WO2019131983A1 - 固体燃料の製造方法 - Google Patents

固体燃料の製造方法 Download PDF

Info

Publication number
WO2019131983A1
WO2019131983A1 PCT/JP2018/048397 JP2018048397W WO2019131983A1 WO 2019131983 A1 WO2019131983 A1 WO 2019131983A1 JP 2018048397 W JP2018048397 W JP 2018048397W WO 2019131983 A1 WO2019131983 A1 WO 2019131983A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
wood
coal
fuel
eucalyptus
Prior art date
Application number
PCT/JP2018/048397
Other languages
English (en)
French (fr)
Inventor
小野 裕司
宏 新倉
友紀 川真田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to BR112020011798-6A priority Critical patent/BR112020011798A2/pt
Priority to JP2019562496A priority patent/JP7261176B2/ja
Publication of WO2019131983A1 publication Critical patent/WO2019131983A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing a solid fuel obtained by torrefaction using woody biomass containing Eucalyptus as a raw material.
  • biomass is a living body that can be used as an energy source or an industrial raw material, and typical ones are wood, construction waste, agricultural waste and the like.
  • various methods for effectively using biomass have been proposed.
  • a method of carbonizing biomass to produce solid fuel as a useful method of converting biomass to high value-added products at low cost.
  • biomass is charged into a carbonization furnace, and is heated for a predetermined time in an oxygen deficient atmosphere for carbonization to produce a solid fuel.
  • the solid fuel produced in this manner is used as a fuel for combustion facilities such as power generation facilities and incineration facilities.
  • the solid fuel in order to improve the combustion efficiency, the solid fuel is finely pulverized and used as pulverized fuel. is there. Solid fuel is crushed alone or mixed with coal, but since most of wood biomass is fibrous among biomass, the crushability is poor, the combustion efficiency is reduced, the operability of the crusher is reduced, etc. There was a problem.
  • Patent Document 1 discloses a method of pulverizing woody biomass such as lumber waste, thinning lumber, garden trees, construction waste and the like at a temperature of 240 ° C. or more and 300 ° C. or less for a time of 15 minutes or more and 90 minutes or less It is done. If the heating temperature is lower than 240 ° C., the friability and the crushability do not improve, and if the temperature is higher than 300 ° C., the amount of fine powder in the submicron order increases at the time of crushing and crush so that powder trouble easily occurs. It is not desirable because
  • the biomass including grains, seeds and seeds is carbonized by heating it for 30 to 90 minutes at an oxygen concentration of 1 to 5% and a treatment temperature of 350 to 400 ° C.
  • a method of producing a solid fuel is disclosed.
  • the carbides produced by the above method have low material yield and calorific yield, and their crushability is insufficient as compared to coal, and they are mixed with coal and crushed and used as fuel for pulverized coal boilers. It is difficult. Also, because carbides have low bulk density, they are subjected to densification such as pelletizing to reduce handling and transportation costs, but their formability is insufficient and their mechanical durability is inadequate. there were.
  • the inventors of the present invention performed roasting treatment using Eucalyptus as a raw material, and by using the roasted product obtained as a molded product, the moldability and mechanical durability were improved. It has also been found that excellent solid fuel can be produced.
  • the present invention includes the following aspects.
  • a ground product of woody biomass having a size of 50 mm or less containing Eucalyptus wood is roasted under conditions of an oxygen concentration of 10% or less and a substance temperature of 240 to 350 ° C.
  • a method for producing a solid fuel comprising forming a molded product having a bulk density (measured according to JIS K 2151 6) of 600 kg / m 3 or more.
  • the method according to (1) or (2), wherein the volume weight of Eucalyptus wood is 450 kg / m 3 or more.
  • the solid fuel obtained by the production method of the present invention has high material yield, high calorific yield, and further has the same crushability as coal, and has high density, so it is mixed with coal and pulverized to obtain fine powder. It can be mixed and used at a high ratio as a fuel for a coal boiler. It is also excellent in moldability and mechanical durability.
  • Eucalyptus wood is used as woody biomass as a raw material.
  • Eucalyptus include Eucalyptus (hereinafter referred to as E.) calophylla, E. citriodora, E. diversicolor, E. globulus, E. grandis, E. urograndis, E. gummifera, E. marginata, E. nesophila, E. Nitens, E. amygdalina, E. camaldulensis, E. delegatensis, E. gigantea, E. muelleriana, E. obliqua, E. regnans, E. sieberiana, E. viminalis, E. marginata, E.
  • pellita etc.
  • E. globulus, E. grandis, E. urograndis, E. camaldulensis are preferred.
  • a wood chip, bark (bark), sawdust, and sawdust can use all.
  • volume weight is measured in accordance with JIS P 8114: 1994. If the volume weight is 450 kg / m 3 or more, the mechanical durability described later of the solid fuel molding obtained by roasting will be excellent.
  • the reason why superior solid fuel can be obtained by using Eucalyptus wood as a raw material is that Eucalyptus has a high volume weight compared to other hardwoods and that there are more syringyl nuclei (S nuclei) in lignin It is considered that the solid fuel is densified by roasting.
  • the ratio (S / G ratio) of syringyl nucleus to guaiadyl nucleus (G nucleus) in wood lignin can be evaluated using alkali / nitrobenzene oxidation which is an oxidative decomposition reaction of lignin.
  • syringaldehyde is generated from the syringyl nucleus of lignin by oxidation reaction of alkaline lignin, which is an oxidative decomposition reaction of lignin
  • vanillin is generated from the guaiacil nucleus of lignin.
  • the abundance ratio of syringyl core to guaiacil core in lignin can be estimated by quantifying.
  • the mechanical durability is particularly excellent, which is preferable.
  • the size of the pulverized material of wood-based biomass is one that is sieved according to the size of the circular hole of the sieve.
  • a chipper for knife cutting type biomass fuel it is preferable to carry out grinding treatment with a chipper for knife cutting type biomass fuel.
  • torrefaction is a process of heating in a low oxygen atmosphere at a lower temperature than the so-called carbonization process.
  • the temperature of carbonization of normal wood is 400-700 ° C., but roasting takes place at lower temperatures. By roasting, a solid fuel having a higher energy density than the starting material is obtained.
  • the processing conditions for roasting in the present invention are a substance temperature of 240 to 350 ° C. at an oxygen concentration of 10% or less.
  • the substance temperature is the temperature of woody biomass during the roasting process. If the oxygen concentration exceeds 10%, the material yield and the heat yield decrease. If the material temperature is less than 240 ° C., the crushability described later is insufficient, and if it exceeds 350 ° C., the material yield and the heat yield decrease.
  • the substance temperature is preferably 240 to 330 ° C., more preferably 250 to 320 ° C.
  • an apparatus for performing the roasting treatment is not particularly limited, but a rotary kiln and a vertical furnace are preferable.
  • an inert gas such as nitrogen.
  • the treatment time is preferably 15 to 180 minutes.
  • the solid fuel obtained in the present invention is preferably 60 to 90% in material yield and 70 to 95% in thermal yield with respect to the raw material.
  • the hard glove crushability index (HGI) defined in JIS M 8801: 2004, which is an index of crushability is preferably 30 or more, and more preferably 40 or more. The higher the HGI, the easier it is to be crushed. When the HGI is in the range of 30 to 70, it becomes possible to mix with coal and grind it. Since the HGI of coal is usually 40 to 70, the solid fuel obtained by the present invention has the same crushability as coal.
  • a lubricant may be added in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the roasted product in forming a molded product. By adding a lubricant in this range, it is possible to reduce the amount of power consumption when forming a molded product to be described later.
  • hydrocarbon type lubricants such as liquid paraffin and paraffin wax, fatty acid type lubricants such as stearic acid and ammonium oleate, higher alcohol type lubricants such as stearyl alcohol and polyhydric alcohol, stearic acid amide, oleic acid amide, ethylene Fatty acid amide lubricants such as bis-stearic acid amide, metal soap-based lubricants such as calcium stearate and zinc stearate, monoglyceride stearates, ester-based lubricants such as butyl stearate, sorbitan esters and glycerin esters, carboxymethyl cellulose and its derivatives, etc. Can be mentioned. Among these, stearates such as calcium stearate and zinc stearate are preferable, and calcium stearate is particularly preferable.
  • the roasted product obtained is a molded product having a bulk density (measured according to JIS K 2151 "bulk density test method” 6) of 600 kg / m 3 or more. That is, the starting material (roasted material) in the form of a pulverized material of woody biomass is formed into briquettes or pellets.
  • the bulk density of the roasted product before forming into a molded product is about 10 kg / m 3 to 30 kg / m 3
  • the bulk density of solid fuel made into a molded product is 600 kg / m 3 or more.
  • the forming apparatus for forming the roasted product into a formed product is not particularly limited, but Briketter (manufactured by Kitagawa Tekkosho), ring die type pelletizer (manufactured by CPM), flat die type pelletizer (manufactured by Dalton), etc. desirable.
  • the bulk density (measured according to JIS K 2151 “bulk density test method”) of the solid fuel after densification treatment needs to be 600 kg / m 3 or more, preferably 650 kg / m 3 or more Is preferred. If the bulk density is less than 600 kg / m 3 and it is impossible to increase the mixing ratio with coal when burning solid fuel as fuel in the pulverized coal boiler, the effects of the present invention can be maximized. I can not
  • the moisture content of the roasted product is preferably 8 to 50%, more preferably 10 to 30%. If the water content is less than 8%, clogging occurs in the inside of the briquetter or pelletizer and stable production of a molded product can not be achieved. If the water content exceeds 50%, it is difficult to mold, and it is discharged in the form of powder or paste.
  • the molded product of the solid fuel of the present invention preferably has a mechanical durability (based on wood pellet quality standard 6.5 mechanical durability test method) of 95% or more, and mechanical durability in this range is preferable. If it has, it has sufficient hardness not to be crushed and pulverized during transportation.
  • Mechanical durability refers to the difficulty of breaking a pellet, and is the mass percentage that has not broken and pulverized when given a certain amount of mechanical impact. In a more preferred embodiment, the mechanical durability of the solid fuel molding of the present invention is 97% or more.
  • 0 to 50 parts by mass of a binder may be added to 100 parts by mass of the roasted product.
  • the binder is not particularly limited, but organic polymers (lignin, starch, etc.), inorganic polymers (acrylic acid amide, etc.), agricultural residues (bran (residue generated during wheat flour production), etc.), etc. are desirable. From the viewpoint of efficiently utilizing woody biomass efficiently, it is desirable for the number of binder addition parts to be small, preferably 0 to 50 parts by mass, and more preferably 0 to 20 parts by mass. However, the addition of 50 parts by mass or more does not mean that the densification can not be performed.
  • the solid fuel obtained by the present invention is used as a fuel for a boiler.
  • it is possible to mix and burn with coal and to co-fire with coal, so it is suitable as a fuel for a coal boiler.
  • the volume weight of the raw material and the S / V ratio were measured as follows. ⁇ Volume weight> It measured according to JISP 8114: 1994. ⁇ S / V ratio> The ratio of syringaldehyde to vanillin (S / V ratio) was measured using alkali nitrobenzene oxidation. A sample of 400 mg pre-extracted with an acetone-water mixed solvent (10: 1, v: v) is sealed in a 20 mL stainless autoclave together with 6 mL of 2 N aqueous sodium hydroxide solution and 0.5 mL of nitrobenzene, and shaken at 170 ° C. for 2 hours While processing.
  • Example 1 Chips of Eucalyptus urograndis (Eucalyptus urograndis, weight per unit: 506 kg / m 3 , S / V ratio: 2.7) are ground with a knife-cutting biomass fuel chipper (Wood Winer MEGA 360 DL, manufactured by Green Corp.) It was processed. After the pulverization, the product passed through a 50 mm screen was used as a raw material, and dried at 120 ° C. for 10 minutes with a drier to prepare a water content of 10%.
  • Example 2 A molded product of solid fuel was produced in the same manner as in Example 1 except that the substance temperature was 280 ° C.
  • Example 3 A molded article of solid fuel was produced in the same manner as in Example 1 except that a skinned chip of Eucalyptus globulus (weight of 570 kg / m 3 , S / V ratio: 4.8) was used.
  • Example 4 A molded article of solid fuel was produced in the same manner as in Example 2 except that the skinned chip of Eucalyptus globulus (weight of 570 kg / m 3 , S / V ratio: 4.8) was used.
  • Example 5 A molded article of solid fuel was produced in the same manner as in Example 1 except that a chip with a tip of Eucalyptus nitens (weight: 430 kg / m 3 , S / V ratio: 2.9) was used.
  • Example 6 A molded article of solid fuel was produced in the same manner as in Example 2 except that a chip with a tip of Eucalyptus nitens (weight of 430 kg / m 3 , S / V ratio: 2.9) was used.
  • Comparative Example 1 A molded article of solid fuel was produced in the same manner as in Example 1 except that a cedar-skinned chip (weighing weight: 335 kg / m 3 , S / V ratio: 0) was used.
  • Comparative Example 2 A molded product of solid fuel was produced in the same manner as in Example 2 except that a cedar skin chip (heavy load: 335 kg / m 3 , S / V ratio: 0) was used.
  • Comparative Example 3 A solid fuel molding was produced in the same manner as in Example 1 except that spruce chips (without bark, volume weight: 352 kg / m 3 , S / V ratio: 0) were used.
  • Comparative Example 4 A solid fuel molding was produced in the same manner as in Example 2 except that spruce chips (without bark, volume weight: 352 kg / m 3 , S / V ratio: 0) were used.
  • the solid fuel of the present invention made from Eucalyptus has excellent mechanical durability and high bulk density.

Abstract

木質系バイオマスを原料として、成型性、機械的耐久性にも優れ、物質収率及び熱量収率が高く、石炭と同等の粉砕性を有し石炭と混合して粉砕処理して微粉炭ボイラーの燃料として使用できる固体燃料の製造方法を提供する。 ユーカリ属を含有するサイズが50mm以下の木質系バイオマスの粉砕物を、酸素濃度10%以下で、かつ物質温度240~350℃の条件下で焙焼し、得られた焙焼物を嵩密度(JIS K 2151の6に従って測定)が600kg/m3以上の成型物とすることにより、固体燃料の成型物を製造する。

Description

固体燃料の製造方法
 本発明は、ユーカリ属を含む木質系バイオマスを原料として焙焼(torrefaction)することによって得られる固体燃料の製造方法に関する。
 近年、化石燃料の枯渇化及びCO2排出による地球温暖化への対策として、バイオマスを原料とする燃料の利用が検討されている。一般にバイオマスとは、エネルギー源又は工業原料として利用することのできる生物体で、代表的なものは木材、建築廃材、農産廃棄物等である。従来より、バイオマスを有効利用する方法が各種提案されている。その中でも、バイオマスを低コストで以って高付加価値物に転換できる有用な方法として、バイオマスを炭化して固体燃料を製造する方法がある。これは、バイオマスを炭化炉に投入して酸素欠乏雰囲気下で所定時間加熱して炭化処理し、固体燃料を製造するものである。
 このようにして製造された固体燃料は、発電設備や焼却設備等の燃焼設備の燃料に用いられるが、この場合、燃焼効率を向上させるために固体燃料を細かく粉砕して微粉燃料として用いることがある。固体燃料は単独であるいは石炭と混合して粉砕されるが、バイオマスのうち木質系バイオマスは大部分が繊維質であるため、粉砕性が悪く、燃焼効率の低下、粉砕機の運転性低下等の問題があった。
 特許文献1には、材廃材、間伐材、庭木、建築廃材等の木質系バイオマスを240℃以上300℃以下の温度で、15分以上90分以下の時間で熱分解した後に粉砕する方法が開示されている。加熱温度が240℃より低い温度であると破砕性、粉砕性が向上せず、300℃よりも高い温度であると破砕、粉砕時にサブミクロンオーダーの微粉量が増大して粉体トラブルを生じ易くなるため好ましくないとしている。
 また、特許文献2には穀類、実、種子を含むバイオマスを酸素濃度1~5%、処理温度350~400℃で30~90分加熱して炭化処理することで、石炭と同等の粉砕性を有する固体燃料を製造する方法が開示されている。
特開2006-26474号公報 特開2009-191085号公報
 しかしながら、上記方法で製造された炭化物は、物質収率及び熱量収率が低く、石炭に比較すると粉砕性が不十分であり、石炭と混合して粉砕処理して微粉炭ボイラーの燃料として使用することが困難である。また、炭化物は嵩密度が低いので、取扱いや輸送コストの低減のために、ペレット状に成型する等の高密度化処理を行うが、成型性が不十分で、機械的耐久性が不十分であった。
 本発明者等は、上記課題を解決するため鋭意検討した結果、ユーカリ属を原料として、焙焼処理を行い、得られた焙焼物を成型物とすることにより、成型性、機械的耐久性にも優れた固体燃料が製造できること見出した。
 本発明は、以下の態様を包含する。
(1) ユーカリ属木材を含有するサイズが50mm以下の木質系バイオマスの粉砕物を、酸素濃度10%以下で、かつ物質温度240~350℃の条件下で焙焼し、得られた焙焼物を嵩密度(JIS K 2151の6に従って測定)が600kg/m3以上の成型物とすることを含む、固体燃料の製造方法。
(2) 固体燃料の成型物の機械的耐久性(木質ペレット品質規格に従って測定)が95%以上である(1)記載の方法。
(3) ユーカリ属木材の容積重が450kg/m3以上である、(1)または(2)記載の方法。
(4) 前記固体燃料が、石炭と混焼するためのものである、(1)~(3)のいずれかに記載の方法。
(5) 成形物がブリケットまたはペレットの形態である、(1)~(4)のいずれかに記載の方法。
 本発明の製造方法にて得られる固体燃料は、物質収率、熱量収率が高く、さらに石炭と同等の粉砕性を有し、高密度であるため、石炭と混合して粉砕処理して微粉炭ボイラーの燃料として高い比率で混炭して使用することできる。また、成型性、機械的耐久性にも優れる。
 本発明において、原料の木質系バイオマスとしてユーカリ属の木材を使用する。ユーカリ属としては、Eucalyptus(以下、E.と略す) calophylla、E. citriodora、E. diversicolor、E. globulus、E. grandis、E. urograndis、E. gummifera、E. marginata、E. nesophila、E. nitens、E. amygdalina、E. camaldulensis、E. delegatensis、E. gigantea、E. muelleriana、E. obliqua、E. regnans、E. sieberiana、E. viminalis、E. marginata、E. pellita等が挙げられ、E. globulus、E. grandis、E. urograndis、E. camaldulensisが好ましい。なお、形態としては、木材チップ、樹皮(バーク)、おが屑、鋸屑のいずれもが利用できる。
 ユーカリ属の木材の容積重は450kg/m3以上が好ましく、500kg/m3以上がさらに好ましい。なお、容積重はJIS P 8114:1994に従って測定されたものである。容積重が450kg/m3以上であれば、焙焼によって得られる固体燃料の成型物の後述する機械的耐久性が優れたものとなる。
 ユーカリ属の木材を原料とすると優れた固体燃料が得られる理由としては、他の広葉樹と比較してユーカリ属は、容積重が高いこと、リグニン中にシリンギル核(S核)が多く存在することにより、焙焼によって高密度化された固体燃料となるためと考えられる。木材リグニンにおけるシリンギル核とグアイヤシル核(G核)の比(S/G比)は、リグニンの酸化分解反応であるアルカリ・ニトロベンゼン酸化を利用して評価することができる。すなわち、リグニンの酸化分解反応であるアルカリ・ニトロベンゼン酸化によって、リグニンのシリンギル核からシリンガアルデヒド(S)、リグニンのグアイヤシル核からバニリン(V)が生じることから、酸化反応後のシリンガアルデヒドおよびバニリンを定量することによってリグニン中のシリンギル核とグアイヤシル核の存在比を推定できる。本発明においては、ユーカリ属木材のS/V比が2.5以上であると特に機械的耐久性に優れたものになり好ましい。
 本発明において、木質系バイオマスは50mm以下のサイズに粉砕された粉砕物を使用することが必要であり、0.1~50mmのサイズのものを使用することがさらに好ましい。なお、本発明において、木質系バイオマス粉砕物のサイズとは、篩い分け器の円形の穴の大きさによって篩い分けされたものである。木質系バイオマスを粉砕するための装置としては、ナイフ切削型バイオマス燃料用チッパーで粉砕処理することが好ましい。
 本発明において、ユーカリ属以外の木材、椰子殻等を原料として混合して使用することも可能である。ユーカリ属の木材の含有率が50%以上であることが望ましい。
 本発明における焙焼(torrefaction)とは、低酸素雰囲気下で、所謂炭化処理よりも低い温度で加熱する処理のことである。通常の木材の炭化処理の温度は400~700℃であるが、焙焼はより低い温度で行われる。焙焼することによって、その出発原料よりも高いエネルギー密度を有する固体燃料が得られる。
 本発明における焙焼の処理条件は、酸素濃度10%以下で、物質温度240~350℃である。ここで、物質温度とは焙焼処理中の木質系バイオマスの温度である。酸素濃度が10%を超えると物質収率、熱量収率が低下する。また、物質温度が240℃未満では後述する粉砕性が不十分であり、350℃を超えると物質収率、熱量収率が低下する。物質温度は240~330℃が好ましく、さらに250~320℃がさらに好ましい。ヘミセルロースは270℃付近で熱分解が顕著になるのに対して、セルロースは355℃付近、リグニンは365℃付近で熱分解が顕著になるので、焙焼の処理温度を170~350℃とすることで、ヘミセルロースを優先的に熱分解して、物質収率と粉砕性を両立できる固体燃料を製造することが可能になると推察される。
 本発明において、焙焼処理を行うための装置は特に限定されないが、ロータリーキルン、竪型炉が好ましい。なお、酸素濃度を10%以下に調整するため装置内を窒素等の不活性ガスで置換することが好ましい。処理時間は15~180分が好ましい。
 本発明で得られる固体燃料は原料に対して物質収率で60~90%、熱量収率で70~95%であることが好ましい。また、粉砕性の指標であるJIS M 8801:2004に規定のハードグローブ粉砕性指数(HGI)は30以上が好ましく、40以上がさらに好ましい。HGIが高くなるほど、粉砕され易いことを示している。HGIが30~70の範囲であれば、石炭と混合して粉砕処理することが可能となる。石炭のHGIは通常40~70であるので、本発明で得られた固体燃料は石炭と同等の粉砕性を有している。
 本発明において、成型物とする際に焙焼物100質量部に対して滑剤を0.5~10質量部を添加してもよい。この範囲で滑剤を添加することにより、後述する成型物とする際の消費電力使用量を低減できる。滑剤としては、流動パラフィン、パラフィンワックス等の炭化水素系滑剤、ステアリン酸、オレイン酸アンモニウム等の脂肪酸系滑剤、ステアリルアルコール、多価アルコール等の高級アルコール系滑剤、ステアリン酸アミド、オレイン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アマイド系滑剤、ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸系滑剤、ステアリン酸モノグリセリド、ステアリン酸ブチル、ソルビタンエステル、グリセリンエステル等のエステル系滑剤、カルボキシメチルセルロース及びその誘導体、等を挙げる事ができる。これらの中では、ステアリン酸カルシウム、ステアリン酸亜鉛等のステアリン酸塩が好ましく、ステアリン酸カルシウムが特に好ましい。
 本発明において、得られた焙焼物を嵩密度(JIS K 2151の6「かさ密度試験方法」に従って測定)が600kg/m3以上の成型物とする。すなわち、木質系バイオマスの粉砕物状の出発原料(焙焼物)をブリケットやペレット状に成型処理する。成型物とする前の焙焼物の嵩密度は10kg/m3~30kg/m3程度であり、成型物とした固体燃料の嵩密度は600kg/m3以上である。成型物とすることにより、固体燃料として微粉炭ボイラーで燃焼させる際、石炭との混合比率を上昇させることができ、また、燃料の輸送コストを削減することができる。
 本発明において、焙焼物を成型物とするための成型装置は特に限定されていないが、ブリケッター(北川鉄工所製)、リングダイ式ペレタイザー(CPM製)、フラットダイ式ペレタイザー(ダルトン製)等が望ましい。
 高密度化処理後の固体燃料の嵩密度(JIS K 2151の6「かさ密度試験方法」に従って測定)は、600kg/m3以上とすることが必要で、好ましくは650kg/m3以上にすることが好ましい。嵩密度が600kg/m3未満であると固体燃料を燃料として微粉炭ボイラーで燃焼させる際、石炭との混合比率をあまり大きくすることが不可能なため、本発明の効果を最大限に得ることができない。
 本発明において、固体燃料を成型物とする際には、焙焼物の水分率を8~50%とすることが好ましく、さらに10~30%とすることが好ましい。水分が8%より少ないとブリケッターやペレタイザーの内部で閉塞が発生し、安定した成型物の製造ができない。水分率が50%を超えると成型することが困難で、粉体状またはペースト状で排出される。
 本発明の固体燃料の成型物は、機械的耐久性(木質ペレット品質規格 6.5機械的耐久性の試験方法に準拠)が95%以上であることが好ましく、この範囲の機械的耐久性であれば、輸送時に粉砕されて粉化しない十分な硬さを有している。機械的耐久性とはペレットの壊れにくさを示すもので、一定量の機械的衝撃を与えた際に壊れずに粉化しなかった質量割合である。より好ましい態様において本発明の固体燃料の成型物の機械的耐久性は97%以上である。
 本発明において、焙焼物100質量部に対してバインダーを0~50質量部添加してもよい。バインダーは特に限定されていないが、有機高分子(リグニン、澱粉など)、無機高分子(アクリル酸アミドなど)、農業残渣(ふすま(小麦粉製造時に発生する残渣)など)等が望ましい。木質系バイオマスを効率よく有効利用することを目的としている観点から、バインダー添加部数は少ない方が望ましく、0~50質量部、より好ましくは0~20質量部が望ましい。ただし、50質量部以上添加しても高密度化が不可能であるというわけではない。
 本発明で得られる固体燃料は、ボイラー用燃料として用いられる。特に石炭と混合して粉砕処理を行って石炭と混焼することが可能であるので、石炭ボイラー用燃料として好適である。
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例、比較例中の%は特に断らない限り質量%を示す。
 なお、原料の容積重、S/V比は以下のように測定した。
<容積重>
 JIS P 8114:1994に従って測定した。
<S/V比>
 アルカリ・ニトロベンゼン酸化を利用して、シリンガアルデヒドとバニリンの比(S/V比)を測定した。アセトン-水混合溶媒(10:1、v:v)で前抽出した試料400mgを2N水酸化ナトリウム水溶液6mLおよびニトロベンゼン0.5mLと共に20mL容ステンレスオートクレーブに封入し、170℃、2時間、振とうしながら処理した。処理後、内容物をガラスフィルターでろ別し、ろ液をジクロロメタンで抽出し、過剰のニトロベンゼンを除去した。水層を1N塩酸でpH2とした後、内部標準として3-エトキシ-4-ハイドロキシベンズアルデヒドを含むジクロロメタン1mLを加え、ジクロロメタンでニトロベンゼン酸化分解物を抽出した。減圧乾燥した後、トリメチルシリル化してガスクロマトグラフィーでバニリンとシリンガアルデヒドを定量し、S/V比を算出した。
[実施例1]
 ユーカリ・ユーログランディス(Eucalyptus urograndis、容積重:506kg/m3、S/V比:2.7)の皮付きチップをナイフ切削型バイオマス燃料用チッパー(緑産社製、Wood Hacker MEGA360DL)にて粉砕処理した。粉砕後、50mmのスクリーンを通過したものを原料として、乾燥機で120℃、10分間乾燥処理を行い、水分を10%に調製した。続いて大型キルン型炭化炉を用い、窒素パージして、炭化炉内のチップ粉砕物の物質温度が255℃となるようにして、滞留時間60分で焙焼を行って生成物を得た。得られた生成物の水分を20%に調整し、フラットダイ式ペレタイザー(ダルトン社製、ディスクペレッターF-5/11-175型)にてダイ穴直径5mm、ダイ厚さ20mmのフラットダイを用いて高密度化処理を行い、固体燃料の成型物を得た。
[実施例2]
 物質温度を280℃とした以外は、実施例1と同様にして固体燃料の成型物を製造した。
[実施例3]
 ユーカリ・グロビュラス(Eucalyptus globulus、容積重:570kg/m3、S/V比:4.8)の皮付きチップを使用した以外は、実施例1と同様にして固体燃料の成型物を製造した。
[実施例4]
 ユーカリ・グロビュラス(Eucalyptus globulus、容積重:570kg/m3、S/V比:4.8)の皮付きチップを使用した以外は、実施例2と同様にして固体燃料の成型物を製造した。
[実施例5]
 ユーカリ・ナイテンス(Eucalyptus nitens、容積重:430kg/m3、S/V比:2.9)の皮付きチップを使用した以外は、実施例1と同様にして固体燃料の成型物を製造した。
[実施例6]
 ユーカリ・ナイテンス(Eucalyptus nitens、容積重:430kg/m3、S/V比:2.9)の皮付きチップを使用した以外は、実施例2と同様にして固体燃料の成型物を製造した。
[比較例1]
 杉の皮付きチップ(容積重:335kg/m3、S/V比:0)を使用した以外は、実施例1と同様にして固体燃料の成型物を製造した。
[比較例2]
 杉の皮付きチップ(容積重:335kg/m3、S/V比:0)を使用した以外は、実施例2と同様にして固体燃料の成型物を製造した。
[比較例3]
 スプルースのチップ(樹皮なし、容積重:352kg/m3、S/V比:0)を使用した以外は、実施例1と同様にして固体燃料の成型物を製造した。
[比較例4]
 スプルースのチップ(樹皮なし、容積重:352kg/m3、S/V比:0)を使用した以外は、実施例2と同様にして固体燃料の成型物を製造した。
 得られた固体燃料の成型物について下記の項目について評価し、結果を表1に示した。
<物質収支>
 物質収率は焙焼処理前後の試料の重量から計算した。
<嵩密度>
 JIS K 2151の6「かさ密度試験方法」に従った。
<機械的耐久性>
 固体燃料の成型物について、木質ペレット品質規格(日本木質ペレット協会、2011年3月31日制定)の「機械的耐久性の試験方法」に基づいて木質ペレットの機械的耐久性を評価した。木質ペレット品質規格の機械的耐久性は、欧州の規格であるEN15210-1に準拠して規格化されたものであり、機械的衝撃力に対する木質ペレットの耐粉化性能に関する。具体的には、DT―T型ペレット耐久試験機(三洋貿易社製)を用いて、下式により固体燃料の成型物の機械的耐久性を算出した。
・機械的耐久性(%)=m1/m0×100
  m1:回転処理前のサンプル質量(g)
  m0:回転処理後のサンプル質量(g)
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、ユーカリを原料とする本発明の固体燃料は機械的耐久性に優れ、嵩密度も高いものであった。

Claims (5)

  1.  ユーカリ属木材を含有するサイズが50mm以下の木質系バイオマスの粉砕物を、酸素濃度10%以下で、かつ物質温度240~350℃の条件下で焙焼し、得られた焙焼物を嵩密度(JIS K 2151の6に従って測定)が600kg/m3以上の成型物とすることを含む、固体燃料の製造方法。
  2.  固体燃料の成型物の機械的耐久性(木質ペレット品質規格に従って測定)が95%以上である、請求項1記載の方法。
  3.  ユーカリ属木材の容積重が450kg/m3以上である、請求項1または2記載の方法。
  4.  前記固体燃料が、石炭と混焼するためのものである、請求項1~3のいずれかに記載の方法。
  5.  成形物がブリケットまたはペレットの形態である、請求項1~4のいずれかに記載の方法。
PCT/JP2018/048397 2017-12-28 2018-12-28 固体燃料の製造方法 WO2019131983A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112020011798-6A BR112020011798A2 (pt) 2017-12-28 2018-12-28 método para produção de combustível sólido
JP2019562496A JP7261176B2 (ja) 2017-12-28 2018-12-28 固体燃料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253243 2017-12-28
JP2017253243 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131983A1 true WO2019131983A1 (ja) 2019-07-04

Family

ID=67067556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048397 WO2019131983A1 (ja) 2017-12-28 2018-12-28 固体燃料の製造方法

Country Status (3)

Country Link
JP (1) JP7261176B2 (ja)
BR (1) BR112020011798A2 (ja)
WO (1) WO2019131983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117798A1 (ja) * 2019-12-10 2021-06-17 日本製紙株式会社 成形用樹脂材料およびその製造方法
CN113088362A (zh) * 2021-04-01 2021-07-09 廊坊宏悦化工有限责任公司 一种环保节能锅炉除焦清渣剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052796A1 (ja) * 2009-10-29 2011-05-05 Jfeスチール株式会社 バイオマスの高炉利用方法
US20140202072A1 (en) * 2011-05-18 2014-07-24 Bioendev Ab Method for monitoring and control of torrefaction temperature
CN103396858B (zh) * 2013-08-21 2015-01-21 广西南宁市益荣新能源科技有限公司 一种生物质新型燃料的生产工艺
JP2015067789A (ja) * 2013-09-30 2015-04-13 日本製紙株式会社 固体燃料の製造方法及び固体燃料
JP2016193958A (ja) * 2015-03-31 2016-11-17 日本製紙株式会社 固体燃料の製造方法及び固体燃料
WO2017086727A1 (ko) * 2015-11-20 2017-05-26 충남대학교 산학협력단 유독가스저감형 친환경 착화탄 및 그 제조방법
WO2017175733A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス固体燃料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052796A1 (ja) * 2009-10-29 2011-05-05 Jfeスチール株式会社 バイオマスの高炉利用方法
US20140202072A1 (en) * 2011-05-18 2014-07-24 Bioendev Ab Method for monitoring and control of torrefaction temperature
CN103396858B (zh) * 2013-08-21 2015-01-21 广西南宁市益荣新能源科技有限公司 一种生物质新型燃料的生产工艺
JP2015067789A (ja) * 2013-09-30 2015-04-13 日本製紙株式会社 固体燃料の製造方法及び固体燃料
JP2016193958A (ja) * 2015-03-31 2016-11-17 日本製紙株式会社 固体燃料の製造方法及び固体燃料
WO2017086727A1 (ko) * 2015-11-20 2017-05-26 충남대학교 산학협력단 유독가스저감형 친환경 착화탄 및 그 제조방법
WO2017175733A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス固体燃料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117798A1 (ja) * 2019-12-10 2021-06-17 日本製紙株式会社 成形用樹脂材料およびその製造方法
CN114901757A (zh) * 2019-12-10 2022-08-12 日本制纸株式会社 成型用树脂材料及其制造方法
CN113088362A (zh) * 2021-04-01 2021-07-09 廊坊宏悦化工有限责任公司 一种环保节能锅炉除焦清渣剂

Also Published As

Publication number Publication date
JPWO2019131983A1 (ja) 2020-12-24
BR112020011798A2 (pt) 2020-11-17
JP7261176B2 (ja) 2023-04-19

Similar Documents

Publication Publication Date Title
JP6684298B2 (ja) 固体燃料の製造方法及び固体燃料
CN102666880B (zh) 生物质在高炉中的利用方法
JP6407506B2 (ja) 固形燃料の製造方法及び固形燃料
US20130104450A1 (en) Torrefaction process
JP6606845B2 (ja) 固体燃料の製造方法及び固体燃料
de Oliveira Maia et al. Characterization and production of banana crop and rice processing waste briquettes
EP2883943A1 (en) Manufacture of fuel briquettes from thermally processed biomass
JP6328901B2 (ja) 固体燃料の製造方法及び固体燃料
JP6185699B2 (ja) 固体燃料の製造方法及び固体燃料
JP7261176B2 (ja) 固体燃料の製造方法
JP6639075B2 (ja) 固体燃料の製造方法及び固体燃料
JP6430691B2 (ja) 固体燃料の製造方法及び固体燃料
KR101931159B1 (ko) 식물성 오일 부산물을 이용한 화력발전소 및 제철소용 고발열량 바이오매스 성형연료 및 이의 제조방법
JP6357836B2 (ja) 固体燃料の製造方法及び固体燃料
JP7474750B2 (ja) 固体燃料の製造方法
JP7473529B2 (ja) 固体燃料の製造方法
JP6691508B2 (ja) 固体燃料の製造方法及び固体燃料
WO2020184699A1 (ja) 固体燃料の製造方法
WO2020203163A1 (ja) 固体燃料の製造方法
WO2020184698A1 (ja) 固体燃料の製造方法
KR101594838B1 (ko) Efb 바이오 탄화 펠릿 제조방법
JP6348250B2 (ja) 固体燃料の製造方法及び固体燃料
KR101292389B1 (ko) 볏짚을 이용한 연료용 분탄 제조방법
KR20080006163U (ko) 한약 찌꺼기를 이용한 탄의 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011798

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011798

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200612

122 Ep: pct application non-entry in european phase

Ref document number: 18893581

Country of ref document: EP

Kind code of ref document: A1