WO2019132080A1 - Cathode active material for lithium secondary battery, and lithium secondary battery comprising same - Google Patents

Cathode active material for lithium secondary battery, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019132080A1
WO2019132080A1 PCT/KR2017/015757 KR2017015757W WO2019132080A1 WO 2019132080 A1 WO2019132080 A1 WO 2019132080A1 KR 2017015757 W KR2017015757 W KR 2017015757W WO 2019132080 A1 WO2019132080 A1 WO 2019132080A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
active material
cathode active
formula
Prior art date
Application number
PCT/KR2017/015757
Other languages
French (fr)
Korean (ko)
Inventor
손정수
권수연
최수안
전상훈
안지선
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to PCT/KR2017/015757 priority Critical patent/WO2019132080A1/en
Publication of WO2019132080A1 publication Critical patent/WO2019132080A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
  • LiCoO 2 and LiMn 2 O 4 And so on LiCoO 2 and LiMn 2 O 4 And so on.
  • LiCoO 2 has a limitation in realizing a high capacity battery
  • LiMn 2 O 4 has a low energy density, and has a short life characteristic due to a problem of Mn ion elution.
  • the nickel-based cathode active material can realize a high capacity characteristic, but has poor thermal stability and low life characteristics at high temperature.
  • the present embodiments provide a cathode active material for a lithium secondary battery having excellent lifetime characteristics and thermal stability while securing a high capacity characteristic of the lithium secondary battery and a lithium ion battery including the same.
  • the cathode active material for a secondary battery may include a compound represented by the following general formula (1).
  • M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements
  • M1 is Ni x Co y Mn z
  • M2 is Ti a Zr b Mg c M3 d
  • Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
  • the lithium secondary battery according to one embodiment may include a cathode, a cathode, and an electrolyte including a cathode active material for a lithium secondary battery according to one embodiment.
  • the positive electrode active material for a secondary battery according to an embodiment of the present invention can be used in a lithium secondary battery by combining appropriate doping elements under specific conditions so that the capacity of the battery can be increased while maintaining excellent thermal stability, The lithium secondary battery having excellent lifetime characteristics can be realized.
  • the cathode active material for a lithium secondary battery may include a compound represented by the following general formula (1).
  • M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements
  • M1 is Ni x Co y Mn z
  • M2 is Ti a Zr b Mg c M3 d
  • Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
  • k may be -0.1 or more and 0.1 or less. Accordingly, the molar ratio of Li can be 0.9 or more and 1.1 or less. When the molar ratio of Li is less than 0.9, Ni is liable to be incorporated into the Li phase and the occupancy rate of the metal sites of the lithium site becomes large, and it is difficult to obtain a Li-Ni composite oxide capable of realizing a high capacity battery. When the molar ratio of Li is larger than 1.1, the incorporation of Li into the metal site increases, so that Ni separated from the metal site is mixed into the Li phase and the metal occupation ratio of the lithium site becomes large. Therefore, k is preferably in the above range, more specifically, 0? K? 0.05.
  • M1 may be a nickel-based lithium metal oxide having a layered structure, that is, Ni x Co y Mn z .
  • the nickel-based lithium metal oxide of this embodiment has a high molar ratio of nickel. That is, in M1 of Formula 1, the molar ratio x of nickel may be in the range of 0.800? X? 0.880, more specifically, 0.820? X? 0.860. When the molar ratio of nickel satisfies the above range, a high capacity lithium secondary battery can be realized.
  • the nickel-based lithium metal oxide includes Co and Mn, and y and z, which are contents of Co and Mn, may be in the range of 0.01? Y? 0.15 and 0.01? Z? 0.199, respectively. More specifically, y and z may be in the range of 0.05? Y? 0.15 and 0.03? Z? 0.1, respectively.
  • the structural stability of the cathode active material capable of realizing a high capacity can be improved.
  • M2 may include at least three kinds of dopants, and may further include M3 as needed. That is, M2 can be expressed as Ti a Zr b Mg c M d .
  • the total molar ratio alpha of M2, that is, a + b + c + d, may be in the range of 0.0007??? 0.05, more specifically 0.005?? 0.03 or 0.008?? 0.04.
  • a, b and c which represent the molar ratios of the respective doping elements in M2, may be 1.6? (A + b) / c? 10, more specifically 1.9? (A + b) / c? 8 or 2.6 ? (A + b) / c? 5.
  • the molar ratio of M3, which is an additional doping element may be in the range of 0? D? 0.01, more specifically, 0? D? 0.009 as necessary.
  • the structural stability and surface stabilization of the cathode active material can be improved.
  • Ti may be included in a ratio of 0.0005? A? 0.02, or 0.001? A? 0.01.
  • Ti may be included in the above ratio, it is possible to control the phase transition of the nickel-based lithium metal oxide to the irreversible region when the lithium is desorbed and inserted in the charge-discharge process.
  • the structural stability of the cathode active material can be improved by controlling the expansion of the c-axis in the nickel metal-oxide having a layered crystal structure.
  • Zr may be contained in a ratio of 0.0001? B? 0.01, or 0.0005? B? 0.005.
  • Zr is partially substituted with the transition metal located on the surface of the nickel-based lithium metal oxide particle, and an oxide containing Zr is formed on the surface of the nickel-based lithium metal oxide particle, So that stabilization of the surface can be improved.
  • Mg may be contained in a ratio in the range of 0.0001? C? 0.01, or 0.001? C? 0.005.
  • Mg is contained in the above ratio, cation mixing between lithium and nickel in the lithium layer of the nickel-based lithium metal oxide having the layered crystal structure can be suppressed. Accordingly, by improving the structural stability of the cathode active material, a lithium secondary battery having improved capacity and life characteristics at the same time can be realized.
  • M3 is a dopant other than M1 and M2 described above and may include at least one of an alkaline earth metal, an alkali metal, a Group 3 to Group 12 metal element, and a Group 13 to Group 15 element.
  • M3 may be Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, Ba, , Ta, Ga, Os, As, and Sb.
  • the C may include at least one of Al and B.
  • M3 may include both Al and B.
  • the molar ratio of Al may be in a range of 0.001? Al? 0.01, more specifically 0.002? Al? 0.01.
  • the molar ratio of B may be in the range of 0.0001? B? 0.001, more specifically, 0.0005? B? 0.001.
  • B is confirmed to be related to the densification of the positive electrode active material particles.
  • B is contained in the above-mentioned ratio, the inter-primary-particle bonding of the above-mentioned nickel-based lithium oxide is made robust, And the ion conductivity can be improved.
  • the compound represented by Formula 1 may have I (003/104) of 1.8 or more, more specifically 1.8 or more and 2 or less, as measured by X-ray diffraction analysis using a CuK? Ray.
  • the positive electrode active material has a layered crystal structure containing no lithium excess phase
  • substitution of lithium contained in the transition metal that is, cation mixing, between the transition metal contained in the transition metal layer and the lithium layer occurs, .
  • the peak intensity ratio I (003/104) of the XRD measurement results can be used, and generally, the larger the I (003/104), the less the cationic mixing is.
  • the diffraction peak of the (003) plane is inherent to the layered crystal structure, and the diffraction peak of the (104) plane is measured not only in the layered crystal structure but also in the cubic crystal structure. Therefore, the larger the I (003/104), the closer to the single phase of the layered crystal structure. That is, the crystallinity of the nickel-based lithium metal oxide is improved.
  • the I (003/104) range of the compound represented by Formula 1 is as described above. I (003/104) satisfies the above range, the lithium secondary battery using the cathode active material of this embodiment has an excellent initial capacity and can improve lifetime characteristics at room temperature and high temperature environment.
  • the cathode active material for a lithium secondary battery according to one embodiment described above can be usefully used for the anode of a lithium secondary battery. That is, the lithium secondary battery according to an embodiment of the present invention includes a cathode and an anode including the above-described cathode active material and an electrolyte.
  • the lithium secondary battery according to an embodiment of the present invention may include an electrode assembly including a cathode, a cathode, and a separator disposed between the anode and the cathode.
  • the negative electrode may be prepared by preparing a composition for forming a negative electrode active material layer by mixing a negative electrode active material, a binder and a conductive material, and then applying the composition to an anode current collector such as copper.
  • the negative electrode active material a material capable of intercalating / deintercalating lithium is used.
  • the negative active material include lithium metal, lithium alloy, coke, artificial graphite, natural graphite, Lt; / RTI >
  • binder examples include polyvinyl alcohol, carboxymethylcellulose / styrene-butadiene rubber, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene Polypropylene and the like can be used, but the present invention is not limited thereto.
  • the binder may be mixed in an amount of 1 to 30% by weight based on the total amount of the composition for forming the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and specifically includes graphite such as natural graphite and artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be mixed in an amount of 0.1 to 30% by weight based on the total amount of the composition for forming the anode active material layer.
  • the anode includes the cathode active material for a lithium secondary battery according to an embodiment. That is, the cathode active material, the binder and optionally the conductive material may be mixed to prepare a composition for forming a cathode active material layer, and then the composition may be applied to a cathode current collector such as aluminum. Further, the conductive material, binder and solvent are used in the same manner as in the case of the above-mentioned anode.
  • a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt dissolved therein may be used.
  • the lithium salt may be, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI may be used.
  • Examples of the solvent of the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and?
  • a gelated polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
  • a polymer electrolyte such as polyethylene oxide or polyacrylonitrile
  • an inorganic solid electrolyte such as LiI or Li 3 N
  • the separator may be an olefin-based polymer such as polypropylene, which is chemically resistant and hydrophobic; A sheet or a nonwoven fabric made of glass fiber, polyethylene or the like can be used.
  • a solid electrolyte such as a polymer is used as the electrolytic solution, the solid electrolytic solution may also serve as a separation membrane.
  • the 1Mn 0 .06 (OH) 2 the lithium source material LiOH, Ti raw material is TiO 2, Zr source material is ZrO 2, and Mg raw material of Mg (OH) 2, were mixed in a dry process.
  • the material thus obtained was pulverized and classified to prepare a cathode active material of Example 1 having an average particle diameter of 10 mu m.
  • the slurry was uniformly applied to an aluminum (Al) current collector, and then NMP was evaporated through hot air drying.
  • the slurry was compressed by a roll press and then vacuum dried in a vacuum oven at 100 ° C to 200 ° C for 12 hours to prepare a positive electrode.
  • Lithium metal Li-metal
  • LiPF 6 LiPF 6
  • EC ethylene carbonate: DMC: Dimethyl Carbonate
  • a CR2032 half-cell was fabricated according to a conventional manufacturing method.
  • Example 1 0.82812 0.09859 0.05915 0.00877 0.00153 0.00384 - - 2.682 1.8358
  • Example 2 0.82855 0.09864 0.05918 0.00877 0.00102 0.00384 - - 2.549 1.8229
  • Example 3 0.82893 0.09868 0.05921 0.00877 0.00153 0.00288 - - 3.576 1.8168
  • Example 4 0.82304 0.09798 0.05879 0.00877 0.00153 0.00384 0.00519 0.00086 2.682 1.8621
  • Example 5 0.83055 0.09888 0.05933 0.00586 0.00154 0.00384 - - 1.922 1.8168
  • Example 6 0.82376 0.09807 0.05884 0.00877 0.00153 0.00384 0.00519 - 2.682 1.8638
  • Example 7 0.82740 0.09850 0.05910 0.00877 0.00153 0.00
  • the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated for forming efficiency.
  • the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were repeatedly charged and discharged at a high temperature (45 ° C) of 3.0 V to 4.3 V and a charging of 1.0 C and a discharge of 1.0 C 30 th / 1 th capacity retention rate (30th cycle capacity with respect to the first cycle capacity) was calculated and shown in Table 2 below.
  • the measurement range was 30 ⁇ ⁇ to 400 ⁇ ⁇ .
  • Example 1 213.95 94.69 90.31 223.5
  • Example 2 213.07 92.01 87.75 -
  • Example 3 212.59 93.86 89.53 -
  • Example 4 213.95 93.69 91.31 226.82
  • Example 5 215.43 92.64 89.93 -
  • Example 6 214.12 93.72 90.28 225.17
  • Example 7 213.23 92.15 90.15 224.37 Comparative Example 1 216.33 91.30 87.57 - Comparative Example 2 207.24 91.11 87.5 - Comparative Example 3 211.62 91.47 82.93 -
  • cathode active materials prepared according to Examples 1, 4, and 6 to 7 are also excellent in thermal stability.
  • a cathode active material doped to contain Ti, Zr and Mg at a specific molar ratio is employed as in the present embodiment, a high capacity characteristic can be secured, and at the same time, lithium having excellent lifetime characteristics and thermal stability at room temperature and high temperature A secondary battery can be realized.

Abstract

The present invention relates to a cathode active material for a lithium secondary battery, a preparation method thereof, and a lithium secondary battery comprising the same. A cathode active material for a lithium secondary battery, according to one embodiment, may comprise a compound represented by the following chemical formula 1. [Chemical formula 1] Li1+k[M11-α M2α]O2-βQβ In chemical formula 1, M1 is NixCoyMnz, M2 is TiaZrbMgcM3d, M3 comprises at least one of alkaline-earth metal, alkali metal, a metal element of groups 3 to 12, and an element of groups 13 to 15, and Q comprises at least one of P and S, wherein -0.1 ≤ k ≤ 0.1, 0.0007≤ α ≤ 0.05, 0 ≤ β ≤ 0.1, 0.800 ≤ x ≤ 0.880, 0.01 ≤ y ≤ 0.15, 0.01 ≤ z ≤ 0.199, 1.6 ≤ (a+b)/c ≤ 10, and 0 ≤ d ≤ 0.01.

Description

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지Cathode active material for lithium secondary battery and lithium secondary battery comprising same
본 발명은 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
최근, 휴대용 전자 기기뿐만 아니라 전기 자동차, 하이브리드 자동차 등의 중대형 장치 산업으로 확장됨에 따라 이들 장치의 전원으로 사용되는 리튬 이차 전지의 리튬 이차 전지의 고용량화를 위한 연구가 활발하다. 2. Description of the Related Art [0002] Recently, there has been an active research into the capacity of lithium secondary batteries of lithium secondary batteries, which are used as a power source for these devices, as they are expanded to middle and large device industries such as electric vehicles and hybrid vehicles as well as portable electronic devices.
따라서, 리튬 이차 전지의 고용량화를 위하여 리튬 이차 전지의 핵심 소재인 양극 활물질의 성능 개선에 대한 연구가 활발하다.Therefore, studies on the improvement of the performance of the cathode active material, which is a core material of the lithium secondary battery, have been actively conducted to increase the capacity of the lithium secondary battery.
현재 리튬 이차 전지의 양극 활물질로는 현재 LiCoO2 및 LiMn2O4 등이 주로 사용되고 있다. 그러나, LiCoO2의 경우 고용량의 전지를 구현하는 데 한계가 있고, LiMn2O4의 경우 에너지 밀도가 낮고, Mn이온 용출의 문제점으로 인해 수명특성이 떨어지는 단점이 있다.At present, LiCoO 2 and LiMn 2 O 4 And so on. However, LiCoO 2 has a limitation in realizing a high capacity battery, LiMn 2 O 4 has a low energy density, and has a short life characteristic due to a problem of Mn ion elution.
이에 따라 최근에는 고용량 전지의 구현이 가능한 니켈계 양극 활물질에 대한 관심이 높다. 그러나, 니켈계 양극 활물질의 경우 고용량 특성의 구현은 가능하나, 열안정성이 나쁘고, 고온에서의 수명 특성이 저하되는 문제점이 있다.Accordingly, there is a high interest in nickel-based cathode active materials capable of realizing high capacity batteries in recent years. However, the nickel-based cathode active material can realize a high capacity characteristic, but has poor thermal stability and low life characteristics at high temperature.
따라서, 고용량 리튬 이차 전지의 구현이 가능하면서도 열안정성 및 상온뿐 아니라 고온에서의 수명 특성이 우수한 리튬 이차 전지용 양극 활물질에 대한 개발이 시급하다. Therefore, it is urgent to develop a cathode active material for a lithium secondary battery that can realize a high capacity lithium secondary battery and has excellent thermal stability and life characteristics at a high temperature as well as at room temperature.
본 실시예들은 리튬 이차 전지의 고용량 특성을 확보하면서도 수명 특성 및 열 안정성이 우수한 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이자 전지를 제공하고자 한다. The present embodiments provide a cathode active material for a lithium secondary battery having excellent lifetime characteristics and thermal stability while securing a high capacity characteristic of the lithium secondary battery and a lithium ion battery including the same.
일 실시예에 따른 이차 전지용 양극 활물질은, 하기 화학식 1로 표시되는 화합물을 포함할 수 있다. The cathode active material for a secondary battery according to one embodiment may include a compound represented by the following general formula (1).
[화학식 1][Chemical Formula 1]
Li1+k[M11-α M2α]O2-βQβ Li 1 + k [M1 1 -? M2 ? ] O2 -? Q ?
상기 화학식 1에서, M1은 NixCoyMnz , M2는 TiaZrbMgcM3d , M3는 알카리 토금속, 알칼리 금속, 3족 내지 12족 금속원소 및 13족 내지 15족 원소 중 적어도 하나를 포함하고, Q는 P 및 S 중 적어도 하나를 포함하며, -0.1 ≤ k ≤ 0.1, 0.0007≤ α ≤ 0.05, 0 ≤ β ≤ 0.1, 0.800 ≤ x ≤ 0.880, 0.01 ≤ y ≤ 0.15, 0.01 ≤ z ≤ 0.199, 1.6 ≤ (a+b)/c ≤ 10, 0 ≤ d ≤ 0.01이다. M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements, M1 is Ni x Co y Mn z , M2 is Ti a Zr b Mg c M3 d , Wherein Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
일 실시예에 따른 리튬 이차 전지는, 일 실시예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극, 음극 및 전해질을 포함할 수 있다.The lithium secondary battery according to one embodiment may include a cathode, a cathode, and an electrolyte including a cathode active material for a lithium secondary battery according to one embodiment.
본 발명의 일 실시예에 따른 이차 전지용 양극 활물질은, 적절한 도핑 원소를 특정 조건으로 조합함으로써, 이를 리튬 이차 전지에 적용하는 경우, 전지의 고용량화가 가능하면서도 우수한 열안정성을 가지며, 상온뿐 아니라 고온에서의 수명 특성도 우수한 리튬 이차 전지를 구현할 수 있다. The positive electrode active material for a secondary battery according to an embodiment of the present invention can be used in a lithium secondary battery by combining appropriate doping elements under specific conditions so that the capacity of the battery can be increased while maintaining excellent thermal stability, The lithium secondary battery having excellent lifetime characteristics can be realized.
이하, 첨부한 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly illustrate the present invention, parts not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, throughout the specification, when an element is referred to as "including" an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.
이하, 일 실시예에 따른 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지에 대하여 구체적으로 설명하기로 한다. Hereinafter, a cathode active material for a lithium secondary battery according to an embodiment, a method of manufacturing the same, and a lithium secondary battery including the same will be described in detail.
리튬 이차 전지용 양극 활물질Cathode active material for lithium secondary battery
일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 하기 화학식 1로 표시되는 화합물을 포함할 수 있다. The cathode active material for a lithium secondary battery according to one embodiment may include a compound represented by the following general formula (1).
[화학식 1][Chemical Formula 1]
Li1+k[M11-α M2α]O2-βQβ Li 1 + k [M1 1 -? M2 ? ] O2 -? Q ?
상기 화학식 1에서, M1은 NixCoyMnz , M2는 TiaZrbMgcM3d , M3는 알카리 토금속, 알칼리 금속, 3족 내지 12족 금속원소 및 13족 내지 15족 원소 중 적어도 하나를 포함하고, Q는 P 및 S 중 적어도 하나를 포함하며, -0.1 ≤ k ≤ 0.1, 0.0007≤ α ≤ 0.05, 0 ≤ β ≤ 0.1, 0.800 ≤ x ≤ 0.880, 0.01 ≤ y ≤ 0.15, 0.01 ≤ z ≤ 0.199, 1.6 ≤ (a+b)/c ≤ 10, 0 ≤ d ≤ 0.01이다. M3 is at least one element selected from the group consisting of alkaline earth metal, alkali metal, Group 3 to Group 12 metal elements and Group 13 to Group 15 elements, M1 is Ni x Co y Mn z , M2 is Ti a Zr b Mg c M3 d , Wherein Q comprises at least one of P and S, wherein -0.1? K? 0.1, 0.0007??? 0.05, 0??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z ? 0.199, 1.6? (A + b) / c? 10, 0? D? 0.01.
상기 화학식 1에서, k는 -0.1 이상 및 0.1 이하일 수 있다. 따라서, Li의 몰 비율이 0.9 이상 및 1.1 이하일 수 있다. Li의 몰 비율이 0.9 보다 작은 경우에는 Ni가 Li상으로 혼입하기 쉽고 리튬 사이트의 메탈자리 점유율이 커져, 고용량 전지를 구현할 수 있는 Li-Ni복합 산화물을 얻기가 어렵다. 또한, Li의 몰 비율이 1.1보다 큰 경우에는 메탈 사이트로의 Li의 혼입이 많아져, 메탈 사이트에서 떨어져 나온 Ni가 Li상으로 혼입하고 리튬 사이트의 메탈 점유율이 커진다. 따라서, k는 상기 범위인 것이 바람직하고, 보다 구체적으로, 0≤ k ≤0.05 범위일 수 있다. In the above formula (1), k may be -0.1 or more and 0.1 or less. Accordingly, the molar ratio of Li can be 0.9 or more and 1.1 or less. When the molar ratio of Li is less than 0.9, Ni is liable to be incorporated into the Li phase and the occupancy rate of the metal sites of the lithium site becomes large, and it is difficult to obtain a Li-Ni composite oxide capable of realizing a high capacity battery. When the molar ratio of Li is larger than 1.1, the incorporation of Li into the metal site increases, so that Ni separated from the metal site is mixed into the Li phase and the metal occupation ratio of the lithium site becomes large. Therefore, k is preferably in the above range, more specifically, 0? K? 0.05.
다음, 상기 화학식 1에서 M1는 층상 구조의 니켈계 리튬 금속 산화물, 즉, NixCoyMnz일 수 있다. 본 실시예의 니켈계 리튬 금속 산화물은 니켈의 몰 비율이 높은 것이다. 즉, 화학식 1의 M1에서, 니켈의 몰 비율 x는 0.800 ≤ x ≤ 0.880, 보다 구체적으로, 0.820 ≤ x ≤ 0.860 범위일 수 있다. 니켈의 몰 비율이 상기 범위를 만족하는 경우, 고용량의 리튬 이차 전지를 구현할 수 있다. In the formula (1), M1 may be a nickel-based lithium metal oxide having a layered structure, that is, Ni x Co y Mn z . The nickel-based lithium metal oxide of this embodiment has a high molar ratio of nickel. That is, in M1 of Formula 1, the molar ratio x of nickel may be in the range of 0.800? X? 0.880, more specifically, 0.820? X? 0.860. When the molar ratio of nickel satisfies the above range, a high capacity lithium secondary battery can be realized.
또한, 상기 니켈계 리튬 금속 산화물은 Co 및 Mn을 포함하며, Co 및 Mn의 함유 비율인 y 및 z는 각각 0.01 ≤ y ≤ 0.15, 0.01 ≤ z ≤ 0.199 범위일 수 있다. 보다 구체적으로, y 및 z는 각각 0.05 ≤ y ≤ 0.15, 0.03 ≤ z ≤ 0.1범위일 수 있다. 니켈계 리튬 금속 산화물에서 Co 및 Mn의 몰 비가 상기 범위를 만족하는 경우, 고용량을 구현할 수 있는 양극 활물질의 구조적 안정성이 향상될 수 있다.Further, the nickel-based lithium metal oxide includes Co and Mn, and y and z, which are contents of Co and Mn, may be in the range of 0.01? Y? 0.15 and 0.01? Z? 0.199, respectively. More specifically, y and z may be in the range of 0.05? Y? 0.15 and 0.03? Z? 0.1, respectively. When the molar ratio of Co and Mn in the nickel-based lithium metal oxide satisfies the above range, the structural stability of the cathode active material capable of realizing a high capacity can be improved.
다음, M2 도펀트를 나타낸다. Then, M2 dopant is shown.
먼저, M2는 적어도 3종의 도펀트를 포함할 수 있고, 필요에 따라 M3를 더 포함할 수 있다. 즉, M2는 TiaZrbMgcMd로 표시될 수 있다. M2의 총 몰비인 α, 즉, a+b+c+d는, 0.0007≤ α ≤ 0.05, 보다 구체적으로, 0.005≤ α ≤ 0.03 또는 0.008≤ α ≤ 0.04 범위일 수 있다. 또한, M2에서 각 도핑 원소의 몰 비율을 나타내는 a, b, c는 1.6 ≤ (a+b)/c ≤ 10일 수 있고, 보다 구체적으로, 1.9 ≤ (a+b)/c ≤ 8 또는 2.6 ≤ (a+b)/c ≤ 5일 수 있다. 또한, 필요에 따라 추가로 도핑할 수 있는 원소인 M3의 몰 비율은 0 ≤ d ≤ 0.01, 보다 구체적으로, 0 ≤ d ≤ 0.009 범위일 수 있다. First, M2 may include at least three kinds of dopants, and may further include M3 as needed. That is, M2 can be expressed as Ti a Zr b Mg c M d . The total molar ratio alpha of M2, that is, a + b + c + d, may be in the range of 0.0007??? 0.05, more specifically 0.005?? 0.03 or 0.008?? 0.04. Further, a, b and c, which represent the molar ratios of the respective doping elements in M2, may be 1.6? (A + b) / c? 10, more specifically 1.9? (A + b) / c? 8 or 2.6 ? (A + b) / c? 5. In addition, the molar ratio of M3, which is an additional doping element, may be in the range of 0? D? 0.01, more specifically, 0? D? 0.009 as necessary.
본 실시예에 따른 양극 활물질에서 도펀트로 M2로 표시되는 3 종의 도펀트, 즉, Ti, Zr 및 Mg가 상기와 같은 비율로 포함되는 경우, 양극 활물질의 구조적 안정성 및 표면 안정화를 향상시킬 수 있다. When the three kinds of dopants represented by M2 as the dopant in the cathode active material according to this embodiment, that is, Ti, Zr and Mg, are contained in the above ratio, the structural stability and surface stabilization of the cathode active material can be improved.
구체적으로, Ti는 0.0005 ≤ a ≤ 0.02, 또는 0.001 ≤ a ≤ 0.01의 비율로 포함될 수 있다. Ti가 상기와 같은 비율로 포함되는 경우 충방전 과정에서 리튬의 탈리 및 삽입이 이루어질 때 상기 니켈계 리튬 금속 산화물이 비가역 영역으로 상전이 되는 것을 제어할 수 있다. 아울러, 층상 결정 구조를 갖는 니켈게 금속 산화물 내의 c축의 팽창을 제어함으로써 양극 활물질의 구조적 안정성을 향상시킬 수 있다. Specifically, Ti may be included in a ratio of 0.0005? A? 0.02, or 0.001? A? 0.01. When Ti is included in the above ratio, it is possible to control the phase transition of the nickel-based lithium metal oxide to the irreversible region when the lithium is desorbed and inserted in the charge-discharge process. In addition, the structural stability of the cathode active material can be improved by controlling the expansion of the c-axis in the nickel metal-oxide having a layered crystal structure.
또한, Zr은 0.0001 ≤ b ≤ 0.01, 또는 0.0005 ≤ b ≤ 0.005의 비율로 포함될 수 있다. Zr을 상기와 같은 비율로 포함하는 경우, Zr이 니켈계 리튬 금속 산화물 입자의 표면에 위치하는 전이 금속과 일부 치환되고, 니켈계 리튬 금속 산화물 입자의 표면에 Zr을 포함하는 산화물을 형성하여 양극 활물질 표면의 안정화를 향상시킬 수 있다. Further, Zr may be contained in a ratio of 0.0001? B? 0.01, or 0.0005? B? 0.005. When Zr is contained in the above ratio, Zr is partially substituted with the transition metal located on the surface of the nickel-based lithium metal oxide particle, and an oxide containing Zr is formed on the surface of the nickel-based lithium metal oxide particle, So that stabilization of the surface can be improved.
한편, Mg는 0.0001 ≤ c ≤ 0.01, 또는 0.001 ≤ c ≤ 0.005 범위의 비율로 포함될 수 있다. Mg를 상기와 같은 비율로 포함하는 경우, 상기 층상 결정 구조를 갖는 니켈계 리튬 금속 산화물의 리튬층에서 리튬 사이트의 리튬과 니켈 간 양이온 혼합(cation mixing)이 발생하는 것을 억제할 수 있다. 이에 따라 양극 활물질의 구조적 안정성을 향상시킴으로써 고용량화와 동시에 수명 특성이 향상된 리튬 이차 전지를 구현할 수 있다.On the other hand, Mg may be contained in a ratio in the range of 0.0001? C? 0.01, or 0.001? C? 0.005. When Mg is contained in the above ratio, cation mixing between lithium and nickel in the lithium layer of the nickel-based lithium metal oxide having the layered crystal structure can be suppressed. Accordingly, by improving the structural stability of the cathode active material, a lithium secondary battery having improved capacity and life characteristics at the same time can be realized.
본 실시예의 상기 화학식 1에서, M3는 전술한 M1 및 M2를 제외한 도펀트로 알카리 토금속, 알칼리 금속, 3족 내지 12족 금속원소 및 13족 내지 15족 원소 중 적어도 하나를 포함할 수 있다. 예를 들면, 상기 M3는 Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, Ba, K, Sr, Hf, Ta, Ga, Os, As 및 Sb 중 적어도 하나를 포함할 수 있으며, 보다 구체적으로, 상기 C는 Al 및 B 중 적어도 하나를 포함할 수 있다. 또는, 상기 M3는 Al 및 B를 모두 포함할 수 있다. In the above Formula 1 of the present embodiment, M3 is a dopant other than M1 and M2 described above and may include at least one of an alkaline earth metal, an alkali metal, a Group 3 to Group 12 metal element, and a Group 13 to Group 15 element. For example, M3 may be Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, Ba, , Ta, Ga, Os, As, and Sb. More specifically, the C may include at least one of Al and B. Alternatively, M3 may include both Al and B.
이때, 상기 화학식 1에서, 상기 Al의 몰 비율은, 0.001 ≤ Al ≤ 0.01, 보다 구체적으로, 0.002 ≤ Al ≤ 0.01 범위일 수 있다. 또한, 상기 B의 몰 비율은, 0.0001 ≤ B ≤ 0.001, 보다 구체적으로, 0.0005 ≤ B ≤ 0.001 범위일 수 있다. In this case, in the above formula (1), the molar ratio of Al may be in a range of 0.001? Al? 0.01, more specifically 0.002? Al? 0.01. The molar ratio of B may be in the range of 0.0001? B? 0.001, more specifically, 0.0005? B? 0.001.
Al을 상기와 같은 비율로 포함하는 경우, 본 실시예에 따른 양극 활물질의 열 안정성 및 구조 안정화가 가능하다. When Al is contained in the above ratio, thermal stability and structure stabilization of the cathode active material according to this embodiment are possible.
또한, B는 양극 활물질 입자의 치밀화에 관계하는 것으로 확인되는바, B를 상기와 같은 비율로 포함하는 경우, 전술한 니켈계 리튬 산화물의 1차 입자 간 결합을 견고하게 만들어 내부의 공극을 줄일 수 있고, 이온 전도도를 향상시킬 수 있다.B is confirmed to be related to the densification of the positive electrode active material particles. When B is contained in the above-mentioned ratio, the inter-primary-particle bonding of the above-mentioned nickel-based lithium oxide is made robust, And the ion conductivity can be improved.
다음, 상기 화학식 1로 표시되는 화합물은 CuKα선을 이용한 X선 회절 분석에 의해 측정한 I(003/104)가 1.8 이상, 보다 구체적으로, 1.8 이상 및 2 이하의 범위일 수 있다. Next, the compound represented by Formula 1 may have I (003/104) of 1.8 or more, more specifically 1.8 or more and 2 or less, as measured by X-ray diffraction analysis using a CuK? Ray.
일반적으로 양극 활물질이 리튬 과잉상을 포함하지 않는 층상 결정 구조일 경우 전이 금속 층에 포함되는 전이 금속과 리튬 층에 포함되는 리튬의 치환, 즉, 양이온 혼합(cation mixing)이 일어나면 전지 특성이 저하되는 것으로 알려져 있다. Generally, when the positive electrode active material has a layered crystal structure containing no lithium excess phase, when the substitution of lithium contained in the transition metal, that is, cation mixing, between the transition metal contained in the transition metal layer and the lithium layer occurs, .
이러한 양이온 혼합 지표 하나로서 XRD 측정 결과의 피크 강도비 I(003/104)를 이용할 수 있고 일반적으로 I(003/104)가 클 수록 양이온 믹싱이 적은 것을 나타낸다. As one of such cationic mixed indexes, the peak intensity ratio I (003/104) of the XRD measurement results can be used, and generally, the larger the I (003/104), the less the cationic mixing is.
본 실시예에서는 층상 결정 구조인 니켈게 금속 산화물의 결정성을 나타내는 파라미터로서 CuKα선을 이용한 X선 회절 분석에 의해 측정한 (003) 면의 회절 피크의 강도 I003와 (104) 면의 회절 피크의 강도 I104와의 강도비 I(003/104)를 측정하였다. In this embodiment, the intensity I003 of the diffraction peak of the (003) plane and the intensity I003 of the diffraction peak of the (104) plane measured by the X-ray diffraction analysis using the CuKa ray as the parameter indicating the crystallinity of the nickel- The intensity ratio I (003/104) to the intensity I104 was measured.
(003) 면의 회절 피크는 층상 결정 구조 고유의 것이고, (104) 면의 회절 피크는 층상 결정 구조뿐만 아니라 입방 결정 구조에서도 측정된다. 따라서, I(003/104)가 클 수록 층상 결정 구조의 단일상에 가까워진다. 즉, 니켈계 리튬 금속 산화물의 결정성이 양호해진다. The diffraction peak of the (003) plane is inherent to the layered crystal structure, and the diffraction peak of the (104) plane is measured not only in the layered crystal structure but also in the cubic crystal structure. Therefore, the larger the I (003/104), the closer to the single phase of the layered crystal structure. That is, the crystallinity of the nickel-based lithium metal oxide is improved.
본 실시예에서, 상기 화학식 1로 표시되는 화합물의 I(003/104) 범위는 전술한 것과 같다. I(003/104) 값이 상기 범위를 만족하기 때문에 본 실시예의 양극 활물질을 적용한 리튬 이차 전지는 초기 용량이 우수하고, 상온 및 고온 환경에서의 수명 특성을 향상시킬 수 있다.In the present embodiment, the I (003/104) range of the compound represented by Formula 1 is as described above. I (003/104) satisfies the above range, the lithium secondary battery using the cathode active material of this embodiment has an excellent initial capacity and can improve lifetime characteristics at room temperature and high temperature environment.
리튬 이차 전지Lithium secondary battery
전술한 일 실시예에 따른 리튬 이차 전지용 양극 활물질은 리튬 이차 전지의 양극에 유용하게 사용될 수 있다. 즉, 본 발명의 일 실시예에 따른 리튬 이차 전지는 음극과 함께 전술한 양극 활물질을 포함하는 양극 및 전해질을 포함한다.The cathode active material for a lithium secondary battery according to one embodiment described above can be usefully used for the anode of a lithium secondary battery. That is, the lithium secondary battery according to an embodiment of the present invention includes a cathode and an anode including the above-described cathode active material and an electrolyte.
구체적으로, 본 발명의 일 실시예에 따른 리튬 이차 전지는 양극, 음극, 그리고 상기 양극과 상기 음극 사이에 배치된 세퍼레이터를 포함하는 전극 조립체를 포함할 수 있다. Specifically, the lithium secondary battery according to an embodiment of the present invention may include an electrode assembly including a cathode, a cathode, and a separator disposed between the anode and the cathode.
상기 음극은, 음극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 이를 구리 등의 음극 집전체에 도포하여 제조될 수 있다.The negative electrode may be prepared by preparing a composition for forming a negative electrode active material layer by mixing a negative electrode active material, a binder and a conductive material, and then applying the composition to an anode current collector such as copper.
상기 음극 활물질로는, 리튬을 인터칼레이션/디인터칼레이션할 수 있는 재료가 사용되고, 예를 들면, 리튬 금속이나 리튬 합금, 코크스, 인조 흑연, 천연 흑연, 유기 고분자 화합물 연소체, 탄소 섬유 등을 사용한다.As the negative electrode active material, a material capable of intercalating / deintercalating lithium is used. Examples of the negative active material include lithium metal, lithium alloy, coke, artificial graphite, natural graphite, Lt; / RTI >
상기 바인더로는 폴리비닐알코올, 카르복시메틸셀룰로오스/스티렌-부타디엔러버, 히드록시프로필렌셀룰로오스, 디아세틸렌셀룰로오스, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌 또는 폴리프로필렌 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 바인더는 상기 음극 활물질층 형성용 조성물의 총량에 대하여 1 내지 30 중량%로 혼합될 수 있다.Examples of the binder include polyvinyl alcohol, carboxymethylcellulose / styrene-butadiene rubber, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene Polypropylene and the like can be used, but the present invention is not limited thereto. The binder may be mixed in an amount of 1 to 30% by weight based on the total amount of the composition for forming the negative electrode active material layer.
상기 도전재로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 구체적으로는 천연 흑연, 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 상기 음극 활물질층 형성용 조성물의 총량에 대하여 0.1 내지 30 중량%로 혼합될 수 있다.The conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and specifically includes graphite such as natural graphite and artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. The conductive material may be mixed in an amount of 0.1 to 30% by weight based on the total amount of the composition for forming the anode active material layer.
상기 양극은, 일 실시예에 따른 리튬 이차 전지용 양극 활물질을 포함한다. 즉, 전술한 양극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이 조성물을 알루미늄 등의 양극 집전체에 도포하여 제조할 수 있다. 또한, 도전재, 결합제 및 용매는 전술한 양극의 경우와 동일하게 사용된다.The anode includes the cathode active material for a lithium secondary battery according to an embodiment. That is, the cathode active material, the binder and optionally the conductive material may be mixed to prepare a composition for forming a cathode active material layer, and then the composition may be applied to a cathode current collector such as aluminum. Further, the conductive material, binder and solvent are used in the same manner as in the case of the above-mentioned anode.
상기 리튬 이차 전지에 충진되는 전해질로는 비수성 전해질 또는 공지된 고체 전해질 등을 사용할 수 있으며, 리튬염이 용해된 것을 사용할 수 있다.As the electrolyte to be filled in the lithium secondary battery, a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt dissolved therein may be used.
상기 리튬염은, 예를 들면, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiCl, 및 LiI로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. The lithium salt may be, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI may be used.
상기 비수성 전해질의 용매로는, 예를 들면, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 이들을 단독 또는 복수 개를 조합하여 사용할 수 있다. 특히, 환상 카보네이트와 쇄상 카보네이트와의 혼합 용매를 바람직하게 사용할 수 있다.Examples of the solvent of the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and? -Butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides such as dimethylformamide, and the like can be used, but the present invention is not limited thereto. These may be used singly or in combination. Particularly, a mixed solvent of cyclic carbonate and chain carbonate can be preferably used.
또한 전해질로서, 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체 전해질이나, LiI, Li3N 등의 무기 고체 전해질이 가능하다.As the electrolyte, a gelated polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
상기 세퍼레이터는 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유, 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다. 전해액으로 폴리머 등의 고체 전해액이 사용되는 경우 고체 전해액이 분리막을 겸할 수도 있다.The separator may be an olefin-based polymer such as polypropylene, which is chemically resistant and hydrophobic; A sheet or a nonwoven fabric made of glass fiber, polyethylene or the like can be used. When a solid electrolyte such as a polymer is used as the electrolytic solution, the solid electrolytic solution may also serve as a separation membrane.
이하 본 발명의 실시예, 이에 대비되는 비교예, 그리고 이들의 평가예를 기재한다. 하기 실시예는 본 발명의 일 실시예일뿐이므로 본 발명이 하기한 실시예에 한정되는 것은 아니다.Examples of the present invention, comparative examples thereof, and evaluation examples thereof will be described below. The following examples are only illustrative of the present invention and are not intended to limit the scope of the present invention.
실시예 1Example 1
(1) 양극 활물질의 제조(1) Preparation of cathode active material
목적하는 Li1 . 025Ni0 . 82812Co0 . 09859Mn0 . 05915Ti0 . 00877Zr0 . 00153Mg0 . 00384O2의 화학양론적 몰비가 되게, Ni0 . 84Co0 .1Mn0 .06(OH)2, 리튬의 원료 물질인 LiOH, Ti 원료 물질인 TiO2, Zr 원료 물질인 ZrO2, 및 Mg 원료 물질인 Mg(OH)2를, 건식으로 혼합하였다. The desired Li 1 . 025 Ni 0 . 82812 Co 0 . 09859 Mn 0 . 05915 Ti 0 . 00877 Zr 0. 00153 Mg 0 . To be a stoichiometric molar ratio of O 2 , Ni 0 . 84 Co 0 . The 1Mn 0 .06 (OH) 2, the lithium source material LiOH, Ti raw material is TiO 2, Zr source material is ZrO 2, and Mg raw material of Mg (OH) 2, were mixed in a dry process.
건식 혼합물 총 4.0kg을 물라이트(mullite) 재질의 내화갑(saggar)에 충진시키고, 공기(air)분위기의 박스형 소결로에서, 소성 온도 785℃ 조건으로 맞추어 총 30시간 동안 소성하였다. 이후, 실온까지 자연 냉각하였다.4.0 kg of the dry mixture was filled in a mullite saggar and fired in a box-type sintering furnace in an air atmosphere at a firing temperature of 785 캜 for a total of 30 hours. Thereafter, it was naturally cooled to room temperature.
이에 따라 얻어진 물질을 물질을 분쇄 분급하여, 평균 입경이 10㎛인 실시예 1의 양극 활물질을 제조하였다. The material thus obtained was pulverized and classified to prepare a cathode active material of Example 1 having an average particle diameter of 10 mu m.
(2) 이차 전지의 제조(2) Production of secondary battery
상기 (1)에서 제조된 리튬 이차 전지용 양극 활물질 90 중량%, 도전재(Super-P) 5 중량%, 및 바인더(PVDF) 5중량%를 N-메틸-2-피롤리돈(NMP) 용매에서 균일하게 혼합하여 슬러리를 제조하였다. 90 wt% of the positive electrode active material for a lithium secondary battery, 5 wt% of a conductive material (Super-P), and 5 wt% of a binder (PVDF) And uniformly mixed to prepare a slurry.
상기 슬러리를 알루미늄(Al) 집전체에 고르게 도포한 후, 열풍건조를 통해 NMP를 증발시킨 후, 롤프레스에서 압착한 뒤, 100℃ 내지 200℃ 진공오븐에서 12시간 진공 건조하여 양극을 제조하였다. The slurry was uniformly applied to an aluminum (Al) current collector, and then NMP was evaporated through hot air drying. The slurry was compressed by a roll press and then vacuum dried in a vacuum oven at 100 ° C to 200 ° C for 12 hours to prepare a positive electrode.
상대 전극으로는 리튬 금속(Li-metal)을 사용하고, 전해액으로는 에틸렌 카보네이트(EC, Ethylene Carbonate): 디메틸 카보네이트(DMC, Dimethyl Carbonate)의 부피 비율이 1:1인 혼합 용매에 1.2몰의 LiPF4용액을 용해시킨 것을 사용하였다.Lithium metal (Li-metal) was used as a counter electrode, and 1.2 mol of LiPF 6 (LiPF 6) was added to a mixed solvent having a volume ratio of ethylene carbonate (EC: ethylene carbonate: DMC: Dimethyl Carbonate) 4 solution was used.
상기 각 구성 요소를 사용하고, 통상적인 제조방법에 따라 CR2032 반쪽 전지(half coin cell)를 제작하였다.Using each of the above components, a CR2032 half-cell was fabricated according to a conventional manufacturing method.
실시예 2 내지 7 및 비교예 1 내지 3 Examples 2 to 7 and Comparative Examples 1 to 3
목적하는 양극 활물질에서 Ni, Co, Mn, Ti, Zr, Mg, Al, 및 B의 화학양론적 몰비와 I(003/104) 값이 하기 표 1에 기재된 것과 같이 되도록 한 것을 실시예 1의 (1)과 동일한 방법으로 양극 활물질을 제조한 후 실시예 1의 (2)와 동일한 방법으로 리튬 이차 전지를 제조하였다. The stoichiometric molar ratio of Ni, Co, Mn, Ti, Zr, Mg, Al, and B and the value of I (003/104) in the target cathode active material were as shown in Table 1 below. 1), a lithium secondary battery was prepared in the same manner as in (2) of Example 1.
구분division NiNi CoCo MnMn TiTi ZrZr MgMg AlAl BB (a+b)/c(a + b) / c I(003/104)I (003/104)
실시예 1Example 1 0.82812 0.82812 0.09859 0.09859 0.05915 0.05915 0.008770.00877 0.001530.00153 0.003840.00384 -- -- 2.6822.682 1.83581.8358
실시예 2Example 2 0.82855 0.82855 0.09864 0.09864 0.05918 0.05918 0.008770.00877 0.001020.00102 0.003840.00384 -- -- 2.5492.549 1.82291.8229
실시예 3Example 3 0.82893 0.82893 0.09868 0.09868 0.05921 0.05921 0.008770.00877 0.001530.00153 0.002880.00288 -- -- 3.5763.576 1.81681.8168
실시예 4Example 4 0.82304 0.82304 0.09798 0.09798 0.05879 0.05879 0.008770.00877 0.001530.00153 0.003840.00384 0.005190.00519 0.000860.00086 2.6822.682 1.86211.8621
실시예 5Example 5 0.83055 0.83055 0.09888 0.09888 0.05933 0.05933 0.005860.00586 0.001540.00154 0.003840.00384 -- -- 1.9221.922 1.81681.8168
실시예 6Example 6 0.82376 0.82376 0.09807 0.09807 0.05884 0.05884 0.008770.00877 0.001530.00153 0.003840.00384 0.005190.00519 -- 2.6822.682 1.86381.8638
실시예 7Example 7 0.82740 0.82740 0.09850 0.09850 0.05910 0.05910 0.008770.00877 0.001530.00153 0.003840.00384 -- 0.000860.00086 2.6822.682 1.83451.8345
비교예 1Comparative Example 1 0.83183 0.83183 0.09903 0.09903 0.05942 0.05942 0.005870.00587 -- 0.003850.00385 -- -- 1.5211.521 1.78971.7897
비교예 2Comparative Example 2 0.82737 0.82737 0.09850 0.09850 0.05910 0.05910 0.005840.00584 0.001530.00153 0.007660.00766 -- -- 0.9610.961 1.81721.8172
비교예 3Comparative Example 3 0.83114 0.83114 0.09895 0.09895 0.05937 0.05937 0.002930.00293 0.001540.00154 -- 0.005210.00521 0.000860.00086 -- 1.75881.7588
실험예 1 - 초기 방전 용량 측정Experimental Example 1 - Measurement of Initial Discharge Capacity
실시예 1 내지 5 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여, 화성(Formation) 효율을 평가하였다.The lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated for forming efficiency.
구체적으로, 25 ℃, 45℃ 에서 Li+/Li에 대해 0.1/0.1C 조건으로 3.0V 내지 4.3V 사이의 화성(Formation) 효율을 측정하였으며, 그 결과를 하기 표 2에 나타내었다. Specifically, the formation efficiency between 3.0 V and 4.3 V was measured under conditions of 0.1 / 0.1C for Li + / Li at 25 캜 and 45 캜, and the results are shown in Table 2 below.
실험예 2 - 용량 유지율 측정Experimental Example 2 - Measurement of Capacity Retention Rate
실시예 1 내지 5 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여, 용량 유지율을 측정하였다.The capacity retention ratios of the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were measured.
구체적으로, 3.0V 내지 4.3V 상온(25℃)에서 충전 1.0C, 방전 1.0C 조건으로 충방전을 반복하였을 때 30 사이클에서의 용량 유지율(30th/1th, 첫번째 사이클 용량 대비 30번째 사이클 용량비)을 계산하여 하기 표 2에 나타내었다. Specifically, when charging and discharging were repeated at a temperature of 3.0 V to 4.3 V at room temperature (25 캜) under 1.0 C of charge and discharge of 1.0 C, the capacity retention rate (30 th / 1 th at 30 cycles, ) Are shown in Table 2 below.
이와 별개로, 실시예 1 내지 5 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여, 3.0V 내지 4.3V 고온(45℃)에서 충전 1.0C, 방전 1.0C 조건으로 충방전을 반복하였을 때 30th/1th 용량 유지율(첫번째 사이클 용량 대비 30번째 사이클 용량)을 계산하여 하기 표 2에 나타내었다.Separately, the lithium secondary batteries produced according to Examples 1 to 5 and Comparative Examples 1 to 3 were repeatedly charged and discharged at a high temperature (45 ° C) of 3.0 V to 4.3 V and a charging of 1.0 C and a discharge of 1.0 C 30 th / 1 th capacity retention rate (30th cycle capacity with respect to the first cycle capacity) was calculated and shown in Table 2 below.
실험예 3 - 열 안정성 측정 Experimental Example 3 - Measurement of thermal stability
실시예 1 내지 5 및 비교예 1 내지 3에 따라 제조된 양극 활물질에 대하여, 시차주사열량계 (differential scanning calorimeter, DSC) 열 안정성을 측정하였다. DSC 평가는 Mettler Toledo사의 Au-plated HP cell(15MPa)을 이용하여 수행하였으며, 그 결과를 표 2에 나타내었다.For the cathode active materials prepared according to Examples 1 to 5 and Comparative Examples 1 to 3, the thermal stability of a differential scanning calorimeter (DSC) was measured. DSC evaluation was carried out using Mettler Toledo's Au-plated HP cell (15 MPa), and the results are shown in Table 2.
구체적으로, 실시예 1 내지 5 및 비교예 1 내지 3에서 제조된 양극 활물질에 전해액(양극 활물질 및 전해액의 질량비= 1:1)을 추가한 후 DSC평가를 진행하였다. 측정 범위는 30℃ 내지 400℃였다. Specifically, the electrolytic solution (mass ratio of the cathode active material and the electrolytic solution = 1: 1) was added to the cathode active materials prepared in Examples 1 to 5 and Comparative Examples 1 to 3, followed by DSC evaluation. The measurement range was 30 占 폚 to 400 占 폚.
구분division 초기용량 (mAh/g)Initial capacity (mAh / g) 상온 30th/1th(%)Room temperature 30th / 1th (%) 고온 30th/1th(%)High temperature 30th / 1th (%) DSC (main peak, ℃)DSC (main peak, ° C)
실시예 1Example 1 213.95213.95 94.6994.69 90.3190.31 223.5223.5
실시예 2Example 2 213.07213.07 92.0192.01 87.7587.75 --
실시예 3Example 3 212.59212.59 93.8693.86 89.5389.53 --
실시예 4Example 4 213.95213.95 93.6993.69 91.3191.31 226.82226.82
실시예 5Example 5 215.43215.43 92.6492.64 89.9389.93 --
실시예 6Example 6 214.12214.12 93.7293.72 90.2890.28 225.17225.17
실시예 7Example 7 213.23213.23 92.1592.15 90.1590.15 224.37224.37
비교예 1Comparative Example 1 216.33216.33 91.3091.30 87.5787.57 --
비교예 2Comparative Example 2 207.24207.24 91.1191.11 87.587.5 --
비교예 3Comparative Example 3 211.62211.62 91.4791.47 82.9382.93 --
표 2를 참고하면, Ti, Zr 및 Mg와 선택적으로 Al 및 B를 특정 몰비로 도핑한 실시예 1 내지 7의 양극 활물질을 채용한 리튬 이차 전지는 초기 용량이 우수함과 동시에 상온 및 고온에서의 용량 유지율이 매우 뛰어난 것을 확인할 수 있다. Referring to Table 2, the lithium secondary battery employing the cathode active materials of Examples 1 to 7, in which Ti, Zr, and Mg were selectively doped with Al and B in a specific molar ratio, was superior in initial capacity and at the same time, It can be confirmed that the retention ratio is very excellent.
이에 반해, Ti, Zr 및 Mg 적어도 하나가 빠진 원소로 도핑하여 제조된 비교예 1 내지 3의 양극 활물질을 채용한 리튬 이차 전지의 경우, 초기 용량, 상온 및 고온 수명 특성 중 적어도 하나가 실시예들이 비해 매우 저하되는 것을 알 수 있다. On the other hand, in the case of a lithium secondary battery employing the cathode active materials of Comparative Examples 1 to 3 prepared by doping with at least one element of Ti, Zr and Mg, at least one of the initial capacity, the room temperature, Which is lower than that of the conventional method.
아울러, 실시예 1, 4, 및 6 내지 7에 따라 제조된 양극 활물질의 경우, 열 안정성도 뛰어나다. In addition, the cathode active materials prepared according to Examples 1, 4, and 6 to 7 are also excellent in thermal stability.
따라서, 본 실시예와 같이 Ti, Zr 및 Mg를 특정 몰비로 포함하도록 도핑되어 제조되는 양극 활물질을 채용하는 경우 고용량 특성을 확보할 수 있음과 동시에 상온 및 고온에서의 수명 특성 및 열 안정성이 우수한 리튬 이차 전지를 구현할 수 있다. Therefore, when a cathode active material doped to contain Ti, Zr and Mg at a specific molar ratio is employed as in the present embodiment, a high capacity characteristic can be secured, and at the same time, lithium having excellent lifetime characteristics and thermal stability at room temperature and high temperature A secondary battery can be realized.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. As will be understood by those skilled in the art. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (15)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차 전지용 양극 활물질.1. A cathode active material for a lithium secondary battery comprising a compound represented by the following formula (1).
    [화학식 1][Chemical Formula 1]
    Li1+k[M11-α M2α]O2-βQβ Li 1 + k [M1 1 -? M2 ? ] O2 -? Q ?
    (상기 화학식 1에서,(In the formula 1,
    M1는 NixCoyMnz, M1 is Ni x Co y Mn z,
    M2는 TiaZrbMgcM3d, M2 is Ti a Zr b Mg c M3 d,
    M3는 알카리 토금속, 알칼리 금속, 3족 내지 12족 금속원소 및 13족 내지 15족 원소 중 적어도 하나를 포함하고,M3 comprises at least one of an alkaline earth metal, an alkali metal, a Group 3 to 12 metal element and a Group 13 to Group 15 element,
    Q는 P 및 S 중 적어도 하나를 포함하며, Q comprises at least one of P and S,
    -0.1 ≤ k ≤ 0.1, 0.0007≤ α ≤ 0.05, 0 ≤ β ≤ 0.1, 0.800 ≤ x ≤ 0.880, 0.01 ≤ y ≤ 0.15, 0.01 ≤ z ≤ 0.199, 1.6 ≤ (a+b)/c ≤ 10, 0 ≤ d ≤ 0.01임) X? 0.10, 0.0007??? 0.1, 0.800? X? 0.880, 0.01? Y? 0.15, 0.01? Z? 0.199, 1.6? A + b / c? ? D? 0.01)
  2. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서, 1.9 ≤ (a+b)/c ≤ 8인 리튬 이차 전지용 양극 활물질. 1.9 < / = (a + b) / c? 8 in the above formula (1).
  3. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서, 2.6 ≤ (a+b)/c ≤ 5인 리튬 이차 전지용 양극 활물질.2.6? (A + b) / c? 5 in the above formula (1).
  4. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서 0.820 ≤ x ≤ 0.860인 리튬 이차 전지용 양극 활물질.0.820? X? 0.860 in the above formula (1).
  5. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 CuKα선을 이용한 X선 회절 분석에 의해 측정한 I(003/104)가 1.8 이상인 리튬 이차 전지용 양극 활물질.The compound represented by Formula 1 has I (003/104) of 1.8 or more as determined by X-ray diffraction analysis using CuK? Ray.
  6. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 CuKα선을 이용한 X선 회절 분석에 의해 측정한 I(003/104)가 1.8 이상 및 2이하인 리튬 이차 전지용 양극 활물질.Wherein the compound represented by Formula 1 has I (003/104) of 1.8 or more and 2 or less as measured by X-ray diffraction analysis using a CuK? Ray.
  7. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서 0.0005 ≤ a ≤ 0.02인 리튬 이차 전지용 양극 활물질.0.0005? A? 0.02 in the above formula (1).
  8. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서 0.0001 ≤ b ≤ 0.01인 리튬 이차 전지용 양극 활물질.0.0001? B? 0.01 in the above formula (1).
  9. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서 0.0001 ≤ c ≤ 0.01인 리튬 이차 전지용 양극 활물질.0.0001? C? 0.01 in the above formula (1).
  10. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서, M3는 Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, Ba, K, Sr, Hf, Ta, Ga, Os, As 및 Sb 중 적어도 하나를 포함하는 리튬 이차 전지용 양극 활물질.In the above formula 1, M3 is at least one element selected from the group consisting of Al, B, P, S, Mo, V, W, Ca, Na, Zn, Cr, Fe, Cu, Ru, Sr, Be, Si, Ge, , Ta, Ga, Os, As, and Sb.
  11. 제1항에 있어서,The method according to claim 1,
    상기 화학식 1에서, 상기 M3는 Al 및 B 중 적어도 하나를 포함하는 리튬 이차 전지용 양극 활물질. Wherein M3 is at least one of Al and B. In the formula,
  12. 제11항에 있어서,12. The method of claim 11,
    상기 화학식 1에서, 상기 Al은, 0.001 ≤ Al ≤ 0.01인 리튬 이차 전지용 양극 활물질.In the formula (1), the Al is 0.001? Al? 0.01.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 화학식 1에서, 상기 B는, 0.0001 ≤ B ≤ 0.001인 리튬 이차 전지용 양극 활물질. In the formula (1), B is 0.0001? B? 0.001.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 화학식 1에서, 상기 M3는 Al 및 B를 포함하는 리튬 이차 전지용 양극 활물질. In the formula (1), M3 is Al and B, and the positive electrode active material for a lithium secondary battery is M3.
  15. 양극; anode;
    음극; 그리고cathode; And
    전해액을 포함하고,Comprising an electrolytic solution,
    상기 양극은 제1항 내지 제14항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 리튬 이차 전지.The lithium secondary battery according to any one of claims 1 to 14, wherein the positive electrode comprises the positive electrode active material for a lithium secondary battery.
PCT/KR2017/015757 2017-12-29 2017-12-29 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same WO2019132080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015757 WO2019132080A1 (en) 2017-12-29 2017-12-29 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015757 WO2019132080A1 (en) 2017-12-29 2017-12-29 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same

Publications (1)

Publication Number Publication Date
WO2019132080A1 true WO2019132080A1 (en) 2019-07-04

Family

ID=67067761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015757 WO2019132080A1 (en) 2017-12-29 2017-12-29 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019132080A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601917B1 (en) * 2014-02-11 2016-03-09 울산과학기술원 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR20170045833A (en) * 2015-10-20 2017-04-28 주식회사 엘지화학 Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
KR101746187B1 (en) * 2014-10-15 2017-06-12 주식회사 포스코 Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR20170119691A (en) * 2015-03-31 2017-10-27 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드 High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
KR20170133188A (en) * 2016-05-25 2017-12-05 주식회사 엘 앤 에프 Positive active material, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601917B1 (en) * 2014-02-11 2016-03-09 울산과학기술원 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101746187B1 (en) * 2014-10-15 2017-06-12 주식회사 포스코 Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR20170119691A (en) * 2015-03-31 2017-10-27 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드 High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
KR20170045833A (en) * 2015-10-20 2017-04-28 주식회사 엘지화학 Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
KR20170133188A (en) * 2016-05-25 2017-12-05 주식회사 엘 앤 에프 Positive active material, method of preparing the same, and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
WO2010047524A2 (en) Lithium iron phosphate having an olivine structure, and preparation method thereof
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2017069410A1 (en) Cathode active material comprising multi-layered transition metal oxide for lithium secondary battery, and cathode comprising cathode active material
WO2009145471A1 (en) Novel precursor for the production of a lithium composite transition metal oxide
WO2010047552A2 (en) Positive electrode active material with enhanced electrode efficiency and energy density characteristics
WO2013137577A1 (en) Precursor for preparing lithium composite transition metal oxide and method for preparing same
WO2013165150A1 (en) Precursor for preparing lithium composite transition metal oxide, and method for preparing same
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2011084003A2 (en) Cathode active material containing lithium manganese oxide that exhibits excellent charge-discharge characteristics in 4v and 3v regions
WO2014073833A1 (en) Cathode active material for secondary battery and secondary battery comprising same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2010143805A1 (en) Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2015012473A1 (en) Lithium manganese-based oxide and positive electrode active substance comprising same
WO2020204625A1 (en) Electrode for lithium secondary battery
WO2010047522A2 (en) Cathode composite material with improved electrode efficiency and energy density characteristics
WO2011136550A2 (en) Cathode active material and lithium secondary battery using same
WO2012141503A2 (en) Positive electrode active material, method for preparing same, and positive electrode and lithium battery using same
WO2010147389A2 (en) Positive electrode active material for lithium secondary battery
WO2016068682A1 (en) Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
WO2018084525A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
KR101981659B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
WO2013002513A2 (en) Positive electrode active material for a secondary battery having improved rate characteristics
WO2022065935A1 (en) Method for solid-state synthesis of ni-rich lithium composite transition metal oxide cathode active material single particle, ni-rich lithium composite transition metal oxide cathode active material single particle synthesized thereby, and cathode and lithium secondary battery, each containing same
KR101065377B1 (en) Negative active material for lithium ion battery and lithium ion battery comprising the same
KR20190081610A (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936129

Country of ref document: EP

Kind code of ref document: A1