述传感装置6检测所述无人船是否处于翻转状态。传感装置6可以是一个陀螺仪或类似的能够对无人船的姿态位置进行定位的设备。一旦传感装置6检测到无人船处于翻转状态,其可以将无人船的翻转信息告知给无人船内部的控制装置7。
控制装置7在获知无人船处于翻转状态后,一方面可以通过无线或有线的方式该信息发送给无人船控制器8,通过无人船控制器8提醒无人船用户,并提示用户进行自翻转操作。另外一方面,根据预先的设置情况(例如,用户在无人船的设置中允许无人船进行自翻转操作),控制装置7也可以自行决定让处于翻转状态的无人船进行自翻转操作。
一旦控制装置7确定要执行自翻转操作,所述控制装置7在所述无人船处于翻转状态时,控制所述第一螺旋桨301进行反转。
传感装置6除了能够根据无人船的姿态判断无人船是否处于翻转状态之外,可选的,所述传感装置6还可以用于检测所述第二推进器4是否处于出水状态。当所述第二推进器4处于出水状态时,所述控制装置7可以控制所述第二推进器4停止转动。
作为另外一种情况,不论第二推进器4是否处于出水状态,一旦所述无人船处于翻转状态时,所述控制装置7便控制所述第二推进器4停止转动。
作为另外一种情况,当第二推进器4处于入水状态,且无人船处于翻转状态时,所述控制装置7便控制所述第二推进器4进行正向翻转。通过第一推进器3进行反向旋转,第二推进器4正向旋转,可以提高无人船自翻正的速度。
根据本申请实施例的一种具体实施情况,所述控制装置7将所述传感装置6检测到的所述无人船的翻转信息发送给无人船控制器。这样一来,用户在无人船控制器(例如,手机)上便可以查看无人船自翻正的过程。
除了无人船自行执行自翻正操作之外,根据本申请实施例的一种具体实施情况,所述控制装置7接收所述无人船控制器发送的推进器控制指令,并基于所述控制指令控制所述第一推进器3及所述第二推进器4的运转。
本申请实施例提供的自翻正无人船,通过在无人船的两侧分别设置空腔1及密闭腔2,使得无人船在翻船的时候可以利用进入空腔1中的水使无人船处于第一侧下沉、第二侧上浮的倾斜状态,通过设置于所述无人船正反水线的尾部相交区的第一推进器3执行反向旋转操作,能够使无人船快速的执行自翻正操作。
上面所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种自翻正无人船,其特征在于,包括:
    空腔,所述空腔位于所述无人船船体的第一侧;
    密闭腔,所述密闭腔位于所述无人船船体的第二侧,所述密闭腔与所述空腔平行设置与所述船体的头部区域;
    第一推进器,所述第一推进器设置于所述无人船正反水线的尾部相交区,所述第一推进器在所述无人船处于翻转状态时进行反向旋转。
  2. 根据权利要求1所述的自翻正无人船,其特征在于:
    所述第一推进器位于所述船体的第一侧。
  3. 根据权利要求2所述的自翻正无人船,其特征在于,所述自翻正无人船还包括:
    第二推进器,所述第二推进器位于所述船体的第二侧。
  4. 根据权利要求1所述的自翻正无人船,其特征在于,所述自翻正无人船还包括:
    配浮,所述配浮设置于所述船体的第二侧。
  5. 根据权利要求3所述的自翻正无人船,其特征在于:
    所述第一推进器包括第一螺旋桨及与所述第一螺旋桨配合的第一涵道。
  6. 根据权利要求5所述的自翻正无人船,其特征在于:
    所述第一推进器还包括螺旋桨罩,所述第一涵道的末端与所述螺旋桨罩连接。
  7. 根据权利要求5所述的自翻正无人船,其特征在于:
    所述第一涵道与所述第一螺旋桨的旋转平面成预设角度。
  8. 根据权利要求7所述的自翻正无人船,其特征在于:
    所述预设角度的范围为30~60度。
  9. 根据权利要求5所述的自翻正无人船,其特征在于,所述自翻正无人船还包括:
    传感装置,所述传感装置检测所述无人船是否处于翻转状态。
  10. 根据权利要求9所述的自翻正无人船,其特征在于,所述自翻正无人船还包括:
    控制装置,所述控制装置在所述无人船处于翻转状态时,控制所述第一螺旋桨进行反转。
  11. 根据权利要求10所述的自翻正无人船,其特征在于:
    所述传感装置还用于检测所述第二推进器是否处于出水状态。
  12. 根据权利要求11所述的自翻正无人船,其特征在于:
    当所述第二推进器处于出水状态时,所述控制装置控制所述第二推进器停止转动。
  13. 根据权利要求3所述的自翻正无人船,其特征在于:
    所述无人船处于翻转状态时,所述第二推进器停止转动。
  14. 根据权利要求10所述的自翻正无人船,其特征在于:
    所述控制装置将所述传感装置检测到的所述无人船的翻转信息发送给无人船控制器。
  15. 根据权利要求14所述的自翻正无人船,其特征在于:
    所述控制装置接收所述无人船控制器发送的推进器控制指令,并基于所述控制指令控制所述第一推进器及所述第二推进器的运转。
PCT/CN2019/070519 2018-01-05 2019-01-05 自翻正无人船 WO2019134691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/920,663 US11273889B2 (en) 2018-01-05 2020-07-04 Self-righting unmanned vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810013595.2A CN108016576A (zh) 2018-01-05 2018-01-05 自翻正无人船
CN201810013595.2 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,663 Continuation US11273889B2 (en) 2018-01-05 2020-07-04 Self-righting unmanned vehicle

Publications (1)

Publication Number Publication Date
WO2019134691A1 true WO2019134691A1 (zh) 2019-07-11

Family

ID=62072535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070519 WO2019134691A1 (zh) 2018-01-05 2019-01-05 自翻正无人船

Country Status (3)

Country Link
US (1) US11273889B2 (zh)
CN (1) CN108016576A (zh)
WO (1) WO2019134691A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016576A (zh) * 2018-01-05 2018-05-11 北京臻迪科技股份有限公司 自翻正无人船
CN211844850U (zh) * 2018-06-02 2020-11-03 舟山巨洋技术开发有限公司 一种智能救生设备
ES2920160A1 (es) * 2021-01-28 2022-08-01 Proteus Innovation S L Propulsor acuatico radiocontrol
CN113212699B (zh) * 2021-05-07 2023-07-25 陆一霆 一种水面援助设备的翻转控制方法
CN113665749B (zh) * 2021-09-06 2022-06-07 中国海洋大学 航行器
CN115214850B (zh) * 2022-06-09 2024-05-24 珠海云洲智能科技股份有限公司 一种无人船艇及其保护方法、保护装置、介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214847A (zh) * 2007-12-27 2008-07-09 上海交通大学 中小型船舶水垫抗沉系统
US9227709B1 (en) * 2014-11-12 2016-01-05 Ecole Polytechnique Federale De Lausanne (Epfl) Underwater propelling device for underwater vehicle
CN106628026A (zh) * 2017-01-04 2017-05-10 北京臻迪科技股份有限公司 一种无人船及无人船系统
CN107187560A (zh) * 2017-05-23 2017-09-22 大连理工大学 一种适用于恶劣海况的自扶正无人船及其工作方式
CN107264718A (zh) * 2017-05-20 2017-10-20 天津市创恒机器人技术有限公司 一种上下对称、抗倾覆无人船系统
CN108016576A (zh) * 2018-01-05 2018-05-11 北京臻迪科技股份有限公司 自翻正无人船
CN207809697U (zh) * 2018-01-05 2018-09-04 北京臻迪科技股份有限公司 自翻正无人船

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926566B2 (en) * 2003-11-18 2005-08-09 The Boeing Company Method and apparatus for synchronous impeller pitch vehicle control
US8543256B1 (en) * 2011-06-10 2013-09-24 The United States Of America As Represented By The Secretary Of The Navy Transformable teleoperated amphibious fuel truck
CN103350742A (zh) * 2013-08-03 2013-10-16 洪满 主动翻滚船
JP6523568B2 (ja) * 2015-08-03 2019-06-05 アピアム インコーポレイティド 水中ドローン
CN206528596U (zh) * 2017-01-04 2017-09-29 北京臻迪科技股份有限公司 一种设有安定面的无人船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214847A (zh) * 2007-12-27 2008-07-09 上海交通大学 中小型船舶水垫抗沉系统
US9227709B1 (en) * 2014-11-12 2016-01-05 Ecole Polytechnique Federale De Lausanne (Epfl) Underwater propelling device for underwater vehicle
CN106628026A (zh) * 2017-01-04 2017-05-10 北京臻迪科技股份有限公司 一种无人船及无人船系统
CN107264718A (zh) * 2017-05-20 2017-10-20 天津市创恒机器人技术有限公司 一种上下对称、抗倾覆无人船系统
CN107187560A (zh) * 2017-05-23 2017-09-22 大连理工大学 一种适用于恶劣海况的自扶正无人船及其工作方式
CN108016576A (zh) * 2018-01-05 2018-05-11 北京臻迪科技股份有限公司 自翻正无人船
CN207809697U (zh) * 2018-01-05 2018-09-04 北京臻迪科技股份有限公司 自翻正无人船

Also Published As

Publication number Publication date
CN108016576A (zh) 2018-05-11
US20200339232A1 (en) 2020-10-29
US11273889B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2019134691A1 (zh) 自翻正无人船
US11059553B2 (en) Autonomous ocean data collection
CN109703705B (zh) 一种半潜式无人平台
CN110775226B (zh) 混合能源水下航行器装置
AU2014315761B2 (en) Self-propelled craft
KR101482486B1 (ko) 원격 제어되는 동력 구조 부표
US11440630B2 (en) Self-righting unmanned ship suitable for adverse sea conditions and working mode thereof
CN105905251A (zh) 一种隐身单体小水线面的水翼无人艇及航行方法
WO2022199158A1 (zh) 一种可自主拼接的模块化全向无人船
CN107215429B (zh) 一种新型小水线面单体无人半潜艇
WO2023029306A1 (zh) 一种新型基于清洁能源的长续航力无人船
CN219115676U (zh) 一种用于无人船的辅助平衡装置
CN113212699A (zh) 一种水面援助设备的翻转控制方法
JP2018090168A (ja) 水中探査艇
CN207809697U (zh) 自翻正无人船
CN104149927B (zh) 运行平稳的不沉环保船
CN215884021U (zh) 一种水面援助机器人
KR102056319B1 (ko) 선박 인양 로봇
WO2020151372A9 (zh) 一种重力感应双向推进器及应用该推进器的水上援助机器人
CN112591043A (zh) 一种潜浮式随船救生机器人
CN218704001U (zh) 一种具有落水救援功能的无人机
RU2740419C2 (ru) Спасательное средство
US11110995B2 (en) Surface vessel with motorised mechanical propulsion having a fusiform hull and ballasted keel
CN117048811A (zh) 一种框架式滑翔机及其控制方法
Clauss et al. Hull optimization of the unmanned AGaPaS rescue vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19736147

Country of ref document: EP

Kind code of ref document: A1