WO2018084525A1 - Cathode active material for lithium secondary battery and lithium secondary battery comprising same - Google Patents

Cathode active material for lithium secondary battery and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018084525A1
WO2018084525A1 PCT/KR2017/012143 KR2017012143W WO2018084525A1 WO 2018084525 A1 WO2018084525 A1 WO 2018084525A1 KR 2017012143 W KR2017012143 W KR 2017012143W WO 2018084525 A1 WO2018084525 A1 WO 2018084525A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium secondary
electrode active
secondary battery
Prior art date
Application number
PCT/KR2017/012143
Other languages
French (fr)
Korean (ko)
Inventor
한규석
김상복
이기수
최윤영
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2018084525A1 publication Critical patent/WO2018084525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
  • lithium secondary batteries have been in the spotlight as power sources of portable small electronic devices.
  • the lithium secondary battery has a structure including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator located between the positive electrode and the negative electrode, and an electrolyte.
  • the negative electrode active material various types of carbon-based materials or Si-based active materials including artificial, natural graphite, and hard carbon capable of inserting / desorbing lithium are used.
  • the cathode active material is mainly composed of an oxide composed of lithium and a transition metal having a structure capable of intercalation of lithium ions such as LiCoO 2 , LiMn 2 O 4 , LiNi 1 - x Co x O 2 (0 ⁇ x ⁇ 1), and the like. Used.
  • Na is mainly included as an impurity in the raw material, and Na is known as a material that lowers the sintering of the positive electrode active material produced during heat treatment, thereby causing poor contact between particles and reducing conductivity. It was intended to reduce the Na content contained in the active material to less than 100 ppm.
  • Na x CoO 2 is first prepared, followed by solution reaction of Na x CoO 2 and a lithium raw material such as Li 2 CO 3 to ion-exchange Na and Li to form a layered structure. It may be prepared in a form in which a certain amount of Li and Na coexist in the Li site of.
  • the prepared active material is an active material having a prismatic structure that is not layered. This method can widen the Na content range, and as the charge and discharge are repeated, it can suppress the transition to the spinel structure to suppress the capacity decrease of the positive electrode active material. There is a problem that cannot be applied.
  • One embodiment of the present invention is to provide a positive electrode active material for a lithium secondary battery having excellent initial charge and discharge efficiency, excellent high voltage phase transition characteristics and high temperature standing cycle life retention.
  • Another embodiment is to provide a lithium secondary battery including the positive electrode active material.
  • One embodiment of the present invention provides a cathode active material for a lithium secondary battery including a compound represented by the following Chemical Formula 1.
  • y may be 0 ⁇ y ⁇ 0.006.
  • the positive electrode active material may be for a high voltage lithium secondary battery having an operating voltage of 4.3V or more, in another embodiment, 4.3V to 4.5V, and in another embodiment, 4.35V to 4.45V.
  • the positive electrode active material may be prepared by a solid phase method.
  • Another embodiment includes a cathode including the cathode active material; A negative electrode including a negative electrode active material; And it provides a lithium secondary battery comprising an electrolyte.
  • the cathode active material for a lithium secondary battery according to an embodiment may provide a lithium secondary battery having excellent initial charging and discharging efficiency, excellent high voltage phase transition characteristics, and high temperature standing life retention.
  • FIG. 1 is a view schematically showing the structure of a lithium secondary battery according to one embodiment of the present invention.
  • Figure 2 is a graph showing the X-ray diffraction measurement results of the positive electrode active material prepared in Examples 1 to 3 and Comparative Example 1.
  • FIG. 4 is a scanning electron micrograph according to primary firing (A) and secondary firing (B) of the positive electrode active material prepared according to Example 2.
  • FIG. 4 is a scanning electron micrograph according to primary firing (A) and secondary firing (B) of the positive electrode active material prepared according to Example 2.
  • FIG. 6 is a graph showing the rate characteristics of the half-cell containing the positive electrode active material of Examples 1 to 3 and Comparative Example 1.
  • FIG. 7 is a graph showing rate characteristics of a half cell including the positive electrode active materials of Example 2 and Comparative Example 2.
  • FIG. 8 is a graph showing room temperature cycle life characteristics of a half cell including the cathode active materials of Examples 1 to 3 and Comparative Examples 1 and 2.
  • FIG. 8 is a graph showing room temperature cycle life characteristics of a half cell including the cathode active materials of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the cathode active material for a rechargeable lithium battery according to one embodiment of the present invention may include a compound represented by the following Formula 1.
  • the cathode active material is a compound in which a part of Li is substituted with Na, and a part of Co is substituted with Ti with Mg, optionally Mg.
  • x value may be 0 ⁇ x ⁇ 0.01, according to one embodiment may be 0 ⁇ x ⁇ 0.005, and according to another embodiment, 0.002 ⁇ x ⁇ 0.005.
  • the x value is included in the above range, so that the capacity may be maintained even at high C-rate, long life at room temperature, and high temperature life of 45 ° C.
  • the x value exceeds 0.01, a secondary phase other than the layered structure is produced, i.e., it cannot maintain a proper structure, and a large amount of Na can be precipitated to the cathode during charging and discharging, resulting in deterioration of the electrochemical properties. not.
  • the layer structure of the positive electrode active material may be improved, and electrical conductivity may be improved, and lifespan retention may be improved at a high voltage of 4.4 V or more. If Mg and, optionally, Mg and Ti replace Li together, the amount of active Li participating in the electrochemical reaction may be reduced, and the capacity and life may be reduced by blocking a channel through which Li diffuses.
  • the y value in the cathode active material may be 0 ⁇ y ⁇ 0.01, and according to one embodiment, 0 ⁇ y ⁇ 0.006.
  • the y value may have an advantage of improving the life characteristics by exerting the pillar effect of maintaining the structure of Li—O—Li at high voltage. If the value of y is 0 or exceeds 0.01, Mg may inadvertently enter the Li site and deteriorate the capacity and life characteristics.
  • a z value may be 0 ⁇ z ⁇ 0.01, and according to one embodiment, 0 ⁇ z ⁇ 0.005 .
  • Ti is included in the cathode active material together with Mg, the structure can be stabilized at a high voltage, and at the same time, the electrical conductivity is improved, thereby improving the service life and rate characteristics.
  • Such an effect can be effectively obtained when the z value is 0.01 at maximum, and if it exceeds 0.01, there may be a problem that TiO 2 is left without entering the Co site.
  • Such a positive electrode active material may be suitably used in a high voltage lithium secondary battery having an operating voltage of 4.3 V or higher, and according to one embodiment, the operating voltage is 4.3 V to 4.5 V, and according to another embodiment, the operating voltage is 4.3 V to 4.45. It can be suitably used for the high voltage lithium secondary battery which is V.
  • V the high voltage lithium secondary battery which is V.
  • x is a positive electrode active material of 0, y is 0 in a high-voltage lithium secondary battery of 4.4V or more, there may be a problem that the layer structure collapses during charging and discharging and capacity is greatly reduced at the beginning of the life cycle Not appropriate
  • Such a positive electrode active material may be manufactured by a solid phase method. This solid state method is explained below.
  • Lithium raw material, cobalt raw material, sodium raw material and magnesium raw material are mixed. At this time, the titanium raw material may be further added.
  • the lithium raw material may include lithium acetate, lithium nitrate, lithium hydroxide, lithium carbonate, lithium acetate, hydrates thereof, or a combination thereof.
  • the cobalt raw material may include cobalt nitrate, cobalt hydroxide, cobalt oxide, cobalt acetate, cobalt carbonate, hydrates thereof, or a combination thereof.
  • the sodium raw material may include sodium nitrate, sodium hydroxide, sodium carbonate, sodium oxide, sodium acetate, or a combination thereof.
  • the magnesium raw material may include magnesium nitrate, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium acetate, or a combination thereof.
  • the titanium raw material may include titanium nitrate, titanium hydroxide, titanium carbonate, Titanium oxide, titanium acetate, or a combination thereof.
  • the mixing ratio of the lithium raw material, the cobalt raw material, the sodium raw material and the magnesium raw material, and optionally the titanium raw material may be properly adjusted to obtain the composition of Chemical Formula 1.
  • the resulting mixture is subjected to primary heat treatment.
  • the primary heat treatment process may be carried out at a temperature of 1000 °C to 1050 °C, wherein the heat treatment time may be 4 hours to 16 hours.
  • the heat treatment atmosphere may be an air atmosphere, an oxygen atmosphere, or a combination thereof.
  • a second heat treatment is performed on the first heat treatment product to prepare a cathode active material.
  • the secondary heat treatment process may be further subjected to a secondary heat treatment, a post heat treatment for 4 hours to 8 hours at a temperature of 900 °C to 1000 °C. If the secondary heat treatment process is not performed, Na may precipitate on the surface of the positive electrode active material, and in this case, since it becomes a secondary phase having a structure other than a layered structure, the standard capacity of the active material decreases, and electrical conductivity decreases, thereby improving the life characteristics. It can be adversely affected and not appropriate.
  • Another embodiment includes a cathode including the cathode active material; cathode; And it provides a lithium secondary battery comprising an electrolyte.
  • the positive electrode includes a current collector and a positive electrode active material formed on the current collector and including a positive electrode active material.
  • the content of the cathode active material may be 90% by weight to 98% by weight based on the total weight of the cathode active material layer.
  • the cathode active material layer may further include a binder and a conductive material. The binder and the conductive material may be included in amounts of 1 wt% to 5 wt% based on the total weight of the positive electrode active material layer.
  • the binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl fluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, styrene-butadiene rubber, acrylic styrene butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material examples include carbonaceous materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fibers, metal powders such as copper, nickel, aluminum, and silver, and polyphenylene derivatives such as metallic fibers such as metal fibers.
  • a conductive material containing a conductive polymer or a mixture thereof can be used.
  • Al foil may be used as the current collector, but is not limited thereto.
  • the negative electrode includes a negative electrode active material layer including a current collector and a negative electrode active material formed on the current collector.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together.
  • the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of materials that can be doped and undoped with lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Q alloys (wherein Q is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a Group 15 element, and 16).
  • Sn, SnO 2 , Sn-R alloys wherein R is an alkali metal, an alkaline earth metal, a Group 13 element, 14 element, an element selected from group 15 elements, group 16 elements, transition metals, rare earth elements and combinations thereof, Sn may be mentioned not
  • R is an alkali metal, an alkaline earth metal, a Group 13 element, 14 element, an element selected from group 15 elements, group 16 elements, transition metals, rare earth elements and combinations thereof, Sn may be mentioned not
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
  • the content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
  • the negative electrode active material layer includes a binder, and optionally may further include a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer.
  • 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • a non-aqueous binder, an aqueous binder, or a combination thereof may be used as the binder.
  • the non-aqueous binder may include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
  • the aqueous binder may include styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, ethylene propylene copolymer, polyepichlorohydrin , Polyphosphazene, polyacrylonitrile, polystyrene, ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol and combinations thereof It may be selected.
  • SBR acrylated styrene-butadiene rubber
  • SBR acrylated styrene-butadiene rubber
  • acrylonitrile-butadiene rubber acrylic rubber, butyl rubber, fluorine rubber, ethylene propylene copolymer, polyepichlorohydrin , Polyphosphazen
  • an aqueous binder When using an aqueous binder as the negative electrode binder, it may further include a cellulose-based compound that can impart viscosity as a thickener.
  • a cellulose-based compound that can impart viscosity as a thickener.
  • carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, these alkali metal salts, etc. can be used in mixture of 1 or more types. Na, K or Li may be used as the alkali metal.
  • the amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the conductive material examples include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • non-aqueous organic solvent a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used.
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, decanolide, mevalonolactone, and caprolactone. And the like can be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent.
  • cyclohexanone may be used as the ketone solvent.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Nitriles such as a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane, and the like can be used. .
  • the organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art. have.
  • the carbonate solvent it is preferable to use a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the organic solvent may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 1 may be used as the aromatic hydrocarbon-based organic solvent.
  • R 1 to R 6 are the same as or different from each other and are selected from the group consisting of hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, and a combination thereof.
  • aromatic hydrocarbon organic solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-dioodobenzene, 1,3-dioiobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1, 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluorotol, to
  • the electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound of Formula 2 as a life improving additive to improve battery life.
  • R 7 and R 8 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and an alkyl group having 1 to 5 fluorinated carbon atoms. At least one of R 7 and R 8 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ) and a fluorinated C1-5 alkyl group, provided that both R 7 and R 8 are all Not hydrogen.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); It is preferable to
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • FIG. 1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment of the present invention.
  • a lithium secondary battery according to an embodiment is described as an example of being rectangular, the present invention is not limited thereto, and may be applied to various types of batteries, such as a cylindrical shape and a pouch type.
  • the lithium secondary battery 100 includes an electrode assembly 40 and an electrode assembly 40 interposed between the positive electrode 10 and the negative electrode 20 with a separator 30 interposed therebetween. It may include a case 50 is built.
  • the positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
  • Lithium carbonate (Li 2 CO 3 ), cobalt oxide (Co 3 O 4 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) was added to Li 1 - x Na x Co 1 -y- z Mg y Ti z in the final product.
  • a positive electrode active material was prepared.
  • the lattice constant of the positive electrode active material was obtained by X-ray diffraction measurement using CuK ⁇ rays.
  • the measured a-axis length, c-axis length, and the distance ratio between the crystal axes (c / a axis ratio) are shown in Table 1 together.
  • V ( ⁇ 3 ) represents the volume of a unit cell.
  • Example 1 2.8166 2.8166 14.055 4.990 96.57
  • Example 1 2.8167 2.8167 14.057 4.991 96.58
  • Example 2 2.8169 2.8169 14.058 4.991 96.61
  • Example 3 2.8173 2.8173 14.062 4.991 96.67
  • Na doping of the cathode active material for lithium secondary batteries prepared in Examples 1 to 3 was additionally measured using a nuclear magnetic resonance device (NMR).
  • the magnetic resonance apparatus was 23 Na-NMR (Bruker Avance III), the results are shown in FIG.
  • NMR of sodium carbonate (Na 2 CO 3 ), which is a Na raw material was also measured, and the results are also shown in FIG. 3 (in FIG. 2, the y-axis is intensity).
  • the chemically active signal of Na did not appear in the cathode active material prepared in Comparative Example 1.
  • the positive electrode active materials prepared in Examples 1 to 3 showed a chemical shift at -8 ppm and 58 ppm, and were completely different from the spectrum of Na 2 CO 3 used as a raw material.
  • the two chemical signals in Examples 2 to 3 it can be seen that the relative strength gradually increases as the doping amount of Na increases.
  • Example 2 The results of Example 2 are shown in FIG. 4 (A: primary firing, B: secondary firing), and the results of Comparative Example 1 are shown in FIG. 4 (A: primary firing, B: secondary firing).
  • Example 2 Na was precipitated on the surface of the product when the primary firing was performed at 1025 ° C., but Na precipitates were formed on the surface of the cathode active material prepared by secondary firing at 950 ° C. It was confirmed that there was no.
  • the cathode active material slurry prepared by mixing the cathode active material, the carbon black conductive material, and the polyvinylidene fluoride binder prepared according to Examples 1 to 3 and Comparative Example 1 in an N-methyl pyrrolidone solvent at a weight ratio of 96: 2: 2. was prepared.
  • the prepared positive electrode active material slurry was uniformly coated on Al foil, and vacuum dried at 120 ° C. to prepare a positive electrode.
  • a coin cell was prepared.
  • the half-cell using the cathode active material of Comparative Example 1 which is not doped with Na, has a significantly reduced capacity at a current density of 2C or more.
  • the capacity does not significantly decrease under various current density conditions from 0.2C to 3C, that is, the high rate characteristics are excellent. It can be seen.
  • the half-cell using the positive electrode active material of Example 2 doped with 0.5 mol% of Na does not significantly reduce its capacity under various current density conditions from 0.2C to 3C, that is, excellent in high rate characteristics.
  • the half cell using the positive electrode active material of Comparative Example 2 is significantly reduced from 1C. From this result, when Mg and Ti are not doped, the capacity starts to decrease from the current density of 0.5C which is relatively low in the voltage range of 4.3V, and at 3C, the capacity almost does not work as 0. Therefore, Na It can be seen that even if doped, Mg and Ti are not included, the high rate characteristic is seriously degraded.
  • the half-cells prepared by using the positive electrode active materials prepared according to Examples 1 to 3 and Comparative Examples 1 and 2 were charged and discharged at 0.2C at room temperature (25 ° C.) for 40 times to measure the discharge capacity according to the cycle.
  • room temperature 25 ° C.
  • the cycle life characteristics are closely correlated with the amount of Na doping. That is, the battery using the positive electrode active material of Example 2 doped with Na 0.5 mol%, Example 3, the Na doping amount increased to 1.0 mol%, the Na doped amount reduced to 0.2 mol% using the positive electrode active material of Example 1 Compared to the cell, the result with the least capacity reduction up to 40 cycles was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same. The cathode active material comprises a compound represented by formula 1, as follows, [Formula 1] Li1-xNaxCo1-y-zMgyTizO2 (where 0 < x ≤ 0.05, 0 < y ≤ 0.01, and 0 ≤ z ≤ 0.01).

Description

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지Cathode active material for lithium secondary battery and lithium secondary battery comprising same
리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다. It relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
최근의 휴대용 소형 전자기기의 전원으로 리튬 이차 전지가 각광받고 있다.Recently, lithium secondary batteries have been in the spotlight as power sources of portable small electronic devices.
이러한 리튬 이차 전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 위치하는 세퍼레이터, 및 전해질을 포함하는 구성을 갖는다.The lithium secondary battery has a structure including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator located between the positive electrode and the negative electrode, and an electrolyte.
상기 음극 활물질로는 리튬의 삽입/탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료 또는 Si계 활물질 등이 사용되고 있다.As the negative electrode active material, various types of carbon-based materials or Si-based active materials including artificial, natural graphite, and hard carbon capable of inserting / desorbing lithium are used.
상기 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 - xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다. The cathode active material is mainly composed of an oxide composed of lithium and a transition metal having a structure capable of intercalation of lithium ions such as LiCoO 2 , LiMn 2 O 4 , LiNi 1 - x Co x O 2 (0 <x <1), and the like. Used.
이러한 양극 활물질 제조시, 원료 물질에 불순물로 Na이 주로 포함되며, Na은 열처리시 제조되는 양극 활물질의 소결(sintering)을 저하시켜, 입자간 접촉을 나쁘게 하고, 전도도를 저하시키는 물질로 알려져, 최종 활물질에 포함되는 Na 함량을 100ppm 미만으로 저하시키고자 하였다.In the production of such a positive electrode active material, Na is mainly included as an impurity in the raw material, and Na is known as a material that lowers the sintering of the positive electrode active material produced during heat treatment, thereby causing poor contact between particles and reducing conductivity. It was intended to reduce the Na content contained in the active material to less than 100 ppm.
그러나 최근에 Li 자리에 일정 함량 이하로 Na을 치환시키면, 층상 구조가 안정화되고, Li 대비 Na의 이온반경이 25% 크므로 Li-O-Li 층간 간격을 크게 하여 Li의 확산을 용이하게 하여 수명 유지율과 용량특성이 향상된다는 보고가 있어, Na을 치환하는 양극 활물질에 관한 연구가 이루어지고 있다. 이러한 연구는 전기전도도가 낮은 NASICON 구조 화합물에 한정되었으나, 최근 LiMn2O4, LiNi1 / 3Co1 / 3Mn1 / 3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0 . 5Co0 . 2Al0 . 3O2 등의 조성에도 Na을 도핑하려는 연구가 시도되고 있다.However, in recent years, when Na is replaced to a certain amount or less in the Li site, the layered structure is stabilized, and since the ion radius of Na is 25% larger than that of Li, the Li-O-Li interlayer spacing is increased to facilitate Li diffusion. There have been reports of improved retention and capacity characteristics, and research on a cathode active material replacing Na has been made. These studies have been limited to the NASICON structure compound is a low electrical conductivity, recently LiMn 2 O 4, LiNi 1/ 3 Co 1/3 Mn 1/3 O 2, LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi 0. 5 Co 0 . 2 Al 0 . Studies have been attempted to dope Na in the composition, such as 3 O 2 .
Na 도핑 방법의 일 예로 먼저 NaxCoO2를 제조한 후, 이 NaxCoO2와 Li2CO3와 같은 리튬 원료 물질을 용액 반응시켜, Na과 Li을 이온 교환(ion-exchange)하여 층상 구조의 Li 자리에 일정함량의 Li과 Na이 공존하는 형태로 제조될 수 있다. 제조된 활물질은 층상형(layered)이 아닌 기둥형(prismatic) 구조를 갖는 활물질이다. 이 방법은 Na의 함량 범위를 넓게 할 수 있고, 충방전이 반복됨에 따라 스피넬 구조로의 전이를 억제하여 양극 활물질의 용량 저하를 억제할 수 있으나, 제조 방법이 매우 복잡하여 대량 생산이 필요한 산업계에 적용할 수 없는 문제점이 있다.As an example of the Na doping method, Na x CoO 2 is first prepared, followed by solution reaction of Na x CoO 2 and a lithium raw material such as Li 2 CO 3 to ion-exchange Na and Li to form a layered structure. It may be prepared in a form in which a certain amount of Li and Na coexist in the Li site of. The prepared active material is an active material having a prismatic structure that is not layered. This method can widen the Na content range, and as the charge and discharge are repeated, it can suppress the transition to the spinel structure to suppress the capacity decrease of the positive electrode active material. There is a problem that cannot be applied.
본 발명의 일 구현예는 초기 충방전 효율이 우수하고, 고전압 상전이 특성 및 고온 방치 사이클 수명 유지율이 우수한 리튬 이차 전지용 양극 활물질을 제공하는 것이다.One embodiment of the present invention is to provide a positive electrode active material for a lithium secondary battery having excellent initial charge and discharge efficiency, excellent high voltage phase transition characteristics and high temperature standing cycle life retention.
다른 일 구현예는 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.Another embodiment is to provide a lithium secondary battery including the positive electrode active material.
본 발명의 일 구현예는 하기 화학식 1로 표현되는 화합물을 포함하는 리튬 이차 전지용 양극 활물질을 제공한다.One embodiment of the present invention provides a cathode active material for a lithium secondary battery including a compound represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Li1-xNaxCo1-y-zMgyTizO2 Li 1-x Na x Co 1-yz Mg y Ti z O 2
(상기 화학식 1에서,(In Formula 1,
0 < x ≤ 0.01, 0 < y ≤ 0.01, 0 ≤ z ≤ 0.01임)0 <x ≤ 0.01, 0 <y ≤ 0.01, 0 ≤ z ≤ 0.01)
상기 화학식 1에서 y는 0 < y ≤ 0.006일 수 있다.In Formula 1, y may be 0 <y ≦ 0.006.
상기 양극 활물질은 작동 전압이 4.3V 이상, 다른 일 구현예에서는 4.3V 내지 4.5V, 또 다른 일 구현예에서는 4.35V 내지 4.45V인 고전압 리튬 이차 전지용일 수 있다.The positive electrode active material may be for a high voltage lithium secondary battery having an operating voltage of 4.3V or more, in another embodiment, 4.3V to 4.5V, and in another embodiment, 4.35V to 4.45V.
상기 양극 활물질은 고상법으로 제조된 것일 수 있다.The positive electrode active material may be prepared by a solid phase method.
다른 일 구현예는 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질을 포함하는 리튬 이차 전지를 제공한다.Another embodiment includes a cathode including the cathode active material; A negative electrode including a negative electrode active material; And it provides a lithium secondary battery comprising an electrolyte.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments of the present invention are included in the following detailed description.
일 구현예에 따른 리튬 이차 전지용 양극 활물질은 초기 충방전 효율이 우수하고, 고전압 상전이 특성 및 고온 방치 수명 유지율이 우수한 리튬 이차 전지를 제공할 수 있다.The cathode active material for a lithium secondary battery according to an embodiment may provide a lithium secondary battery having excellent initial charging and discharging efficiency, excellent high voltage phase transition characteristics, and high temperature standing life retention.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 도면.1 is a view schematically showing the structure of a lithium secondary battery according to one embodiment of the present invention.
도 2는 실시예1 내지 3과 비교예 1에서 제조된 양극 활물질의 X-선 회절 측정 결과를 나타낸 그래프.Figure 2 is a graph showing the X-ray diffraction measurement results of the positive electrode active material prepared in Examples 1 to 3 and Comparative Example 1.
도 3은 실시예1 내지 3과 비교예 1에서 제조된 양극 활물질의 핵자기공명 결과를 나타낸 그래프.3 is a graph showing the results of nuclear magnetic resonance of the positive electrode active material prepared in Examples 1 to 3 and Comparative Example 1.
도 4는 실시예 2에 따라 제조된 양극 활물질의 1차 소성(A) 및 2차 소성(B)에 따른 주사전자현미경 사진.4 is a scanning electron micrograph according to primary firing (A) and secondary firing (B) of the positive electrode active material prepared according to Example 2. FIG.
도 5는 비교예 1에 따라 제조된 양극 활물질의 1차 소성(A) 및 2차 소성(B)에 따른 주사전자현미경 사진.5 is a scanning electron micrograph according to primary firing (A) and secondary firing (B) of the positive electrode active material prepared according to Comparative Example 1.
도 6는 실시예1 내지 3과 비교예 1의 양극 활물질을 포함하는 반쪽 전지의 율 특성을 나타낸 그래프.6 is a graph showing the rate characteristics of the half-cell containing the positive electrode active material of Examples 1 to 3 and Comparative Example 1.
도 7은 실시예 2 및 비교예 2의 양극 활물질을 포함하는 반쪽 전지의 율 특성을 나타낸 그래프.7 is a graph showing rate characteristics of a half cell including the positive electrode active materials of Example 2 and Comparative Example 2. FIG.
도 8은 실시예1 내지 3 및 비교예 1과 2의 양극 활물질을 포함하는 반쪽 전지의 상온 사이클 수명 특성을 나타낸 그래프.FIG. 8 is a graph showing room temperature cycle life characteristics of a half cell including the cathode active materials of Examples 1 to 3 and Comparative Examples 1 and 2. FIG.
도 9는 실시예1 내지 3 및 비교예 1과 2의 양극 활물질을 포함하는 반쪽 전지의 고온 사이클 수명 특성을 나타낸 그래프.9 is a graph showing the high temperature cycle life characteristics of the half cell including the cathode active materials of Examples 1 to 3 and Comparative Examples 1 and 2.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질은 하기 화학식 1로 표현되는 화합물을 포함할 수 있다.The cathode active material for a rechargeable lithium battery according to one embodiment of the present invention may include a compound represented by the following Formula 1.
[화학식 1][Formula 1]
Li1 - xNaxCo1 -y- zMgyTizO2 Li 1 - x Na x Co 1 -y- z Mg y Ti z O 2
상기 화학식 1에서, 0 < x ≤ 0.01, 0 < y ≤ 0.01, 0 ≤ z ≤ 0.01이고, 일 구현예에 있어서, 0 < y ≤ 0.006일 수 있다.In Formula 1, 0 <x ≦ 0.01, 0 <y ≦ 0.01, 0 ≦ z ≦ 0.01, and in one embodiment, 0 <y ≦ 0.006.
이와 같이, 상기 양극 활물질은 Li의 일부가 Na으로 치환되고, Co의 일부가 Mg, 선택적으로 Mg와 함께 Ti로 치환된 화합물이다.As described above, the cathode active material is a compound in which a part of Li is substituted with Na, and a part of Co is substituted with Ti with Mg, optionally Mg.
Li의 일부가 Na으로 치환되는 경우, Na의 이온반경이 Li 보다 매우 커서 c축 방향의 Li-O-Li 결합의 간격이 늘어나므로, 충방전시 리튬의 탈삽입이 원활해지고, 이에 리튬 확산속도가 향상되며, 결과적으로 충방전 효율이 향상될 수 있다. 일반적으로 두 이온간의 크기비가 25% 내외인 경우에만, 원래의 이온자리에 다른 종류의 이온이 치환될 수 있기에, 1.02Å 크기의 Na 이온은, 이론적으로 0.54Å 크기의Co 자리로 치환될 수 없다.When a part of Li is substituted with Na, the ion radius of Na is much larger than Li, and thus the interval between Li-O-Li bonds in the c-axis direction increases, so that lithium is easily inserted and removed during charging and discharging. Is improved, and as a result, the charging and discharging efficiency can be improved. In general, only 1.02Å of Na ions cannot be replaced by 0.54Å of Co sites, since other types of ions can be substituted for the original ion site only when the size ratio between the two ions is about 25%. .
상기 양극 활물질에서, x 값은 0 < x ≤ 0.01일 수 있고, 일 구현예에 따르면 0 < x ≤ 0.005일 수 있으며, 또 다른 일 구현예에 따르면, 0.002 ≤ x ≤ 0.005일 수 있다. x값이 상기 범위에 포함되는 경우, 양극 활물질의 리튬 확산 속도가 좋아져서 고율(high C-rate), 상온 장수명, 45℃ 고온수명에서도 용량이 유지될 수 있다. 만약 x값이 0.01를 초과하는 경우, 층상구조가 아닌 다른 이차상이 생성되거나, 즉 적절한 구조를 유지할 수 없고, 충방전시 음극으로 다량의 Na이 석출될 수 있어, 전기화학 특성이 열화하여 적절하지 않다.In the cathode active material, x value may be 0 <x ≤ 0.01, according to one embodiment may be 0 <x ≤ 0.005, and according to another embodiment, 0.002 ≤ x ≤ 0.005. When the x value is included in the above range, the lithium diffusion rate of the positive electrode active material is improved, so that the capacity may be maintained even at high C-rate, long life at room temperature, and high temperature life of 45 ° C. If the x value exceeds 0.01, a secondary phase other than the layered structure is produced, i.e., it cannot maintain a proper structure, and a large amount of Na can be precipitated to the cathode during charging and discharging, resulting in deterioration of the electrochemical properties. not.
Co의 일부가 Mg, 선택적으로 Mg와 함께 Ti가 치환되는 경우, 양극 활물질의 층상 구조를 안정화하고, 전기전도를 향상시킬 수 있고, 4.4V 이상의 고전압에서 수명 유지율이 향상될 수 있다. 만약 Mg, 선택적으로 Mg와 Ti가 함께 Li을 치환하는 경우에는 전기화학반응에 참여하는 활성 Li의 양이 적어지고, Li이 확산하는 통로를 막아 용량 및 수명이 감소하는 문제점이 있을 수 있다.When a part of Co is substituted with Mg, and optionally Mg, Ti may be stabilized, the layer structure of the positive electrode active material may be improved, and electrical conductivity may be improved, and lifespan retention may be improved at a high voltage of 4.4 V or more. If Mg and, optionally, Mg and Ti replace Li together, the amount of active Li participating in the electrochemical reaction may be reduced, and the capacity and life may be reduced by blocking a channel through which Li diffuses.
상기 양극 활물질에서 y값은 0 < y ≤0.01일 수 있고, 일 구현예에 따르면, 0 < y ≤ 0.006일 수 있다. y값이 상기 범위에 포함되는 경우에는, 고전압에서 Li-O-Li의 구조를 유지하는 기둥효과를 발휘하여 수명특성이 좋아지는 장점이 있을 수 있다. 만약 y값이 0이거나, 0.01를 초과하는 경우에는 Mg가 의도하지 않게 Li 자리에 들어가 용량과 수명특성을 저하시키는 문제가 있을 수 있다.The y value in the cathode active material may be 0 <y ≤ 0.01, and according to one embodiment, 0 <y ≤ 0.006. When the y value is included in the above range, it may have an advantage of improving the life characteristics by exerting the pillar effect of maintaining the structure of Li—O—Li at high voltage. If the value of y is 0 or exceeds 0.01, Mg may inadvertently enter the Li site and deteriorate the capacity and life characteristics.
상기 양극 활물질에서 z값은 0 ≤z ≤ 0.01일 수 있고, 일 구현예에 따르면, 0 ≤ z ≤ 0.005일 수 있다. 양극 활물질에 Ti가 Mg와 함께 포함되는 경우, 고전압에서 구조를 안정하게 하고, 동시에 전기전도도가 개선되어 수명과 율특성이 좋아지는 장점을 더욱 얻을 수 있다. 이러한 효과는 z값이 최대 0.01 인 경우 효과적으로 얻을 수 있으며, 만약 0.01을 초과하는 경우에는 Co 자리에 들어가지 못하고 TiO2로 남는 문제점이 있을 수 있다.In the cathode active material, a z value may be 0 ≦ z ≦ 0.01, and according to one embodiment, 0 ≦ z ≦ 0.005 . When Ti is included in the cathode active material together with Mg, the structure can be stabilized at a high voltage, and at the same time, the electrical conductivity is improved, thereby improving the service life and rate characteristics. Such an effect can be effectively obtained when the z value is 0.01 at maximum, and if it exceeds 0.01, there may be a problem that TiO 2 is left without entering the Co site.
이러한 양극 활물질은 작동 전압이 4.3V 이상인 고전압 리튬 이차 전지에 적절하게 사용될 수 있으며, 일 구현예에 따르면, 작동 전압이 4.3V 내지 4.5V, 또 다른 일 구현예예 따르면, 작동 전압이 4.3V 내지 4.45V인 고전압 리튬 이차 전지에 적절하게 사용될 수 있다. 상기 화학식 1에서, 만약 x가 0, y가 0인 양극 활물질을 4.4V 이상의 고전압 리튬 이차 전지에 사용한다면, 충방전시 층상구조가 붕괴되고 수명 사이클 초반에 용량이 크게 감소하는 문제가 있을 수 있어 적절하지 않다. Such a positive electrode active material may be suitably used in a high voltage lithium secondary battery having an operating voltage of 4.3 V or higher, and according to one embodiment, the operating voltage is 4.3 V to 4.5 V, and according to another embodiment, the operating voltage is 4.3 V to 4.45. It can be suitably used for the high voltage lithium secondary battery which is V. In Formula 1, if x is a positive electrode active material of 0, y is 0 in a high-voltage lithium secondary battery of 4.4V or more, there may be a problem that the layer structure collapses during charging and discharging and capacity is greatly reduced at the beginning of the life cycle Not appropriate
이러한 양극 활물질은 고상법으로 제조될 수 있다. 이하 이 고상법에 대해서 설명한다. Such a positive electrode active material may be manufactured by a solid phase method. This solid state method is explained below.
리튬 원료 물질, 코발트 원료 물질, 나트륨 원료 물질 및 마그네슘 원료 물질을 혼합한다. 이때, 티타늄 원료 물질을 더욱 첨가할 수도 있다.Lithium raw material, cobalt raw material, sodium raw material and magnesium raw material are mixed. At this time, the titanium raw material may be further added.
상기 리튬 원료 물질로는 리튬 아세테이트, 리튬 나이트레이트, 리튬 하이드록사이드, 리튬 카보네이트, 리튬 아세테이트, 이들의 수화물, 또는 이들의 조합을 들 수 있다. 상기 코발트 원료 물질로는 코발트 나이트레이트, 코발트 하이드록사이드, 코발트 산화물, 코발트 아세테이트, 코발트 카보네이트, 이들의 수화물, 또는 이들의 조합을 들 수 있다. 상기 나트륨 원료 물질로는 나트륨 나이트레이트, 나트륨 하이드록사이드, 나트륨 카보네이트, 나트륨 산화물, 나트륨 아세테이트 또는 이들의 조합을 들 수 있다. 상기 마그네슘 원료 물질로는 마그네슘 나이트레이트, 마그네슘 하이드록사이드, 마그네슘 카보네이트, 마그네슘 산화물, 마그네슘 아세테이트 또는 이들의 조합을 들 수 있고, 상기 티타늄 원료 물질로는 티타늄 나이트레이트, 티타늄 하이드록사이드, 티타늄 카보네이트, 티타늄 산화물, 티타늄 아세테이트 또는 이들의 조합을 들 수 있다.The lithium raw material may include lithium acetate, lithium nitrate, lithium hydroxide, lithium carbonate, lithium acetate, hydrates thereof, or a combination thereof. The cobalt raw material may include cobalt nitrate, cobalt hydroxide, cobalt oxide, cobalt acetate, cobalt carbonate, hydrates thereof, or a combination thereof. The sodium raw material may include sodium nitrate, sodium hydroxide, sodium carbonate, sodium oxide, sodium acetate, or a combination thereof. The magnesium raw material may include magnesium nitrate, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium acetate, or a combination thereof. The titanium raw material may include titanium nitrate, titanium hydroxide, titanium carbonate, Titanium oxide, titanium acetate, or a combination thereof.
상기 리튬 원료 물질, 상기 코발트 원료 물질, 상기 나트륨 원료 물질 및 상기 마그네슘 원료 물질, 선택적으로 티타늄 원료 물질의 혼합비는 상기 화학식 1의 조성을 얻도록 적절하게 조절할 수 있다.The mixing ratio of the lithium raw material, the cobalt raw material, the sodium raw material and the magnesium raw material, and optionally the titanium raw material may be properly adjusted to obtain the composition of Chemical Formula 1.
얻어진 혼합물을 1차 열처리한다. 상기 1차열처리 공정은 1000℃ 내지 1050℃의 온도에서 실시할 수 있고, 이때 열처리 시간은 4시간 내지 16시간일 수 있다. 또한, 열처리 분위기는 공기 분위기, 산소분위기, 또는 이들의 조합일 수 있다.The resulting mixture is subjected to primary heat treatment. The primary heat treatment process may be carried out at a temperature of 1000 ℃ to 1050 ℃, wherein the heat treatment time may be 4 hours to 16 hours. In addition, the heat treatment atmosphere may be an air atmosphere, an oxygen atmosphere, or a combination thereof.
1차 열처리를 실시한 이후, 1차 열처리 생성물에 대하여 2차 열처리를 실시하여 양극 활물질을 제조한다. 상기 2차 열처리 공정은 900℃ 내지 1000℃의 온도에서 4시간 내지 8시간 동안 후열 처리인 2차 열처리를 더욱 실시할 수도 있다. 2차 열처리 공정을 실시하지 않는 경우, 양극 활물질 표면에 Na이 석출될 수 있고, 이 경우 층상구조가 아닌 다른 구조의 이차상이 되므로, 활물질의 표준용량이 감소하고, 전기 전도성이 감소하여 수명특성에 악영향을 줄 수 있어 적절하지 않다.After the first heat treatment, a second heat treatment is performed on the first heat treatment product to prepare a cathode active material. The secondary heat treatment process may be further subjected to a secondary heat treatment, a post heat treatment for 4 hours to 8 hours at a temperature of 900 ℃ to 1000 ℃. If the secondary heat treatment process is not performed, Na may precipitate on the surface of the positive electrode active material, and in this case, since it becomes a secondary phase having a structure other than a layered structure, the standard capacity of the active material decreases, and electrical conductivity decreases, thereby improving the life characteristics. It can be adversely affected and not appropriate.
다른 일 구현예는 상기 양극 활물질을 포함하는 양극; 음극; 및 전해질을 포함하는 리튬 이차 전지를 제공한다.Another embodiment includes a cathode including the cathode active material; cathode; And it provides a lithium secondary battery comprising an electrolyte.
상기 양극은 전류 집전체 및 이 전류 집전체에 형성되고, 양극 활물질을 포함하는 양극 활물질을 포함한다.The positive electrode includes a current collector and a positive electrode active material formed on the current collector and including a positive electrode active material.
상기 양극 활물질 층에서, 상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다. 또한, 상기 양극 활물질 층은 바인더 및 도전재를 더욱 포함할 수 있다. 상기 바인더 및 상기 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다. In the cathode active material layer, the content of the cathode active material may be 90% by weight to 98% by weight based on the total weight of the cathode active material layer. In addition, the cathode active material layer may further include a binder and a conductive material. The binder and the conductive material may be included in amounts of 1 wt% to 5 wt% based on the total weight of the positive electrode active material layer.
상기 바인더로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl fluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, styrene-butadiene rubber, acrylic styrene butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
상기 도전재로는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 폴리페닐렌 유도체 등의 도전성 폴리머 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.Examples of the conductive material include carbonaceous materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fibers, metal powders such as copper, nickel, aluminum, and silver, and polyphenylene derivatives such as metallic fibers such as metal fibers. A conductive material containing a conductive polymer or a mixture thereof can be used.
상기 전류 집전체로는 Al 포일을 사용할 수 있으나 이에 한정되는 것은 아니다.Al foil may be used as the current collector, but is not limited thereto.
상기 음극은 전류 집전체 및 이 전류 집전체 위에 형성된 음극 활물질을 포함하는 음극 활물질 층을 포함한다.The negative electrode includes a negative electrode active material layer including a current collector and a negative electrode active material formed on the current collector.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.The anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, or a transition metal oxide.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together. Examples of the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다. Examples of materials that can be doped and undoped with lithium include Si, SiO x (0 <x <2), and Si-Q alloys (wherein Q is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a Group 15 element, and 16). An element selected from the group consisting of group elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, a Group 13 element, 14 element, an element selected from group 15 elements, group 16 elements, transition metals, rare earth elements and combinations thereof, Sn may be mentioned not), and a mixture of at least one and SiO 2 of which Can also be used. The elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.Examples of the transition metal oxide include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.The content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
본 발명의 일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.In one embodiment of the present invention, the negative electrode active material layer includes a binder, and optionally may further include a conductive material. The content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer. In addition, when the conductive material is further included, 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수계 바인더, 수계 바인더 또는 이들의 조합을 사용할 수 있다.The binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well. As the binder, a non-aqueous binder, an aqueous binder, or a combination thereof may be used.
상기 비수계 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다. The non-aqueous binder may include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
상기 수계 바인더로는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무, 에틸렌프로필렌공중합체, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜 및 이들의 조합에서 선택되는 것일 수 있다. The aqueous binder may include styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, ethylene propylene copolymer, polyepichlorohydrin , Polyphosphazene, polyacrylonitrile, polystyrene, ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol and combinations thereof It may be selected.
상기 음극 바인더로 수계 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다. When using an aqueous binder as the negative electrode binder, it may further include a cellulose-based compound that can impart viscosity as a thickener. As this cellulose type compound, carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, these alkali metal salts, etc. can be used in mixture of 1 or more types. Na, K or Li may be used as the alkali metal. The amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
상기 도전재로는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.Examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
상기 전해질은 비수성 유기 용매 및 리튬염을 포함한다.The electrolyte includes a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used. The ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, decanolide, mevalonolactone, and caprolactone. And the like can be used. Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent. In addition, cyclohexanone may be used as the ketone solvent. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Nitriles such as a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane, and the like can be used. .
상기 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art. have.
또한, 상기 카보네이트계 용매의 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. In addition, in the case of the carbonate solvent, it is preferable to use a mixture of cyclic carbonate and chain carbonate. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
상기 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.The organic solvent may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다.As the aromatic hydrocarbon-based organic solvent, an aromatic hydrocarbon compound of Formula 1 may be used.
[화학식 1][Formula 1]
Figure PCTKR2017012143-appb-I000001
Figure PCTKR2017012143-appb-I000001
(상기 화학식 1에서, R1 내지 R6는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.)(In Chemical Formula 1, R 1 to R 6 are the same as or different from each other and are selected from the group consisting of hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, and a combination thereof.)
상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.Specific examples of the aromatic hydrocarbon organic solvent include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-dioodobenzene, 1,3-dioiobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1, 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluorotoluene, 2,5-difluorotoluene, 2,3,4-trifluoro Rotoluene, 2,3,5-trifluorotoluene, chlorotoluene, 2,3-dichlorotoluene, 2,4-dichlorotoluene, 2,5-dichlorotoluene, 2,3,4-trichlorotoluene, 2, 3,5-trichlorotoluene, iodotoluene, 2,3-dioodotoluene, 2,4-diaodotoluene, 2 , 5-diaodotoluene, 2,3,4-triiodotoluene, 2,3,5-triiodotoluene, xylene, and combinations thereof.
상기 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.The electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound of Formula 2 as a life improving additive to improve battery life.
[화학식 2][Formula 2]
Figure PCTKR2017012143-appb-I000002
Figure PCTKR2017012143-appb-I000002
(상기 화학식 2에서, R7 및 R8은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R7과 R8 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R7 및 R8이 모두 수소는 아니다.)In Formula 2, R 7 and R 8 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and an alkyl group having 1 to 5 fluorinated carbon atoms. At least one of R 7 and R 8 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ) and a fluorinated C1-5 alkyl group, provided that both R 7 and R 8 are all Not hydrogen.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.Representative examples of the ethylene carbonate-based compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); It is preferable to use the concentration of lithium salt within the range of 0.1 M to 2.0 M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, Lithium ions can move effectively.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.Depending on the type of lithium secondary battery, a separator may exist between the positive electrode and the negative electrode. As the separator, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
도 1에 본 발명의 일 구현예에 따른 리튬 이차 전지의 분해 사시도를 나타내었다. 일 구현예에 따른 리튬 이차 전지는 각형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 원통형, 파우치형 등 다양한 형태의 전지에 적용될 수 있다.1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment of the present invention. Although a lithium secondary battery according to an embodiment is described as an example of being rectangular, the present invention is not limited thereto, and may be applied to various types of batteries, such as a cylindrical shape and a pouch type.
도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(10)과 음극(20) 사이에 세퍼레이터(30)를 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50)를 포함할 수 있다. 상기 양극(10), 상기 음극(20) 및 상기 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.Referring to FIG. 1, the lithium secondary battery 100 according to the exemplary embodiment includes an electrode assembly 40 and an electrode assembly 40 interposed between the positive electrode 10 and the negative electrode 20 with a separator 30 interposed therebetween. It may include a case 50 is built. The positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention are described. Such following examples are only examples of the present invention, and the present invention is not limited to the following examples.
(실시예 1) (Example 1)
리튬 카보네이트(Li2CO3), 나트륨 카보네이트(Na2CO3), 코발트 산화물(Co3O4), 마그네슘 산화물(MgO), 티타늄 산화물(TiO2)을 최종 생성물에서 Li1 - xNaxCo1 -y-zMgyTizO2 조성(x=0.002, y=0.006, z=0.005)이 되는 혼합비(몰비)로 혼합하였다.Lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), cobalt oxide (Co 3 O 4 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) in the final product Li 1 - x Na x Co 1 -yz Mg y Ti z O 2 were mixed in the composition (x = 0.002, y = 0.006 , z = 0.005) the mixing ratio (molar ratio) that.
얻어진 혼합물을 공기 분위기에서 1025℃ 온도로 6시간 동안 1차 소성하고, 이 소성 생성물을 950℃ 온도에서 6시간동안 후열 처리인 2차 소성하여 Li1 - xNaxCo1 -y-zMgyTizO2(x=0.002, y=0.006, z=0.005) 양극 활물질을 제조하였다. The resulting mixture was first calcined at 1025 ° C. for 6 hours in an air atmosphere, and the calcined product was calcined at 950 ° C. for 6 hours, followed by secondary calcining, followed by Li 1 - x Na x Co 1 -yz Mg y Ti z 0 2 (x = 0.002, y = 0.006, z = 0.005) positive electrode active material was prepared.
(실시예 2) (Example 2)
리튬 카보네이트(Li2CO3), 나트륨 카보네이트(Na2CO3), 코발트 산화물(Co3O4), 마그네슘 산화물(MgO), 티타늄 산화물(TiO2)을 최종 생성물에서 Li1 - xNaxCo1 -y-zMgyTizO2 조성(x=0.005, y=0.006, z=0.005)이 되는 혼합비(몰비)로 혼합하였다.Lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), cobalt oxide (Co 3 O 4 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) in the final product Li 1 - x Na x Co 1 -yz Mg y Ti z O 2 were mixed in the composition (x = 0.005, y = 0.006 , z = 0.005) the mixing ratio (molar ratio) that.
얻어진 혼합물을 공기 분위기에서 1025℃ 온도로 6시간 동안 1차 소성하고, 이 소성 생성물을 950℃ 온도에서 6시간동안 후열 처리인 2차 소성하여 Li1 - xNaxCo1 -y-zMgyTizO2(x=0.005, y=0.006, z=0.005) 양극 활물질을 제조하였다. The resulting mixture was first calcined at 1025 ° C. for 6 hours in an air atmosphere, and the calcined product was calcined at 950 ° C. for 6 hours, followed by secondary calcining, followed by Li 1 - x Na x Co 1 -yz Mg y Ti z O 2 (x = 0.005, y = 0.006, z = 0.005) positive electrode active material was prepared.
(실시예 3) (Example 3)
리튬 카보네이트(Li2CO3), 나트륨 카보네이트(Na2CO3), 코발트 산화물(Co3O4), 마그네슘 산화물(MgO), 티타늄 산화물(TiO2)을 최종 생성물에서 Li1 - xNaxCo1 -y-zMgyTizO2 조성(x=0.01, y=0.006, z=0.005)이 되는 혼합비(몰비)로 혼합하였다.Lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), cobalt oxide (Co 3 O 4 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) in the final product Li 1 - x Na x Co 1 -yz Mg y Ti z O 2 were mixed in the composition (x = 0.01, y = 0.006 , z = 0.005) the mixing ratio (molar ratio) that.
얻어진 혼합물을 공기 분위기에서 1025℃ 온도로 6시간 동안 1차 소성하고, 이 소성 생성물을 950℃ 온도에서 6시간동안 후열 처리인 2차 소성하여 Li1 - xNaxCo1 -y-zMgyTizO2(x=0.01, y=0.006, z=0.005) 양극 활물질을 제조하였다. The resulting mixture was first calcined at 1025 ° C. for 6 hours in an air atmosphere, and the calcined product was calcined at 950 ° C. for 6 hours, followed by secondary calcining, followed by Li 1 - x Na x Co 1 -yz Mg y Ti z 0 2 (x = 0.01, y = 0.006, z = 0.005) positive electrode active material was prepared.
(비교예 1) (Comparative Example 1)
리튬 카보네이트(Li2CO3), 코발트 산화물(Co3O4), 마그네슘 산화물(MgO), 티타늄 산화물(TiO2)을 최종 생성물에서 Li1 - xNaxCo1 -y- zMgyTizO2 조성(x= 0, y=0.006, z=0.005)이 되는 혼합비(몰비)로 혼합하였다.Lithium carbonate (Li 2 CO 3 ), cobalt oxide (Co 3 O 4 ), magnesium oxide (MgO), titanium oxide (TiO 2 ) was added to Li 1 - x Na x Co 1 -y- z Mg y Ti z in the final product. O 2 were mixed in the composition (x = 0, y = 0.006 , z = 0.005) the mixing ratio (molar ratio) that.
얻어진 혼합물을 공기 분위기에서 1025℃ 온도로 6시간 동안 1차 소성하고, 이 소성 생성물을 950℃ 온도에서 6시간동안 후열 처리인 2차 소성하여 Li1 .02-xNaxCo1-y-zMgyTizO2(x= 0, y=0.006, z=0.005) 양극 활물질을 제조하였다. The resulting mixture was calcined first for 6 hours at 1025 ℃ temperature in an air atmosphere, the firing of the product in 950 ℃ temperature for 6 hours post - heating the second fired to Li 1 .02-x Na x Co 1-yz Mg y A Ti z O 2 (x = 0, y = 0.006, z = 0.005) positive electrode active material was prepared.
(비교예 2) (Comparative Example 2)
리튬 카보네이트(Li2CO3), 나트륨 카보네이트(Na2CO3), 코발트 산화물(Co3O4)을 최종 생성물에서 Li1 - xNaxCo1 -y- zMgyTizO2 조성(x=0.005, y=0, z=0)이 되는 혼합비(몰비)로 혼합하였다. Lithium carbonate (Li 2 CO 3), sodium carbonate (Na 2 CO 3), cobalt oxide (Co 3 O 4) in the final product the Li 1 - x Na x Co 1 -y- z Mg y Ti z O 2 Composition ( It mixed at the mixing ratio (molar ratio) which becomes x = 0.005, y = 0, z = 0).
얻어진 혼합물을 공기 분위기에서 1025℃ 온도로 6시간 동안 1차 소성하고, 이 소성 생성물을 950℃ 온도에서 6시간동안 후열 처리인 2차 소성하여 Li1 - xNaxCo1 -y-zMgyTizO2(x=0.005, y=0, z=0) 양극 활물질을 제조하였다.The resulting mixture was first calcined at 1025 ° C. for 6 hours in an air atmosphere, and the calcined product was calcined at 950 ° C. for 6 hours, followed by secondary calcining, followed by Li 1 - x Na x Co 1 -yz Mg y Ti z 0 2 (x = 0.005, y = 0, z = 0) A positive electrode active material was prepared.
* 양극 활물질의 특성평가* Characterization of positive electrode active material
(i) 결정구조 분석(i) crystal structure analysis
상기 실시예 1 내지 3 및 비교예 1에서 제조된 리튬 이차 전지용 양극 활물질을 X-선 회절분석장치(XRD)를 이용하여 Li1 - xNaxCo1 -y- zMgyTizO2 조성(0≤x≤0.01, y=0.006, z=0.005)에서 Na 함량에 따른 이차상 생성 여부와 결정구조 변화를 확인하였다. X-선 회절분석결과는 CuKα선을 사용하였다. 그 결과를 도 2에 나타내었다(도 2에서, y축은 강도(intensity)임). X Na x Co 1 -y- z Mg y Ti z O 2 Composition - Example 1 to 3 and Comparative Example 1, a cathode active material for a lithium secondary battery the X- ray diffraction analyzer (XRD) manufactured by using the Li 1 In (0≤x≤0.01, y = 0.006, z = 0.005), the formation of secondary phase and the crystal structure change according to Na content were confirmed. As a result of X-ray diffraction analysis, CuKα rays were used. The results are shown in Figure 2 (in Figure 2, the y-axis is intensity).
도 2에 나타낸 것과 같이, Na과 관련된 이차상 피크는 나타나지 않음을 알 수 있다. As shown in Figure 2, it can be seen that the secondary phase peak associated with Na does not appear.
또한, 양극 활물질의 격자 상수를 CuKα선을 사용하여 X-선 회절 측정으로 얻었다. 측정된 a축 길이, c축 길이, 결정 축간의 거리비(c/a 축비)를 하기 표 1에 함께 나타내었다. 하기 표 1에서, V(Å3)는 단위 셀(unit cell)의 부피를 나타낸다.In addition, the lattice constant of the positive electrode active material was obtained by X-ray diffraction measurement using CuKα rays. The measured a-axis length, c-axis length, and the distance ratio between the crystal axes (c / a axis ratio) are shown in Table 1 together. In Table 1 below, V (Å 3 ) represents the volume of a unit cell.
a축 길이(Å)a-axis length (Å) b축 길이(Å)b-axis length c 축 길이(Å)c axis length (Å) 거리비(c/a비)Distance ratio (c / a ratio) V(Å3)V (Å 3 )
비교예 1Comparative Example 1 2.81662.8166 2.81662.8166 14.05514.055 4.9904.990 96.5796.57
실시예 1Example 1 2.81672.8167 2.81672.8167 14.05714.057 4.9914.991 96.5896.58
실시예 2Example 2 2.81692.8169 2.81692.8169 14.05814.058 4.9914.991 96.6196.61
실시예 3Example 3 2.81732.8173 2.81732.8173 14.06214.062 4.9914.991 96.6796.67
상기 표 1에 나타낸 것처럼, Na 함량이 1.0mol%까지 증가하면, a 및 b축 길이는 2.8166Å에서 2.8173Å으로, c축 길이는 14.055Å에서 14.062Å로 모두 선형적으로 증가하였으며, c/a 비율은 4.991로 거의 유사한 결과가 얻어졌다. As shown in Table 1, when the Na content was increased to 1.0 mol%, the a and b axis lengths increased linearly from 2.8166 ms to 2.8173 ms and the c axis lengths from 14.055 ms to 14.062 ms and c / a The ratio was 4.991, yielding almost similar results.
즉, Na 함량 증가로 격자상수가 증가하나, c/a의 값은 유사한 결과가 얻어졌기에, 이 결과로부터 Na이 Li자리에 잘 도핑되었으며, 제조된 실시예 1 내지 4의 양극 활물질의 결정화도가 모두 유사함을 확인할 수 있다. That is, the lattice constant increases with increasing Na content, but a similar result was obtained for c / a. From this result, Na was well doped into Li sites, and the crystallinity of the cathode active materials of Examples 1 to 4 was prepared. You can see that they are all similar.
(ii) 핵자기 공명(NMR) 평가(ii) nuclear magnetic resonance (NMR) evaluation
상기 실시예 1 내지 3에서 제조된 리튬 이차 전지용 양극 활물질의 Na 도핑여부를 추가적으로 핵자기공명장치(NMR)을 이용하여 측정하였다. 자기공명장치는 23Na-NMR (Bruker Avance III)을 이용하였고, 그 결과를 도 3에 나타내었다. 또한, 비교를 위하여, Na 원료 물질인 나트륨 카보네이트(Na2CO3)의 NMR도 측정하여, 그 결과를 도 3에 함께 나타내었다(도 2에서, y축은 강도(intensity)임). Na doping of the cathode active material for lithium secondary batteries prepared in Examples 1 to 3 was additionally measured using a nuclear magnetic resonance device (NMR). The magnetic resonance apparatus was 23 Na-NMR (Bruker Avance III), the results are shown in FIG. In addition, for comparison, NMR of sodium carbonate (Na 2 CO 3 ), which is a Na raw material, was also measured, and the results are also shown in FIG. 3 (in FIG. 2, the y-axis is intensity).
도 3에 나타낸 것과 같이, 비교예 1에서 제조한 양극활물질의 경우 Na의 화학적 이동신호가 나타나지 않았다. 반면, 실시예 1 내지 3에서 제조한 양극 활물질의 경우 -8ppm과 58ppm에서 화학적 이동(chemical shift)이 나타났고, 원료로 사용한 Na2CO3의 스펙트럼과 전혀 달랐다. 특히, 두 화학적 신호는 실시예 2 내지 3으로 Na의 도핑량이 증가함에 따라 상대강도가 점점 증가함을 알 수 있다. As shown in FIG. 3, the chemically active signal of Na did not appear in the cathode active material prepared in Comparative Example 1. On the other hand, the positive electrode active materials prepared in Examples 1 to 3 showed a chemical shift at -8 ppm and 58 ppm, and were completely different from the spectrum of Na 2 CO 3 used as a raw material. In particular, the two chemical signals in Examples 2 to 3 it can be seen that the relative strength gradually increases as the doping amount of Na increases.
도 2 및 도 3에 나타낸 XRD와 NMR의 두 결과로부터 Na이 Li 자리에 잘 도핑되었음을 확인할 수 있었다.From the two results of XRD and NMR shown in FIGS. 2 and 3, it was confirmed that Na was well doped in Li sites.
(iii) 모폴로지 관찰(iii) morphology observation
상기 실시예 2에 따라 제조된 0.5mol%의 Na이 도핑된 양극 활물질과 비교예 1에 따라 제조된 양극 활물질의 1차 및 2차 소성 처리에 따른 모폴로지 변화를 확인하기 위하여 주사전자현미경(FE-SEM)을 관찰하였다.In order to confirm the morphology change according to the primary and secondary firing treatments of the positive electrode active material 0.5 doped Na prepared according to Example 2 and the positive electrode active material prepared according to Comparative Example 1 (FE- SEM) was observed.
실시예 2의 결과를 도 4에 나타내었으며(A: 1차 소성, B: 2차 소성), 비교예1의 결과를 도 4(A: 1차 소성, B: 2차 소성)에 나타내었다. The results of Example 2 are shown in FIG. 4 (A: primary firing, B: secondary firing), and the results of Comparative Example 1 are shown in FIG. 4 (A: primary firing, B: secondary firing).
도 4에 나타낸 것과 같이, 실시예 2의 경우, 1025℃에서 1차 소성을 실시하면 생성물 표면에 Na이 석출되어 있으나, 950℃에서 2차 소성을 실시하여 제조된 양극 활물질의 표면에는 Na 석출물이 없는 것을 확인하였다. As shown in FIG. 4, in Example 2, Na was precipitated on the surface of the product when the primary firing was performed at 1025 ° C., but Na precipitates were formed on the surface of the cathode active material prepared by secondary firing at 950 ° C. It was confirmed that there was no.
그 반면, 도 5에 나타낸 것과 같이, 비교예 1의 경우, 1차 소성 및 2차 소성에 따른 표면 모폴로지의 변화가 없음을 알 수 있다. On the other hand, as shown in Figure 5, in Comparative Example 1, it can be seen that there is no change in the surface morphology according to the first and second firing.
이 결과로부터, Na이 도핑된 LiCoO2를 고상법으로 제조하는 경우, 1차 및 2차 소성 공정을 실시하는 것이 Na 석출을 방지할 수 있음을 알 수 있다.From this result, it can be seen that when Na-doped LiCoO 2 is produced by the solid phase method, performing the primary and secondary firing steps can prevent Na precipitation.
* 전지 특성 평가* Battery characteristic evaluation
(i) 양극의 제조(i) Preparation of Anode
상기 실시예 1 내지 3 및 비교예 1에 따라 제조된 양극 활물질, 카본 블랙 도전재, 폴리비닐리덴 플루오라이드 바인더를 96:2:2의 중량비로 N-메틸 피롤리돈 용매 중에서 혼합하여 양극 활물질 슬러리를 제조하였다. The cathode active material slurry prepared by mixing the cathode active material, the carbon black conductive material, and the polyvinylidene fluoride binder prepared according to Examples 1 to 3 and Comparative Example 1 in an N-methyl pyrrolidone solvent at a weight ratio of 96: 2: 2. Was prepared.
제조된 양극 활물질 슬러리를 Al 포일에 균일하게 도포하고, 120℃에서 진공 건조하여 양극을 제조하였다.The prepared positive electrode active material slurry was uniformly coated on Al foil, and vacuum dried at 120 ° C. to prepare a positive electrode.
(ii) 코인셀 제조(ii) coin cell manufacturing
상기 양극, 리튬 금속 대극, 폴리에틸렌 세퍼레이터(Celgard2300)을 사용하고, 1M LiPF6가 용해된 에틸렌 카보네이트와 디메틸 카보네이트의 혼합 용매(1:1 부피비) 전해액을 사용하여 통상의 방법에 의해 2032 규격의 코인셀 형태의 전지(coin cell)를 제조하였다.Coin cell of the 2032 standard by a conventional method using the positive electrode, a lithium metal electrode, a polyethylene separator (Celgard2300), and a mixed solvent (1: 1 volume ratio) electrolyte solution of ethylene carbonate and dimethyl carbonate in which 1M LiPF 6 is dissolved. A coin cell was prepared.
(iii) 전기화학특성 평가(iii) evaluation of electrochemical properties
A. 율 특성 평가A. Rate Characterization
제조된 전지의 율 특성을 평가하기 위하여, 전기화학 분석장치(HNT사 제작, HC0105R, Korea)를 이용하여, 상기 실시예 1 내지 3 및 비교예 1과 2의 반쪽 전지를 25℃ 및 45℃에서, 3.0V 내지 4.3V의 전위영역, 0.2C, 0.5C, 1C, 2C 및 3C에서 충방전을 실시하고, 방전 용량(discharge capacity)을 측정하였다. 실시예 1 내지 3 및 비교예 1의 결과를 도 6에, 비교예 2의 결과를 도 7에 나타내었다. 또한, 비교를 위하여, 실시예 2의 결과를 도 7에 함께 나타내었다.In order to evaluate the rate characteristics of the prepared battery, using the electrochemical analyzer (H0, HC0105R, Korea), the half cells of Examples 1 to 3 and Comparative Examples 1 and 2 at 25 ℃ and 45 ℃ , Charge and discharge in the potential region of 3.0V to 4.3V, 0.2C, 0.5C, 1C, 2C and 3C, and measured the discharge capacity (discharge capacity). The results of Examples 1 to 3 and Comparative Example 1 are shown in FIG. 6, and the results of Comparative Example 2 are shown in FIG. 7. In addition, for the sake of comparison, the results of Example 2 are also shown in FIG. 7 together.
도 6에 나타낸 것과 같이, Na이 도핑되지 않은 비교예 1의 양극 활물질을 이용한 반쪽 전지는 2C 이상의 전류밀도에서 용량이 크게 감소함을 알 수 있다. 그 반면, Na이 도핑된 실시예 1 내지 3의 양극 활물질을 이용하여 제조한 반쪽 전지의 경우, 0.2C부터 3C의 전류 밀도까지 다양한 전류 밀도 조건에서 용량이 크게 감소하지 않는, 즉 고율 특성이 우수함을 알 수 있다.As shown in FIG. 6, it can be seen that the half-cell using the cathode active material of Comparative Example 1, which is not doped with Na, has a significantly reduced capacity at a current density of 2C or more. On the other hand, in the case of the half-cell manufactured using the cathode active materials of Examples 1 to 3 doped with Na, the capacity does not significantly decrease under various current density conditions from 0.2C to 3C, that is, the high rate characteristics are excellent. It can be seen.
도 7에 나타낸 것과 같이, Na이 0.5mol% 도핑된 실시예 2의 양극 활물질을 이용한 반쪽 전지는 0.2C부터 3C의 전류 밀도까지 다양한 전류 밀도 조건에서 용량이 크게 감소하지 않는, 즉 고율 특성이 우수한 반면, 비교예 2의 양극 활물질을 이용한 반쪽 전지는 1C부터 현저하게 감소함을 알 수 있다. 이 결과로부터 Mg 및 Ti가 도핑되지 않는 경우에는 4.3V의 전압영역에서 비교적 낮은 0.5C의 전류밀도부터 용량이 감소하기 시작하였고, 3C에서는 용량이 0로 거의 작동하지 않음을 알 수 있고, 따라서 Na이 도핑되어도 Mg 및 Ti가 포함되지 않으면, 고율 특성이 심각하게 열화됨을 알 수 있다.As shown in FIG. 7, the half-cell using the positive electrode active material of Example 2 doped with 0.5 mol% of Na does not significantly reduce its capacity under various current density conditions from 0.2C to 3C, that is, excellent in high rate characteristics. On the other hand, it can be seen that the half cell using the positive electrode active material of Comparative Example 2 is significantly reduced from 1C. From this result, when Mg and Ti are not doped, the capacity starts to decrease from the current density of 0.5C which is relatively low in the voltage range of 4.3V, and at 3C, the capacity almost does not work as 0. Therefore, Na It can be seen that even if doped, Mg and Ti are not included, the high rate characteristic is seriously degraded.
B. 사이클 수명 특성 평가B. Cycle Life Characterization
상기 실시예 1 내지 3 및 비교예1과 2에 따라 제조된 양극 활물질을 이용하여 제조된 반쪽 전지를 상온(25℃)에서 0.2C로 40회 충방전을 실시하여, 사이클에 따른 방전 용량을 측정한 결과를 도 8에 나타내었다. The half-cells prepared by using the positive electrode active materials prepared according to Examples 1 to 3 and Comparative Examples 1 and 2 were charged and discharged at 0.2C at room temperature (25 ° C.) for 40 times to measure the discharge capacity according to the cycle. One result is shown in FIG.
도 8에 나타낸 것과 같이, 실시예 1 내지 3의 양극 활물질을 이용한 반쪽 전지의 상온 사이클 수명 특성이 비교예 1과 2의 양극 활물질을 이용한 반쪽 전지에 비하여 우수함을 알 수 있다.As shown in FIG. 8, it can be seen that the room temperature cycle life characteristics of the half cells using the cathode active materials of Examples 1 to 3 are superior to those of the half cells using the cathode active materials of Comparative Examples 1 and 2.
또한, 도 8의 결과로부터, 사이클 수명 특성은 Na 도핑량과 밀접한 상관이 있음을 알 수 있다. 즉, Na이 0.5mol% 도핑된 실시예 2의 양극 활물질을 이용한 전지가, Na 도핑량을 1.0mol%까지 증가한 실시예 3, Na 도핑량을 0.2mol%로 감소한 실시예 1의 양극 활물질을 이용한 전지에 비하여, 40회 사이클 때까지 용량 감소가 가장 적은 결과가 얻어졌다. In addition, it can be seen from the results of FIG. 8 that the cycle life characteristics are closely correlated with the amount of Na doping. That is, the battery using the positive electrode active material of Example 2 doped with Na 0.5 mol%, Example 3, the Na doping amount increased to 1.0 mol%, the Na doped amount reduced to 0.2 mol% using the positive electrode active material of Example 1 Compared to the cell, the result with the least capacity reduction up to 40 cycles was obtained.
또한, Na을 포함하더라도, Mg 및 Ti을 포함하지 않은 비교예 2의 양극 활물질을 이용하는 전지의 경우, 방전 용량이 현저하게 열화되었으며, 특히 30회 사이클에서 방전용량이 거의 나오지 않음을 알 수 있다.In addition, even in the case of containing Na, the battery using the positive electrode active material of Comparative Example 2 that does not contain Mg and Ti, the discharge capacity is remarkably deteriorated, it can be seen that the discharge capacity hardly comes out, especially in 30 cycles.
또한, 상기 실시예 1 내지 3 및 비교예 1과 2의 양극 활물질을 이용하여 제조된 반쪽 전지를 고온(45℃)에서 0.2C로 40회 충방전을 실시하여, 사이클에 따른 방전 용량을 측정한 결과를 도 9에 나타내었다.In addition, the half-cells manufactured using the positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 and 2 were charged and discharged at 0.2 C at a high temperature (45 ° C.) for 40 times to measure discharge capacity according to cycles. The results are shown in FIG.
도 9에 나타낸 것과 같이, 실시예 1 내지 3의 양극 활물질을 이용한 반쪽 전지의 고온 사이클 수명 특성이 비교예 1과 3의 양극 활물질을 이용한 반쪽 전지에 비하여 우수함을 알 수 있다.As shown in FIG. 9, it can be seen that the high temperature cycle life characteristics of the half cells using the positive electrode active materials of Examples 1 to 3 are superior to the half cells using the positive electrode active materials of Comparative Examples 1 and 3.
또한, 도 8의 결과와 유사하게, 도 9에 나타낸 고온 사이클 수명 결과는 Na 함량에 따라 큰 영향을 받음을 알 수 있다. 특히, Na이 0.5mol% 도핑된 실시예 2의 양극 활물질을 이용한 전지의 경우, Na 도핑량이 0.2mol%인 실시예 1과, Na 도핑량이 1.0mol%인 실시예 3의 양극 활물질을 이용한 전지에 비하여, 40회 사이클까지 용량 감소가 가장 적은 결과가 얻어졌다.In addition, similar to the results of FIG. 8, it can be seen that the high temperature cycle life results shown in FIG. 9 are greatly affected by the Na content. In particular, in the case of the battery using the positive electrode active material of Example 2 doped with 0.5 mol% of Na, the battery using the positive electrode active material of Example 1 having a Na doping amount of 0.2 mol% and Example 3 having a Na doping amount of 1.0 mol% In comparison, results with the least capacity reduction up to 40 cycles were obtained.
또한, Na을 포함하더라도, Mg 및 Ti을 포함하지 않은 비교예 2의 양극 활물질을 이용하는 전지의 경우, 초기 5회 사이클부터 용량이 하락하였고, 고온수명 유지특성이 가장 낮은 결과가 얻어졌다. In addition, even in the case of containing Na, the battery using the positive electrode active material of Comparative Example 2 not containing Mg and Ti, the capacity was reduced from the initial five cycles, the result was the lowest high temperature life retention characteristics.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (7)

  1. 하기 화학식 1로 표현되는 화합물을 포함하는To include a compound represented by the formula
    리튬 이차 전지용 양극 활물질.Cathode active material for lithium secondary battery.
    [화학식 1][Formula 1]
    Li1-xNaxCo1-y-zMgyTizO2 Li 1-x Na x Co 1-yz Mg y Ti z O 2
    (상기 화학식 1에서,(In Formula 1,
    0 < x ≤ 0.01, 0 < y ≤ 0.01, 0 ≤ z ≤ 0.01임)0 <x ≤ 0.01, 0 <y ≤ 0.01, 0 ≤ z ≤ 0.01)
  2. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 작동 전압이 4.3V 이상인 고전압 리튬 이차 전지용인 리튬 이차 전지용 양극 활물질.The positive electrode active material is a positive electrode active material for lithium secondary batteries which is for high voltage lithium secondary batteries having an operating voltage of 4.3V or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 작동 전압이 4.3V 내지 4.5V인 고전압 리튬 이차 전지용인 리튬 이차 전지용 양극 활물질.The cathode active material is a cathode active material for a lithium secondary battery is a high voltage lithium secondary battery having an operating voltage of 4.3V to 4.5V.
  4. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 작동 전압이4.35V 내지 4.45V인 고전압 리튬 이차 전지용인 리튬 이차 전지용 양극 활물질.The positive electrode active material is a positive electrode active material for a lithium secondary battery for a high voltage lithium secondary battery having an operating voltage of 4.35V to 4.45V.
  5. 제1항에 있어서,The method of claim 1,
    상기 y는 0 < y ≤ 0.006인 리튬 이차 전지용 양극 활물질.Wherein y is 0 <y ≤ 0.006 positive electrode active material for lithium secondary batteries.
  6. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 고상법으로 제조된 것인 리튬 이차 전지용 양극 활물질.The cathode active material is a cathode active material for a lithium secondary battery prepared by a solid phase method.
  7. 제1항 내지 제6항 중 어느 한 항의 양극 활물질을 포함하는 양극;A positive electrode comprising the positive electrode active material of any one of claims 1 to 6;
    음극 활물질을 포함하는 음극; 및A negative electrode including a negative electrode active material; And
    전해질Electrolyte
    을 포함하는 리튬 이차 전지.Lithium secondary battery comprising a.
PCT/KR2017/012143 2016-11-07 2017-10-31 Cathode active material for lithium secondary battery and lithium secondary battery comprising same WO2018084525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0147470 2016-11-07
KR1020160147470A KR20180050894A (en) 2016-11-07 2016-11-07 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same

Publications (1)

Publication Number Publication Date
WO2018084525A1 true WO2018084525A1 (en) 2018-05-11

Family

ID=62076185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012143 WO2018084525A1 (en) 2016-11-07 2017-10-31 Cathode active material for lithium secondary battery and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR20180050894A (en)
WO (1) WO2018084525A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175781A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Cathode active material, method for preparing same, and secondary battery including cathode comprising same
WO2022266799A1 (en) * 2021-06-21 2022-12-29 宁德新能源科技有限公司 Electrochemical device and electronic device
CN116062797A (en) * 2023-01-17 2023-05-05 珠海冠宇电池股份有限公司 Positive electrode material and battery containing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053328A2 (en) * 2008-11-10 2010-05-14 주식회사 엘지화학 Positive active material with improved high voltage characteristics
JP5100069B2 (en) * 2006-09-15 2012-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20130101893A1 (en) * 2011-10-25 2013-04-25 Apple Inc. High-voltage lithium-polymer batteries for portable electronic devices
KR20140040673A (en) * 2010-10-20 2014-04-03 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 Cathode material and lithium ion battery therefrom
KR20160059781A (en) * 2014-11-19 2016-05-27 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100069B2 (en) * 2006-09-15 2012-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2010053328A2 (en) * 2008-11-10 2010-05-14 주식회사 엘지화학 Positive active material with improved high voltage characteristics
KR20140040673A (en) * 2010-10-20 2014-04-03 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 Cathode material and lithium ion battery therefrom
US20130101893A1 (en) * 2011-10-25 2013-04-25 Apple Inc. High-voltage lithium-polymer batteries for portable electronic devices
KR20160059781A (en) * 2014-11-19 2016-05-27 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175781A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Cathode active material, method for preparing same, and secondary battery including cathode comprising same
WO2022266799A1 (en) * 2021-06-21 2022-12-29 宁德新能源科技有限公司 Electrochemical device and electronic device
CN116062797A (en) * 2023-01-17 2023-05-05 珠海冠宇电池股份有限公司 Positive electrode material and battery containing same

Also Published As

Publication number Publication date
KR20180050894A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2018062719A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte
WO2018012821A1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101264364B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
WO2020009340A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery including same
WO2018084526A2 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2018080071A1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
WO2010035950A2 (en) Negative active material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2020218773A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2018048155A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
WO2018048156A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2019013521A2 (en) Lithium secondary battery
WO2020218780A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
WO2019156434A1 (en) Electrolyte composition and secondary battery using same
WO2019050161A1 (en) Lithium secondary battery
WO2019050162A1 (en) Lithium secondary battery
WO2018084525A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
WO2018038453A1 (en) Anode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2012141503A2 (en) Positive electrode active material, method for preparing same, and positive electrode and lithium battery using same
WO2018074684A1 (en) Lithium secondary battery
WO2018026153A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2019194407A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2019235733A1 (en) Positive electrode active material, preparing method therefor, and lithium secondary battery including same
WO2022108267A1 (en) Anode active material and lithium secondary battery comprising same
WO2022080809A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery including same
WO2021225321A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867701

Country of ref document: EP

Kind code of ref document: A1