WO2019156434A1 - Electrolyte composition and secondary battery using same - Google Patents
Electrolyte composition and secondary battery using same Download PDFInfo
- Publication number
- WO2019156434A1 WO2019156434A1 PCT/KR2019/001387 KR2019001387W WO2019156434A1 WO 2019156434 A1 WO2019156434 A1 WO 2019156434A1 KR 2019001387 W KR2019001387 W KR 2019001387W WO 2019156434 A1 WO2019156434 A1 WO 2019156434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- electrolyte composition
- negative electrode
- electrolyte
- lithium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolyte composition and a secondary battery using the same. More particularly, the present invention relates to an electrolyte composition and a secondary battery using the same having excellent life characteristics by forming a stable negative electrode film.
- lithium ions derived from the positive electrode active material such as lithium metal oxide move to the negative electrode active material such as graphite and are inserted between the layers of the negative electrode active material.
- the electrolyte composition and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, LiOH, and Li 2 SO 4 .
- These compounds form a SEI (Solid Electrolyte Interface) film, which is a kind of protective film, on the surface of an anode active material such as graphite.
- the SEI film acts as an ion tunnel, passing only lithium ions.
- the SEI film is an effect of such an ion tunnel, and prevents the negative electrode structure from being destroyed by intercalation of an organic solvent molecule having a large molecular weight moving with lithium ions in the electrolyte composition between the layers of the negative electrode active material. Therefore, by preventing contact between the electrolyte composition and the negative electrode active material, decomposition of the electrolyte composition does not occur, and the amount of lithium ions in the electrolyte composition is reversibly maintained to maintain stable charge and discharge.
- Korean Patent Publication No. 10-1999-0088654 discloses an electrolyte composition using 1,3-propane sultone as an electrolyte additive.
- One object of the present invention is to provide an electrolyte composition having excellent life characteristics by forming a stable cathode film.
- Another object of the present invention is to provide a secondary battery using the electrolyte composition.
- the present invention provides an electrolyte solution composition
- a compound represented by the following formula (1) and a non-aqueous solvent.
- X is haloalkoxy group of halogen, hydroxy, cyano, C 1 -C 4 alkoxy group, C 1 -C 4 trialkylsilyl oxy group or a C 1 -C 4.
- the present invention provides a secondary battery comprising the electrolyte composition.
- the electrolyte composition according to the present invention may include a propane sultone compound in which carbon at a specific position is substituted with a specific substituent to form a stable negative electrode film, thereby significantly increasing the life characteristics of the secondary battery.
- FIG. 1 is a cycle-discharge capacity graph showing the room temperature life characteristics of a secondary battery using an electrolyte composition according to an embodiment of the present invention.
- FIG. 2 is a cycle-discharge graph showing the high temperature life characteristics of the secondary battery using the electrolyte composition according to an embodiment of the present invention.
- One embodiment of the present invention relates to an electrolyte solution composition
- an electrolyte solution composition comprising a compound represented by the following formula (1) and a non-aqueous solvent.
- X is haloalkoxy group of halogen, hydroxy, cyano, C 1 -C 4 alkoxy group, C 1 -C 4 trialkylsilyl oxy group or a C 1 -C 4.
- a C 1 -C 4 alkoxy group refers to a straight or branched alkoxy group composed of 1 to 4 carbon atoms, and includes, but is not limited to, methoxy, ethoxy, n-propaneoxy and the like.
- a C 1 -C 4 trialkylsilyloxy group means an oxygen functional group bonded to a silyl group substituted with three C 1 -C 4 alkyl groups, and includes trimethylsilyloxy, triethylsilyloxy, and the like. However, it is not limited thereto.
- a C 1 -C 4 haloalkoxy group refers to a straight or branched alkoxy group composed of 1 to 4 carbon atoms substituted with one or more halogens selected from the group consisting of fluorine, chlorine, bromine and iodine, Oromethoxy, trichloromethoxy, trifluoroethoxy, and the like, but are not limited thereto.
- X is a C 1 -C 4 trialkylsilyloxy group.
- X is trimethylsilyloxy
- the compound represented by Formula 1 has a low LUMO (Lowest Unoccupied Molecular Orbital) has a high reductive decomposition tendency than the non-aqueous solvent in the electrolyte composition to form a stable film on the surface of the negative electrode life It can play a role of improving characteristics.
- a flexible film is formed by a propane sultone compound in which carbon at position 2 is substituted with a specific substituent, so that cracks are suppressed even in repeated charge and discharge, thereby ensuring long-term life characteristics.
- a propane sultone compound in which carbon at position 2 is substituted with trimethylsilyloxy is preferable in terms of long-term life characteristics.
- the compound represented by Chemical Formula 1 may be obtained by using a commercially available one or manufactured and used by a method known in the art.
- the compound represented by Formula 1 may be included in an amount of 0.05 to 15% by weight based on 100% by weight of the total electrolyte composition.
- the SEI film may be formed so thin as not to affect the life characteristics of the battery, and when included in an amount of more than 15% by weight, the SEI film is excessively formed. Due to the SEI film on the surface of the negative electrode, the resistance of the battery may be increased, thereby degrading the life characteristics.
- the non-aqueous solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
- the non-aqueous solvent may be one that is commonly used in the art without particular limitation.
- the nonaqueous solvent may be a carbonate solvent, an ester solvent, an ether solvent, a ketone solvent, an alcohol solvent, or another aprotic solvent. These may be used alone or in combination of two or more.
- carbonate solvent a chain carbonate solvent, a cyclic carbonate solvent, a fluoro carbonate solvent, or a combination thereof can be used.
- the chain carbonate solvent is, for example, diethyl carbonate (DEC), dimethyl carbonate (dimethyl carbonate, DMC), dipropyl carbonate (DPC), methylpropyl carbonate (methylpropyl carbonate, MPC), Ethyl propyl carbonate (EPC), ethyl methyl carbonate (EMC) or a combination thereof
- the cyclic carbonate solvent is, for example, ethylene carbonate (EC), propylene carbonate (propylene) carbonate, PC), butylene carbonate (BC), vinylethylene carbonate (VEC), or a combination thereof.
- fluoro carbonate solvent for example, fluoroethylene carbonate (FEC), 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene Carbonate, 4,4,5,5-tetrafluoroethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene Carbonate, 4,4,5-trifluoro-5-methylethylene carbonate, or a combination thereof.
- FEC fluoroethylene carbonate
- 4,5-difluoroethylene carbonate 4,4-difluoroethylene carbonate
- 4,4,5-trifluoroethylene Carbonate 4,4,5,5-tetrafluoroethylene carbonate
- 4-fluoro-5-methylethylene carbonate 4-fluoro-4-methylethylene carbonate
- 4-fluoro-4-methylethylene carbonate 4,5-difluoro-4-methylethylene Carbonate
- 4,4,5-trifluoro-5-methylethylene carbonate 4,4,5-triflu
- the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone ), Caprolactone, methyl formate, and the like can be used.
- ether solvent examples include dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. This can be used.
- Cyclohexanone may be used as the ketone solvent.
- Ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent.
- Examples of other aprotic solvents include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidinone, Formamide, dimethylformamide, acetonitrile, nitromethane, trimethyl phosphate, triethyl phosphate, trioctyl phosphate and the like can be used.
- the electrolyte solution composition according to one embodiment of the present invention may further include a lithium salt.
- the lithium salt serves as a source of lithium ions in the battery, and serves to promote the movement of lithium ions between the positive electrode and the negative electrode.
- lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate, LiBOB) and the like. have. These may be used alone or in combination of two or more.
- the concentration of the lithium salt may be 0.1 to 2.0M.
- the electrolyte composition may have appropriate conductivity and viscosity.
- One embodiment of the present invention relates to a secondary battery comprising the electrolyte composition described above.
- the secondary battery according to the present invention includes the electrolyte composition of the present invention comprising the compound represented by Formula 1 having a low LUMO, a stable SEI film may be formed on the surface of the negative electrode during initial charging (chemical conversion step), thereby providing excellent life characteristics. .
- the secondary battery may be a lithium secondary battery, for example, may be a lithium ion secondary battery.
- the lithium secondary battery includes a positive electrode, a negative electrode and the above-described electrolyte composition.
- the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
- the positive electrode current collector may be used without particular limitation as long as it has conductivity without causing chemical change in the battery.
- the positive electrode current collector may include aluminum, copper, stainless steel, nickel, titanium, calcined carbon, surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, or the like. It can be used, in particular aluminum can be used.
- the positive electrode current collector may have various forms such as a foil, a net, a porous body, and the like, and may form fine irregularities on the surface to enhance the bonding strength of the positive electrode active material.
- the positive electrode current collector may have a thickness of 3 to 500 ⁇ m.
- the positive electrode active material layer includes a positive electrode active material, a binder, and optionally a conductive material.
- the cathode active material a compound capable of reversible intercalation and deintercalation of lithium may be used.
- the cathode active material may be one or more of a complex oxide or a composite phosphate of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium.
- the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate.
- the binder attaches the positive electrode active material particles to each other and serves to attach the positive electrode active material to the positive electrode current collector.
- the binder polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinyl Pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used.
- the conductive material is used to impart conductivity to the electrode, and may be used without limitation as long as it has electronic conductivity without causing chemical change.
- examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as copper, nickel, aluminum, and silver; Conductive polymers, such as a polyphenylene derivative, etc. can be used.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
- the negative electrode current collector may be used without particular limitation so long as it has conductivity without causing chemical change in the battery.
- the negative electrode current collector may be copper, aluminum, stainless steel, nickel, titanium, calcined carbon, surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, or the like. Can be used, in particular copper can be used.
- the negative electrode current collector may have various forms such as a foil, a net, a porous body, and the like, and may form fine irregularities on the surface to enhance the bonding strength of the negative electrode active material.
- the negative electrode current collector may have a thickness of 3 to 500 ⁇ m.
- the negative electrode active material layer includes a negative electrode active material, a binder, and optionally a conductive material.
- the negative electrode active material a material capable of reversible intercalation and deintercalation of lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, a transition metal oxide, and the like may be used.
- the material capable of reversible intercalation and deintercalation of lithium ions is a carbon-based material, and crystalline carbon, amorphous carbon, or a combination thereof may be used.
- the crystalline carbon include amorphous, plate, flake, spherical or fibrous graphite, and may be natural graphite or artificial graphite.
- the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
- alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
- the lithium doped and undoped materials include Si, Si-C composites, SiO x (0 ⁇ x ⁇ 2), Si-Q alloy (Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, An element selected from the group consisting of Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, Element selected from the group consisting of Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn).
- SiO 2 can also be mixed and used.
- the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
- transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
- the binder serves to attach the negative electrode active material particles to each other and to attach the negative electrode active material to the negative electrode current collector.
- the same binder as that used for the positive electrode active material layer may be used as the binder.
- the conductive material is used to impart conductivity to the electrode, and may be used without limitation as long as it has electronic conductivity without causing chemical change. Specifically, the same conductive material as that used for the positive electrode active material layer may be used.
- the positive electrode and the negative electrode may be prepared by a manufacturing method commonly known in the art.
- the positive electrode and the negative electrode are prepared by mixing each active material, a binder and optionally a conductive material in a solvent to prepare an active material composition, and applying the active material composition to a current collector.
- NMP N-methylpyrrolidone
- acetone acetone
- water and the like may be used as the solvent.
- the positive electrode and the negative electrode may be separated by a separator.
- the separator may be used without particular limitation as long as it is commonly used in the art. In particular, it is suitable that it is low with respect to the ion migration in electrolyte solution, and excellent in the water-moisture capability of electrolyte solution.
- the separator may be a material selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and combinations thereof, and may be in the form of a nonwoven fabric or a woven fabric.
- the separator may have a pore diameter of 0.01 to 10 ⁇ m and a thickness of 3 to 100 ⁇ m.
- the separator may be a single film or a multilayer film.
- the lithium secondary battery may be manufactured by a manufacturing method commonly known in the art.
- the lithium secondary battery is obtained by obtaining a laminate through a separator between the positive electrode and the negative electrode, the laminate is wound or folded to be accommodated in the battery container, injecting the electrolyte composition in the battery container and sealed with a sealing member It can manufacture.
- the battery container may be cylindrical, rectangular, thin film, or the like.
- the secondary battery may be used in a mobile phone, a portable computer, an electric vehicle, and the like.
- the secondary battery may be used in a hybrid vehicle in combination with an internal combustion engine, a fuel cell, a supercapacitor, and the like, and may be used in an electric bicycle or a power tool that requires high power, high voltage, and high temperature driving.
- LiPF 6 was added to 1.0 M in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 7, and the compound represented by the following formula (2) was added to 1 wt% based on 100 wt% of the total electrolyte composition:
- the electrolyte composition was prepared by adding in an amount of%.
- An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 3 was used instead of the compound represented by Chemical Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 4 was used instead of the compound represented by Chemical Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 5 was used instead of the compound represented by Chemical Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 6 was used instead of the compound represented by Chemical Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by the following Formula 7 instead of the compound represented by the following Chemical Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 3 except that the compound represented by Formula 4 was added in an amount of 5% by weight based on 100% by weight of the total electrolyte solution composition.
- An electrolyte solution composition was prepared in the same manner as in Example 1 except that the compound represented by Chemical Formula 2 was not added.
- An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by the following Formula a instead of the compound represented by the Formula 2.
- An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by the following Formula b was used instead of the compound represented by the formula (2).
- An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by Chemical Formula c instead of the compound represented by Chemical Formula 4.
- An electrolyte solution composition was prepared in the same manner as in Example 3, except that the compound represented by Formula 4 was added in an amount of 20 wt% based on 100 wt% of the total electrolyte solution composition.
- a secondary battery was prepared as follows, and the ambient temperature and high temperature lifetime characteristics at this time were measured by the following method.
- NMP N-methylpyrrolidone
- the positive electrode slurry was coated to a thickness of about 40 ⁇ m on a 15 ⁇ m thick aluminum foil. It was dried at room temperature, dried again at 120 ° C., and rolled to prepare a positive electrode.
- N-methylpyrrolidone was added to a mixture of artificial graphite, styrene-butadiene rubber, and carboxymethyl cellulose in a weight ratio of 90: 5: 5 as a negative electrode active material such that a solid content of 60% by weight was added to prepare a negative electrode slurry.
- the negative electrode slurry was coated to a thickness of about 40 ⁇ m on a 10 ⁇ m thick copper foil. This was dried at room temperature, dried again at 120 ° C., and then rolled to prepare a negative electrode.
- a secondary battery was manufactured using the positive electrode, the negative electrode and the electrolyte composition, and a polyethylene separator.
- the prepared secondary battery was charged with a constant current at 25 ° C. with a current of 0.2 C until the voltage reached 4.2 V, and then discharged with a constant current of 0.2 C until the voltage reached 2.5 V. Subsequently, constant current charging was performed at a current of 0.5 C until the voltage reached 4.2 V, and constant voltage was charged until the current became 0.05 C while maintaining 4.2 V. Subsequently, it discharged with the constant current of 0.5C until the voltage reached 2.5V at the time of discharge (chemical conversion step).
- the secondary battery passed through the conversion step was charged with a constant current until the voltage reaches 4.2V at a current of 1.0C at 25 °C, and constant voltage charged until the current reaches 0.05C while maintaining 4.2V. Subsequently, the cycle of discharging at a constant current of 1.0 C was repeated 100 times until the voltage reached 2.5 V at the time of discharge.
- Capacity retention ratio (%) at 100th cycle of each secondary battery was calculated by Equation 1 below, and the results are shown in Table 1 and FIG. 1.
- Capacity retention rate [%] [discharge capacity at 100th cycle / 1 discharge capacity at cycle 1] x 100
- the measurement conditions were set to 45 ° C. instead of 25 ° C., except that the number of cycles was performed 300 times.
- the secondary battery prepared by using an electrolyte composition comprising a propane sultone compound in which carbon at a specific position is substituted with a specific substituent according to the present invention is prepared using the electrolyte composition of Comparative Examples 1 to 5 Compared with the rechargeable secondary battery, it was confirmed that the battery had better life characteristics at room temperature as well as at high temperature.
- Example 3 when comparing Example 3 and Comparative Example 5, if the propane sultone compound in which carbon at a specific position in accordance with the present invention is substituted with a specific substituent is added in excess of 15% by weight based on 100% by weight of the total electrolyte composition, the lifetime It was confirmed that the characteristic was reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
The present invention provides: an electrolyte composition comprising a propane sultone compound, in which a carbon atom at a specific position is substituted with a specific substituent, and a non-aqueous solvent; and a secondary battery comprising the electrolyte composition. The electrolyte composition according to the present invention can significantly increase the lifespan characteristics of the secondary battery by forming a stable negative electrode coating containing the propane sultone compound, in which a carbon atom at a specific position is substituted with a specific substituent.
Description
본 발명은 전해액 조성물 및 이를 이용한 이차전지에 관한 것으로, 보다 상세하게는 안정한 음극피막을 형성하여 수명특성이 우수한 전해액 조성물 및 이를 이용한 이차전지에 관한 것이다.The present invention relates to an electrolyte composition and a secondary battery using the same. More particularly, the present invention relates to an electrolyte composition and a secondary battery using the same having excellent life characteristics by forming a stable negative electrode film.
리튬 이차전지의 초기 충전시 리튬 금속 산화물 등의 양극 활물질로부터 나온 리튬 이온은 그래파이트 등의 음극 활물질로 이동하여, 음극 활물질의 층간에 삽입된다. 이때, 리튬 이온은 반응성이 강하므로 그래파이트 등의 음극 활물질 표면에서 전해액 조성물과 음극 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH, Li2SO4 등의 화합물을 생성한다. 이들 화합물은 그래파이트 등의 음극 활물질의 표면에 일종의 보호막인 SEI(Solid Electrolyte Interface) 피막을 형성하게 된다.During the initial charging of the lithium secondary battery, lithium ions derived from the positive electrode active material such as lithium metal oxide move to the negative electrode active material such as graphite and are inserted between the layers of the negative electrode active material. At this time, since lithium ions are highly reactive, the electrolyte composition and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, LiOH, and Li 2 SO 4 . These compounds form a SEI (Solid Electrolyte Interface) film, which is a kind of protective film, on the surface of an anode active material such as graphite.
SEI 피막은 이온 터널의 역할을 수행하여 리튬 이온 만을 통과시킨다. SEI 피막은 이러한 이온 터널의 효과로서, 전해액 조성물 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 음극 활물질의 층간에 삽입되어 음극 구조가 파괴되는 것을 막아준다. 따라서, 전해액 조성물과 음극 활물질의 접촉을 방지함으로써 전해액 조성물의 분해가 발생하지 않고, 전해액 조성물 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다.The SEI film acts as an ion tunnel, passing only lithium ions. The SEI film is an effect of such an ion tunnel, and prevents the negative electrode structure from being destroyed by intercalation of an organic solvent molecule having a large molecular weight moving with lithium ions in the electrolyte composition between the layers of the negative electrode active material. Therefore, by preventing contact between the electrolyte composition and the negative electrode active material, decomposition of the electrolyte composition does not occur, and the amount of lithium ions in the electrolyte composition is reversibly maintained to maintain stable charge and discharge.
이에, 음극의 표면에 안정적인 SEI 피막을 형성하여 수명특성을 개선하기 위한 첨가제에 대한 관심이 증가하고 있다. 예를 들어, 대한민국 공개특허 제10-1999-0088654호에는 1,3-프로판 설톤을 전해액 첨가제로서 사용한 전해액 조성물이 개시되어 있다.Accordingly, interest in additives for improving the life characteristics by forming a stable SEI film on the surface of the cathode is increasing. For example, Korean Patent Publication No. 10-1999-0088654 discloses an electrolyte composition using 1,3-propane sultone as an electrolyte additive.
그러나, 이러한 전해액 첨가제는 환경독성이 있어 사용에 제한이 있으며, 형성된 피막의 유연성이 작아서, 장기수명 평가시 반복되는 음극의 수축 팽창에 의하여 크랙이 발생하여 전지용량의 감소를 억제하기 어려운 문제점이 있다.However, these electrolyte additives are environmentally toxic and have limitations in use, and the flexibility of the formed film is small, so that cracks may occur due to repeated shrinkage and expansion of the negative electrode when evaluating long-term life, which makes it difficult to suppress a decrease in battery capacity. .
본 발명의 한 목적은 안정한 음극피막을 형성하여 수명특성이 우수한 전해액 조성물을 제공하는 것이다.One object of the present invention is to provide an electrolyte composition having excellent life characteristics by forming a stable cathode film.
본 발명의 다른 목적은 상기 전해액 조성물을 이용한 이차전지를 제공하는 것이다.Another object of the present invention is to provide a secondary battery using the electrolyte composition.
한편으로, 본 발명은 하기 화학식 1로 표시되는 화합물 및 비수용매를 포함하는 전해액 조성물을 제공한다.On the other hand, the present invention provides an electrolyte solution composition comprising a compound represented by the following formula (1) and a non-aqueous solvent.
[화학식 1][Formula 1]
상기 식에서,Where
X는 할로겐, 히드록시, 시아노, C1-C4의 알콕시기, C1-C4의 트리알킬실릴옥시기 또는 C1-C4의 할로알콕시기이다.X is haloalkoxy group of halogen, hydroxy, cyano, C 1 -C 4 alkoxy group, C 1 -C 4 trialkylsilyl oxy group or a C 1 -C 4.
다른 한편으로, 본 발명은 상기 전해액 조성물을 포함하는 이차전지를 제공한다.On the other hand, the present invention provides a secondary battery comprising the electrolyte composition.
본 발명에 따른 전해액 조성물은 특정 위치의 탄소가 특정 치환기로 치환된 프로판 설톤 화합물을 포함하여 안정한 음극피막을 형성함으로써 이차전지의 수명특성을 현저히 증가시킬 수 있다.The electrolyte composition according to the present invention may include a propane sultone compound in which carbon at a specific position is substituted with a specific substituent to form a stable negative electrode film, thereby significantly increasing the life characteristics of the secondary battery.
도 1은 본 발명의 일 실시형태에 따른 전해액 조성물을 사용한 이차전지의 상온 수명 특성을 나타낸 사이클-방전용량 그래프이다.1 is a cycle-discharge capacity graph showing the room temperature life characteristics of a secondary battery using an electrolyte composition according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 전해액 조성물을 사용한 이차전지의 고온 수명 특성을 나타낸 사이클-방전용량 그래프이다.2 is a cycle-discharge graph showing the high temperature life characteristics of the secondary battery using the electrolyte composition according to an embodiment of the present invention.
이하, 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명의 일 실시형태는 하기 화학식 1로 표시되는 화합물 및 비수용매를 포함하는 전해액 조성물에 관한 것이다.One embodiment of the present invention relates to an electrolyte solution composition comprising a compound represented by the following formula (1) and a non-aqueous solvent.
[화학식 1][Formula 1]
상기 식에서,Where
X는 할로겐, 히드록시, 시아노, C1-C4의 알콕시기, C1-C4의 트리알킬실릴옥시기 또는 C1-C4의 할로알콕시기이다.X is haloalkoxy group of halogen, hydroxy, cyano, C 1 -C 4 alkoxy group, C 1 -C 4 trialkylsilyl oxy group or a C 1 -C 4.
본 명세서에서 사용되는 C1-C4의 알콕시기는 탄소수 1 내지 4개로 구성된 직쇄형 또는 분지형 알콕시기를 의미하며, 메톡시, 에톡시, n-프로판옥시 등이 포함되나 이에 한정되는 것은 아니다.As used herein, a C 1 -C 4 alkoxy group refers to a straight or branched alkoxy group composed of 1 to 4 carbon atoms, and includes, but is not limited to, methoxy, ethoxy, n-propaneoxy and the like.
본 명세서에서 사용되는 C1-C4의 트리알킬실릴옥시기는 세 개의 C1-C4의 알킬기로 치환된 실릴기에 단일결합된 산소 작용기를 의미하며, 트리메틸실릴옥시, 트리에틸실릴옥시 등이 포함되나 이에 한정되는 것은 아니다.As used herein, a C 1 -C 4 trialkylsilyloxy group means an oxygen functional group bonded to a silyl group substituted with three C 1 -C 4 alkyl groups, and includes trimethylsilyloxy, triethylsilyloxy, and the like. However, it is not limited thereto.
본 명세서에서 사용되는 C1-C4의 할로알콕시기는 불소, 염소, 브롬 및 요오드로 구성된 군으로부터 선택된 하나 이상의 할로겐으로 치환된 탄소수 1 내지 4로 구성된 직쇄형 또는 분지형 알콕시기를 의미하며, 트리플로오로메톡시, 트리클로로메톡시, 트리플로오로에톡시 등이 포함되나 이에 한정되는 것은 아니다.As used herein, a C 1 -C 4 haloalkoxy group refers to a straight or branched alkoxy group composed of 1 to 4 carbon atoms substituted with one or more halogens selected from the group consisting of fluorine, chlorine, bromine and iodine, Oromethoxy, trichloromethoxy, trifluoroethoxy, and the like, but are not limited thereto.
본 발명의 일 실시형태에서, X는 C1-C4의 트리알킬실릴옥시기이다.In one embodiment of the invention, X is a C 1 -C 4 trialkylsilyloxy group.
본 발명의 일 실시형태에서, X는 트리메틸실릴옥시이다.In one embodiment of the invention, X is trimethylsilyloxy.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 LUMO(Lowest Unoccupied Molecular Orbital)가 낮아서 환원 분해 경향성이 높아 전해액 조성물 내 비수용매보다 먼저 환원 분해되어 음극 표면에 안정적인 피막을 형성함으로써 수명특성을 향상시키는 역할을 수행할 수 있다. 또한, 2번 위치의 탄소가 특정 치환기로 치환된 프로판 설톤 화합물에 의하여 유연한 피막이 형성되어 반복되는 충방전에도 크랙 발생이 억제되어 장기 수명특성이 확보될 수 있다. 특히, 2번 위치의 탄소가 트리메틸실릴옥시로 치환된 프로판 설톤 화합물이 장기 수명특성 면에서 바람직하다.In one embodiment of the present invention, the compound represented by Formula 1 has a low LUMO (Lowest Unoccupied Molecular Orbital) has a high reductive decomposition tendency than the non-aqueous solvent in the electrolyte composition to form a stable film on the surface of the negative electrode life It can play a role of improving characteristics. In addition, a flexible film is formed by a propane sultone compound in which carbon at position 2 is substituted with a specific substituent, so that cracks are suppressed even in repeated charge and discharge, thereby ensuring long-term life characteristics. In particular, a propane sultone compound in which carbon at position 2 is substituted with trimethylsilyloxy is preferable in terms of long-term life characteristics.
상기 화학식 1로 표시되는 화합물은 시판되는 것을 입수하여 사용하거나 당해 분야에 알려진 방법으로 제조하여 사용할 수 있다.The compound represented by Chemical Formula 1 may be obtained by using a commercially available one or manufactured and used by a method known in the art.
상기 화학식 1로 표시되는 화합물은 전해액 조성물 전체 100 중량%에 대하여 0.05 내지 15 중량%의 양으로 포함될 수 있다. 상기 화학식 1로 표시되는 화합물이 0.05 중량% 미만의 양으로 포함되면 SEI 피막이 전지의 수명 특성에 영향을 주지 않을 만큼 얇게 형성될 수 있고, 15 중량% 초과의 양으로 포함되면 SEI 피막이 과도하게 형성되어 음극 표면의 SEI 피막으로 인해 전지의 저항이 증가되어 수명 특성이 저하될 수 있다.The compound represented by Formula 1 may be included in an amount of 0.05 to 15% by weight based on 100% by weight of the total electrolyte composition. When the compound represented by Formula 1 is included in an amount of less than 0.05% by weight, the SEI film may be formed so thin as not to affect the life characteristics of the battery, and when included in an amount of more than 15% by weight, the SEI film is excessively formed. Due to the SEI film on the surface of the negative electrode, the resistance of the battery may be increased, thereby degrading the life characteristics.
본 발명의 일 실시형태에서, 상기 비수용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.In one embodiment of the present invention, the non-aqueous solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
상기 비수용매로는 특별한 제한 없이 당해 분야에서 통상적으로 사용되는 것을 사용할 수 있다. 예를 들어, 상기 비수용매로는 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매, 또는 그 밖의 비양성자성 용매 등을 사용할 수 있다. 이들은 단독으로 또는 둘 이상을 조합하여 사용할 수 있다.The non-aqueous solvent may be one that is commonly used in the art without particular limitation. For example, the nonaqueous solvent may be a carbonate solvent, an ester solvent, an ether solvent, a ketone solvent, an alcohol solvent, or another aprotic solvent. These may be used alone or in combination of two or more.
상기 카보네이트계 용매로는 사슬형 카보네이트계 용매, 환상 카보네이트계 용매, 이들의 플루오로 카보네이트계 용매 또는 이들의 조합을 사용할 수 있다.As the carbonate solvent, a chain carbonate solvent, a cyclic carbonate solvent, a fluoro carbonate solvent, or a combination thereof can be used.
상기 사슬형 카보네이트계 용매는 예를 들어, 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 디프로필 카보네이트(dipropyl carbonate, DPC), 메틸프로필 카보네이트(methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonate, EPC), 에틸메틸 카보네이트(ethylmethyl carbonate, EMC) 또는 이들의 조합을 들 수 있고, 상기 환상 카보네이트계 용매는 예를 들어 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 부틸렌 카보네이트(butylene carbonate, BC), 비닐에틸렌 카보네이트(vinylethylene carbonate, VEC) 또는 이들의 조합을 들 수 있다.The chain carbonate solvent is, for example, diethyl carbonate (DEC), dimethyl carbonate (dimethyl carbonate, DMC), dipropyl carbonate (DPC), methylpropyl carbonate (methylpropyl carbonate, MPC), Ethyl propyl carbonate (EPC), ethyl methyl carbonate (EMC) or a combination thereof, and the cyclic carbonate solvent is, for example, ethylene carbonate (EC), propylene carbonate (propylene) carbonate, PC), butylene carbonate (BC), vinylethylene carbonate (VEC), or a combination thereof.
상기 플루오로 카보네이트계 용매로는 예를 들어, 플루오로에틸렌 카보네이트(FEC), 4,5-디플루오로에틸렌카보네이트, 4,4-디플루오로에틸렌카보네이트, 4,4,5-트리플루오로에틸렌카보네이트, 4,4,5,5-테트라플루오로에틸렌카보네이트, 4-플루오로-5-메틸에틸렌카보네이트, 4-플루오로-4-메틸에틸렌카보네이트, 4,5-디플루오로-4-메틸에틸렌카보네이트, 4,4,5-트리플루오로-5-메틸에틸렌카보네이트 또는 이들의 조합을 들 수 있다.As the fluoro carbonate solvent, for example, fluoroethylene carbonate (FEC), 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene Carbonate, 4,4,5,5-tetrafluoroethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene Carbonate, 4,4,5-trifluoro-5-methylethylene carbonate, or a combination thereof.
상기 에스테르계 용매로는 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), 메틸 포메이트(methyl formate) 등이 사용될 수 있다.The ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone ), Caprolactone, methyl formate, and the like can be used.
상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 에톡시메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다.Examples of the ether solvent include dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. This can be used.
상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다.Cyclohexanone may be used as the ketone solvent.
상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있다.Ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent.
상기 그 밖의 비양성자성 용매로는 디메틸술폭시드, 1,2-디옥솔란, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, N-메틸-2-피롤리디논, 포름아미드, 디메틸포름아미드, 아세토니트릴, 니트로메탄, 인산트리메틸, 인산트리에틸, 인산트리옥틸 등이 사용될 수 있다.Examples of other aprotic solvents include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidinone, Formamide, dimethylformamide, acetonitrile, nitromethane, trimethyl phosphate, triethyl phosphate, trioctyl phosphate and the like can be used.
본 발명의 일 실시형태에 따른 전해액 조성물은 리튬염을 추가로 포함할 수 있다.The electrolyte solution composition according to one embodiment of the present invention may further include a lithium salt.
상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 한다.The lithium salt serves as a source of lithium ions in the battery, and serves to promote the movement of lithium ions between the positive electrode and the negative electrode.
상기 리튬염의 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiCl, LiI, LiB(C2O4)2(리튬 비스(옥살레이토) 보레이트(lithium bis(oxalato) borate), LiBOB) 등을 들 수 있다. 이들은 단독으로 또는 둘 이상을 조합하여 사용할 수 있다.Examples of the lithium salt are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate, LiBOB) and the like. have. These may be used alone or in combination of two or more.
상기 리튬염의 농도는 0.1 내지 2.0M일 수 있다. 리튬염의 농도가 상기 범위 이내이면 전해액 조성물이 적절한 전도도 및 점도를 가질 수 있다.The concentration of the lithium salt may be 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte composition may have appropriate conductivity and viscosity.
본 발명의 일 실시형태는 상술한 전해액 조성물을 포함하는 이차전지에 관한 것이다.One embodiment of the present invention relates to a secondary battery comprising the electrolyte composition described above.
본 발명에 따른 이차전지는 LUMO가 낮은 화학식 1로 표시되는 화합물을 포함하는 본 발명의 전해액 조성물을 포함하기 때문에 최초 충전시(화성 단계) 음극 표면에 안정한 SEI 피막이 형성될 수 있어 수명특성이 우수하다.Since the secondary battery according to the present invention includes the electrolyte composition of the present invention comprising the compound represented by Formula 1 having a low LUMO, a stable SEI film may be formed on the surface of the negative electrode during initial charging (chemical conversion step), thereby providing excellent life characteristics. .
본 발명의 일 실시형태에서, 상기 이차전지는 리튬 이차전지일 수 있으며, 예를 들어 리튬 이온 이차전지일 수 있다.In one embodiment of the present invention, the secondary battery may be a lithium secondary battery, for example, may be a lithium ion secondary battery.
상기 리튬 이차전지는 양극, 음극 및 상술한 전해액 조성물을 포함한다.The lithium secondary battery includes a positive electrode, a negative electrode and the above-described electrolyte composition.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함한다.The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
상기 양극 집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않고 사용될 수 있다. 구체적으로, 상기 양극 집전체로는 알루미늄, 구리, 스테인레스 스틸, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있으며, 특히 알루미늄이 사용될 수 있다. 상기 양극 집전체는 호일, 네트, 다공질체 등의 다양한 형태를 가질 수 있으며, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있다.The positive electrode current collector may be used without particular limitation as long as it has conductivity without causing chemical change in the battery. Specifically, the positive electrode current collector may include aluminum, copper, stainless steel, nickel, titanium, calcined carbon, surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, or the like. It can be used, in particular aluminum can be used. The positive electrode current collector may have various forms such as a foil, a net, a porous body, and the like, and may form fine irregularities on the surface to enhance the bonding strength of the positive electrode active material.
상기 양극 집전체의 두께는 3 내지 500 ㎛일 수 있다.The positive electrode current collector may have a thickness of 3 to 500 μm.
상기 양극 활물질층은 양극 활물질, 바인더 및 선택적으로 도전재를 포함한다.The positive electrode active material layer includes a positive electrode active material, a binder, and optionally a conductive material.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로, 상기 양극 활물질로는 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 하나 이상을 사용할 수 있다. 더욱 구체적으로, 상기 양극 활물질로는 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 등을 사용할 수 있다.As the cathode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, the cathode active material may be one or more of a complex oxide or a composite phosphate of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium. More specifically, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate.
상기 바인더는 양극 활물질 입자들을 서로 부착시키고, 양극 활물질을 양극 집전체에 부착시키는 역할을 한다. 구체적으로, 상기 바인더로는 폴리비닐알콜, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있다.The binder attaches the positive electrode active material particles to each other and serves to attach the positive electrode active material to the positive electrode current collector. Specifically, as the binder, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinyl Pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 제한 없이 사용가능하다. 구체적으로, 상기 도전재로는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머 등을 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and may be used without limitation as long as it has electronic conductivity without causing chemical change. Specifically, examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as copper, nickel, aluminum, and silver; Conductive polymers, such as a polyphenylene derivative, etc. can be used.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 형성되는 음극 활물질층을 포함한다.The negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
상기 음극 집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않고 사용될 수 있다. 구체적으로, 상기 음극 집전체로는 구리, 알루미늄, 스테인레스 스틸, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있으며, 특히 구리가 사용될 수 있다. 상기 음극 집전체는 호일, 네트, 다공질체 등의 다양한 형태를 가질 수 있으며, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다.The negative electrode current collector may be used without particular limitation so long as it has conductivity without causing chemical change in the battery. Specifically, the negative electrode current collector may be copper, aluminum, stainless steel, nickel, titanium, calcined carbon, surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, or the like. Can be used, in particular copper can be used. The negative electrode current collector may have various forms such as a foil, a net, a porous body, and the like, and may form fine irregularities on the surface to enhance the bonding strength of the negative electrode active material.
상기 음극 집전체의 두께는 3 내지 500 ㎛일 수 있다.The negative electrode current collector may have a thickness of 3 to 500 μm.
상기 음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함한다.The negative electrode active material layer includes a negative electrode active material, a binder, and optionally a conductive material.
상기 음극 활물질로는 리튬 이온의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질, 전이 금속 산화물 등을 사용할 수 있다.As the negative electrode active material, a material capable of reversible intercalation and deintercalation of lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, a transition metal oxide, and the like may be used.
상기 리튬 이온의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 물질은 탄소계 물질로, 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 플레이크상(flake), 구형 또는 섬유형의 흑연을 들 수 있고, 천연 흑연 또는 인조 흑연일 수 있다. 상기 비정질 탄소의 예로는 소프트 카본 또는 하드 카본, 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.The material capable of reversible intercalation and deintercalation of lithium ions is a carbon-based material, and crystalline carbon, amorphous carbon, or a combination thereof may be used. Examples of the crystalline carbon include amorphous, plate, flake, spherical or fibrous graphite, and may be natural graphite or artificial graphite. Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si는 아님), Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.The lithium doped and undoped materials include Si, Si-C composites, SiO x (0 <x <2), Si-Q alloy (Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, An element selected from the group consisting of Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, Element selected from the group consisting of Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn). SiO 2 can also be mixed and used. The elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.Examples of the transition metal oxide include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
상기 바인더는 음극 활물질 입자들을 서로 부착시키고, 음극 활물질을 음극 집전체에 부착시키는 역할을 한다. 구체적으로, 상기 바인더로는 상기 양극 활물질층에 사용된 것과 동일한 것을 사용할 수 있다.The binder serves to attach the negative electrode active material particles to each other and to attach the negative electrode active material to the negative electrode current collector. Specifically, the same binder as that used for the positive electrode active material layer may be used as the binder.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 제한 없이 사용가능하다. 구체적으로, 상기 도전재로는 상기 양극 활물질층에 사용된 것과 동일한 것을 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and may be used without limitation as long as it has electronic conductivity without causing chemical change. Specifically, the same conductive material as that used for the positive electrode active material layer may be used.
상기 양극 및 음극은 당해 분야에서 통상적으로 알려져 있는 제조방법에 의하여 제조할 수 있다.The positive electrode and the negative electrode may be prepared by a manufacturing method commonly known in the art.
구체적으로, 상기 양극 및 음극은 각각의 활물질, 바인더 및 선택적으로 도전재를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 상기 활물질 조성물을 집전체에 도포하여 제조한다.Specifically, the positive electrode and the negative electrode are prepared by mixing each active material, a binder and optionally a conductive material in a solvent to prepare an active material composition, and applying the active material composition to a current collector.
상기 용매로는 N-메틸피롤리돈(NMP), 아세톤, 물 등이 사용될 수 있다.N-methylpyrrolidone (NMP), acetone, water and the like may be used as the solvent.
상기 양극과 음극은 세퍼레이터에 의해 분리될 수 있다. 상기 세퍼레이터로는 당해 분야에서 통상적으로 사용되는 것이라면 특별히 제한 없이 사용될 수 있다. 특히 전해액 조성물 내 이온 이동에 대하여 저저항이면서 전해액 조성물의 함습 능력이 우수한 것이 적합하다. 상기 세퍼레이터는 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 및 이들의 조합 중에서 선택되는 재질일 수 있으며, 부직포 또는 직포 형태일 수 있다. 상기 세퍼레이터는 기공 직경이 0.01 내지 10㎛이고, 두께가 3 내지 100㎛일 수 있다. 상기 세퍼레이터는 단일막 또는 다층막일 수 있다.The positive electrode and the negative electrode may be separated by a separator. The separator may be used without particular limitation as long as it is commonly used in the art. In particular, it is suitable that it is low with respect to the ion migration in electrolyte solution, and excellent in the water-moisture capability of electrolyte solution. The separator may be a material selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and combinations thereof, and may be in the form of a nonwoven fabric or a woven fabric. The separator may have a pore diameter of 0.01 to 10 μm and a thickness of 3 to 100 μm. The separator may be a single film or a multilayer film.
상기 리튬 이차전지는 당해 분야에서 통상적으로 알려져 있는 제조방법에 의하여 제조할 수 있다.The lithium secondary battery may be manufactured by a manufacturing method commonly known in the art.
구체적으로, 상기 리튬 이차전지는 양극과 음극 사이에 세퍼레이터를 개재하여 적층체를 얻은 다음, 상기 적층체를 와인딩하거나 접어서 전지 용기에 수용시키고, 상기 전지 용기 내에 전해액 조성물을 주입하고 봉입 부재로 밀봉하여 제조할 수 있다.Specifically, the lithium secondary battery is obtained by obtaining a laminate through a separator between the positive electrode and the negative electrode, the laminate is wound or folded to be accommodated in the battery container, injecting the electrolyte composition in the battery container and sealed with a sealing member It can manufacture.
상기 전지 용기는 원통형, 각형, 박막형 등일 수 있다.The battery container may be cylindrical, rectangular, thin film, or the like.
상기 이차전지는 휴대폰, 휴대용 컴퓨터, 전기차량(Electric Vehicle) 등에 사용될 수 있다. 또한, 상기 이차전지는 내연기관, 연료전지, 수퍼커패시터 등과 결합하여 하이브리드차량(Hybrid Vehicle) 등에도 사용될 수 있으며, 고출력, 고전압 및 고온 구동이 요구되는 전기 자전거, 전동 공구 등에도 사용이 가능하다.The secondary battery may be used in a mobile phone, a portable computer, an electric vehicle, and the like. In addition, the secondary battery may be used in a hybrid vehicle in combination with an internal combustion engine, a fuel cell, a supercapacitor, and the like, and may be used in an electric bicycle or a power tool that requires high power, high voltage, and high temperature driving.
이하, 실시예, 비교예 및 실험예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예, 비교예 및 실험예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples and Experimental Examples. These examples, comparative examples and experimental examples are only for illustrating the present invention, it is apparent to those skilled in the art that the scope of the present invention is not limited thereto.
실시예 1: 전해액 조성물의 제조Example 1: Preparation of Electrolyte Composition
에틸렌 카보네이트(EC) 및 디메틸 카보네이트(DMC) 를 3:7 부피비로 혼합한 혼합 용매에 LiPF6를 1.0M이 되도록 첨가하고, 하기 화학식 2로 표시되는 화합물을 전해액 조성물 전체 100 중량%에 대하여 1 중량%의 양으로 첨가하여 전해액 조성물을 제조하였다.LiPF 6 was added to 1.0 M in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 7, and the compound represented by the following formula (2) was added to 1 wt% based on 100 wt% of the total electrolyte composition: The electrolyte composition was prepared by adding in an amount of%.
[화학식 2][Formula 2]
실시예 2: 전해액 조성물의 제조Example 2: Preparation of Electrolyte Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 3으로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 3 was used instead of the compound represented by Chemical Formula 2.
[화학식 3][Formula 3]
실시예 3: 전해액 조성물의 제조Example 3: Preparation of Electrolyte Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 4로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 4 was used instead of the compound represented by Chemical Formula 2.
[화학식 4][Formula 4]
실시예 4: 전해액 조성물의 제조Example 4 Preparation of Electrolyte Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 5로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 5 was used instead of the compound represented by Chemical Formula 2.
[화학식 5][Formula 5]
실시예 5: 전해액 조성물의 제조Example 5: Preparation of Electrolyte Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 6으로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 6 was used instead of the compound represented by Chemical Formula 2.
[화학식 6][Formula 6]
실시예 6: 전해액 조성물의 제조Example 6: Preparation of Electrolyte Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 7로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by the following Formula 7 instead of the compound represented by the following Chemical Formula 2.
[화학식 7][Formula 7]
실시예 7: 전해액 조성물의 제조Example 7: Preparation of Electrolyte Composition
화학식 4로 표시되는 화합물을 전해액 조성물 전체 100 중량%에 대하여 5 중량%의 양으로 첨가하는 것을 제외하고, 실시예 3과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 3 except that the compound represented by Formula 4 was added in an amount of 5% by weight based on 100% by weight of the total electrolyte solution composition.
비교예 1: 전해액 조성물의 제조Comparative Example 1: Preparation of Electrolytic Solution Composition
화학식 2로 표시되는 화합물을 첨가하지 않는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1 except that the compound represented by Chemical Formula 2 was not added.
비교예 2: 전해액 조성물의 제조Comparative Example 2: Preparation of Electrolytic Solution Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 a로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by the following Formula a instead of the compound represented by the Formula 2.
[화학식 a][Formula a]
비교예 3: 전해액 조성물의 제조Comparative Example 3: Preparation of Electrolytic Solution Composition
화학식 2로 표시되는 화합물 대신 하기 화학식 b로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1, except that the compound represented by the following Formula b was used instead of the compound represented by the formula (2).
[화학식 b][Formula b]
비교예 4: 전해액 조성물의 제조Comparative Example 4: Preparation of Electrolytic Solution Composition
화학식 4로 표시되는 화합물 대신 하기 화학식 c로 표시되는 화합물을 사용하는 것을 제외하고, 실시예 1과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 1 except for using the compound represented by Chemical Formula c instead of the compound represented by Chemical Formula 4.
[화학식 c][Formula c]
비교예 5: 전해액 조성물의 제조Comparative Example 5: Preparation of Electrolytic Solution Composition
화학식 4로 표시되는 화합물을 전해액 조성물 전체 100 중량%에 대하여 20 중량%의 양으로 첨가하는 것을 제외하고, 실시예 3과 동일하게 수행하여 전해액 조성물을 제조하였다.An electrolyte solution composition was prepared in the same manner as in Example 3, except that the compound represented by Formula 4 was added in an amount of 20 wt% based on 100 wt% of the total electrolyte solution composition.
실험예 1: Experimental Example 1:
상기 실시예 및 비교예에서 제조된 전해액 조성물을 이용하여 아래와 같이 이차전지를 제조하였으며, 이때의 상온 및 고온 수명특성을 하기와 같은 방법으로 측정하였다.Using the electrolyte composition prepared in the above Examples and Comparative Examples, a secondary battery was prepared as follows, and the ambient temperature and high temperature lifetime characteristics at this time were measured by the following method.
<이차전지의 제조><Manufacture of secondary battery>
양극 활물질로서 LiNi1/3Co1/3Mn1/3O2 분말, 탄소 도전재(Super-P; Timcal Ltd.) 및 PVDF(polyvinylidene fluoride) 바인더를 90:5:5의 중량비로 혼합한 혼합물에 용매로서 N-메틸피롤리돈(NMP)을 고형분의 함량이 60 중량%가 되도록 첨가하여 양극 슬러리를 제조하였다. 15㎛ 두께의 알루미늄 호일 위에 약 40 ㎛의 두께로 상기 양극 슬러리를 코팅하였다. 이를 상온에서 건조하고, 120℃에서 다시 건조한 후 압연하여 양극을 제조하였다.A mixture of LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder, carbon conductive material (Super-P; Timcal Ltd.) and polyvinylidene fluoride (PVDF) binder in a weight ratio of 90: 5: 5 as a positive electrode active material To the positive electrode slurry was prepared by adding N-methylpyrrolidone (NMP) as a solvent so that the solid content was 60% by weight. The positive electrode slurry was coated to a thickness of about 40 μm on a 15 μm thick aluminum foil. It was dried at room temperature, dried again at 120 ° C., and rolled to prepare a positive electrode.
음극 활물질로서 인조 흑연, 스티렌-부타디엔 러버, 카르복시메틸셀룰로오즈를 90:5:5의 중량비로 혼합한 혼합물에 N-메틸피롤리돈을 고형분의 함량이 60 중량%가 되도록 첨가하여 음극 슬러리를 제조하였다. 10㎛ 두께의 구리 호일 위에 약 40 ㎛의 두께로 상기 음극 슬러리를 코팅하였다. 이를 상온에서 건조하고, 120℃에서 다시 건조한 후 압연하여 음극을 제조하였다.N-methylpyrrolidone was added to a mixture of artificial graphite, styrene-butadiene rubber, and carboxymethyl cellulose in a weight ratio of 90: 5: 5 as a negative electrode active material such that a solid content of 60% by weight was added to prepare a negative electrode slurry. . The negative electrode slurry was coated to a thickness of about 40 μm on a 10 μm thick copper foil. This was dried at room temperature, dried again at 120 ° C., and then rolled to prepare a negative electrode.
상기 양극, 음극 및 전해액 조성물과 폴리에틸렌 재질의 세퍼레이터를 사용하여 이차 전지를 제조하였다.A secondary battery was manufactured using the positive electrode, the negative electrode and the electrolyte composition, and a polyethylene separator.
상기 제조된 이차전지를 25℃에서 0.2C의 전류로 전압이 4.2V에 이를 때까지 정전류로 충전하고, 이어서 전압이 2.5V에 이를 때까지 0.2C의 정전류로 방전하였다. 이어서, 0.5C의 전류로 전압이 4.2V에 이를 때까지 정전류 충전하고, 4.2V를 유지하면서 전류가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 방전시에 전압이 2.5V에 이를 때까지 0.5C의 정전류로 방전하였다 (화성 단계).The prepared secondary battery was charged with a constant current at 25 ° C. with a current of 0.2 C until the voltage reached 4.2 V, and then discharged with a constant current of 0.2 C until the voltage reached 2.5 V. Subsequently, constant current charging was performed at a current of 0.5 C until the voltage reached 4.2 V, and constant voltage was charged until the current became 0.05 C while maintaining 4.2 V. Subsequently, it discharged with the constant current of 0.5C until the voltage reached 2.5V at the time of discharge (chemical conversion step).
(1) 상온 수명특성(1) Normal Temperature Life Characteristics
상기 화성 단계를 거친 이차전지를 25℃에서 1.0C의 전류로 전압이 4.2V에 이를 때까지 정전류 충전하고, 4.2V를 유지하면서 전류가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 방전시에 전압이 2.5V에 이를 때까지 1. 0C의 정전류로 방전하는 사이클을 100회 반복하였다.The secondary battery passed through the conversion step was charged with a constant current until the voltage reaches 4.2V at a current of 1.0C at 25 ℃, and constant voltage charged until the current reaches 0.05C while maintaining 4.2V. Subsequently, the cycle of discharging at a constant current of 1.0 C was repeated 100 times until the voltage reached 2.5 V at the time of discharge.
각각의 이차전지의 100번째 사이클에서의 용량 유지율(capacity retention ratio, %)을 하기 수학식 1로 계산하였으며, 그 결과를 하기 표 1 및 도 1에 나타내었다.Capacity retention ratio (%) at 100th cycle of each secondary battery was calculated by Equation 1 below, and the results are shown in Table 1 and FIG. 1.
[수학식 1][Equation 1]
용량유지율[%]=[100번째 사이클에서의 방전용량/1번째 사이클에서의 방전용량]×100Capacity retention rate [%] = [discharge capacity at 100th cycle / 1 discharge capacity at cycle 1] x 100
(2) 고온 수명특성(2) high temperature life characteristics
측정 조건을 25℃ 대신 45℃로 설정하고 횟수를 300회로 진행하는 것을 제외하고는 상기 상온 수명특성 측정 방법과 동일하게 수행하였으며, 그 결과를 하기 표 1 및 도 2에 나타내었다.The measurement conditions were set to 45 ° C. instead of 25 ° C., except that the number of cycles was performed 300 times.
상온 수명특성Room temperature life characteristics | 고온 수명특성High Temperature Life Characteristics | |
실시예 1Example 1 | 95%95% | 84%84% |
실시예 2Example 2 | 91%91% | 80%80% |
실시예 3Example 3 | 96%96% | 83%83% |
실시예 4Example 4 | 93%93% | 81%81% |
실시예 5Example 5 | 94%94% | 84%84% |
실시예 6Example 6 | 95%95% | 84%84% |
실시예 7Example 7 | 90%90% | 79%79% |
비교예 1Comparative Example 1 | 35%35% | 22%22% |
비교예 2Comparative Example 2 | 81%81% | 74%74% |
비교예 3Comparative Example 3 | 82%82% | 72%72% |
비교예 4Comparative Example 4 | 89%89% | 76%76% |
비교예 5Comparative Example 5 | 85%85% | 58%58% |
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 특정 위치의 탄소가 특정 치환기로 치환된 프로판 설톤 화합물을 포함하는 전해액 조성물을 이용하여 제조된 이차전지는 비교예 1 내지 5의 전해액 조성물을 이용하여 제조된 이차전지에 비해 상온은 물론 고온에서도 더욱 우수한 수명특성을 갖는 것을 확인할 수 있었다.As shown in Table 2, the secondary battery prepared by using an electrolyte composition comprising a propane sultone compound in which carbon at a specific position is substituted with a specific substituent according to the present invention is prepared using the electrolyte composition of Comparative Examples 1 to 5 Compared with the rechargeable secondary battery, it was confirmed that the battery had better life characteristics at room temperature as well as at high temperature.
또한, 실시예 3 및 비교예 5를 비교하였을 때, 본 발명에 따른 특정 위치의 탄소가 특정 치환기로 치환된 프로판 설톤 화합물이 전해액 조성물 전체 100 중량%에 대하여 15 중량%를 초과하여 첨가되면, 수명 특성이 저하되는 것을 확인할 수 있었다.In addition, when comparing Example 3 and Comparative Example 5, if the propane sultone compound in which carbon at a specific position in accordance with the present invention is substituted with a specific substituent is added in excess of 15% by weight based on 100% by weight of the total electrolyte composition, the lifetime It was confirmed that the characteristic was reduced.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that this specific technology is only a preferred embodiment, which is not intended to limit the scope of the present invention. Do. Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
Claims (7)
- 하기 화학식 1로 표시되는 화합물 및 비수용매를 포함하는 전해액 조성물:An electrolyte composition comprising the compound represented by Formula 1 and a non-aqueous solvent:[화학식 1][Formula 1]상기 식에서,WhereX는 할로겐, 히드록시, 시아노, C1-C4의 알콕시기, C1-C4의 트리알킬실릴옥시기 또는 C1-C4의 할로알콕시기이다.X is haloalkoxy group of halogen, hydroxy, cyano, C 1 -C 4 alkoxy group, C 1 -C 4 trialkylsilyl oxy group or a C 1 -C 4.
- 제1항에 있어서, X는 C1-C4의 트리알킬실릴옥시기인 전해액 조성물.The electrolyte solution composition according to claim 1, wherein X is a C 1 -C 4 trialkylsilyloxy group.
- 제1항에 있어서, X는 트리메틸실릴옥시인 전해액 조성물.The electrolyte solution composition according to claim 1, wherein X is trimethylsilyloxy.
- 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 전해액 조성물 전체 100 중량%에 대하여 0.05 내지 15 중량%의 양으로 포함되는 전해액 조성물.The electrolyte composition of claim 1, wherein the compound represented by Formula 1 is included in an amount of 0.05 to 15 wt% based on 100 wt% of the total electrolyte composition.
- 제1항에 있어서, 리튬염을 추가로 포함하는 전해액 조성물.The electrolyte solution composition according to claim 1, further comprising a lithium salt.
- 제1항 내지 제5항 중 어느 한 항에 따른 전해액 조성물을 포함하는 이차전지.A secondary battery comprising the electrolyte solution composition according to any one of claims 1 to 5.
- 제6항에 있어서, 상기 이차전지가 리튬 이차전지인 이차전지.The secondary battery of claim 6, wherein the secondary battery is a lithium secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980007399.7A CN111542963B (en) | 2018-02-07 | 2019-01-31 | Electrolyte composition and secondary battery using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0015219 | 2018-02-07 | ||
KR1020180015219A KR101941401B1 (en) | 2018-02-07 | 2018-02-07 | Electrolyte Composition and Secondary Battery Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019156434A1 true WO2019156434A1 (en) | 2019-08-15 |
Family
ID=65287605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/001387 WO2019156434A1 (en) | 2018-02-07 | 2019-01-31 | Electrolyte composition and secondary battery using same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101941401B1 (en) |
CN (1) | CN111542963B (en) |
WO (1) | WO2019156434A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020111633A1 (en) * | 2018-11-26 | 2020-06-04 | 동우 화인켐 주식회사 | Electrolyte solution composition and secondary battery using same |
US12113170B2 (en) | 2018-11-26 | 2024-10-08 | Dongwoo Fine-Chem Co., Ltd. | Electrolyte composition and secondary battery using same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101941401B1 (en) * | 2018-02-07 | 2019-01-22 | 동우 화인켐 주식회사 | Electrolyte Composition and Secondary Battery Using the Same |
KR102463257B1 (en) * | 2020-07-06 | 2022-11-04 | 주식회사 테크늄 | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
KR102467447B1 (en) * | 2020-09-03 | 2022-11-15 | 주식회사 테크늄 | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
US20240109858A1 (en) | 2021-03-23 | 2024-04-04 | Lg Chem, Ltd. | Compound, Non-Aqueous Electrolyte Solution Including the Same, and Lithium Secondary Battery |
WO2024113440A1 (en) * | 2022-12-02 | 2024-06-06 | 东莞市杉杉电池材料有限公司 | Secondary battery electrolyte and additive |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5089828B2 (en) * | 2011-03-28 | 2012-12-05 | パナソニック株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
US20130337342A1 (en) * | 2012-06-06 | 2013-12-19 | Peter B. Hallac | Electrolyte Formulation for High Voltage and Wide Temperature Lithium-Ion Cells |
KR20140108762A (en) * | 2013-02-27 | 2014-09-15 | 삼성에스디아이 주식회사 | Electrolyte and rechargeable lithium battery including the same |
JP2015191738A (en) * | 2014-03-27 | 2015-11-02 | ダイキン工業株式会社 | Electrolyte and electrochemical device |
JP2017045724A (en) * | 2015-08-28 | 2017-03-02 | 三井化学株式会社 | Nonaqueous electrolyte for battery and lithium secondary battery |
KR101941401B1 (en) * | 2018-02-07 | 2019-01-22 | 동우 화인켐 주식회사 | Electrolyte Composition and Secondary Battery Using the Same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11339850A (en) | 1998-05-29 | 1999-12-10 | Nec Mori Energy Kk | Lithium-ion secondary battery |
JP4544408B2 (en) * | 2004-06-18 | 2010-09-15 | 日本電気株式会社 | Secondary battery electrolyte and secondary battery using the same |
JP4968614B2 (en) * | 2004-12-10 | 2012-07-04 | 日本電気株式会社 | Secondary battery electrolyte and secondary battery using the same |
JP2006172775A (en) * | 2004-12-14 | 2006-06-29 | Hitachi Ltd | Energy storage device, its module and automobile using it |
TWI395359B (en) * | 2005-09-15 | 2013-05-01 | Lg Chemical Ltd | Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same |
JP2007273396A (en) * | 2006-03-31 | 2007-10-18 | Sony Corp | Electrolytic solution and battery |
JP2008091778A (en) * | 2006-10-04 | 2008-04-17 | Bridgestone Corp | Non-aqueous electrolyte for electric double layer capacitor, and non-aqueous electrolyte double layer capacitor with the same |
JP5446612B2 (en) * | 2009-08-28 | 2014-03-19 | Tdk株式会社 | Lithium ion secondary battery |
JP5589796B2 (en) * | 2009-11-27 | 2014-09-17 | 宇部興産株式会社 | Non-aqueous electrolyte, electrochemical device using the same, and trialkylsilyloxy group-containing compound used therefor |
JPWO2012147566A1 (en) * | 2011-04-28 | 2014-07-28 | 昭和電工株式会社 | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
JP2013145702A (en) * | 2012-01-16 | 2013-07-25 | Adeka Corp | Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte for secondary battery |
KR20140066070A (en) * | 2012-11-22 | 2014-05-30 | 솔브레인 주식회사 | Electrolyte and lithium secondary battery comprising the same |
CN104600362A (en) * | 2015-02-05 | 2015-05-06 | 深圳市三讯电子有限公司 | Power battery and lithium ion electrolyte thereof |
-
2018
- 2018-02-07 KR KR1020180015219A patent/KR101941401B1/en active IP Right Grant
-
2019
- 2019-01-31 CN CN201980007399.7A patent/CN111542963B/en active Active
- 2019-01-31 WO PCT/KR2019/001387 patent/WO2019156434A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5089828B2 (en) * | 2011-03-28 | 2012-12-05 | パナソニック株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
US20130337342A1 (en) * | 2012-06-06 | 2013-12-19 | Peter B. Hallac | Electrolyte Formulation for High Voltage and Wide Temperature Lithium-Ion Cells |
KR20140108762A (en) * | 2013-02-27 | 2014-09-15 | 삼성에스디아이 주식회사 | Electrolyte and rechargeable lithium battery including the same |
JP2015191738A (en) * | 2014-03-27 | 2015-11-02 | ダイキン工業株式会社 | Electrolyte and electrochemical device |
JP2017045724A (en) * | 2015-08-28 | 2017-03-02 | 三井化学株式会社 | Nonaqueous electrolyte for battery and lithium secondary battery |
KR101941401B1 (en) * | 2018-02-07 | 2019-01-22 | 동우 화인켐 주식회사 | Electrolyte Composition and Secondary Battery Using the Same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020111633A1 (en) * | 2018-11-26 | 2020-06-04 | 동우 화인켐 주식회사 | Electrolyte solution composition and secondary battery using same |
US12113170B2 (en) | 2018-11-26 | 2024-10-08 | Dongwoo Fine-Chem Co., Ltd. | Electrolyte composition and secondary battery using same |
Also Published As
Publication number | Publication date |
---|---|
KR101941401B1 (en) | 2019-01-22 |
CN111542963A (en) | 2020-08-14 |
CN111542963B (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019156434A1 (en) | Electrolyte composition and secondary battery using same | |
WO2018062719A1 (en) | Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte | |
WO2020009340A1 (en) | Electrolyte for lithium secondary battery, and lithium secondary battery including same | |
WO2015065102A1 (en) | Lithium secondary battery | |
WO2019112167A1 (en) | Negative electrode for lithium metal battery and lithium metal battery comprising same | |
WO2018097523A1 (en) | Electrolyte solution for secondary battery and secondary battery comprising same | |
WO2019074306A2 (en) | Positive electrode active material, method for preparing same, and lithium secondary battery comprising same | |
WO2020204625A1 (en) | Electrode for lithium secondary battery | |
WO2019027127A1 (en) | Electrolyte for lithium battery and lithium battery comprising same | |
WO2014061881A1 (en) | Negative electrode active material for lithium secondary battery, method for preparing negative electrode active material for lithium secondary battery and lithium secondary battery comprising negative electrode active material for lithium secondary battery | |
WO2021194074A1 (en) | Additive for electrolyte of secondary lithium battery, electrolyte for secondary lithium battery, and secondary lithium battery comprising same | |
WO2018021746A1 (en) | Additive for electrolyte of lithium battery, electrolyte for lithium battery including same, and lithium battery employing same electrolyte | |
WO2019050161A1 (en) | Lithium secondary battery | |
WO2019013521A2 (en) | Lithium secondary battery | |
CN113169376B (en) | Electrolyte composition and secondary battery using the same | |
WO2019050162A1 (en) | Lithium secondary battery | |
WO2018074684A1 (en) | Lithium secondary battery | |
WO2021071109A1 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same | |
WO2018084525A1 (en) | Cathode active material for lithium secondary battery and lithium secondary battery comprising same | |
WO2019050160A1 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2018026153A1 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same | |
WO2018004103A1 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same | |
WO2019194407A1 (en) | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same | |
CN113711414A (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2018038509A1 (en) | Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19750888 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19750888 Country of ref document: EP Kind code of ref document: A1 |