WO2019132111A1 - 공기조화기 및 그 제어방법 - Google Patents

공기조화기 및 그 제어방법 Download PDF

Info

Publication number
WO2019132111A1
WO2019132111A1 PCT/KR2018/001962 KR2018001962W WO2019132111A1 WO 2019132111 A1 WO2019132111 A1 WO 2019132111A1 KR 2018001962 W KR2018001962 W KR 2018001962W WO 2019132111 A1 WO2019132111 A1 WO 2019132111A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
filter
unit
air conditioner
processor
Prior art date
Application number
PCT/KR2018/001962
Other languages
English (en)
French (fr)
Inventor
주의성
이광승
이지수
최원
고재권
신문선
윤인철
정세관
Original Assignee
삼성전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자(주) filed Critical 삼성전자(주)
Priority to US15/733,323 priority Critical patent/US11371742B2/en
Publication of WO2019132111A1 publication Critical patent/WO2019132111A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to an air conditioner capable of replacing a filter and a control method thereof, and more particularly, to an air conditioner capable of replacing a filter in consideration of the remaining life of the filter and a control method thereof.
  • the air conditioner refers to a device provided to adjust the properties such as temperature, humidity, cleanliness, air flow and the like in accordance with the demand of the use space.
  • the air conditioner basically includes an air blower for generating an air flow, and changes at least one of the properties of the air circulated by the air blower to change the environment of the use space to a comfortable state for the user.
  • the air conditioner is classified according to the property of the air to be controlled. Examples of the air conditioner include an air conditioner for cooling the air, a dehumidifier for lowering the humidity of the air, and an air purifier for increasing the cleanliness of the air.
  • An air cleaner is an apparatus for filtering fine dust or gas in air in a space such as a room, and can additionally perform sterilizing action against air. Specifically, the air purifier sucks contaminated indoor air into the interior of the housing, filters out dust, odor particles, etc. contained in the air by filtering the air, and discharges the purified air to the outside of the housing. The air purifier purifies the air by adsorbing dust, odor particles and the like contained in the air to the filter. When the dust and odor particles adsorbed on the filter are increased, the performance of the filter is gradually deteriorated. The use of an efficient air purifier requires the replacement of filters through appropriate cycles. In the conventional air cleaner, the air purifier can check the performance of the filter or the user can check the state of the filter with the naked eye and calculate the remaining life of the filter.
  • the air purifier does not reflect the use environment of the air cleaner without the user's intervention, so that the remaining life for replacing the filter can not be accurately calculated.
  • an air conditioner comprising: a housing having an inlet and an outlet through which air can flow in and out; A fan driving unit for discharging the air introduced through the inlet through the outlet; A filter unit for filtering the introduced air; A sensor unit capable of sensing foreign matter in the air; A storage unit capable of storing information; And a processor for storing information on the mass concentration of foreign matter in the air detected by the sensor unit in the storage unit and calculating the remaining life of the filter unit based on the information stored in the storage unit ≪ / RTI > Accordingly, the air conditioner calculates the remaining life of the filter to determine the appropriate filter replacement point.
  • the sensor unit senses the laser reflected on the foreign object to obtain sensing information, and the processor can determine the mass concentration of the foreign object based on the sensing information obtained by the sensor unit.
  • the sensor unit irradiates a laser to the air to detect a scattering degree of the laser reflected on the foreign object, and the processor can determine the mass concentration of the foreign object based on the detected scattering degree.
  • the filter unit may be provided on the inlet side and may filter the air flowing through the inlet.
  • the sensor unit may be provided in a separate space isolated from the flow path.
  • the sensor unit may be provided in the vicinity of the inlet.
  • the sensor unit may detect foreign matter of air in the flow path between the inlet and the filter unit.
  • the storage unit may store predetermined information about a correlation between the mass concentration of the foreign object and the remaining life of the filter unit, and the processor may determine the remaining life of the filter unit using the stored information.
  • the processor may calculate an accumulated dust amount of the filter unit based on information stored in the storage unit.
  • the processor can calculate the cumulative dust amount using the use time of the air conditioner, the air volume value, and the mass concentration of the foreign matter in the air.
  • the processor corrects the air flow rate value according to at least one of the use time and the accumulated dust amount.
  • a method of controlling an air conditioner having a housing, a fan driving unit, a filter unit, a sensor unit and a storage unit, the method comprising the steps of: Storing information on the mass concentration of foreign matter in the air in the storage unit; And controlling the remaining life of the filter unit to be calculated based on the stored information. Accordingly, the air conditioner calculates the remaining life of the filter to determine the appropriate filter replacement point.
  • the sensing unit senses a laser reflected on a foreign object to obtain sensing information. And determining the mass concentration of the foreign object based on the sensing information obtained by the sensor unit.
  • the sensor unit irradiates a laser to the air to detect the degree of scattering of the laser reflected on the foreign object; And controlling the mass concentration of the foreign object to be determined based on the sensed degree of scattering.
  • the method may further include calculating a dust amount accumulated in the filter unit based on the stored information.
  • the method may further include calculating an accumulated dust amount using the use time of the air conditioner, the air volume value, and the mass concentration of the foreign matter in the air.
  • the method may further include correcting the air flow rate value according to at least one of the use time and the accumulated dust amount.
  • the air conditioner calculates the remaining lifetime of the filter to determine the appropriate filter replacement point.
  • FIG. 1 is a perspective view showing an outer appearance of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an outer appearance of an air conditioner according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view illustrating an internal structure of an air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control structure of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a sensor unit of an air conditioner according to an embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating a part of the structure of an air conditioner according to an embodiment of the present invention.
  • FIG. 7 is a side view and a perspective view showing an outer appearance of an air conditioner and a housing according to an embodiment of the present invention.
  • FIG 8 shows a filter of an air conditioner according to an embodiment of the present invention.
  • FIG. 9 shows the performance of an air conditioner according to an embodiment of the present invention.
  • FIG. 10 shows set values in the air conditioner according to an embodiment of the present invention.
  • FIG. 11 is a flowchart for determining the remaining service life of the air conditioner according to an embodiment of the present invention.
  • FIG. 12 is a flowchart for determining the remaining service life of the air conditioner according to another embodiment of the present invention.
  • &quot comprising, " " including, " " having ", and the like, Or < / RTI >
  • 'module' or 'sub-module' performs at least one function or operation, and may be implemented in hardware or software, or a combination of hardware and software, And may be implemented as at least one processor
  • At least one of the plurality of elements in this specification is used to refer not only to all of a plurality of elements but also to each one or a combination thereof excluding the rest of the plurality of elements.
  • the X direction may be expressed in front of the air conditioner (100 in Fig. 1) for convenience, and the -X direction may be rearward of the air conditioner 100, respectively.
  • the other axis is normal to the plane parallel to the two axes.
  • the X direction is the normal direction.
  • FIG. 1 is a perspective view showing an outer appearance of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 100 applied to the concept of the present invention can be implemented in various types of devices such as an air purifier, a dehumidifier, and an air conditioner.
  • the air conditioner 100 according to an embodiment of the present invention may have a lid 110 having a shape approximate to a cube as a whole and having rounded corners and vertices. Air is introduced into the air conditioner 100 through the rear of the air conditioner 100 and the dust or gas of the air introduced into the air conditioner 100 is filtered and the front of the air conditioner 100 The air inside the air conditioner 100 is exhausted to the outside through the air outlet.
  • the air conditioner 100 includes an opening at the rear and a front respectively.
  • An opening (221 in FIG. 2) behind the air conditioner 100 is an inlet through which outside air flows into the air conditioner 100.
  • the air inside the air conditioner 100 is discharged to the outside in front of the air conditioner 100.
  • the left and right side surfaces of the cover 110 may include holes (refer to 720 in FIG. 7) for air inflow.
  • the air conditioner 100 may include a front panel 120 in front.
  • the front panel 120 includes a user interface unit 121 installed on a predetermined first area on the plate surface and displaying a user input and a state of the air conditioner 100, And may include a plurality of perforations or through holes.
  • the air filtered through the through holes can be discharged to the outside along the X-axis direction.
  • the front panel 120 is not limited to a plurality of perforations or through holes.
  • the air inside the air conditioner 100 may be discharged to the outside through a configuration different from that described above.
  • the air inside the air conditioner 100 can be discharged to the outside through an outlet (refer to 211 in FIG. 2) between the front panel 120 and the housing (340 in FIG. 3).
  • FIG. 2 is a perspective view showing an outer appearance of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 100 introduces air in the X-axis direction through the rear opening 221 (see reference numeral 220).
  • the air conditioner 100 discharges the air introduced through the rear opening 221 through the inside of the housing 340 and through the front panel 120 or the discharge port 211 in the X axis direction.
  • the front panel 120 may be movable.
  • the front panel 120 is movable in the X-axis direction or the -X-axis direction from the housing 340.
  • the size of the discharge port 211 between the front panel 120 and the housing 340 can be changed by moving the front panel 120.
  • the speed and the flow rate of the air discharged from the air conditioner 100 to the outside can be controlled by moving the front panel 120 or following the discharge port 211.
  • FIG. 3 is an exploded perspective view illustrating an internal structure of an air conditioner according to an embodiment of the present invention. 3, the internal structure of the air conditioner 100 according to an embodiment of the present invention will be described.
  • the air conditioner 100 includes a cover 110 and a rear panel unit 320 installed at the rear opening 221 of the air conditioner 100.
  • the cover 110 includes front and rear openings, A filter unit 330 located inside the lid 110 and filtering the air introduced through the rear panel unit 320, a housing 340, and a fan unit including a fan driving unit for moving air
  • a front panel unit 360 provided near the front opening of the air conditioner 100, a sensor unit 370 capable of sensing foreign matter (hereinafter also referred to as 'dust') of the air and an air conditioner 100
  • a control unit 380 for controlling all operations of the control unit 380.
  • the air conditioner 100 may additionally have various components in addition to these components.
  • the housing 340 can be coupled onto the base 311 that contacts the bottom surface and can be coupled to the lid 110.
  • the edges of the lid 110 are rounded, thereby facilitating the user's convenience.
  • a housing 340 and a frame 312, to which various components of the air conditioner 100 are coupled or supported, are coupled.
  • the lid 110 may include a hole (720 in FIG. 7). The holes are described in detail in Fig.
  • the rear panel unit 320 may include a plate that covers the suction port in the rear of the air conditioner 100, and the plate may include at least one through hole.
  • the rear panel unit 320 is coupled to the frame 312 or the cover 110 so as to cover the rear opening 221 to protect the inside of the air conditioner 100.
  • the air outside the air conditioner 100 is introduced into the air conditioner 100 through the through holes of the rear panel unit 320.
  • a plurality of through holes of the rear panel unit 320 are uniformly distributed over the entire surface of the rear panel unit 320 so that the outside air can be uniformly introduced.
  • the filter unit 330 is arranged so that at least one filter has a plate surface perpendicular to the X axis direction.
  • the plurality of filters are sequentially disposed along the X direction so that air moving along the X direction can pass through each filter.
  • Each filter of the filter unit 330 includes a filter member that purifies the air through interaction with air, and a filter frame that supports the filter member.
  • the type of each filter of the filter unit 330 is determined according to the characteristics of the filter member, and a plurality of filters having different characteristics can be applied to the filter unit 330 according to the design method.
  • the filter of the filter unit 330 performs functions such as dust collection, deodorization, gas purification, and sterilization from the air.
  • the filter unit 330 includes a pre-filter for a relatively large mesh interval for filtering relatively large particles of dust, a dust filter for dust collection of fine dust, and a deodorant A filter, an active oxygen layer for bactericidal action, and the like.
  • a pre-filter for a relatively large mesh interval for filtering relatively large particles of dust
  • a dust filter for dust collection of fine dust and a deodorant
  • a filter an active oxygen layer for bactericidal action, and the like.
  • Each filter of the filter unit 330 is separately detachable from the housing 340 or the frame 312 so that the individual filters can be replaced or cleaned.
  • the housing 340 guides the introduced air to be moved forward of the housing 340 by the blowing unit 350.
  • the housing 340 is installed in the air conditioner 100 in front of the filter unit 330 so that purified air passing through the filter unit 330 can be moved to a discharge port in front of the housing 340.
  • the interior of the housing 340 may have a circular shape so as to correspond to the external shape of the blowing unit 350.
  • the air blowing unit 350 includes a motor and a blowing fan that generates air flow of the air by rotating at a predetermined number of revolutions per hour by the motor.
  • the air blowing unit 350 is installed in front of the housing 340 and sucks the air outside the air conditioner 100 into the air conditioner 100 and passes the cleaned air through the filter unit 330 to the housing 340.
  • the air blowing unit 350 can send air in various directions according to the structure of the blowing fan.
  • the blowing unit 350 according to the embodiment is provided to move the air in the X direction.
  • the air blowing unit 350 is provided so as to be able to stop and drive the fan and change the driving speed in accordance with the control of the control unit 380.
  • the processor (410 in FIG. 4) can calculate air volume information based on the driving speed.
  • the front panel unit 360 covers the discharge port in front of the housing 340.
  • the front panel unit 360 includes a front panel, a flow guide provided on the rear panel of the front panel, and a grill plate provided behind the front panel.
  • the control unit 380 may include circuitry on a printed circuit board that includes electronic components such as a chipset, processor, CPU, memory, and the like.
  • the processor 410 of FIG. 4 is installed on the frame 312 or the housing 340 of the air conditioner 100 and is connected to the components required for driving control such as the air blowing unit 350 and the front panel unit 360 Lt; / RTI > Hereinafter, the drive control method of the processor will be described in detail.
  • the air conditioner 100 according to an exemplary embodiment of the present invention includes a sensor unit 420, a storage unit 430, a user interface unit 440, a blowing unit 450, Unit 460. < / RTI >
  • the configuration of the air conditioner 100 according to the embodiment of the present invention shown in FIG. 4 is merely an example, and the air conditioner 100 according to an embodiment of the present invention may include the configuration But can also be implemented in other configurations. That is, the air conditioner according to the embodiment of the present invention may be implemented by adding any configuration other than the configuration shown in FIG. 4, or by excluding any of the configurations shown in FIG.
  • the sensor unit 420 senses foreign matter in the air.
  • the processor 410 can determine the mass concentration of the foreign object in the air based on the information about the foreign object sensed through the sensor unit 420.
  • the sensor unit 420 can be sensed by using an optical method such as laser or visible light.
  • the sensor unit 420 may be positioned in the air flow path to sense foreign matter in the air flowing into the air conditioner 100. Alternatively, the sensor unit 420 may be located in a space isolated from the flow path. The position and the number of the sensor unit 420 are not limited thereto, and they may be located in different spaces or one or more.
  • the foreign matter in the air detected by the sensor unit 420 may vary.
  • the sensor unit 420 can distinguish and detect foreign matter such as fine dust PM10 having a diameter of less than 10 mu m and ultrafine dust PM2.5 having a diameter of less than 2.5 mu m by distinction, And may be detected by a component of a foreign substance such as a chemical substance such as various particles or a metal substance.
  • the sensor unit 420 can obtain sensing information by, for example, irradiating a laser beam and sensing the laser beam reflected by the foreign object.
  • the sensing information means the scattering degree of the reflected laser.
  • the processor 410 can receive the sensing information from the sensor unit 420 and determine the mass concentration of the foreign object.
  • the correlation between the scattering degree and the mass concentration of the foreign object may be stored in the storage unit 430 through the experimental value.
  • the unit of mass concentration of the foreign matter stored as the experimental value may be mg / m3 or / / m3.
  • the sensor unit 420 can obtain sensing information for each type of foreign object or obtain sensing information based on the total amount of foreign objects.
  • the processor 410 may output the mass concentration of the foreign object determined through a display or a speaker (not shown) of the user interface unit 440 described later. The process of obtaining the cumulative dust amount will be described in detail in Fig.
  • the storage unit 430 may store various information under the control of the processor 410 and may store information received from the outside through the communication unit 470.
  • the information stored in the storage unit 430 may be information relating to, for example, a correlation to the lifetime of the filter with respect to the mass concentration of foreign matter in the air, or the cumulative use time of driving the fan.
  • the user interface unit 440 may receive a user input, and output a video or audio.
  • the air conditioner 100 can directly receive user inputs such as user's operation and voice through the user interface unit 440.
  • the user interface unit 440 may include a touch screen including a display, a button, a microphone, and the like.
  • the air conditioner 100 can indirectly receive user input through the communication unit 470 or the like.
  • the air conditioner 100 receives a user input through a button of a remote controller or a microphone provided in a remote controller, and receives a user input converted into a digital signal through the communication unit 470 or the like.
  • the user interface unit 440 can inform the user of the specific state of the air conditioner 100 through a display or a speaker (not shown).
  • the blowing unit 450 regulates the operation of the blowing motor 451 under the control of the processor 410.
  • the processor 410 may adjust the value for the number of revolutions per hour of the ventilation motor 451. [
  • the processor 410 may control the amount of air flowing into the air conditioner 100 by adjusting the rotation speed value of the blowing motor 451 per hour.
  • the panel unit 460 controls the operation of the front panel driver 461 under the control of the processor 410.
  • the panel unit 460 may include a user interface unit 121 for displaying a user input and a status of the air conditioner 100.
  • the user interface unit 121 can receive a user's input and can output visual information or auditory information to the user.
  • the communication unit 470 can perform communication with an external device (not shown) under the control of the processor 410.
  • the communication unit 470 may be implemented by any one of various communication methods.
  • the communication unit 470 includes a connection unit for wired communication, and the connection unit connects the signal / data according to standards such as HDMI (High Definition Multimedia Interface), HDMI-CEC (Consumer Electronics Control), USB, / Receive, and include at least one connector or terminal corresponding to each of these specifications.
  • the communication unit 470 can perform wired communication with a plurality of servers through a wired LAN (Local Area Network).
  • LAN Local Area Network
  • the communication unit 470 may be implemented by various other communication methods other than the connection including the connector or the terminal for the wired connection.
  • it may include an RF circuit for transmitting / receiving an RF (Radio Frequency) signal to perform wireless communication with an external device, and may include a Wi-fi, a Bluetooth, a Zigbee, (Wireless USB), NFC (Near Field Communication), and infrared (IR) communication method.
  • RF Radio Frequency
  • the processor 410 controls the various configurations of the air conditioner 100 to perform an operation.
  • the processor 410 includes a control program (or an instruction) for enabling the control operation to be performed, a nonvolatile memory in which the control program is installed, a volatile memory in which at least a part of the installed control program is loaded, And a central processing unit (CPU). Further, such a control program may be stored in an apparatus other than the air conditioner 100 as well.
  • the control program may include program (s) implemented in the form of at least one of BIOS, device driver, operating system, firmware, platform and application (application).
  • the application program may be installed or stored in the air conditioner 100 at the time of manufacturing the air conditioner 100, or may receive data of an application program from the outside at the time of use, And can be installed in the air conditioner 100.
  • the data of the application program may be downloaded to the air conditioner 100 from an external server, such as an application market. Or may be copied or moved to the air conditioner 100 via a USB storage device or the like.
  • an external server or USB storage device is an example of the computer program product of the present invention, but is not limited thereto.
  • FIG. 5 is a perspective view illustrating a sensor unit of an air conditioner according to an embodiment of the present invention.
  • a guard 510 for protecting the sensor unit 370 near the light emitting unit and the light receiving unit of the sensor unit 370 may be provided.
  • the guard 510 may be positioned between the sensor unit 370 and the lid 110.
  • the guard 510 is provided with at least one hole for enabling air communication, and may have a laminated structure.
  • the holes of the guard 510 shown in FIG. 5 may exist in various shapes such as a circle, a square, and a triangle.
  • the guard 510 may include a mesh or net that can filter out some of the foreign matter in the incoming air. A part of the foreign matter filtered by the guard 510 may be a relatively large foreign matter.
  • the lid 710 is not limited to the above-described example, and means a structure capable of preventing accumulation of dust on the sensor unit 370.
  • the sensor unit 370 and the guard 510 may be in close contact with each other (see reference numeral 520).
  • the guard 510 is brought into close contact with the sensor unit 370 so that the hole of the guard 510 is positioned at the light emitting unit and the light receiving unit of the sensor unit 370 so that the sensor unit 370 can detect information about the foreign object.
  • FIG. 6 is a perspective view illustrating a part of the structure of an air conditioner according to an embodiment of the present invention.
  • the sensor unit 370 may be located inside the housing 610 of the air conditioner 100 (see reference numeral 600).
  • the housing 610 has an outer surface opened and a sensor chamber 620 having a receiving space inward is present and a sensor unit 370 may be provided in the sensor chamber 620.
  • the sensor unit 370 is located inside the air conditioner 100 and can detect foreign matter in the air flowing into the air conditioner 100.
  • the sensor unit 370 is located on the side surface of the air conditioner 100 according to the present invention, but the present invention is not limited thereto. Therefore, the sensor unit 370 provided in the sensor chamber 620 is only one of the embodiments, and the sensor unit 370 is not provided in the sensor chamber 620 but in the flow path inside the housing 610 or outside the flow path, (Not shown).
  • the sensor unit 370 provided in the housing 610 may be provided in the rear panel unit 320 according to the flow of air introduced from the inside of the air conditioner 100, May be provided in the filter unit 330, or may be provided in the housing 610.
  • the sensor unit 370 may be located in a space before the incoming air is filtered by the filter unit 330.
  • the sensor unit 370 can be provided at a position where the mass concentration of the foreign matter in the sensing space is the same as or similar to the mass concentration of the foreign matter in the air inlet side space of the filter unit 330.
  • the sensor unit 370 may be positioned at the inlet and the outlet, respectively, to measure the mass concentration of the foreign matter before and after the foreign matter in the air is removed by the filter.
  • the processor 410 may accurately measure the mass concentration of the foreign object to calculate the remaining life of the filter.
  • 7 is a side view and a perspective view showing an outer appearance of an air conditioner and a housing according to an embodiment of the present invention.
  • 7 shows a diagram (reference numeral 700 and reference numeral 710) of the air conditioner 100 and the lid 110 viewed from the XZ plane in the Y-axis direction and a diagram (reference numerals 730 and 740 ).
  • a hole in the side surface of the lid 110 so that air can flow in and out (refer to reference numerals 710 and 730).
  • a hole 720 exists in the lid 110 in the direction toward the -Y axis.
  • the position of the hole 720 is not limited thereto and the hole 720 of the cover 110 may be provided in the vicinity of the sensor portion 370.
  • One or more holes 720 may be provided. Further, when a plurality of holes 720 are provided, the plurality of holes 720 may be located near each other (refer to reference numeral 710), but may be located away from each other.
  • the filter 8 shows a filter of an air conditioner according to an embodiment of the present invention.
  • the filter can remove foreign matter in the air. Since there are various types of foreign matter in the air, various kinds of filters for removing foreign matter may exist.
  • the filter supports 801 and 802, which fix the position of the filter, are present in some configurations of the filter unit 330.
  • the shape of the filter supports 801 and 802 is not limited to a quadrangle, and may vary depending on the internal structure of the air conditioner 100.
  • the processor 410 can obtain the amount of dust accumulated in the filter by using the sensing information.
  • the processor 410 obtains the amount of dust (mg / s) to be filtered per second by the product of the mass concentration (mg / m3) of the dust and the air volume (m3 / s) using the sensing information sensed by the sensor unit 420 .
  • the processor 410 may determine the amount of dust (mg) accumulated in the filter by the product of the amount of dust (mg / s) to be filtered per second and the operating time (s) of the air conditioner 100.
  • the accumulated amount of dust can be obtained by the following equation.
  • Amount of accumulated dust Mass concentration of dust * Air volume * Operating time
  • the processor 410 may output the image or voice to the user through the user interface unit 440 to replace the filter.
  • the processor 410 may initialize the use time of the filter, either automatically or in response to user input through the user interface 440. [ Accordingly, the processor 410 can initialize the use time of the filter after replacement of the filter, so that the performance of the replaced filter can be grasped accurately.
  • FIG. 9 shows the performance of an air conditioner according to an embodiment of the present invention.
  • FIG. 9 is a graph showing a correlation between the performance of the air conditioner 100 and the dust accumulation amount.
  • the performance of the air conditioner 100 can be lowered linearly as the amount of accumulated dust increases in the filter of the air conditioner 100 (see reference numeral 910). Or the dust accumulation amount in the filter increases, the performance of the air conditioner 100 may be degraded nonlinearly (refer to reference numeral 920).
  • the correlation between the amount of dust accumulation and the performance of the air conditioner 100 may vary depending on the filter of the air conditioner 100, the use environment, and the type of foreign objects in the air. For example, the performance of the air conditioner 100 in which 10 mg of fine dust is accumulated and the air conditioner 100 in which 10 mg of ultrafine dust are accumulated may be different.
  • the performance of the air conditioner 100 may vary depending on the air volume and the degree of dust filtering of the filter.
  • a change in the air volume according to the use of the air conditioner 100 will be described.
  • the amount of foreign matter accumulated in the filter increases while using the air conditioner 100, the amount of air output to the outside due to the resistance of the foreign matter (hereinafter, referred to as "actual air amount") may be reduced .
  • the actual air amount passing through a filter having a life of 100% and a filter having a life of 10% may be different from 1 m3 / s to 0.7 m3 / s.
  • the actual amount of air flowing into the air conditioner 100 due to an increase in the amount of dust accumulated in the filter may be smaller than the set air amount.
  • the performance of the filter can be improved, but the actual air volume is reduced, so that the performance of the air conditioner 100 can be lowered.
  • the difference value between the set air volume and the actual air volume according to the use of the air conditioner 100 and the difference value of the filter performance can be calculated through experiments.
  • the difference value through the experiment is stored in the storage unit 430 and the processor 410 can calculate the remaining lifetime of the filter by correcting the difference value and accurately grasping the accumulated amount of dust accumulated in the filter. For example, if the actual air volume value is 30% lower than the set air volume value due to an increase in accumulated dust amount, the processor 410 can calculate the actual air volume value to 70% of the set air volume value. Accordingly, the processor 410 may correct the air flow rate value according to at least one of the use time and the accumulated dust amount.
  • FIG. 10 shows set values in the air conditioner according to an embodiment of the present invention.
  • the performance of the filter is correlated with the time from the replacement time of the filter, the use time of the air conditioner 100, or the amount of accumulated foreign matter. The longer the use time of the air conditioner 100 is, the lower the performance of the filter can be. Or if the amount of foreign matter accumulated in the filter increases with use of the air conditioner 100, the performance of the filter may be lowered.
  • the change in the performance of the filter may vary depending on the type of the filter, the use environment of the air conditioner 100, and the type of foreign matter in the air.
  • the parameters related to the change in the performance of the filter are not limited to the parameters listed above, but may include other parameters.
  • the mass concentration of the foreign matter in the air can be determined based on the sensing information sensed by the sensor unit 370 by the processor 410.
  • the air flow rate may be stored in the storage unit 430 as information corresponding to the experimental value after being obtained through the experimental value for the corresponding air conditioner. Since the air volume may vary depending on the use environment, information on the proper air volume may be stored in the storage unit 430 according to the use environment.
  • the time when the processor 410 drives the blowing motor 451 can be stored in the storage unit 430 to calculate the usage time.
  • the processor 410 can calculate the use time and the accumulated dust amount.
  • the relationship between the dust accumulation amount and the performance of the filter will be described.
  • the usage time and the dust measurement value can be classified into 4 steps in total.
  • the percentage point interval of each step in the four steps is set at 25%. Dividing the usage time and dust measurement into four steps is a random division, and depending on the design, the number of steps can be higher or lower.
  • the percentage points per step may be different. For example, if the step is step 3, the step-by-step percentage point may be 30%. If the step is step 5, the step-by-step percentage point may be 20%.
  • the processor 410 may output the time and dust steps of the air conditioner 100 via the display or other output of the user interface portion 440. [ Accordingly, the user can grasp the filter replacement timing of the air conditioner 100. [
  • the limit value D mg of the amount of dust that can be accommodated by the filter may be different for each filter, and the limit value of the amount of dust may be stored in the storage unit 430 as information corresponding to the experimental value. Therefore, the values of A, B and C correspond to 25%, 50% and 75% of D, respectively. For example, if D is 100,000, A is 25,000, B is 50,000, and C is 75,000.
  • Dust stage 1 is when the amount of dust accumulated in the filter is more than A mg after the filter has been replaced. If it is determined that the measured cumulative dust amount is less than A mg, the processor 410 may determine the filter performance to be 100%. to be. If it is determined that the dust accumulation amount is greater than A mg, the processor 410 may determine the current dust level to be one level and determine the life of the filter to be 75%.
  • Dust stage 2 is when the amount of dust accumulated in the filter is more than B mg after the filter has been replaced.
  • B mg is about 2/4 of the dust limit acceptable for the filter, and the value of B may vary depending on the filter. If it is determined that the accumulated accumulated dust amount is less than B mg, the processor 410 may determine the filter life of 75%. to be. If it is determined that the dust accumulation amount is larger than B mg, the processor 410 may determine the current dust level to be in two stages and determine the life of the filter to be 50%.
  • Dust stage 3 is the case where the dust accumulated in the filter after the filter is replaced is over C mg.
  • C mg is about 3/4 of the limit of the amount of dust that the filter can accommodate, and the value of C may vary depending on the filter. If it is determined that the accumulated accumulated dust amount is less than C mg, the processor 410 can determine the filter life of 50%. to be. If it is determined that the dust accumulation amount is greater than C mg, the processor 410 may determine the current dust level to be in three stages and determine the life of the filter to be 25%.
  • Dust stage 4 is when dust accumulated in the filter is more than D mg after the filter has been replaced.
  • D mg is a value of about 4/4 of the limit of the amount of dust that the filter can accommodate, and the value of D may vary depending on the filter. If it is determined that the measured accumulated dust amount is less than D mg, the processor 410 can determine the filter life of 25%. to be. If it is determined that the dust accumulation amount is larger than D mg, the processor 410 may determine the current dust level to be 4 levels and determine the life of the filter to be 0%.
  • D mg is a value of about 4/4 of the limit of the amount of dust that the filter can accommodate, and the value of D may vary depending on the filter.
  • 11 is a flowchart for determining the remaining service life of the air conditioner according to an embodiment of the present invention. 11, a flowchart will be described with reference to the description of FIG. Hereinafter, a process of determining the lifetime of the filter based on the dust amount measured by the processor 410 will be described.
  • the processor 410 analyzes the information on the dust accumulation amount measured so far through information stored in the storage unit 430 or other information.
  • the processor 410 determines whether the dust accumulation amount exceeds A mg corresponding to the first stage of dust (operation S1001). If it is determined that the dust accumulation amount does not exceed A mg ('No' in operation S1101), the processor 410 determines that the lifetime of the filter is 100%.
  • the processor 410 determines whether the dust accumulation amount exceeds the B mg corresponding to the second stage dust (operation S1102). If it is determined that the dust accumulation amount does not exceed B mg ('No' in operation S1102), the processor 410 determines that the dust accumulation amount is one level and determines the life of the filter to be 75%.
  • the processor 410 determines whether the dust accumulation amount exceeds the C mg corresponding to the third dust stage (operation S1103). If it is determined that the dust accumulation amount does not exceed C mg (No in operation S1103), the processor 410 determines the dust accumulation amount to be two stages and determines the life of the filter to be 50%.
  • the processor 410 determines whether the dust accumulation amount exceeds D mg corresponding to dust 4 (operation S1104). If it is determined that the dust accumulation amount does not exceed D mg ('No' in operation S1104), the processor 410 judges that the dust accumulation amount is in three stages and the life of the filter is 25%.
  • the processor 410 determines the dust accumulation amount to be 4 levels and determines the life of the filter to be 0%.
  • the processor 410 may output the dust accumulation amount step determined through the user interface unit 440.
  • the limit driving time taken until the filter reaches the end of its life due to the use of the air conditioner 100 can be obtained through an experimental value.
  • the processor 410 may estimate the performance of the current filter based on the current use time and the limit drive time.
  • the threshold driving time may be different for each filter, and the threshold driving time may be stored in the storage unit 430.
  • the limit drive time of a particular filter is D time.
  • the A, B and C values may correspond to 25%, 50% and 75% of the D values, respectively. For example, if the value of D is 10,000, A is 2,500, B is 5,000, and C is 7,500.
  • Time 1 is a case where the use time of the ventilation motor 451 is equal to or more than A hours after the filter is replaced. If it is determined that the use time is less than the A time, the processor 410 may determine the performance of the filter as 100%. If it is determined that the use time is more than the A time, the processor 410 may determine the current time step to be one step and the filter performance to be 75%.
  • Time 2 is a time when the use time of the blowing motor 451 is equal to or longer than the time B after the filter is replaced.
  • B time is about 2/4 of the limit drive time, and the value of B may be different depending on the filter. If it is determined that the use time is less than the B time, the processor 410 may determine the filter performance to be 75%. If it is determined that the use time is greater than the B time, the processor 410 may determine the current time step to be 2 steps and the filter performance to be 50%.
  • Time 3 is a case where the use time of the blowing motor 451 is equal to or longer than the C time after the filter is replaced.
  • C time is about 3/4 of the limit drive time, and the value of C may be different depending on the filter. If it is determined that the use time is less than the C time, the processor 410 may determine the filter performance to be 50%. If it is determined that the use time is greater than the C time, the processor 410 may determine the current time step to be 3 steps and the filter performance to be 25%.
  • Step 4 is a case where the use time of the blowing motor 451 is D or more after the filter is replaced.
  • D time is a value of the limit drive time, and the value of D may be different depending on the filter. If it is determined that the use time is less than the D time, the processor 410 may determine the filter performance to be 25%. If it is determined that the use time is greater than the D time, the processor 410 may determine the current time step to be 4 steps and the filter performance to be 0%. The processor 410 may output the time value or the dust value corresponding to the current step through the user interface unit 440. [ Hereinafter, Fig. 11 will be described with reference to Figs. 9 and 10. Fig.
  • FIG. 12 is a flowchart for determining the remaining service life of the air conditioner according to another embodiment of the present invention. 12, a flowchart will be described with reference to FIGS. 10 and 11. FIG. Hereinafter, a process of determining the lifetime of the filter based on the cumulative use time value and the measured dust amount will be described.
  • the processor 410 analyzes the information on the accumulated usage time value and information on the dust accumulation amount measured up to now through the information stored in the storage unit 430 or other information.
  • the processor 410 determines whether the cumulative use time exceeds the time A corresponding to the time 1 step (operation S1201). If it is determined that the cumulative use time does not exceed A time (No in operation S1201), the processor 410 determines whether the dust accumulation amount exceeds the A mg corresponding to the dust 1 level (operation S1202). If it is determined that the dust accumulation amount does not exceed A mg ('No' in operation S1202), the processor 410 determines that the lifetime of the filter is 100%. If it is determined that the dust accumulation amount exceeds A mg (Yes in operation S1202), the processor 410 determines that the dust level is one level and determines the life of the filter to be 75%.
  • the processor 410 determines whether the cumulative use time exceeds the B time corresponding to the time 2 step (operation S1211). If it is determined that the cumulative use time does not exceed the time B (No at operation S1211), the processor 410 determines the time step to be one step and determines whether the dust accumulation amount exceeds the B mg corresponding to the dust 2 (Operation S1212). If it is determined that the dust accumulation amount does not exceed B mg ('No' in operation S1212), the processor 410 determines that the dust level is one level, and determines that the life of the filter is 75%. If it is determined that the dust accumulation amount exceeds B mg (Yes in operation S1212), the processor 410 determines the dust level to be two levels, and determines that the life of the filter is 50%.
  • the processor 410 determines whether the cumulative use time exceeds the C time corresponding to the time 3 step (operation S1221). If it is determined that the cumulative use time does not exceed the C time ("No" in operation S1221), the processor 410 determines the time step to be two stages and judges whether the dust accumulation amount exceeds C mg corresponding to the third stage of dust (Operation S1222). If it is determined that the dust accumulation amount does not exceed C mg ('No' in operation S1222), the processor 410 determines that the dust stage is in the second stage and determines that the life of the filter is 50%. If it is determined that the dust accumulation amount exceeds C mg (Yes in operation S1222), the processor 410 determines the dust level to be three levels and determines the life of the filter to be 25%.
  • the processor 410 determines whether the cumulative use time exceeds the D time corresponding to the time 4 step (operation S1231). If it is determined that the cumulative use time does not exceed the D time (No in operation S1231), it is determined whether the dust accumulation amount exceeds D mg corresponding to the dust 4 stage (operation S1232). If it is determined that the dust accumulation amount does not exceed D mg ('No' in operation S1232), the processor 410 determines the dust level to be in three levels, and the processor 410 determines that the life of the filter is 25%.
  • the processor 410 determines the dust level at step 4 and determines that the life of the filter is 0%. If it is determined that the cumulative use time exceeds the D time (Yes in operation S1231), the processor 410 determines the time step to be 4 steps and determines that the life of the filter is 0%.
  • the lifetime of the filter is not limited to the above-described factors of dust accumulation and accumulated use time.
  • the lifetime of the filter may vary depending on the amount of dust accumulated, the amount of air, the time of use, and the type of dust. Therefore, the processor 410 can determine the life of the filter differently depending on the combination of the dust accumulation amount, the air amount, the use time, and the type of dust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 공기 조화기 및 그 제어방법에 관한 것으로서, 공기 조화기는, 공기의 유입 및 유출이 가능한 유입구 및 유출구를 가지는 하우징; 상기 유입구를 통해 유입된 공기를 상기 유출구를 통해 토출시키는 팬구동부; 상기 유입된 공기를 필터링하는 필터부; 상기 공기 중의 이물을 감지할 수 있는 센서부; 정보를 저장할 수 있는 저장부; 및 상기 센서부에 의해 감지된 상기 공기 중의 이물의 질량농도에 관한 정보를 상기 저장부에 저장하고, 상기 저장부에 저장된 정보에 기초하여 상기 필터부의 남은 수명을 계산하는 프로세서를 포함한다. 이에 의하여, 공기조화기는 필터의 남은 수명을 계산하여 적절한 필터 교체 시점을 알 수 있다.

Description

공기조화기 및 그 제어방법
본 발명은 필터의 교체가 가능한 공기 조화기 및 그 제어방법에 관한 것으로서, 상세하게는 필터의 잔여 수명을 고려하여 필터의 교체가 가능한 공기 조화기 및 그 제어방법에 관한 것이다.
공기조화기는 사용 공간의 요구에 따라서, 온도, 습도, 청정도, 기류 등의 속성을 조절하도록 마련된 장치를 지칭한다. 공기조화기는 기본적으로 기류를 생성하는 송풍기를 구비하고, 송풍기에 의해 순환되는 공기의 속성 중 적어도 하나를 변경함으로써, 사용 공간의 환경을 사용자에게 있어서 쾌적한 상태로 바꾼다. 공기조화기는 조절하는 공기의 속성에 따라서 구분되는 바, 그 예시로는 공기의 냉각을 위한 에어컨, 공기의 습도를 낮추기 위한 제습기, 공기의 청정도를 높이기 위한 공기청정기 등이 있다.
공기청정기는 실내 등의 공간 내에서 공기 중의 미세먼지 또는 가스를 필터링하는 장치이며, 부가적으로 공기에 대한 살균작용도 수행할 수 있다. 구체적으로, 공기청정기는 오염된 실내 공기를 하우징의 내부로 흡입하고, 공기에 함유된 먼지, 냄새 입자 등을 필터로 걸러냄으로써 공기를 정화시키고, 정화된 공기를 하우징의 외부로 배출한다. 공기청정기는 공기에 함유된 먼지, 냄새 입자 등을 필터에 흡착시켜서 공기를 정화시키는데, 필터에 흡착되는 먼지 및 냄새입자가 많아지면 필터의 성능이 점점 떨어진다. 효율적인 공기청정기의 사용을 위해서는 적절한 주기를 통한 필터의 교환이 필요하다. 종래의 공기청정기에서는 공기청정기가 필터의 성능을 확인하거나, 사용자가 육안으로 필터의 상태를 확인하여 필터의 남은 수명을 계산할 수 있었다.
그러나, 종래 기술에 의하면, 사용자의 개입 없이 공기청정기가 필터의 성능을 확인하는 것은, 공기청정기의 사용환경을 반영하지 않아서, 필터 교체를 위한 남은 수명을 정확히 계산할 수 없었다.
또한, 필터의 성능을 정확히 판단하기 위해서는 사용자가 육안으로 필터의 상태를 확인하는 불편함이 있었다.
따라서, 사용자의 개입 없이 공기청정기 필터 교체의 적절한 시기를 판단할 수 있는 공기청정기가 필요하다.
따라서, 본 발명의 목적은, 보다 정확하게 필터의 남은 수명을 계산하는 공기조화기와 그 제어방법 및 컴퓨터프로그램제품을 제공하는 것이다.
상기 목적은, 공기 조화기에 있어서, 공기의 유입 및 유출이 가능한 유입구 및 유출구를 가지는 하우징; 상기 유입구를 통해 유입된 공기를 상기 유출구를 통해 토출시키는 팬구동부; 상기 유입된 공기를 필터링하는 필터부; 상기 공기 중의 이물을 감지할 수 있는 센서부; 정보를 저장할 수 있는 저장부; 및 상기 센서부에 의해 감지된 상기 공기 중의 이물의 질량농도에 관한 정보를 상기 저장부에 저장하고, 상기 저장부에 저장된 정보에 기초하여 상기 필터부의 남은 수명을 계산하는 프로세서를 포함하는 공기 조화기에 의해 달성될 수 있다. 이에 따라 공기 조화기는 필터의 남은 수명을 계산하여 적절한 필터 교체 시점을 알 수 있다.
상기 센서부는 이물에 반사된 레이저를 감지하여 센싱정보를 얻고, 상기 프로세서는 센서부에 의해 얻어진 센싱정보에 기초하여 이물의 질량농도를 결정할 수 있다.
상기 센서부는 레이저를 공기에 조사하여 상기 이물에 반사된 레이저의 산란 정도를 감지하고, 상기 프로세서는, 상기 감지된 산란 정도에 기초하여 상기 이물의 질량농도를 결정할 수 있다.
상기 필터부는, 상기 유입구 측에 마련되어, 상기 유입구를 통해 유입되는 공기를 필터링할 수 있다.
상기 센서부는, 유로와 격리된 별도의 공간에 마련될 수 있다.
상기 센서부는, 상기 유입구의 근방에 마련될 수 있다.
상기 센서부는, 상기 유입구와, 상기 필터부 사이의 유로에 있는 공기의 이물을 감지할 수 있다.
상기 저장부는, 상기 이물의 질량농도와, 상기 필터부의 남은 수명 간의 상관관계에 관하여 미리 정해진 정보를 저장하고, 상기 프로세서는, 상기 저장된 정보를 이용하여 상기 필터부의 남은 수명을 결정할 수 있다.
상기 프로세서는, 상기 저장부에 저장되는 정보에 기초하여 상기 필터부의 누적된 먼지량을 계산할 수 있다.
상기 프로세서는, 상기 공기 조화기의 사용 시간, 풍량 값 및 상기 공기 중의 이물의 질량농도를 이용하여 누적된 먼지량을 계산할 수 있다.
상기 프로세서는, 상기 사용 시간, 상기 누적된 먼지량 중 적어도 하나에 따라 상기 풍량 값을 보정하는 공기 조화기.
상기 목적은, 본 발명에 따라, 하우징, 팬구동부, 필터부, 센서부 및 저장부를 구비하는 공기 조화기를 제어하는 방법에 있어서, 상기 센서부에 의해 감지된, 상기 하우징에 마련된 유입구를 통해 유입된 공기 중의 이물의 질량농도에 관한 정보를 상기 저장부에 저장하는 단계; 저장된 정보에 기초하여 상기 필터부의 남은 수명을 계산하도록 제어하는 단계를 더 포함할 수 있다. 이에 따라 공기 조화기는 필터의 남은 수명을 계산하여 적절한 필터 교체 시점을 알 수 있다.
상기 방법은 상기 센서부는 이물에 반사된 레이저를 감지하여 센싱정보를 얻는 단계; 상기 센서부에 의해 얻어진 센싱정보에 기초하여 이물의 질량농도를 결정하는 단계를 더 포함할 수 있다.
상기 방법은 상기 센서부는 레이저를 공기에 조사하여 상기 이물에 반사된 레이저의 산란 정도를 감지하는 단계; 상기 감지된 산란 정도에 기초하여 이물의 질량농도를 결정하도록 제어하는 단계를 더 포함할 수 있다.
상기 방법은 상기 이물의 질량농도와, 상기 필터부의 남은 수명 간의 상관관계에 관하여 미리 정해진 정보를 상기 저장부에 저장하는 단계; 상기 저장된 정보를 이용하여 상기 필터부의 남은 수명을 결정하는 단계를 더 포함할 수 있다.
상기 방법은 저장되는 정보에 기초하여 상기 필터부에 누적된 먼지량을 계산하는 단계를 더 포함할 수 있다.
상기 방법은 상기 공기 조화기의 사용 시간, 풍량 값 및 상기 공기중의 이물의 질량농도를 이용하여 누적된 먼지량을 계산하는 단계를 더 포함할 수 있다.
상기 방법은 상기 사용 시간, 상기 누적된 먼지량 중 적어도 하나에 따라 상기 풍량 값을 보정하는 단계를 더 포함할 수 있다.
상기한 바와 같이, 본 발명에 의하면, 공기 조화기는 필터의 남은 수명을 계산하여 적절한 필터 교체 시점을 알 수 있다.
도 1은 본 발명의 실시예에 따른 공기 조화기의 외부 모습을 나타내는 사시도이다.
도 2는 본 발명의 일 실시예에 따른 공기 조화기의 외부모습을 나타내는 사시도이다.
도 3은 본 발명의 일 실시예에 따른 공기 조화기의 내부 구조를 나타내는 분해 사시도이다.
도 4는 본 발명의 일 실시예에 따른 공기 조화기의 제어 구조를 나타내는 구성 블록도이다.
도 5는 본 발명의 일 실시예에 따른 공기 조화기의 센서부를 나타내는 사시도이다.
도 6은 본 발명의 일 실시예에 따른 공기 조화기의 일부 구조를 나타내는 사시도이다.
도 7은 본 발명의 일 실시예에 따른 공기 조화기 및 하우징의 외부모습을 나타내는 측면도 및 사시도이다.
도 8은 본 발명의 일 실시예에 따른 공기 조화기의 필터를 도시한다.
도 9는 본 발명의 실시예에 따른 공기 조화기의 성능을 도시한다.
도 10은 본 발명의 일 실시예에 따른 공기 조화기에서의 설정값을 도시한다.
도 11은 본 발명의 일 실시예에 따른 공기 조화기의 잔여 수명을 판단하는 흐름도이다.
도 12는 본 발명의 다른 실시예에 따른 공기 조화기의 잔여 수명을 판단하는 흐름도이다.
이하에서는 첨부 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 도면에서 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 구성요소를 지칭하며, 도면에서 각 구성요소의 크기는 설명의 명료성과 편의를 위해 과장되어 있을 수 있다. 다만, 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 이하의 실시예에 설명된 구성 또는 작용으로만 한정되지는 않는다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.
본 발명의 실시예에서, 제1, 제2 등과 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 발명의 실시예에서, '구성되다', '포함하다', '가지다' 등의 용어는 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 본 발명의 실시예에서, '모듈' 혹은 '부'는 적어도 하나의 기능이나 동작을 수행하며, 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있으며, 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서로 구현될 수 있다
본 명세서에서의 복수의 요소 중 적어도 하나의 용어는 복수의 요소 전부뿐만 아니라, 복수의 요소 중 나머지를 배제한 각 하나 혹은 이들의 조합 모두를 지칭하는 것으로 사용한다.
본 명세서의 도면에서는, 공간 내에서 상호 수직한 X, Y, Z의 3방향을 나타낸다. X, Y, Z의 각 방향의 반대방향은 -X, -Y, -Z로 나타낸다. 이하 실시예에서 X 방향은 편의상 공기 조화기(도 1의 100)의 전방으로, -X 방향은 공기 조화기(100)의 후방으로 각각 표현될 수 있다. 또한, 3방향의 축들 중에서 두 축에 평행한 평면에 대해서는 나머지 한 축이 법선 방향이 된다. 예를 들면 Y-Z 평면은 X 방향이 법선 방향이 된다.
도 1은 본 발명의 실시예에 따른 공기 조화기의 외부 모습을 나타내는 사시도이다. 본 발명의 사상에 적용되는 공기 조화기(100)는 공기 청정기, 제습기, 에어컨 등 다양한 종류의 장치로 구현될 수 있다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 공기 조화기(100)는 전체적으로 정육면체에 가까운 외형을 가질 수 있으며, 모서리 및 꼭지점이 둥글게 성형되어 있는 덮개(110)를 가질 수 있다. 공기 조화기(100)의 후방을 통해 공기가 공기 조화기(100) 내부로 유입되며, 공기 조화기(100) 내부로 유입된 공기의 먼지 또는 가스가 필터링되고, 공기 조화기(100)의 전방을 통해 공기 조화기(100) 내부의 공기가 외부로 배출된다.
공기조화기(100)는 후방 및 전방에는 각각 개구를 포함한다. 공기 조화기(100) 후방의 개구(도 2의 221)는 외부의 공기가 공기 조화기(100) 내부로 유입되는 유입구이다. 공기 조화기(100) 전방에서는 공기 조화기(100) 내부의 공기가 외부로 배출된다. 덮개(110)의 좌우 측면에는 공기 유입을 위한 홀(도 7의 720 참조)을 포함할 수 있다. 공기 조화기(100)는 전방에 전방패널(120)을 포함할 수 있다.
전방패널(120)은, 그 판면 상의 소정의 제1영역 상에 설치되며 사용자 입력 및 공기 조화기(100)의 상태를 표시하는 사용자인터페이스부(121)와, 제1영역 이외의 제2영역 상에 복수의 타공 또는 관통홀을 포함할 수 있다. 본 관통홀을 통해 필터링된 공기가 X 축 방향을 따라서 외부로 배출될 수 있다. 본 발명에 있어서 전방패널(120)은 복수의 타공 또는 관통홀에 한정되는 것은 아니다. 공기 조화기(100) 내부의 공기는 앞서 나열한 것과 다른 구성을 통해 외부로 배출 될 수 있다. 예를 들어, 전방패널(120)과 하우징(도 3의 340) 사이의 배출구(도 2의 211 참조)를 통해 공기 조화기(100) 내부의 공기가 외부로 배출될 수 있다.
도 2는 본 발명의 일 실시예에 따른 공기 조화기의 외부모습을 나타내는 사시도이다. 도 2에 도시된 바와 같이, 공기 조화기(100)는 후방 개구(221)를 통해 X축 방향으로 공기를 유입한다(부호 220 참조). 공기조화기(100)는 후방 개구(221)를 통해 유입된 공기를 하우징(340) 내부를 거쳐서 전방패널(120) 또는 배출구(211)를 통해 X축 방향으로 배출한다(부호 210 참조).
또한, 전방패널(120)은 이동이 가능할 수 있다. 예를 들어, 전방패널(120)은 하우징(340)으로부터 X축 또는 -X축 방향으로 이동이 가능하다. 전방패널(120)이 이동함으로서 전방패널(120)과 하우징(340) 사이의 배출구(211)의 크기가 달라질 수 있다. 또는, 배출구(211)를 열고 닫을 수 있는 판(미도시)이 존재하여 배출구(211)로 배출되는 공기를 제어할 수 있다. 전방패널(120)을 이동하거나 배출구(211)의 에 따라, 공기 조화기(100)에서 외부로 배출되는 공기의 속도 및 유량을 제어할 수 있다.
도 3은 본 발명의 일 실시예에 따른 공기 조화기의 내부 구조를 나타내는 분해 사시도이다. 도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 공기 조화기(100)의 내부 구조에 관해 설명한다.
본 발명의 일 실시예에 따른 공기 조화기(100)는 외관을 형성하며 전방 및 후방 각각에 개구가 덮개(110)와, 공기 조화기(100) 후방 개구(221)에 설치된 후방패널유닛(320)과, 덮개(110) 내부에 위치하며 후방패널유닛(320)을 통해 유입되는 공기를 필터링하는 필터유닛(330)과, 하우징(340)과, 공기를 이동시키는 팬구동부를 포함하는 송풍유닛(350)과, 공기 조화기(100) 전방 개구 근처에 마련된 전방패널유닛(360)과, 공기의 이물(이하 '먼지'라고도 함)을 감지할 수 있는 센서부(370)와 공기 조화기(100)의 제반 동작을 제어하는 컨트롤유닛(380)을 포함한다.
본 발명의 일 실시예에 의한 공기 조화기(100)는 이러한 구성요소들 이외에도 다양한 구성요소들을 추가적으로 가질 수 있다.
하우징(340)은 바닥면 상에 접촉하는 베이스(311) 상에 결합될 수 있으며, 덮개(110)와 결합될 수 있다. 덮개(110)의 모서리들은 둥글게 처리됨으로써 사용자의 편의가 도모된다. 덮개(110)의 내부에는 공기 조화기(100)의 제반 구성요소들이 결합 또는 지지되는 하우징(340) 및 프레임(312)이 결합된다. 덮개(110)는 홀(도 7의 720)을 포함할 수 있다. 홀은 도 7에서 자세히 설명하도록 한다.
후방패널유닛(320)은 공기 조화기(100) 후방의 흡입구를 커버하는 플레이트와, 플레이트는 적어도 하나의 관통홀을 포함할 수 있다. 후방패널유닛(320)은 프레임(312) 또는 덮개(110)에 결합됨으로써, 공기 조화기(100) 내부를 보호하도록 후방의 개구(221)를 커버한다. 공기 조화기(100) 외부의 공기는 후방패널유닛(320)의 관통홀을 통해 공기 조화기(100) 내부로 유입된다. 후방패널유닛(320)의 관통홀은 후방패널유닛(320)의 판면 전체에 복수개가 고르게 분산 배치됨으로써 외부 공기가 균일하게 유입되도록 할 수 있다.
필터유닛(330)은 하나 이상의 필터가 X 축 방향에 수직한 판면을 가지도록 배치된다. 필터유닛(330)이 복수의 필터를 포함하는 경우에, 복수의 필터는 X 방향을 따라서 순차적으로 배치됨으로써, X 방향을 따라서 이동하는 공기가 각 필터를 통과할 수 있도록 한다. 필터유닛(330)의 각 필터는, 공기와의 상호작용을 통해 공기를 정화시키는 필터부재와, 필터부재를 지지하는 필터프레임을 포함한다. 필터유닛(330)의 각 필터의 종류는 필터부재의 특성에 따라서 결정되며, 설계 방식에 따라서 상이한 특성을 가진 복수의 필터가 필터유닛(330)에 적용될 수 있다.
필터유닛(330)의 필터는 공기에서 집진, 악취제거, 가스정화, 살균 등의 기능을 수행한다. 예를 들면, 필터유닛(330)은 상대적으로 입자가 큰 먼지를 거르기 위한 비교적 격자 간격이 큰 망체의 프리필터, 미세 먼지를 집진하기 위한 집진필터, 악취를 제거하기 위한 입상활성탄 등이 포함된 탈취필터, 살균 작용을 위한 활성산소층 등이 포함된 살균필터 중 적어도 어느 하나를 포함할 수 있다. 도 8에서 필터에 대한 자세한 설명을 하도록 한다.
필터유닛(330)의 각 필터는 하우징(340) 또는 프레임(312)으로부터 개별적으로 분리될 수 있게 마련됨으로서, 개별 필터의 교체 또는 세척이 가능하도록 한다.
하우징(340)은 유입된 공기가 송풍유닛(350)에 의해 하우징(340)의 전방으로 이동되도록 안내한다. 하우징(340)은 공기 조화기(100) 내에서 필터유닛(330)의 전방에 설치되며, 필터유닛(330)을 통과한 정화된 공기가 하우징(340) 전방의 토출구로 이동하도록 한다. 하우징(340)은 그 전방에 송풍유닛(350)이 설치되며, 송풍유닛(350)의 외형에 대응하도록 하우징(340)의 내부는 원형의 모양일 수 있다.
송풍유닛(350)은 모터와, 모터에 의해 소정의 시간당 회전수의 값으로 회전함으로써 공기의 기류를 생성하는 송풍팬을 포함한다. 송풍유닛(350)은 하우징(340)의 전방에 설치되며, 공기 조화기(100) 외부의 공기를 공기 조화기(100) 내부로 빨아들이고, 필터유닛(330)을 통과하여 정화된 공기를 하우징(340) 전방의 토출구를 향해 이동시킨다. 송풍유닛(350)은 송풍팬의 구조에 따라서 공기를 다양한 방향으로 보낼 수 있다. 실시예에 따른 송풍유닛(350)은 공기를 X 방향으로 이동시키도록 마련된다. 또한, 송풍유닛(350)은 컨트롤유닛(380)의 제어에 따라서 팬의 정지 및 구동과 구동 속도의 가변이 가능하도록 마련된다. 프로세서(도 4의 410)는 구동 속도에 기초하여 풍량정보를 산출할 수 있다.
전방패널유닛(360)은 하우징(340) 전방의 토출구를 커버한다. 전방패널유닛(360)은 전방패널과, 전방패널의 후방 판면 상에 설치된 유로가이드와, 전방패널의 후방에 설치된 그릴플레이트를 포함한다.
컨트롤유닛(380)은 칩셋, 프로세서, CPU, 메모리 등의 전자부품들을 포함하는 인쇄회로기판 상의 회로를 포함할 수 있다. 프로세서(도 4의 410)는 공기 조화기(100)의 프레임(312) 또는 하우징(340) 상에 설치되며, 송풍유닛(350), 전방패널유닛(360)과 같이 구동 제어가 필요한 구성들에 대해 제어신호를 전송한다. 이하 프로세서의 구동 제어 방식에 관해 구체적으로 설명한다.
도 4는 본 발명의 일 실시예에 따른 공기 조화기의 제어 구조를 나타내는 구성 블록도이다. 도 4에서 도시된 바와 같이, 본 발명의 일 실시예에 따른 공기 조화기(100)는 센서부(420), 저장부(430), 사용자인터페이스부(440), 송풍유닛(450) 및 전방패널유닛(460)을 포함한다. 다만 도 4에 도시된 본 발명의 일 실시예에 의한 공기 조화기(100)의 구성은 하나의 예시일 뿐이며, 본 발명의 일 실시예에 의한 공기 조화기(100)는 도 4에 도시된 구성 외에 다른 구성으로도 구현될 수 있다. 즉, 본 발명의 일 실시예에 의한 공기조화기는 도 4에 도시된 구성 외 다른 구성이 추가되거나, 혹은 도 4에 도시된 구성 중 어느 하나가 배제되어 구현될 수도 있다.
센서부(420)는 공기 중의 이물을 감지한다. 센서부(420)를 통해 감지된 이물에 관한 정보에 기초하여 프로세서(410)는 공기 중 이물의 질량농도를 결정할 수 있다. 센서부(420)는 레이저, 가시광선 등 광학적 방법을 이용하여 센싱할 수 있다. 공기 조화기(100) 내부로 유입된 공기 중의 이물을 감지하기 위해 센서부(420)는 공기의 유로 내에 위치할 수 있다. 또는, 센서부(420)는 유로와 격리된 공간에 위치할 수 있다. 센서부(420)의 위치와 개수는 이에 제한되는 것이 아니며 다른 공간에 위치할 수도 있고 한 개 이상 존재할 수 있다. 센서부(420)가 감지하는 공기 중의 이물은 다양할 수 있다. 센서부(420)는, 예컨대, 지름이 10㎛ 미만인 미세먼지(PM10), 지름이 2.5㎛ 미만인 초미세먼지(PM2.5) 등 이물을 크기별로 구별하여 감지할 수 있으며, 또는 냄새를 유발하는 각종 입자와 같은 화학물질 또는 금속물질 등 이물의 성분 별로 감지할 수도 있다. 센서부(420)는, 예컨대, 레이저를 조사하고, 이물에 반사된 레이저를 감지하여 센싱정보를 얻을 수 있다. 센싱정보는 반사된 레이저의 산란 정도를 의미한다. 프로세서(410)는 센서부(420)로부터 센싱정보를 수신하여, 이물의 질량농도를 결정할 수 있다. 반사된 레이저의 산란 정도가 높을수록 이물의 질량농도가 높고 산란 정도가 낮을수록 이물의 질량농도가 낮을 수 있다. 산란 정도와 이물의 질량농도와의 상관관계는 실험값을 통해 저장부(430)에 저장되어 있을 수 있다. 실험값으로 저장되는 이물의 질량농도의 단위는 mg/m³또는 ㎍/m³일 수 있다.
센서부(420)는 이물을 종류별로 센싱정보를 얻거나, 이물의 총량으로 센싱정보를 얻을 수 있다. 프로세서(410)는 후술하는 사용자인터페이스부(440)의 디스플레이 또는 스피커(미도시)를 통해 결정한 이물의 질량농도를 출력할 수 있다. 누적 먼지량을 구하는 과정은 도 8에서 자세히 설명하도록 한다.
저장부(430)는 프로세서(410)의 제어에 따라, 각종 정보를 저장할 수 있으며, 통신부(470)를 통해 외부로부터 수신한 정보를 저장할 수 있다. 저장부(430)에 저장되는 정보는, 예컨대, 공기 중 이물의 질량농도에 대한 필터의 수명에 대한 상관관계, 또는 팬을 구동한 누적 사용시간 등에 관한 정보일 수 있다.
사용자인터페이스부(440)는 사용자입력을 수신하고, 영상 또는 음성을 출력할 수 있다. 공기 조화기(100)는 사용자의 조작, 음성과 같은 사용자입력을 사용자인터페이스부(440)를 통하여 직접 수신할 수 있다. 예를 들어, 사용자인터페이스부(440)는 디스플레이를 포함하는 터치스크린, 버튼, 마이크(Mic) 등으로 구성될 수 있다. 또는, 공기 조화기(100)는 통신부(470) 등을 통하여 사용자입력을 간접적으로 수신할 수 있다. 예를 들어, 공기 조화기(100)는 리모트 컨트롤러의 버튼 또는 리모트 컨트롤러에 구비되어 있는 마이크 등에서 사용자입력을 수신하고, 디지털 신호로 변환된 사용자입력을 통신부(470) 등을 통하여 수신할 수 있다. 사용자인터페이스부(440)는 디스플레이 또는 스피커(미도시) 등을 통하여 사용자에게 공기 조화기(100)의 특정 상태를 알릴 수 있다.
송풍유닛(450)은 프로세서(410)의 제어에 따라, 송풍모터(451)의 동작을 조절한다. 프로세서(410)는 송풍모터(451)의 시간당 회전수에 대한 값을 조절할 수 있다. 프로세서(410)는 송풍모터(451)의 시간당 회전수 값을 조절하여 공기 조화기(100) 내부로 유입되는 풍량을 조절할 수 있다.
패널유닛(460)은 프로세서(410)의 제어에 따라, 전방패널구동부(461)의 동작을 조절한다. 또한 패널 유닛(460)은 사용자 입력 및 공기 조화기(100)의 상태를 표시하는 사용자인터페이스부(121)를 포함할 수 있다. 사용자인터페이스부(121)는 사용자의 입력을 수신할 수 있고, 사용자에게 시각적 정보 또는 청각적 정보를 출력할 수 있다.
통신부(470)는 프로세서(410)의 제어에 따라, 외부장치(미도시)와의 통신을 수행할 수 있다. 통신부(470)는 다양한 통신방식 중 어느 하나의 방식에 의해 구현될 수 있다. 예컨대, 통신부(470)는 유선통신을 위한 접속부를 포함하며, 접속부는 HDMI(High Definition MultimediaInterface), HDMI-CEC(Consumer Electronics Control), USB, 컴포넌트(Component) 등의 규격에 따른 신호/데이터를 송/수신할 수 있으며, 이들 각각의 규격에 대응하는 적어도 하나 이상의 커넥터 또는 단자를 포함한다. 통신부(470)는 유선 LAN(Local Area Network)을 통해 복수의 서버들과 유선 통신을 수행할 수 있다.
통신부(470)는 유선 접속을 위한 커넥터 또는 단자를 포함하는 접속부 이외에도 다양한 다른 통신 방식으로 구현될 수 있다. 예컨대, 외부 장치와 무선 통신을 수행하기 위해 RF(Radio Frequency)신호를 송/수신하는 RF회로를 포함할 수 있으며, 와이파이(Wi-fi), 블루투스(Bluetooth), 지그비(Zigbee), UWB(Ultra-Wide Band), 무선 USB(Wireless USB), NFC(Near Field Communication), 적외선 중 하나 이상의 통신방법을 이용하여 수행하도록 구성될 수 있다.
프로세서(410)는 공기 조화기(100)의 제반 구성들이 동작을 수행하기 위한 제어를 수행한다. 프로세서(410)는 이러한 제어 동작을 수행할 수 있도록 하는 제어프로그램(혹은 인스트럭션)과, 제어프로그램이 설치되는 비휘발성의 메모리, 설치된 제어프로그램의 적어도 일부가 로드되는 휘발성의 메모리 및 로드된 제어프로그램을 실행하는 적어도 하나의 프로세서 혹은 CPU(Central Processing Unit)를 포함할 수 있다. 또한, 이와 같은 제어프로그램은 공기 조화기(100) 이외의 다른 장치에도 저장될 수 있다.
제어프로그램은, BIOS, 디바이스드라이버, 운영체계, 펌웨어, 플랫폼 및 응용프로그램(어플리케이션) 중 적어도 하나의 형태로 구현되는 프로그램(들)을 포함할 수 있다. 일 실시예로서, 응용프로그램은, 공기 조화기(100)의 제조 시에 공기 조화기(100)에 미리 설치 또는 저장되거나, 혹은 추후 사용시에 외부로부터 응용프로그램의 데이터를 수신하여 수신된 데이터에 기초하여 공기 조화기(100)에 설치될 수 있다. 응용프로그램의 데이터는, 예컨대, 어플리케이션 마켓과 같은 외부 서버로부터 공기 조화기(100)로 다운로드될 수 있다. 또는, USB 저장장치 등을 통하여 공기 조화기(100)로 복사 또는 이동될 수 있다. 이와 같은 외부 서버 또는 USB 저장장치는, 본 발명의 컴퓨터프로그램제품의 일례이나, 이에 한정되는 것은 아니다.
도 5는 본 발명의 일 실시예에 따른 공기 조화기의 센서부를 나타내는 사시도이다. 센서부(370)의 발광부 및 수광부 근처에 센서부(370)를 보호하기 위한 가드(510)가 마련될 수 있다. 가드(510)는 센서부(370)와 덮개(110) 사이에 위치할 수 있다. 가드(510)에는 공기의 소통을 가능하게 하는 적어도 하나의 홀이 마련되고, 적층된 구조를 가질 수 있다. 도 5에 도시된 가드(510)의 홀은 원형, 사각형 및 삼각형 등 다양한 모양으로 존재할 수 있다. 가드(510)는 유입되는 공기 중의 이물의 일부를 걸러 낼 수 있는 매쉬(mesh) 또는 망(net)을 포함할 수도 있다. 가드(510)에 의해 걸러지는 이물의 일부는 비교적 크기가 큰 이물일 수 있다. 이에 따라, 가드(510)는 공기 조화기(100) 외부에서 하우징(110)의 홀(도 7의 720)을 통해 유입되는 공기 중의 이물이 센서부(370)의 발광부와 수광부 같은 감지영역 부분에 누적되는 것을 막을 수 있다. 덮개(710)는 앞서 설명한 예시에 한정되지 않으며, 센서부(370)에 먼지가 누적되어 쌓이지 않게 하는 역할을 할 수 있는 구조를 의미한다. 센서부(370)와 가드(510)는 밀착되어 존재할 수 있다(부호 520 참조). 가드(510)가 센서부(370)에 밀착되어 가드(510)의 홀은 센서부(370)의 발광부 및 수광부에 위치하여 센서부(370)가 이물에 관한 정보를 감지할 수 있도록 한다.
도 6은 본 발명의 일 실시예에 따른 공기 조화기의 일부 구조를 나타내는 사시도이다. 도 6에서 도시된 바와 같이, 공기 조화기(100)의 하우징(610) 내부에 센서부(370)가 위치할 수 있다(부호 600 참조). 하우징(610)은 외면이 개방되어, 내측으로 수용 공간을 가지는 센서실(620)이 존재하고, 센서실(620) 내에 센서부(370)가 마련될 수 있다. 센서부(370)는 공기 조화기(100)의 내부에 위치하여 공기 조화기(100)에 유입된 공기 중의 이물을 감지할 수 있다.
센서부(370)가 공기 조화기(100)의 측면에 위치한 것은 본 발명에 따른 일 실시예일 뿐, 본 발명이 이에 한정되는 것은 아니다. 따라서, 센서실(620) 내에 마련된 센서부(370)는 실시예 중 하나에 불과한 것이며, 센서부(370)는 센서실(620)이 아닌 하우징(610) 내부의 유로 안 또는 유로 밖이나, 덮개(110)의 외측에 존재할 수도 있다. 하우징(610) 내부에서 센서부(370)가 유로 안에 마련되는 경우는, 예컨대, 공기 조화기(100)의 내부에서 유입되는 공기의 흐름에 따라, 후방패널유닛(320)에 마련될 수 있고, 필터유닛(330)에 마련될 수 있으며, 또는 하우징(610)에 마련될 수 있다. 센서부(370)는 유입되는 공기가 필터유닛(330)에 의해 필터링되기 전의 공간에 위치할 수 있다. 즉, 센서부(370)는 감지하는 공간에서의 이물의 질량농도가 필터유닛(330)의 공기 유입 측 공간에서의 이물의 질량농도와 동일 또는 유사한 위치에 마련될 수 있다. 또는, 센서부(370)는 유입구 및 유출구에 각각 위치하여 공기 중의 이물이 필터에 의해 제거되기 전과 제거된 후의 이물의 질량농도를 측정할 수 있다. 프로세서(410)는 이물의 질량농도를 정확히 측정하여 남은 필터의 수명을 계산할 수 있다.
도 7은 본 발명의 일 실시예에 따른 공기 조화기 및 하우징의 외부모습을 나타내는 측면도 및 사시도이다. 도 7에는 공기 조화기(100)와 덮개(110)를 Y 축 방향으로 X-Z 평면을 바라본 그림(부호 700 및 부호 710 참조)과, 덮개(110)의 외부 모습을 나타내는 그림(부호 730 및 부호 740)이 존재한다.
덮개(110)의 측면에는 홀이 존재하여 공기가 유입 및 유출될 수 있다 (부호 710 및 730 참조). 부호 710에서는 -Y 축 쪽의 방향의 덮개(110)에 홀(720)이 존재한다. 홀(720)의 위치는 이에 제한되지 않으며, 센서부(370)가 존재하는 근처에 덮개(110)의 홀(720)이 마련될 수 있다. 홀(720)은 하나 이상 마련될 수 있다. 또한 홀(720)이 복수 개 인 경우, 복수개의 홀(720)은 서로 근처에 위치할 수 있지만(부호 710 참조), 떨어져서 위치할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 공기 조화기의 필터를 도시한다. 필터는 공기 중의 이물을 제거할 수 있다. 공기 중의 이물의 종류는 다양하므로, 이물을 제거하기 위한 필터도 여러가지 종류가 존재할 수 있다. 섬유를 이용하여 공기 중의 이물을 제거하는 필터, 정전기를 이용하여 공기 중의 이물을 제거하는 필터, 화학 약품을 이용하여 공기 중의 이물을 제거하는 필터, 또는 광촉매를 이용하여 공기 중의 이물을 제거하는 필터 등이 있다. 필터유닛(도 3의 330 참조)에는 여러 개의 필터가 존재할 수 있다. 필터의 위치를 고정해주는 필터 지지부(801 및 802)는 필터유닛(330)의 일부 구성으로 존재한다. 필터 지지부(801 및 802)의 형상은 사각형으로 제한된 것은 아니며, 공기 조화기(100)의 내부 구조에 따라 그 형상은 다를 수 있다.
프로세서(410)는 필터에 누적되어 있는 먼지량을 센싱정보를 이용하여 구할 수 있다. 프로세서(410)는 센서부(420)가 감지한 센싱정보를 이용하여 먼지의 질량농도(mg/ m³)와 풍량(m³/s)의 곱으로 초당 필터링되는 먼지의 양(mg/s)을 구할 수 있다. 프로세서(410)는 초당 필터링되는 먼지의 양(mg/s)와 공기 조화기(100)의 작동시간(s)의 곱으로 필터에 누적되는 먼지의 양(mg)을 구할 수 있다. 누적되는 먼지의 양은 하기의 수학식으로 구할 수 있다.
[수학식]
누적되는 먼지의 양 = 먼지의 질량농도 * 풍량 * 작동시간
누적먼지량이 필터가 수용할 수 있는 한계누적량을 초과하여 필터의 교체가 필요한 경우, 프로세서(410)는 사용자인터페이스부(440)를 통하여 사용자에게 필터를 교체할 것을 영상 또는 음성으로 출력할 수 있다. 또한, 프로세서(410)는 자동으로 또는 사용자인터페이스부(440)를 통한 사용자입력에 대응하여, 필터의 사용시간을 초기화할 수 있다. 이에 따라, 프로세서(410)는 필터의 교체 후에 필터의 사용시간을 초기화하여, 교체된 필터의 성능을 정확히 파악할 수 있다.
도 9는 본 발명의 실시예에 따른 공기 조화기의 성능을 도시한다. 도 9에서는 공기 조화기(100)의 성능과 먼지 누적량과의 상관관계를 그래프로 나타낸다. 공기 조화기(100)의 필터에 먼지 누적량이 많아질수록 공기 조화기(100)의 성능은 선형적으로 저하될 수 있다(부호 910 참조). 또는 필터에 먼지 누적량이 많아질수록 공기 조화기(100)의 성능은 비선형적으로 저하될 수 있다(부호 920 참조). 먼지 누적량과 공기 조화기(100)의 성능과의 상관관계는, 공기 조화기(100)의 필터, 사용환경 및 공기 중 이물의 종류 등에 따라 달라질 수 있다. 예를 들어, 미세먼지 10 mg 이 누적된 공기조화기(100)와 초미세먼지 10 mg 이 누적된 공기조화기(100)의 성능은 다를 수 있다.
공기조화기(100)의 성능은 풍량과 필터의 먼지 필터링 정도에 따라 달라질 수 있다. 이하에서는 공기 조화기(100) 사용에 따른 풍량 변화에 대하여 설명한다. 공기 조화기(100)를 사용하면서 필터에 누적되는 이물의 양이 많아지면, 풍량의 설정이 동일하여도 이물의 저항 때문에 외부로 출력되는 풍량(이하, '실제풍량'이라 함)이 줄어들 수 있다. 예컨대, 풍량이 1 m³/s로 설정되어 있어도, 수명 100%의 필터와 수명 10%의 필터를 통과하는 실제풍량이 각각 1 m³/s 와 0.7m³/s로 다를 수 있다. 다시 말하면, 공기 조화기(100)의 사용에 따라, 필터에 누적되는 먼지량의 증가로 인하여 공기 조화기(100)에 유입되는 실제 풍량은 설정된 풍량보다 작아질 수 있다.
이하에서는, 공기조화기(100) 사용에 따른 필터링 정도 변화에 대하여 설명한다. 실제풍량이 동일한 상황에서, 필터에 누적되는 이물의 양이 많아지면, 필터에 누적된 먼지가 필터의 역할을 하면서 필터의 성능이 향상될 수 있다. 실제풍량이 1 m³/s로 일정하면, 수명 50%의 필터가 거르는 이물의 양이 수명 100%의 필터가 거르는 이물의 양보다 많을 수 있다.
결과적으로, 공기 조화기(100)를 사용함에 따라, 필터의 성능은 향상될 수 있지만 실제풍량이 작아지므로 공기 조화기(100)의 성능은 낮아질 수 있다.
공기 조화기(100)의 사용에 따른 설정된 풍량과 실제풍량의 차이값 및 필터의 성능의 차이값을 실험을 통하여 산출할 수 있다. 실험을 통한 차이값은 저장부(430)에 저장되고, 프로세서(410)는 차이값을 보정하여 필터에 누적되는 먼지 누적량을 정확하게 파악하여 필터의 남은 수명을 계산할 수 있다. 예를 들어, 누적 먼지량의 증가로 실제풍량의 값이 설정된 풍량 값보다 30%정도 낮으면, 프로세서(410)는 설정된 풍량 값의 70%로 실제풍량 값을 계산할 수 있다. 따라서, 프로세서(410)는 상기 사용 시간, 상기 누적된 먼지량 중 적어도 하나에 따라 상기 풍량 값을 보정할 수 있다.
도 10은 본 발명의 일 실시예에 따른 공기 조화기에서의 설정값을 도시한다. 필터의 성능은 필터의 교체시기로부터 시간, 공기 조화기(100)의 사용 시간 또는 누적된 이물의 양과 상관관계가 있다. 공기 조화기(100)의 사용 시간이 오래될수록 필터의 성능은 낮아질 수 있다. 또는 공기 조화기(100)의 사용에 따라 필터에 누적된 이물의 양이 많아지면, 필터의 성능은 낮아질 수 있다. 필터의 성능의 변화는 필터의 종류, 공기 조화기(100)의 사용 환경, 공기 중의 이물의 종류에 따라 다를 수 있다. 필터의 성능의 변화에 관련 있는 인자는 앞서 나열한 인자에 한정되는 것은 아니며, 다른 인자를 더 포함할 수 있다.
공기 중 이물의 질량농도는 프로세서(410)가 센서부(370)에 의해 감지된 센싱 정보에 기초하여 결정할 수 있다. 풍량은 해당 공기 조화기에 대한 실험값을 통하여 얻은 후에, 실험값에 대응하는 정보로 저장부(430)에 저장되어 있을 수 있다. 풍량은 사용환경에 따라 다를 수 있으므로, 사용환경에 따라 알맞은 풍량에 대한 정보가 저장부(430)에 저장되어 있을 수 있다. 프로세서(410)가 송풍모터(451)가 구동한 시간을 저장부(430)에 저장하여 사용시간을 구할 수 있다.
저장부(430)에 저장된 정보를 통해 프로세서(410)는 사용시간 및 누적 먼지량을 구할 수 있다. 이하에서는 먼지 누적량과 필터의 성능과의 관계에 대하여 설명한다.
사용시간 및 먼지 측정값은 총 4단계로 분류할 수 있다. 이하의 설명에서는 설명의 편의를 위해 4단계 중에서 각 단계의 %포인트 간격을 25%포인트로 하였다. 사용시간 및 먼지 측정값을 4단계로 나눈 것은 임의로 나눈 결과이며, 설계에 따라, 단계의 수를 더 높일 수 있으며, 더 낮출 수도 있다. 또한, 단계별 %포인트도 다를 수 있다. 예를 들어, 단계가 3단계 인 경우, 단계별 %포인트는 30%포인트 일 수 있다. 단계가 5단계 인 경우, 단계별 %포인트는 20%포인트 일 수 있다. 프로세서(410)는 사용자인터페이스부(440)의 디스플레이 또는 다른 출력부를 통해 공기 조화기(100)의 시간 및 먼지 단계를 출력할 수 있다. 이에 따라, 사용자는 공기 조화기(100)의 필터 교체시기를 파악할 수 있다.
이하에서는, 먼지 측정값에 대한 인자를 설명한다(부호 1000 참조).
필터가 수용할 수 있는 먼지량의 한계값 D mg은 필터마다 다를 수 있으며, 먼지량의 한계값은 실험값에 대응하는 정보로 저장부(430)에 저장되어 있을 수 있다. 따라서 A, B 및 C의 값은 D의 25%, 50% 및 75%에 해당하는 값이다. 예를 들어 D가 100,000 이라면, A는 25,000, B는 50,000 그리고 C는 75,000이다.
먼지 1단계는 필터가 교체된 후, 필터에 누적되어 있는 먼지량이 A mg 이상인 경우이다. 측정된 누적 먼지량은 A mg 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 성능을 100%로 판단할 수 있다. 이다. 먼지 누적량이 A mg 보다 많은 것으로 판단되면, 프로세서(410)는 현재 먼지 단계를 1단계로 판단하고 필터의 수명을 75%로 판단할 수 있다.
먼지 2단계는 필터가 교체된 후, 필터에 누적되어 있는 먼지량이 B mg 이상인 경우이다. B mg 은 필터가 수용할 수 있는 먼지량 한계값의 2/4 정도의 값이며, B의 값은 필터에 따라 다를 수 있다. 측정된 누적 먼지량은 B mg 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 수명을 75%로 판단할 수 있다. 이다. 먼지 누적량이 B mg 보다 많은 것으로 판단되면, 프로세서(410)는 현재 먼지 단계를 2단계로 판단하고 필터의 수명을 50%로 판단할 수 있다.
먼지 3단계는 필터가 교체된 후, 필터에 누적되어 있는 먼지량이 C mg 이상인 경우이다. C mg 은 필터가 수용할 수 있는 먼지량의 한계값의 3/4 정도의 값이며, C의 값은 필터에 따라 다를 수 있다. 측정된 누적 먼지량은 C mg 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 수명을 50%로 판단할 수 있다. 이다. 먼지 누적량이 C mg 보다 많은 것으로 판단되면, 프로세서(410)는 현재 먼지 단계를 3단계로 판단하고 필터의 수명을 25%로 판단할 수 있다.
먼지 4단계는 필터가 교체된 후, 필터에 누적되어 있는 먼지량이 D mg 이상인 경우이다. D mg 은 필터가 수용할 수 있는 먼지량의 한계값의 4/4 정도의 값이며, D의 값은 필터에 따라 다를 수 있다. 측정된 누적 먼지량은 D mg 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 수명을 25%로 판단할 수 있다. 이다. 먼지 누적량이 D mg 보다 많은 것으로 판단되면, 프로세서(410)는 현재 먼지 단계를 4단계로 판단하고 필터의 수명을 0%로 판단할 수 있다. 이하에서는, 도 10에서 설명한 내용을 바탕으로 도 11에 대한 설명을 하도록 한다.
도 11은 본 발명의 일 실시예에 따른 공기 조화기의 잔여 수명을 판단하는 흐름도이다. 도 11에서는 도 10의 설명을 참조하여 흐름도를 설명한다. 이하에서는, 프로세서(410)가 측정되는 먼지량에 기초하여 필터의 수명을 판단하는 과정을 설명한다.
프로세서(410)는 저장부(430)에 저장된 정보 또는 다른 정보를 통해 현재까지 측정된 먼지 누적량에 대한 정보를 분석한다.
프로세서(410)는 먼지 누적량이 먼지 1단계에 해당하는 A mg을 초과하는지 판단한다(동작 S1001). 먼지 누적량이 A mg을 초과하지 않는다고 판단되면(동작 S1101의 'No'), 프로세서(410)는 필터의 수명을 100%라고 판단한다.
먼지 누적량이 A mg을 초과한다고 판단되면(동작 S1101의 'Yes), 프로세서(410)는 먼지 누적량이 먼지 2단계에 해당하는 B mg을 초과하는지 판단한다(동작 S1102). 먼지 누적량이 B mg을 초과하지 않는다고 판단되면(동작 S1102의 'No'), 프로세서(410)는 먼지 누적량을 1단계로 판단하고, 필터의 수명을 75%라고 판단한다.
먼지 누적량이 B mg을 초과한다고 판단되면(동작 S1102의 'Yes'), 프로세서(410)는 먼지 누적량이 먼지 3단계에 해당하는 C mg을 초과하는지 판단한다(동작 S1103). 먼지 누적량이 C mg을 초과하지 않는다고 판단되면(동작 S1103의 'No), 프로세서(410)는 먼지 누적량을 2단계로 판단하고, 필터의 수명을 50%라고 판단한다.
먼지 누적량이 C mg을 초과한다고 판단되면(동작 S1103의 'Yes'), 프로세서(410)는 먼지 누적량이 먼지 4단계에 해당하는 D mg을 초과하는지 판단한다(동작 S1104). 먼지 누적량이 D mg을 초과하지 않는다고 판단되면(동작 S1104의 'No'), 프로세서(410)는 먼지 누적량을 3단계로 판단하고, 필터의 수명을 25%라고 판단한다.
먼지 누적량이 D mg을 초과한다고 판단되면(동작 S1104의 'Yes), 프로세서(410)는 먼지 누적량을 4단계로 판단하고, 필터의 수명을 0%라고 판단한다.
프로세서(410)는 사용자인터페이스부(440)를 통해 판단한 먼지 누적량 단계를 출력할 수 있다.
다시 도 10에서의 사용 시간에 대한 인자를 설명한다(부호 1010 참조).
공기 조화기(100)의 사용으로 필터의 수명이 다할 때까지 걸리는 한계 구동시간은 실험값을 통해 구할 수 있다. 프로세서(410)는 현재 사용 시간과 한계 구동시간에 기초하여 현재 필터의 성능을 추정할 수 있다. 한계 구동시간은 필터마다 다를 수 있으며, 한계 구동시간은 저장부(430)에 저장되어 있을 수 있다. 특정 필터의 한계 구동시간을 D 시간이라고 가정한다. A, B 및 C 값은 D 값의 각각 25%, 50% 및 75%에 해당할 수 있다. 예를 들어, D의 값이 10,000이면, A는 2,500, B는 5,000 그리고 C는 7,500이다.
시간 1단계는 필터가 교체된 후, 송풍모터(451)의 사용 시간이 A시간 이상인 경우이다. 사용 시간이 A 시간 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 성능을 100%로 판단할 수 있다. 사용 시간이 A 시간보다 많은 것으로 판단되면, 프로세서(410)는 현재 시간 단계를 1단계로 판단하고, 필터의 성능을 75%로 판단할 수 있다.
시간 2단계는 필더가 교체된 후, 송풍모터(451)의 사용 시간이 B 시간 이상인 경우이다. B 시간은 한계 구동시간의 2/4 정도의 값이며, B의 값은 필터에 따라 다를 수 있다. 사용 시간이 B 시간 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 성능을 75%로 판단할 수 있다. 사용 시간이 B 시간보다 많은 것으로 판단되면, 프로세서(410)는 현재 시간 단계를 2단계로 판단하고, 필터의 성능을 50%로 판단할 수 있다.
시간 3단계는 필더가 교체된 후, 송풍모터(451)의 사용 시간이 C 시간 이상인 경우이다. C 시간은 한계 구동시간의 3/4 정도의 값이며, C의 값은 필터에 따라 다를 수 있다. 사용 시간이 C 시간 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 성능을 50%로 판단할 수 있다. 사용 시간이 C 시간보다 많은 것으로 판단되면, 프로세서(410)는 현재 시간 단계를 3단계로 판단하고, 필터의 성능을 25%로 판단할 수 있다.
시간 4단계는 필더가 교체된 후, 송풍모터(451)의 사용 시간이 D 시간 이상인 경우이다. D 시간은 한계 구동시간 정도의 값이며, D의 값은 필터에 따라 다를 수 있다. 사용 시간이 D 시간 보다 적은 것으로 판단되면, 프로세서(410)는 필터의 성능을 25%로 판단할 수 있다. 사용 시간이 D 시간보다 많은 것으로 판단되면, 프로세서(410)는 현재 시간 단계를 4단계로 판단하고, 필터의 성능을 0%로 판단할 수 있다. 프로세서(410)는 현재 단계에 해당하는 시간값 또는 먼지값을 사용자인터페이스부(440)를 통해 출력할 수 있다. 이하에서는 도 9 및 도 10의 설명을 참조하여 도 11에 대하여 설명하도록 한다.
도 12는 본 발명의 다른 실시예에 따른 공기 조화기의 잔여 수명을 판단하는 흐름도이다. 도 12에서는 도 10 및 도 11의 설명을 참조하여 흐름도를 설명한다. 이하에서는, 프로세서(410)가 누적 사용 시간값 및 측정되는 먼지량에 기초하여 필터의 수명을 판단하는 과정을 설명한다.
프로세서(410)는 저장부(430)에 저장된 정보 또는 다른 정보를 통해 누적 사용 시간값에 대한 정보 및 현재까지 측정된 먼지 누적량에 대한 정보를 분석한다.
프로세서(410)는 누적 사용시간이 시간 1단계에 해당하는 A 시간을 초과하는지 판단한다(동작 S1201). 누적 사용시간이 A 시간을 초과하지 않는다고 판단되면(동작 S1201의 'No'), 프로세서(410)는 먼지 누적량이 먼지 1단계에 해당하는 A mg을 초과하는지 판단한다(동작 S1202). 먼지 누적량이 A mg을 초과하지 않는다고 판단되면(동작 S1202의 'No'), 프로세서(410)는 필터의 수명을 100%라고 판단한다. 먼지 누적량이 A mg을 초과한다고 판단되면(동작 S1202의 'Yes'), 프로세서(410)는 먼지 단계를 1단계로 판단하고, 필터의 수명을 75%라고 판단한다.
누적 사용시간이 A 시간을 초과한다고 판단되면(동작 S1201의 'Yes'), 프로세서(410)는 누적 사용시간이 시간 2단계에 해당하는 B 시간을 초과하는지 판단한다(동작 S1211). 누적 사용시간이 B 시간을 초과하지 않는다고 판단되면(동작 S1211의 'No'), 프로세서(410)는 시간 단계를 1단계로 판단하고, 먼지 누적량이 먼지 2단계에 해당하는 B mg을 초과하는지 판단한다(동작 S1212). 먼지 누적량이 B mg을 초과하지 않는다고 판단되면(동작 S1212의 'No'), 프로세서(410)는 먼지 단계를 1단계로 판단하고, 필터의 수명이 75%라고 판단한다. 먼지 누적량이 B mg을 초과한다고 판단되면(동작 S1212의 'Yes'), 프로세서(410)는 먼지 단계를 2단계로 판단하고, 필터의 수명을 50%라고 판단한다.
누적 사용시간이 B 시간을 초과한다고 판단되면(동작 S1211의 'Yes'), 프로세서(410)는 누적 사용시간이 시간 3단계에 해당하는 C 시간을 초과하는지 판단한다(동작 S1221). 누적 사용시간이 C 시간을 초과하지 않는다고 판단되면(동작 S1221의 'No'), 프로세서(410)는 시간 단계를 2단계로 판단하고, 먼지 누적량이 먼지 3단계에 해당하는 C mg을 초과하는지 판단한다(동작 S1222). 먼지 누적량이 C mg을 초과하지 않는다고 판단되면(동작 S1222의 'No'), 프로세서(410)는 먼지 단계를 2단계로 판단하고, 필터의 수명이 50%라고 판단한다. 먼지 누적량이 C mg을 초과한다고 판단되면(동작 S1222의 'Yes'), 프로세서(410)는 먼지 단계를 3단계로 판단하고, 필터의 수명을 25%라고 판단한다.
누적 사용시간이 C 시간을 초과한다고 판단되면(동작 S1221의 'Yes'), 프로세서(410)는 누적 사용시간이 시간 4단계에 해당하는 D 시간을 초과하는지 판단한다(동작 S1231). 누적 사용시간이 D 시간을 초과하지 않는다고 판단되면(동작 S1231의 'No'), 먼지 누적량이 먼지 4단계에 해당하는 D mg을 초과하는지 판단한다(동작 S1232). 먼지 누적량이 D mg을 초과하지 않는다고 판단되면(동작 S1232의 'No'), 프로세서(410)는 먼지 단계를 3단계로 판단하고, 프로세서(410)는 필터의 수명이 25%라고 판단한다. 먼지 누적량이 D mg을 초과한다고 판단되면(동작 S1232의 'Yes'), 프로세서(410)는 먼지 단계를 4단계로 판단하고, 필터의 수명을 0%라고 판단한다. 또한, 누적 사용시간이 D 시간을 초과한다고 판단되면(동작 S1231의 'Yes'), 프로세서(410)는 시간 단계를 4단계로 판단하고, 필터의 수명을 0%라고 판단한다.
필터의 수명은 앞선 설명한 먼지 누적량 및 누적 사용시간 두가지 인자에 한정되는 것은 아니다. 예컨대, 필터의 수명은 먼지 누적량, 풍량, 사용시간 및 먼지의 종류에 따라 달라질 수 있다. 따라서 프로세서(410)는 먼지 누적량, 풍량, 사용시간 및 먼지의 종류의 조합에 따라 필터의 수명을 다르게 결정할 수 있다.

Claims (15)

  1. 공기 조화기에 있어서,
    공기의 유입 및 유출이 가능한 유입구 및 유출구를 가지는 하우징;
    상기 유입구를 통해 유입된 공기를 상기 유출구를 통해 토출시키는 팬구동부;
    상기 유입된 공기를 필터링하는 필터부;
    상기 공기 중의 이물을 감지할 수 있는 센서부;
    정보를 저장할 수 있는 저장부; 및
    상기 센서부에 의해 감지된 상기 공기 중의 이물의 질량농도에 관한 정보를 상기 저장부에 저장하고, 상기 저장부에 저장된 정보에 기초하여 상기 필터부의 남은 수명을 계산하는 프로세서를 포함하는 공기 조화기.
  2. 제 1항에 있어서,
    상기 센서부는 레이저를 이물에 반사시키고, 감지한 센싱정보를 얻고,
    상기 프로세서는 센서부에 의해 얻어진 센싱정보에 기초하여 이물의 질량농도를 결정하는 공기 조화기.
  3. 제 1항에 있어서,
    상기 센서부는 레이저를 공기에 조사하여 상기 이물에 반사된 레이저의 산란 정도를 감지하고,
    상기 프로세서는, 상기 감지된 산란 정도에 기초하여 상기 이물의 질량농도를 결정하는 공기 조화기.
  4. 제 1항에 있어서,
    상기 필터부는, 상기 유입구 측에 마련되어, 상기 유입구를 통해 유입되는 공기를 필터링하는 공기 조화기.
  5. 제 1항에 있어서,
    상기 센서부는, 유로와 격리된 별도의 공간에 마련되는 공기 조화기.
  6. 제 1항에 있어서,
    상기 센서부는, 상기 유입구의 근방에 마련되는 공기 조화기.
  7. 제 6항에 있어서,
    상기 센서부는, 상기 유입구와, 상기 필터부 사이의 유로에 있는 공기의 이물을 감지하는 공기 조화기.
  8. 제 1항에 있어서,
    상기 저장부는, 상기 이물의 질량농도와, 상기 필터부의 남은 수명 간의 상관관계에 관하여 미리 정해진 정보를 저장하고,
    상기 프로세서는, 상기 저장된 정보를 이용하여 상기 필터부의 남은 수명을 결정하는 공기 조화기.
  9. 제 1항에 있어서,
    상기 프로세서는, 상기 저장부에 저장되는 정보에 기초하여 상기 필터부의 누적된 먼지량을 계산하는 공기 조화기.
  10. 제 9항에 있어서,
    상기 프로세서는, 상기 공기 조화기의 사용 시간, 풍량 값 및 상기 공기중의 이물의 질량농도를 이용하여 누적된 먼지량을 계산하는 공기 조화기.
  11. 제 10항에 있어서,
    상기 프로세서는, 상기 사용 시간, 상기 누적된 먼지량 중 적어도 하나에 따라 상기 풍량 값을 보정하는 공기 조화기.
  12. 하우징, 팬구동부, 필터부, 센서부 및 저장부를 구비하는 공기 조화기를 제어하는 방법에 있어서,
    상기 센서부에 의해 감지된, 상기 하우징에 마련된 유입구를 통해 유입된 공기 중의 이물의 질량농도에 관한 정보를 상기 저장부에 저장하는 단계;
    저장된 정보에 기초하여 상기 필터부의 남은 수명을 계산하도록 제어하는 단계를 포함하는 방법.
  13. 제 12항에 있어서,
    상기 센서부는 레이저를 이물에 반사시키고, 감지하여 센싱정보를 얻는 단계;
    상기 센서부에 의해 얻어진 센싱정보에 기초하여 이물의 질량농도를 결정하는 단계를 더 포함하는 방법.
  14. 제 12항에 있어서,
    상기 센서부는 레이저를 공기에 조사하여 상기 이물에 반사된 레이저의 산란 정도를 감지하는 단계;
    상기 감지된 산란 정도에 기초하여 이물의 질량농도를 결정하도록 제어하는 단계를 더 포함하는 방법.
  15. 제12항에 있어서,
    상기 이물의 질량농도와, 상기 필터부의 남은 수명 간의 상관관계에 관하여 미리 정해진 정보를 상기 저장부에 저장하는 단계;
    상기 저장된 정보를 이용하여 상기 필터부의 남은 수명을 결정하는 단계를 더 포함하는 방법.
PCT/KR2018/001962 2017-12-26 2018-02-14 공기조화기 및 그 제어방법 WO2019132111A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/733,323 US11371742B2 (en) 2017-12-26 2018-02-14 Air conditioner and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170180111A KR102401660B1 (ko) 2017-12-26 2017-12-26 공기조화기 및 그 제어방법
KR10-2017-0180111 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019132111A1 true WO2019132111A1 (ko) 2019-07-04

Family

ID=67067527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001962 WO2019132111A1 (ko) 2017-12-26 2018-02-14 공기조화기 및 그 제어방법

Country Status (3)

Country Link
US (1) US11371742B2 (ko)
KR (1) KR102401660B1 (ko)
WO (1) WO2019132111A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172736A2 (ko) * 2019-07-09 2019-09-12 엘지전자 주식회사 필터의 교체시기 판단 방법 및 필터의 교체시기를 판단하는 공기 조화기
KR102283830B1 (ko) 2019-07-17 2021-07-30 엘지전자 주식회사 공기조화기
KR102223801B1 (ko) * 2019-12-23 2021-03-05 (주)에이피 공기조화기의 필터 교체시기 계산방법
KR102230760B1 (ko) * 2019-12-23 2021-03-22 (주)에이피 필터 교체시기 알람기능을 구비하는 공기조화기
KR102311378B1 (ko) * 2020-02-27 2021-10-13 주식회사 에이피씨테크 공기 청정기
KR20220094900A (ko) * 2020-12-29 2022-07-06 삼성전자주식회사 공기 조화 장치, 공기 조화 시스템 및 이의 제어 방법
CN113834186A (zh) * 2021-09-02 2021-12-24 珠海格力电器股份有限公司 一种空调的控制方法及控制装置、介质、设备
KR20230126085A (ko) * 2022-02-22 2023-08-29 삼성전자주식회사 공기 청정기 및 그의 제어 방법
CN115342442B (zh) * 2022-08-22 2024-07-16 珠海格力电器股份有限公司 空调机组及其控制方法
KR20240044118A (ko) * 2022-09-28 2024-04-04 삼성전자주식회사 필터의 오염을 감지하는 방법 및 그에 따른 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116264A (ko) * 2015-03-27 2016-10-07 주식회사 콜러노비타 필터 교환 주기 알림 기능을 가지는 공기청정기
KR20170071208A (ko) * 2015-12-15 2017-06-23 코웨이 주식회사 공기청정기 및 이의 성능 표시 방법
KR20170086253A (ko) * 2016-01-18 2017-07-26 코웨이 주식회사 공기청정기의 필터 교환 주기 판단 방법
WO2017179743A1 (ko) * 2016-04-12 2017-10-19 디케이산업 주식회사 공기청정기
KR20170136885A (ko) * 2016-06-02 2017-12-12 광전자 주식회사 소형화된 광학식 미세 먼지 센서

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026319A (ko) 2004-09-20 2006-03-23 삼성전자주식회사 모듈형 공기청정기
KR101289647B1 (ko) * 2006-01-12 2013-07-30 한라비스테온공조 주식회사 에어 필터 교환 시기 알림 시스템
KR101326383B1 (ko) 2007-10-05 2013-11-11 코웨이 주식회사 공기청정기의 필터 수명 산출 방법
EP2072920B1 (en) * 2007-12-21 2011-07-20 Akos Advanced Technology Ltd. Air purification system
KR20100089605A (ko) 2009-02-04 2010-08-12 웅진코웨이주식회사 공기 청정기의 필터의 교환 시기 산정 방법
US8243274B2 (en) * 2009-03-09 2012-08-14 Flir Systems, Inc. Portable diesel particulate monitor
KR102316927B1 (ko) * 2014-06-03 2021-10-26 코웨이 주식회사 수처리기기 및 이의 필터교체시기 결정 방법
EP3018423B1 (en) * 2014-11-04 2019-08-07 Samsung Electronics Co., Ltd. Contamination sensor, air purifier having the same and control method thereof
RU2018144790A (ru) * 2016-05-19 2020-06-19 Конинклейке Филипс Н.В. Лазерный датчик для детектирования частиц
EP3367183B1 (en) * 2017-02-22 2020-12-02 Taurus Research and Development, SLU A method for remotely controlling an air purification device
EP3652487B1 (en) * 2017-07-10 2023-12-27 Carrier Corporation A condition based energy smart air circulation system
KR101996058B1 (ko) * 2017-11-21 2019-07-03 엘지전자 주식회사 인공지능 공기조화기 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116264A (ko) * 2015-03-27 2016-10-07 주식회사 콜러노비타 필터 교환 주기 알림 기능을 가지는 공기청정기
KR20170071208A (ko) * 2015-12-15 2017-06-23 코웨이 주식회사 공기청정기 및 이의 성능 표시 방법
KR20170086253A (ko) * 2016-01-18 2017-07-26 코웨이 주식회사 공기청정기의 필터 교환 주기 판단 방법
WO2017179743A1 (ko) * 2016-04-12 2017-10-19 디케이산업 주식회사 공기청정기
KR20170136885A (ko) * 2016-06-02 2017-12-12 광전자 주식회사 소형화된 광학식 미세 먼지 센서

Also Published As

Publication number Publication date
US20200326090A1 (en) 2020-10-15
US11371742B2 (en) 2022-06-28
KR102401660B1 (ko) 2022-05-26
KR20190078278A (ko) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2019132111A1 (ko) 공기조화기 및 그 제어방법
WO2016036211A2 (ko) 공기조화기 및 그 제어방법
US20070256643A1 (en) Remote animal cage environmental monitoring and control system
US20070263338A1 (en) Corona discharge type ionizer and fan unit
JP6491767B2 (ja) 空気清浄機
WO2015099323A1 (en) Humidifier
CN111465808A (zh) 空气净化器及其控制方法
US20070199287A1 (en) Distributed air cleaner system for enclosed electronic devices
WO2021095964A1 (ko) 호환 가능한 하부바디를 포함하는 공기정화 장치
CN109124481A (zh) 吸尘设备及其控制装置及方法
WO2017179743A1 (ko) 공기청정기
WO2018079909A1 (ko) 옥외용 정보 디스플레이 장치의 쿨링 시스템
WO2021149935A1 (ko) 매립형 공기청정장치
JP3480414B2 (ja) 塵埃検知装置
WO2022071653A1 (ko) 공기 청정기
WO2017022989A1 (ko) 슬림형 공기처리장치
KR20160016504A (ko) 공기정화기 및 이의 필터교체시기 결정 방법
WO2021075634A1 (ko) 공기 청정기 및 이의 제어 방법
US20050061155A1 (en) Method for air filtration monitoring in telecommunications equipment racks
WO2015186879A1 (ko) 공기정화기, 이의 필터교체시기 결정 방법 및 이를 위한 필터교체시기 차압 결정 장치 및 방법
KR20180011597A (ko) 포름알데히드 검출장치 및 이를 구비하는 공기처리장치
JP4374965B2 (ja) 換気送風装置
WO2021045508A1 (ko) 서버, 공기 조화 장치 및 이의 제어 방법
EP2034815A2 (en) Remote animal cage environment monitoring and control system
WO2021010633A1 (ko) 환기 청정공기 공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895205

Country of ref document: EP

Kind code of ref document: A1