WO2019134544A1 - 营销信息的推送方法及装置 - Google Patents
营销信息的推送方法及装置 Download PDFInfo
- Publication number
- WO2019134544A1 WO2019134544A1 PCT/CN2018/123043 CN2018123043W WO2019134544A1 WO 2019134544 A1 WO2019134544 A1 WO 2019134544A1 CN 2018123043 W CN2018123043 W CN 2018123043W WO 2019134544 A1 WO2019134544 A1 WO 2019134544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- behavior pattern
- behavior
- data
- pattern data
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/55—Push-based network services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0254—Targeted advertisements based on statistics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0255—Targeted advertisements based on user history
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0277—Online advertisement
Definitions
- the present specification relates to the field of information mining technology, and in particular, to a method and device for pushing marketing information.
- the manner of pushing the message to the user's mobile phone is usually adopted, that is, the APP pushes the message to the user's mobile phone, and the user By clicking on the message pushed, you can jump to the corresponding page of the app to participate in the promotion.
- the current method of pushing messages basically adopts the full amount of message push mode, and all the promotional event messages are pushed to the user. Obviously, this method is easy to reduce the user's interest in the promotion activities, and even cause the user to uninstall the APP because of the dislike. Therefore, in the current manner of pushing messages, the user's click rate on the message is not high, and even if the message is clicked on the promotion page, the probability of participating in the promotion is not high.
- the purpose of one or more embodiments of the present specification is to provide a method and a device for pushing marketing information, which are used to solve the problem that the push marketing information is inaccurate in the prior art, resulting in a low click rate of the user.
- one or more embodiments of the present specification provide a method for pushing marketing information, including:
- Obtaining behavior data of the user where the behavior data includes login behavior data and consumption behavior data;
- the behavior pattern includes at least one dimension of the behavior data
- the behavior pattern analysis of the behavior data of the user is performed to obtain behavior pattern data, including:
- the association analysis is performed on the behavior pattern data, and the association analysis result of the behavior pattern data is obtained, including:
- the consumer behavior pattern data of each login time slice is analyzed by the user, and the association analysis result is obtained.
- the analyzing the consumption behavior pattern data of the user in each login time slice to obtain the association analysis result includes:
- the analyzing the consumption behavior pattern data of the user in each login time slice includes:
- the extracted first behavior pattern data is analyzed.
- the analyzing the consumption behavior pattern data of the user in each login time slice further includes:
- the weight value corresponding to the second behavior pattern data is reduced.
- the pushing the marketing information to the user according to the association analysis result comprises:
- Target marketing information that matches the consumption behavior pattern data of the user in the respective time periods from the plurality of marketing information; or generating consumption behavior pattern data with the user in the respective time periods Matching target marketing information;
- the pushing the target marketing information to the user comprises:
- the target marketing information is pushed to the user according to the number of pushes.
- one or more embodiments of the present specification provide a pushing device for marketing information, including:
- Obtaining a module acquiring behavior data of the user, where the behavior data includes login behavior data and consumption behavior data;
- a first analysis module performing behavior pattern analysis on the behavior data of the user to obtain behavior pattern data;
- the behavior pattern includes at least one dimension of the behavior data;
- a second analysis module performing correlation analysis on the behavior pattern data, and obtaining an association analysis result of the behavior pattern data
- the pushing module pushes the marketing information to the user according to the association analysis result.
- the first analysis module comprises:
- the first analyzing unit performs behavior pattern analysis on the login behavior data of the user, and obtains login behavior pattern data in at least one dimension: login time, login times, login location, login network, login account;
- the second analyzing unit performs behavior pattern analysis on the consumption behavior data of the user, and obtains consumption behavior pattern data in at least one dimension: consumption time, consumer merchant, consumption location, consumer commodity, and consumption amount.
- the second analysis module comprises:
- Determining a unit determining, according to the login time of the user, a login time slice corresponding to the user;
- the third analyzing unit analyzes the consumption behavior pattern data of the user in each login time slice to obtain the correlation analysis result.
- the third analyzing unit is further configured to:
- the third analyzing unit is further configured to:
- the extracted first behavior pattern data is analyzed.
- the third analyzing unit is further configured to:
- Second behavior mode data After determining the weight value corresponding to the behavior pattern data of each user in each login time slice, determining and filtering out the number of logins in each login time slice reaches a first threshold, but the number of consumption is lower than a second threshold. Second behavior mode data;
- the weight value corresponding to the second behavior pattern data is reduced.
- the pushing module comprises:
- Selecting or generating a unit selecting target marketing information that matches the consumption behavior pattern data of the user in the respective time periods from the plurality of marketing information; or generating, with the user, in the respective time periods Target marketing information matching the consumption behavior pattern data;
- a pushing unit that pushes the target marketing information to the user.
- the pushing unit is further configured to:
- the target marketing information is pushed to the user according to the number of pushes.
- one or more embodiments of the present disclosure provide a push information device for marketing information, including:
- a memory arranged to store computer executable instructions that, when executed, cause the processor to:
- Obtaining behavior data of the user where the behavior data includes login behavior data and consumption behavior data;
- the behavior pattern includes at least one dimension of the behavior data
- one or more embodiments of the present specification provide a storage medium for storing computer executable instructions that, when executed, implement the following processes:
- Obtaining behavior data of the user where the behavior data includes login behavior data and consumption behavior data;
- the behavior pattern includes at least one dimension of the behavior data
- the behavior data of the user (including the login behavior data and the consumption behavior data) is acquired, and the behavior pattern analysis is performed on the behavior data to obtain the behavior pattern data, and then the behavior pattern data is performed. Correlation analysis, and push marketing information to the user according to the result of the association analysis, so that the marketing information pushed to the user conforms to the user's behavior pattern data, that is, conforms to the user's behavior habits, thereby improving the user's click rate of the marketing information, and ultimately improving the user's marketing The participation rate and consumption rate of the marketing activities corresponding to the information.
- the technical solution can avoid causing the user to resent the marketing information that does not conform to his behavior habit by pushing the marketing information conforming to his behavior habits to the user, and improve the user's experience of pushing the information to a certain extent.
- FIG. 1 is a schematic flowchart of a method for pushing marketing information according to an embodiment of the present specification
- FIG. 2 is a schematic block diagram of a push device for marketing information according to an embodiment of the present specification
- FIG. 3 is a schematic block diagram of a push device for marketing information according to an embodiment of the present specification.
- One or more embodiments of the present disclosure provide a method and an apparatus for pushing marketing information to solve the problem that the push marketing information is inaccurate in the prior art, resulting in a low click rate of the user.
- FIG. 1 is a schematic flowchart of a method for pushing marketing information according to an embodiment of the present specification. As shown in FIG. 1, the method includes:
- the login behavior data includes at least one of a login time, a login location, a login network, and a login account.
- the consumption behavior data includes at least one of consumption time, consumer merchants, consumption locations, consumer goods, and consumption amount.
- S104 Perform behavior pattern analysis on the behavior data of the user to obtain behavior pattern data.
- the behavior pattern includes at least one dimension of the behavior data.
- Behavioral pattern analysis of a user's behavioral data refers to the analysis of behavioral data in at least one dimension of behavioral data. For example, by analyzing the login time of the user, the login behavior pattern data of the user in the "login time" dimension can be obtained.
- S106 Perform correlation analysis on the behavior pattern data to obtain a correlation analysis result of the behavior pattern data.
- the behavior data of the user (including the login behavior data and the consumption behavior data) is acquired, and the behavior pattern analysis is performed on the behavior data to obtain the behavior pattern data, and then the behavior pattern data is performed. Correlation analysis, and push marketing information to the user according to the result of the association analysis, so that the marketing information pushed to the user conforms to the user's behavior pattern data, that is, conforms to the user's behavior habits, thereby improving the user's click rate of the marketing information, and ultimately improving the user's marketing The participation rate and consumption rate of the marketing activities corresponding to the information.
- the technical solution can avoid the user's dislike of marketing information that does not conform to his behavior habit by pushing the marketing information conforming to his behavior habits to the user, and improves the user's experience of pushing the information to a certain extent.
- S102 is executed to acquire behavior data of the user, and the behavior data includes login behavior data and consumption behavior data.
- behavior data of the user over a period of time may be obtained, including login behavior data and consumption behavior data of the user over a period of time.
- the behavioral data for a period of time should be able to reflect the user's behavioral habits. For example, according to the theory of statistics and psychology, once the habit is developed, it will continue to steadily in the short term, assuming that the user's behavioral habits are developed. For 18 days, you can set the time to 18 days. By obtaining the user's login behavior data and consumption behavior data in the last 18 days, the next behavior pattern data analysis can be prepared.
- the behavior pattern includes at least one dimension of the behavior data.
- the behavior pattern analysis of the user's behavior data refers to the analysis of the behavior data in at least one dimension of the behavior data. Therefore, by performing behavior pattern analysis on the login behavior data of the user, the login behavior pattern data of at least one dimension can be obtained: login time, login times, login location, login network, login account. Through the behavior pattern analysis of the user's consumption behavior data, the consumption behavior pattern data in at least one dimension can be obtained: consumption time, consumer merchants, consumption locations, consumer goods, and consumption amount.
- a period of time For example, set a period of time to 18 days.
- the behavior pattern analysis of the login behavior data of the user in the last 18 days can be performed to obtain the login time, the login times, and the login times of the user in the last 18 days.
- Login behavior pattern data in at least one dimension of the login location, login network, login account; and behavior pattern analysis of the user's consumption behavior data in the last 18 days to obtain the user's consumption time and consumption in the last 18 days respectively Consumption behavior pattern data in at least one dimension of the merchant, the place of consumption, the consumer goods, and the amount of consumption.
- the login behavior pattern data shown in Table 1 below can be obtained - the login behavior on the dimension “login time” and “login number”
- the pattern data, as well as the consumption behavior pattern data shown in Table 2 below, is the login behavior pattern data on the dimensions "consumption time", “consumer merchant” and “consumption amount”.
- the behavior data of the user is analyzed in units of "days”.
- the S106 is continuously executed, that is, the behavior pattern data is correlated and analyzed to obtain the correlation analysis result of the behavior pattern data.
- the login time slice corresponding to the user is determined according to the login time of the user.
- the login time slice is related to the user's login time. If the user's login time is in "days”, each day can be set as a login time slice, such as the login time and consumption time shown in Tables 1 and 2 above. . Assuming that the user's login time is in "hours", each hour can be set as a login time slice.
- the user analyzes the consumption behavior pattern data of each login time slice to obtain the correlation analysis result.
- the user may determine the consumption behavior pattern data of the user in each time period corresponding to each login time slice according to the consumption behavior pattern data of the user in each login time slice.
- Each time period corresponding to each login time slice refers to a different time period equal to the duration of each login time slice.
- the login time slice includes each day of the last 7 days, and then each of the login time slices corresponds to each time slot. The time period is the next 7 days, the next 7 days, and so on.
- the consumption behavior pattern data of the user every 7 days in a later period of time that is, the correlation analysis result can be obtained.
- the login time slice includes each day of the last 7 days.
- the user logs in once in the "first day” of the registration time piece; as can be seen from the above table 2, the user's consumption amount at the consumer merchant A in the registration time piece "day 1" is 50 yuan.
- the registration behavior pattern data in the "first day” of the registration time piece shown in Table 1 and the consumption behavior pattern data in the "day 1" of the registration time piece shown in Table 2 can be used to determine the user's registration time sheet.
- the first day of the corresponding 1 day period (1 day for the next 7 days) will consume approximately 50 yuan at the consumer merchant A. Therefore, the marketing information related to the consumer merchant A can be pushed for the user on the first day in the next time period (ie, the next 7 days) (following will be detailed how to push the marketing information to the user).
- part of the behavior pattern data when analyzing the behavior pattern data of the user in each login time slice, part of the behavior pattern data may be selected from the analyzed behavior pattern data for association.
- the screening basis may be the population gathering situation of the user login location, the number of login times, the number of user consumptions, the amount of user consumption, and the like.
- step A1 the weight values corresponding to the behavior pattern data of the user in each login time slice are determined.
- the weight value is positively correlated with the value of each behavior pattern data.
- the value of each behavior pattern data refers to a specific value corresponding to each behavior pattern data.
- the value of the login behavior mode data may be the value of the login times. The more the login times, that is, the larger the value of the login behavior pattern data, the higher the weight value corresponding to the login behavior pattern data; the value of the consumption behavior pattern data may be It is the value of the consumption times, or the value of the consumption amount. The larger the consumption amount, that is, the higher the value of the consumption behavior pattern data, the higher the weight value corresponding to the consumption behavior pattern data, and the like.
- the number of logins of the user on the login time piece "Day 6" is the highest, and the number of logins on the login time “Day 2" is the second highest, at the login time.
- the number of logins on the "5th day” is the third highest, so it can be determined that the user has the highest weight value corresponding to the login behavior pattern data of the "day 6" of the login time piece, assuming that the user is in the login time piece "2nd.
- the weighting value corresponding to the login behavior pattern data of the day is the second highest. Assuming that it is 6, it is determined that the weight value corresponding to the login behavior pattern data of the user on the login time piece "Day 5" is the third highest, assuming that it is 3.
- the user's spending amount on the "3rd day” of the login time piece is the highest, and the consumption amount in the "5th day” of the login time piece is the second highest, in the login time piece "
- the consumption amount on the 6th day is the third highest, so it can be determined that the user has the highest weight value corresponding to the consumption behavior pattern data of the login time piece "Day 3", assuming that the user is in the login time piece "Day 5"
- the consumption behavior pattern data corresponds to the next highest weight value, and is assumed to be 6, determining that the weight value corresponding to the consumer behavior pattern data of the user on the login time piece "Day 6" is the third highest, assuming that it is 3.
- the behavior pattern data in which the number of logins in the login time reaches the first threshold but the number of consumptions is lower than the second threshold may be determined and filtered, thereby reducing The weight value corresponding to the filtered behavior pattern data.
- the purpose of this embodiment is to reduce the weight value for some behavior mode data that is only logged in but not consumed, thereby ensuring that each of the associated behavior patterns can represent the user's consumption behavior.
- the number of logins of the user is 5, but the number of consumption is only 4 times, indicating that the user is logged in.
- the time slice "Day 6" has a case where only the login but not the consumption is present, so the weight value corresponding to the login behavior pattern data of the user in the "6th day” of the login time piece can be correspondingly reduced.
- Step A2 Extract, from each behavior pattern data, first behavior pattern data that meets a preset screening condition.
- the first behavior pattern data includes first login behavior pattern data and first consumption behavior pattern data.
- the preset screening condition includes at least one of the following: the weight value reaches a preset threshold, and the weight value is a high weight value in the top N.
- the first login behavior pattern data corresponding to the first three high-weight values is extracted from the login behavior pattern data, that is, the user is extracted in the login time piece “Day 6”, the login time.
- the login behavior pattern data of the slice “day 2" and the login time slice “day 5" is the first login behavior pattern data that meets the preset filter condition.
- extracting the first consumption behavior pattern data corresponding to the first three high weight values from the consumption behavior pattern data that is, extracting the user respectively in the login time piece “Day 3”, the login time piece “Day 5”,
- the consumption behavior pattern data of the time slice "Day 6" is registered as the first consumption behavior pattern data.
- Step A3 analyzing the extracted first behavior pattern data.
- the first consumption behavior pattern data of the user in the login time piece "Day 6", the login time piece "Day 2", and the login time piece "Day 5" can be analyzed.
- the filtered behavior pattern data that meets the preset screening condition is analyzed, and not all behavior pattern data is analyzed. Since the behavior pattern data that meets the preset screening condition generally includes more behavior pattern data, it can be more Accurately reflect the user's behavioral habits.
- the association analysis result (including the consumption behavior pattern data of the user in each time period corresponding to each login time slice) can be performed by performing association analysis on the consumption behavior pattern data of the user in each login time slice.
- Comply with the user's daily consumption behavior habits so as to push the marketing information that meets the user's consumption behavior habits to the user at the appropriate time, such as pushing the marketing information related to the consumer merchant A on the first day in each time period, and Marketing information that is not related to consumer merchant A is not pushed to the user. Avoiding the user's dislike of marketing information that does not meet the habits of their consumption behavior, to a certain extent, improves the user's experience of marketing information push.
- the process proceeds to S108, that is, the marketing information is pushed to the user according to the result of the association analysis.
- the target marketing information that matches the consumption behavior pattern data of the user in each time period is first selected from the plurality of marketing information, wherein the plurality of marketing information may be used by the marketing personnel. Plan ahead and store. It is also possible to directly generate target marketing information that matches the consumer behavior pattern data of the user in each time period, that is, without relying on the marketing staff to plan marketing information. Second, push the target marketing information to the user.
- the consumption behavior pattern data of the user in the next time period is: the user will consume at the consumer merchant A tomorrow, then the user can be sent to the user tomorrow.
- Push target marketing information related to consumer merchant A is: the user will consume at the consumer merchant A tomorrow, then the user can be sent to the user tomorrow.
- the embodiment can improve the user's click rate on the marketing information, and ultimately improve the participation rate and consumption rate of the marketing activity corresponding to the marketing information.
- the target marketing information may be pushed to the user one or more times: first, according to the consumption behavior pattern data of the user in each time period, the number of pushes of the target marketing information is determined; secondly, the user is pushed according to the number of pushes.
- Target marketing information may be pushed to the user one or more times: first, according to the consumption behavior pattern data of the user in each time period, the number of pushes of the target marketing information is determined; secondly, the user is pushed according to the number of pushes.
- Target marketing information may be pushed to the user one or more times: first, according to the consumption behavior pattern data of the user in each time period, the number of pushes of the target marketing information is determined; secondly, the user is pushed according to the number of pushes.
- the number of pushes is related to the consumption behavior pattern data of the user in each time period.
- the number of pushes may be determined for a specific value corresponding to each consumption behavior pattern data. The larger the specific value corresponding to the consumption behavior pattern data, the higher the number of pushes.
- the number of pushes of the target marketing information related to the consumer merchant A is pushed to the user should be greater than Pushing the number of pushes of the target marketing information related to the consumer merchant B to the user, for example, pushing the target marketing information related to the consumer merchant A 3 times to the user, and pushing the target marketing information related to the consumer merchant B once to the user.
- this multiple push method can greatly improve the user's click rate on marketing information.
- the above is a method for pushing marketing information provided by one or more embodiments of the present specification. Based on the same idea, one or more embodiments of the present specification further provide a pushing device for marketing information.
- the push device for marketing information includes:
- the obtaining module 210 is configured to obtain behavior data of the user, where the behavior data includes login behavior data and consumption behavior data;
- the first analyzing module 220 performs behavior pattern analysis on the behavior data of the user to obtain behavior pattern data; the behavior pattern includes at least one dimension of the behavior data;
- the second analysis module 230 performs association analysis on the behavior pattern data to obtain an association analysis result of the behavior pattern data
- the pushing module 240 pushes marketing information to the user according to the association analysis result.
- the first analysis module 220 includes:
- the first analyzing unit performs behavior pattern analysis on the login behavior data of the user, and obtains login behavior pattern data in at least one dimension: login time, login times, login location, login network, login account;
- the second analysis unit analyzes the behavior pattern of the user's consumption behavior data, and obtains consumption behavior pattern data in at least one dimension: consumption time, consumer merchants, consumption locations, consumer goods, and consumption amount.
- the second analysis module 230 includes:
- Determining a unit determining a login time slice corresponding to the user according to the login time of the user;
- the third analysis unit analyzes the consumption behavior pattern data of the user in each login time slice, and obtains the correlation analysis result.
- the third analysis unit is further configured to:
- the consumption behavior pattern data of the user in each login time slice is determined.
- the third analysis unit is further configured to:
- the first behavior mode data that meets the preset screening condition is extracted from each behavior mode data, and the preset screening condition includes at least one of the following: the weight value reaches a preset threshold, and the weight value is a high weight value of the first N;
- the extracted first behavior pattern data is analyzed.
- the third analysis unit is further configured to:
- the weight value corresponding to the second behavior mode data is lowered.
- the push module 240 includes:
- Selecting or generating a unit selecting target marketing information matching the consumption behavior pattern data of the user in each time period from the plurality of marketing information; or generating a target matching the consumption behavior pattern data of the user in each time period Marketing information;
- the push unit pushes the target marketing information to the user.
- the push unit is further configured to:
- the behavior data of the user (including the login behavior data and the consumption behavior data) is acquired, and the behavior pattern analysis is performed on the behavior data to obtain the behavior pattern data, and then the behavior pattern data is performed. Correlation analysis, and push marketing information to the user according to the result of the association analysis, so that the marketing information pushed to the user conforms to the user's behavior pattern data, that is, conforms to the user's behavior habits, thereby improving the user's click rate of the marketing information, and ultimately improving the user's marketing The participation rate and consumption rate of the marketing activities corresponding to the information.
- the technical solution can avoid causing the user to resent the marketing information that does not conform to his behavior habit by pushing the marketing information conforming to his behavior habits to the user, and improve the user's experience of pushing the information to a certain extent.
- the pushing device of the marketing information in FIG. 2 can be used to implement the pushing method of the marketing information described above, and the detailed description should be similar to the description in the foregoing method section, in order to avoid cumbersomeness, here Do not repeat them.
- the push device for marketing information may vary considerably depending on configuration or performance, and may include one or more processors 301 and memory 302 in which one or more stored applications or data may be stored.
- the memory 302 can be short-term storage or persistent storage.
- the application stored in memory 302 may include one or more modules (not shown), each of which may include a series of computer executable instructions in a push device for marketing information.
- the processor 301 can be arranged to communicate with the memory 302 to execute a series of computer executable instructions in the memory 302 on the push device of the marketing information.
- the push device for marketing information may also include one or more power sources 303, one or more wired or wireless network interfaces 304, one or more input and output interfaces 305, one or more keyboards 306.
- the push device for marketing information includes a memory, and one or more programs, wherein one or more programs are stored in the memory, and one or more programs may include one or more modules, and Each module can include a series of computer executable instructions in a push device for marketing information, and configured to be executed by one or more processors.
- the one or more programs are included for performing the following computer executable instructions:
- Obtaining behavior data of the user where the behavior data includes login behavior data and consumption behavior data;
- the behavior pattern includes at least one dimension of the behavior data
- the computer executable instructions when executed, may also cause the processor to:
- the computer executable instructions when executed, may also cause the processor to:
- the consumer behavior pattern data of each login time slice is analyzed by the user, and the association analysis result is obtained.
- the computer executable instructions when executed, may also cause the processor to:
- the computer executable instructions when executed, may also cause the processor to:
- the extracted first behavior pattern data is analyzed.
- the computer executable instructions when executed, may also cause the processor to:
- the weight value corresponding to the second behavior pattern data is reduced.
- the computer executable instructions when executed, may also cause the processor to:
- Target marketing information that matches the consumption behavior pattern data of the user in the respective time periods from the plurality of marketing information; or generating consumption behavior pattern data with the user in the respective time periods Matching target marketing information;
- the computer executable instructions when executed, may also cause the processor to:
- the target marketing information is pushed to the user according to the number of pushes.
- One or more embodiments of the present specification also provide a computer readable storage medium storing one or more programs, the one or more programs including instructions that when included in a plurality of applications When the electronic device is executed, the electronic device can be configured to execute the above-mentioned pushing method of the marketing information, and specifically for performing:
- Obtaining behavior data of the user where the behavior data includes login behavior data and consumption behavior data;
- the behavior pattern includes at least one dimension of the behavior data
- the system, device, module or unit illustrated in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
- a typical implementation device is a computer.
- the computer can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or A combination of any of these devices.
- one or more embodiments of the present specification can be provided as a method, system, or computer program product.
- one or more embodiments of the present specification can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
- one or more embodiments of the present specification can employ a computer program embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer usable program code embodied therein. The form of the product.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
- processors CPUs
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
- RAM random access memory
- ROM read only memory
- Memory is an example of a computer readable medium.
- Computer readable media includes both permanent and non-persistent, removable and non-removable media.
- Information storage can be implemented by any method or technology.
- the information can be computer readable instructions, data structures, modules of programs, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
- program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
- the present application can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
- program modules can be located in both local and remote computer storage media including storage devices.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Toys (AREA)
Abstract
本说明书一个或多个实施例公开了一种营销信息的推送方法及装置,用以解决现有技术中推送营销信息不精准、导致用户点击率低的问题。所述方法包括:获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;根据所述关联分析结果向所述用户推送营销信息。
Description
本说明书涉及信息挖掘技术领域,尤其涉及一种营销信息的推送方法及装置。
目前,为使用户尽可能多地参加应用程序APP页面上的推广活动,以提升用户活跃度或交易量,通常采用向用户手机端推送消息的方式,即,APP向用户手机端推送消息,用户通过点击所推送的消息即可跳转到APP的相应页面参加推广活动。
但是,目前的推送消息的方式基本都采用全量消息推送方式,即将所有推广活动的消息都推送给用户。显然,这种方式容易降低用户对推广活动的兴趣,甚至导致用户因反感而卸载APP。因此,在目前这种推送消息的方式下,用户对消息的点击率并不高,即使点击消息进入推广活动页面,参加推广活动的几率也不高。
发明内容
本说明书一个或多个实施例的目的是提供一种营销信息的推送方法及装置,用以解决现有技术中推送营销信息不精准、导致用户点击率低的问题。
为解决上述技术问题,本说明书一个或多个实施例是这样实现的:
一方面,本说明书一个或多个实施例提供一种营销信息的推送方法,包括:
获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;
对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
根据所述关联分析结果向所述用户推送营销信息。
在一个实施例中,所述对所述用户的行为数据进行行为模式分析,得到行为模式数据,包括:
对所述用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,
对所述用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
在一个实施例中,所述对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果,包括:
根据所述用户的登录时间,确定所述用户对应的登录时间片;
对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果。
在一个实施例中,所述对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果,包括:
根据所述用户在各登录时间片的消费行为模式数据,确定所述用户在与所述各登录时间片相对应的各时间周期内的消费行为模式数据。
在一个实施例中,所述对所述用户在各登录时间片的消费行为模式数据进行分析,包括:
确定所述用户在各登录时间片的行为模式数据分别对应的权重值;其中,所述权重值与各所述行为模式数据的值正相关;
从各所述行为模式数据中提取符合预设筛选条件的第一行为模式数据,所述预设筛选条件包括以下至少一项:所述权重值达到预设阈值、所述权重值为位于前N个的高权重值;
对所述提取的第一行为模式数据进行分析。
在一个实施例中,所述确定所述用户在各登录时间片的行为模式数据分别对应的权重值之后,所述对所述用户在各登录时间片的消费行为模式数据进行分析,还包括:
确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;
降低所述第二行为模式数据所对应的权重值。
在一个实施例中,所述根据所述关联分析结果向所述用户推送营销信息,包括:
从多个营销信息中选择与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;
向所述用户推送所述目标营销信息。
在一个实施例中,所述向所述用户推送所述目标营销信息,包括:
根据所述用户在所述各时间周期内的消费行为模式数据,确定对所述目标营销信息的推送次数;
按照所述推送次数向所述用户推送所述目标营销信息。
另一方面,本说明书一个或多个实施例提供一种营销信息的推送装置,包括:
获取模块,获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
第一分析模块,对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;
第二分析模块,对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
推送模块,根据所述关联分析结果向所述用户推送营销信息。
在一个实施例中,所述第一分析模块包括:
第一分析单元,对所述用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,
第二分析单元,对所述用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
在一个实施例中,所述第二分析模块包括:
确定单元,根据所述用户的登录时间,确定所述用户对应的登录时间片;
第三分析单元,对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果。
在一个实施例中,所述第三分析单元还用于:
根据所述用户在各登录时间片的消费行为模式数据,确定所述用户在与所述各登录时间片相对应的各时间周期内的消费行为模式数据。
在一个实施例中,所述第三分析单元还用于:
确定所述用户在各登录时间片的行为模式数据分别对应的权重值;其中,所述权重值与各所述行为模式数据的值正相关;
从各所述行为模式数据中提取符合预设筛选条件的第一行为模式数据,所述预设筛选条件包括以下至少一项:所述权重值达到预设阈值、所述权重值为位于前N个的高权重值;
对所述提取的第一行为模式数据进行分析。
在一个实施例中,所述第三分析单元还用于:
在所述确定所述用户在各登录时间片的行为模式数据分别对应的权重值之后,确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;
降低所述第二行为模式数据所对应的权重值。
在一个实施例中,所述推送模块包括:
选择或生成单元,从多个营销信息中选择与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;
推送单元,向所述用户推送所述目标营销信息。
在一个实施例中,所述推送单元还用于:
根据所述用户在所述各时间周期内的消费行为模式数据,确定对所述目标营销信息的推送次数;
按照所述推送次数向所述用户推送所述目标营销信息。
再一方面,本说明书一个或多个实施例提供一种营销信息的推送设备,其特征在于,包括:
处理器;以及
被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器:
获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括 所述行为数据的至少一个维度;
对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
根据所述关联分析结果向所述用户推送营销信息。
再一方面,本说明书一个或多个实施例提供一种存储介质,用于存储计算机可执行指令,所述可执行指令在被执行时实现以下流程:
获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;
对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
根据所述关联分析结果向所述用户推送营销信息。
采用本说明书一个或多个实施例的技术方案,通过获取用户的行为数据(包括登录行为数据和消费行为数据),并对行为数据进行行为模式分析以得到行为模式数据,进而对行为模式数据进行关联分析,并根据关联分析结果向用户推送营销信息,使得向用户推送的营销信息符合用户的行为模式数据,即符合用户的行为习惯,从而提高用户对营销信息的点击率,最终提高用户对营销信息所对应的营销活动的参与率及消费率。并且,该技术方案通过向用户推送符合其行为习惯的营销信息,能够避免造成用户对不符合其行为习惯的营销信息的反感,在一定程度上提高了用户对信息推送的体验度。
为了更清楚地说明本说明书一个或多个实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书一个或多个实施例中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本说明书一实施例的一种营销信息的推送方法的示意性流程图;
图2是根据本说明书一实施例的一种营销信息的推送装置的示意性框图;
图3是根据本说明书一实施例的一种营销信息的推送设备的示意性框图。
本说明书一个或多个实施例提供一种营销信息的推送方法及装置,用以解决现有技术中推送营销信息不精准、导致用户点击率低的问题。
为了使本技术领域的人员更好地理解本说明书一个或多个实施例中的技术方案,下面将结合本说明书一个或多个实施例中的附图,对本说明书一个或多个实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书一个或多个实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书一个或多个实施例保护的范围。
图1是根据本说明书一实施例的一种营销信息的推送方法的示意性流程图,如图1所示,该方法包括:
S102,获取用户的行为数据,行为数据包括登录行为数据和消费行为数据。
其中,登录行为数据包括登录时间、登录地点、登录网络、登录账号中的至少一种数据。
消费行为数据包括消费时间、消费商户、消费地点、消费商品、消费金额中的至少一种数据。
S104,对用户的行为数据进行行为模式分析,得到行为模式数据。
其中,行为模式包括行为数据的至少一个维度。对用户的行为数据进行行为模式分析即指在行为数据的至少一个维度上对行为数据进行分析。例如,对用户的登录时间进行分析,可得到用户在“登录时间”维度上的登录行为模式数据。
S106,对行为模式数据进行关联分析,得到行为模式数据的关联分析结果。
S108,根据行为模式向用户推送营销信息。
采用本说明书一个或多个实施例的技术方案,通过获取用户的行为数据(包括登录行为数据和消费行为数据),并对行为数据进行行为模式分析以得到行为模式数据,进而对行为模式数据进行关联分析,并根据关联分析结果向用户推送营销信息,使得向用户推送的营销信息符合用户的行为模式数据,即符合用户的行为习惯,从而提高用户对营销信息的点击率,最终提高用户对营销信息所对应的营销活动的参与率及消费率。并且,该技术方案通过向用户推送符合其行为习惯的营销信息,能够避免造成用户对不符 合其行为习惯的营销信息的反感,在一定程度上提高了用户对信息推送的体验度。
以下针对上述实施例提供的营销信息的推送方法进行详细说明。
首先执行S102,即获取用户的行为数据,该行为数据包括登录行为数据和消费行为数据。
在一个实施例中,可获取用户在一段时间内的行为数据,包括用户在一段时间内的登录行为数据和消费行为数据。其中,一段时间内的行为数据应能够反映出用户的行为习惯,例如,根据统计学和心理学的理论,一旦习惯养成,短期内就会稳定延续,假设用户的行为习惯的养成时间大约为18天,则可将一段时间设定为18天。通过获取用户在最近18天内的登录行为数据和消费行为数据,即可为下一步行为模式数据的分析做准备。
获取用户的行为数据之后,继续执行S104,即对用户的行为数据进行行为模式分析,以得到行为模式数据。
其中,行为模式包括行为数据的至少一个维度。上述提及,对用户的行为数据进行行为模式分析即指在行为数据的至少一个维度上对行为数据进行分析。因此,通过对用户的登录行为数据进行行为模式分析,可得到以下至少一个维度的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号。通过对用户的消费行为数据进行行为模式分析,可得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
在上述对S102的说明中已指出,可获取用户在一段时间内的行为数据,那么,可对用户在该一段时间内的行为数据进行行为模式分析,以得到行为模式数据。
例如,设定一段时间为18天。当获取到用户在最近18天内的登录行为数据及消费行为数据之后,即可对用户在最近18天内的登录行为数据进行行为模式分析,以得到用户在最近18天内分别在登录时间、登录次数、登录地点、登录网络、登录账号中的至少一个维度上的登录行为模式数据;以及,对用户在最近18天内的消费行为数据进行行为模式分析,以得到用户在最近18天内分别在消费时间、消费商户、消费地点、消费商品、消费金额中的至少一个维度上的消费行为模式数据。
以下以维度“登录时间”、“登录次数”、“消费时间”、“消费商户”及“消费金额”为例说明如何分析出用户的行为模式数据。
假设获取到用户在最近7天内的登录行为数据和消费行为数据。通过对用户在最近 7天内的登录行为数据和消费行为数据分别进行行为模式分析,可得到如下表1所示的登录行为模式数据——在维度“登录时间”及“登录次数”上的登录行为模式数据,以及,如下表2所示的消费行为模式数据——在维度“消费时间”、“消费商户”及“消费金额”上的登录行为模式数据。在表1及表2中分别以“天”为单位对用户的行为数据进行分析。
表1
登录时间 | 登录次数 |
第1天 | 1次 |
第2天 | 3次 |
第3天 | 1次 |
第4天 | 1次 |
第5天 | 2次 |
第6天 | 5次 |
第7天 | 1次 |
表2
消费时间 | 消费商户 | 消费金额 |
第1天 | 商户A | 50元 |
第2天 | 商户B | 100元 |
第3天 | 商户A | 200元 |
第4天 | 商户B | 60元 |
第5天 | 商户A | 180元 |
第6天 | 商户B、C | 120元 |
第7天 | 商户A | 80元 |
分析得到行为模式数据之后,继续执行S106,即对行为模式数据进行关联分析,以得到行为模式数据的关联分析结果。具体的:
首先,根据用户的登录时间确定用户对应的登录时间片。
登录时间片与用户的登录时间相关,假设用户的登录时间以“天”为单位,则可设定每一天为一个登录时间片,如上述表1和表2中所示的登录时间及消费时间。假设用户的登录时间以“小时”为单位,则可设定每一小时为一个登录时间片。
其次,对用户在各登录时间片的消费行为模式数据进行分析,得到关联分析结果。
对用户在各登录时间片的消费行为模式数据进行分析时,可根据用户在各登录时间片的消费行为模式数据,确定用户在与各登录时间片相对应的各时间周期内的消费行为模式数据。其中,与各登录时间片相对应的各时间周期指与各登录时间片的时长相等的不同时间段,例如,登录时间片包括最近7天的每一天,那么与各登录时间片相对应的各时间周期即为下一个7天、下下个7天,等等。
沿用上述举例,通过关联分析上述表1中的登录行为模式数据及表2中的消费行为模式数据,可得到用户在之后一段时间内每7天内的消费行为模式数据,即关联分析结果。
假设登录时间片包括最近7天的每一天。由上述表1可知,用户在登录时间片“第1天”内登录1次;由上述表2可知,用户在登录时间片“第1天”内在消费商户A处的消费金额为50元。关联表1所示登录时间片“第1天”内的登录行为模式数据及表2所示登录时间片“第1天”内的消费行为模式数据,可确定出用户在与登录时间片“第1天”相对应的下一个时间周期(如下一个7天)内的第1天将会在消费商户A处消费大约50元。因此,可在下一个时间周期(即下一个7天)内的第1天为用户推送与消费商户A相关的营销信息(后续将详细说明如何向用户推送营销信息)。
在一个实施例中,在分析用户在各登录时间片的行为模式数据时,可从分析出的所有行为模式数据中筛选出部分行为模式数据进行关联。筛选依据可以是用户登录地点的人口聚集情况、登录次数的多少、用户消费次数的多少、用户消费金额的高低等等。
以下通过述步骤A1-A3说明如何筛选待关联分析的消费行为模式数据。
步骤A1、确定用户在各登录时间片的行为模式数据分别对应的权重值。
其中,权重值与各行为模式数据的值正相关。各行为模式数据的值指各行为模式数据对应的具体数值。例如,登录行为模式数据的值可以是登录次数的值,登录次数越多,即登录行为模式数据的值越大,登录行为模式数据对应的权重值也就越高;消费行为模式数据的值可以是消费次数的值,或者消费金额的值,消费金额越大,即消费行为模式数据的值越高,消费行为模式数据对应的权重值也就越高,等等。
例如,从上述表1可看出,在最近7天内,用户在登录时间片“第6天”的登录次数为最高,在登录时间片“第2天”的登录次数为次高,在登录时间“第5天”的登录次数为第三高,因此可确定用户在登录时间片“第6天”的登录行为模式数据对应的权重值最高,假设为9,确定用户在登录时间片“第2天”的登录行为模式数据对应的权重值次高,假设为6,确定用户在登录时间片“第5天”的登录行为模式数据对应的权重值第三 高,假设为3。
从上述表2可看出,在最近7天内,用户在登录时间片“第3天”的消费金额为最高,在登录时间片“第5天”的消费金额为次高,在登录时间片“第6天”的消费金额为第三高,因此可确定用户在登录时间片“第3天”的消费行为模式数据对应的权重值最高,假设为9,确定用户在登录时间片“第5天”的消费行为模式数据对应的权重值次高,假设为6,确定用户在登录时间片“第6天”的消费行为模式数据对应的权重值第三高,假设为3。
在一个实施例中,确定各行为模式数据分别对应的权重值之后,可确定并筛选出各登录时间片内登录次数达到第一阈值、但消费次数低于第二阈值的行为模式数据,进而降低筛选出的行为模式数据所对应的权重值。该实施例的目的在于,针对一些仅登录但未消费的行为模式数据进行权重值的降低,从而确保关联的各个行为模式据均能表征用户的消费行为。
例如,从上述表1和表2所示的行为模式数据中可看出,在登录时间片“第6天”内,用户的登录次数为5,但消费次数仅为4次,说明用户在登录时间片“第6天”内存在仅登录但未消费的情况,因此可相应降低用户在登录时间片“第6天”内的登录行为模式数据对应的权重值。
步骤A2、从各行为模式数据中提取符合预设筛选条件的第一行为模式数据。
其中,第一行为模式数据包括第一登录行为模式数据及第一消费行为模式数据。预设筛选条件包括以下至少一项:权重值达到预设阈值、权重值为位于前N个的高权重值。
沿用上述举例,假设N=3,从登录行为模式数据中提取位于前3个的高权重值对应的第一登录行为模式数据,即提取出用户分别在登录时间片“第6天”、登录时间片“第2天”、登录时间片“第5天”的登录行为模式数据作为符合预设筛选条件的第一登录行为模式数据。以及,从消费行为模式数据中提取位于前3个的高权重值对应的第一消费行为模式数据,即提取出用户分别在登录时间片“第3天”、登录时间片“第5天”、登录时间片“第6天”的消费行为模式数据作为第一消费行为模式数据。
步骤A3、对提取的第一行为模式数据进行分析。
例如,可对用户在登录时间片“第6天”、登录时间片“第2天”、登录时间片“第5天”内的第一消费行为模式数据进行分析。
本实施例对筛选出的符合预设筛选条件的行为模式数据进行分析,而并非分析所有的行为模式数据,由于符合预设筛选条件的行为模式数据通常包含更多的行为模式 数据,因此能够更加准确地反映出用户的行为习惯。
由上述实施例可知,通过对用户在各登录时间片的消费行为模式数据进行关联分析,使得关联分析结果(包括用户在与各登录时间片相对应的各时间周期内的消费行为模式数据)能够符合用户日常的消费行为习惯,从而在合适的时间点向用户推送符合用户消费行为习惯的营销信息,如在各时间周期内的第1天向用户推送与消费商户A相关的营销信息,而与消费商户A无关的营销信息则不向用户推送。避免造成用户对不符合其消费行为习惯的营销信息的反感,在一定程度上提高了用户对营销信息推送的体验度。
在分析出关联分析结果之后,继续执行S108,即根据关联分析结果向用户推送营销信息。
在一个实施例中,向用户推送营销信息之前,首先需从多个营销信息中选择与用户在各时间周期内的消费行为模式数据相匹配的目标营销信息,其中,多个营销信息可由营销人员预先策划并存储。还可直接生成与用户在各时间周期内的消费行为模式数据相匹配的目标营销信息,即无需依赖营销人员策划营销信息。其次再向用户推送目标营销信息。
例如,经上述S102-S106的步骤之后,分析出用户在下一个时间周期(假设为明天)内的消费行为模式数据为:用户在明天将会在消费商户A处进行消费,那么可在明天向用户推送与消费商户A相关的目标营销信息。
本实施例中,通过向用户推送与用户在各时间周期内的消费行为模式数据相匹配的目标营销信息,可避免向用户推送其不感兴趣、或与其当前的消费行为习惯不符的营销信息,从而避免造成用户对不符合其消费行为习惯的营销信息的反感。并且,用户对与其消费行为习惯相符的营销信息的兴趣往往较大,因此本实施例能够提高用户对营销信息的点击率,最终提高用户对营销信息所对应的营销活动的参与率及消费率。
在一个实施例中,可一次或多次向用户推送目标营销信息:首先,根据用户在各时间周期内的消费行为模式数据,确定对目标营销信息的推送次数;其次,按照推送次数向用户推送目标营销信息。
本实施例中,推送次数与用户在各时间周期内的消费行为模式数据相关。通常情况下,为提高用户对各营销信息的点击率,可针对各消费行为模式数据对应的具体数值来确定推送次数。消费行为模式数据对应的具体数值越大,推送次数就越高。
例如,同一时间周期内,用户在消费商户A处的消费金额为1000元,在消费商户B处的消费金额为500元,则向用户推送与消费商户A相关的目标营销信息的推送 次数应大于向用户推送与消费商户B相关的目标营销信息的推送次数,如,向用户推送3次与消费商户A相关的目标营销信息,以及,向用户推送1次与消费商户B相关的目标营销信息。显然,这种多次推送的方式可大大提高用户对营销信息的点击率。
综上,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
以上为本说明书一个或多个实施例提供的营销信息的推送方法,基于同样的思路,本说明书一个或多个实施例还提供一种营销信息的推送装置。
图2是根据本说明书一实施例的营销信息的推送装置的示意性框图。如图2所示,营销信息的推送装置包括:
获取模块210,获取用户的行为数据,行为数据包括登录行为数据和消费行为数据;
第一分析模块220,对用户的行为数据进行行为模式分析,得到行为模式数据;行为模式包括行为数据的至少一个维度;
第二分析模块230,对行为模式数据进行关联分析,得到行为模式数据的关联分析结果;
推送模块240,根据关联分析结果向用户推送营销信息。
在一个实施例中,第一分析模块220包括:
第一分析单元,对用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,
第二分析单元,对用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
在一个实施例中,第二分析模块230包括:
确定单元,根据用户的登录时间,确定用户对应的登录时间片;
第三分析单元,对用户在各登录时间片的消费行为模式数据进行分析,得到关联分析结果。
在一个实施例中,第三分析单元还用于:
根据用户在各登录时间片的消费行为模式数据,确定用户在与各登录时间片相 对应的各时间周期内的消费行为模式数据。
在一个实施例中,第三分析单元还用于:
确定用户在各登录时间片的行为模式数据分别对应的权重值;其中,权重值与各行为模式数据的值正相关;
从各行为模式数据中提取符合预设筛选条件的第一行为模式数据,预设筛选条件包括以下至少一项:权重值达到预设阈值、权重值为位于前N个的高权重值;
对提取的第一行为模式数据进行分析。
在一个实施例中,第三分析单元还用于:
在确定用户在各登录时间片的行为模式数据分别对应的权重值之后,确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;
降低第二行为模式数据所对应的权重值。
在一个实施例中,推送模块240包括:
选择或生成单元,从多个营销信息中选择与用户在各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与用户在各时间周期内的消费行为模式数据相匹配的目标营销信息;
推送单元,向用户推送目标营销信息。
在一个实施例中,推送单元还用于:
根据用户在各时间周期内的消费行为模式数据,确定对目标营销信息的推送次数;
按照推送次数向用户推送目标营销信息。
采用本说明书一个或多个实施例的技术方案,通过获取用户的行为数据(包括登录行为数据和消费行为数据),并对行为数据进行行为模式分析以得到行为模式数据,进而对行为模式数据进行关联分析,并根据关联分析结果向用户推送营销信息,使得向用户推送的营销信息符合用户的行为模式数据,即符合用户的行为习惯,从而提高用户对营销信息的点击率,最终提高用户对营销信息所对应的营销活动的参与率及消费率。并且,该技术方案通过向用户推送符合其行为习惯的营销信息,能够避免造成用户对不符合其行为习惯的营销信息的反感,在一定程度上提高了用户对信息推送的体验度。
本领域的技术人员应可理解,图2中的营销信息的推送装置能够用来实现前文所述的营销信息的推送方法,其中的细节描述应与前文方法部分描述类似,为避免繁琐,此处不另赘述。
基于同样的思路,本说明书一个或多个实施例还提供一种营销信息的推送设备,如图3所示。营销信息的推送设备可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上的处理器301和存储器302,存储器302中可以存储有一个或一个以上存储应用程序或数据。其中,存储器302可以是短暂存储或持久存储。存储在存储器302的应用程序可以包括一个或一个以上模块(图示未示出),每个模块可以包括对营销信息的推送设备中的一系列计算机可执行指令。更进一步地,处理器301可以设置为与存储器302通信,在营销信息的推送设备上执行存储器302中的一系列计算机可执行指令。营销信息的推送设备还可以包括一个或一个以上电源303,一个或一个以上有线或无线网络接口304,一个或一个以上输入输出接口305,一个或一个以上键盘306。
具体在本实施例中,营销信息的推送设备包括有存储器,以及一个或一个以上的程序,其中一个或者一个以上程序存储于存储器中,且一个或者一个以上程序可以包括一个或一个以上模块,且每个模块可以包括对营销信息的推送设备中的一系列计算机可执行指令,且经配置以由一个或者一个以上处理器执行该一个或者一个以上程序包含用于进行以下计算机可执行指令:
获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;
对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
根据所述关联分析结果向所述用户推送营销信息。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
对所述用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,
对所述用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
根据所述用户的登录时间,确定所述用户对应的登录时间片;
对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
根据所述用户在各登录时间片的消费行为模式数据,确定所述用户在与所述各登录时间片相对应的各时间周期内的消费行为模式数据。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
确定所述用户在各登录时间片的行为模式数据分别对应的权重值;其中,所述权重值与各所述行为模式数据的值正相关;
从各所述行为模式数据中提取符合预设筛选条件的第一行为模式数据,所述预设筛选条件包括以下至少一项:所述权重值达到预设阈值、所述权重值为位于前N个的高权重值;
对所述提取的第一行为模式数据进行分析。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;
降低所述第二行为模式数据所对应的权重值。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
从多个营销信息中选择与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;
向所述用户推送所述目标营销信息。
可选地,计算机可执行指令在被执行时,还可以使所述处理器:
根据所述用户在所述各时间周期内的消费行为模式数据,确定对所述目标营销信息的推送次数;
按照所述推送次数向所述用户推送所述目标营销信息。
本说明书一个或多个实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的电子设备执行时,能够使该电子设备执行上述营销信息的推送方法,并具体用于执行:
获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;
对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;
对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;
根据所述关联分析结果向所述用户推送营销信息。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算 机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书一个或多个实施例时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本说明书一个或多个实施例可提供为方法、系统、或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书一个或多个实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书一个或多个实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本说明书一个或多个实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变化。凡在本说明书一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的权利要求范围之内。
Claims (18)
- 一种营销信息的推送方法,包括:获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;根据所述关联分析结果向所述用户推送营销信息。
- 根据权利要求1所述的方法,所述对所述用户的行为数据进行行为模式分析,得到行为模式数据,包括:对所述用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,对所述用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
- 根据权利要求2所述的方法,所述对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果,包括:根据所述用户的登录时间,确定所述用户对应的登录时间片;对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果。
- 根据权利要求3所述的方法,所述对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果,包括:根据所述用户在各登录时间片的消费行为模式数据,确定所述用户在与所述各登录时间片相对应的各时间周期内的消费行为模式数据。
- 根据权利要求3所述的方法,所述对所述用户在各登录时间片的消费行为模式数据进行分析,包括:确定所述用户在各登录时间片的行为模式数据分别对应的权重值;其中,所述权重值与各所述行为模式数据的值正相关;从各所述行为模式数据中提取符合预设筛选条件的第一行为模式数据,所述预设筛选条件包括以下至少一项:所述权重值达到预设阈值、所述权重值为位于前N个的高权重值;对所述提取的第一行为模式数据进行分析。
- 根据权利要求5所述的方法,所述确定所述用户在各登录时间片的行为模式数据分别对应的权重值之后,所述对所述用户在各登录时间片的消费行为模式数据进行分 析,还包括:确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;降低所述第二行为模式数据所对应的权重值。
- 根据权利要求4所述的方法,所述根据所述关联分析结果向所述用户推送营销信息,包括:从多个营销信息中选择与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;向所述用户推送所述目标营销信息。
- 根据权利要求7所述的方法,所述向所述用户推送所述目标营销信息,包括:根据所述用户在所述各时间周期内的消费行为模式数据,确定对所述目标营销信息的推送次数;按照所述推送次数向所述用户推送所述目标营销信息。
- 一种营销信息的推送装置,包括:获取模块,获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;第一分析模块,对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;第二分析模块,对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;推送模块,根据所述关联分析结果向所述用户推送营销信息。
- 根据权利要求9所述的装置,所述第一分析模块包括:第一分析单元,对所述用户的登录行为数据进行行为模式分析,得到以下至少一个维度上的登录行为模式数据:登录时间、登录次数、登录地点、登录网络、登录账号;及,第二分析单元,对所述用户的消费行为数据进行行为模式分析,得到以下至少一个维度上的消费行为模式数据:消费时间、消费商户、消费地点、消费商品、消费金额。
- 根据权利要求10所述的装置,所述第二分析模块包括:确定单元,根据所述用户的登录时间,确定所述用户对应的登录时间片;第三分析单元,对所述用户在各登录时间片的消费行为模式数据进行分析,得到所述关联分析结果。
- 根据权利要求11所述的装置,所述第三分析单元还用于:根据所述用户在各登录时间片的消费行为模式数据,确定所述用户在与所述各登录时间片相对应的各时间周期内的消费行为模式数据。
- 根据权利要求11所述的装置,所述第三分析单元还用于:确定所述用户在各登录时间片的行为模式数据分别对应的权重值;其中,所述权重值与各所述行为模式数据的值正相关;从各所述行为模式数据中提取符合预设筛选条件的第一行为模式数据,所述预设筛选条件包括以下至少一项:所述权重值达到预设阈值、所述权重值为位于前N个的高权重值;对所述提取的第一行为模式数据进行分析。
- 根据权利要求13所述的装置,所述第三分析单元还用于:在所述确定所述用户在各登录时间片的行为模式数据分别对应的权重值之后,确定并筛选出各登录时间片内的登录次数达到第一阈值、但消费次数低于第二阈值的第二行为模式数据;降低所述第二行为模式数据所对应的权重值。
- 根据权利要求12所述的装置,所述推送模块包括:选择或生成单元,从多个营销信息中选择与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;或,生成与所述用户在所述各时间周期内的消费行为模式数据相匹配的目标营销信息;推送单元,向所述用户推送所述目标营销信息。
- 根据权利要求15所述的装置,所述推送单元还用于:根据所述用户在所述各时间周期内的消费行为模式数据,确定对所述目标营销信息的推送次数;按照所述推送次数向所述用户推送所述目标营销信息。
- 一种营销信息的推送设备,包括:处理器;以及被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器:获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;根据所述关联分析结果向所述用户推送营销信息。
- 一种存储介质,用于存储计算机可执行指令,所述可执行指令在被执行时实现以下流程:获取用户的行为数据,所述行为数据包括登录行为数据和消费行为数据;对所述用户的行为数据进行行为模式分析,得到行为模式数据;所述行为模式包括所述行为数据的至少一个维度;对所述行为模式数据进行关联分析,得到所述行为模式数据的关联分析结果;根据所述关联分析结果向所述用户推送营销信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810002025.3 | 2018-01-02 | ||
CN201810002025.3A CN108289121B (zh) | 2018-01-02 | 2018-01-02 | 营销信息的推送方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019134544A1 true WO2019134544A1 (zh) | 2019-07-11 |
Family
ID=62834816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/123043 WO2019134544A1 (zh) | 2018-01-02 | 2018-12-24 | 营销信息的推送方法及装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108289121B (zh) |
TW (1) | TWI777004B (zh) |
WO (1) | WO2019134544A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114357286A (zh) * | 2021-12-24 | 2022-04-15 | 广州风腾网络科技有限公司 | 一种数据营销方案的推送方法、系统、设备及存储介质 |
CN114430426A (zh) * | 2022-01-10 | 2022-05-03 | 成都易达数安科技有限公司 | 一种基于行为特征和消息策略的app用户日活智能激活方法 |
CN116150482A (zh) * | 2023-01-28 | 2023-05-23 | 北京黑马企服科技有限公司 | 一种基于大数据云平台的分布式消息推送系统 |
CN116823382A (zh) * | 2023-05-17 | 2023-09-29 | 南京邮电大学 | 一种基于大数据的产品推广方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108289121B (zh) * | 2018-01-02 | 2020-09-29 | 阿里巴巴集团控股有限公司 | 营销信息的推送方法及装置 |
CN112232876B (zh) * | 2018-07-18 | 2024-03-22 | 口口相传(北京)网络技术有限公司 | 基于用户场景属性信息的精准营销方法及装置 |
CN110738494A (zh) * | 2018-07-19 | 2020-01-31 | 普华云创科技(北京)有限公司 | 基于区块链的用户共享管理方法、设备及存储介质 |
CN111355759B (zh) * | 2018-12-20 | 2023-04-07 | 中国移动通信集团辽宁有限公司 | 营销信息推送方法及系统 |
CN109741107A (zh) * | 2018-12-30 | 2019-05-10 | 上海掌门科技有限公司 | 优惠信息确定方法、装置、电子设备及介质 |
CN110136002B (zh) * | 2019-03-21 | 2023-09-12 | 创新先进技术有限公司 | 缴费提醒方法及装置、计算设备及计算机可读存储介质 |
CN110099363B (zh) * | 2019-03-28 | 2022-04-05 | 苏州德沃元驰信息科技有限公司 | 一种基于消费大数据的营销广告平台数据分发方法及系统 |
CN111814030B (zh) * | 2019-04-10 | 2023-10-27 | 百度在线网络技术(北京)有限公司 | 推送方法、装置、设备和介质 |
CN110111158A (zh) * | 2019-05-16 | 2019-08-09 | 创络(上海)数据科技有限公司 | 生命周期或成长特征的营销设计方法、装置和存储介质 |
CN111932288A (zh) * | 2019-11-29 | 2020-11-13 | 上海群之脉信息科技有限公司 | 基于社交网络的自动化营销系统及其方法 |
CN111339408B (zh) * | 2020-02-19 | 2023-08-08 | 北京百度网讯科技有限公司 | 信息推荐方法和装置 |
CN111311332A (zh) * | 2020-02-28 | 2020-06-19 | 北京互金新融科技有限公司 | 用户数据的处理方法和装置 |
CN112750213B (zh) * | 2020-12-29 | 2022-06-14 | 深圳市顺易通信息科技有限公司 | 一种停车服务信息推送方法、装置、设备及介质 |
CN118628168A (zh) * | 2024-08-15 | 2024-09-10 | 长沙时代跳动科技有限公司 | 一种私域流量管理方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012091638A1 (en) * | 2010-12-27 | 2012-07-05 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for enabling customized recommendations |
CN104820879A (zh) * | 2015-05-27 | 2015-08-05 | 北京京东尚科信息技术有限公司 | 一种用户行为信息的分析方法和装置 |
CN104835057A (zh) * | 2015-04-02 | 2015-08-12 | 百度在线网络技术(北京)有限公司 | 一种获取网络用户的消费特征信息的方法及装置 |
CN106846035A (zh) * | 2016-12-15 | 2017-06-13 | 北京小度信息科技有限公司 | 信息推送方法及装置 |
CN107230098A (zh) * | 2016-03-25 | 2017-10-03 | 阿里巴巴集团控股有限公司 | 一种业务对象的分时推荐方法和系统 |
CN107391680A (zh) * | 2017-07-24 | 2017-11-24 | 北京京东尚科信息技术有限公司 | 内容推荐方法、装置和设备 |
CN108289121A (zh) * | 2018-01-02 | 2018-07-17 | 阿里巴巴集团控股有限公司 | 营销信息的推送方法及装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140164100A1 (en) * | 2012-12-12 | 2014-06-12 | Codemasters International, LLC | System and method for providing recommendations |
CN105205699A (zh) * | 2015-09-17 | 2015-12-30 | 北京众荟信息技术有限公司 | 基于酒店点评的用户标签和酒店标签匹配方法及装置 |
CN106204144A (zh) * | 2016-07-14 | 2016-12-07 | 乐视控股(北京)有限公司 | 一种信息推送方法及信息推送装置 |
-
2018
- 2018-01-02 CN CN201810002025.3A patent/CN108289121B/zh active Active
- 2018-12-03 TW TW107143205A patent/TWI777004B/zh active
- 2018-12-24 WO PCT/CN2018/123043 patent/WO2019134544A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012091638A1 (en) * | 2010-12-27 | 2012-07-05 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for enabling customized recommendations |
CN104835057A (zh) * | 2015-04-02 | 2015-08-12 | 百度在线网络技术(北京)有限公司 | 一种获取网络用户的消费特征信息的方法及装置 |
CN104820879A (zh) * | 2015-05-27 | 2015-08-05 | 北京京东尚科信息技术有限公司 | 一种用户行为信息的分析方法和装置 |
CN107230098A (zh) * | 2016-03-25 | 2017-10-03 | 阿里巴巴集团控股有限公司 | 一种业务对象的分时推荐方法和系统 |
CN106846035A (zh) * | 2016-12-15 | 2017-06-13 | 北京小度信息科技有限公司 | 信息推送方法及装置 |
CN107391680A (zh) * | 2017-07-24 | 2017-11-24 | 北京京东尚科信息技术有限公司 | 内容推荐方法、装置和设备 |
CN108289121A (zh) * | 2018-01-02 | 2018-07-17 | 阿里巴巴集团控股有限公司 | 营销信息的推送方法及装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114357286A (zh) * | 2021-12-24 | 2022-04-15 | 广州风腾网络科技有限公司 | 一种数据营销方案的推送方法、系统、设备及存储介质 |
CN114430426A (zh) * | 2022-01-10 | 2022-05-03 | 成都易达数安科技有限公司 | 一种基于行为特征和消息策略的app用户日活智能激活方法 |
CN116150482A (zh) * | 2023-01-28 | 2023-05-23 | 北京黑马企服科技有限公司 | 一种基于大数据云平台的分布式消息推送系统 |
CN116150482B (zh) * | 2023-01-28 | 2023-09-29 | 北京黑马企服科技有限公司 | 一种基于大数据云平台的分布式消息推送系统 |
CN116823382A (zh) * | 2023-05-17 | 2023-09-29 | 南京邮电大学 | 一种基于大数据的产品推广方法 |
CN116823382B (zh) * | 2023-05-17 | 2024-01-05 | 南京邮电大学 | 一种基于大数据的产品推广方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108289121B (zh) | 2020-09-29 |
TWI777004B (zh) | 2022-09-11 |
TW201931256A (zh) | 2019-08-01 |
CN108289121A (zh) | 2018-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019134544A1 (zh) | 营销信息的推送方法及装置 | |
US10997536B2 (en) | Method for determining amount of time spent on a task and estimating amount of time required to complete the task | |
Curme et al. | Emergence of statistically validated financial intraday lead-lag relationships | |
US11082509B1 (en) | Determining session intent | |
US10491697B2 (en) | System and method for bot detection | |
TW201939400A (zh) | 目標用戶群體的確定方法和裝置 | |
US20220129825A1 (en) | Method for estimating amount of task objects required to reach target completed tasks | |
WO2017211191A1 (zh) | 信息推送方法及装置 | |
WO2019080662A1 (zh) | 信息推荐方法及装置、设备 | |
US20190188749A1 (en) | Object selection method and device | |
US9241079B1 (en) | Mobile application usage monitor | |
US8898808B1 (en) | System and method for assessing effectiveness of online advertising | |
CN113793071A (zh) | 一种可疑群组识别方法和装置 | |
WO2015172685A1 (en) | Method and apparatus for identifying malicious account | |
US20160092933A1 (en) | Advertisement opportunity bidding | |
US10592917B2 (en) | Method and systems for determining programmatically expected performances | |
US20140201271A1 (en) | User generated rating by machine classification of entity | |
US20150341232A1 (en) | Daily Counts and Usage Probabilities For a User of an Online Service | |
CN110020025B (zh) | 一种数据处理方法及装置 | |
CN106778843B (zh) | 一种预测移动终端用户性别的方法、服务器和系统 | |
CN106874293B (zh) | 一种数据处理方法及装置 | |
CN113849531A (zh) | 查询方法及装置 | |
CN109325015B (zh) | 一种领域模型的特征字段的提取方法及装置 | |
CN113934920B (zh) | 目标信息的推送方法、设备及存储介质 | |
CN110717653A (zh) | 风险识别方法及装置和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18898225 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18898225 Country of ref document: EP Kind code of ref document: A1 |