WO2018048156A1 - Cathode active material for lithium secondary battery, and lithium secondary battery comprising same - Google Patents

Cathode active material for lithium secondary battery, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018048156A1
WO2018048156A1 PCT/KR2017/009653 KR2017009653W WO2018048156A1 WO 2018048156 A1 WO2018048156 A1 WO 2018048156A1 KR 2017009653 W KR2017009653 W KR 2017009653W WO 2018048156 A1 WO2018048156 A1 WO 2018048156A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
secondary battery
lithium secondary
positive electrode
Prior art date
Application number
PCT/KR2017/009653
Other languages
French (fr)
Korean (ko)
Inventor
이대회
임옥규
김동진
김민한
김일석
박도형
전규란
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2018048156A1 publication Critical patent/WO2018048156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a cathode active material for a lithium secondary battery and a lithium secondary battery including the same.
  • Examples of the positive electrode active material of the lithium secondary battery include lithium and a transition metal having a structure capable of intercalating lithium ions such as LiCoO 2 , LiMn 2 O 4 , and LiNi 1 - x Co x O 2 (0 ⁇ x ⁇ 1). Oxides made up are mainly used.
  • One embodiment of the present disclosure is to provide a cathode active material for a lithium secondary battery having a high capacity and excellent life characteristics.
  • Another embodiment of the present disclosure is to provide a lithium secondary battery including the cathode active material.
  • the present disclosure provides a cathode active material for a lithium secondary battery including a lithium metal oxide represented by the following Formula 1.
  • the present disclosure provides a lithium secondary battery including a cathode including the cathode active material, an anode including an anode active material, and an electrolyte.
  • the positive electrode active material for a rechargeable lithium battery includes a compound having a high nickel content, even when charged, the structural stability is excellent.
  • the lithium secondary battery according to the present invention to which the cathode including the cathode active material is applied may significantly improve life characteristics while having a high capacity.
  • FIG. 1 schematically shows a structure of a lithium secondary battery according to an embodiment of the present disclosure.
  • FIG. 3 shows dQ / dV measurement results of voltages of lithium secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 3 shows dQ / dV measurement results of voltages of lithium secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 4 is an enlarged view of a dQ / dV measurement result for a voltage in the range of 4V to 4.4V in FIG. 3.
  • FIG. 6 shows an x-ray diffraction graph of the cathode active material according to Example 1.
  • FIG. 7 shows an x-ray diffraction graph of the cathode active material according to Comparative Example 1.
  • a positive electrode active material using lithium cobalt oxide that is, LiCoO 2 is most widely used at present.
  • a positive electrode active material using lithium cobalt oxide causes an increase in manufacturing cost due to cobalt resource ubiquity and scarcity, and it is always difficult to provide a stable supply.
  • nickel (Ni) -based composite oxide is a material capable of overcoming the limitations of cost, stability, and capacity of materials such as LiCoO 2 , LiNiO 2 , Li 2 MnO 3, and the like, and active researches have been conducted recently.
  • the nickel (Ni) -based composite oxide reacts with Ni 2 + ⁇ Ni 4 + + 2e to generate two electrons during a charging reaction in which one lithium atom escapes, thereby generating only one electron.
  • the capacity increases as the nickel (Ni) content increases.
  • the oxide having a high nickel (Ni) content is used as the positive electrode active material
  • the crystal structure of the nickel-containing oxide is more easily compared to the case where lithium cobalt oxide is used as the positive electrode active material.
  • a problem of collapse More specifically, a high content of nickel-containing oxide changes the crystal structure at a voltage of 4V or more during charging to cause a phase transition from H2 to H3. Since the phase transition from H2 to H3 is partially irreversible and the lithium ions that can be intercalated and deintercalated in the H3 phase structure can be reduced, as described above, when the phase transition from H2 to H3 occurs, There is a problem that the life characteristics are significantly reduced. Therefore, when an oxide having a high nickel content is used as the positive electrode active material, it is necessary to suppress the phase transition of the nickel-containing oxide from H2 to H3 during charging.
  • the inventors of the present invention have repeatedly studied to simultaneously realize high capacity and excellent life characteristics while using nickel (Ni) -based composite oxide as a cathode active material for a lithium secondary battery, and have a nickel-containing oxide containing nickel (Ni) in a specific content.
  • Ni nickel
  • the inventors of the present invention have repeatedly studied to simultaneously realize high capacity and excellent life characteristics while using nickel (Ni) -based composite oxide as a cathode active material for a lithium secondary battery, and have a nickel-containing oxide containing nickel (Ni) in a specific content.
  • the cathode active material for a lithium secondary battery is characterized by including a lithium metal oxide represented by the following Chemical Formula 1.
  • a nickel-containing lithium metal oxide having a high nickel content as a positive electrode active material, such as the lithium metal oxide represented by Formula 1, it is possible to implement a lithium secondary battery having a high capacity.
  • the content of nickel in the lithium metal oxide according to the present disclosure may be 0.81 or more and 0.87 or less, as can be seen in Formula 1. More specifically, the content of nickel in Formula 1 may be 0.82 or more and 0.86 or less.
  • the nickel content included in the lithium metal oxide satisfies the above range, a lithium secondary battery having high capacity and excellent life characteristics may be implemented.
  • the molar ratio of Li and Ni + Co + Me may be 1.05: 1.0 to 0.95: 1.0. More specifically, the molar ratio of Li and Ni + Co + Me may be 1.03: 1.0 to 1.01: 1.0 or 1.05: 1 to 1.01: 1.0. When the molar ratio of Li and Ni + Co + Me satisfies the above numerical range, the content of lithium remaining on the surface of the lithium metal oxide may be reduced.
  • the lithium metal oxide may include a lithium compound located on the surface of the lithium metal oxide.
  • the lithium content in the lithium compound may be 0.25 parts by weight or less, more specifically 0.05 parts by weight to 0.15 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the lithium compound located on the surface of the lithium metal compound may be Li 2 CO 3 , LiOH, or a combination thereof.
  • Me of Formula 1 is preferably Al or Mn in consideration of the manufacturing process and cost of the positive electrode active material.
  • the lithium metal oxide of the present disclosure exhibits an R-3m crystal structure, that is, a crystalline structure of a rhombohedral, and thus, when measuring X-ray diffraction (XRD), the diffraction peak and (101) plane of (003) plane are measured. No other additional phase appears between the diffraction peaks of the plane.
  • the X-ray diffraction measurement is measured using a CuK ⁇ ray as a target line.
  • impurities such as Co 3 O 4
  • impurities are included in the cathode active material as described above, they do not contribute to the capacity of the battery because they are not electrochemically activated materials.
  • impurities may act as a cause of an increase in resistance since the rate of movement of lithium ions on the surface of the positive electrode active material is reduced, and the capacity and cycle life characteristics of the battery may be lowered, which is not appropriate.
  • the cathode active material according to the present invention will exhibit more excellent capacity and cycle life characteristics because impurities, that is, Co 3 O 4, etc. are not generated as described above.
  • the cathode active material according to the exemplary embodiment of the present disclosure described above may be manufactured by a general cathode active material manufacturing process well known in the art, and will be briefly described.
  • the mixture is prepared by mixing the nickel precursor and the lithium precursor. At this time, the mixing ratio of the nickel precursor and the lithium precursor can be appropriately adjusted so that the compound of Formula 1 is obtained.
  • lithium precursors examples include lithium acetate, lithium nitrate, lithium hydroxide, lithium carbonate, lithium acetate, hydrates thereof, and combinations thereof.
  • nickel precursors examples include nickel acetate, nickel nitrate, nickel carbonate, hydrates thereof, and combinations thereof.
  • the mixture is first calcined to produce a primary calcined product.
  • the mixing step can be carried out by a mechanical mixing step such as, for example, ball milling.
  • the primary firing process may be carried out at 650 °C to 850 °C, the heat treatment time may be 10 hours to 30 hours.
  • the heat treatment step may be carried out in an oxygen (O 2 ) atmosphere.
  • the primary fired material is pulverized and powdered, followed by a washing process to reduce the amount of lithium contained in the lithium compound on the surface of the primary fired product.
  • the washing process may be performed by mixing the washing water such as distilled water and the powdered primary fired product in a ratio of 1: 1 to 1: 5.
  • Secondary firing process may be carried out at 650 °C to 850 °C, wherein the heat treatment time may be 10 hours to 30 hours.
  • the heat treatment step may be carried out in an oxygen (O 2 ) atmosphere.
  • the secondary fired material is ground to prepare a cathode active material.
  • FIG. 1 schematically shows a structure of a lithium secondary battery according to an embodiment of the present disclosure.
  • a lithium secondary battery 100 may include an electrode assembly, a case 50 in which the electrode assembly is accommodated, and a sealing member 40 sealing the case 50.
  • the electrode assembly includes a positive electrode 10 including the positive electrode active material described above, a negative electrode 20 including a negative electrode active material, and a separator 30 disposed between the positive electrode 10 and the negative electrode 20.
  • the positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
  • the electrode assembly may have a shape in which the electrode assembly is sandwiched between the positive electrode 10 and the negative electrode 20 via a separator 30.
  • a wound electrode assembly is assembled for convenience, but the contents of the present disclosure are not limited thereto.
  • the electrode assembly may have a structure in which a plurality of anodes and cathodes having a sheet shape are alternately stacked with separators interposed therebetween.
  • the positive electrode 10 includes a positive electrode active material layer and a current collector supporting the positive electrode active material.
  • the content of the cathode active material may be 90% by weight to 98% by weight based on the total weight of the cathode active material layer.
  • the positive electrode active material layer may further include a binder and a conductive material.
  • the content of the binder and the conductive material may be 1% by weight to 5% by weight based on the total weight of the positive electrode active material layer, respectively.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well.
  • Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrroli Don, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto. .
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture of these.
  • Al may be used as the current collector, but is not limited thereto.
  • the negative electrode 20 includes a negative electrode active material layer including a current collector and a negative electrode active material formed on the current collector.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together.
  • the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • the lithium doped and undoped materials include Si, Si-C composites, SiO x (0 ⁇ x ⁇ 2), Si-Q alloy (Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, An element selected from the group consisting of Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, Element selected from the group consisting of Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn).
  • SiO 2 can also be mixed and used.
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
  • the content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
  • the negative electrode active material layer includes a binder, and optionally may further include a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer.
  • 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • a water-insoluble binder, a water-soluble binder or a combination thereof can be used as the binder.
  • the water-insoluble binder includes polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
  • the water-soluble binder may be a rubber binder or a polymer resin binder.
  • the rubber-based binder may be selected from styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, and combinations thereof.
  • the polymer resin binder may be polytetrafluoroethylene, polyethylene, polypropylene, ethylene propylene copolymer, polyethylene oxide, polyvinylpyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, Ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and combinations thereof.
  • a water-soluble binder When using a water-soluble binder as the negative electrode binder, it may further include a cellulose-based compound that can impart viscosity as a thickener.
  • a cellulose-based compound that can impart viscosity as a thickener.
  • carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, these alkali metal salts, etc. can be used in mixture of 1 or more types. Na, K or Li may be used as the alkali metal.
  • the amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • non-aqueous organic solvent a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used.
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, decanolide, mevalonolactone, and caprolactone. And the like can be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent.
  • cyclohexanone may be used as the ketone solvent.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Nitriles such as a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane, and the like can be used. .
  • the organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art. have.
  • the carbonate solvent it is preferable to use a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the organic solvent may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 2 may be used as the aromatic hydrocarbon organic solvent.
  • R One To R 6 It is the same as or different from each other and selected from the group consisting of hydrogen, halogen, alkyl group of 1 to 10 carbon atoms, haloalkyl group and combinations thereof.
  • aromatic hydrocarbon organic solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-dioodobenzene, 1,3-dioiobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1, 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluorotol, to
  • the electrolyte may further include vinylene carbonate or an ethylene-based carbonate compound represented by Chemical Formula 3 as a life improving additive to improve battery life.
  • R 7 and R 8 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and an alkyl group having 1 to 5 fluorinated carbon atoms). At least one of R 7 and R 8 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ), and a fluorinated C1-5 alkyl group, provided that both R 7 and R 8 are both Not hydrogen.
  • ethylene-based carbonate compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, or fluoroethylene carbonate. Can be mentioned. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); It is preferable to
  • the separator 30 may exist between the positive electrode and the negative electrode.
  • polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene
  • a mixed multilayer film such as a polypropylene three-layer separator can be used.
  • Ni 0 . 85 Co 0 . 14 the Al 0 .01 (OH) 2 and LiOH in the final product Li: 1.0 were mixed so that the molar ratio is 1.02 in (Ni + Co + Al).
  • the mixture was calcined at 740 ° C. in an O 2 atmosphere for 21 hours to obtain a primary calcined product.
  • the primary calcined product is powdered through a pulverization process and a cleaning process is performed to remove residual lithium on the surface of the primary calcined product.
  • the washing process was performed such that the weight ratio of the washing water and the powdered primary fired product was 1: 1.
  • the first fired product was subjected to a dehydration process using a filter press, followed by a second fire process.
  • Secondary firing was performed in an atmosphere of O 2 at 720 ° C., followed by a pulverization process, to represent Li (Ni 0.85 Co 0.14 Al 0.01 ) O 2 , to prepare a cathode active material having a lithium content of 0.10 wt%. It was.
  • a positive electrode active material composition was prepared by mixing 94% by weight of the positive electrode active material prepared in (1), 3% by weight of polyvinylidene fluoride binder, and 3% by weight of Ketjen black conductive material in an N-methylpyrrolidone solvent. This positive electrode active material composition was applied to an Al current collector to prepare a positive electrode.
  • a coin-type half cell was prepared by a conventional method using a positive electrode, a lithium metal counter electrode, and an electrolyte.
  • a mixed solvent (volume ratio 50:50) of ethylene carbonate and diethyl carbonate in which 1.0 M LiPF 6 was dissolved was used as the electrolyte.
  • Nickel content of the oxide included in the prepared positive electrode active material, the molar ratio of Li: (Ni + Co + Al) and the amount of lithium remaining on the surface is the same as in Example 1 except that it is adjusted to be adjusted as shown in Table 1 below.
  • a positive electrode active material was prepared by the method.
  • the lithium secondary batteries prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were charged and discharged at 25 ° C. at a current of 0.2 C rate within a range of 2.8 V to 4.4 V to evaluate initial charge and discharge characteristics.
  • Table 2 shows the initial discharge capacity
  • FIG. 2 shows the initial charge and discharge capacity.
  • Figure 3 shows the dQ / dV measurement results in the first cycle
  • Figure 4 shows an enlarged view of the dQ / dV measurement results for the voltage of 4V to 4.4V in FIG.
  • the lithium secondary batteries prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were charged and discharged at 0.2 ° C. 50 times in a range of 2.8 V to 4.4 V at 25 ° C., and the discharge capacity was measured.
  • the capacity retention ratio was calculated by calculating the ratio of the 50th discharge capacity to the onetime discharge capacity, which was defined as the cycle life.
  • the positive electrode active material according to an embodiment of the present disclosure prepared according to Examples 1 and 2 containing a positive electrode active material content of nickel is 0.81 or more and satisfy the range of 0.87 or less
  • the phase transition from H2 to H3 is suppressed because the dQ / dV intensity is 400 or less at 4.0 V or more while the initial charge and discharge capacity is excellent.
  • the lithium secondary battery according to Comparative Example 1 including the positive electrode active material having a nickel content of less than 0.81 was found to have a low initial discharge capacity.
  • dQ / dV intensity was measured to be high at 4.0 V or higher, and it was confirmed that a phase transition from H2 to H3 occurred.
  • X-ray diffraction (XRD) analysis using Cu-K ⁇ was performed on the cathode active materials prepared according to Example 1 and Comparative Example 1, and the results are shown in FIGS. 6 to 8.
  • the cathode active material according to Example 1 had no diffraction peak other than the diffraction peak of the (101) plane in the range of 25 degrees (°) to 38 degrees (°). there was.
  • the cathode active material according to Comparative Example 1 is 25 degrees (°) to 38 degrees ( It was confirmed that the diffraction peak for Co 3 O 4 in addition to the diffraction peak of the (101) plane in the range (°).
  • the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present disclosure relates to a cathode active material for a lithium secondary battery, and a lithium secondary battery comprising same, the cathode active material comprising a lithium metal oxide represented by the following chemical formula 1: [chemical formula 1] Lip(NixCoyMez)O2, wherein 0.9 ≤ p ≤ 1.1, 0.81 ≤ x ≤ 0.87, 0 < y ≤ 0.3, 0 < z ≤ 0.3, x + y + z =1, and Me is at least one of Al, Mn, Mg, Ti and Zr.

Description

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지Cathode active material for lithium secondary battery and lithium secondary battery comprising same
본 기재는 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present disclosure relates to a cathode active material for a lithium secondary battery and a lithium secondary battery including the same.
최근 이동 정보 단말기의 소형화 및 경량화가 급격히 진전되어, 그 구동 전원인 리튬 이차 전지에 대해서도 보다 고용량화가 요구되고 있다. In recent years, the miniaturization and weight reduction of mobile information terminals have progressed rapidly, and a higher capacity has also been required for a lithium secondary battery as a driving power source.
또한, 하이브리드 자동차 또는 전기 자동차 시장이 확대되면서 리튬 이차 전지를 이들의 구동용 전원 또는 전력 저장용 전원으로 사용하기 위한 연구가 활발하다.In addition, as the hybrid vehicle or electric vehicle market expands, studies for using lithium secondary batteries as driving power or power storage power sources are being actively conducted.
이러한 리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 - xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다. Examples of the positive electrode active material of the lithium secondary battery include lithium and a transition metal having a structure capable of intercalating lithium ions such as LiCoO 2 , LiMn 2 O 4 , and LiNi 1 - x Co x O 2 (0 <x <1). Oxides made up are mainly used.
본 기재의 일 구현예는 고용량 및 우수한 수명 특성을 갖는 리튬 이차 전지용 양극 활물질을 제공하는 것이다.One embodiment of the present disclosure is to provide a cathode active material for a lithium secondary battery having a high capacity and excellent life characteristics.
본 기재의 다른 구현예는 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.Another embodiment of the present disclosure is to provide a lithium secondary battery including the cathode active material.
일 측면에서, 본 기재는, 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하는 리튬 이차 전지용 양극 활물질을 제공한다. In one aspect, the present disclosure provides a cathode active material for a lithium secondary battery including a lithium metal oxide represented by the following Formula 1.
[화학식 1][Formula 1]
Lip(NixCoyMez)O2 Li p (Ni x Co y Me z ) O 2
상기 화학식 1에서, 0.9 ≤ p ≤ 1.1, 0.81 ≤ x ≤ 0.87, 0 < y ≤ 0.3, 0 < z ≤ 0.3, x + y + z =1이고, Me는 Al, Mn, Mg, Ti 및 Zr 중 적어도 하나이다. In Formula 1, 0.9 ≦ p ≦ 1.1, 0.81 ≦ x ≦ 0.87, 0 <y ≦ 0.3, 0 <z ≦ 0.3, x + y + z = 1, and Me is selected from Al, Mn, Mg, Ti, and Zr. At least one.
다른 측면에서, 본 기재는, 상기 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 및 전해질을 포함하는 리튬 이차 전지를 제공한다.In another aspect, the present disclosure provides a lithium secondary battery including a cathode including the cathode active material, an anode including an anode active material, and an electrolyte.
본 기재의 일 구현예에 따른 리튬 이차 전지용 양극 활물질은 니켈 함량이 높은 화합물을 포함하기 때문에 충전된 경우에도 구조적 안정성이 매우 우수하다. Since the positive electrode active material for a rechargeable lithium battery according to one embodiment of the present disclosure includes a compound having a high nickel content, even when charged, the structural stability is excellent.
따라서, 상기 양극 활물질을 포함하는 양극을 적용한 본 발명에 따른 리튬 이차 전지는 고용량을 가지면서도 수명 특성을 현저하게 향상시킬 수 있다. Therefore, the lithium secondary battery according to the present invention to which the cathode including the cathode active material is applied may significantly improve life characteristics while having a high capacity.
도 1은 본 기재의 일 실시예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다.1 schematically shows a structure of a lithium secondary battery according to an embodiment of the present disclosure.
도 2는 실시예 1 내지 2 및 비교예 1 내지 2에 따른 리튬 이차 전지의 전압에 대한 비용량(specific capacity) 측정 결과이다.2 is a specific capacity measurement result of the voltage of the lithium secondary battery according to Examples 1 and 2 and Comparative Examples 1 and 2.
도 3은 실시예 1 내지 2 및 비교예 1 내지 2에 따른 리튬 이차 전지의 전압에 대한 dQ/dV 측정 결과이다.FIG. 3 shows dQ / dV measurement results of voltages of lithium secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
도 4는 도 3 중 4V 내지 4.4V의 범위의 전압에 대한 dQ/dV 측정 결과의 확대도이다.4 is an enlarged view of a dQ / dV measurement result for a voltage in the range of 4V to 4.4V in FIG. 3.
도 5는 실시예 1 내지 2 및 비교예 1 내지 2에 따른 리튬 이차 전지의 사이클별 용량 유지율을 측정한 결과이다. 5 is a result of measuring the capacity retention rate of each lithium secondary battery according to Examples 1 to 2 and Comparative Examples 1 to 2 by cycle.
도 6은 실시예 1에 따른 양극 활물질에 대한 x-선 회절 그래프를 나타낸 것이다.6 shows an x-ray diffraction graph of the cathode active material according to Example 1. FIG.
도 7은 비교예 1에 따른 양극 활물질에 대한 x-선 회절 그래프를 나타낸 것이다.7 shows an x-ray diffraction graph of the cathode active material according to Comparative Example 1. FIG.
도 8은 도 7 중 2θ=27도(°) 내지 39도(°) 범위에 대한 확대도를 나타낸 것이다. FIG. 8 is an enlarged view of a range of 2θ = 27 degrees (°) to 39 degrees (°) in FIG. 7.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
리튬 이차 전지에 사용되는 양극 활물질의 종류로는 몇 가지가 존재하는 데, 그 중에서 리튬 코발트 산화물, 즉, LiCoO2를 이용한 양극 활물질이 현재 가장 널리 사용되고 있다. 그러나, 리튬 코발트 산화물을 이용한 양극 활물질은 코발트(cobalt)의 자원 편재성과 희소성으로 인해 제조 비용 증가를 야기하고 안정적인 공급이 어려운 문제점이 늘 제기되고 있다. There are several kinds of positive electrode active materials used in a lithium secondary battery, and among them, a positive electrode active material using lithium cobalt oxide, that is, LiCoO 2 is most widely used at present. However, a positive electrode active material using lithium cobalt oxide causes an increase in manufacturing cost due to cobalt resource ubiquity and scarcity, and it is always difficult to provide a stable supply.
이를 해결하기 위하여 코발트를 대신하는 물질을 적용하려는 다양한 연구가 진행되고 있으며, 그 예로써 가격이 비싼 코발트를 대신하여, 저렴한 니켈(Ni)이나 망간(Mn)을 하나 또는 복합적으로 사용한 양극 활물질을 개발하려는 시도가 있다. In order to solve this problem, various studies are being conducted to apply a material instead of cobalt. For example, instead of expensive cobalt, a cathode active material using one or a combination of inexpensive nickel (Ni) and manganese (Mn) is developed. There is an attempt to do so.
이 중에서도 니켈(Ni)계 복합 산화물은 LiCoO2, LiNiO2, Li2MnO3 등의 재료가 가지는 비용, 안정성 및 용량 등의 한계를 극복할 수 있는 재료로써, 최근 활발한 연구가 진행되고 있다. Among these, nickel (Ni) -based composite oxide is a material capable of overcoming the limitations of cost, stability, and capacity of materials such as LiCoO 2 , LiNiO 2 , Li 2 MnO 3, and the like, and active researches have been conducted recently.
이와 관련하여 니켈(Ni)계 복합 산화물은 리튬 원자 하나가 빠져나가는 충전 반응 시, Ni2 +→Ni4 + + 2e와 같이 반응하여 두 개의 전자를 발생시키기 때문에, 하나의 전자만 발생시키는 코발트(Co), 망간(Mn) 등의 다른 원소와 비교할 때, 니켈(Ni) 함량이 증가할수록 용량이 증가하는 장점이 있다. In this regard, the nickel (Ni) -based composite oxide reacts with Ni 2 + → Ni 4 + + 2e to generate two electrons during a charging reaction in which one lithium atom escapes, thereby generating only one electron. Compared with other elements such as Co) and manganese (Mn), the capacity increases as the nickel (Ni) content increases.
그런데, 니켈(Ni) 함량이 높은 산화물을 양극 활물질로 사용하는 경우, 리튬 코발트 산화물을 양극 활물질로 사용하는 경우와 비교할 때, 충전 반응 시 탈리되는 리튬의 양의 많아 니켈 함유 산화물의 결정 구조가 쉽게 붕괴되는 문제점이 있다. 보다 구체적으로 고함량의 니켈 함유 산화물은 충전시 4V 이상의 전압에서 결정 구조가 변화되어 H2에서 H3로 상전이가 발생한다. H2에서 H3로의 상전이는 부분적으로 비가역적이고, H3상 구조에서는 인터칼레이션 및 디인터칼레이션 될 수 있는 리튬 이온이 감소될 수 있기 때문에, 상기한 바와 같이 H2에서 H3로 상전이가 일어나는 경우 리튬 전지의 수명 특성이 현저하게 저하되는 문제점이 있다. 따라서, 니켈 함량이 높은 산화물을 양극 활물질로 사용하는 경우에는 충전시 니켈 함유 산화물이 H2에서 H3로 상전이가 되는 것을 억제시킬 필요가 있다.However, when the oxide having a high nickel (Ni) content is used as the positive electrode active material, the crystal structure of the nickel-containing oxide is more easily compared to the case where lithium cobalt oxide is used as the positive electrode active material. There is a problem of collapse. More specifically, a high content of nickel-containing oxide changes the crystal structure at a voltage of 4V or more during charging to cause a phase transition from H2 to H3. Since the phase transition from H2 to H3 is partially irreversible and the lithium ions that can be intercalated and deintercalated in the H3 phase structure can be reduced, as described above, when the phase transition from H2 to H3 occurs, There is a problem that the life characteristics are significantly reduced. Therefore, when an oxide having a high nickel content is used as the positive electrode active material, it is necessary to suppress the phase transition of the nickel-containing oxide from H2 to H3 during charging.
이에 본 발명의 발명자들은 리튬 이차 전지용 양극 활물질로 니켈(Ni)계 복합 산화물을 사용하면서도 고용량화와 우수한 수명 특성을 동시에 구현하기 위하여 연구를 거듭한 결과 니켈(Ni)을 특정 함량으로 포함하는 니켈 함유 산화물을 양극 활물질로 사용하는 경우 상기와 같은 목적을 달성할 수 있음을 알아내고 본 기재의 일 실시예를 구현하였다. Therefore, the inventors of the present invention have repeatedly studied to simultaneously realize high capacity and excellent life characteristics while using nickel (Ni) -based composite oxide as a cathode active material for a lithium secondary battery, and have a nickel-containing oxide containing nickel (Ni) in a specific content. When using as a positive electrode active material it was found that the above object can be achieved and implemented an embodiment of the present disclosure.
보다 구체적으로, 본 기재의 일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하는 것을 특징으로 한다. More specifically, the cathode active material for a lithium secondary battery according to an embodiment of the present disclosure is characterized by including a lithium metal oxide represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Lip(NixCoyMez)O2 Li p (Ni x Co y Me z ) O 2
상기 화학식 1에서, 0.9 ≤ p ≤ 1.1, 0.81 ≤ x ≤ 0.87, 0 < y ≤ 0.3, 0 < z ≤ 0.3, x + y + z =1이고, Me는 Al, Mn, Mg, Ti 및 Zr 중 적어도 하나이다. In Formula 1, 0.9 ≦ p ≦ 1.1, 0.81 ≦ x ≦ 0.87, 0 <y ≦ 0.3, 0 <z ≦ 0.3, x + y + z = 1, and Me is selected from Al, Mn, Mg, Ti, and Zr. At least one.
화학식 1로 표시되는 리튬 금속 산화물과 같이 니켈 함량이 높은 니켈 함유 리튬 금속 산화물을 양극 활물질로 사용하는 경우, 고용량을 갖는 리튬 이차 전지를 구현할 수 있다.When using a nickel-containing lithium metal oxide having a high nickel content as a positive electrode active material, such as the lithium metal oxide represented by Formula 1, it is possible to implement a lithium secondary battery having a high capacity.
보다 구체적으로, 본 기재에 따른 리튬 금속 산화물에서 니켈의 함량은, 화학식 1에서 확인할 수 있는 바와 같이, 0.81 이상이고, 0.87 이하일 수 있다. 보다 구체적으로 화학식 1에서 니켈의 함량은 0.82 이상이고, 0.86 이하일 수 있다. 리튬 금속 산화물에 포함되는 니켈의 함량이 상기 범위를 만족하는 경우, 고용량을 가짐과 동시에 수명 특성이 우수한 리튬 이차 전지를 구현할 수 있다.More specifically, the content of nickel in the lithium metal oxide according to the present disclosure may be 0.81 or more and 0.87 or less, as can be seen in Formula 1. More specifically, the content of nickel in Formula 1 may be 0.82 or more and 0.86 or less. When the nickel content included in the lithium metal oxide satisfies the above range, a lithium secondary battery having high capacity and excellent life characteristics may be implemented.
화학식 1에서, 상기 Li 및 상기 Ni+Co+Me의 몰비는 1.05:1.0 내지 0.95:1.0일 수 있다. 보다 구체적으로, Li 및 Ni+Co+Me의 몰비는 1.03:1.0 내지 1.01:1.0 또는 1.05:1 내지 1.01:1.0일 수 있다. Li 및 Ni+Co+Me의 몰비가 상기 수치 범위를 만족하는 경우, 리튬 금속 산화물의 표면에 잔류하는 리튬의 함량을 감소시킬 수 있다.In Formula 1, the molar ratio of Li and Ni + Co + Me may be 1.05: 1.0 to 0.95: 1.0. More specifically, the molar ratio of Li and Ni + Co + Me may be 1.03: 1.0 to 1.01: 1.0 or 1.05: 1 to 1.01: 1.0. When the molar ratio of Li and Ni + Co + Me satisfies the above numerical range, the content of lithium remaining on the surface of the lithium metal oxide may be reduced.
즉, 상기 리튬 금속 산화물은 상기 리튬 금속 산화물의 표면에 위치하는 리튬 화합물을 포함할 수 있다. 이때, 상기 리튬 화합물에 함유된 리튬의 함량은 상기 양극 활물질 100 중량부에 대하여 0.25 중량부 이하, 보다 구체적으로는 0.05 중량부 내지 0.15 중량부일 수 있다. That is, the lithium metal oxide may include a lithium compound located on the surface of the lithium metal oxide. In this case, the lithium content in the lithium compound may be 0.25 parts by weight or less, more specifically 0.05 parts by weight to 0.15 parts by weight based on 100 parts by weight of the positive electrode active material.
리튬 금속 화합물의 표면에 위치하는 리튬 화합물은 Li2CO3, LiOH 또는 이들의 조합일 수 있다. The lithium compound located on the surface of the lithium metal compound may be Li 2 CO 3 , LiOH, or a combination thereof.
Li:(Ni+Co+Al)의 몰비가 전술한 수치 범위를 만족하는 경우, Ni 함량이 높은 전구체 적용 시 Li과의 반응성이 우수하여 결정성이 높은 양극 활물질을 제조할 수 있다. 이 경우 리튬 이차 전지의 사이클 수명 특성을 향상시킬 수 있으며 우수한 전기 화학적 특성을 나타내는 리튬 이차 전지를 구현할 수 있다.When the molar ratio of Li: (Ni + Co + Al) satisfies the above-mentioned numerical range, it is possible to prepare a cathode active material having high reactivity with Li when the precursor having high Ni content is excellent. In this case, the cycle life characteristics of the lithium secondary battery may be improved, and a lithium secondary battery exhibiting excellent electrochemical characteristics may be implemented.
또한, 상기 화학식 1의 Me는 양극 활물질의 제조 공정 및 비용을 고려할 때, Al 또는 Mn인 것이 바람직하다.In addition, Me of Formula 1 is preferably Al or Mn in consideration of the manufacturing process and cost of the positive electrode active material.
본 기재의 양극 활물질은 X선 회절(XRD) 측정시, 2θ=25도(°) 내지 38도(°) 범위에서 (101)면의 회절 피크 외에 나타나는 다른 회절 피크를 갖지 않는다. 다시 말하면, 본 기재의 리튬 금속 산화물은 R-3m 결정구조, 즉, 능면정계(rhombohedral)의 결정 구조를 나타내며, 따라서, X선 회절(XRD) 측정시, (003)면의 회절 피크 및 (101)면의 회절 피크 사이에 다른 부가상이 나타나지 않는다. The positive electrode active material of the present substrate does not have other diffraction peaks appearing other than the diffraction peak of the (101) plane in the range of 2θ = 25 degrees (°) to 38 degrees (°) when measured by X-ray diffraction (XRD). In other words, the lithium metal oxide of the present disclosure exhibits an R-3m crystal structure, that is, a crystalline structure of a rhombohedral, and thus, when measuring X-ray diffraction (XRD), the diffraction peak and (101) plane of (003) plane are measured. No other additional phase appears between the diffraction peaks of the plane.
본 명세서에서 X선 회절 측정은 타겟 선으로 CuKα선을 사용하여 측정한 것이다. 양극 활물질의 XRD 측정시 2θ=25도(°) 내지 38도 (°)에서 (101)면의 회절 피크 외에 다른 회절 피크, 즉, 부가상이 나타나면 불순물, 예를 들면, Co3O4가 형성된 것이다. 이와 같이 양극 활물질에 불순물이 포함되는 경우, 이는 전기화학적으로 활성화된 물질이 아니기 때문에 전지의 용량에 기여하지 못한다. 또한, 이러한 불순물은 양극 활물질 표면에서 리튬 이온의 이동 속도를 저하시키기 때문에 저항 증가의 원인으로 작용할 수 있고, 전지의 용량 및 사이클 수명 특성이 저하시킬 수 있어 적절하지 않다. In the present specification, the X-ray diffraction measurement is measured using a CuKα ray as a target line. When XRD measurement of the positive electrode active material shows a diffraction peak other than the diffraction peak of the (101) plane at 2θ = 25 degrees (°) to 38 degrees (°), that is, an additional phase, impurities, such as Co 3 O 4, are formed. . When impurities are included in the cathode active material as described above, they do not contribute to the capacity of the battery because they are not electrochemically activated materials. In addition, such an impurity may act as a cause of an increase in resistance since the rate of movement of lithium ions on the surface of the positive electrode active material is reduced, and the capacity and cycle life characteristics of the battery may be lowered, which is not appropriate.
그러나, 본 기재에 따른 양극 활물질은 전술한 바와 같이 불순물, 즉, Co3O4 등이 생성되지 않으므로 보다 우수한 용량 및 사이클 수명 특성을 나타낼 것임을 알 수 있다.However, it can be seen that the cathode active material according to the present invention will exhibit more excellent capacity and cycle life characteristics because impurities, that is, Co 3 O 4, etc. are not generated as described above.
전술한 본 기재의 일 구현 예에 따른 양극 활물질은 당해 분야에 널리 알려진 일반적인 양극 활물질 제조 공정으로 제조될 수 있으며, 이에 대하여 간략하게 설명하기로 한다.The cathode active material according to the exemplary embodiment of the present disclosure described above may be manufactured by a general cathode active material manufacturing process well known in the art, and will be briefly described.
니켈 전구체 및 리튬 전구체를 혼합하여 혼합물을 제조한다. 이때, 니켈 전구체 및 리튬 전구체의 혼합비는 상기 화학식 1의 화합물이 얻어지도록 적절하게 조절할 수 있다.The mixture is prepared by mixing the nickel precursor and the lithium precursor. At this time, the mixing ratio of the nickel precursor and the lithium precursor can be appropriately adjusted so that the compound of Formula 1 is obtained.
상기 리튬 전구체는, 예를 들면, 리튬 아세테이트, 리튬 나이트레이트, 리튬 하이드록사이드, 리튬 카보네이트, 리튬 아세테이트, 이들의 수화물, 또는 이들의 조합을 들 수 있다.Examples of the lithium precursors include lithium acetate, lithium nitrate, lithium hydroxide, lithium carbonate, lithium acetate, hydrates thereof, and combinations thereof.
상기 니켈 전구체는, 예를 들면, 니켈 아세테이트, 니켈 나이트레이트, 니켈 카보네이트, 이들의 수화물, 또는 이들의 조합을 들 수 있다.Examples of the nickel precursors include nickel acetate, nickel nitrate, nickel carbonate, hydrates thereof, and combinations thereof.
상기 혼합물을 1차 소성하여 1차 소성물을 제조한다. 혼합 공정은 예를 들면, 볼밀링 등과 같은 기계적인 혼합 공정으로 실시할 수 있다.The mixture is first calcined to produce a primary calcined product. The mixing step can be carried out by a mechanical mixing step such as, for example, ball milling.
상기 1차 소성 공정은 650℃ 내지 850℃에서 실시할 수 있으며, 이때 열처리 시간은 10시간 내지 30시간일 수 있다. 상기 열처리 공정은 산소(O2) 분위기 하에서 실시할 수 있다. The primary firing process may be carried out at 650 ℃ to 850 ℃, the heat treatment time may be 10 hours to 30 hours. The heat treatment step may be carried out in an oxygen (O 2 ) atmosphere.
그 후, 상기 1차 소성물을 분쇄하여 분말화 한 후 세정 공정을 수행하여 1차 소성물 표면의 리튬 화합물에 포함되는 리튬의 잔류량을 줄인다. Thereafter, the primary fired material is pulverized and powdered, followed by a washing process to reduce the amount of lithium contained in the lithium compound on the surface of the primary fired product.
세정 공정은, 예를 들면, 증류수와 같은 세정수와 분말화된 1차 소성물을 1:1 내지 1:5 비율로 섞어 수행할 수 있다. For example, the washing process may be performed by mixing the washing water such as distilled water and the powdered primary fired product in a ratio of 1: 1 to 1: 5.
다음으로 세정 공정을 거친 1차 소성물을 탈수한 후 2차 소성하여 2차 소성물을 제조한다. 2차 소성 공정은 650℃ 내지 850℃에서 실시할 수 있으며, 이때 열처리 시간은 10시간 내지 30시간일 수 있다. 상기 열처리 공정은 산소(O2) 분위기 하에서 실시할 수 있다. Next, after the dehydrated primary calcined product is dehydrated, secondary calcined product is manufactured. Secondary firing process may be carried out at 650 ℃ to 850 ℃, wherein the heat treatment time may be 10 hours to 30 hours. The heat treatment step may be carried out in an oxygen (O 2 ) atmosphere.
다음, 상기 2차 소성물을 분쇄하여 양극 활물질을 제조한다. Next, the secondary fired material is ground to prepare a cathode active material.
이하, 본 기재의 다른 구현예에 따른 리튬 이차 전지에 대하여 설명한다.Hereinafter, a lithium secondary battery according to another embodiment of the present disclosure will be described.
도 1은 본 기재의 일 실시예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다. 1 schematically shows a structure of a lithium secondary battery according to an embodiment of the present disclosure.
도 1을 참고하면, 일 실시예에 따른 리튬 이차 전지(100)는 전극 조립체와 전극 조립체가 수용되는 케이스(50) 및 상기 케이스(50)를 밀봉 하는 밀봉 부재(40)를 포함할 수 있다. Referring to FIG. 1, a lithium secondary battery 100 according to an embodiment may include an electrode assembly, a case 50 in which the electrode assembly is accommodated, and a sealing member 40 sealing the case 50.
상기 전극 조립체는 전술한 양극 활물질을 포함하는 양극(10), 음극 활물질을 포함하는 음극(20), 양극(10)과 음극(20) 사이에 배치되어 있는 세퍼레이터(30)을 포함한다. 상기 양극(10), 상기 음극(20) 및 상기 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.The electrode assembly includes a positive electrode 10 including the positive electrode active material described above, a negative electrode 20 including a negative electrode active material, and a separator 30 disposed between the positive electrode 10 and the negative electrode 20. The positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
상기 전극 조립체는 양극(10)과 음극(20) 사이에 세퍼레이터(30)를 개재하여 귄취된 형태일 수 있다. 도 1에는 편의상 권취형 전극 조립체를 조립하였으나, 본 기재의 내용은 이에 제한되는 것은 아니다. 예를 들면, 상기 전극 조립체는 시트 형상으로 이루어진 복수 개의 양극과 음극이 세퍼레이터를 사이에 두고 교대로 적층된 구조로 이루어질 수도 있다.The electrode assembly may have a shape in which the electrode assembly is sandwiched between the positive electrode 10 and the negative electrode 20 via a separator 30. In FIG. 1, a wound electrode assembly is assembled for convenience, but the contents of the present disclosure are not limited thereto. For example, the electrode assembly may have a structure in which a plurality of anodes and cathodes having a sheet shape are alternately stacked with separators interposed therebetween.
상기 양극(10)은 양극 활물질 층, 이 양극 활물질을 지지하는 전류 집전체를 포함한다. 상기 양극 활물질 층에서, 상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.The positive electrode 10 includes a positive electrode active material layer and a current collector supporting the positive electrode active material. In the cathode active material layer, the content of the cathode active material may be 90% by weight to 98% by weight based on the total weight of the cathode active material layer.
본 발명의 일 구현예에 있어서, 상기 양극 활물질층은 바인더 및 도전재를 더욱 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.In one embodiment of the present invention, the positive electrode active material layer may further include a binder and a conductive material. In this case, the content of the binder and the conductive material may be 1% by weight to 5% by weight based on the total weight of the positive electrode active material layer, respectively.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 바인더의 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well. Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrroli Don, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto. .
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery. Examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture of these.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.Al may be used as the current collector, but is not limited thereto.
상기 음극(20)은 전류 집전체 및 이 전류 집전체 위에 형성된 음극 활물질을 포함하는 음극 활물질 층을 포함한다.The negative electrode 20 includes a negative electrode active material layer including a current collector and a negative electrode active material formed on the current collector.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.The anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, or a transition metal oxide.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together. Examples of the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다. The lithium doped and undoped materials include Si, Si-C composites, SiO x (0 <x <2), Si-Q alloy (Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, An element selected from the group consisting of Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, Element selected from the group consisting of Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn). SiO 2 can also be mixed and used. The elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.Examples of the transition metal oxide include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.The content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
본 발명의 일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.In one embodiment of the present invention, the negative electrode active material layer includes a binder, and optionally may further include a conductive material. The content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer. In addition, when the conductive material is further included, 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.The binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well. As the binder, a water-insoluble binder, a water-soluble binder or a combination thereof can be used.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다. The water-insoluble binder includes polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로니트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌프로필렌공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다. The water-soluble binder may be a rubber binder or a polymer resin binder. The rubber-based binder may be selected from styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, and combinations thereof. The polymer resin binder may be polytetrafluoroethylene, polyethylene, polypropylene, ethylene propylene copolymer, polyethylene oxide, polyvinylpyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, Ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and combinations thereof.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다. When using a water-soluble binder as the negative electrode binder, it may further include a cellulose-based compound that can impart viscosity as a thickener. As this cellulose type compound, carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, these alkali metal salts, etc. can be used in mixture of 1 or more types. Na, K or Li may be used as the alkali metal. The amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery. Examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
상기 전해질은 비수성 유기 용매 및 리튬염을 포함한다.The electrolyte includes a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used. The ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, decanolide, mevalonolactone, and caprolactone. And the like can be used. Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent. In addition, cyclohexanone may be used as the ketone solvent. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Nitriles such as a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane, and the like can be used. .
상기 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art. have.
또한, 상기 카보네이트계 용매의 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. In addition, in the case of the carbonate solvent, it is preferable to use a mixture of cyclic carbonate and chain carbonate. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
상기 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.The organic solvent may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.As the aromatic hydrocarbon organic solvent, an aromatic hydrocarbon compound of Formula 2 may be used.
[화학식 2][Formula 2]
Figure PCTKR2017009653-appb-I000001
Figure PCTKR2017009653-appb-I000001
(상기 화학식 2에서, R1 내지 R6은 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.)(In Formula 2, R One To R 6 It is the same as or different from each other and selected from the group consisting of hydrogen, halogen, alkyl group of 1 to 10 carbon atoms, haloalkyl group and combinations thereof.)
상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.Specific examples of the aromatic hydrocarbon organic solvent include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-dioodobenzene, 1,3-dioiobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1, 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluorotoluene, 2,5-difluorotoluene, 2,3,4-trifluoro Rotoluene, 2,3,5-trifluorotoluene, chlorotoluene, 2,3-dichlorotoluene, 2,4-dichlorotoluene, 2,5-dichlorotoluene, 2,3,4-trichlorotoluene, 2, 3,5-trichlorotoluene, iodotoluene, 2,3-dioodotoluene, 2,4-diaodotoluene, 2 , 5-diaodotoluene, 2,3,4-triiodotoluene, 2,3,5-triiodotoluene, xylene, and combinations thereof.
상기 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 3의 에틸렌계 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.The electrolyte may further include vinylene carbonate or an ethylene-based carbonate compound represented by Chemical Formula 3 as a life improving additive to improve battery life.
[화학식 3][Formula 3]
Figure PCTKR2017009653-appb-I000002
Figure PCTKR2017009653-appb-I000002
(상기 화학식 3에서, R7 및 R8은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R7 및 R8 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R7 및 R8이 모두 수소는 아니다.)(In Formula 3, R 7 and R 8 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and an alkyl group having 1 to 5 fluorinated carbon atoms). At least one of R 7 and R 8 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ), and a fluorinated C1-5 alkyl group, provided that both R 7 and R 8 are both Not hydrogen.)
상기 에틸렌계 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.Representative examples of the ethylene-based carbonate compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, or fluoroethylene carbonate. Can be mentioned. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); It is preferable to use the concentration of lithium salt within the range of 0.1 M to 2.0 M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, Lithium ions can move effectively.
리튬 이차 전지의 종류에 따라 도 1에 나타낸 바와 같이, 양극과 음극 사이에 세퍼레이터(30)가 존재할 수도 있다. 이러한 세퍼레이터(30)로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.Depending on the type of lithium secondary battery, as shown in FIG. 1, the separator 30 may exist between the positive electrode and the negative electrode. As the separator 30, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene Of course, a mixed multilayer film such as a polypropylene three-layer separator can be used.
이하 실시예를 통하여 본 발명을 구체적으로 살펴보기로 한다.Hereinafter, the present invention will be described in detail with reference to the following examples.
실시예Example 1 One
(1) 양극 활물질의 제조(1) Preparation of Positive Electrode Active Material
Ni0 . 85Co0 . 14Al0 .01(OH)2 및 LiOH를 최종 생성물에서 Li:(Ni+Co+Al)의 몰비가 1.02:1.0이 되도록 혼합하였다. 다음으로, 상기 혼합물을 740℃, O2 분위기에서 21시간 동안 소성하여 1차 소성물을 얻었다. Ni 0 . 85 Co 0 . 14, the Al 0 .01 (OH) 2 and LiOH in the final product Li: 1.0 were mixed so that the molar ratio is 1.02 in (Ni + Co + Al). Next, the mixture was calcined at 740 ° C. in an O 2 atmosphere for 21 hours to obtain a primary calcined product.
이후 분쇄 공정을 통해 1차 소성물을 분말화 한 후 세정 공정을 수행하여 1차 소성물 표면의 잔류 리튬을 제거한다.Thereafter, the primary calcined product is powdered through a pulverization process and a cleaning process is performed to remove residual lithium on the surface of the primary calcined product.
세정 공정은 세정수 및 분말화된 1차 소성물의 중량비가 1:1이 되도록 수행하였다. The washing process was performed such that the weight ratio of the washing water and the powdered primary fired product was 1: 1.
세정이 완료된 1차 소성물을 필터 프레스를 이용하여 탈수 공정을 거친 후 2차 소성 공정을 수행하였다. 2차 소성은 720℃, O2 분위기에서 수행하였으며, 이후 분쇄 공정을 거쳐 Li(Ni0.85Co0.14Al0.01)O2로 표시되고, 표면에 잔류하는 리튬의 함량이 0.10wt%인 양극 활물질을 제조하였다.After the cleaning was completed, the first fired product was subjected to a dehydration process using a filter press, followed by a second fire process. Secondary firing was performed in an atmosphere of O 2 at 720 ° C., followed by a pulverization process, to represent Li (Ni 0.85 Co 0.14 Al 0.01 ) O 2 , to prepare a cathode active material having a lithium content of 0.10 wt%. It was.
(2) 리튬 이차 전지의 제조(2) Preparation of a Lithium Secondary Battery
(1)에서 제조된 양극 활물질 94 중량%, 폴리비닐리덴 플루오라이드 바인더 3 중량% 및 케첸 블랙 도전재 3 중량%를 N-메틸피롤리돈 용매 중에서 혼합하여 양극 활물질 조성물을 제조하였다. 이 양극 활물질 조성물을 Al 전류 집전체에 도포하여, 양극을 제조하였다.A positive electrode active material composition was prepared by mixing 94% by weight of the positive electrode active material prepared in (1), 3% by weight of polyvinylidene fluoride binder, and 3% by weight of Ketjen black conductive material in an N-methylpyrrolidone solvent. This positive electrode active material composition was applied to an Al current collector to prepare a positive electrode.
양극, 리튬 금속 대극 및 전해질을 이용하여 통상의 방법으로 코인 형태 반쪽 전지를 제조하였다. 상기 전해질로 1.0M LiPF6가 용해된 에틸렌 카보네이트 및 디에틸 카보네이트의 혼합 용매(부피비 50 : 50)를 사용하였다.A coin-type half cell was prepared by a conventional method using a positive electrode, a lithium metal counter electrode, and an electrolyte. A mixed solvent (volume ratio 50:50) of ethylene carbonate and diethyl carbonate in which 1.0 M LiPF 6 was dissolved was used as the electrolyte.
실시예Example 2 및  2 and 비교예Comparative example 1 내지 2 1 to 2
제조된 양극 활물질에 포함되는 산화물의 니켈 함량, Li:(Ni+Co+Al)의 몰비 및 표면에 잔류하는 리튬의 함량이 하기 표 1과 같이 조절되도록 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.Nickel content of the oxide included in the prepared positive electrode active material, the molar ratio of Li: (Ni + Co + Al) and the amount of lithium remaining on the surface is the same as in Example 1 except that it is adjusted to be adjusted as shown in Table 1 below. A positive electrode active material was prepared by the method.
그 후, 실시예 1과 동일한 방법으로 양극을 제조한 후, 리튬 이차 전지를 제조하였다.Then, after manufacturing a positive electrode in the same manner as in Example 1, a lithium secondary battery was produced.
구분division 니켈 함량Nickel content Li:(Ni+Co+Al) 몰비Li: (Ni + Co + Al) molar ratio 활물질 표면에 잔류하는 리튬 함량 (wt%)Lithium content remaining on the active material surface (wt%)
실시예 1Example 1 8484 1.02:11.02: 1 0.100.10
실시예 2Example 2 8585 1.01:11.01: 1 0.0950.095
비교예 1Comparative Example 1 8080 1:11: 1 0.090.09
비교예 2Comparative Example 2 8888 0.98:10.98: 1 0.0850.085
실험예Experimental Example 1 -  One - 충방전Charging and discharging 특성 측정 Property measurement
실시예 1 내지 2 및 비교예 1 내지 2에 따라 제조된 리튬 이차 전지를 25℃에서, 2.8V 내지 4.4V 범위 내에서 0.2C rate의 전류로 충방전을 실시하여 초기 충방전 특성을 평가하였다. 표 2에는 초기 방전 용량을 나타내었고, 도 2에는 초기 충방전 용량을 나타내었다. 또한, 도 3에는 첫번째 사이클에서의 dQ/dV 측정 결과를 나타내었고, 도 4에는 도 3 중 4V 내지 4.4V의 전압에 대한 dQ/dV 측정 결과의 확대도를 나타내었다. The lithium secondary batteries prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were charged and discharged at 25 ° C. at a current of 0.2 C rate within a range of 2.8 V to 4.4 V to evaluate initial charge and discharge characteristics. Table 2 shows the initial discharge capacity, and FIG. 2 shows the initial charge and discharge capacity. In addition, Figure 3 shows the dQ / dV measurement results in the first cycle, Figure 4 shows an enlarged view of the dQ / dV measurement results for the voltage of 4V to 4.4V in FIG.
실험예Experimental Example 2 - 용량 유지율 측정 2-capacity retention measurement
실시예 1 내지 2 및 비교예 1 내지 2에 따라 제조된 리튬 이차 전지를 25℃에서, 2.8V 내지 4.4V 범위 내에 0.2C로 충방전을 50회 실시하여, 방전 용량을 측정하였다. 또한, 1회 방전 용량에 대한 50회 방전 용량 비율을 계산하여 용량 유지율을 구하고, 이를 사이클 수명으로 하였다. The lithium secondary batteries prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were charged and discharged at 0.2 ° C. 50 times in a range of 2.8 V to 4.4 V at 25 ° C., and the discharge capacity was measured. In addition, the capacity retention ratio was calculated by calculating the ratio of the 50th discharge capacity to the onetime discharge capacity, which was defined as the cycle life.
결과는 하기 표 2 및 도 5에 나타내었다.The results are shown in Table 2 and FIG. 5.
구분division 초기방전용량[mAh/g]Initial discharge capacity [mAh / g] dQ/dV 강도dQ / dV intensity 50th/1st용량유지율(%)50 th / 1 st capacity retention rate (%)
실시예 1Example 1 204204 260260 92.092.0
실시예 2Example 2 205205 375375 88.888.8
비교예 1Comparative Example 1 195195 190190 96.796.7
비교예 2Comparative Example 2 207207 500500 83.583.5
표 2 및 도 2 내지 4을 참고하면, 본 기재의 일 실시예에 따른 양극 활물질과 같이 니켈의 함량이 0.81 이상이고 0.87 이하의 범위를 만족하는 양극 활물질을 포함하는 실시예 1 및 2에 따라 제조된 리튬 이차 전지의 경우, 초기 충방전 용량이 우수하면서도 4.0V 이상에서 dQ/dV 강도가 400 이하로 H2에서 H3로의 상전이가 억제되는 것을 알 수 있다.Referring to Table 2 and Figures 2 to 4, the positive electrode active material according to an embodiment of the present disclosure prepared according to Examples 1 and 2 containing a positive electrode active material content of nickel is 0.81 or more and satisfy the range of 0.87 or less In the case of the lithium secondary battery, it is understood that the phase transition from H2 to H3 is suppressed because the dQ / dV intensity is 400 or less at 4.0 V or more while the initial charge and discharge capacity is excellent.
그러나, 니켈의 함량이 0.81 미만인 양극 활물질을 포함하는 비교예 1에 따른 리튬 이차 전지의 경우 초기방전용량이 낮은 것을 확인할 수 있었다. 또한, 니켈의 함량이 0.87을 초과하는 양극 활물질을 포함하는 비교예 2에 따른 리튬 이차 전지의 경우 4.0V 이상에서 dQ/dV 강도가 높게 측정되어 H2에서 H3로의 상전이가 발생하는 것을 확인할 수 있었다.However, the lithium secondary battery according to Comparative Example 1 including the positive electrode active material having a nickel content of less than 0.81 was found to have a low initial discharge capacity. In addition, in the case of the lithium secondary battery according to Comparative Example 2 including the positive electrode active material having a nickel content of more than 0.87, dQ / dV intensity was measured to be high at 4.0 V or higher, and it was confirmed that a phase transition from H2 to H3 occurred.
아울러, 도 5를 참조하면, 50회째의 사이클에서, 비교예 1 및 2에 따른 리튬 이차 전지와 비교할 때, 실시예 1 및 2에 따른 리튬 이차 전지는 우수한 수명 특성을 나타내는 것을 확인할 수 있었다.In addition, referring to FIG. 5, in the 50th cycle, when compared with the lithium secondary batteries according to Comparative Examples 1 and 2, it was confirmed that the lithium secondary batteries according to Examples 1 and 2 exhibited excellent life characteristics.
실험예Experimental Example 3  3
실시예 1 및 비교예 1에 따라 제조된 양극 활물질에 대하여 Cu-Kα를 사용한 x-선 회절(XRD) 분석을 실시하고, 결과를 도 6 내지 도 8에 나타내었다. X-ray diffraction (XRD) analysis using Cu-Kα was performed on the cathode active materials prepared according to Example 1 and Comparative Example 1, and the results are shown in FIGS. 6 to 8.
도 6을 참조하면, x-선 스펙트럼 확인 결과 실시예 1에 따른 양극 활물질은 25도(°) 내지 38도(°) 범위에서 (101)면의 회절 피크 외에 다른 회절 피크를 갖는 않는 것을 확인할 수 있었다. Referring to FIG. 6, as a result of x-ray spectrum checking, it was confirmed that the cathode active material according to Example 1 had no diffraction peak other than the diffraction peak of the (101) plane in the range of 25 degrees (°) to 38 degrees (°). there was.
따라서, 실시예 1에 따른 양극 활물질의 경우 R-3m 결정 구조 이외의 부가상, 즉 불순물이 존재하지 않는 것을 확인할 수 있었다. Therefore, in the positive electrode active material according to Example 1, it was confirmed that additional phases other than the R-3m crystal structure, that is, no impurities were present.
그러나, 도 7 및 도 7 중 2θ=27도(°) 내지 39도(°) 범위에 대한 확대도인 도 8을 참조하면, 비교예 1에 따른 양극 활물질은 25도(°) 내지 38도(°) 범위에서 (101)면의 회절 피크 외에도 Co3O4에 대한 회절 피크를 갖는 것을 확인할 수 있었다.However, referring to FIG. 8, which is an enlarged view of 2θ = 27 degrees (°) to 39 degrees (°) of FIGS. 7 and 7, the cathode active material according to Comparative Example 1 is 25 degrees (°) to 38 degrees ( It was confirmed that the diffraction peak for Co 3 O 4 in addition to the diffraction peak of the (101) plane in the range (°).
이상으로 본 발명에 관한 바람직한 실시 예를 설명하였으나, 본 발명은 상기 실시 예에 한정되지 아니하며, 본 발명의 실시 예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.
[부호의 설명][Description of the code]
100: 리튬 이차 전지100: lithium secondary battery
10: 양극10: anode
20: 음극20: cathode
30: 세퍼레이터30: separator
40: 전극 조립체40: electrode assembly
50: 케이스50: case

Claims (8)

  1. 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하는 리튬 이차 전지용 양극 활물질.A cathode active material for a lithium secondary battery comprising a lithium metal oxide represented by the following Formula 1.
    [화학식 1][Formula 1]
    Lip(NixCoyMez)O2 Li p (Ni x Co y Me z ) O 2
    (상기 화학식 1에서, 0.9 ≤ p ≤ 1.1, 0.81 ≤ x ≤ 0.87, 0 < y ≤ 0.3, 0 < z ≤ 0.3, x + y + z =1이고, (In Formula 1, 0.9 ≦ p ≦ 1.1, 0.81 ≦ x ≦ 0.87, 0 <y ≦ 0.3, 0 <z ≦ 0.3, x + y + z = 1,
    Me는 Al, Mn, Mg, Ti 및 Zr 중 적어도 하나임.)Me is at least one of Al, Mn, Mg, Ti and Zr.)
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1에서, 상기 Li 및 상기 Ni+Co+Me의 몰비는 1.05:1.0 내지 0.95:1.0인 리튬 이차 전지용 양극 활물질.In Formula 1, the molar ratio of the Li and the Ni + Co + Me is 1.05: 1.0 to 0.95: 1.0 positive electrode active material for a lithium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식 1에서, Me는 Al 또는 Mn인 리튬 이차 전지용 양극 활물질.In Formula 1, Me is Al or Mn positive electrode active material for a lithium secondary battery.
  4. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 X선 회절(XRD) 측정시, 2θ=25도(°) 내지 38도(°) 범위에서 (101)면의 회절 피크 외에 나타나는 다른 회절 피크를 갖지 않는 것인 리튬 이차 전지용 양극 활물질.The cathode active material does not have another diffraction peak appearing outside the diffraction peak of the (101) plane in the range of 2θ = 25 degrees (°) to 38 degrees (°) when measured by X-ray diffraction (XRD). .
  5. 제1항에 있어서,The method of claim 1,
    상기 리튬 금속 산화물은 상기 리튬 금속 산화물의 표면에 위치하는 리튬 화합물을 포함하고,The lithium metal oxide includes a lithium compound located on the surface of the lithium metal oxide,
    상기 리튬 화합물에 함유된 리튬의 함량은 상기 양극 활물질 100 중량부에 대하여 0.25 중량부 이하인 리튬 이차 전지용 양극 활물질.The lithium content of the lithium compound is 0.25 part by weight or less based on 100 parts by weight of the positive electrode active material.
  6. 제5항에 있어서,The method of claim 5,
    상기 리튬 화합물에 함유된 리튬의 함량은 상기 리튬 금속 산화물 100 중량부에 대하여 0.05 중량부 내지 0.15 중량부인 리튬 이차 전지용 양극 활물질.The lithium content in the lithium compound is 0.05 part by weight to 0.15 part by weight based on 100 parts by weight of the lithium metal oxide.
  7. 제5항에 있어서,The method of claim 5,
    상기 리튬 화합물은 Li2CO3, LiOH 또는 이들의 조합을 포함하는 리튬 이차 전지용 양극 활물질.The lithium compound is a lithium secondary battery positive electrode active material containing Li 2 CO 3 , LiOH or a combination thereof.
  8. 제1항 내지 제7항 중 어느 한 항의 양극 활물질을 포함하는 양극;A positive electrode comprising the positive electrode active material of any one of claims 1 to 7;
    음극 활물질을 포함하는 음극; 및A negative electrode including a negative electrode active material; And
    전해질Electrolyte
    을 포함하는 리튬 이차 전지. Lithium secondary battery comprising a.
PCT/KR2017/009653 2016-09-06 2017-09-04 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same WO2018048156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0114630 2016-09-06
KR1020160114630A KR20180027260A (en) 2016-09-06 2016-09-06 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same

Publications (1)

Publication Number Publication Date
WO2018048156A1 true WO2018048156A1 (en) 2018-03-15

Family

ID=61562318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009653 WO2018048156A1 (en) 2016-09-06 2017-09-04 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR20180027260A (en)
WO (1) WO2018048156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188092A1 (en) * 2018-03-30 2019-10-03 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and production method for same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316218B2 (en) 2019-05-03 2022-04-26 Unist(Ulsan National Institute Of Science And Technology) Lithium-air secondary battery
KR102307456B1 (en) * 2019-05-03 2021-09-30 울산과학기술원 A lithium-air secondary battery
US11437610B2 (en) 2019-05-03 2022-09-06 Unist(Ulsan National Institute Of Science And Technology) High capacity secondary battery
KR102306877B1 (en) * 2019-05-03 2021-09-29 울산과학기술원 A high capacity secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039000A (en) * 2011-07-26 2014-03-31 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
KR20150079362A (en) * 2013-12-31 2015-07-08 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR20150080199A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
JP5843046B2 (en) * 2013-07-17 2016-01-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing such positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using such positive electrode active material for non-aqueous electrolyte secondary battery
KR101640442B1 (en) * 2014-01-06 2016-07-18 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Cathode active material of Lithium-Nickel-Cobalt-Aluminum composite oxides, method of fabricating the same and lithium ion battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039000A (en) * 2011-07-26 2014-03-31 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP5843046B2 (en) * 2013-07-17 2016-01-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing such positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using such positive electrode active material for non-aqueous electrolyte secondary battery
KR20150079362A (en) * 2013-12-31 2015-07-08 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR20150080199A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR101640442B1 (en) * 2014-01-06 2016-07-18 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Cathode active material of Lithium-Nickel-Cobalt-Aluminum composite oxides, method of fabricating the same and lithium ion battery including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188092A1 (en) * 2018-03-30 2019-10-03 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and production method for same
JP2019179682A (en) * 2018-03-30 2019-10-17 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
KR20180027260A (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2018012821A1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR100814827B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
KR101056441B1 (en) Electrolyte for lithium secondary battery including additive and lithium secondary battery comprising same
US8003252B2 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR101264364B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
WO2018048156A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2018048155A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR101047450B1 (en) Anode active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising same
US8802300B2 (en) Rechargeable lithium battery
WO2019013521A2 (en) Lithium secondary battery
KR102342670B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2019050161A1 (en) Lithium secondary battery
WO2019050162A1 (en) Lithium secondary battery
WO2018038453A1 (en) Anode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2018074684A1 (en) Lithium secondary battery
WO2022108267A1 (en) Anode active material and lithium secondary battery comprising same
KR102114229B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2018084525A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
WO2021225321A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2018026153A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2019194407A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
KR20100065778A (en) Electrolyte for secondary lithium battery and secondary lithium battery using the same
WO2022097939A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018038509A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2022080809A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17849040

Country of ref document: EP

Kind code of ref document: A1