WO2019132080A1 - Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant - Google Patents

Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant Download PDF

Info

Publication number
WO2019132080A1
WO2019132080A1 PCT/KR2017/015757 KR2017015757W WO2019132080A1 WO 2019132080 A1 WO2019132080 A1 WO 2019132080A1 KR 2017015757 W KR2017015757 W KR 2017015757W WO 2019132080 A1 WO2019132080 A1 WO 2019132080A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
active material
cathode active
formula
Prior art date
Application number
PCT/KR2017/015757
Other languages
English (en)
Korean (ko)
Inventor
손정수
권수연
최수안
전상훈
안지선
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to PCT/KR2017/015757 priority Critical patent/WO2019132080A1/fr
Publication of WO2019132080A1 publication Critical patent/WO2019132080A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
  • LiCoO 2 and LiMn 2 O 4 And so on LiCoO 2 and LiMn 2 O 4 And so on.
  • LiCoO 2 has a limitation in realizing a high capacity battery
  • LiMn 2 O 4 has a low energy density, and has a short life characteristic due to a problem of Mn ion elution.
  • the nickel-based cathode active material can realize a high capacity characteristic, but has poor thermal stability and low life characteristics at high temperature.
  • the present embodiments provide a cathode active material for a lithium secondary battery having excellent lifetime characteristics and thermal stability while securing a high capacity characteristic of the lithium secondary battery and a lithium ion battery including the same.
  • the cathode active material for a secondary battery may include a compound represented by the following general formula (1).
  • M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements
  • M1 is Ni x Co y Mn z
  • M2 is Ti a Zr b Mg c M3 d
  • Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
  • the lithium secondary battery according to one embodiment may include a cathode, a cathode, and an electrolyte including a cathode active material for a lithium secondary battery according to one embodiment.
  • the positive electrode active material for a secondary battery according to an embodiment of the present invention can be used in a lithium secondary battery by combining appropriate doping elements under specific conditions so that the capacity of the battery can be increased while maintaining excellent thermal stability, The lithium secondary battery having excellent lifetime characteristics can be realized.
  • the cathode active material for a lithium secondary battery may include a compound represented by the following general formula (1).
  • M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements
  • M1 is Ni x Co y Mn z
  • M2 is Ti a Zr b Mg c M3 d
  • Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
  • k may be -0.1 or more and 0.1 or less. Accordingly, the molar ratio of Li can be 0.9 or more and 1.1 or less. When the molar ratio of Li is less than 0.9, Ni is liable to be incorporated into the Li phase and the occupancy rate of the metal sites of the lithium site becomes large, and it is difficult to obtain a Li-Ni composite oxide capable of realizing a high capacity battery. When the molar ratio of Li is larger than 1.1, the incorporation of Li into the metal site increases, so that Ni separated from the metal site is mixed into the Li phase and the metal occupation ratio of the lithium site becomes large. Therefore, k is preferably in the above range, more specifically, 0? K? 0.05.
  • M1 may be a nickel-based lithium metal oxide having a layered structure, that is, Ni x Co y Mn z .
  • the nickel-based lithium metal oxide of this embodiment has a high molar ratio of nickel. That is, in M1 of Formula 1, the molar ratio x of nickel may be in the range of 0.800? X? 0.880, more specifically, 0.820? X? 0.860. When the molar ratio of nickel satisfies the above range, a high capacity lithium secondary battery can be realized.
  • the nickel-based lithium metal oxide includes Co and Mn, and y and z, which are contents of Co and Mn, may be in the range of 0.01? Y? 0.15 and 0.01? Z? 0.199, respectively. More specifically, y and z may be in the range of 0.05? Y? 0.15 and 0.03? Z? 0.1, respectively.
  • the structural stability of the cathode active material capable of realizing a high capacity can be improved.
  • M2 may include at least three kinds of dopants, and may further include M3 as needed. That is, M2 can be expressed as Ti a Zr b Mg c M d .
  • the total molar ratio alpha of M2, that is, a + b + c + d, may be in the range of 0.0007??? 0.05, more specifically 0.005?? 0.03 or 0.008?? 0.04.
  • a, b and c which represent the molar ratios of the respective doping elements in M2, may be 1.6? (A + b) / c? 10, more specifically 1.9? (A + b) / c? 8 or 2.6 ? (A + b) / c? 5.
  • the molar ratio of M3, which is an additional doping element may be in the range of 0? D? 0.01, more specifically, 0? D? 0.009 as necessary.
  • the structural stability and surface stabilization of the cathode active material can be improved.
  • Ti may be included in a ratio of 0.0005? A? 0.02, or 0.001? A? 0.01.
  • Ti may be included in the above ratio, it is possible to control the phase transition of the nickel-based lithium metal oxide to the irreversible region when the lithium is desorbed and inserted in the charge-discharge process.
  • the structural stability of the cathode active material can be improved by controlling the expansion of the c-axis in the nickel metal-oxide having a layered crystal structure.
  • Zr may be contained in a ratio of 0.0001? B? 0.01, or 0.0005? B? 0.005.
  • Zr is partially substituted with the transition metal located on the surface of the nickel-based lithium metal oxide particle, and an oxide containing Zr is formed on the surface of the nickel-based lithium metal oxide particle, So that stabilization of the surface can be improved.
  • Mg may be contained in a ratio in the range of 0.0001? C? 0.01, or 0.001? C? 0.005.
  • Mg is contained in the above ratio, cation mixing between lithium and nickel in the lithium layer of the nickel-based lithium metal oxide having the layered crystal structure can be suppressed. Accordingly, by improving the structural stability of the cathode active material, a lithium secondary battery having improved capacity and life characteristics at the same time can be realized.
  • M3 is a dopant other than M1 and M2 described above and may include at least one of an alkaline earth metal, an alkali metal, a Group 3 to Group 12 metal element, and a Group 13 to Group 15 element.
  • M3 may be Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, Ba, , Ta, Ga, Os, As, and Sb.
  • the C may include at least one of Al and B.
  • M3 may include both Al and B.
  • the molar ratio of Al may be in a range of 0.001? Al? 0.01, more specifically 0.002? Al? 0.01.
  • the molar ratio of B may be in the range of 0.0001? B? 0.001, more specifically, 0.0005? B? 0.001.
  • B is confirmed to be related to the densification of the positive electrode active material particles.
  • B is contained in the above-mentioned ratio, the inter-primary-particle bonding of the above-mentioned nickel-based lithium oxide is made robust, And the ion conductivity can be improved.
  • the compound represented by Formula 1 may have I (003/104) of 1.8 or more, more specifically 1.8 or more and 2 or less, as measured by X-ray diffraction analysis using a CuK? Ray.
  • the positive electrode active material has a layered crystal structure containing no lithium excess phase
  • substitution of lithium contained in the transition metal that is, cation mixing, between the transition metal contained in the transition metal layer and the lithium layer occurs, .
  • the peak intensity ratio I (003/104) of the XRD measurement results can be used, and generally, the larger the I (003/104), the less the cationic mixing is.
  • the diffraction peak of the (003) plane is inherent to the layered crystal structure, and the diffraction peak of the (104) plane is measured not only in the layered crystal structure but also in the cubic crystal structure. Therefore, the larger the I (003/104), the closer to the single phase of the layered crystal structure. That is, the crystallinity of the nickel-based lithium metal oxide is improved.
  • the I (003/104) range of the compound represented by Formula 1 is as described above. I (003/104) satisfies the above range, the lithium secondary battery using the cathode active material of this embodiment has an excellent initial capacity and can improve lifetime characteristics at room temperature and high temperature environment.
  • the cathode active material for a lithium secondary battery according to one embodiment described above can be usefully used for the anode of a lithium secondary battery. That is, the lithium secondary battery according to an embodiment of the present invention includes a cathode and an anode including the above-described cathode active material and an electrolyte.
  • the lithium secondary battery according to an embodiment of the present invention may include an electrode assembly including a cathode, a cathode, and a separator disposed between the anode and the cathode.
  • the negative electrode may be prepared by preparing a composition for forming a negative electrode active material layer by mixing a negative electrode active material, a binder and a conductive material, and then applying the composition to an anode current collector such as copper.
  • the negative electrode active material a material capable of intercalating / deintercalating lithium is used.
  • the negative active material include lithium metal, lithium alloy, coke, artificial graphite, natural graphite, Lt; / RTI >
  • binder examples include polyvinyl alcohol, carboxymethylcellulose / styrene-butadiene rubber, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene Polypropylene and the like can be used, but the present invention is not limited thereto.
  • the binder may be mixed in an amount of 1 to 30% by weight based on the total amount of the composition for forming the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and specifically includes graphite such as natural graphite and artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be mixed in an amount of 0.1 to 30% by weight based on the total amount of the composition for forming the anode active material layer.
  • the anode includes the cathode active material for a lithium secondary battery according to an embodiment. That is, the cathode active material, the binder and optionally the conductive material may be mixed to prepare a composition for forming a cathode active material layer, and then the composition may be applied to a cathode current collector such as aluminum. Further, the conductive material, binder and solvent are used in the same manner as in the case of the above-mentioned anode.
  • a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt dissolved therein may be used.
  • the lithium salt may be, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI may be used.
  • Examples of the solvent of the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and?
  • a gelated polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
  • a polymer electrolyte such as polyethylene oxide or polyacrylonitrile
  • an inorganic solid electrolyte such as LiI or Li 3 N
  • the separator may be an olefin-based polymer such as polypropylene, which is chemically resistant and hydrophobic; A sheet or a nonwoven fabric made of glass fiber, polyethylene or the like can be used.
  • a solid electrolyte such as a polymer is used as the electrolytic solution, the solid electrolytic solution may also serve as a separation membrane.
  • the 1Mn 0 .06 (OH) 2 the lithium source material LiOH, Ti raw material is TiO 2, Zr source material is ZrO 2, and Mg raw material of Mg (OH) 2, were mixed in a dry process.
  • the material thus obtained was pulverized and classified to prepare a cathode active material of Example 1 having an average particle diameter of 10 mu m.
  • the slurry was uniformly applied to an aluminum (Al) current collector, and then NMP was evaporated through hot air drying.
  • the slurry was compressed by a roll press and then vacuum dried in a vacuum oven at 100 ° C to 200 ° C for 12 hours to prepare a positive electrode.
  • Lithium metal Li-metal
  • LiPF 6 LiPF 6
  • EC ethylene carbonate: DMC: Dimethyl Carbonate
  • a CR2032 half-cell was fabricated according to a conventional manufacturing method.
  • Example 1 0.82812 0.09859 0.05915 0.00877 0.00153 0.00384 - - 2.682 1.8358
  • Example 2 0.82855 0.09864 0.05918 0.00877 0.00102 0.00384 - - 2.549 1.8229
  • Example 3 0.82893 0.09868 0.05921 0.00877 0.00153 0.00288 - - 3.576 1.8168
  • Example 4 0.82304 0.09798 0.05879 0.00877 0.00153 0.00384 0.00519 0.00086 2.682 1.8621
  • Example 5 0.83055 0.09888 0.05933 0.00586 0.00154 0.00384 - - 1.922 1.8168
  • Example 6 0.82376 0.09807 0.05884 0.00877 0.00153 0.00384 0.00519 - 2.682 1.8638
  • Example 7 0.82740 0.09850 0.05910 0.00877 0.00153 0.00
  • the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated for forming efficiency.
  • the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were repeatedly charged and discharged at a high temperature (45 ° C) of 3.0 V to 4.3 V and a charging of 1.0 C and a discharge of 1.0 C 30 th / 1 th capacity retention rate (30th cycle capacity with respect to the first cycle capacity) was calculated and shown in Table 2 below.
  • the measurement range was 30 ⁇ ⁇ to 400 ⁇ ⁇ .
  • Example 1 213.95 94.69 90.31 223.5
  • Example 2 213.07 92.01 87.75 -
  • Example 3 212.59 93.86 89.53 -
  • Example 4 213.95 93.69 91.31 226.82
  • Example 5 215.43 92.64 89.93 -
  • Example 6 214.12 93.72 90.28 225.17
  • Example 7 213.23 92.15 90.15 224.37 Comparative Example 1 216.33 91.30 87.57 - Comparative Example 2 207.24 91.11 87.5 - Comparative Example 3 211.62 91.47 82.93 -
  • cathode active materials prepared according to Examples 1, 4, and 6 to 7 are also excellent in thermal stability.
  • a cathode active material doped to contain Ti, Zr and Mg at a specific molar ratio is employed as in the present embodiment, a high capacity characteristic can be secured, and at the same time, lithium having excellent lifetime characteristics and thermal stability at room temperature and high temperature A secondary battery can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un matériau actif de cathode pour une batterie secondaire au lithium, son procédé de préparation et une batterie secondaire au lithium le comprenant. Un matériau actif de cathode pour une batterie secondaire au lithium, selon un mode de réalisation, peut comprendre un composé représenté par la formule chimique suivante 1. [Formule chimique 1] Li1+k[M11-α M2α]O2-βQβ. Dans la formule chimique 1, M1 est NixCoyMnz, M2 est TiaZrbMgcM3d, M3 comprend au moins l'un parmi un métal alcalino-terreux, un métal alcalin, un élément métallique des groupes 3 à 12, et un élément des groupes 13 à 15, et Q comprend au moins l'un de P et S, où -0,1 ≤ k ≤ 0,1, 0,0007≤ α ≤ 0,05, 0 ≤ β ≤ 0,1, 0,800 ≤ x ≤ 0,880, 0,01 ≤ y ≤ 0,15, 0,01 ≤ z ≤ 0,199, 1,6 ≤ (a+b)/c ≤ 10, et 0 ≤ d ≤ 0,01.
PCT/KR2017/015757 2017-12-29 2017-12-29 Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant WO2019132080A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015757 WO2019132080A1 (fr) 2017-12-29 2017-12-29 Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015757 WO2019132080A1 (fr) 2017-12-29 2017-12-29 Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant

Publications (1)

Publication Number Publication Date
WO2019132080A1 true WO2019132080A1 (fr) 2019-07-04

Family

ID=67067761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015757 WO2019132080A1 (fr) 2017-12-29 2017-12-29 Matériau actif de cathode pour batterie secondaire au lithium, et batterie secondaire au lithium le comprenant

Country Status (1)

Country Link
WO (1) WO2019132080A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601917B1 (ko) * 2014-02-11 2016-03-09 울산과학기술원 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20170045833A (ko) * 2015-10-20 2017-04-28 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
KR101746187B1 (ko) * 2014-10-15 2017-06-12 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20170119691A (ko) * 2015-03-31 2017-10-27 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드 고용량 니켈-코발트계 리튬이온 양극재 및 그 제조 방법
KR20170133188A (ko) * 2016-05-25 2017-12-05 주식회사 엘 앤 에프 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601917B1 (ko) * 2014-02-11 2016-03-09 울산과학기술원 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101746187B1 (ko) * 2014-10-15 2017-06-12 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20170119691A (ko) * 2015-03-31 2017-10-27 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드 고용량 니켈-코발트계 리튬이온 양극재 및 그 제조 방법
KR20170045833A (ko) * 2015-10-20 2017-04-28 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
KR20170133188A (ko) * 2016-05-25 2017-12-05 주식회사 엘 앤 에프 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Similar Documents

Publication Publication Date Title
WO2010047524A2 (fr) Phosphate de fer lithié de structure olivine et son procédé de préparation
WO2015065095A1 (fr) Matériau actif d'électrode négative pour un accumulateur au lithium et son procédé de préparation
WO2017069410A1 (fr) Matière active de cathode comprenant un oxyde de métal de transition multicouche pour batterie secondaire au lithium, et cathode comprenant une matière active de cathode
WO2009145471A1 (fr) Nouveau précurseur pour la production d'un oxyde de métal de transition composite au lithium
WO2010047552A2 (fr) Matériau actif pour électrode positive ayant une efficacité d'électrode et des caractéristiques de densité d'énergie améliorées
WO2013137577A1 (fr) Précurseur pour la préparation d'oxyde de métal de transition au composite au lithium et procédé de préparation
WO2013165150A1 (fr) Précurseur pour la préparation d'oxyde de métal de transition composite au lithium et son procédé de préparation
WO2013109038A1 (fr) Matière active de cathode, batterie rechargeable au lithium permettant de contrôler les impuretés ou le gonflement contenant celles-ci et procédé de préparation de matière active de cathode doté d'une productivité améliorée
WO2011084003A2 (fr) Matériau actif de cathode contenant un oxyde de lithium-manganèse qui présente d'excellentes caractéristiques de charge-décharge dans les régions 4 v et 3 v
WO2014073833A1 (fr) Matériau actif de cathode pour batterie secondaire et batterie secondaire qui comprend celui-ci
WO2019074306A2 (fr) Matériau actif d'électrode positive, son procédé de préparation et batterie rechargeable au lithium le comprenant
WO2010143805A1 (fr) Matériau cathodique pour une batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium le comprenant
WO2015012473A1 (fr) Oxyde à base de lithium et de manganèse et substance active d'électrode positive comprenant celui-ci
WO2020204625A1 (fr) Électrode pour batterie secondaire au lithium
WO2010047522A2 (fr) Matériau composite de cathode présentant des caractéristiques d'efficacité de l'électrode et de densité énergétique améliorées
WO2011136550A2 (fr) Matériau actif de cathode et batterie secondaire au lithium utilisant un tel matériau
WO2012141503A2 (fr) Matière active d'électrode positive, son procédé de préparation et électrode positive et batterie au lithium l'utilisant
WO2010147389A2 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium
WO2016068682A1 (fr) Précurseur d'oxyde de métal de transition, oxyde de métal de transition composite au lithium, électrode positive qui comprend celui-ci, et batterie secondaire
WO2018084525A1 (fr) Matériau actif de cathode pour batterie secondaire au lithium et batterie secondaire au lithium le comprenant
WO2013002513A2 (fr) Matériau actif d'électrode positive pour batterie secondaire à régime amélioré
KR101981659B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022065935A1 (fr) Procédé de synthèse à l'état solide d'une particule unique de matériau actif de cathode d'oxyde de métal de transition composite de lithium riche en ni, particule unique de matériau actif de cathode d'oxyde de métal de transition composite de lithium riche en ni, ainsi synthétisée, ainsi que cathode et batterie rechargeable au lithium contenant chacune cette particule
KR101065377B1 (ko) 리튬이온 전지용 음극 활물질 및 이를 포함한 리튬이온 전지
WO2016137287A1 (fr) Matériau actif de cathode, cathode le comprenant et batterie secondaire au lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936129

Country of ref document: EP

Kind code of ref document: A1