WO2019132054A1 - 에너지 저장장치를 이용한 최대수요전력 제어 시스템 - Google Patents

에너지 저장장치를 이용한 최대수요전력 제어 시스템 Download PDF

Info

Publication number
WO2019132054A1
WO2019132054A1 PCT/KR2017/015511 KR2017015511W WO2019132054A1 WO 2019132054 A1 WO2019132054 A1 WO 2019132054A1 KR 2017015511 W KR2017015511 W KR 2017015511W WO 2019132054 A1 WO2019132054 A1 WO 2019132054A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
energy storage
storage device
power
demand power
Prior art date
Application number
PCT/KR2017/015511
Other languages
English (en)
French (fr)
Inventor
이재규
Original Assignee
벽산파워 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 벽산파워 주식회사 filed Critical 벽산파워 주식회사
Publication of WO2019132054A1 publication Critical patent/WO2019132054A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a maximum demand power control system using an energy storage device and a method of operating the same.
  • KEPCO and the Korea Energy Management Corporation (KEMCO) and Korea Energy Management Corporation (KEMCO) have been conducting a direct control of the contracted power load at the summer peak in order to save energy and prevent large-scale power outages. And remote terminal devices. However, it has not been able to achieve a great effect due to the non-cooperation of electric power consumers who are concerned about damage and inconvenience caused by power outages caused by direct load control.
  • the maximum demand power controller has been rapidly expanded and distributed to government offices, public institutions, and education offices for the purpose of promoting the supply of high-efficiency energy equipments according to the energy use rationalization law and for the purpose of demand management in order to reduce electric charges of electric power consumers.
  • the maximum demand power controller is installed inside the switchgear.
  • the switchgear is also equipped with a cable, a fault automatic switch (ASS), a power fuse (PF), a meter transformer (MOF) It consists of a wattmeter (WHM), a transformer (TR), an ACB, a number of MCCBs, a number of magnet switches (MC), and an automatic switch (ATS).
  • the operation of the maximum demand power controller calculates the current power by receiving the pulse signal (WP: effective power amount, EOI: 15 minutes on demand) from the watt hour meter, calculates the predicted power by judging the power use trend, When the predicted power above a target power value is calculated, a plurality of electromagnetic switches (at least eight) provided in the device itself are used to control the load by controlling the plurality of electromagnetic switches, so that the target power value The power management function is performed so as not to exceed.
  • WP effective power amount
  • EOI 15 minutes on demand
  • the target is set as the expected maximum demand power consumption in a certain range minus the capacity of the energy storage device.
  • the frequency of exceeding the set target is not high, the operation ratio of the energy storage device is very low, and since the target is set in advance, the business can not cope with the economic fluctuation and the climate change appropriately. As a result, There is a problem that it is inevitable.
  • Patent Publication No. 10-1203148 Nov. 14, 2012
  • the present invention provides a maximum demand power control system capable of controlling a maximum demand power using an energy storage device.
  • a short-term demand prediction module for estimating a 15-minute average demand power in real time by measuring the amount of electric power used in a customer in real time, Calculate the standard usage amount, calculate the target usage module and energy that reflects the power difference between the electricity use amount on the morning and the reference consumption amount on the same day, and the difference between the average temperature of the previous N days and the temperature of the day, Estimating the expected exhaustion time of the battery in the energy storage device based on the real time operation data of the storage device, comparing the estimated exhaustion time with the end time of the operation, and operating the energy storage device by adjusting the target calculated by the target calculation module
  • the maximum demand power control module that controls the battery to be exhausted during Demand power control system using a storage device.
  • the short-term demand prediction module estimates the average demand power by the linear prediction method for the 15-minute average demand power from the accumulated power amount, calculates the demand power of the immediately preceding section by measuring the power consumption of the customer for the last 15 minutes,
  • the 15-minute average demand power can be predicted in real time by reflecting measured values at a certain rate.
  • the 15-minute average demand power predicted in real time can be calculated by the following equation:
  • Q is the linear predicted value
  • S is the demand power in the immediately preceding period
  • T is the time corresponding to the unstable initial portion of the prediction interval.
  • the SOC change rate of the battery in the energy storage device is calculated by the average moving method, the recovery period of the SOC of the battery in the energy storage device is calculated from the past data, And compares the battery exhaustion time and the task end time to adjust the target if the battery exhaust time is faster than the task end time.
  • the battery depletion time can be estimated by the following equation:
  • T e SOC min is the minimum SOC required for operation
  • SOC R is the amount of SOC restored at lunch time
  • SOC / DELTA t (t) is the remaining operating time of the battery Is the SOC change rate.
  • a maximum demand power control system using an energy storage device can be implemented.
  • the management is easy and the savings can be maximized.
  • Saving the maximum demand power by using the energy storage device can save the base charge part of the electricity price of the customer.
  • it is economically effective Big.
  • it is possible to control not to exceed the power facility capacity of the customer, so that it is possible to delay the facility addition time, and the socioeconomic effect is also great.
  • the energy storage device when used for maximum load control of a customer, it is possible to effectively control the energy storage device to maximize the operation ratio of the energy storage device and maximize the demand power of the customer.
  • FIG. 1 is a schematic diagram illustrating a maximum demand power control system using an energy storage device according to an aspect of the present invention.
  • 2 is a graph for explaining a problem of the conventional short-term demand power prediction.
  • 3 is a schematic diagram showing a method of correcting the difference between the N-day average demand power and the demand power in the morning to calculate the target demand power every day.
  • FIG. 4 is a flowchart schematically illustrating an operation method of a maximum demand power control system according to an aspect of the present invention.
  • the present invention relates to a maximum demand power control system using an energy storage device and a method of operating the same.
  • FIG. 1 shows a maximum demand power control system according to an aspect of the present invention.
  • FIG. 2 is a graph illustrating a problem of the conventional short-term demand power prediction.
  • FIG. 3 shows a method of correcting the difference between the N-day average demand power and the demand power of the morning in order to calculate the daily target demand power.
  • FIG. 4 is a flowchart illustrating a method of operating a maximum demand power control system according to an embodiment of the present invention.
  • the present invention is characterized in that an energy storage device is used in a maximum demand power control system.
  • An energy storage system (ESS) is a device that receives electricity from a renewable energy source or system, and then sends electricity to the receiver or system when needed.
  • the energy storage system is a great help in the operation of the power grid, which needs to balance demand and supply.
  • energy storage devices that use electrochemical batteries can function as loads and power sources, have a very fast reaction time, are simple and quick to install, and use the same technology as electric car batteries The advantage of economies of scale is considered as an advantage.
  • Energy storage systems are often installed in electric power transmission companies, but they are also being introduced for factory or building customers to reduce their electricity costs by streamlining their use of electric power.
  • the peak load can be lowered by changing the energy use pattern by using the charge / discharge function of the energy storage device. This not only reduces the electricity bill, but also reduces the necessity of increasing the electric power facilities due to the increase of electricity demand, and also provides the effect of preventing the instability of electric power quality due to the balance of supply and reception of the consumers.
  • the energy storage device discharges as much as it. If the target is below the target value and the electric energy charge is low, the energy storage device is charged to the target value. Can increase.
  • the 15-minute average demand electric power which is the method of measuring the demand electric power
  • the second is set the target of the maximum demand electric power
  • the target must be able to be adjusted in real time so that the battery is not fully discharged. If the short-term prediction of the 15-minute average demand power is not accurate, the accuracy of the maximum demand power control may be degraded.
  • the target value of the maximum demand power is set too high, the performance of the energy storage device can not be fully utilized. If the target value is set too low, the battery may be exhausted and the maximum demand power may not be controlled.
  • the battery may be discharged during operation and the control system can no longer be utilized. Based on accurate short-term demand forecasts and real-time operational data, it is possible to estimate the estimated time of battery exhaustion and to re-adjust the target.
  • one aspect of the present invention may be a maximum demand power control system using an energy storage device including a short-term demand prediction module, a target calculation module, and a maximum demand power control module.
  • the short-term demand forecast module it is possible to predict the 15-minute average demand power, which is the standard of the basic fare, in real time.
  • the 15-minute average demand power can be calculated using the precision wattmeter installed in the customer. Based on this, the average demand power predicted at the end of the 15-minute interval can be calculated by the linear prediction method.
  • the accumulated power amount up to that time is referred to as P (t)
  • the remaining time of the 15-minute section is referred to as R (t)
  • the time of the measurement period is denoted by? T, .
  • the formula for obtaining the predicted power Q is as follows.
  • the prediction average is corrected by reflecting the average previous demand power and the linear prediction value at a certain ratio.
  • the rate of reflection reflects the previous average demand power in the first part of the section and can increase the reflection rate of the linear prediction value as the section goes backward.
  • the stable predicted value Q ' is calculated by reflecting the linear predicted value Q and the immediately preceding section demand power S at a certain ratio Can be obtained.
  • f (t) can be defined as follows.
  • T denotes a time corresponding to an unstable initial part of a prediction interval, and can be set to 300 seconds in general.
  • the power consumption of the next day of the customer can be estimated and set as a target value. Prediction of power consumption the next day of the customer can have a large correlation with the usage amount of the previous day. However, in order to reduce the volatility, the reference usage can be calculated by averaging the 15 minute usage for the previous N days. If the next day is a weekday, N weekdays immediately before are selected, and if it is a holiday, N holidays immediately before can be selected. N is usually 5 to 10.
  • each adjustment factor it is possible to compare the amount of electricity used in the morning with the standard usage amount and reflect the difference in the target value. It is appropriate to make this adjustment one hour after the customer starts operating. In addition, the difference between the average temperature of the previous N days and the current day temperature may be reflected in the target value.
  • the ratio of each adjustment factor can be automatically adjusted by learning the correlation between the reflectance ratio and the actual maximum demand power while operating the system. However, it can be intuitively determined when the system is opened.
  • the target adjusted through the target calculation module is transmitted to the maximum demand power module and can be used as a control standard of the energy storage device on the same day.
  • the maximum demand power control module can control the maximum demand power saving to the extent that the remaining battery capacity of the energy storage device installed in the customer is not exhausted.
  • the battery may be drained prematurely.
  • the energy storage device can not perform further discharging, and there is a problem in that it can not cope with a load exceeding a target generated later.
  • the rate of change of the state of charge (SOC) of the battery can be calculated and maintained according to a moving average method. Based on this SOC rate of change, it is possible to calculate how long the energy storage device can remain operational if the current load condition persists.
  • T e the remaining operation time
  • SOC is the battery residual ratio of the energy storage device
  • SOC min is the minimum SOC required for operation
  • SOC R is the amount of SOC restored at lunch time. Since the restored SOC R amount differs depending on the customer, it can be calculated based on past data.
  • the restoration amount is calculated by averaging the SOC upper limit value in units of 15 minutes, and can be applied only when there is a later restoration amount on the present time basis.
  • the SOC change rate ( ⁇ SOC / ⁇ t) can be calculated using the 5-minute moving average.
  • the target must be adjusted up to decrease the rate of SOC change. If you need to upgrade the target every 5 minutes, you can increase the power converter capacity by 1 / 20th. This value may vary depending on the nature of the customer.
  • the SOC change rate per minute is calculated in real time, and the time for which the battery is consumed is estimated by correcting the time zone (work time) in which the maximum demand will not appear and the lunch time. If the estimated time of battery exhaustion is before the time of work, the maximum demand power target value can be adjusted upward to increase the estimated battery exhaustion time. This process can be repeated for a certain period of time to prevent the battery from being exhausted as a whole.
  • the target demand power is automatically calculated based on past operation statistics and feedback, the best savings can be obtained even if the maximum demand power is reduced every day or month. By doing so, it is possible to increase the operation rate of the energy storage device and to achieve the maximum demand power saving even for the usage pattern that is beyond the long-term prediction.

Abstract

본 발명은 에너지 저장장치를 이용하여 수용가의 최대수요전력을 제어하는 시스에 관한 것이다. 본 발명은 전력량을 실시간으로 측정하여 15분 평균수요전력을 실시간으로 예측하는 단기 수요예측 모듈, 직전 N 개의 날에 대하여 15분 평균사용전력을 평균하여 기준 사용량을 산출하고, 당일 아침의 전력 사용량과 기준 사용량과의 전력 차이 및 직전 N 개 날의 평균 기온과 당일 기온의 기온 차이를 목표에 반영하여 다음날의 목표를 산정하는 목표산출 모듈 및 실시간 운전 데이터를 바탕으로 배터리의 예상 소진시간을 산정하고 소진시간과 업무 종료시간을 비교하여 목표를 조정함으로써 에너지 저장장치를 운용하는 중에 배터리가 소진되지 않도록 제어하는 최대수요전력제어 모듈을 포함하는 것을 특징으로 한다. 본 발명에 의하면 에너지 저장장치를 효과적으로 제어하여 에너지 저장장치의 운용율을 최대로 하면서 수용가의 수요전력을 최대로 낮출 수 있다.

Description

에너지 저장장치를 이용한 최대수요전력 제어 시스템
본 발명은 에너지 저장장치를 이용한 최대수요전력 제어 시스템 및 그 작동방법에 관한 것이다.
국제유가 상승, 노후 발전설비의 잦은 고장발생, 신규 원자력발전소의 건설반대 등 국내외적으로 에너지로 인한 불안요인은 갈수록 가증되고 현실화되고 있다. 특히, 전기에너지는 한번 생산된 전기를 대용량 저장시켜 사용하기가 불가능한 특성이 있고, 전력사용량은 매년 증가추세에 있어 전력수용가에서도 전부하 사용 시 필요한 최대수요전력을 감안하여 전력예비율을 확보하고, 추가 증설을 실시하고 있는 상황인데 반해 기존 발전설비는 노후화로 인하여 잦은 고장이 발생하고, 신규 발전소 건설은 환경오염으로 인한 환경단체의 반대와 건설기간의 장기화, 예산부족으로 인해 날이 갈수록 전력부족으로 인한 대규모 정전사태의 우려가 커지고 있는 실정으로 이를 대비한 다양한 에너지 절약방안이 대두되고 있다.
한국전력공사와 에너지관리공단에서는 에너지절약 및 대규모 정전사태 방지를 위하여 하계피크 시 사전에 계약된 전력부하에 대한 직접제어를 실시하기 위하여 2002년도부터 수년간 100kW이상 대규모 전력수용가를 중심으로 최대수요전력제어기와 원격단말장치를 무상 보급하는 직접부하제어 사업을 실시하였지만 직접부하제어 실시로 발생될 정전으로 인한 피해와 불편을 우려한 전력수용가의 비협조로 인하여 큰 실효성을 거두지는 못하였다.
하지만, 최대수요전력제어기는 에너지이용 합리화법에 따른 고효율에너지기자재 보급촉진에 관한 규정 및 전력수용가의 전기요금 절감을 위한 자체적인 수요관리 목적으로 관공서 및 공공기관, 교육청을 중심으로 빠르게 확대 보급되었으며, 현재는 민간 전력수용가에도 많은 대수가 설치, 운용되어 에너지절약 방안에 사용되고 있다.
일반적으로, 최대수요전력제어기는 수배전반 내부에 설치되어 있으며, 수배전반은 최대수요전력제어기 이외에도 케이블(Cable), 고장구간 자동개폐기(ASS), 전력용 퓨우즈(PF), 계기용 변성기(MOF), 전력량계(WHM), 변압기(TR), 기중차단기(ACB), 다수의 배선용차단기(MCCB), 다수의 마그네트 스위치(MC), 자동절체스위치(ATS) 등으로 구성되어 있다. 최대수요전력제어기의 동작은 전력량계로부터 펄스신호(WP: 유효전력량, EOI: 15분 수요시한)를 입력 받아 현재전력을 계산하고, 전력사용 추세를 판단하여 예측전력을 계산하며, 전력수용가에서 설정한 목표전력치 이상의 예측전력이 계산되면 기기 자체에 구비된 다수의 접점(최소 8개)을 이용하여 다수의 전자개폐기를 제어하여 부하제어를 실시함으로써 15분 수요시한 동안 전력수용가의 목표전력치를 초과하지 않도록 전력관리 기능을 수행한다. 하지만, 이와 같이 부하에 공급되는 전력을 에너지절약을 위한 목적으로 단순히 제어함으로써 단시간 동안 피크 전력을 낮춰 전기요금 절감효과를 거둘 수는 있지만 제어되는 장시간 동안 사용자는 큰 불편함을 겪을 수 있고, 또한 갑작스럽게 제어된 전력을 사용해야 할 상황이 발생할 수 있는 문제점이 있다.
에너지 저장장치를 최대수요전력 절감용으로 사용하는 경우, 일정 범위에서 예상되는 최대수요전력 예상값에서 에너지 저장장치의 용량을 뺀 만큼을 목표로 설정한다. 이 경우 설정된 목표를 넘어가는 빈도가 높지 않기 때문에 에너지 저장장치의 운용률이 매우 낮고, 또한 미리 목표를 정하기 때문에 사업체의 경기 변동, 기후 변동 등에 적절하게 대응할 수 없어 결과적으로 수요전력 절감에 있어서 비효율적일 수 밖에 없다는 문제가 있다.
선행기술문헌:
1. 공개특허공보 제10-2010-0131293호(2010.12.15.)
2. 등록특허공보 제10-1203148호(2012.11.14.)
본 발명은 에너지저장장치를 이용하여 최대수요전력을 제어할 수 있는 최대수요전력 제어 시스템을 제공하고자 한다.
상기 과제를 해결하기 위한 본 발명의 일 측면은, 수용가에서 사용하는 전력량을 실시간으로 측정하여 15분 평균수요전력을 실시간으로 예측하는 단기 수요예측 모듈, 직전 N 개의 날에 대하여 15분 평균사용전력을 평균하여 기준 사용량을 산출하고, 당일 아침의 전력 사용량과 기준 사용량과의 전력 차이 및 직전 N 개 날의 평균 기온과 당일 기온의 기온 차이를 목표에 반영하여 다음날의 목표를 산정하는 목표산출 모듈 및 에너지 저장장치의 실시간 운전 데이터를 바탕으로 에너지 저장장치 내 배터리의 예상 소진시간을 산정하고 산정된 예상 소진시간과 업무 종료시간을 비교하여 상기 목표산출 모듈에서 산정된 목표를 조정함으로써 에너지 저장장치를 운용하는 중에 배터리가 소진되지 않도록 제어하는 최대수요전력제어 모듈을 포함하는 에너지 저장장치를 이용한 최대수요전력제어 시스템일 수 있다.
단기 수요예측 모듈은, 누적 전력량으로부터 15분 평균수요전력을 선형예측법에 의하여 평균수요전력을 예측하고, 직전 15분 동안 수용가의 전력 사용량을 측정하여 직전 구간 수요전력을 산출하고, 선형 예측값과 직전 측정값을 일정 비율로 반영하여 15분 평균수요전력을 실시간으로 예측할 수 있다.
실시간으로 예측되는 15분 평균수요전력은, 하기의 식에 의하여 계산될 수 있다:
Figure PCTKR2017015511-appb-I000001
Figure PCTKR2017015511-appb-I000002
여기서,
Figure PCTKR2017015511-appb-I000003
이고, Q 는 선형 예측값이고, S는 직전 구간 수요전력이고, T는 예측구간 중 불안정한 초기 부분에 해당하는 시간임.
최대수요전력제어 모듈에서는 평균이동법에 의하여 에너지 저장장치 내 배터리의 SOC 변화율을 산출하고 과거의 데이터로부터 에너지 저장장치 내 배터리의 SOC의 복원구간을 산출하여 현재시각을 기준으로 배터리가 방전되는 소진시간을 산출하고, 배터리 소진시간과 업무종료시간을 비교하여 배터리 소진시간이 상기 업무종료시간보다 빠른 경우 목표를 상향 조정할 수 있다.
배터리 소진시간은 하기의 식에 의하여 산정될 수 있다:
Figure PCTKR2017015511-appb-I000004
여기서, Te 는 배터리의 남아있는 동작시간(배터리 소진시간)이고, SOC는 에너지 저장장치의 배터리 잔존비율이고, SOCmin은 운용에 필요한 최저 SOC 이고, SOCR은 점심시간에 복원되는 SOC량이고, ΔSOC/Δt 는 SOC변화율임.
본 발명에 의하면, 에너지저장장치를 이용한 최대수요전력 제어 시스템을 구현할 수 있다.
본 발명에 의하면, 수용가의 실제 전력사용패턴의 히스토리를 기반으로 목표를 산정하기 때문에 관리가 용이하고 절감량도 극대화할 수 있다. 에너지저장장치를 이용하여 최대수요전력을 절감하면 수용가의 전기요금 중에서 기본요금 부분을 절약할 수 있는데, 특히 미국과 같이 월별로 최대수요전력을 산출하여 기본요금을 산정하는 경우에는 경제적인 효과가 매우 크다. 또한 수용가의 전력설비 용량을 초과하지 않도록 제어할 수 있어서, 설비 증설 시기를 지연시킬 수 있어서 사회 경제적 효과도 매우 크다.
본 발명에 의하면, 에너지 저장장치를 수용가의 최대부하 제어를 위해 사용할 때, 에너지 저장장치를 효과적으로 제어하여 에너지 저장장치의 운용율을 최대로 하면서 수용가의 수요전력을 최대로 낮출 수 있다.
도 1은 본 발명의 일 측면에 따른 에너지 저장장치를 이용한 최대수요전력 제어 시스템을 나타낸 모식도이다.
도 2는 기존 단기 수요전력예측의 문제점을 설명하기 위한 그래프이다.
도 3은 매일 목표 수요전력을 산출하기 위해 N일 평균 수요전력과 당일 아침의 수요전력의 차이를 보정하는 방법을 도시한 모식도이다.
도 4는 본 발명의 일 측면에 따른 최대수요전력 제어 시스템의 작동방법을 모식적으로 도시한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 본 발명의 실시 형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
본 발명은 에너지 저장장치를 이용한 최대수요전력 제어 시스템 및 그 작동방법에 관한 것이다.
도 1에는 본 발명의 일 측면에 따른 최대수요전력 제어 시스템을 나타내었다. 도 2에는 기존 단기 수요전력예측의 문제점을 설명하기 위한 그래프를 도시하였다. 도 3에는 매일의 목표 수요전력을 산출하기 위해 N일 평균 수요전력과 당일 아침의 수요전력의 차이를 보정하는 방법을 도시하였다. 도 4에는 본 발명의 일 측면에 따른 최대수요전력 제어 시스템의 작동방법을 모식적으로 도시한 흐름도를 나타내었다.
본 발명에서는 최대수요전력제어 시스템에 에너지 저장장치를 이용한다는 점을 특징으로 한다. 에너지 저장시스템(ESS, Energy Storage System)은 신재생에너지원이나 계통으로부터 전기를 받아 저장했다가, 필요할 때에 수용가나 계통에 전기를 내보낼 수 있는 장치이다. 에너지 저장시스템은 수요과 공급의 균형을 이루어야 하는 전력망 운용에 큰 도움을 준다. 특히 전기화학 배터리를 사용하는 에너지 저장장치는 부하로서도 기능하고 발전원으로서도 기능할 수 있다는 점, 반응 시간이 매우 빠르다는 점, 설치가 간편하고 빠르다는 점, 전기자동차 배터리와 동일한 기술을 사용하기 때문에 규모의 경제를 이룰 수 있다는 점이 장점으로 꼽힌다. 에너지 저장시스템은 전력사업자가 송변전부에 설치하기도 하지만, 공장이나 빌딩 수용가가 자신의 전력 사용을 효율화하여 전기요금을 절감하려는 목적으로도 많이 도입되고 있다. 특히 전기요금 중 기본요금은 최대부하로 결정되기 때문에, 에너지 저장장치의 충방전 기능을 이용하여 에너지 사용패턴을 변경함으로써 최대부하를 낮출 수 있다. 이는 전기요금을 절감할 수 있을 뿐만 아니라, 전기수요 증대에 따른 전력설비의 증설 필요성을 줄이고, 수용가의 공급 및 수용의 균형으로 인하여 전력 품질의 불안정성을 방지하는 효과도 제공할 수 있다.
수용가에 설치된 전력량계를 통하여 현재 부하를 읽고, 이것이 목표치를 넘어설 경우 에너지 저장장치에서는 그만큼 방전을 하고, 목표치에 미달할 경우 그리고 전력량 요금이 싼 경우에는 에너저 저장장치를 충전하여 목표치까지 전력 사용을 늘릴 수 있다.
에너지 저장장치를 통해 최대수요전력을 제어하기 위해서는, 첫째 수요전력의 측정방법인 15분 평균수요전력을 정확하게 단기 예측하고, 둘째 최대수요전력의 목표를 설정하고, 셋째 목표를 기준으로 충방전 운전 중에 배터리가 완전 방전이 되지 않도록 목표를 실시간으로 조정할 수 있어야 한다. 15분 평균수요전력의 단기예측이 정확하지 않을 경우 최대수요전력 제어의 정확성이 저하될 수 있다. 최대수요전력의 목표치를 너무 높게 설정할 경우 에너지 저장장치의 성능을 완전하게 활용하지 못하고, 너무 낮게 설정할 경우 배터리가 소진되어 최대수요전력을 제어하지 못하는 경우가 생길 수 있다. 실시간으로 에너지 저장장치 내 배터리의 SOC를 관리하지 않으면 운용 중에 배터리가 방전되어 더 이상 제어 시스템을 활용할 수 없는 문제가 발생할 수 있다. 정확한 단기 수요예측과 실시간 운전 데이터를 바탕으로 배터리 소진 예상 시간을 산정하고 이를 통하여 목표를 재조정할 수 있다.
도 1을 참조하면, 본 발명의 일 측면은, 단기 수요예측 모듈, 목표산출 모듈 및 최대수요전력제어 모듈을 포함하는 에너지 저장장치를 이용한 최대수요전력 제어 시스템일 수 있다.
단기 수요예측 모듈에서는 기본요금의 책정 기준인 15분 평균수요전력을 실시간으로 예측할 수 있다. 15분 평균수요전력은 수용가에 설치된 정밀 전력량계를 이용하여 추이를 계산할 수 있다. 전력량계를 통해 실시간으로 누적 전력량의 추이를 얻어내고, 이를 바탕으로 선형예측법에 의하여 15분 구간의 끝 시점에서 예측되는 평균수요전력을 계산할 수 있다.
시각 t에 대해 그때까지의 누적 전력량을 P(t)라 하고, 15분 구간의 남은 시간을 R(t)라 하고, 해당 측정 주기의 시간을 △t, 그 시간 동안의 전력량 변화를 △P라고 했을 때, 예측 전력 Q를 구하는 식은 다음과 같다.
Figure PCTKR2017015511-appb-I000005
하지만 이 방식으로 예측 전력을 구할 경우, 도 2에 도시된 바와 같이, 15분 구간의 앞부분인 경우 작은 변동에도 큰 예측값 변동이 발생하는 문제가 있다. 이 예측값을 기반으로 에너지 저장장치를 운전할 경우, 최대 충전과 최대 방전을 반복하는 경우가 빈번히 발생하여 수용가 내의 계통 불안정 또는 에너지 저장장치의 내구성 저하 등 나쁜 영향을 줄 수 있다.
이처럼, 선형예측법이 가지는 초기 예측의 불안정성을 해결할 필요가 있는데, 본 발명에서는, 직전 평균수요전력과 선형예측값을 일정 비율로 반영하여 예측의 안정성을 높이고자 하였다. 반영하는 비율은 구간의 앞부분에서는 직전 평균수요전력을 많이 반영하고, 구간의 뒤로 갈수록 선형예측값의 반영 비율을 높일 수 있다.
구체적으로, 현재 구간의 평균수요전력은, 이전 구간의 평균수요전력과 큰 상관관계를 갖는다는 연구 결과를 토대로, 선형예측 값 Q와 직전 구간 수요전력 S를 일정 비율로 반영함으로써 안정된 예측값 Q'를 구할 수 있다.
Figure PCTKR2017015511-appb-I000006
여기서 f(t)는 다음과 같이 정의할 수 있다.
Figure PCTKR2017015511-appb-I000007
T는 예측구간 중에서 불안정한 초기부분에 해당하는 시간을 의미하며, 보통 300초로 설정할 수 있다.
목표산출 모듈에서는, 수용가의 다음날 전력 사용량 예측하여 이를 목표치로 할 수 있다. 수용가의 다음날 전력 사용량 예측은 직전 날의 사용량과 큰 상관관계를 가질 수 있다. 하지만, 변동성을 줄이기 위해 직전 N개의 날에 대하여 15분 사용량을 평균 내어 기준 사용량을 산출할 수 있다. 다음날이 평일인 경우 직전 N개의 평일을 선택하고, 휴일인 경우는 직전 N개의 휴일을 선택할 수 있다. N은 보통 5~10 이다.
또 다른 조정요소로서, 당일 아침의 전력 사용량과 기준 사용량을 비교하여 그 차이를 목표치에 반영할 수 있다. 이 조정을 하는 것은 수용가의 영업시작 후 1시간이 적절하다. 그 외에, 직전 N 일의 평균기온과 당일 기온의 차이를 목표치에 반영할 수도 있다. 각 조정요소의 반영 비율은 시스템을 운영하면서 반영 비율과 실제 최대수요전력의 상관관계를 학습하여 그 수치를 자동으로 조정할 수 있다. 하지만, 시스템 개통시 직관적으로 결정할 수도 있다.
이렇게 목표산출 모듈을 통해 조정된 목표는 최대수요전력 모듈에 전달되어 당일 에너지 저장장치의 제어 기준으로 사용될 될 수 있다.
최대수요전력제어 모듈은 수용가에 설치된 에너지 저장장치의 배터리 잔존량이 소진되지 않는 한도에서 최대한의 수요전력을 절감하도록 제어할 수 있다.
목표 수요전력이 현재 수용가의 전력 사용량에 비해 너무 낮게 설정된 경우, 배터리가 조기에 소진될 수 있다. 이 경우 에너지 저장장치는 더 이상의 방전을 할 수 없어, 이후 발생하는 목표를 상회하는 부하에 대해 대처를 하지 못한다는 문제가 있다.
이를 방지하기 위해서는 본 발명에서는 배터리 SOC(State of Charge)의 변화율을 이동평균법을 따라 계산하며 유지할 수 있다. 이 SOC 변화율에 기반하여 현재의 부하 상태가 지속될 경우 얼마 동안 에너지 저장장치의 작동 가능상태를 유지할 수 있는지 계산할 수 있다. 현재 방전 추세를 유지했을 때, 남아있는 동작시간을 Te로 정의할 때 다음과 같은 식으로 구할 수 있다.
Figure PCTKR2017015511-appb-I000008
SOC는 에너지 저장장치의 배터리 잔존비율이며, SOCmin은 운용에 필요한 최저 SOC, SOCR은 점심시간에 복원되는 SOC량을 의미한다. 수용가에 따라 복원되는 시간과 복원되는 SOCR량이 다르기 때문에 이에 대하여는 과거 데이터를 기준으로 집계하여 산정할 수 있다. 복원량은 15분 단위로 SOC 상한값을 평균내어 산출하며, 현재 시간 기준으로 이후의 복원량이 있는 경우에만 적용할 수 있다. SOC변화율(ΔSOC/Δt)은 5분 단위 이동평균을 사용하여 산출할 수 있다.
동작시간 Te가 업무 종료시간(또는 더 이상 최대전력이 나오지 않을 시간) 이전이라면 목표를 상향 조정하여 SOC 변화율을 떨어뜨려야 한다. 매 5분마다 이 평가를 진행해서 목표를 상향 조정해야 한다면 전력 변환장치 용량의 1/20 정도 상향 조정할 수 있다. 이 값은 수용가의 특성에 따라 달라질 수 있다.
요컨대, 분당 SOC 변화율을 실시간으로 산정하고, 최대수요가 나타나지 않을 시간대(퇴근시간)와 점심시간을 보정하여 배터리가 소진될 시간을 예상한다. 이 배터리 소진 예상시간이 퇴근시간 이전이라면 최대수요전력의 목표치를 상향 조정하여 배터리 소진 예상 시간을 늘릴 수 있다. 이런 과정을 일정 시간 반복하여 전체적으로 배터리가 소진되지 않도록 할 수 있다.
목표 수요전력을 고정하지 않고 매일 매일의 운전 결과에 기초하여 학습을 통하여 목표 수요전력을 조정함으로써 에너지 저장장치의 용량을 넘어서지 않는 범위에서 가장 큰 절감을 얻을 수 있다.
이렇게 목표 수요전력을 과거의 운용 통계와 피드백을 기반으로 자동으로 산정하는 경우 매일 매일 최선을 다해 최대수요전력을 절감하면 월 또는 년 단위에서도 최선의 절감 결과를 얻을 수 있다. 이렇게 함으로서 에너지 저장장치의 운용율을 높이고, 장기 예측을 벗어나는 사용패턴에 대해서도 최대의 수요전력 절감을 이룰 수 있다.
본 발명에서 사용하는 용어는 특정한 실시형태를 설명하기 위한 것으로 본 발명을 한정하고자 하는 것이 아니다. 단수의 표현은 문맥상 명백하지 않는 한, 복수의 의미를 포함한다고 보아야 할 것이다. "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재한다는 것을 의미하는 것이지, 이를 배제하기 위한 것이 아니다. 본 발명은 상술한 실시형태 및 첨부한 도면에 의하여 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술 분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 보아야 할 것이다.

Claims (5)

  1. 에너지 저장장치를 이용하여 수용가의 최대수요전력을 제어하는 시스템에 있어서,
    수용가에서 사용하는 전력량을 실시간으로 측정하여 15분 평균수요전력을 실시간으로 예측하는 단기 수요예측 모듈;
    직전 N 개의 날에 대하여 15분 평균사용전력을 평균하여 기준 사용량을 산출하고, 당일 아침의 전력 사용량과 기준 사용량과의 전력 차이 및 직전 N 개 날의 평균 기온과 당일 기온의 기온 차이를 목표에 반영하여 다음날의 목표를 산정하는 목표산출 모듈; 및
    에너지 저장장치의 실시간 운전 데이터를 바탕으로 에너지 저장장치 내 배터리의 예상 소진시간을 산정하고 산정된 예상 소진시간과 업무 종료시간을 비교하여 상기 목표산출 모듈에서 산정된 목표를 조정함으로써 에너지저장장치를 운용하는 중에 배터리가 소진되지 않도록 제어하는 최대수요전력제어 모듈;
    을 포함하는, 에너지 저장장치를 이용한 최대수요전력제어 시스템.
  2. 제1항에 있어서, 상기 단기 수요예측 모듈은,
    누적 전력량으로부터 15분 평균수요전력을 선형예측법에 의하여 평균수요전력을 예측하고, 직전 15분 동안 수용가의 전력 사용량을 측정하여 직전 구간 수요전력을 산출하고, 선형 예측값과 직전 측정값을 일정 비율로 반영하여 15분 평균수요전력을 실시간으로 예측하는, 에너지 저장장치를 이용한 최대수요전력제어 시스템.
  3. 제2항에 있어서,
    실시간으로 예측되는 15분 평균수요전력은, 하기의 식에 의하여 계산되는, 에너지 저장장치를 이용한 최대수요전력제어 시스템:
    Figure PCTKR2017015511-appb-I000009
    Figure PCTKR2017015511-appb-I000010
    여기서,
    Figure PCTKR2017015511-appb-I000011
    이고, Q 는 선형 예측값이고, S는 직전 구간 수요전력이고, T는 예측구간 중 불안정한 초기 부분에 해당하는 시간임.
  4. 제1항에 있어서, 최대수요전력제어 모듈은,
    평균이동법에 의하여 에너지 저장장치 내 배터리의 SOC 변화율을 산출하고, 과거의 데이터로부터 에너지 저장장치 내 배터리의 SOC의 복원구간을 산출하여 현재시각을 기준으로 배터리가 방전되는 소진시간을 산출하고, 배터리 소진시간과 업무종료시간을 비교하여 상기 배터리 소진시간이 상기 업무종료시간보다 빠른 경우 목표를 상향 조정하는, 에너지 저장장치를 이용한 최대수요전력제어 시스템.
  5. 제4항에 있어서,
    상기 배터리 소진시간은 하기의 식에 의하여 산정되는, 에너지 저장장치를 이용한 최대수요전력제어 시스템:
    Figure PCTKR2017015511-appb-I000012
    여기서, Te 는 배터리의 남아있는 동작시간(배터리 소진시간)이고, SOC는 에너지 저장장치의 배터리 잔존비율이고, SOCmin은 운용에 필요한 최저 SOC 이고, SOCR은 점심시간에 복원되는 SOC량이고, ΔSOC/Δt 는 SOC변화율임.
PCT/KR2017/015511 2017-12-26 2017-12-27 에너지 저장장치를 이용한 최대수요전력 제어 시스템 WO2019132054A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170179130A KR101915416B1 (ko) 2017-12-26 2017-12-26 에너지 저장장치를 이용한 최대수요전력 제어 시스템
KR10-2017-0179130 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019132054A1 true WO2019132054A1 (ko) 2019-07-04

Family

ID=65017074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015511 WO2019132054A1 (ko) 2017-12-26 2017-12-27 에너지 저장장치를 이용한 최대수요전력 제어 시스템

Country Status (2)

Country Link
KR (1) KR101915416B1 (ko)
WO (1) WO2019132054A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112488377A (zh) * 2020-11-25 2021-03-12 上海中通吉网络技术有限公司 快递日订单量的预测方法、装置、存储介质及电子设备
CN113408831A (zh) * 2021-08-19 2021-09-17 中冶节能环保有限责任公司 一种开路循环水系统的水平衡控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100018444A (ko) * 2008-08-06 2010-02-17 중앙대학교 산학협력단 실시간 지능 자율 부하관리 장치 및 방법
KR20130104771A (ko) * 2012-03-15 2013-09-25 삼성에스디아이 주식회사 에너지 저장 시스템 및 그의 제어 방법
KR101522858B1 (ko) * 2014-11-07 2015-05-26 주식회사 케이디티 건물의 최대 수요전력 제어 기능을 갖는 에너지관리시스템 및 그 제어방법
KR20150115063A (ko) * 2014-04-02 2015-10-14 재단법인대구경북과학기술원 기준 전력을 조절하기 위한 에너지 운영 장치 및 그 방법
KR101606715B1 (ko) * 2015-04-29 2016-03-28 주식회사 스타넷시스템 에너지 효율을 자동 제어하는 전원 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100018444A (ko) * 2008-08-06 2010-02-17 중앙대학교 산학협력단 실시간 지능 자율 부하관리 장치 및 방법
KR20130104771A (ko) * 2012-03-15 2013-09-25 삼성에스디아이 주식회사 에너지 저장 시스템 및 그의 제어 방법
KR20150115063A (ko) * 2014-04-02 2015-10-14 재단법인대구경북과학기술원 기준 전력을 조절하기 위한 에너지 운영 장치 및 그 방법
KR101522858B1 (ko) * 2014-11-07 2015-05-26 주식회사 케이디티 건물의 최대 수요전력 제어 기능을 갖는 에너지관리시스템 및 그 제어방법
KR101606715B1 (ko) * 2015-04-29 2016-03-28 주식회사 스타넷시스템 에너지 효율을 자동 제어하는 전원 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112488377A (zh) * 2020-11-25 2021-03-12 上海中通吉网络技术有限公司 快递日订单量的预测方法、装置、存储介质及电子设备
CN113408831A (zh) * 2021-08-19 2021-09-17 中冶节能环保有限责任公司 一种开路循环水系统的水平衡控制方法及装置
CN113408831B (zh) * 2021-08-19 2021-11-19 中冶节能环保有限责任公司 一种开路循环水系统的水平衡控制方法及装置

Also Published As

Publication number Publication date
KR101915416B1 (ko) 2019-01-07

Similar Documents

Publication Publication Date Title
WO2019225834A1 (ko) 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법
EP2475060B1 (en) Energy storage system
US9343926B2 (en) Power controller
US11164111B2 (en) Electric power management system for reducing large and rapid change in power received from electricity delivery system
US9614373B2 (en) Modular implementation of correlative consumption management systems
KR100987562B1 (ko) 주택용 직류전원 공급 및 관리 시스템 및 그 방법
US8571720B2 (en) Supply-demand balance controller
RU2298867C2 (ru) Система выравнивания силовой нагрузки и пакетное накопление энергии
KR101522858B1 (ko) 건물의 최대 수요전력 제어 기능을 갖는 에너지관리시스템 및 그 제어방법
KR101827158B1 (ko) 마이크로그리드용 에너지 저장 장치에 대한 운영 장치 및 방법
US10496060B2 (en) Power management system and method for power management
WO2012091323A2 (ko) 전력 관리 시스템 및 이에 적용되는 전력 분배기
JP2011182555A (ja) 電力供給システム
KR101396094B1 (ko) 공동 주택의 지능형 에너지 저장 시스템
WO2019132054A1 (ko) 에너지 저장장치를 이용한 최대수요전력 제어 시스템
RU2568013C2 (ru) Система выработки энергии и способ ее эксплуатации
EP3043446A1 (en) Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
EP3771060B1 (en) Power information management system, management method, program, power information management server, communication terminal, and power system
KR102064586B1 (ko) 에너지 저장 시스템의 충전 관리 방법
WO2014104829A1 (ko) 전력 부하 예측 방법 및 이러한 방법을 수행하는 장치
WO2021187739A1 (ko) Ess 충방전 스케쥴 관리장치
JP6135019B2 (ja) 蓄電池管理装置、蓄電池管理方法、プログラム
JP2014107950A (ja) 蓄電システムおよびその制御方法
WO2021132759A1 (ko) 이종 분산 자원과 연계된 에너지 저장 장치의 지능형 운전 방법 및 장치
KR20220026387A (ko) 신재생에너지 발전원의 환경 및 상태정보를 이용한 에너지 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936271

Country of ref document: EP

Kind code of ref document: A1