WO2019131917A1 - 水処理用流路材 - Google Patents
水処理用流路材 Download PDFInfo
- Publication number
- WO2019131917A1 WO2019131917A1 PCT/JP2018/048261 JP2018048261W WO2019131917A1 WO 2019131917 A1 WO2019131917 A1 WO 2019131917A1 JP 2018048261 W JP2018048261 W JP 2018048261W WO 2019131917 A1 WO2019131917 A1 WO 2019131917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spacer
- water
- water treatment
- comparative example
- mass
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000011282 treatment Methods 0.000 title claims abstract description 38
- 229910021392 nanocarbon Inorganic materials 0.000 claims abstract description 17
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 16
- 239000000057 synthetic resin Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 239000002041 carbon nanotube Substances 0.000 claims description 25
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 23
- -1 polypropylene Polymers 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 6
- 239000003575 carbonaceous material Substances 0.000 abstract description 3
- 125000006850 spacer group Chemical group 0.000 description 44
- 230000000052 comparative effect Effects 0.000 description 34
- 239000012528 membrane Substances 0.000 description 30
- 238000002073 fluorescence micrograph Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 17
- 238000011041 water permeability test Methods 0.000 description 16
- 238000001914 filtration Methods 0.000 description 15
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 108010006205 fluorescein isothiocyanate bovine serum albumin Proteins 0.000 description 10
- 238000000926 separation method Methods 0.000 description 8
- 229910021389 graphene Inorganic materials 0.000 description 7
- 238000001223 reverse osmosis Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910003472 fullerene Inorganic materials 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 238000009295 crossflow filtration Methods 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000004021 humic acid Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- XIAYFENBYCWHGY-UHFFFAOYSA-N 2-[2,7-bis[[bis(carboxymethyl)amino]methyl]-3-hydroxy-6-oxoxanthen-9-yl]benzoic acid Chemical compound C=12C=C(CN(CC(O)=O)CC(O)=O)C(=O)C=C2OC=2C=C(O)C(CN(CC(O)=O)CC(=O)O)=CC=2C=1C1=CC=CC=C1C(O)=O XIAYFENBYCWHGY-UHFFFAOYSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical class [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102100037364 Craniofacial development protein 1 Human genes 0.000 description 1
- 101000880187 Homo sapiens Craniofacial development protein 1 Proteins 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/148—Organic/inorganic mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/10—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
- B01D71/0211—Graphene or derivates thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
- B01D71/0212—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
- B01D71/262—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/143—Specific spacers on the feed side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/20—Prevention of biofouling
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/22—Eliminating or preventing deposits, scale removal, scale prevention
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/08—Nanoparticles or nanotubes
Definitions
- the present invention relates to a water treatment channel material.
- Membrane separators are used for the purpose of desalination of seawater and brine, purification of domestic and industrial wastewater, and the like (for example, Patent Documents 1 to 3).
- This type of membrane separation apparatus includes a microfiltration membrane (hereinafter, MF membrane), an ultrafiltration membrane (hereinafter, UF membrane), a nanofiltration membrane (hereinafter, NF membrane), a reverse osmosis membrane (hereinafter, RO) Treatment film such as film).
- MF membrane microfiltration membrane
- UF membrane ultrafiltration membrane
- NF membrane nanofiltration membrane
- RO reverse osmosis membrane
- the membrane separation apparatus usually includes a plurality of treated membranes for the purpose of improving the efficiency of water treatment and the like.
- the treatment membranes are laminated to one another via a resin raw water spacer provided with a mesh structure.
- Raw water to be treated such as seawater and wastewater generally includes organic components (eg, proteins, polysaccharides, humic acids, etc.), inorganic components (ions or salts of calcium ions, sodium ions, etc.) or organic / inorganic materials.
- organic components eg, proteins, polysaccharides, humic acids, etc.
- inorganic components ions or salts of calcium ions, sodium ions, etc.
- organic / inorganic materials organic e.g, organic components, etc.
- the complex component of of Therefore, when the membrane separation apparatus as described above is used for a long time, a phenomenon (so-called fouling) in which organic components and inorganic components adhere and deposit around the raw water spacer occurs.
- the flow resistance of the treated water (raw water etc.) flowing in the membrane separation device increases, so the load of the pump (supply pump) for supplying the raw water to the membrane separation device becomes large. I will.
- the treated film is also contaminated with a fouling substance such as an organic component, which may lower the film performance.
- An object of the present invention is to provide a water treatment channel material in which the occurrence of fouling is suppressed.
- a channel material for water treatment which is a molded article containing a synthetic resin and a nanocarbon material.
- thermoplastic resin is made of polypropylene.
- ⁇ 5> The water treatment channel according to any one of ⁇ 1> to ⁇ 4>, wherein a blending ratio of the nanocarbon material is 1 to 30 parts by mass with respect to 100 parts by mass of the synthetic resin. Material.
- the water treatment channel material is a molded article obtained by molding a composition containing a synthetic resin and a nanocarbon material into a predetermined shape.
- the water treatment channel material is used in a membrane separation apparatus provided with a treatment membrane such as an RO membrane.
- the water treatment channel material is used as, for example, a mesh-like spacer (raw water spacer) interposed between a plurality of treatment membranes used in a membrane separation apparatus.
- thermoplastic resin As a synthetic resin utilized for the flow path material for water treatment, thermoplastic resin, thermosetting resin, etc. are mentioned.
- thermoplastic resin As a synthetic resin, a thermoplastic resin is preferable from the reasons that it is excellent in moldability and that the nano carbon material is easily dispersed uniformly.
- thermosetting resin a phenol resin, an epoxy resin, a melamine resin, a urea resin etc. are mentioned, for example.
- thermoplastic resin examples include polyolefin resins such as polyethylene (PE), polypropylene (PP) and ethylene-propylene copolymer, and polyester resins such as acrylic resin, polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Resin, polystyrene resin, acrylonitrile butadiene styrene (ABS) resin, modified polyphenylene ether, polyphenylene sulfide, polyamide, polycarbonate, polyacetal, etc. are mentioned. You may use a thermoplastic resin individually or in combination of 2 or more types. In addition, as a thermoplastic resin, polyolefin resin is preferable.
- PE polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- ABS acrylonitrile butadiene styrene
- ABS acrylonitrile butadiene styrene
- the nanocarbon material is a sp2 carbon-based carbon material, and is made of carbon nanotubes, graphene, fullerene, and the like. You may use these individually or in combination of 2 or more types.
- the carbon nanotube has a structure in which a graphene sheet is cylindrically wound, and has a diameter of several nm to several tens of nm, and a length of several tens to several thousand times or more of the diameter.
- Carbon nanotubes are classified into single-walled carbon nanotubes in which a graphene sheet is substantially one layer, and multi-walled carbon nanotubes in which two or more layers are included. As long as the object of the present invention is not impaired, either a single-walled carbon nanotube or a multi-walled carbon nanotube may be used as the carbon nanotube.
- Graphene generally refers to a sheet of sp 2 -bonded carbon atoms (single-layer graphene) having a thickness of one atom, but as long as the object of the present invention is not impaired, a material in a state where single-layer graphene is stacked is also graphene You may use it.
- a fullerene is a carbon cluster having a closed shell structure, and the carbon number thereof is usually an even number of 60 to 130.
- Specific examples of fullerenes include C60, C70, C76, C78, C80, C82, C84, C86, C88, C90, C92, C94, C96 and higher carbon clusters having more carbons.
- fullerenes different in carbon number may be used in combination or a single fullerene may be used.
- carbon nanotubes are most preferable in terms of availability, versatility, and the like.
- the blending ratio of the nanocarbon material to the synthetic resin is not particularly limited as long as the object of the present invention is not impaired, for example, the nanocarbon material is 1 to 30 parts by mass with respect to 100 parts by mass of the synthetic resin. It is blended.
- the amount of the nanocarbon material is preferably 30 parts by mass or less with respect to 100 parts by mass of the synthetic resin, for the purpose of securing the fouling resistance while taking advantage of the characteristics of the synthetic resin as the base material. 20 mass parts or less are more preferable, and 17.6 mass parts or less are still more preferable.
- the composition to be used for molding the water treatment channel material includes, in addition to the above-described synthetic resin and nanocarbon material, an ultraviolet inhibitor, a colorant (pigment, dye), and the like unless the purpose of the present invention is impaired.
- Various additives such as a tackifier, a filler, a surfactant, and a plasticizer may be appropriately blended.
- the water treatment channel material is appropriately molded using a predetermined mold.
- the synthetic resin is made of a thermoplastic resin
- the water treatment channel material is injection molded as appropriate using a predetermined mold.
- the water treatment flow path material is such that the surface is more hydrophilic due to the influence of the nanocarbon material by blending a predetermined amount of the nanocarbon material. Then, by forming a thin film of water molecules on such a surface, various components (for example, organic components such as protein, calcium carbonate, etc.) contained in the liquid that contacts the water treatment channel material Inorganic components such as alginic acid, alginate, humic acid, humate and the like, and organic organic-inorganic composites, etc. can not get stuck on the surface of the water treatment channel material. It is guessed. Such a water treatment channel material is excellent in fouling resistance. In addition, the water treatment channel material has high rigidity and is excellent in slidability, antibacterial properties, and the like.
- Example 1 As shown in FIG. 1, a mesh-like spacer (flow path material for water treatment) having a circular shape in plan view was prepared.
- the spacer 1 of Example 1 is a molded article obtained by molding a composition in which 18 parts by mass of carbon nanotubes are blended with 100 parts by mass of a polypropylene resin using a predetermined mold.
- the dimensions of the mesh portion of the spacer 1 in Example 1 are as shown in FIG.
- Comparative Example 1 As shown in FIG. 1, as in Example 1, a mesh-like spacer 1C having a circular shape in plan view was prepared.
- the spacer 1C of Comparative Example 1 is formed of a molded article obtained by molding a polypropylene resin using the same mold as that of Example 1.
- each dimension of the mesh part of the spacer 1C in the comparative example 1 is also the same as Example 1 as FIG. 2 shows.
- Example 1 The spacers 1 and 1C of Example 1 and Comparative Example 1 were each wire in a foulant solution containing bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) (hereinafter referred to as FITC-BSA) at a concentration of 200 ppm. It was immersed in the state which was suspended by.
- BSA bovine serum albumin
- FITC-BSA fluorescein isothiocyanate
- FIG. 5 is a graph showing the relationship between the time analyzed based on the result of the fluorescence microscope image of Example 1 and the result of the fluorescence microscope image of Comparative Example 1 and the fluorescence intensity.
- the horizontal axis of the graph of FIG. 5 represents the elapsed time (time) of the immersion test, and the vertical axis represents the fluorescence intensity.
- the whole fluorescence-microscope photograph of each time shown by FIG.3 and FIG.4 was made into the analysis range here.
- Example 2 A mesh-like spacer (flow path material for water treatment) having a circular shape and a configuration of the mesh portion as shown in FIG. 6 was prepared in plan view in the same manner as Example 1.
- the spacer of Example 2 was formed by using a predetermined mold for a composition in which 5.3 parts by mass (CNT: 5% by mass) of carbon nanotubes (CNT) were blended with 100 parts by mass of polypropylene resin It consists of molded articles.
- the mesh portion of the spacer of the second embodiment differs from the first embodiment in that a plurality of upper line portions arranged parallel to one another so as to intersect in plan view with a plurality of lower line portions m1 arranged parallel to one another It has a shape in which m2 overlaps.
- the dimensions of the mesh portion of the spacer in Example 2 are as shown in FIG.
- Example 3 A spacer (water of Example 3) was prepared in the same manner as Example 2, except that the blending amount of carbon nanotubes (CNT) was changed to 11.1 parts by mass (CNT: 10% by mass) based on 100 parts by mass of polypropylene resin. A channel material for processing was produced.
- CNT carbon nanotubes
- Example 4 A spacer (water of Example 4) was prepared in the same manner as Example 2, except that the blending amount of carbon nanotubes (CNT) was changed to 17.6 parts by mass (CNT: 15% by mass) based on 100 parts by mass of polypropylene resin. A channel material for processing was produced.
- CNT carbon nanotubes
- Comparative Example 2 A spacer of Comparative Example 2 made of a polypropylene resin was produced in the same manner as Example 2 except that no carbon nanotube (CNT) was blended. In addition, each dimension of the mesh part of the spacer in the comparative example 2 is also the same as Example 2 as FIG. 6 shows.
- FIG. 7 is a schematic view of a cross flow filtration type test apparatus 10.
- the test apparatus 10 includes an upstream side piping unit 11, a downstream side piping unit 12, a filtration unit 13, a reverse osmosis membrane 14, a recovery container 15, a pump 16, a valve 17, a permeated liquid discharge unit 19 and the like.
- the filtration unit 13 is a commercially available reverse osmosis membrane 14 (trade name "SWC5", Nitto Denko Corp., marketed by the test piece S so that the solution 18 to be filtered flows along the surface of the test piece S made of the members of Example 2 and the like. It is a part which filters the solution 18 for filtration using reverse osmosis membrane 14, accommodating in the state accumulated on a company.
- a 10 mmol / L aqueous NaCl solution containing 100 ppm of bovine serum albumin (BSA) (hereinafter referred to as FITC-BSA) labeled with fluorescein isothiocyanate (FITC) was used as the solution 18 to be filtered.
- the permeated liquid discharge portion 19 is a portion for discharging the permeated liquid that has permeated the reverse osmosis membrane 14 to the outside, and the permeated liquid discharged therefrom is collected by a collection container (not shown).
- the filtration target solution 18 contained in the recovery container 15 is supplied to the filtration unit 13 through the upstream side piping unit 11.
- the filtration unit 13 and the recovery container 15 are connected by the upstream side piping unit 11.
- a pump 16 for delivering the solution 18 to be filtered to the filtration unit 13 is disposed in the middle of the upstream side piping unit 11.
- the filtration unit 13 and the recovery container 15 are connected by the downstream side piping unit 12, and the solution 18 to be filtered discharged from the filtration unit 13 passes through the downstream side piping unit 12 and is recovered again. It is returned to 15.
- a valve 17 is provided in the middle of the downstream side piping unit 12, and the flow rate of the filtration target solution 18 circulating in the downstream side piping unit 12 or the like is adjusted by opening and closing the valve 17.
- the filtration target solution 18 was subjected to a filtration test (water permeability test) in which filtration was continued for 144 hours.
- the supply pressure of the solution 18 to be filtered was set to 0.7 MPa, and the flow rate of the solution 18 to be filtered was set to 500 ml / min.
- Foreign matter (FITC-BSA) adhering to the surface of the overlapped test strip S was confirmed.
- the results of the fluorescence microscope images of Examples 2 to 4 and Comparative Example 2 are shown in FIGS.
- Example 5 As a spacer of Example 5, the thing of the same structure as Example 4 was prepared. That is, the spacer of Example 5 is made of a molded article of a composition in which 100 parts by mass of a polypropylene resin is used as a base polymer and carbon nanotubes are blended in a proportion of 17.6 parts by mass (CNT: 15% by mass).
- Comparative Example 3 As a spacer of the comparative example 3, the thing of the same structure as the comparative example 2 was prepared. That is, the spacer of the comparative example 3 consists of a molded article of the polypropylene resin in which the carbon nanotube is not mix
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
海水、廃水等の処理対象となる原水には、一般的に、有機成分(例えば、タンパク質、多糖類、腐植酸等)、無機成分(カルシウムイオン、ナトリウムイオン等のイオン又は塩)、又は有機無機の複合成分等が含まれている。そのため、上記のような、膜分離装置を、長期間に亘って使用すると、上記原水スペーサーの周りに、有機成分や無機成分等が付着及び堆積する現象(所謂、ファウリング)が発生する。
前記課題を解決するための手段は、以下の通りである。即ち、
<1> 合成樹脂と、ナノカーボン材料とを含む成形品からなる水処理用流路材。
本願発明によれば、ファウリングの発生が抑制された水処理用流路材を提供することができる。
図1に示されるように、平面視で円形状をなしたメッシュ状のスペーサー(水処理用流路材)を用意した。実施例1のスペーサー1は、ポリプロピレン樹脂100質量部に対して、カーボンナノチューブを18質量部配合した組成物を、所定の金型を利用して成形した成形品からなる。実施例1におけるスペーサー1のメッシュ部の各寸法は、図2に示される通りである。
図1に示されるように、実施例1と同様、平面視で円形状をなしたメッシュ状のスペーサー1Cを用意した。比較例1のスペーサー1Cは、ポリプロピレン樹脂を、実施例1と同様の金型を利用して成形した成形品からなる。なお、比較例1におけるスペーサー1Cのメッシュ部の各寸法も、図2に示される通り、実施例1と同じである。
(浸漬試験)
フルオレセインイソチオシアネート(FITC)で標識されたウシ血清アルブミン(BSA)(以下、FITC-BSA)を200ppmの濃度で含むファウラント溶液中に、実施例1及び比較例1の各スペーサー1,1Cを、針金で吊り下げた状態で、浸漬した。
実施例1及び比較例1の各スペーサー1,1Cを、浸漬試験開始時(0時間)、及び所定時間経過後(24時間後、48時間後、72時間後、96時間後、120時間後、144時間後)に、蛍光顕微鏡で観察した。実施例1の蛍光顕微鏡画像は、図3に示し、比較例1の蛍光顕微鏡画像は、図4に示した。
平面視で、実施例1と同様、円形状をなし、かつメッシュ部の構成が図6に示されるような構成のメッシュ状のスペーサー(水処理用流路材)を用意した。実施例2のスペーサーは、ポリプロピレン樹脂100質量部に対して、カーボンナノチューブ(CNT)を5.3質量部(CNT:5質量%)配合した組成物を、所定の金型を利用して成形した成形品からなる。なお、実施例2のスペーサーのメッシュ部は、実施例1とは異なり、互いに平行に並ぶ複数の下側線部m1に対して、平面視で交差するように、互いに平行に並ぶ複数の上側線部m2が重なった形状をなしている。実施例2におけるスペーサーのメッシュ部の各寸法は、図6に示される通りである。
ポリプロピレン樹脂100質量部に対するカーボンナノチューブ(CNT)の配合量を、11.1質量部(CNT:10質量%)に変更したこと以外は、実施例2と同様にして、実施例3のスペーサー(水処理用流路材)を作製した。
ポリプロピレン樹脂100質量部に対するカーボンナノチューブ(CNT)の配合量を、17.6質量部(CNT:15質量%)に変更したこと以外は、実施例2と同様にして、実施例4のスペーサー(水処理用流路材)を作製した。
カーボンナノチューブ(CNT)を配合しないこと以外は、実施例2と同様にして、ポリプロピレン樹脂からなる比較例2のスペーサーを作製した。なお、比較例2におけるスペーサーのメッシュ部の各寸法も、図6に示される通り、実施例2と同じである。
(透水試験)
実施例2~4及び比較例2の各部材の異物除去性を、図7に示されるクロスフローろ過方式の試験装置10を利用して評価した。ここで、先ず、図7を参照しつつ試験装置10について説明する。
実施例5のスペーサーとして、実施例4と同じ構成のものを用意した。つまり、実施例5のスペーサーは、ポリプロピレン樹脂100質量部をベースポリマーとし、かつカーボンナノチューブが17.6質量部の割合(CNT:15質量%)で配合された組成物の成形品からなる。
比較例3のスペーサーとして、比較例2と同じ構成のものを用意した。つまり、比較例3のスペーサーは、カーボンナノチューブが配合されていないポリプロピレン樹脂の成形品からなる。
(透水試験)
ろ過対象溶液18として、FITC-BSAを含む10mmol/LのNaCl水溶液に代えて、塩化カルシウム(CaCl2)を1,000ppm、及び炭酸水素ナトリウム(NaHCO3)を100ppmの濃度で含む10mmol/LのNaCl水溶液に変更したこと以外は、実質的に、上記透水試験と同様にして、試験装置10を利用した無機成分に対する耐ファウリング性評価を行った。ろ過対象溶液18の供給圧力は、上記透水試験と同様、0.7MPaに設定し、ろ過対象溶液18の流量も、同様に500ml/分に設定した。
Claims (5)
- 合成樹脂と、ナノカーボン材料とを含む成形品からなる水処理用流路材。
- 前記ナノカーボン材料は、カーボンナノチューブからなる請求項1に記載の水処理用流路材。
- 前記合成樹脂は、熱可塑性樹脂からなる請求項1又は請求項2に記載の水処理用流路材。
- 前記熱可塑性樹脂は、ポリプロピレンからなる請求項3に記載の水処理用流路材。
- 前記ナノカーボン材料の配合割合は、前記合成樹脂100質量部に対して、1~30質量部である請求項1~請求項4の何れか一項に記載の水処理用流路材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207015799A KR20200070406A (ko) | 2017-12-28 | 2018-12-27 | 수처리용 유로재 |
US16/771,017 US20200360867A1 (en) | 2017-12-28 | 2018-12-27 | Water treatment flow channel member |
JP2019562185A JP7072175B2 (ja) | 2017-12-28 | 2018-12-27 | 水処理用流路材 |
CN201880078803.5A CN111447987A (zh) | 2017-12-28 | 2018-12-27 | 水处理用流路件 |
EP18895600.7A EP3733268A4 (en) | 2017-12-28 | 2018-12-27 | WATER TREATMENT FLOW PATH ELEMENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017253965 | 2017-12-28 | ||
JP2017-253965 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131917A1 true WO2019131917A1 (ja) | 2019-07-04 |
Family
ID=67067579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/048261 WO2019131917A1 (ja) | 2017-12-28 | 2018-12-27 | 水処理用流路材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200360867A1 (ja) |
EP (1) | EP3733268A4 (ja) |
JP (1) | JP7072175B2 (ja) |
KR (1) | KR20200070406A (ja) |
CN (1) | CN111447987A (ja) |
WO (1) | WO2019131917A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7347605B1 (ja) | 2022-08-03 | 2023-09-20 | 栗田工業株式会社 | 逆浸透膜装置の運転方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10323545A (ja) | 1997-05-23 | 1998-12-08 | Kurita Water Ind Ltd | 膜分離装置 |
JP2012518538A (ja) | 2009-02-25 | 2012-08-16 | プラット アンド ホイットニー ロケットダイン,インコーポレイテッド | ファウリングが低減された流体分離システム |
JP2014008430A (ja) | 2012-06-28 | 2014-01-20 | Toray Ind Inc | 分離膜エレメント |
JP2014046293A (ja) * | 2012-09-03 | 2014-03-17 | Dainippon Plastics Co Ltd | ポリフェニレンサルファイド樹脂組成物からなるネット |
JP2016507363A (ja) * | 2012-12-19 | 2016-03-10 | ロッキード・マーチン・コーポレーション | 有孔グラフェンによる脱イオン法または脱塩法 |
JP2017515668A (ja) * | 2014-05-08 | 2017-06-15 | ロッキード・マーチン・コーポレーション | 積層された二次元材料およびそれが組み込まれた構造物を作製するための方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5968328B2 (ja) | 2010-11-10 | 2016-08-10 | ナノエイチツーオー・インコーポレーテッド | 非金属添加剤を含む改良された混成tfcro膜 |
KR101363888B1 (ko) * | 2012-02-02 | 2014-02-19 | 한국과학기술연구원 | 와권형 막 증류용 모듈 |
US20130233799A1 (en) * | 2012-02-21 | 2013-09-12 | Technion Research & Development Foundation Ltd. | Filtration module |
MX2015013207A (es) * | 2013-03-15 | 2016-06-14 | Univ Texas | Nanocompuesto con nanocanales o nanoporos para filtracion de efluentes de desecho. |
EP2827412A1 (en) * | 2013-07-16 | 2015-01-21 | DWI an der RWTH Aachen e.V. | Microtubes made of carbon nanotubes |
US20150096935A1 (en) * | 2013-10-04 | 2015-04-09 | Somenath Mitra | Nanocarbon immobilized membranes |
JP6521422B2 (ja) * | 2014-02-07 | 2019-05-29 | 日東電工株式会社 | スパイラル型分離膜エレメント |
CN106794295B (zh) * | 2014-08-21 | 2020-10-23 | 查尔斯斯塔克布料实验室公司 | 用于增加微流体装置中不期望的颗粒的对流清除的系统和方法 |
CN104311978A (zh) | 2014-08-28 | 2015-01-28 | 王晓伟 | 一种线性低密度聚乙烯管材 |
US11027240B2 (en) * | 2016-05-16 | 2021-06-08 | B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University | Antibiofilm and antimicrobial functional membrane spacer |
-
2018
- 2018-12-27 CN CN201880078803.5A patent/CN111447987A/zh active Pending
- 2018-12-27 KR KR1020207015799A patent/KR20200070406A/ko not_active Application Discontinuation
- 2018-12-27 WO PCT/JP2018/048261 patent/WO2019131917A1/ja unknown
- 2018-12-27 JP JP2019562185A patent/JP7072175B2/ja active Active
- 2018-12-27 EP EP18895600.7A patent/EP3733268A4/en not_active Withdrawn
- 2018-12-27 US US16/771,017 patent/US20200360867A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10323545A (ja) | 1997-05-23 | 1998-12-08 | Kurita Water Ind Ltd | 膜分離装置 |
JP2012518538A (ja) | 2009-02-25 | 2012-08-16 | プラット アンド ホイットニー ロケットダイン,インコーポレイテッド | ファウリングが低減された流体分離システム |
JP2014008430A (ja) | 2012-06-28 | 2014-01-20 | Toray Ind Inc | 分離膜エレメント |
JP2014046293A (ja) * | 2012-09-03 | 2014-03-17 | Dainippon Plastics Co Ltd | ポリフェニレンサルファイド樹脂組成物からなるネット |
JP2016507363A (ja) * | 2012-12-19 | 2016-03-10 | ロッキード・マーチン・コーポレーション | 有孔グラフェンによる脱イオン法または脱塩法 |
JP2017515668A (ja) * | 2014-05-08 | 2017-06-15 | ロッキード・マーチン・コーポレーション | 積層された二次元材料およびそれが組み込まれた構造物を作製するための方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7347605B1 (ja) | 2022-08-03 | 2023-09-20 | 栗田工業株式会社 | 逆浸透膜装置の運転方法 |
WO2024029162A1 (ja) * | 2022-08-03 | 2024-02-08 | 栗田工業株式会社 | 逆浸透膜装置の運転方法 |
JP2024021389A (ja) * | 2022-08-03 | 2024-02-16 | 栗田工業株式会社 | 逆浸透膜装置の運転方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111447987A (zh) | 2020-07-24 |
JPWO2019131917A1 (ja) | 2020-11-19 |
EP3733268A4 (en) | 2021-08-25 |
EP3733268A1 (en) | 2020-11-04 |
KR20200070406A (ko) | 2020-06-17 |
US20200360867A1 (en) | 2020-11-19 |
JP7072175B2 (ja) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube | |
Karanikola et al. | Engineered slippery surface to mitigate gypsum scaling in membrane distillation for treatment of hypersaline industrial wastewaters | |
Yuan et al. | Cross-linked graphene oxide framework membranes with robust nano-channels for enhanced sieving ability | |
El-Samak et al. | Designing flexible and porous fibrous membranes for oil water separation—A review of recent developments | |
Tang et al. | Potable water reuse through advanced membrane technology | |
Roy et al. | Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—a review | |
Si et al. | Flexible superhydrophobic metal-based carbon nanotube membrane for electrochemically enhanced water treatment | |
Ji et al. | Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks | |
Gu et al. | Recent progress in superhydrophilic carbon-based composite membranes for oil/water emulsion separation | |
Leaper et al. | POSS-functionalized graphene oxide/PVDF electrospun membranes for complete arsenic removal using membrane distillation | |
Lee et al. | Progress and challenges of carbon nanotube membrane in water treatment | |
Leaper et al. | The use of carbon nanomaterials in membrane distillation membranes: a review | |
Fan et al. | High desalination permeability, wetting and fouling resistance on superhydrophobic carbon nanotube hollow fiber membrane under self-powered electrochemical assistance | |
Lei et al. | Synergistic high-flux oil–saltwater separation and membrane desalination with carbon quantum dots functionalized membrane | |
Son et al. | Polyelectrolyte-based sacrificial protective layer for fouling control in reverse osmosis desalination | |
Buelke et al. | Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: State of the art | |
Du et al. | Electrospun nanofibrous polyphenylene oxide membranes for high-salinity water desalination by direct contact membrane distillation | |
US20150224450A1 (en) | Electrically conducting reverse osmosis membranes | |
Farahani et al. | Polymer/carbon nanotubes mixed matrix membranes for water purification | |
Takizawa et al. | Effective antiscaling performance of reverse-osmosis membranes made of carbon nanotubes and polyamide nanocomposites | |
Bakshi et al. | Structure dependent water transport in membranes based on two-dimensional materials | |
Lee | Carbon nanotube-based membranes for water purification | |
Nayak et al. | Advancement in polymer-based membranes for water remediation | |
Shahzad et al. | Advances in the synthesis and application of anti-fouling membranes using two-dimensional nanomaterials | |
Wu et al. | Wetting-Induced Water Promoted Flow on Tunable Liquid–Liquid Interface-Based Nanopore Membrane System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18895600 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019562185 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207015799 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018895600 Country of ref document: EP Effective date: 20200728 |