WO2023029306A1 - 一种新型基于清洁能源的长续航力无人船 - Google Patents

一种新型基于清洁能源的长续航力无人船 Download PDF

Info

Publication number
WO2023029306A1
WO2023029306A1 PCT/CN2021/141069 CN2021141069W WO2023029306A1 WO 2023029306 A1 WO2023029306 A1 WO 2023029306A1 CN 2021141069 W CN2021141069 W CN 2021141069W WO 2023029306 A1 WO2023029306 A1 WO 2023029306A1
Authority
WO
WIPO (PCT)
Prior art keywords
sail
unmanned ship
long
solar panels
energy
Prior art date
Application number
PCT/CN2021/141069
Other languages
English (en)
French (fr)
Inventor
邓锐
王士刚
任航
罗富强
吴铁成
莫潇越
汪昱全
颜真璞
Original Assignee
中山大学
南方海洋科学与工程广东省实验室(珠海)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学, 南方海洋科学与工程广东省实验室(珠海) filed Critical 中山大学
Publication of WO2023029306A1 publication Critical patent/WO2023029306A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/08Connections of sails to masts, spars, or the like
    • B63H9/10Running rigging, e.g. reefing equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • B63H2021/171Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor making use of photovoltaic energy conversion, e.g. using solar panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of unmanned ships, in particular to a novel long-endurance unmanned ship based on clean energy.
  • unmanned ships need to conduct uninterrupted monitoring operations for a long time, so they must be able to automatically obtain clean energy; in order to achieve this purpose, most of the current unmanned ships use solar power , but the conversion efficiency of solar energy is low, it is difficult to continuously propel the ship by relying on solar energy alone as a power source, and it is impossible to achieve long endurance; Maintain established heading and meet mission requirements.
  • the purpose of the present invention is to provide a new type of long-endurance unmanned ship based on clean energy to solve the problem that the unmanned ship cannot work in harsh environments for a long time.
  • the present invention provides a new type of long-endurance unmanned ship based on clean energy, including a hull, a drive mechanism, an energy recovery mechanism, a monitoring mechanism and a control mechanism arranged on the hull; the drive The mechanism is used to drive the hull to travel; the energy recovery mechanism includes a bracket, sails and solar panels; the sails are foldably mounted on the bracket; multiple solar panels are arranged on the On the sail, a plurality of solar panels are used to convert solar energy into electric energy for use by the long-endurance unmanned ship; the monitoring mechanism is used to monitor environmental information; the control mechanism is used to control The long-endurance unmanned ship is controlled; when it is judged to be in a safe environment, it controls the sail and multiple solar panels to expand to obtain solar energy; when it is judged that there is a risk of overturning, it controls the sail and multiple solar panels The solar panels are folded.
  • the energy recovery mechanism further includes a motor and a pull rope; both sides of the support are provided with guide rails vertically; both sides of the plurality of solar panels are provided with guide wheels, and the plurality of solar panels are provided with guide wheels.
  • the guide wheels on both sides of the solar panel are respectively rolled and installed in the two guide rails, and a plurality of solar panels are vertically arranged on the sail;
  • the motor is connected with the stay rope, and the The stay rope is connected with the sail or the solar panel, and the motor is used to drive the sail and the plurality of solar panels to move and extend through the stay rope.
  • both the bracket and the motor are arranged on the upper surface of the hull; the top of the bracket is provided with a guide wheel, and the outside of the bracket is provided with a wire groove, and the arrangement of the wire groove
  • the track passes through the side surface and the top surface of the support; the stay rope is arranged in the wire groove, and the stay rope goes around the guide wheel to connect with the sail or the solar panel.
  • the monitoring mechanism includes a wind direction and anemometer, and the wind direction and anemometer is arranged on the upper part of the hull, and when the wind speed measured by the wind direction and anemometer is greater than a set value, the control mechanism controls the Said sail and multiple solar panels are folded.
  • the control mechanism controls the driving mechanism to start.
  • the monitoring mechanism includes an inclination sensor, and when the inclination sensor detects that the inclination angle is greater than a set value, the control mechanism controls the sail and the plurality of solar panels to fold.
  • the monitoring mechanism includes a radar, and when the radar detects that there is an obstacle, the control mechanism controls the long-endurance unmanned ship to bypass the obstacle.
  • the monitoring mechanism includes a GPS locator
  • the control mechanism is used to control the long-endurance unmanned ship to move to a destination according to the position information measured by the GPS locator.
  • the hull is provided with a camera and a wireless transmission mechanism, and the wireless transmission mechanism is used to transmit the content captured by the camera to the device to be received.
  • the driving mechanism includes a floating body, a propeller and a battery; the floating body is arranged at the bottom of the hull; the propeller is arranged outside the floating body, and the propeller is electrically connected to the battery;
  • the storage battery is arranged in the floating body, the storage battery is electrically connected with the solar panel, and the storage battery is used to store the electric energy converted by the solar panel to drive the propeller to run.
  • the energy recovery mechanism includes a bracket, sails and solar panels
  • the sails can realize the utilization of wind power, while the solar panels can realize the utilization of solar energy, thereby improving the utilization efficiency of clean energy and meeting the long-term requirements.
  • Time travel needs; secondly, when it is judged to be in a safe environment, control the sail and multiple solar panels to expand to obtain solar energy, and when it is judged that there is a risk of overturning, control the sail and multiple solar panels to fold , it can reduce the impact of wind and waves on the driving of unmanned ships to ensure the safety of unmanned ships, thus effectively solving the problem that existing unmanned ships cannot work in harsh environments for a long time.
  • Fig. 1 is a schematic structural diagram provided by an embodiment of the present invention
  • Fig. 2 is the front view structure diagram of Fig. 1;
  • Fig. 3 is a schematic diagram showing the enlarged structure of part A of Fig. 1;
  • Fig. 4 is a schematic diagram showing the enlarged structure of part B of Fig. 1;
  • Fig. 5 is a schematic diagram of the folding structure of the sail of Fig. 1 .
  • the present invention provides a new type of long-endurance unmanned ship based on clean energy, the embodiment of which is shown in Figure 1, Figure 2 and Figure 5, including a hull 10, a drive mechanism 20 and an energy recovery mechanism 30 arranged on the hull 10 , a monitoring mechanism and a control mechanism 50;
  • the driving mechanism 20 is used to drive the hull 10 to travel;
  • the energy recovery mechanism 30 includes a support 31, a sail 32 and a solar panel 33;
  • the sail 32 is movable on the support 31 in a foldable manner;
  • the solar panels 33 are all arranged on the sails 32, and the multiple solar panels 33 are used to convert solar energy into electric energy for use by long-endurance unmanned ships;
  • the monitoring mechanism is used to monitor environmental information;
  • the control mechanism 50 is used to monitor the long-term
  • the endurance unmanned ship is controlled; when it is judged to be in a safe environment, control the sail 32 and multiple solar panels 33 to expand to obtain solar energy; when it is judged that there is a risk of
  • the monitoring agency will continue to monitor the environmental information and send the measured environmental information to the control agency 50, and then the control agency 50 will make judgments based on the environmental information, so as to know the Is it in a safe operating environment, or there is a risk of overturning.
  • control mechanism 50 judges that the unmanned ship is in a safe environment, it can control the sail 32 and a plurality of solar panels 33 to stretch together. Then the solar energy can be converted into electric energy for use by the unmanned ship, such as power supply for the driving mechanism 20, so as to meet the active driving requirements of the unmanned ship.
  • control mechanism 50 judges that there is a risk of the unmanned ship capsizing, it can control the sail 32 and multiple solar panels 33 to be folded and stored together, thereby preventing the sail 32 from being exposed to the wind, thereby reducing the risk of the unmanned ship capsizing.
  • the safe operation and driving of unmanned ships provide a guarantee.
  • this solution can realize the utilization of wind energy and solar energy, and reduce the impact of wind and waves on driving, and effectively solve the problem that unmanned ships cannot work in harsh environments for a long time.
  • the energy recovery mechanism 30 also includes a motor 34 and a stay cord 35; both sides of the support 31 are vertically provided with guide rails 311; Wheel 331, the guide wheels 331 on both sides of a plurality of solar panels 33 are all rolled and installed in two guide rails 311 respectively, and a plurality of solar panels 33 are vertically arranged on the sail 32; the motor 34 is connected with the stay rope 35, and the stay rope 35 is connected with sail 32 or solar panel 33, and motor 34 is used for driving sail 32 and multiple solar panels 33 to move up and stretch by stay rope 35.
  • the bracket 31 is roughly in the shape of a rectangular frame, and the inner surfaces of both sides of the bracket 31 are vertically provided with guide rails 311, and the sail 32 is placed between the two guide rails 311, and a plurality of solar panels 33 The same surface of the sail 32 is vertically arranged, and both sides of the plurality of solar panels 33 are rolled and installed in the guide rail 311 through the guide wheels 331, and the motor 34 is connected and fixed to the uppermost solar panel 33 through the pull rope 35 .
  • the multiple solar panels 33 can be vertically arranged to ensure that the multiple solar panels 33 can fully obtain solar energy.
  • the folding and storage of the sail 32 and multiple solar panels 33 can also be realized in other ways; , then can pull the sail 32 and a plurality of solar panels 33 to move up and fold, and when the pulling force is stopped on the solar panel 33, the sail 32 and the plurality of solar panels 33 will automatically move down to the unfolded state due to gravity; Or sail 32 and multiple solar panels 33 can be set as lateral movement structures, such as when pulling sail 32 and multiple solar panels 33 to move to the right, for realizing the expansion of sail 32 and multiple solar panels 33, pulling the boat When the sail 32 and the plurality of solar panels 33 move to the left, it is used to realize the folding storage of the sail 32 and the plurality of solar panels 33; You can choose as needed.
  • support 31 and motor 34 are all arranged on the upper surface of hull 10; The side and the top surface of the bracket 31 ; the stay rope 35 is arranged in the wire groove 312 , and the stay rope 35 bypasses the guide wheel 36 and connects with the sail 32 or the solar panel 33 .
  • the wire groove 312 is roughly L-shaped, and the wire groove 312 extends from the side of the support 31 to the top surface; after the wire groove 312 is added, a relatively stable working space can be provided for the stay cord 35, not only Improve the stability of stay cord 35 when working, more protect stay cord 35, prolong the service life of stay cord 35; The smooth unfolding and folding of sail 32 and solar panel 33 provides guarantee.
  • monitoring mechanism comprises wind direction anemometer 41, and wind direction anemometer 41 is arranged on the top of hull 10, and when wind direction anemometer 41 records wind speed greater than setting value, control mechanism 50 controls sail 32 and a plurality of solar panels. Plate 33 is folded.
  • the wind direction anemometer 41 After the wind direction anemometer 41 is set, the wind direction anemometer 41 will measure the wind speed and wind direction of the current environment. For example, when the wind speed measured is greater than the set value, it proves that the current environment wind speed is too large, and the expansion of the sail 32 is easily caused by stress.
  • the unmanned ship is tilted, so at this time the control mechanism 50 controls the folding of the sail 32 and the plurality of solar panels 33, which can reduce the windward force of the unmanned ship, thereby reducing the possibility of tilting.
  • control mechanism 50 controls the drive mechanism 20 to start when it is detected by the wind direction anemometer 41 that the driving force of the wind is insufficient or there is wind obstruction.
  • the driving mechanism 20 can be controlled to suspend work, and the sail 32 can be controlled to expand so that the natural wind force can be used to drive the unmanned ship to move. If the wind power cannot meet the driving requirements of the unmanned ship, the driving mechanism 20 can also be started at the same time, so that the unmanned ship can sail under the synergy of the driving mechanism 20 and natural wind, thereby reducing energy consumption.
  • the driving mechanism 20 can be controlled to start at this time, thereby ensuring that the unmanned ship can reach the destination smoothly; After the above control method, the natural wind can be used more reasonably to reduce the energy consumption of the unmanned ship.
  • the monitoring mechanism includes an inclination sensor 42 , and when the inclination sensor 42 detects that the inclination angle is greater than a set value, the control mechanism 50 controls the sail 32 and the plurality of solar panels 33 to fold.
  • the factors that cause the unmanned ship to tilt are generally natural wind and waves, and waves cannot be detected by the wind direction anemometer 41, so this embodiment sets the inclination sensor 42 to detect the current inclination of the unmanned ship. Waves affect the unmanned ship. As long as the inclination is greater than the set value, it can indicate that the unmanned ship has a risk of tilting. Therefore, at this time, the control mechanism 50 controls the folding of the sail 32 and the multiple solar panels 33, which can not only reduce the force against the wind, but also The force distribution of the unmanned ship can be changed, so that the center of gravity of the unmanned ship is more stable, and the possibility of capsizing is further reduced
  • a monitoring mechanism including a miniature Acoustic Doppler Current Profiler (ADCP) sensor 47 can also be set to realize the monitoring of water velocity, water depth and water flow, and meet more diverse monitoring and regulation requirements.
  • ADCP Acoustic Doppler Current Profiler
  • the monitoring mechanism includes a radar 43, and when the radar 43 detects that there is an obstacle, the control mechanism 50 controls the long-endurance unmanned ship to bypass the obstacle.
  • the radar 43 can always monitor whether there are obstacles on the driving route of the unmanned ship. Being hindered, it also provides a guarantee for the safe driving of unmanned ships.
  • the monitoring mechanism includes a GPS locator 44
  • the control mechanism 50 is used to control the long-endurance unmanned ship to move to the destination according to the position information measured by the GPS locator 44 .
  • the GPS locator 44 can accurately know the current position of the unmanned ship at any time, so that the unmanned ship can be controlled to move to the destination accurately.
  • a camera 45 and a wireless transmission mechanism 46 are provided on the hull 10 , and the wireless transmission mechanism 46 is used to transmit the content captured by the camera 45 to the device to be received.
  • the situation of the working environment of the unmanned ship can be photographed at any time, and then the shooting content can be sent to the workstation on the shore, so that the staff can know the working environment of the unmanned ship in time, and plan to update Good work program.
  • the driving mechanism 20 includes a floating body 21, a propeller 22 and a battery 23; the floating body 21 is arranged on the bottom of the hull 10; the propeller 22 is arranged outside the floating body 21, and the propeller 22 is electrically connected to the battery 23; the battery 23 is arranged on the floating body 21, the battery 23 is electrically connected to the solar panel 33, and the battery 23 is used to store the electric energy converted by the solar panel 33 to drive the propeller 22 to run.
  • the floating body 21 realizes the floating of the unmanned ship on the sea surface, and the battery 23 can obtain electric energy from the solar panel 33 for use by the propeller 22, thereby realizing the active driving control of the unmanned ship.
  • control mechanism 50 may be one or more controllers or chips with a communication interface capable of implementing a communication protocol, and may also include a memory and related interfaces, a system transmission bus, etc. if necessary;
  • the code related to the controller or chip execution program realizes the corresponding function.
  • the wireless transmission mechanism 46 can be one or more processors or chips with a communication interface capable of implementing a wireless communication protocol, and can also include a memory and related interfaces, a system transmission bus, etc. if necessary; the processor or chip executes Program-related codes implement corresponding functions.

Abstract

本发明公开了一种新型基于清洁能源的长续航力无人船,包括船体、以及设于船体上的驱动机构、能源回收机构、监测机构和控制机构;驱动机构用于驱动船体行驶;能源回收机构包括支架、船帆和太阳能板;船帆以可折叠的方式活动安装于支架上;多块太阳能板均设于船帆上,多块太阳能板用于将太阳能转为电能供长续航力无人船使用;监测机构用于监测环境信息;控制机构用于根据环境信息对长续航力无人船进行控制;在判断处于安全环境时,控制船帆和多块太阳能板展开获取太阳能;在判断存在倾覆风险时,控制船帆和多块太阳能板折叠;此方案能够实现风能和太阳能的利用,并降低风浪对行驶的影响,切实解决了无人船无法在恶劣环境长期工作的问题。

Description

一种新型基于清洁能源的长续航力无人船 技术领域
本发明涉及无人船的技术领域,特别涉及一种新型基于清洁能源的长续航力无人船。
背景技术
无人船作为海洋探测、侦察和其他任务的重要工具,需要长时间不间断的进行进行监测操作,所以必须能够实现清洁能源的自动获取;为实现此目的,目前的无人船大多采用太阳能发电,但是太阳能的转化效率较低,仅仅依靠太阳能作为动力来源难以持续推动船舶,无法实现长续航力;其次,未经特殊设计船舶的水线面面积较大,从而会严重受到水面波浪的影响,难以保持既定的航向和满足任务需求。
因此,很有必要设计一种以清洁能源为动力来源的长续航力新型无人船,以满足在海上恶劣环境中正常执行任务、长续航、智能化及高稳定性的要求。
发明内容
本发明的目的在于提供一种新型基于清洁能源的长续航力无人船,以解决无人船无法在恶劣环境长期工作的问题。
为了解决上述技术问题,本发明提供了一种新型基于清洁能源的长续航力无人船,包括船体、以及设于所述船体上的驱动机构、能源回收机构、监测机构和控制机构;所述驱动机构用于驱动所述船体行驶;所述能源回收机构包括支架、船帆和太阳能板;所述船帆以可折叠的方式活动安装于所述支架上;多块所述太阳能板均设于所述船帆上,多块所述太阳能板用于将太阳能转为电能供所述长续航力无人船使用;所述监测机构用于监测环境信息;所述控制机构用于根据所述环境信息对所述长续航力无人船进行控制;在判断处于安全环境时,控制所述船帆和多块所述太阳能板展开获取太阳能;在判断存在倾覆风险时,控制所述船帆和多块所述太阳能板折叠。
在其中一个实施例中,所述能源回收机构还包括电机和拉绳;所述支架的 两侧均竖向设有导轨;多块所述太阳能板的两侧均设有导轮,多块所述太阳能板两侧的所述导轮均分别滚动安装于两所述导轨内,多块所述太阳能板在所述船帆上沿竖向排列布置;所述电机与所述拉绳连接,所述拉绳与所述船帆或所述太阳能板连接,所述电机用于通过所述拉绳带动所述船帆和多块所述太阳能板上移伸展。
在其中一个实施例中,所述支架和所述电机均设于所述船体的上表面;所述支架的顶部设有导向轮,所述支架的外侧设有导线槽,所述导线槽的布置轨迹经过所述支架的侧面和顶面;所述拉绳设于所述导线槽,所述拉绳绕过所述导向轮与所述船帆或所述太阳能板连接。
在其中一个实施例中,所述监测机构包括风向风速仪,所述风向风速仪设于所述船体的上部,在所述风向风速仪测得风速大于设定值时,所述控制机构控制所述船帆和多块所述太阳能板折叠。
在其中一个实施例中,在经所述风向风速仪测得风力驱动不足或存在风力阻碍时,所述控制机构控制所述驱动机构启动。
在其中一个实施例中,所述监测机构包括倾角传感器,在所述倾角传感器测得倾角大于设定值时,所述控制机构控制所述船帆和多块所述太阳能板折叠。
在其中一个实施例中,所述监测机构包括雷达,在所述雷达测得存在障碍时,所述控制机构控制所述长续航力无人船绕过障碍。
在其中一个实施例中,所述监测机构包括GPS定位器,所述控制机构用于根据所述GPS定位器测得的位置信息控制所述长续航力无人船移动至目的地。
在其中一个实施例中,所述船体上设有摄像头和无线传输机构,所述无线传输机构用于将所述摄像头拍摄的内容输送至待接收设备。
在其中一个实施例中,所述驱动机构包括浮体、螺旋桨和蓄电池;所述浮体设于所述船体的底部;所述螺旋桨设于所述浮体外,所述螺旋桨与所述蓄电池电性连接;所述蓄电池设于所述浮体内,所述蓄电池与所述太阳能板电性连接,所述蓄电池用于存储所述太阳能板转化的电能驱动所述螺旋桨运行。
本发明的有益效果如下:
首先,由于所述能源回收机构包括支架、船帆和太阳能板,所以船帆则可实现风力的利用,而太阳能板则能实现太阳能的利用,以此提高了清洁能源的利用效率,满足了长时间行驶的需求;其次,在判断处于安全环境时,控制所 述船帆和多块所述太阳能板展开获取太阳能,在判断存在倾覆风险时,控制所述船帆和多块所述太阳能板折叠,则能减少风浪对无人船行驶的影响,以确保无人船行驶的安全,从而切实解决了现有无人船无法在恶劣环境长期工作的问题。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的结构示意图;
图2是图1的前视结构示意图;
图3是图1的A部份放大结构示意图;
图4是图1的B部份放大结构示意图;
图5是图1的船帆折叠结构示意图。
附图标记如下:
10、船体;
20、驱动机构;21、浮体;22、螺旋桨;23、蓄电池;
30、能源回收机构;31、支架;311、导轨;312、导线槽;32、船帆;33、太阳能板;331、导轮;34、电机;35、拉绳;36、导向轮;
41、风向风速仪;42、倾角传感器;43、雷达;44、GPS定位器;45、摄像头;46、无线传输机构;47、ADCP传感器;
50、控制机构。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。
本发明提供了一种新型基于清洁能源的长续航力无人船,其实施例如图1、图2和图5所示,包括船体10、以及设于船体10上的驱动机构20、能源回收机构30、监测机构和控制机构50;驱动机构20用于驱动船体10行驶;能源回 收机构30包括支架31、船帆32和太阳能板33;船帆32以可折叠的方式活动安装于支架31上;多块太阳能板33均设于船帆32上,多块太阳能板33用于将太阳能转为电能供长续航力无人船使用;监测机构用于监测环境信息;控制机构50用于根据环境信息对长续航力无人船进行控制;在判断处于安全环境时,控制船帆32和多块太阳能板33展开获取太阳能;在判断存在倾覆风险时,控制船帆32和多块太阳能板33折叠。
在无人船运行的过程中,监测机构会持续进行环境信息监测,并将测得的环境信息输送至控制机构50,然后控制机构50将可依据环境信息进行判断,以此得知无人船是处于安全的运行环境中,还是存在倾覆的风险。
若控制机构50判断无人船处于安全的环境中,则可控制船帆32和多块太阳能板33一同伸展,此时船帆32可以获取风力,从而推动无人船进行移动,而太阳能板33则能将太阳能转为电能供无人船进行使用,如为驱动机构20进行供电,以满足无人船的主动行驶需求。
若控制机构50判断无人船存在倾覆的风险,则可控制船帆32和多块太阳能板33一同折叠收纳,从而避免船帆32受风,以此降低了无人船产生倾覆的风险,为无人船的安全运行、行驶提供了保障。
所以综上可知,此方案能够实现风能和太阳能的利用,并降低风浪对行驶的影响,切实解决了无人船无法在恶劣环境长期工作的问题。
如图1、图3和图4所示,能源回收机构30还包括电机34和拉绳35;支架31的两侧均竖向设有导轨311;多块太阳能板33的两侧均设有导轮331,多块太阳能板33两侧的导轮331均分别滚动安装于两导轨311内,多块太阳能板33在船帆32上沿竖向排列布置;电机34与拉绳35连接,拉绳35与船帆32或太阳能板33连接,电机34用于通过拉绳35带动船帆32和多块太阳能板33上移伸展。
具体的,在此实施例中,支架31大致呈矩形框状,支架31两侧边的内表面均竖向设有导轨311,船帆32置于两导轨311之间,多块太阳能板33在船帆32的同一表面沿竖向排列布置,且多块太阳能板33的两侧均通过导轮331滚动安装于导轨311内,而电机34则通过拉绳35与最上方的太阳能板33连接固定。
在电机34未通过拉绳35对太阳能板33施加拉力时,由于船帆32为柔性材质制成,且各块太阳能板33之间并非连接固定,所以多块太阳能板33将可 因重力下降层叠,这不但能够带动船帆32折叠,以避免强风吹动船帆32导致无人船倾侧,更可改变无人船的受力分布,从而使得无人船重心更为平稳,进一步减少了倾覆的可能。
而在电机34通过拉绳35对太阳能板33施加拉力时,由于多块太阳能板33通过与船帆32连接实现联动,所以多块太阳能板33将可随动上移,直至船帆32处于完全展开状态后,多块太阳能板33将可在竖向排列布置,以确保多块太阳能板33均能充分获取太阳能。
需要指出,除上述实施方式外,还可以通过其他方式实现船帆32和多块太阳能板33的折叠收纳;譬如可设置为拉动最下方的太阳能板33进行移动,所以当对太阳能板33施加拉力时,则可拉动船帆32和多块太阳能板33上移进行折叠,当停止对太阳能板33施加拉力时,船帆32和多块太阳能板33将可因重力自动下移至展开状态;又或者可以设置船帆32和多块太阳能板33为横向移动结构,譬如拉动船帆32和多块太阳能板33往右移动时,用于实现船帆32和多块太阳能板33的展开,拉动船帆32和多块太阳能板33往左移动时,用于实现船帆32和多块太阳能板33的折叠收纳;即船帆32和多块太阳能板33的收纳方式并不唯一,技术人员根据具体需求进行选择即可。
如图1和图4所示,支架31和电机34均设于船体10的上表面;支架31的顶部设有导向轮36,支架31的外侧设有导线槽312,导线槽312的布置轨迹经过支架31的侧面和顶面;拉绳35设于导线槽312,拉绳35绕过导向轮36与船帆32或太阳能板33连接。
在此实施例中,导线槽312大致呈L形,导线槽312从支架31的侧面往顶面延伸布置;在增设导线槽312后,则可为拉绳35提供一个相对稳定的工作空间,不但提高了拉绳35工作时的稳定性,更对拉绳35进行了保护,延长了拉绳35的使用寿命;而导向轮36的设置则提高了对太阳能板33拉动时的流畅性,为船帆32和太阳能板33的流畅展开和折叠提供了保障。
如图1所示,监测机构包括风向风速仪41,风向风速仪41设于船体10的上部,在风向风速仪41测得风速大于设定值时,控制机构50控制船帆32和多块太阳能板33折叠。
在设置风向风速仪41后,风向风速仪41将可测得当前环境的风速和风向,譬如测得风速大于设定值时,则证明目前环境风速过大,船帆32的展开受力容 易导致无人船倾侧,所以此时控制机构50控制船帆32和多块太阳能板33折叠,则可减少无人船的迎风受力,从而降低了出现倾侧的可能性。
如图1所示,在经风向风速仪41测得风力驱动不足或存在风力阻碍时,控制机构50控制驱动机构20启动。
譬如在风向风速仪41测得当前风向与无人船行驶方向一致时,则可控制驱动机构20暂停工作,并控制船帆32展开,以便利用自然风力驱动无人船移动,而且此时若发现风力不能满足无人船的行驶需求,也可以同时启动驱动机构20,以使得无人船在驱动机构20和自然风力的协同作用下进行航行,从而减少能源消耗。
若发现风向与无人船行驶方向不同时,则自然风将会阻碍无人船的行驶,所以此时便可控制驱动机构20进行启动,从而确保无人船能够顺利到达目的地;因此在采用上述控制方式后,则可更合理利用自然风力,以降低无人船的能耗。
如图1和图2所示,监测机构包括倾角传感器42,在倾角传感器42测得倾角大于设定值时,控制机构50控制船帆32和多块太阳能板33折叠。
造成无人船倾侧的因素一般是自然风和波浪,而波浪是无法通过风向风速仪41进行检测的,所以此实施例设置倾角传感器42检测无人船当前倾角,此时无论是自然风或是波浪对无人船造成影响,只要倾角大于设定值均能表示无人船存在倾侧风险,所以此时控制机构50控制船帆32和多块太阳能板33折叠,不但能减少迎风受力,更可改变无人船的受力分布,从而使得无人船重心更为平稳,进一步减少了倾覆的可能
其中,还可以设置监测机构包括微型声学多普勒流速剖面仪(Acoustic Doppler CurrentProfiler,ADCP)传感器47,以实现水流速度、水深以及水流量的监测,满足了更多种多样的监测调控需求。
如图1和图2所示,监测机构包括雷达43,在雷达43测得存在障碍时,控制机构50控制长续航力无人船绕过障碍。
在无人船行驶的过程中,雷达43可以时刻监测无人船行驶线路上是否存在障碍,在雷达43发现存在障碍后,便可及时调整无人船的行驶路线,从而避免无人船的行驶受到阻碍,也为无人船的安全行驶提供了保障。
如图1所示,监测机构包括GPS定位器44,控制机构50用于根据GPS定位器44测得的位置信息控制长续航力无人船移动至目的地。
在设置GPS定位器44后,GPS定位器44便可随时准确获知无人船当前所处的位置,所以便可控制无人船准确移动至目的地。
如图1所示,船体10上设有摄像头45和无线传输机构46,无线传输机构46用于将摄像头45拍摄的内容输送至待接收设备。
在增设摄像头45和无线传输机构46后,则可随时拍摄无人船工作环境的状况,然后将拍摄内容送至岸上工作站,以便工作人员能够及时得知无人船的工作环境,以此计划更好的工作方案。
如图1所示,驱动机构20包括浮体21、螺旋桨22和蓄电池23;浮体21设于船体10的底部;螺旋桨22设于浮体21外,螺旋桨22与蓄电池23电性连接;蓄电池23设于浮体21内,蓄电池23与太阳能板33电性连接,蓄电池23用于存储太阳能板33转化的电能驱动螺旋桨22运行。
在进行应用时,浮体21实现了无人船在海面上的漂浮,而蓄电池23则可从太阳能板33获取电能供螺旋桨22使用,从而实现了无人船的主动驱动行驶控制。
在本申请的实施例中,所述控制机构50可以是具有通信接口能够实现通信协议的一个或多个控制器或者芯片,如有需要还可以包括存储器及相关的接口、系统传输总线等;所述控制器或者芯片执行程序相关的代码实现相应的功能。所述无线传输机构46可以是具有通信接口能够实现无线通信协议的一个或多个处理器或者芯片,如有需要还可以包括存储器及相关的接口、系统传输总线等;所述处理器或者芯片执行程序相关的代码实现相应的功能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种新型基于清洁能源的长续航力无人船,其特征在于,
    包括船体、以及设于所述船体上的驱动机构、能源回收机构、监测机构和控制机构;
    所述驱动机构用于驱动所述船体行驶;
    所述能源回收机构包括支架、船帆和太阳能板;所述船帆以可折叠的方式活动安装于所述支架上;多块所述太阳能板均设于所述船帆上,多块所述太阳能板用于将太阳能转为电能供所述长续航力无人船使用;
    所述监测机构用于监测环境信息;
    所述控制机构用于根据所述环境信息对所述长续航力无人船进行控制;在判断处于安全环境时,控制所述船帆和多块所述太阳能板展开获取太阳能;在判断存在倾覆风险时,控制所述船帆和多块所述太阳能板折叠;
    其中,所述能源回收机构还包括电机和拉绳;
    所述支架的两侧均竖向设有导轨;
    多块所述太阳能板的两侧均设有导轮,多块所述太阳能板两侧的所述导轮均分别滚动安装于两所述导轨内,多块所述太阳能板在所述船帆上沿竖向排列布置;
    所述电机与所述拉绳连接,所述拉绳与所述船帆或所述太阳能板连接,所述电机用于通过所述拉绳带动所述船帆和多块所述太阳能板上移伸展;
    其中,所述支架和所述电机均设于所述船体的上表面;
    所述支架的顶部设有导向轮,所述支架的外侧设有导线槽,所述导线槽的布置轨迹经过所述支架的侧面和顶面;
    所述拉绳设于所述导线槽,所述拉绳绕过所述导向轮与所述船帆或所述太阳能板连接。
  2. 根据权利要求1所述的长续航力无人船,其特征在于,所述监测机构包括风向风速仪,所述风向风速仪设于所述船体的上部,在所述风向风速仪测得风速大于设定值时,所述控制机构控制所述船帆和多块所述太阳能板折叠。
  3. 根据权利要求2所述的长续航力无人船,其特征在于,在经所述风向风速 仪测得风力驱动不足或存在风力阻碍时,所述控制机构控制所述驱动机构启动。
  4. 根据权利要求1或2所述的长续航力无人船,其特征在于,所述监测机构包括倾角传感器,在所述倾角传感器测得倾角大于设定值时,所述控制机构控制所述船帆和多块所述太阳能板折叠。
  5. 根据权利要求1所述的长续航力无人船,其特征在于,所述监测机构包括雷达,在所述雷达测得存在障碍时,所述控制机构控制所述长续航力无人船绕过障碍。
  6. 根据权利要求1所述的长续航力无人船,其特征在于,所述监测机构包括GPS定位器,所述控制机构用于根据所述GPS定位器测得的位置信息控制所述长续航力无人船移动至目的地。
  7. 根据权利要求1所述的长续航力无人船,其特征在于,所述船体上设有摄像头和无线传输机构,所述无线传输机构用于将所述摄像头拍摄的内容输送至待接收设备。
  8. 根据权利要求1所述的长续航力无人船,其特征在于,
    所述驱动机构包括浮体、螺旋桨和蓄电池;
    所述浮体设于所述船体的底部;
    所述螺旋桨设于所述浮体外,所述螺旋桨与所述蓄电池电性连接;
    所述蓄电池设于所述浮体内,所述蓄电池与所述太阳能板电性连接,所述蓄电池用于存储所述太阳能板转化的电能驱动所述螺旋桨运行。
PCT/CN2021/141069 2021-09-03 2021-12-24 一种新型基于清洁能源的长续航力无人船 WO2023029306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111033798.6A CN113772067A (zh) 2021-09-03 2021-09-03 一种新型基于清洁能源的长续航力无人船
CN202111033798.6 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023029306A1 true WO2023029306A1 (zh) 2023-03-09

Family

ID=78840984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141069 WO2023029306A1 (zh) 2021-09-03 2021-12-24 一种新型基于清洁能源的长续航力无人船

Country Status (2)

Country Link
CN (1) CN113772067A (zh)
WO (1) WO2023029306A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772067A (zh) * 2021-09-03 2021-12-10 中山大学 一种新型基于清洁能源的长续航力无人船
CN114194369B (zh) * 2021-12-31 2024-01-19 山东省经海仪器设备有限公司 水面船艇太阳能电池板的安装结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240539A (ja) * 2011-05-18 2012-12-10 Mitsui Eng & Shipbuild Co Ltd 硬帆で形成される横帆を備えた船舶及び横帆の格納及び展開方法
CN106428495A (zh) * 2016-10-20 2017-02-22 中国海洋大学 一种利用风能直接驱动的海上无人航行器
CN106741782A (zh) * 2016-12-27 2017-05-31 武汉理工大学 一种基于风能驱动的无人船及其航行控制方法
CN108820178A (zh) * 2018-07-26 2018-11-16 杨力 一种太阳能帆船用的可折叠太阳能翼帆
CN108820177A (zh) * 2018-07-23 2018-11-16 杨力 一种使用风能太阳能复合驱动的新能源帆船及其控制方法
CN108860454A (zh) * 2018-07-11 2018-11-23 哈尔滨工程大学 一种全天候长航程无人帆船设计方法
CN112532154A (zh) * 2020-12-11 2021-03-19 上海海事大学 一种可自主收放太阳能板搭载装置的双体船
CN213139083U (zh) * 2020-08-20 2021-05-07 珠海云洲智能科技股份有限公司 观测平台
CN113772067A (zh) * 2021-09-03 2021-12-10 中山大学 一种新型基于清洁能源的长续航力无人船

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1013642A (fr) * 1950-02-15 1952-07-31 Perfectionnements apportés aux gréements, et notamment à ceux de yachts et monotypes
US4418632A (en) * 1981-04-28 1983-12-06 Nippon Kokan Kabushiki Kaisha Method for operating a rigid marine sail
CN111619776B (zh) * 2020-06-08 2022-05-03 天津大学 自然环境流体驱动的变构型双航态长航程海洋无人航行器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240539A (ja) * 2011-05-18 2012-12-10 Mitsui Eng & Shipbuild Co Ltd 硬帆で形成される横帆を備えた船舶及び横帆の格納及び展開方法
CN106428495A (zh) * 2016-10-20 2017-02-22 中国海洋大学 一种利用风能直接驱动的海上无人航行器
CN106741782A (zh) * 2016-12-27 2017-05-31 武汉理工大学 一种基于风能驱动的无人船及其航行控制方法
CN108860454A (zh) * 2018-07-11 2018-11-23 哈尔滨工程大学 一种全天候长航程无人帆船设计方法
CN108820177A (zh) * 2018-07-23 2018-11-16 杨力 一种使用风能太阳能复合驱动的新能源帆船及其控制方法
CN108820178A (zh) * 2018-07-26 2018-11-16 杨力 一种太阳能帆船用的可折叠太阳能翼帆
CN213139083U (zh) * 2020-08-20 2021-05-07 珠海云洲智能科技股份有限公司 观测平台
CN112532154A (zh) * 2020-12-11 2021-03-19 上海海事大学 一种可自主收放太阳能板搭载装置的双体船
CN113772067A (zh) * 2021-09-03 2021-12-10 中山大学 一种新型基于清洁能源的长续航力无人船

Also Published As

Publication number Publication date
CN113772067A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023029306A1 (zh) 一种新型基于清洁能源的长续航力无人船
CN106143801B (zh) 一种利用光波互补工作的无人艇
CN107878670B (zh) 小回转半径箱式连接桥远距离海水采样太阳能双体无人船
CN207889964U (zh) 一种无人帆船动力及转向装置
CN109606578B (zh) 一种海洋环境监测绿色能源小水线面改良双体无人船艇
WO2023029307A1 (zh) 一种强生存力长周期智能无人航行器
CN207510667U (zh) 圆弧形箱式连接桥远距离遥控海水采样太阳能双体无人船
CN210618399U (zh) 一种长续航无人智能巡航监测双体船
CN207015572U (zh) 一种风帆动力水下自主航行器
CN207510694U (zh) 一种差动水翼波浪推进器
CN108945366A (zh) 一种支持风帆推进的水中航行器
CN107215429B (zh) 一种新型小水线面单体无人半潜艇
KR102074565B1 (ko) 자동 세일링 로봇선
CN207510644U (zh) 一种远距离遥控海水采样的太阳能双体无人船
CN112389593A (zh) 风能太阳能混合驱动无人海空立体监测船
CN211167320U (zh) 一种海洋信息监测用浮台
CN201254266Y (zh) 一种多功能水面机器人
JPH04331694A (ja) 太陽電池付き電動帆船
CN207758961U (zh) 一种无人船
CN211731772U (zh) 分体拖缆式水面—水下无人航行器
KR102152417B1 (ko) 기능성 태양광 추진 선박
CN108394531B (zh) 一种海上风电运维船稳定装置
CN110588905A (zh) 一种新型抗风浪打捞船
CN111284671A (zh) 一种使用风能太阳能复合驱动的新能源帆船及其控制方法
CN208024502U (zh) 一种能够利用风能和水能的浮标

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955834

Country of ref document: EP

Kind code of ref document: A1