WO2019134454A1 - 一种悬轨式温室综合信息自动巡航监测装置 - Google Patents

一种悬轨式温室综合信息自动巡航监测装置 Download PDF

Info

Publication number
WO2019134454A1
WO2019134454A1 PCT/CN2018/115817 CN2018115817W WO2019134454A1 WO 2019134454 A1 WO2019134454 A1 WO 2019134454A1 CN 2018115817 W CN2018115817 W CN 2018115817W WO 2019134454 A1 WO2019134454 A1 WO 2019134454A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
suspension
automatic cruise
monitoring device
detection
Prior art date
Application number
PCT/CN2018/115817
Other languages
English (en)
French (fr)
Inventor
张晓东
毛罕平
高洪燕
张红涛
张怡雪
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/645,891 priority Critical patent/US11465886B2/en
Publication of WO2019134454A1 publication Critical patent/WO2019134454A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C17/00Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports
    • B66C17/06Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports specially adapted for particular purposes, e.g. in foundries, forges; combined with auxiliary apparatus serving particular purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/046Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring width
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • F16M2200/061Scissors arms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2612Data acquisition interface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37009Calibration of vision system, camera, adapt light level

Definitions

  • the invention belongs to the field of intelligent agricultural machinery and relates to a suspension rail type greenhouse integrated information automatic cruise monitoring device.
  • the invention adopts a suspended rail detection platform for automatic monitoring of crop growth and environmental information, and can adopt a multi-sensor detection system to carry out collection of greenhouse crop nutrition, growth, pests and diseases and environmental comprehensive information through autonomous cruising, compared with the traditional
  • the method and the distributed detection method greatly improve the detection and recognition accuracy, reduce the cost, and improve the work efficiency.
  • the invention patent application of the application No. 201010519848.7 discloses a suspended self-propelled target spray system, including a guide rail, a self-propelled mobile platform, a Hall sensor, a spray robot arm device, a binocular vision system, a PLC logic controller, and the like. Since the invention is provided with a guide rail in the ceiling of the greenhouse, the spray robot arm device is arranged on the self-propelled mobile platform, and the pesticide can be automatically sprayed in the greenhouse environment, thereby avoiding physical injury to the operator during the spraying of the pesticide and improving the efficiency. However, its device lacks the detection of greenhouse environmental information, and the environmental factors of the greenhouse are not considered enough.
  • the device can be connected to the installation rail through the structure of the greenhouse itself, and the mobile device can be flexibly moved by hand, and all the application pressing devices can be mounted on the suspension platform.
  • the device solves the problem of large-area application and inconvenient handling of greenhouse crops, and reduces labor intensity. However, it still requires a certain amount of manual work, and the level of automation is not high enough.
  • the invention patent application of the application No. 201310192634.7 discloses a crawler type robot moving platform, and the control module controls the driving wheel body and the driven wheel train to drive the vehicle body operation according to the data signal of the monitoring module. Due to the rigid connection of the crawler belt, the train wheel and the vehicle body, the crawler robot cannot filter the bumps of the uneven road surface, and damages the detection equipment mounted on the mobile platform and affects the stability of the detection.
  • the invention patent application No. 201310408112.6 discloses a multi-terrain intelligent mobile platform for detection, including an autonomous advancing four-wheeled trolley system and a four-axis rotor flight system, which are connected by a locking system and pass through a ZigBee wireless transmission network. Communicate with a PC terminal.
  • the self-propelled four-wheeled car system uses chicken to control the vehicle multi-parameter sensor module and drive module: the four-axis rotor flight system uses chicken to control the airborne multi-parameter sensor module and high-speed drive module.
  • the locking system can be automatically unlocked, triggering the four-axis rotor flight system to operate.
  • Multi-terrain hybrid intelligent mobile platform whether it is four-wheel mode or flight mode, its overall stability does not have a mobile platform with independent suspension.
  • the detection equipment to be mounted is uniformly distributed, and the weight of the mounted detection device is limited.
  • the multi-terrain composite intelligent mobile platform has a complicated structure and a high price.
  • the existing intelligent mobile platform has different mission objectives, and its device and method cannot meet the requirements of the greenhouse detection and stability of the greenhouse crop growth and environmental information detection equipment under the unstructured environment of the greenhouse. Automatic cruise detection of nutrition, growth and pest information for different growing seasons, different types and different medium, small and small crop types.
  • the track assembly mainly comprises a sliding track and a rack which are respectively fixed on the structural beam across the greenhouse;
  • the traveling mechanism includes a carrier A, a carrier B, a reduction motor, a gear shaft, a gear, a bearing, and a photoelectric encoder.
  • One end of the reduction motor and the gear shaft are connected by a spline; the gear is fixed on the gear shaft and meshed with the rack.
  • the other end of the gear shaft is mounted on the bearing, and the bearing is connected to the carrier A by bolts; the carrier A and the carrier A are connected by bolts; the top wire on the shaft of the photoelectric encoder is connected with the gear shaft to realize the walking distance and position Calculation and testing;
  • the multi-sensor system includes a light intensity sensor, a laser ranging sensor, an infrared temperature sensor, a temperature and humidity sensor, a binocular multi-function imaging system, a sensor bracket A, and a sensor bracket B respectively mounted on both sides of the lower end of the electronically controlled rotating pan/tilt;
  • the multi-function imaging system includes a visible light multi-function imaging system and a near-infrared multi-function imaging system, which is fixed on the sensor holder A, and the field of view direction is downward; the front end of the visible light multi-function imaging system is equipped with a front visible light filter group, which can be realized.
  • the front end of the near-infrared multi-function imaging system is equipped with a front-near-infrared filter group, which can collect the characteristic image information of crop water stress; at the same time, the visible light multi-function imaging system and the near-infrared multi-function imaging
  • the system can perform binocular visual matching to realize stereoscopic imaging to measure the plant height and crown area; infrared temperature sensor, temperature and humidity sensor, laser distance measuring sensor and light intensity sensor are fixed on the sensor bracket.
  • the top view position is adopted, and the detection direction is vertically downward;
  • the control cabinet part includes the industrial computer and the industrial control machine power supply, and the industrial control machine is connected with the photoelectric encoder, the DSP motion controller and the multi-sensor system.
  • the sliding rail is fixed under the hanging main beam, and the rack is fixed under the hanging auxiliary beam.
  • a cross bracing is provided between the suspension main beam and the suspension auxiliary beam.
  • the track assembly is composed of three parts: the left center and the right side.
  • the lifting mechanism is a scissor fork telescopic mechanism.
  • the visible light filter set is a 556 nm, 472 nm, 680 nm filter.
  • the near-infrared filter set is a 930 nm, 1420 nm filter.
  • control cabinet portion further includes a touch display screen and a display power source, and the touch display screen is connected to the industrial computer.
  • the automatic cruise monitoring device used in the present invention has a sliding platform that adopts a lifting mechanism in combination with an electronically controlled rotating cloud platform. It can not only achieve precise positioning along the detection direction of travel, but also realize multi-sensor cruise detection with different detection distances, different top view fields and different detection angles. Therefore, it can monitor multiple plants such as tomato and cucumber. It is also possible to adjust the detection distance and the azimuth of the gimbal to meet the needs of detecting small crops such as lettuce and greenhouse crops in different crop growth stages such as seedling stage.
  • the multi-sensor system used in the present invention adopts a binocular vision multi-function camera, combined with a laser ranging sensor and an infrared temperature detector, and can realize images of nutrition, moisture, pests and diseases of plants through multi-sensor information fusion. And on-line cruise monitoring of integrated information on greenhouse crops such as infrared temperature characteristics, plant crown width, plant height, and fruit growth characteristics.
  • the suspended automatic cruise detection platform used in the present invention can monitor the crop and environment comprehensive information of the whole greenhouse on-line timing cruise, and provide a scientific basis for the regulation and management of greenhouse water and fertilizer and environment, compared with traditional manual experience and
  • the distributed monitoring system can greatly reduce the input of testing equipment and personnel, effectively avoid the operation error of personnel, and improve the detection accuracy and operation efficiency of greenhouse environment and crop growth information.
  • the universal platform adopted by the present invention has good portability as a control system, and the platform is easy to perform secondary development and function expansion, and has good compatibility with the mounted detection equipment.
  • FIG. 1 is a schematic structural view of a track assembly of a suspension rail type greenhouse integrated information automatic cruise monitoring device according to the present invention.
  • FIG. 3 is a schematic structural view of a sliding platform of a suspension rail type greenhouse integrated information automatic cruise monitoring device.
  • Fig. 6 is a schematic view showing the overall structure of a suspension rail type greenhouse integrated information automatic cruise monitoring device.
  • Figure 7 is a flow chart of a multi-sensor detection method for greenhouse information automatic monitoring based on a suspended slide platform.
  • FIG. 8 is a schematic diagram of a sensor grid scan of a greenhouse information automatic monitoring method based on a suspended slide platform.
  • FIG. 9 is a binocular stereo vision matching process of an automatic greenhouse information monitoring method based on a suspended slide platform.
  • the suspension rail type greenhouse integrated information automatic cruise monitoring device of the invention comprises a track assembly, a traveling mechanism, a sliding platform, a multi-sensor system and a control cabinet assembly.
  • the track assembly mainly comprises a sliding track 1 and a rack 4 which are respectively fixed on the structural beam across the greenhouse.
  • the track assembly is composed of three parts of the left middle right and the right side; the sliding track 1 is fixed under the hanging main beam 2, and is a sliding track of the sliding platform and the traveling mechanism.
  • the left and right sliding rails 1 are fixed on the left and right suspension main beams 2, and the left and right suspension main beams 2 are parallel structures with a spacing of 700 mm, and the left and right main beams are 18 meters long, respectively, which are three 6 meters long.
  • the left and right sliding track 1 is 18 meters in length, respectively consisting of 3 stainless steel rails with a length of 6 meters.
  • the length of the sliding track 1 is tight every 500mm through the T-bolt nut and the hanging main beam 2 Solid connection.
  • a suspension auxiliary beam 3 is mounted, and the suspension auxiliary beam 3 is composed of three 30 ⁇ 30 aluminum profiles having a length of 6 meters, and a rack 4 is fixed by a T-screw under the rack. 4 length 18 meters, composed of 6 3 meters long rack fixed connection.
  • the traveling mechanism includes a carrier A7, a carrier B8, a reduction motor 9, a gear shaft 10, a gear 11, a bearing 12, a photoelectric encoder 13, and one end of the reduction motor 9 and the gear shaft 10 Splines are connected; the gear 11 is fixed on the gear shaft 10 and meshes with the rack 4, the other end of the gear shaft 10 is mounted on the bearing 12, and the bearing 12 is connected to the carrier A7 by bolts; the carrier A7 and the carrier A8 pass Bolted; the top wire on the shaft of the photoelectric encoder 13 is coupled to the gear shaft 10 to achieve calculation and detection of walking distance and position.
  • the running mechanism is coupled to the slide rail 1 of the track assembly and the rack 4 to form a set of rack and pinion mechanisms and a set of pulley slide mechanisms.
  • the sliding platform body is mainly driven by the traveling mechanism. As shown in FIG. 3, the sliding platform is composed of 4 sets of pulleys 14, a terminal limit switch 17, a suspension 18, a lifting mechanism 19, an electronically controlled rotating head 21, and a lifting mechanism power supply. 16.
  • the DSP motion controller 15 is composed.
  • the pulley 14 and the suspension 18 are integrally connected by bolts and suspended in the sliding groove of the sliding rail 1, and can follow the pulley 14 as a whole to slide along the longitudinal direction of the sliding rail 1; the lifting mechanism 19 and the suspension 18 use the bolt and nut to base the base thereof.
  • the suspension frame 18 is fastened and fastened; the lifting mechanism is a scissor fork telescopic mechanism, and the lifting and lowering operation of the lifting and lowering tape 20 is controlled to realize the lifting operation of the sliding platform, so that the multi-sensor system can perform the upper and lower adjustment of the optimal height detecting position.
  • the terminal limit switch 17 of the two movement directions is fixed at the two end positions of the top of the suspension 18 in the forward and backward traveling directions by the T-screw. When the device runs to the end, the front end of the limit block touches the end limit switch 17 Power off the entire system and brake.
  • the bottom of the electronically controlled rotary pan/tilt head 21 and the lifting mechanism 19 are connected by bolts and nuts; the communication device such as the lifting mechanism power supply 16, the DSP motion controller 15 and the signal connection is fixed on the sliding platform, and is fixed to the end face of the lifting mechanism 19 by the bolt and nut.
  • the DSP motion controller 15 can realize the control of moving and lifting before and after the movement of the sliding platform.
  • the multi-sensor system is installed under the electronically controlled rotating pan/tilt head 21, and the multi-sensor system is driven by the electronically controlled rotating pan/tilt head 21 to realize 360° rotation in the horizontal direction and 180° rotation in the vertical direction, and the lifting mechanism is used in the DSP motion control. Under the driving control of the device 15, the multi-sensor detection requirements of different detection distances, different top view fields and different detection angles can be met.
  • the multi-sensor system includes a light intensity sensor 28, a laser ranging sensor 27, an infrared temperature sensor 25, a temperature and humidity sensor 26, and a binocular multi-function imaging system.
  • the sensor bracket A23-1 and the sensor bracket B23-2 are respectively mounted on both sides of the cloud platform 24 at the lower end of the electronically controlled rotating head unit 21.
  • the binocular multi-function imaging system includes a visible light multi-function imaging system 22-1 and a near-infrared multi-function imaging system 22-2, which are fixed on the sensor holder A23-1 with the field of view direction downward.
  • the front end of the visible light multi-functional imaging system 22-1 is equipped with a front visible light filter set including 556nm, 472nm, 680nm filters, which can realize the image information of crop nutrition characteristics; the near-infrared multi-function imaging system 22-2 front-end loading There are front-near-infrared filter sets including 930nm and 1420nm filters, which can collect characteristic image information of crop water stress; at the same time, visible light multi-function imaging system 22-1 and near-infrared multi-function imaging system 22-2
  • the multiplexed camera can perform binocular visual matching to realize stereoscopic imaging, and realize measurement of crop plant height and crown area; infrared temperature sensor 25, temperature and humidity sensor 26, laser distance measuring sensor 27, and light intensity sensor 28 are fixed at Both sides of the sensor bracket B23-2 adopt a top view position, and the detection direction is vertically downward.
  • the control cabinet section is independently fixed to the front of the greenhouse.
  • the control cabinet is connected to the running mechanism, the sliding platform and the multi-sensor system through the 1394 data line for information interaction.
  • the control cabinet provides power to the traveling mechanism, sliding platform, and multi-sensor system through the power cord.
  • the control cabinet assembly comprises a touch display 30, a display power supply 31, an industrial computer 32, an industrial power supply 33, a power outlet 34, and a control cabinet main body 29.
  • the industrial computer 32 is connected to the photoelectric encoder 13, the DSP motion controller 15, and the multi-sensor system.
  • the touch display screen 30 is fixed to the bottom of the control cabinet 29 through the base, and the touch display screen 30 is connected to the industrial computer 32.
  • the industrial computer 32, the industrial power supply 33, and the power socket 34 are fixed to the bottom of the control cabinet main body 29 by bolts and nuts.
  • Step one the system is initialized:
  • the detection mode and the detection parameters are set by using the touch display screen 30, and the detection mode includes four modes of crop nutrition stress detection, pest and disease detection, water stress detection and growth detection, wherein the parameter setting includes the detection of nitrogen, phosphorus and potassium in the nutrition stress mode, and the detection of pests and diseases.
  • the species identification under the model, the selection of plant height, crown width, fruit and other parameters under the growth detection mode, the basis for parameter selection and setting is the current detection demand and work efficiency of the greenhouse operation;
  • the detection mode and parameters After the detection mode and parameters are set, it is necessary to set the movement stroke of the sliding platform by the touch display screen 30 according to the detection object and the detection parameters.
  • the detection parameters crop growth period and species, different movement strokes can be selected.
  • a lower detection position In the crop seedling stage or small crops such as lettuce, a lower detection position can be selected, and for large plant types such as tomato and cucumber, higher detection is adopted.
  • Position the basis of selection is that when the individual plant is detected, the area of the field of view of the canopy area detected by the initial detection position should be greater than 70%, and the distance between the top distance sensor is between 500mm and 1000mm. Replace the imaging lens to meet the above parameters.
  • the system sends instructions to the DSP motion controller 15 and the multi-sensor system through the industrial computer 32, and performs motion control and detection processes of crop nutrition, moisture, growth and pest information according to the set detection procedure, and DSP motion control.
  • the device 15 first sends a signal to the geared motor 9 according to the position command sent from the industrial computer 32.
  • the geared motor 9 drives the gear shaft 10 and the gear 11 to rotate together, and the gear 11 and the rack 4 mesh to drive the entire sliding platform to slide through the pulley 14.
  • the moving sequence on the track 1 reaches the top of the crop, and according to the preset position and serial number of the landmark sensor 36, the multi-sensor information is detected by point-by-point detection.
  • the specific process is as follows:
  • the landmark sensor 36 is pre-applied at the foremost end of the plant at each detection position. After the sliding platform moves according to the stroke and the landmark is detected, the movement in the traveling direction is stopped, and the industrial computer 32 gives The DSP motion controller 15 sends an instruction to drive the lifting mechanism 19 to lower the sliding platform lifting mechanism to a preset height, complete the target positioning of the sliding platform, and start performing multi-sensor information detection of the target point;
  • the detection system uses matrix gridded scanning to obtain crop nutrition, moisture, growth and pest and disease information.
  • the industrial computer 32 sends an instruction to the DSP motion controller 15 to drive the electronically controlled rotating pan/tilt head 21 so that the direction perpendicular to the traveling direction is the X coordinate, and the geometric center of the electronically controlled rotating pan/tilt head 21 is taken as the origin, from 0-180°.
  • the arc direction is performed from left to right for stagnation point scanning, and the detection starting point of each detection bit along the traveling direction is the initial point after detecting the landmark sensor 36 and stopping the sliding platform;
  • the next arc grid is stepped and scanned, and the step spacing can be set according to the detection requirement and the work efficiency requirement, and the step setting value is between 10 mm and the maximum diameter of the plant crown diameter. Covering the entire canopy of the plant; scanning the arc in the interval along the direction of travel, using the laser ranging sensor 27 to obtain the height coordinate information of the plant region by point scanning to analyze the plant height and crown Augmented growth information;
  • the canopy temperature information of the crop is obtained by using the infrared temperature sensor 25, and the ambient light intensity information of the detection position is acquired by the illumination intensity sensor 28, and the detection is performed by the ambient temperature and humidity sensor 26. Bit temperature and humidity information.
  • Step 4 comprehensive information processing of greenhouse crops
  • Step 5 after the plant information collection is completed, according to the set stroke, the industrial computer 32 sends a command to the DSP motion controller 15 to drive the electronically controlled rotating pan/tilt head 21 to rotate to the initial position, and the lifting mechanism 19 is stowed to the initial state; the sliding platform Proceed to the next detection position according to the preset stroke, repeat steps 1 to 5 until the end of the entire detection stroke, and return to the initial position.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Greenhouses (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种悬轨式温室综合信息自动巡航监测装置,由轨道总成、行走机构、滑动平台、多传感器系统、控制柜组成。将滑移轨道(1)、滑动平台和升降机构悬挂在温室桁架上,多传感器系统和电控旋转云台(21)安装在滑动平台的升降机构下方,探测方位俯视植株冠层,多传感器系统可在滑动平台的带动下,沿植株(37)栽植行线对植株冠层进行逐株驻点探测。多传感器系统包括双目视觉多功能相机、激光测距传感器(27)、红外测温传感器(25)、光照强度传感器(28)、温湿度传感器(26),通过多传感信息融合可实现对植株的营养、水分、病虫害的图像和红外温度特征,植株冠幅、株高、果实长势特征,以及温室环境的温湿度和光照强度等温室综合信息的在线自动巡航监测。

Description

一种悬轨式温室综合信息自动巡航监测装置 技术领域
本发明属于智能农业机械领域,涉及一种悬轨式温室综合信息自动巡航监测装置。
背景技术
目前我国的温室种植面积和产量位于全世界前列,但大多仍采用传统的大水大肥的种植灌溉模式,因其具有盲目性,无法满足作物需求,导致作物的产量和品质不高,资源浪费严重,经济效益较差等问题,主要原因之一是缺乏对设施生产的科学管理,难以实时在线获取温室作物和环境的综合信息,实现基于作物真实需求的水肥和环境优化调控以及病虫害预警。以往对农作物的营养长势和病虫害侵害的识别检测多采用人工以及化学方法,不仅检测的效率低下,而且会发生误判,并会对作物造成不可逆的损坏。由于温室种植和生产的非机构化的环境,目前满足实际生产需求的,先进适用的温室环境和作物综合信息自动化监测装备和方法缺乏。本发明采用悬轨式检测平台进行作物生长和环境信息的自动监测,能够通过自主巡航的方式,采用多传感器探测系统能够进行温室作物营养、长势、病虫害和环境综合信息的采集,相较于传统方法和分布式的检测方法,大幅提高了检测和识别精度,降低了成本,提高了作业效率。
申请号201010519848.7的发明专利申请,公开了一种悬挂式自走对靶喷雾系统,包括导轨、自走式移动平台、霍尔传感器、喷雾机械臂装置、双目视觉系统、PLC逻辑控制器等,由于该发明在温室顶棚设置有导轨,喷雾机械臂装置设置在自走式移动平台上,可以在温室环境下自动喷洒农药,避免喷洒农药过程中对操作人员造成身体伤害,提高了效率。但其装置缺乏温室环境信息的检测,对温室的环境因素考虑不够。
北京农业智能装备技术中心的马伟等人开发了一套温室轨道式省力作业装置。该装置能够通过在温室自身结构上连接安装轨道,利用移动装置可用手推灵活性走,悬挂平台上可以搭载所有施药加压装置。该装置解决了温室作物大面积施药以及搬运不方便的问题,减轻了劳动强度。但其仍需要一定的手动作业,自动化水平还不够高。
申请号201310192634.7的发明专利申请,公开了一种履带式机器人移动平台,通过控制模块根据监测模块的数据信号控制主动轮系与从动轮系带动车体运行。该履带式机器人由于其履带、轮系和车体均采用刚性连接,无法过滤不平路面的颠簸,对搭载在移动平台上的检测设备造成损伤以及对检测的稳定性有影响。
申请号201010519848.7的发明专利申请,公开了一种悬挂式自走对靶喷雾系统,包括导轨、自走式移动平台、霍尔传感器、喷雾机械臂装置、双目视觉系统、PLC逻辑控制器等,由于该发明在温室顶棚设置有导轨,喷雾机械臂装置设置在自走式移动平台上,可以在温室环境下自动喷洒农药,避免喷洒农药过程中对操作人员造成身体伤害,提高了效率。但其装置缺乏温室环境信息的检测,对温室的环境因素考虑不够。
申请号201310408112.6的发明专利申请,公开了一种用于探测的多地形智能移动平台,包括自主前进四轮小车系统和四轴旋翼飞行系统,两者通过锁紧系统相连,并通过ZigBee无线传输网络与PC终端机进行通信。自主前进四轮小车系统利用Arduino对车载多参数传感器模块、驱动模块等进行控制:四轴旋翼飞行系统利用Arduino对机载多参数传感器模块、高速驱动模块等进行控制。当遇到无法逾越的障碍物时,锁紧系统可自动解锁,从而触发四轴旋翼飞行系统运行。多地形复合式智能移动平台不论是四轮模式还是飞行模式,其整体的平稳性没有带独立悬架的移动平台。在启动飞行模式时,对其搭载的检测设备要进行均匀分配质量,对搭载的检测设备的有重量限制,相对于单一模式的移动平台,多地形复合式智能移动平台结构复杂,价格较高。
综上所述,现有的智能移动平台由于任务目标不同,其装置和方法无法满足温室非结构化环境下,温室作物生长和环境信息检测设备对平台检测精度及平稳性的要求,难以实现对不同生长期、不同种类和大中小不同株型作物的营养、长势和病虫害信息的自动巡航探测。
发明内容
针对现有技术中存在不足,本发明的目的在于提供一种悬轨式温室综合信息自动巡航监测装置,以实现对温室作物营养、水分、长势和病虫害信息,以及温室环境光照、温湿度信息的同步自动巡航监测。
为了实现上述目的,本发明采取的技术方案如下:
一种悬轨式温室综合信息自动巡航监测装置,其特征在于:包括轨道总成、行走机构、滑动平台、多传感器系统、控制柜总成,
轨道总成主要包括分别固定在温室的横跨结构梁上的滑移轨道、齿条;
行走机构包括齿轮架A、齿轮架B、减速电机、齿轮轴、齿轮、轴承、光电编码器,减速电机与齿轮轴的一端通过花键相连;齿轮固定在齿轮轴上、且与齿条啮合,齿轮轴的另一端装在轴承上,轴承通过螺栓与齿轮架A连接;齿轮架A与齿轮架A通过螺栓连接;光电编码器的轴上的顶丝与齿轮轴相连,以实现行走距离和位置的计算和检测;
滑动平台主要由升降机构和电控旋转云台组成,由4组滑轮、终端限位开关、悬架、升降机构、电控旋转云台、升降机构电源、DSP运动控制器组成,所述滑轮固定在悬架上,并装配在滑移轨道的滑槽中,悬架固定在升降机构的顶部,终端限位开关固定在悬架的顶部沿前后行进方向的两个末端位置,升降机构的底部固定在电控旋转云台上,DSP运动控制器用于实现对滑动平台前后移动和升降机构的升降的控制;升降机构电源为滑动平台提供电源;
多传感器系统包括光照强度传感器、激光测距传感器、红外测温传感器、温湿度传感器、双目多功能成像系统,传感器支架A、传感器支架B分别安装在电控旋转云台下端的两侧;双目多功能成像系统包括可见光多功能成像系统和近红外多功能成像系统,固定在传感器支架A上,视场方向向下;可见光多功能成像系统前端装有前置可见光滤光片组,可实现作物营养特征图像信息的采集;近红外多功能成像系统前端装有前置近红外滤光片组,可实现作物水分胁迫的特征图像信息的采集;同时可见光多功能成像系统与近红外多功能成像系统作为复用相机,可进行双目视觉匹配,实现立体成像,实现对作物株高和冠幅面积的测量;红外测温传感器、温湿度传感器、激光测距传感器、光照强度传感器固定在传感器支架B的两侧,采用俯视位,探测方向垂直向下;
控制柜部分包括工控机、工控机电源,工控机与光电编码器、DSP运动控制器、多传感器系统相连。
进一步地,所述滑移轨道固定在悬挂主梁下方,齿条固定在悬挂辅梁下方。
进一步地,悬挂主梁和悬挂辅梁之间设置横撑。
进一步地,悬挂主梁和悬挂辅梁的相邻两段型材的接缝处,采用连接板紧固连接。
进一步地,轨道总成由左中右三部分组成。
进一步地,所述升降机构为剪刀叉伸缩机构。
进一步地,可见光滤光片组为556nm、472nm、680nm滤光片。
进一步地,近红外滤光片组为930nm、1420nm滤光片。
进一步地,控制柜部分还包括触摸显示屏、显示屏电源,触摸显示屏与工控机相连。
本发明具有有益效果
(1)本发明所采用的自动巡航监测装置,将多传感检测系统悬挂安装在位于温室上方的滑移轨道上,能够有效克服在温室密植条件下的,地面自走式自动巡航检测平台,受路面和栽植环境条件影响较大的问题。
(2)本发明所采用的自动巡航监测装置,其滑动平台采用升降机构结合电控旋转云 台的方式。不仅能实现沿检测行进方向的精准定位,也能够实现不同探测距离、不同俯视视场、不同检测角度的多传感器的巡航探测,因此既能够对番茄、黄瓜等大棵型植株进行多传感监测,也能够通过调整探测距离和云台方位角,满足对生菜等小棵型作物,以及作物苗期等不同作物生长期温室作物的探测需求。
(3)本发明所采用的多传感器系统,采用双目视觉多功能相机,结合激光测距传感器和红外温度探测器,能够通过多传感信息融合可实现对植株的营养、水分、病虫害的图像和红外温度特征,植株冠幅、株高、果实长势特征等温室作物综合信息的在线巡航监测。
(4)本发明所采用的悬挂式的自动巡航检测平台能够在线定时巡航监测整个温室的作物和环境综合信息,为温室水肥和环境的调控和管理提供科学依据,相较于传统的人工经验和分布式监测系统,能够大幅降低检测设备和人员的投入,有效避免人员的操作误差,提高了温室环境和作物生长信息的检测精度和作业效率。
(5)本发明所采用的通用平台作为控制系统,具有较好的可移植性,平台易于进行二次开发和功能扩展,对于搭载的检测设备具有较好的兼容性。
附图说明
图1为本发明所述悬轨式温室综合信息自动巡航监测装置的轨道总成结构示意图。
图2一种悬轨式温室综合信息自动巡航监测装置的行走机构示意图。
图3一种悬轨式温室综合信息自动巡航监测装置的滑动平台结构示意图。
图4一种悬轨式温室综合信息自动巡航监测装置的多传感器系统示意图。
图5一种悬轨式温室综合信息自动巡航监测装置的控制柜结构示意图。
图6一种悬轨式温室综合信息自动巡航监测装置的整体结构示意图。
图7一种基于悬挂式滑轨平台的温室信息自动监测多传感探测方法流程图。
图8一种基于悬挂式滑轨平台的温室信息自动监测方法传感器网格扫描示意图。
图9一种基于悬挂式滑轨平台的温室信息自动监测方法双目立体视觉匹配流程。
图中:
1、滑移轨道;2、悬挂主梁;3、悬挂辅梁;4、齿条;5、横撑;6、轨道连接板;7、齿轮架A;8、齿轮架B;9、减速电机;10、齿轮轴;11、齿轮;12、轴承;13、光电编码器;14、滑轮;15、DSP运动控制器;16、升降机构电源;17、终端限位开关;18、悬架;19、升降机构;20、升降卷带;21、电控旋转云台;22-1、可见光多功能成像系统;22-2、近红外多功能成像系统;23-1、传感器支架A;23-2、传感器支架B; 24、云台架;25、红外测温传感器;26、温湿度传感器;27、激光测距传感器;28、光照强度传感器;29、控制柜主体;30、触摸显示屏;31、显示屏电源;32、工控机;33、工控机电源;34、电源插座;35.栽培槽;36.地标传感器;37.植株;38.多传感器系统网格化扫描轨迹。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明所述的悬轨式温室综合信息自动巡航监测装置,包括轨道总成、行走机构、滑动平台、多传感器系统、控制柜总成。
如图1所示,轨道总成主要包括分别固定在温室的横跨结构梁上的滑移轨道1、齿条4。具体的,所述轨道总成左中右三部分组成;所述滑移轨道1固定在悬挂主梁2下方,为滑动平台和行走机构的滑动轨道。左右两部分的滑移轨道1固定在左右两根悬挂主梁2上,左右两根悬挂主梁2为平行结构,间距700mm,左右主梁长度均为18米,分别由3根6米长的30×60铝型材组成;左右滑移轨道1同样长度为18米,分别由长6米的3根不锈钢轨道组成,滑移轨道1长度方向每隔500mm通过T型螺栓螺母与悬挂主梁2紧固连接。在与悬挂主梁2的平行中线上,安装有悬挂辅梁3,悬挂辅梁3由长6米的3根30×30铝型材构成,其下方通过T型螺钉固定有齿条4,齿条4长18米,由6根3米长的齿条固定连接组合而成。
悬挂主梁2和悬挂辅梁3之间,为了保持直线度和结构的刚度,在轨道长度方向上,每隔500mm使用横撑5通过T型螺栓螺母对主梁2和悬挂辅梁3进行紧固连接,使悬挂主梁2和悬挂辅梁3成为一体,保证其结构刚度。在悬挂主梁2和悬挂辅梁3所使用的6米型材连接的接缝处,采用连接板6通过T型螺栓螺母对悬挂主梁2和悬挂辅梁3进行紧固连接,以保证滑动平台沿滑移轨道1在运行时,在接缝处能够平滑过渡。
行走机构如图2所示,所述行走机构包括齿轮架A7、齿轮架B8、减速电机9、齿轮轴10、齿轮11、轴承12、光电编码器13,减速电机9与齿轮轴10的一端通过花键相连;齿轮11固定在齿轮轴10上、且与齿条4啮合,齿轮轴10的另一端装在轴承12上,轴承12通过螺栓与齿轮架A7连接;齿轮架A7与齿轮架A8通过螺栓连接;光电编码器13的轴上的顶丝与齿轮轴10相连,以实现行走距离和位置的计算和检测。行走机构与轨道总成的滑移轨道1和齿条4连接,形成一套齿轮齿条机构和一套滑轮滑轨机构。
滑动平台主体主要由行走机构带动行走,如图3所示,所述滑动平台由4组滑轮14、 终端限位开关17、悬架18、升降机构19、电控旋转云台21、升降机构电源16、DSP运动控制器15组成。其中滑轮14与悬架18通过螺栓连接成一体,并悬挂在滑轨1的滑槽中,能够跟随滑轮14整体沿滑轨1长度方向滑动;升降机构19与悬架18利用螺栓螺母将其底座与悬架18紧固连接在一起;升降机构为剪刀叉伸缩机构,通过控制升降卷带20的伸缩,实现滑动平台的升降操作,以便于多传感器系统进行最佳高度检测位的上下调整。前后两个运动方向的终端限位开关17通过T型螺钉固定在悬架18的顶部沿前后行进方向的两个末端位置,当设备运行至末端时,限位块前端触碰终端限位开关17使整个系统断电并刹车制动。
电控旋转云台21与升降机构19的底部通过螺栓螺母连接;升降机构电源16、DSP运动控制器15和信号连接等通讯装置固定在滑动平台上,通过螺栓螺母固定在升降机构19行进方向端面上,DSP运动控制器15可实现对滑动平台运动前后移动和升降的控制。多传感器系统装在电控旋转云台21的下方,通过电控旋转云台21带动多传感系统实现水平方向的360°旋转和垂直方向的左右180°旋转,配合升降机构,在DSP运动控制器15的驱动控制下,可满足不同探测距离、不同俯视视场、不同检测角度的多传感器探测需求。
如图4所示,所述多传感器系统包括光照强度传感器28、激光测距传感器27、红外测温传感器25、温湿度传感器26、双目多功能成像系统。传感器支架A23-1、传感器支架B23-2分别安装在电控旋转云台21下端的云台架24两侧。双目多功能成像系统包括可见光多功能成像系统22-1和近红外多功能成像系统22-2,固定在传感器支架A23-1上,视场方向向下。可见光多功能成像系统22-1前端装有包括556nm、472nm、680nm滤光片的前置可见光滤光片组,可实现作物营养特征图像信息的采集;近红外多功能成像系统22-2前端装有包括930nm、1420nm滤光片的前置近红外滤光片组,可实现作物水分胁迫的特征图像信息的采集;同时可见光多功能成像系统22-1与近红外多功能成像系统22-2作为复用相机,可进行双目视觉匹配,实现立体成像,实现对作物株高和冠幅面积的测量;红外测温传感器25、温湿度传感器26、激光测距传感器27、光照强度传感器28固定在传感器支架B23-2的两侧,采用俯视位,探测方向垂直向下。
控制柜部分独立固定于温室前端。控制柜通过1394数据线分别和行走机构、滑动平台以及多传感器系统相连,进行信息交互。控制柜通过电源线为行走机构、滑动平台、多传感器系统提供电源。所述控制柜总成包括触摸显示屏30、显示屏电源31、工控机32、工控机电源33、电源插座34、控制柜主体29组成。工控机32与光电编码器13、 DSP运动控制器15、多传感器系统相连。触摸显示屏30通过底座固定在控制柜29箱底,触摸显示屏30与工控机32相连工控机32、工控机电源33、电源插座34通过螺栓螺母固定在控制柜主体29底部。
所述悬轨式温室综合信息自动巡航监测装置用于温室综合信息自动巡航监测时,按照以下步骤操作:
步骤一,系统初始化:
启动控制柜中的电源按钮,一种悬轨式温室综合信息监测系统进行自检,工控机32开启,触摸显示屏30开启,DSP运动控制器15启动,滑动平台无论当前停靠在任何位置,启动后回归零位;
步骤二,系统设置
1)样本设定和采样间距设置
由于本系统可应用于不同类型的设施作物,因此首先要利用触摸显示屏30设置作物的种类、定植时间和生长期。由于本系统采用逐株检测的工作模式,因此首先需要利用触摸显示屏30设定在栽培槽35中的待测植株37的栽植株距,并据此设置地标传感器36、滑动平台的运动间距和多传感器系统的采样间距,获得多传感器系统网格化扫描轨迹38。
2)检测参数设置
利用触摸显示屏30设置检测模式和检测参数,检测模式包括作物营养胁迫检测、病虫害检测、水分胁迫检测和长势检测四种模式,其中参数设定包括营养胁迫模式下的氮磷钾检测、病虫害检测模式下的种类识别、长势检测模式下的株高、冠幅、果实等参数的选取,参数选取和设定的依据为目前温室运行的检测需求和工作效率;
3)滑动平台运动设置
设置检测模式和参数后,需要利用触摸显示屏30根据检测对象和检测参数,对滑动平台的运动行程进行设定。根据检测参数、作物生长期和种类选取不同的运动行程,在作物苗期或者生菜等小株型作物,可选取较低的检测位,对于番茄和黄瓜等大株型作物,采用较高的检测位,选取的依据是单株检测时,初始检测位所探测的冠层区域所占视场区域的面积应大于70%,同时株顶距离传感器距离在500mm至1000mm之间,如不满足则需要更换成像镜头以满足上述参数要求。
步骤三,检测流程
设置过程结束后,本系统通过工控机32发指令给DSP运动控制器15和多传感器系 统,按照设定的检测程序进行运动控制和作物营养、水分、长势和病虫害信息的探测流程,DSP运动控制器15根据工控机32发来的位置指令,首先发送信号给减速电机9,减速电机9带动齿轮轴10和齿轮11一起转动,齿轮11和齿条4啮合,带动整个滑动平台通过滑轮14在滑轨1上移动顺序到达作物的上方,并根据预设的地标传感器36位置和序号,采用逐点探测的方式进行作物多传感信息的探测,具体流程如下:
1)滑动平台目标定位
按照步骤二1中设置的检测间距,在每个检测位的植株最前端,预先敷设地标传感器36,当滑动平台按照行程移动并检测到该地标后,沿行进方向的运动停止,工控机32给DSP运动控制器15发送指令,驱动升降机构19,将滑动平台升降机构下降到预设的高度,完成滑动平台的目标定位,开始执行该目标点的多传感信息探测;
2)多传感信息探测
顺序到达检测位后,工控机32给DSP运动控制器15发送信号,驱动电控旋转云台21按照预设参数调整仰俯角度,保证初始检测位的多传感器系统的检测视场和探测角符合成像和探测要求;
顺序到达检测位后,检测系统采用矩阵网格化扫描的方式进行作物营养、水分、长势和病虫害信息的获取。
其中所述矩阵扫描的方式具体如下:
①工控机32给DSP运动控制器15发送指令,驱动电控旋转云台21,以与行进方向垂直的方向为X坐标,以电控旋转云台21的几何中心为原点,从0-180°圆弧方向自左至右进行驻点扫描,每个检测位沿行进方向的检测起点,为检测到该地标传感器36,滑动平台停止后的初始点;
②完成该序列检测后,步进扫描下一圆弧网格,步进间距可以根据检测需求和作业效率需求进行设定,步距设定值在10mm至植株冠幅直径的最大值之间,覆盖整个植株冠层;在此区间内沿行进方向进行圆弧网格化扫描,利用激光测距传感器27通过点扫描的方式,获取植株区域的高度点阵坐标信息用于分析作物株高和冠幅等长势信息;
③在每次扫描至90°角的检测中线即与行进方向的几何中线重合的检测中线时,利用双目多功能成像系统22获取植株的可见光-近红外双目俯视图像信息;
④当每个检测位扫描至植株的几何中心时,利用红外测温传感器25获取作物的冠层温度信息,利用光照强度传感器28获取检测位的环境光照强度信息,利用环境温湿度传感器26获取检测位的环境温湿度信息。
步骤四,温室作物综合信息处理
利用步骤三获取的温室作物综合信息,通过信息采集模块上传给工控机32处理。其中双目多功能成像系统22获取的双目视觉图像和营养、水分的特征波段下的作物冠层图像,激光测距传感器所获取的激光扫描距离点阵信息,以及红外冠层温度、环境温湿度和光照强度信息,由信息采集模块作为输入参数,导入工控机32的处理程序,并实时显示在触摸屏30上。
步骤五,该植株信息采集完成后,按照设定行程,工控机32给DSP运动控制器15发送指令,驱动电控旋转云台21旋转至初始位置,升降机构19收起至初始状态;滑动平台按照预设行程行进至下一个检测位,重复步骤一至步骤五直至整个检测行程结束,返回初始位置。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种悬轨式温室综合信息自动巡航监测装置,其特征在于:包括轨道总成、行走机构、滑动平台、多传感器系统、控制柜总成,
    轨道总成主要包括分别固定在温室的横跨结构梁上的滑移轨道(1)、齿条(4);
    行走机构包括齿轮架A(7)、齿轮架B(8)、减速电机(9)、齿轮轴(10)、齿轮(11)、轴承(12)、光电编码器(13),减速电机(9)与齿轮轴(10)的一端通过花键相连;齿轮(11)固定在齿轮轴(10)上、且与齿条(4)啮合,齿轮轴(10)的另一端装在轴承(12)上,轴承(12)通过螺栓与齿轮架A(7)连接;齿轮架A(7)与齿轮架A(8)通过螺栓连接;光电编码器(13)的轴上的顶丝与齿轮轴(10)相连,以实现行走距离和位置的计算和检测;
    滑动平台主要由升降机构(19)和电控旋转云台(21)组成,由4组滑轮(14)、终端限位开关(17)、悬架(18)、升降机构(19)、电控旋转云台(21)、升降机构电源(16)、DSP运动控制器(15)组成,所述滑轮(14)固定在悬架(18)上,并装配在滑移轨道(1)的滑槽中,悬架(18)固定在升降机构(19)的顶部,终端限位开关(17)固定在悬架(18)的顶部沿前后行进方向的两个末端位置,升降机构(19)的底部固定在电控旋转云台(21)上,DSP运动控制器(15)用于实现滑动平台前后移动和升降机构(19)的升降的控制;升降机构电源(16)为滑动平台提供电源;
    多传感器系统包括光照强度传感器(28)、激光测距传感器(27)、红外测温传感器(25)、温湿度传感器(26)、双目多功能成像系统,传感器支架A(23-1)、传感器支架B(23-2)分别安装在电控旋转云台(21)下端的两侧;双目多功能成像系统包括可见光多功能成像系统(22-1)和近红外多功能成像系统(22-2),固定在传感器支架A(23-1)上,视场方向向下;可见光多功能成像系统(22-1)前端装有前置可见光滤光片组,可实现作物营养特征图像信息的采集;近红外多功能成像系统(22-2)前端装有前置近红外滤光片组,可实现作物水分胁迫的特征图像信息的采集;同时可见光多功能成像系统(22-1)与近红外多功能成像系统(22-2)作为复用相机,可进行双目视觉匹配,实现立体成像,实现对作物株高和冠幅面积的测量;红外测温传感器(25)、温湿度传感器(26)、激光测距传感器(27)、光照强度传感器(28)固定在传感器支架B(23-2)的两侧,采用俯视位,探测方向垂直向下;
    控制柜部分包括工控机(32)、工控机电源(33),工控机(32)与光电编码器(13)、DSP运动控制器(15)、多传感器系统相连。
  2. 根据权利要求1所述的自动巡航监测装置,其特征在于:所述滑移轨道(1)固定在悬挂主梁(2)下方,齿条(4)固定在悬挂辅梁(3)下方。
  3. 根据权利要求1所述的自动巡航监测装置,其特征在于:悬挂主梁(2)和悬挂辅梁(3)之间设置横撑(5)。
  4. 根据权利要求1所述的自动巡航监测装置,其特征在于:悬挂主梁(2)和悬挂辅梁(3)的相邻两段型材的接缝处,采用连接板(6)紧固连接。
  5. 根据权利要求1所述的自动巡航监测装置,其特征在于:轨道总成由左中右三部分组成。
  6. 根据权利要求1所述的自动巡航监测装置,其特征在于:所述升降机构(19)为剪刀叉伸缩机构。
  7. 根据权利要求1所述的自动巡航监测装置,其特征在于:可见光滤光片组为556nm、472nm、680nm滤光片。
  8. 根据权利要求1所述的自动巡航监测装置,其特征在于:近红外滤光片组为930nm、1420nm滤光片。
  9. 根据权利要求1所述的自动巡航监测装置,其特征在于:控制柜部分还包括触摸显示屏(30)、显示屏电源(31),触摸显示屏(30)与工控机(32)相连。
PCT/CN2018/115817 2018-01-03 2018-11-16 一种悬轨式温室综合信息自动巡航监测装置 WO2019134454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/645,891 US11465886B2 (en) 2018-01-03 2018-11-16 Suspension rail type greenhouse comprehensive information automatic cruise monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810004680.2A CN108362326B (zh) 2018-01-03 2018-01-03 一种悬轨式温室综合信息自动巡航监测装置
CN201810004680.2 2018-01-03

Publications (1)

Publication Number Publication Date
WO2019134454A1 true WO2019134454A1 (zh) 2019-07-11

Family

ID=63011218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115817 WO2019134454A1 (zh) 2018-01-03 2018-11-16 一种悬轨式温室综合信息自动巡航监测装置

Country Status (3)

Country Link
US (1) US11465886B2 (zh)
CN (1) CN108362326B (zh)
WO (1) WO2019134454A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430402A (zh) * 2019-08-20 2019-11-08 福州市协成智慧科技有限公司 一种物联网视觉优化监控设备
CN110700592A (zh) * 2019-09-27 2020-01-17 南京理工大学 悬挂式混凝土振捣装置及方法
CN113048354A (zh) * 2021-03-09 2021-06-29 深圳微品致远信息科技有限公司 一种人工智能监控设备及监控系统
WO2022099403A1 (en) * 2020-11-13 2022-05-19 Ecoation Innovative Solutions Inc. Generation of stereo-spatio-temporal crop condition measurements based on human observations and height measurements
CN114655865A (zh) * 2022-04-08 2022-06-24 国网湖南省电力有限公司 一种变电站内吊车安全作业系统及其控制方法
CN115648170A (zh) * 2022-10-10 2023-01-31 江阴市锦绣江南环境发展有限公司 一种用于仓库或危废存储空间的巡检装置
US11867680B2 (en) 2015-07-30 2024-01-09 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
US11925151B2 (en) 2020-11-13 2024-03-12 Ecoation Innovative Solutions Inc. Stereo-spatial-temporal crop condition measurements for plant growth and health optimization
US12067711B2 (en) 2020-11-13 2024-08-20 Ecoation Innovative Solutions Inc. Data processing platform for analyzing stereo-spatio-temporal crop condition measurements to support plant growth and health optimization

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130223B2 (en) * 2017-10-30 2021-09-28 Pearson Packaging Systems Base for a robotic arm
CN108387262B (zh) 2018-01-03 2020-05-01 江苏大学 一种基于悬挂式滑轨平台的温室信息自动监测方法
CN108362326B (zh) * 2018-01-03 2020-12-18 江苏大学 一种悬轨式温室综合信息自动巡航监测装置
CN109681734B (zh) * 2019-01-25 2023-11-07 深圳市联建光电有限公司 一种智能调节装置及调节方法
CN110583513B (zh) * 2019-10-22 2023-08-08 山东新希望六和集团有限公司 一种禽类用笼养场观察车
CN110926850B (zh) * 2019-12-11 2021-12-10 浙江省农业科学院 一种土壤信息采集平台
CN111183889B (zh) * 2020-02-28 2021-06-15 南京慧瞳作物表型组学研究院有限公司 一种圆柱根盒的栽培架及表型采集方法
CN111512856A (zh) * 2020-04-30 2020-08-11 北京易盛泰和科技有限公司 一种移动型植物表型平台
CN111707783A (zh) * 2020-05-12 2020-09-25 五邑大学 作物生长监控方法、装置及存储介质
CN111486900A (zh) * 2020-05-22 2020-08-04 信阳农林学院 一种小麦赤霉病检测装置
CN111684966A (zh) * 2020-06-16 2020-09-22 安徽科技学院 一种大跨度钢结构农业大棚及其智能控制系统
CN111988599A (zh) * 2020-07-06 2020-11-24 恩施土家族苗族自治州林业科学研究院(恩施土家族苗族自治州林业科技推广站) 一种基于机器视觉的楠木育苗辅助装置和方法
CN112036470A (zh) * 2020-08-28 2020-12-04 扬州大学 一种基于云传输的多传感器融合的黄瓜烟粉虱识别方法
CN112229432A (zh) * 2020-09-18 2021-01-15 华南农业大学 设施园艺作物生长状态监测装置及监测方法
CN112903108A (zh) * 2020-10-15 2021-06-04 广东省现代农业装备研究所 一种低成本的设施园艺作物水分胁迫感知系统
CN112314272A (zh) * 2020-11-10 2021-02-05 呼伦贝尔学院 一种用于马铃薯育种的全自动智能控制温室
CN112503366B (zh) * 2020-11-26 2022-04-19 山东省农业科学院科技信息研究所 一种温室大棚多功能作业平台的控制方法
CN112649031B (zh) * 2020-12-25 2023-04-21 四川众望安全环保技术咨询有限公司 一种智慧园区环境监测系统和方法
CN112879781A (zh) * 2021-01-10 2021-06-01 郑州大学第一附属医院 一种重症监护仪器的管理固定装置
CN112858589A (zh) * 2021-01-19 2021-05-28 青岛星昂传媒有限公司 一种基于物联网的生态环境监测设备及方法
CN112930957A (zh) * 2021-03-02 2021-06-11 山东中科智能农业机械装备技术创新中心 一种应用于温室大棚的三轴航架机构
CN113138595B (zh) * 2021-03-22 2022-11-18 广东省现代农业装备研究所 一种温室高架栽培作物轨道式移动监测平台及其控制方法
CN113406013A (zh) * 2021-04-13 2021-09-17 江苏师范大学 基于高光谱和近红外融合的肉制品品质检测设备与方法
CN113521592A (zh) * 2021-07-19 2021-10-22 陕西汽车集团延安专用车有限公司 一种单独负压隔离式病房
CN113432006B (zh) * 2021-07-21 2022-10-04 深圳腾河智慧科技有限公司 一种基于物联网的新型通信基站能源监控系统
CN113790340A (zh) * 2021-08-16 2021-12-14 赵跃 一种集成混凝土梁板浇筑过程质量监控的成套技术
CN113875629A (zh) * 2021-11-02 2022-01-04 华中农业大学 一种基于热成像的生猪体温检测装置
CN113924965B (zh) * 2021-11-15 2022-12-20 中国农业科学院都市农业研究所 一种工厂化植物生产的系统及方法
CN114029921B (zh) * 2021-11-18 2023-08-15 北京华能新锐控制技术有限公司 有轨机器人的轨道基座
CN114094467B (zh) * 2022-01-19 2022-04-12 山东万海电气科技有限公司 一种具有故障检测功能的中压开关柜
CN114578746B (zh) * 2022-01-24 2023-07-07 江苏经贸职业技术学院 一种计算机信息安全监控预警设备
CN115331399B (zh) * 2022-07-06 2024-03-29 中交二公局第一工程有限公司 一种用于钢桁梁安装牵引的滚动滑移装置
CN115486297A (zh) * 2022-09-20 2022-12-20 贵溪欧绿多肉植物有限公司 一种绿植种植用环境调控装置
CN116067421A (zh) * 2022-11-18 2023-05-05 中国石油天然气集团有限公司 用于钻井液多点位多功能检测的测量装置和测量方法
CN115790712B (zh) * 2022-11-21 2023-08-25 扬州鸿熙电气有限公司 一种电力电缆井综合监控系统
CN116105783B (zh) * 2022-12-22 2023-10-10 马鞍山市东方仪表有限公司 一种仪器仪表生产用多功能检测设备
CN115875573B (zh) * 2023-02-01 2023-04-21 山西迈捷科技有限公司 一种矿用巡检装置及巡检方法
CN116878855B (zh) * 2023-09-06 2023-12-08 南方电网调峰调频发电有限公司储能科研院 一种基于多传感器数据融合的孪生电厂智能检测装置
CN117162859B (zh) * 2023-11-02 2024-01-02 太原理工大学 一种挂轨巡检机器人的自动充换电装置
CN117213379B (zh) * 2023-11-07 2024-02-02 钛玛科(北京)工业科技有限公司 一种宽度测量系统
CN117774008B (zh) * 2024-02-27 2024-04-26 合肥小步智能科技有限公司 一种全视角管廊巡检机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084289A2 (de) * 1982-06-16 1983-07-27 Sylvie Engel Klimaboden für landwirtschaftliche, industrielle und Wohnzwecke aus Heizfolien oder Hohlkammerplatten mit integrierter Bewässerung und deren Installationssystem
CN202773632U (zh) * 2012-07-25 2013-03-13 北京农业信息技术研究中心 一种温室水培蔬菜生长监测装置
CN103699095A (zh) * 2013-12-25 2014-04-02 北京交通大学 基于双目立体视觉的大棚作物生长态势监测系统及方法
CN107486834A (zh) * 2017-08-24 2017-12-19 上海大学 温室作物生长巡检机器人
CN108362326A (zh) * 2018-01-03 2018-08-03 江苏大学 一种悬轨式温室综合信息自动巡航监测装置
CN108387262A (zh) * 2018-01-03 2018-08-10 江苏大学 一种基于悬挂式滑轨平台的温室信息自动监测方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186493A (en) 1959-05-06 1965-06-01 Leonard D Barry Automatic farming system
USRE31023E (en) 1975-04-11 1982-09-07 Advanced Decision Handling, Inc. Highly automated agricultural production system
US4612996A (en) 1983-08-08 1986-09-23 Kimberly Hills, Ltd. Robotic agricultural system with tractor supported on tracks
JP3731056B2 (ja) * 2003-05-30 2006-01-05 独立行政法人農業・生物系特定産業技術研究機構 作物可変施肥のための生育量計測装置
CN101701915B (zh) * 2009-11-13 2011-08-10 江苏大学 基于可见光—近红外双目机器视觉的粮虫检测装置和方法
CN102017938A (zh) 2010-10-19 2011-04-20 中国农业大学 一种温室悬挂式自走对靶喷雾机系统及其操作方法
WO2012151382A1 (en) 2011-05-03 2012-11-08 Algae Biosciences Inc. Microalgae-based soil inoculating system and methods of use
CN102384767B (zh) 2011-11-17 2014-03-12 江苏大学 一种设施作物生长信息无损检测装置和方法
CN102721651B (zh) 2012-06-18 2014-01-15 浙江大学 基于多光谱图像的植物叶片水分含量的检测方法及系统
CN103264730A (zh) 2013-05-22 2013-08-28 苏州大学 一种履带机器人移动平台
EP3032946B1 (en) 2013-07-11 2022-10-05 Blue River Technology Inc. Method for automatic phenotype measurement and selection
CN103439264B (zh) * 2013-08-15 2015-08-12 湖南星索尔航空科技有限公司 一种基于在线定位的茶树活体生育特征数据采集装置
CN103488173B (zh) 2013-09-09 2016-08-17 上海电控研究所 多地形智能移动平台及其控制方法
US9804097B1 (en) * 2014-06-02 2017-10-31 Iowa State University Research Foundation, Inc. Crop stand analyzer using reflective laser proximity sensors
WO2016009688A1 (ja) * 2014-07-16 2016-01-21 株式会社リコー システム、機械、制御方法、プログラム
US10241097B2 (en) 2015-07-30 2019-03-26 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
CN105825177A (zh) 2016-03-09 2016-08-03 西安科技大学 基于时相和光谱信息及生境条件的作物病害遥感识别方法
CN106323182A (zh) 2016-08-08 2017-01-11 北京农业信息技术研究中心 植物茎杆直径测量方法及装置
CN106441442B (zh) 2016-10-21 2018-10-30 中国科学院南京土壤研究所 一种大田作物表型信息高通量对等监测装置及监测方法
CN106406178B (zh) 2016-10-21 2023-11-21 中国科学院南京土壤研究所 一种温室作物生长信息实时对等监测装置及监测方法
CN206178392U (zh) * 2016-10-21 2017-05-17 中国科学院南京土壤研究所 一种温室作物生长信息实时对等监测装置
CN106989776B (zh) * 2017-05-05 2019-05-24 北京农业信息技术研究中心 一种可控环境作物表型连续获取方法
US10597896B1 (en) 2017-06-21 2020-03-24 Gualala Robotics, Inc. Tent lighting assembly for growing plants
CN108362323B (zh) 2018-02-11 2021-08-20 中国铁道科学研究院铁道建筑研究所 隧道衬砌检测机械手臂
WO2021102378A1 (en) * 2019-11-20 2021-05-27 FarmWise Labs, Inc. Method for analyzing individual plants in an agricultural field
CN112710663A (zh) * 2021-01-17 2021-04-27 无锡职业技术学院 一种高通量植物全生命周期表型信息的测量系统及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084289A2 (de) * 1982-06-16 1983-07-27 Sylvie Engel Klimaboden für landwirtschaftliche, industrielle und Wohnzwecke aus Heizfolien oder Hohlkammerplatten mit integrierter Bewässerung und deren Installationssystem
CN202773632U (zh) * 2012-07-25 2013-03-13 北京农业信息技术研究中心 一种温室水培蔬菜生长监测装置
CN103699095A (zh) * 2013-12-25 2014-04-02 北京交通大学 基于双目立体视觉的大棚作物生长态势监测系统及方法
CN107486834A (zh) * 2017-08-24 2017-12-19 上海大学 温室作物生长巡检机器人
CN108362326A (zh) * 2018-01-03 2018-08-03 江苏大学 一种悬轨式温室综合信息自动巡航监测装置
CN108387262A (zh) * 2018-01-03 2018-08-10 江苏大学 一种基于悬挂式滑轨平台的温室信息自动监测方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11867680B2 (en) 2015-07-30 2024-01-09 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
US12111301B2 (en) 2015-07-30 2024-10-08 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
US12038426B2 (en) 2015-07-30 2024-07-16 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
US11965870B2 (en) 2015-07-30 2024-04-23 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
US11874265B2 (en) 2015-07-30 2024-01-16 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
CN110430402A (zh) * 2019-08-20 2019-11-08 福州市协成智慧科技有限公司 一种物联网视觉优化监控设备
CN110700592B (zh) * 2019-09-27 2022-04-01 南京理工大学 悬挂式混凝土振捣装置及方法
CN110700592A (zh) * 2019-09-27 2020-01-17 南京理工大学 悬挂式混凝土振捣装置及方法
US11555690B2 (en) 2020-11-13 2023-01-17 Ecoation Innovative Solutions Inc. Generation of stereo-spatio-temporal crop condition measurements based on human observations and height measurements
US11925151B2 (en) 2020-11-13 2024-03-12 Ecoation Innovative Solutions Inc. Stereo-spatial-temporal crop condition measurements for plant growth and health optimization
WO2022099403A1 (en) * 2020-11-13 2022-05-19 Ecoation Innovative Solutions Inc. Generation of stereo-spatio-temporal crop condition measurements based on human observations and height measurements
US12067711B2 (en) 2020-11-13 2024-08-20 Ecoation Innovative Solutions Inc. Data processing platform for analyzing stereo-spatio-temporal crop condition measurements to support plant growth and health optimization
CN113048354A (zh) * 2021-03-09 2021-06-29 深圳微品致远信息科技有限公司 一种人工智能监控设备及监控系统
CN114655865A (zh) * 2022-04-08 2022-06-24 国网湖南省电力有限公司 一种变电站内吊车安全作业系统及其控制方法
CN115648170A (zh) * 2022-10-10 2023-01-31 江阴市锦绣江南环境发展有限公司 一种用于仓库或危废存储空间的巡检装置

Also Published As

Publication number Publication date
CN108362326A (zh) 2018-08-03
US11465886B2 (en) 2022-10-11
CN108362326B (zh) 2020-12-18
US20200325005A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2019134454A1 (zh) 一种悬轨式温室综合信息自动巡航监测装置
WO2019134453A1 (zh) 一种基于悬挂式滑轨平台的温室信息自动监测方法
CN105021225B (zh) 一种温室智能移动检测平台
CN107486834B (zh) 温室作物生长巡检机器人
CN109725233B (zh) 一种变电站智能巡检系统及其巡检方法
CN104991559B (zh) 一种自动巡航检测温室综合信息的方法
CN111637342B (zh) 一种面向田间的自走式作物表型获取设备及获取方法
CN103699095A (zh) 基于双目立体视觉的大棚作物生长态势监测系统及方法
CN109571404B (zh) 一种越障机构、越障智能巡检机器人及其变电站越障方法
CN203788733U (zh) 手自一体的采摘机器人
CN107611849A (zh) 一种自走式输电线缆巡检机器人
CN109572842B (zh) 一种爬杆机构、爬杆智能巡检机器人及其变电站爬杆方法
CN205129861U (zh) 一种风电叶片除尘机器人
CN107181201A (zh) 一种基于激光的空中清障装置及系统
CN108539858A (zh) 一种供变电站自动化智能巡检装置
CN113057154A (zh) 一种温室药液喷洒机器人
CN107116281A (zh) 大范围智能坡口切割系统及方法
CN114222044A (zh) 一种面向复杂农田的全方位近地高通量表型图像采集平台
CN110927813B (zh) 一种飞机油箱自动探测装置及方法
CN116289543A (zh) 一种结合巡检与典检的桥梁支座实时监测系统及方法
CN115553192A (zh) 一种天然橡胶树割胶机器人及其使用方法
CN108620840B (zh) 一种基于agv智能并联机器人的飞机舱门智能安装方法
CN219551815U (zh) 一种结合巡检与典检的桥梁支座实时监测系统
CN110393111B (zh) 一种农业多用途自动化喷雾机器人
CN208112335U (zh) 一种供变电站自动化智能巡检装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898288

Country of ref document: EP

Kind code of ref document: A1