WO2019131449A1 - Mold release film for production of ceramic green sheet - Google Patents

Mold release film for production of ceramic green sheet Download PDF

Info

Publication number
WO2019131449A1
WO2019131449A1 PCT/JP2018/047027 JP2018047027W WO2019131449A1 WO 2019131449 A1 WO2019131449 A1 WO 2019131449A1 JP 2018047027 W JP2018047027 W JP 2018047027W WO 2019131449 A1 WO2019131449 A1 WO 2019131449A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
green sheet
ceramic green
film
release
Prior art date
Application number
PCT/JP2018/047027
Other languages
French (fr)
Japanese (ja)
Inventor
有加 松尾
有記 本郷
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67067299&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019131449(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to SG11202005633XA priority Critical patent/SG11202005633XA/en
Priority to JP2019502113A priority patent/JP6822549B2/en
Priority to MYPI2020003262A priority patent/MY192990A/en
Priority to KR1020207021350A priority patent/KR102518776B1/en
Priority to CN201880083606.2A priority patent/CN111527136B/en
Publication of WO2019131449A1 publication Critical patent/WO2019131449A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films

Definitions

  • the present invention relates to a release film for producing an ultra-thin layer ceramic green sheet, and more specifically, a production method for suppressing the occurrence of process defects due to pinholes and uneven thickness and peeling defects at the time of producing an ultra-thin layer ceramic green sheet
  • the present invention relates to a release film for producing an ultra-thin layer ceramic green sheet that can be produced.
  • a release film having a polyester film as a base material and a release layer laminated thereon is used for forming a ceramic green sheet such as a multilayer ceramic capacitor (hereinafter referred to as MLCC), a ceramic substrate or the like.
  • MLCC multilayer ceramic capacitor
  • the ceramic green sheet is molded by coating and drying a slurry containing a ceramic component such as barium titanate and a binder resin on a release film. After printing an electrode on a molded ceramic green sheet and peeling it from a release film, a laminated ceramic capacitor is manufactured by laminating, pressing and cutting the ceramic green sheet, and firing and applying an external electrode.
  • the thickness of ceramic green sheets has been further reduced, and ceramic green sheets having a thickness of 1.0 ⁇ m or less, more specifically 0.2 ⁇ m to 1.0 ⁇ m, have been required. Therefore, higher smoothness is required on the surface of the release layer.
  • the strength of the ceramic green sheet decreases as the thickness of the ceramic green sheet decreases, not only the surface of the release layer is smoothed, but also the peel strength when peeling the ceramic green sheet from the release film is low and uniform. It is preferable to reduce the load applied to the ceramic green sheet as much as possible when peeling the ceramic green sheet from the release film, and to prevent the ceramic green sheet from being damaged.
  • the mold release layer is used by using an active energy ray curing component in the mold release layer
  • an active energy ray curing component in the mold release layer
  • measures have been studied for suppressing the elastic deformation of the release layer at the time of peeling of the ceramic green sheet and reducing the peeling force (for example, Patent Documents 2 and 3).
  • the surface is exfoliated because the smoothness is too high, the exfoliation force is increased, and the green sheet may be cracked.
  • JP 2000-117899 A International Publication No. 2013/145864 International Publication No. 2013/145865 International Publication No. 2014/203702 JP, 2016-127120, A JP, 2017-081805, A
  • the present inventors continuously form a low protrusion having a constant shape on the surface of the mold release layer, thereby causing the above-described heavy peeling, the deterioration of processing suitability, and the generation of a defect factor.
  • I determined that I could suppress it.
  • the object of the present invention is to provide a release film for forming a ceramic green sheet which is excellent in releasability and hardly causes damage such as a pinhole defect or a crack at the time of exfoliation to an extremely thin ceramic green sheet to be formed. It is.
  • the present invention has the following constitution.
  • a release film in which a release layer of 0.2 to 3.5 ⁇ m is laminated on at least one surface of a polyester film directly or through another layer, and the area surface roughness (Sa) of the release layer surface is A release film for producing a ceramic green sheet, having a maximum peak height (Rp) of 60 nm or less and 5 to 40 nm. 2.
  • the polyester film is a laminated polyester film comprising at least a surface layer A and two or more layers including a surface layer B opposite to the surface layer A, and a release layer is laminated on the surface layer A.
  • the surface layer B contains particles, the particles are silica particles and / or calcium carbonate particles, and the total content of particles is 5000 to 15000 ppm with respect to the total mass of the surface layer B. Release film for ceramic green sheet production. 6.
  • Release film for ceramic green sheet production. 7 A method for producing a ceramic green sheet, wherein the ceramic green sheet is formed by using the release film for producing a ceramic green sheet according to any one of the first to sixth aspects, wherein the formed ceramic green sheet has a thickness of 0.2 ⁇ m to A method of producing a ceramic green sheet characterized by having a thickness of 1.0 ⁇ m.
  • the release film for producing a ceramic green sheet of the present invention compared to the conventional release film for producing a ceramic green sheet, the peeling force is not too heavy, the processability is excellent, and the large protrusion is formed on the release layer. Since there is no film, it has become possible to provide a release film for producing a ceramic green sheet capable of reducing defects such as pinholes in an ultrathin ceramic green sheet having a thickness of 1 ⁇ m or less.
  • the release film for producing an ultrathin ceramic green sheet of the present invention has a release layer on at least one side of the polyester film directly or through another layer, and the surface roughness (Sa of the release layer surface) (Sa And the maximum peak height (Rp) is preferably 60 nm or less. And, the release layer is incompatible with the energy ray curable compound (I) having three or more reactive groups in one molecule, and the energy ray curable compound (I), and a sea-island structure by phase separation.
  • a mold release film for producing a ceramic green sheet, in which a coating film containing at least a resin (II) forming the resin and a mold release component (III) is cured is a preferred embodiment.
  • polyester film The polyester constituting the polyester film used as the substrate in the release film of the present invention is not particularly limited, and polyester film generally used as a release film substrate can be film-molded, but Preferably, it is a crystalline linear saturated polyester composed of an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or these Further preferred is a copolymer having as a main component a component of the resin of (1), and particularly preferred is a polyester film formed of polyethylene terephthalate.
  • the repeating unit of ethylene terephthalate is preferably 90 mol% or more, more preferably 95 mol% or more, and small amounts of other dicarboxylic acid components and diol components may be copolymerized, but from the viewpoint of cost And those produced solely from terephthalic acid and ethylene glycol.
  • known additives for example, an antioxidant, a light stabilizer, an ultraviolet light absorber, a crystallizing agent and the like may be added within a range not to inhibit the effect of the film of the present invention.
  • the polyester film is preferably a polyester film because of the height of the elastic modulus in both directions and the like.
  • the intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g.
  • the intrinsic viscosity is 0.50 dl / g or more, breakage is less likely to occur in the stretching step, which is preferable.
  • it is 0.70 dl / g or less, it is preferable because the cutting property when cutting into a predetermined product width is good and dimensional defects do not occur.
  • the raw material be sufficiently vacuum dried.
  • the method for producing the polyester film in the present invention is not particularly limited, and a method generally used conventionally can be used.
  • the polyester is melted by an extruder, extruded into a film, cooled by a rotary cooling drum to obtain an unstretched film, and obtained by uniaxially or biaxially stretching the unstretched film.
  • a biaxially stretched film can be obtained by sequentially biaxially stretching a longitudinally or transversely uniaxially stretched film in the transverse direction or longitudinal direction, or by simultaneously biaxially stretching an unstretched film in the longitudinal direction and transverse direction. It can.
  • the stretching temperature at the time of stretching the polyester film is preferably at least the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, particularly 2 to 6 times in each of the longitudinal and transverse directions.
  • the polyester film preferably has a thickness of 12 to 50 ⁇ m, more preferably 12 to 38 ⁇ m, and still more preferably 15 to 31 ⁇ m. If the thickness of the film is 12 ⁇ m or more, it is preferable because there is no risk of deformation due to heat at the time of film production, processing step of the release layer, and molding of the ceramic green sheet. On the other hand, if the thickness of the film is 50 ⁇ m or less, the amount of film discarded after use is not extremely large, which is preferable in reducing the environmental impact, and furthermore, the material per area of the release film used is small. It is also preferable from the economic point of view.
  • the polyester film substrate may be a single layer or a multilayer of two or more layers, but it is a laminated polyester film having a surface layer A substantially free of inorganic particles on at least one side. preferable.
  • a laminated polyester film having a multilayer structure of two or more layers it is preferable to have a surface layer B capable of containing particles and the like on the opposite surface of the surface layer A substantially free of inorganic particles.
  • the layer configuration in the thickness direction is the release layer.
  • the surface layer B can also contain no particles. In that case, it is preferable to provide a coat layer (D) containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film into a roll.
  • the surface layer A forming the surface to which the release layer is applied does not substantially contain inorganic particles.
  • the area average surface roughness (Sa) of the surface layer A is preferably 7 nm or less. If Sa is 7 nm or less, even if the thickness of the release layer is 2.0 ⁇ m or less, and even a thin film such as 0.5 ⁇ m or less, pinholes or the like occur during molding of the ultra-thin ceramic green sheet to be laminated Hard and preferred.
  • the area average surface roughness (Sa) of the surface layer A is preferably as small as possible, but may be 0.1 nm or more. However, when providing the below-mentioned anchor coat layer etc.
  • an inorganic particle is not included in a coat layer substantially, and the field surface average roughness (Sa) after coat layer lamination is within the above-mentioned range.
  • substantially free of inorganic particles is defined as 50 ppm or less when the inorganic element is quantified by fluorescent X-ray analysis, preferably 10 ppm or less, and most preferably below the detection limit. Content. This is because, even if the inorganic particles are not positively added to the film, contamination components derived from extraneous foreign matter, stains attached to the lines and devices in the manufacturing process of the raw material resin or the film are peeled off and mixed in the film. It is because there is a case.
  • the surface layer B forming the surface opposite to the surface layer A to which the release layer is applied is in the form of particles from the viewpoint of film slipperiness and air escapeability. It is preferable to contain, in particular, silica particles and / or calcium carbonate particles. The content of particles contained is preferably 5,000 to 15,000 ppm in total of particles in the surface layer B.
  • the area average surface roughness (Sa) of the film of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
  • the total of the silica particles and / or calcium carbonate particles in the surface layer B is 5000 ppm or more and Sa is 1 nm or more, air can be uniformly released when the film is rolled up, and the winding appearance is good.
  • the good planarity makes it suitable for the production of ultra-thin ceramic green sheets.
  • the total amount of silica particles and / or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, aggregation of the lubricant is difficult to occur and coarse protrusions can not be formed, so the ceramic green sheet of ultrathin layer is wound after molding Even in this case, the ceramic green sheet is preferable without causing defects such as pinholes.
  • silica particles and / or calcium carbonate particles As particles contained in the surface layer B, it is more preferable to use silica particles and / or calcium carbonate particles from the viewpoint of transparency and cost.
  • inert inorganic particles and / or heat resistant organic particles can be used, and examples of other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, etc.
  • heat resistant organic particles crosslinked polyacrylic particles, crosslinked polystyrene particles, benzoguanamine particles and the like can be mentioned.
  • porous colloidal silica is preferable, and when calcium carbonate particles are used, light calcium carbonate which has been surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the slippage of the lubricant. .
  • the average particle diameter of the particles added to the surface layer B is preferably 0.1 ⁇ m to 2.0 ⁇ m and particularly preferably 0.5 ⁇ m to 1.0 ⁇ m. If the average particle size of the particles is 0.1 ⁇ m or more, the slipperiness of the release film is good and preferable. In addition, if the average particle diameter is 2.0 ⁇ m or less, there is no possibility of generation of pinholes due to coarse particles on the surface of the release layer, which is preferable.
  • grains observes the particle of the cross section of the film after a process with a scanning electron microscope, observes 100 particle
  • the shape of the particles is not particularly limited as long as the object of the present invention is satisfied, and spherical particles and irregular-shaped non-spherical particles can be used.
  • the particle diameter of the irregularly shaped particles can be calculated as the equivalent circle diameter.
  • the equivalent circle diameter is a value obtained by dividing the area of the observed particles by the circular constant ( ⁇ ), calculating the square root and doubling it.
  • the surface layer B may contain two or more types of particles different in material. Also, particles of the same type but different in average particle size may be contained.
  • the surface layer B does not contain particles
  • the means to provide this coating layer is not specifically limited, It is preferable to provide by what is called the in-line coating method coated in film forming of a polyester film.
  • the polyester film does not need to have the surface layers A and B, and it is necessary to May be composed of a single-layer polyester film not contained.
  • the area average surface roughness (Sa) of the surface layer B is preferably 40 nm or less, more preferably 35 nm or less, and still more preferably 30 nm or less. Also, when the surface layer B or the surface of the single-layer polyester film not to be laminated is provided with lubricity by the coat layer (D), Sa on the surface is the surface on which the coat layer is laminated. It is preferable that the area of the surface layer B be in the same range as the surface average roughness (Sa).
  • Coat layer D Preferably, at least a binder resin and particles are contained in the coat layer D on the surface of the polyester film on the side where the release layer is not laminated.
  • Binder resin of coat layer D Although it does not specifically limit as a binder resin which comprises a lubricious application layer, as a specific example of a polymer, a polyester resin, an acrylic resin, a urethane resin, polyvinyl-type resin (polyvinyl alcohol etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose , Hydroxycellulose, starches and the like. Among these, it is preferable to use a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of retention of particles and adhesion. In addition, polyester resins are particularly preferable in consideration of familiarity with polyester films.
  • the polyester of the binder is preferably a copolyester.
  • the polyester resin may be polyurethane-modified.
  • urethane resin is mentioned as another preferable binder resin which comprises the easily slipping coating layer on a polyester base film.
  • Polycarbonate polyurethane resin is mentioned as a urethane resin.
  • polyester resin and polyurethane resin may be used in combination, and the other binder resin described above may be used in combination.
  • the slippery coating layer in order to form a crosslinked structure in the slippery coating layer, may be formed to contain a crosslinking agent.
  • a crosslinking agent By including the crosslinking agent, it is possible to further improve the adhesion under high temperature and high humidity.
  • Specific examples of the crosslinking agent include ureas, epoxys, melamines, isocyanates, oxazolines, carbodiimides, and aziridine.
  • a catalyst etc. can be used suitably as needed.
  • the slippery coating layer preferably contains lubricant particles in order to impart slipperiness to the surface.
  • the particles may be inorganic particles or organic particles, and are not particularly limited.
  • Inorganic particles such as magnesium and barium sulfate, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / Is
  • the average particle diameter of the particles is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more.
  • the average particle diameter of the particles is 10 nm or more, aggregation is difficult and slipperiness can be secured, which is preferable.
  • the average particle diameter of the particles is preferably 1000 nm or less, more preferably 800 nm or less, and still more preferably 600 nm or less. Transparency is maintained as the average particle diameter of particle
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent mixing of particles such as a lubricant.
  • the thickness ratio of surface layer A which is a layer at the side which provides the said mold release layer is 20% or more and 50% or less of the total layer thickness of a base film. If it is 20% or more, the influence of particles contained in the surface layer B or the like is not easily received from the inside of the film, and the area surface average roughness Sa easily meets the above range, which is preferable.
  • regeneration raw material in surface layer B can be increased as it is 50% or less of the thickness of the whole layer of a base film, an environmental impact is small and preferable.
  • the type and amount of the lubricant contained in the surface layer B, the particle diameter, and the area surface average roughness (Sa) satisfy the above range.
  • a film after stretching or uniaxial stretching in the film forming process on the surface of the surface layer A and / or the surface layer B in order to improve adhesion of a release layer applied later or to prevent charging etc. May be provided with a coating layer, or may be subjected to corona treatment or the like.
  • a coat layer is also provided, Sa of each layer is substituted by the measurement value of the coat layer surface.
  • the release layer of the present invention is incompatible with the energy ray-curable compound (I) having three or more reactive groups in one molecule and the energy ray-curable compound (I) and is phase separated to form a sea-island structure. It is preferable to cure the coating film containing at least the resin (II) forming the resin and the mold release component (III).
  • the coating film containing at least the resin (II) forming the resin and the mold release component (III) By forming the sea-island structure by the phase separation of the energy ray-curable compound (I) and the resin (II), it is possible to easily form asperities with an appropriate height, and no coarse projections are generated. No holes occur.
  • the flat portion is almost absent and peeling occurs at points, even a brittle ultra-thin ceramic green sheet can be peeled without dipping, so that damage such as cracking or deformation can be suppressed. .
  • an energy ray-curable compound having three or more reactive groups in one molecule can be used as the energy ray-curable compound (I) used in the present invention.
  • an energy ray-curable compound having three or more reactive groups in one molecule By having three or more reactive groups in one molecule, it becomes a release layer having a high elastic modulus, and deformation of the release layer at the time of green sheet peeling can be suppressed, and heavy peeling can be suppressed.
  • the solvent resistance of the release layer can be improved, the erosion of the release layer by the solvent can be prevented at the time of slurry coating, which is preferable.
  • an energy ray-curable compound having three or more reactive groups in one molecule it is not particularly limited whether to react directly by energy rays or by reactive species generated indirectly.
  • the content of the energy ray-curable compound (I) in the solid component in the release layer-forming coating solution is preferably 60 to 98% by mass, and more preferably 75 to 97% by mass. By adding 60% by mass or more, the degree of crosslinking can be maintained, and a high elastic modulus can be obtained.
  • Examples of the reactive group of the energy ray-curable compound (I) include a (meth) acryloyl group, an alkenyl group, an acrylamide group, a maleimide group, an epoxy group and a cyclohexene oxide group. Among them, an energy ray curable compound having a (meth) acryloyl group excellent in processability is preferable.
  • the energy ray-curable compound having a (meth) acryloyl group can be used without limitation to monomers, oligomers and polymers. Further, it is preferable to contain a compound having three or more reactive groups in at least one molecule, but two or more compounds such as a compound having one or two reactive groups in the molecule are mixed and used. It can also be done. By mixing a compound having a small number of reactive groups, curling and the like can be suppressed.
  • energy ray curable monomers having three or more (meth) acryloyl groups in the molecule isocyanuric acid triacrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tri Methylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate ) Multifunctional (meth) acrylates such as acrylates and their ethylene oxide modified products, propylene oxide modified products, caprolactone modified products, etc. That.
  • energy ray curable monomers having 1 or 2 reactive groups in the molecule methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, cyclopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, Nonyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, cyclic trimethylolpropy
  • Examples of energy ray curable oligomers having 3 or more (meth) acryloyl groups in the molecule include urethane acrylate, polyester acrylate, polyether acrylate, epoxy acrylate, silicone modified acrylate, etc. It can be used.
  • EBECRYL series manufactured by Daicel Ornex Co., Ltd. biscoat series manufactured by Osaka Organic Chemical Industry Co., Ltd., urethane acrylate series manufactured by Kyoeisha Chemical Co., Ltd.
  • Examples of energy ray-curable polymers having three or more (meth) acryloyl groups in the molecule include graft polymers in which (meth) acryloyl groups are grafted to the polymer, block polymers in which a polyfunctional acrylic monomer is added to the polymer end, etc. Can be mentioned.
  • acrylic resin, epoxy resin, polyester resin, polyorganosiloxane and the like can be used, and it is not particularly limited.
  • the resin (II) used in the present invention is dissolved or dispersed in the same solvent as the energy ray curable compound (I) and both are dissolved or dispersed in the state of a coating agent, but after application, the solvent is dried. It is preferable to form a sea-island structure by using the energy ray-curable compound (I) as the sea component and the resin (II) as the island component, since they are mutually incompatible in the release layer formed through curing. (II) can be used without particular limitation as long as the above requirements are satisfied. Two or more resins can also be used simultaneously.
  • the content of the resin (II) in the solid content in the release layer-forming coating solution is preferably 1 to 40% by mass, and more preferably 1 to 10% by mass. Sufficient unevenness can be formed by containing 1% by mass or more, and by setting the amount to 40% by mass or less, the degree of crosslinking of the release layer is high, and the temperature dependency at peeling is low, which is preferable.
  • any solvent-soluble resin such as polyester resin, acrylic resin, urethane resin, polyester urethane resin, polyimide resin, polyamideimide resin, cellulose resin can be used without particular limitation.
  • the condition is that the resin is incompatible with the energy ray-curable compound (I).
  • the polyester resin is not particularly limited, and commercially available resins can be used.
  • Bayon (registered trademark) series manufactured by Toyobo Co., Ltd. Nichigo Polyester (registered trademark) series manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and the like can be mentioned.
  • the acrylic resin is an oligomer or a polymer obtained by polymerizing an acrylic ester, and may be a homopolymer or a copolymer. Moreover, a commercially available thing can be used. For example, the acryl Corporation (registered trademark) series ARICON (trade name) manufactured by Toagosei Co., Ltd. and the like, and the like may be mentioned.
  • polyester urethane resin examples include Byron (registered trademark) UR series manufactured by Toyobo Co., Ltd.
  • the releasing component (III) used in the present invention is not particularly limited as long as it is a material capable of exhibiting releasing property with the green sheet, such as polyorganosiloxane, fluorine compound, long chain alkyl compound, and waxes. Moreover, the material which has a functional group which can react and couple
  • the content of the release component (III) in the solid content in the release layer-forming coating solution is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass. If the content is 0.05% by mass or more, the peeling force can be lightened, and if the content is 10% by mass or less, the transfer of the releasing component to the ceramic green sheet or the like can be suppressed, which is preferable.
  • polyorganosiloxanes in addition to polydimethylsiloxane, polydiethylsiloxane, polyphenylsiloxane, etc., siloxane compounds having a partial organic modification, block polymers having polyorganosiloxanes, polymers obtained by grafting polyorganosiloxanes, etc. It can be used.
  • siloxane compounds having a partial organic modification block polymers having polyorganosiloxanes, polymers obtained by grafting polyorganosiloxanes, etc. It can be used.
  • BYK (registered trademark) series manufactured by Big Chemie Japan Co., Ltd., Modiper (registered trademark) series manufactured by NOF Corporation, and the like can be used.
  • the fluorine compound is not particularly limited, and commercially available ones can be used.
  • Megafuck (registered trademark) series manufactured by DIC Corporation can be mentioned.
  • long chain alkyl compounds include acrylic polymers copolymerized with long chain alkyl acrylates, graft polymers grafted with long chain alkyl, and block polymers with long chain alkyl end-added. Moreover, it does not specifically limit, A commercially available thing can be used. For example, Tesfine (registered trademark) series manufactured by Hitachi Chemical Co., Ltd., and Peiroil (registered trademark) manufactured by Lion Specialty Chemicals, etc. may be mentioned.
  • the active energy ray examples include infrared rays, visible rays, ultraviolet rays, electromagnetic waves such as X-rays, electron beams, ion beams, particle rays such as neutrons and alpha rays, and the like, among them, the production cost It is preferable to use excellent ultraviolet light.
  • the atmosphere when the active energy ray is irradiated may be a general air or a nitrogen gas atmosphere.
  • a nitrogen gas atmosphere the radical reaction can proceed smoothly by reducing the oxygen concentration, and the elastic modulus of the release layer can be improved. It is preferable from the economical point of view.
  • photopolymerization initiator When a radical polymerization compound is used in the release layer of the present invention, it is preferable to add a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4 -Diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloro anthraquinone, (2,4,6-trimethyl And benzyl diphenyl)
  • 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methylpropan-1-one which is considered to be excellent in surface curability.
  • 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One is preferred, among which 2-hydroxy-2-methyl-1-phenyl-propan-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one are particularly preferred. preferable. These may be used alone or in combination of two or more.
  • the addition amount of a photoinitiator is not specifically limited, For example, it is preferable to contain about 0.1 to 20 mass% as solid content in the coating liquid for release layer formation.
  • the releasing layer in the present invention can contain particles having a particle diameter of 1 ⁇ m or less, but it is preferable not to contain particles forming projections such as particles from the viewpoint of generation of pinholes.
  • an adhesion improver an additive such as an antistatic agent, or the like may be added to the release layer in the present invention as long as the effects of the present invention are not impaired. Further, in order to improve the adhesion to the substrate, it is also preferable to subject the polyester film surface to pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment or the like before the release coating layer is provided.
  • the thickness of the release layer may be set according to the purpose of use, and is not particularly limited, but preferably the range from 0.2 to 3.5 ⁇ m of the release layer after curing is preferable. More preferably, it is 0.5 to 3.0 ⁇ m.
  • the thickness of the release layer is 0.2 ⁇ m or more, the curability of the energy ray-curable copolymer is good, and the elastic modulus of the release layer is improved. Further, when the thickness is 3.5 ⁇ m or less, curling is unlikely to occur even when the thickness of the release film is reduced, and thus it is preferable because the running property is not deteriorated in the process of molding and drying the ceramic green sheet.
  • the surface of the release layer has appropriate irregularities. Therefore, it is preferable that the area surface average roughness (Sa) of the release layer surface is 5 to 40 nm. Further, it is more preferable that the above-mentioned Sa is satisfied, and the maximum projection height (Rp) on the surface of the releasing layer is 60 nm or less. Furthermore, the area surface average roughness (Sa) is preferably 5 to 20 nm, and more preferably 8.5 to 20 nm. At the same time, it is particularly preferred that the maximum projection height (Rp) be 50 nm or less.
  • the zipping can be reduced at the time of peeling of the ceramic green sheet, and even an ultrathin layer green sheet can be easily peeled without damage.
  • the area surface roughness (Sa) is 40 nm or less, the particle size of the ceramic is sufficiently smaller than the particle size of the ceramic, and the surface shape of the green sheet is not affected. If the above-mentioned Sa is satisfied and the maximum projection height (Rp) on the surface of the releasing layer is 60 nm or less, the possibility of causing a pinhole defect is further reduced, which is preferable.
  • the maximum projection height (Rp) is preferably small, the maximum projection height (Rp) may also be 5 nm or more, 10 nm or more, because the area surface average roughness (Sa) is adjusted to 5 nm or more. It does not matter.
  • various factors are related, but mainly the surface layer A of the polyester film Since the single layer polyester film does not substantially contain inorganic particles, the surface roughness on which the release layer is laminated is small, and the release layer has three or more reactive groups in one molecule.
  • a curable compound (I) and the energy beam curable compound (I) as a sea component, and a resin (II) which is incompatible with the energy beam curable compound (I) and becomes an island component, are cured It can be said that what is being done is related.
  • the method of adjusting the surface roughness (Sa) and the maximum projection height (Rp) of the release layer to the appropriate range as described above is not particularly limited, but mainly the energy ray-curable compound (I) and the resin ( This can be achieved preferably by adjusting the combination and content ratio of the materials of II).
  • the static friction coefficient of the release layer surface of the release layer film of the present invention is preferably 0.05 or more and 2.00 or less. More preferably, it is 0.1 or more and 1.00 or less, and still more preferably 0.1 or more and 0.50 or less. If the coefficient of static friction is within the above range, the surface of the coating layer and the surface of the mold release layer slip well and no excessive force is applied, so the damage to the surface of the mold release layer is reduced and damage to the green sheet is reduced. And a good green sheet surface is obtained. Moreover, it is preferable that the dynamic friction coefficient of the mold release layer surface of the mold release film of this invention is 1.00 or less. Within the above range, a good green sheet surface can be obtained without tension abnormality occurring in the process.
  • Adjusting the range of the static friction coefficient and the dynamic friction coefficient of the release layer surface is related to the range of the surface roughness (Sa) and the maximum projection height (Rp) of the release layer, and the adjustment method There is no particular limitation, but it can be preferably achieved mainly by adjusting the combination and content ratio of the materials of the energy ray-curable compound (I) and the resin (II).
  • the method for forming the releasing layer is not particularly limited, and a coating liquid in which a releasing compound is dissolved or dispersed is spread on one surface of the polyester film of the substrate by coating etc.
  • cure after removing by drying is used.
  • coating the release layer of this invention on a base film by solution application is 50 degreeC or more and 120 degrees C or less, and is 60 degrees C or more and 100 degrees C or less More preferable.
  • the drying time is preferably 30 seconds or less and more preferably 20 seconds or less.
  • an active energy ray it is preferable to irradiate an active energy ray to advance the curing reaction.
  • the active energy ray used at this time ultraviolet rays, electron beams, X-rays, etc. can be used, but ultraviolet rays are preferred because they are easy to use.
  • the amount of ultraviolet light to be irradiated is preferably 30 to 300 mJ / cm 2 , and more preferably 30 to 200 mJ / cm 2 in light amount.
  • the curing of the composition proceeds sufficiently, and by setting it to 300 mJ / cm 2 or less, the processing speed can be improved, so that the mold release film can be economically produced. preferable.
  • the surface tension of the coating liquid when the release layer is applied is not particularly limited, but is preferably 30 mN / m or less.
  • Any known coating method can be applied as the coating method of the above coating solution, for example, roll coating such as gravure coating or reverse coating, bar coating such as wire bar, die coating, spray coating, air knife A conventionally known method such as a coating method can be used.
  • Substrate film thickness By using Millitron (electronic micro indicator), 4 pieces of 5 cm square samples are cut out from any 4 parts of the film to be measured, and each 5 pieces (20 pieces in total) are measured and averaged Thickness.
  • Millitron electronic micro indicator
  • the thickness of the release layer was measured using an optical interference type film thickness meter (F20, manufactured by Filmetrics, Inc.). (The refractive index of the release layer is calculated as 1.52.)
  • Region surface roughness (Sa), maximum projection height (Rp) It is a value measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100, manufactured by Ryoka System Co., Ltd.).
  • the area surface average roughness (Sa) was an average value of 5 measurements, and the maximum projection height (Rp) was 7 measurements, and the maximum value of 5 values excluding the maximum value and the minimum value was used.
  • Measurement condition -Measurement mode: WAVE mode-Objective lens: 50x-0.5 x Tube lens (analysis conditions) -Face correction: 4th order correction-Interpolation: Complete interpolation
  • the release film with a ceramic green sheet prepared by the above method was cut into a width of 30 mm and a length of 80 mm, and used as a sample for measurement of peel force. After removing electricity using an electric discharge machine (manufactured by Keyence Corporation, SJ-F020), using a peeling tester (VPA-3 manufactured by Kyowa Interface Science Co., Ltd.), the peeling angle is 30 degrees, the peeling temperature is 25 ° C., and the peeling speed is 10 m / m. It peeled in min. As a peeling direction, a double-sided adhesive tape (Nitto Denko Co., Ltd., No.
  • the peeling angle in this evaluation method points out the angle of the direction which pulls a release film with respect to the evaluation sample axis fixed to the peeling test machine.
  • the peeling temperature is a temperature at which the release film fixed by using a heater type stage system attached to the apparatus is heated. Peeling is performed after confirming that the temperature of the measurement sample has reached the relevant temperature using a handy type thermometer (HD-1400E, manufactured by Anritsu Keiki Co., Ltd.).
  • PET (1) Preparation of polyethylene terephthalate pellets (PET (1))
  • a continuous esterification reaction apparatus was used which was composed of a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material feed port and a product outlet.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide is produced in an amount such that 160 ppm of Sb atoms are formed with respect to PET, and these slurries are ester
  • the reaction mixture was continuously fed to the first esterification reactor of the esterification reactor, and reacted at 255 ° C.
  • the EG solution contains 8% by weight of EG to the produced PET, and further contains an EG solution containing magnesium acetate tetrahydrate in an amount of 65 ppm of Mg atoms to the produced PET, and 40 ppm of P atoms to the produced PET.
  • TMPA trimethyl phosphate
  • the reaction product of the second esterification reaction vessel is continuously taken out of the system, supplied to the third esterification reaction vessel, and 39 MPa (400 kg / cm 2 ) using a high pressure disperser (manufactured by Nippon Seiki Co., Ltd.) 0.2% by mass of porous colloidal silica with an average particle size of 0.9 ⁇ m dispersed with an average pressure of 5 passes and an average particle of 1% by mass per ammonium carbonate of an ammonium salt of polyacrylic acid While adding 0.4 mass% of synthetic calcium carbonate having a diameter of 0.6 ⁇ m as an EG slurry of 10% each, the reaction was carried out at 260 ° C. at an average residence time of 0.5 hours under normal pressure.
  • the esterification reaction product generated in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reaction apparatus to conduct polycondensation, and a 95% cut diameter sintered a 20 ⁇ m stainless steel fiber After filtration with a filter, it was ultrafiltered and extruded in water, and after cooling it was cut into chips to obtain PET chips with an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (1)) .
  • PET (1) an intrinsic viscosity of 0.60 dl / g
  • PET (2) Preparation of polyethylene terephthalate pellets
  • PET (3) Preparation of polyethylene terephthalate pellets (PET (3))
  • the type and content of particles of PET (I) were changed to 0.75% by mass of synthetic calcium carbonate having an average particle diameter of 0.9 ⁇ m, in which 1% by mass of ammonium salt of polyacrylic acid was attached per calcium carbonate,
  • PET (3) A PET chip was obtained in the same manner as PET (1) (hereinafter referred to as PET (3)).
  • the lubricant content in the PET chip was 0.75% by mass.
  • PET chips are melted at 285 ° C., melted at 290 ° C. by a separate melt extruder extruder, and a 95% cut diameter sintered filter of 15 ⁇ m stainless steel fibers, 95% cut diameter
  • Two-stage filtration of a filter made of sintered 15 ⁇ m stainless steel particles is carried out and merged in a feed block to make PET (1) a surface layer B (a reverse surface side layer), PET (2) a surface Layer A (release surface side layer) is laminated, extruded in a sheet shape at a speed of 45 m / min (casting), and electrostatically adhered and cooled on a casting drum at 30 ° C. by an electrostatic adhesion method.
  • A4100 Cosmo Shine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was used.
  • A4100 has the structure which provided the coating layer which contained particle
  • Sa of the surface layer A of the laminated film X3 was 1 nm, and Sa of the surface layer B was 2 nm.
  • Example 1 Apply coating solution 1 of the following composition onto the surface layer A of the laminated film X1 using reverse gravure so that the thickness of the release layer after drying is 2.5 ⁇ m, and after drying for 30 seconds at 90 ° C., high pressure
  • a release film for producing an ultrathin ceramic green sheet was obtained by irradiating ultraviolet rays so as to be 200 mJ / cm 2 using a mercury lamp.
  • the release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • the (Coating solution 1) Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid concentration 100%)
  • Resin (II) Polyester resin 9.47 parts by mass (Toyobo Co., Ltd.
  • Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV 3505, manufactured by Byk Chem Japan, solid content 40% by mass)
  • Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
  • Example 2 Resin (II) was changed to polyester urethane resin (Toyobo Co., Ltd. Byron (registered trademark) UR1400, solid content concentration 30 mass%), and the following coating solution 2 was used.
  • the solid content concentration of the coating solution 2 was reduced as compared to the coating solution 1 of Example 1. It applied so that the release layer film thickness after drying might be 1.5 micrometers.
  • a release film was obtained in the same manner as in Example 1 except that the coating solution 2 was used and the coating was performed so that the thickness of the release layer after drying was 1.5 ⁇ m.
  • the release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • the (Coating solution 2) Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%) Resin (II) polyester urethane resin 31.50 parts by mass (Toyobo Co., Ltd.
  • Example 3 The following coating solution 3 was used, in which the proportion of the releasing agent (III) was increased as compared with that in Example 2. It applied so that the release layer film thickness after drying might be set to 1.8 micrometers. A release film was obtained in the same manner as in Example 1 except that the coating solution 3 was used and the coating was performed so that the thickness of the release layer after drying was 1.8 ⁇ m. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • the (Coating solution 3) Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%) Resin (II) polyester urethane resin 31.50 parts by mass (Toyobo Co., Ltd.
  • Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV 3505, manufactured by Byk Chem Japan, solid content 40% by mass)
  • Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content 100% by mass)
  • Example 4 The coating solution 3 used in Example 3 was applied onto the surface layer A of the laminated film X2.
  • a release film was obtained in the same manner as in Example 3, except that the laminated film X2 was used.
  • the release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • Example 5 The coating liquid 3 used in Example 3 was coated on the surface layer A of the laminated film X3.
  • a release film was obtained in the same manner as in Example 3, except that the laminated film X3 was used.
  • the release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • Example 1 Compared with Example 1, the resin (II) is not contained, and the release agent (III) is an acryloyl group-containing polyether-modified polydimethylsiloxane (BYK UV-3500, 100% solid concentration by Big Chemie Japan)
  • the following coating solution 4 was used in which the amount of addition was increased and the dilution solvent was changed.
  • a release film was obtained in the same manner as in Example 1 except that the coating solution 4 was used and the coating was performed so that the thickness of the release layer after drying was 1.0 ⁇ m.
  • the release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film.
  • the (Coating solution 4) Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%)
  • Releasing agent (III) 1.00 parts by mass (Acryloyl group-containing polyether-modified polydimethylsiloxane BYK UV-3500, 100% solid concentration by Big Chemie Japan)
  • the peeling force does not become too heavy as compared with the conventional release film for producing a ceramic green sheet, and the processability is excellent and the release layer is large. Since there is no protrusion, it has become possible to provide a release film for producing a ceramic green sheet capable of reducing defects such as pinholes in an ultrathin ceramic green sheet having a thickness of 1 ⁇ m or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

[Problem] To provide a mold release film for molding of a ceramic green sheet, which has excellent releasability and is not likely to cause pin hole defects and damage such as cracks during releasing on an ultrathin ceramic green sheet that is molded with use of the mold release film. [Solution] A mold release film for the production of a ceramic green sheet, which is obtained by superposing a mold release layer having a thickness of 0.2-3.5 μm on at least one surface of a polyester film directly or with another layer being interposed therebetween, and which is configured such that the surface of the mold release layer has a local surface roughness (Sa) of 5-40 nm and a maximum profile peak height (Rp) of 60 nm or less.

Description

セラミックグリーンシート製造用離型フィルムRelease film for ceramic green sheet production
 本発明は、超薄層のセラミックグリーンシート製造用離型フィルムに関するものであり、詳しくは超薄層のセラミックグリーンシート製造時にピンホール及び厚みムラや剥離不良による工程不良の発生を抑制したものを製造し得る、超薄層のセラミックグリーンシート製造用離型フィルムに関するものである。 The present invention relates to a release film for producing an ultra-thin layer ceramic green sheet, and more specifically, a production method for suppressing the occurrence of process defects due to pinholes and uneven thickness and peeling defects at the time of producing an ultra-thin layer ceramic green sheet The present invention relates to a release film for producing an ultra-thin layer ceramic green sheet that can be produced.
 従来ポリエステルフィルムを基材とし、その上に離型層を積層した離型フィルムは、積層セラミックコンデンサ(以下MLCCとする)、セラミック基板等のセラミックグリーンシート成型用に使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、離型フィルムに、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離したのち、セラミックグリーンシートを積層、プレスし裁断後、焼成、外部電極を塗布することで積層セラミックコンデンサが製造される。これまで、ポリエステルフィルムの離型層表面にセラミックグリーンシートを成型する場合、離型層表面の微小な突起が成型したセラミックグリーンシートに影響を与え、ハジキやピンホール等の欠点が生じやすくなるといった問題点があった。そのため、優れた平坦性を有する離型層表面を実現するための手法が種々開発されてきた(例えば、特許文献1)。 Conventionally, a release film having a polyester film as a base material and a release layer laminated thereon is used for forming a ceramic green sheet such as a multilayer ceramic capacitor (hereinafter referred to as MLCC), a ceramic substrate or the like. In recent years, the thickness of ceramic green sheets tends to be thinner along with the miniaturization and the increase in capacity of multilayer ceramic capacitors. The ceramic green sheet is molded by coating and drying a slurry containing a ceramic component such as barium titanate and a binder resin on a release film. After printing an electrode on a molded ceramic green sheet and peeling it from a release film, a laminated ceramic capacitor is manufactured by laminating, pressing and cutting the ceramic green sheet, and firing and applying an external electrode. So far, when molding a ceramic green sheet on the surface of the release layer of polyester film, minute projections on the surface of the release layer affect the formed ceramic green sheet, and defects such as repelling and pinholes are likely to occur. There was a problem. Therefore, various methods have been developed for realizing a release layer surface having excellent flatness (for example, Patent Document 1).
 しかしながら近年、さらなるセラミックグリーンシートの薄膜化が進み、1.0μm以下、より詳しくは0.2μm~1.0μmの厚みのセラミックグリーンシートが要求されるようになってきた。そのため、離型層表面により高い平滑性が求められるようになってきている。また、セラミックグリーンシートの薄膜化に伴い、セラミックグリーンシートの強度が低下するため、離型層表面の平滑化だけではなく、セラミックグリーンシートを離型フィルムから剥離するときの剥離力を低くかつ均一にすることが好ましく、離型フィルムからセラミックグリーンシートを剥離するときにセラミックグリーンシートにかかる負荷を極力少なくし、セラミックグリーンシートにダメージを与えないようにすることが好ましくなってきている。 However, in recent years, the thickness of ceramic green sheets has been further reduced, and ceramic green sheets having a thickness of 1.0 μm or less, more specifically 0.2 μm to 1.0 μm, have been required. Therefore, higher smoothness is required on the surface of the release layer. In addition, since the strength of the ceramic green sheet decreases as the thickness of the ceramic green sheet decreases, not only the surface of the release layer is smoothed, but also the peel strength when peeling the ceramic green sheet from the release film is low and uniform. It is preferable to reduce the load applied to the ceramic green sheet as much as possible when peeling the ceramic green sheet from the release film, and to prevent the ceramic green sheet from being damaged.
 離型層表面の平滑化と剥離時のセラミックグリーンシートへの負荷を抑制する離型層側からの方法としては、離型フィルムの離型層に活性エネルギー線硬化成分を用いることで離型層の架橋密度を高め、弾性率を向上させることで、セラミックグリーンシート剥離時における離型層の弾性変形を抑制し剥離力を軽くする方策が検討されている(例えば、特許文献2、3)。しかしながらこの方法では、平滑性が高すぎるため面剥離となり、剥離力が重くなり、グリーンシートにクラックが入ることがあった。さらに超薄膜のセラミックグリーンシートを加工時に、平滑面が塗工設備の張力制御するための平滑ロールやゴムロールに接すると、ロールと平滑面のすべり性が不十分で張力制御が不安定になり、グリーンシート塗布面の平滑性が低下する問題があった。 As a method from the mold release layer side to suppress the load on the ceramic green sheet at the time of smoothing and peeling of the mold release layer surface, the mold release layer is used by using an active energy ray curing component in the mold release layer By increasing the crosslink density of the above and improving the elastic modulus, measures have been studied for suppressing the elastic deformation of the release layer at the time of peeling of the ceramic green sheet and reducing the peeling force (for example, Patent Documents 2 and 3). However, in this method, the surface is exfoliated because the smoothness is too high, the exfoliation force is increased, and the green sheet may be cracked. Furthermore, when the ultra-thin ceramic green sheet is processed, if the smooth surface is in contact with the smooth roll or rubber roll for controlling the tension of the coating equipment, the slippage between the roll and the smooth surface is insufficient and tension control becomes unstable. There was a problem that the smoothness of the coated surface of the green sheet was reduced.
 そこで、剥離開始時のきっかけ(剥離開始点)となる適度な大突起を有するポリエステルフィルムとすることで、平滑性と均一な剥離性とのバランスに優れた離型フィルムが報告されている(例えば、特許文献4)。しかしながら、PETに練りこまれたフィラーの場合、フィラー凝集による粗大突起が完全に無くすことができず、製品の欠点要因となる問題があった。特に、超薄層セラミックグリーンシートでは、セラミック材料として用いられる無機フィラーは60nm~800nm程度の粒径であるため(特許文献5、6)、特許文献4に記載されるようなフィルムを用いると、剥離面で局所的な穴が発生する問題があった。 Therefore, a mold release film excellent in balance between smoothness and uniform peelability has been reported by using a polyester film having a suitable large protrusion serving as a trigger at the start of peeling (peeling start point) (for example, for example , Patent Document 4). However, in the case of the filler kneaded in PET, the coarse projections due to filler aggregation can not be completely eliminated, and there is a problem that causes defects in the product. In particular, in the ultra-thin ceramic green sheet, since the inorganic filler used as the ceramic material has a particle size of about 60 nm to 800 nm (Patent Documents 5 and 6), when a film as described in Patent Document 4 is used, There was a problem that a local hole was generated at the peeling surface.
特開2000-117899号公報JP 2000-117899 A 国際公開第2013/145864号International Publication No. 2013/145864 国際公開第2013/145865号International Publication No. 2013/145865 国際公開第2014/203702号International Publication No. 2014/203702 特開2016-127120号公報JP, 2016-127120, A 特開2017-081805号公報JP, 2017-081805, A
 そこで、本発明者らは、鋭意検討を行った結果、離型層表面に連続的に一定の形状を有する低突起を形成させることで、上記重剥離化、加工適性低下と欠点要因の発生を同時に抑制できることを見極めた。そして、本発明の課題は、剥離性に優れ、成型される極薄のセラミックグリーンシートにピンホール欠点や、剥離時のクラック等のダメージを生じ難いセラミックグリーンシート成型用離型フィルムを提供することである。 Therefore, as a result of intensive investigations, the present inventors continuously form a low protrusion having a constant shape on the surface of the mold release layer, thereby causing the above-described heavy peeling, the deterioration of processing suitability, and the generation of a defect factor. At the same time, I determined that I could suppress it. And the object of the present invention is to provide a release film for forming a ceramic green sheet which is excellent in releasability and hardly causes damage such as a pinhole defect or a crack at the time of exfoliation to an extremely thin ceramic green sheet to be formed. It is.
 即ち、本発明は以下の構成よりなる。
1. ポリエステルフィルムの少なくとも片面に直接又は他の層を介して0.2~3.5μmの離型層が積層された離型フィルムであって、前記離型層表面の領域表面粗さ(Sa)が5~40nm、最大山高さ(Rp)が60nm以下であるセラミックグリーンシート製造用離型フィルム。
2. 離型層が、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)を海成分とし、前記エネルギー線硬化型化合物(I)と非相溶であり島成分となる樹脂(II)と、離型成分(III)を少なくとも含む塗膜が硬化されてなる上記第1に記載のセラミックグリーンシート製造用離型フィルム。
3. 離型層が実質的に無機粒子を含有しない上記第1又は第2に記載のセラミックグリーンシート製造用離型フィルム。
4. ポリエステルフィルムが、少なくとも表面層Aと、前記表面層Aとは反対側の表面層Bを含む2層以上からなる積層ポリエステルフィルムであって、前記表面層A上に離型層が積層されており、表面層Aには実質的に無機粒子が含有されていない上記第1~第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
5. 表面層Bが粒子を含有し、前記粒子がシリカ粒子及び/又は炭酸カルシウム粒子であり、合計の粒子の含有量が表面層Bの総質量に対して5000~15000ppmである上記第4に記載のセラミックグリーンシート製造用離型フィルム。
6. ポリエステルフィルムが実質的に無機粒子を含有しておらず、ポリエステルフィルムの離型層が積層されていない側に粒子を含むコーティング層が積層されている上記第1~第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
7. 上記第1~第6のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みであることを特徴とするセラミックグリーンシートの製造方法。
That is, the present invention has the following constitution.
1. A release film in which a release layer of 0.2 to 3.5 μm is laminated on at least one surface of a polyester film directly or through another layer, and the area surface roughness (Sa) of the release layer surface is A release film for producing a ceramic green sheet, having a maximum peak height (Rp) of 60 nm or less and 5 to 40 nm.
2. An energy ray-curable compound (I), wherein the releasing layer has three or more reactive groups in one molecule, and the energy ray-curable compound (I) as a sea component, the energy ray-curable compound (I) The release film for producing a ceramic green sheet according to the first above, wherein a coating film containing at least a resin (II) which is incompatible with the resin and which becomes an island component and a releasing component (III) is cured.
3. The mold release film for producing a ceramic green sheet according to the first or second form, wherein the mold release layer is substantially free of inorganic particles.
4. The polyester film is a laminated polyester film comprising at least a surface layer A and two or more layers including a surface layer B opposite to the surface layer A, and a release layer is laminated on the surface layer A. The release film for producing a ceramic green sheet according to any one of the first to the third, wherein the surface layer A contains substantially no inorganic particles.
5. The surface layer B contains particles, the particles are silica particles and / or calcium carbonate particles, and the total content of particles is 5000 to 15000 ppm with respect to the total mass of the surface layer B. Release film for ceramic green sheet production.
6. The polyester film according to any one of the above 1 to 3, wherein the polyester film is substantially free of inorganic particles and a coating layer containing the particles is laminated on the side of the polyester film on which the release layer is not laminated. Release film for ceramic green sheet production.
7. A method for producing a ceramic green sheet, wherein the ceramic green sheet is formed by using the release film for producing a ceramic green sheet according to any one of the first to sixth aspects, wherein the formed ceramic green sheet has a thickness of 0.2 μm to A method of producing a ceramic green sheet characterized by having a thickness of 1.0 μm.
 本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重過ぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートにピンホールなどの欠点を少なくできるセラミックグリーンシート製造用離型フィルムの提供が可能となった。 According to the release film for producing a ceramic green sheet of the present invention, compared to the conventional release film for producing a ceramic green sheet, the peeling force is not too heavy, the processability is excellent, and the large protrusion is formed on the release layer. Since there is no film, it has become possible to provide a release film for producing a ceramic green sheet capable of reducing defects such as pinholes in an ultrathin ceramic green sheet having a thickness of 1 μm or less.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の超薄層セラミックグリーンシート製造用離型フィルムは、ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層を有しており、離型層表面の領域表面粗さ(Sa)が5~40nm、最大山高さ(Rp)が60nm以下であることが好ましい。そして、前記離型層が、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)と非相溶であり相分離による海島構造を形成する樹脂(II)と、離型成分(III)とを少なくとも含む塗膜が硬化されてなるセラミックグリーンシート製造用離型フィルムを好ましい態様とするものである。 The release film for producing an ultrathin ceramic green sheet of the present invention has a release layer on at least one side of the polyester film directly or through another layer, and the surface roughness (Sa of the release layer surface) (Sa And the maximum peak height (Rp) is preferably 60 nm or less. And, the release layer is incompatible with the energy ray curable compound (I) having three or more reactive groups in one molecule, and the energy ray curable compound (I), and a sea-island structure by phase separation. A mold release film for producing a ceramic green sheet, in which a coating film containing at least a resin (II) forming the resin and a mold release component (III) is cured is a preferred embodiment.
(ポリエステルフィルム)
 本発明の離型フィルムにおいて基材として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム基材として通常一般に使用されているポリエステルをフィルム成型したものを使用することが出来るが、好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであるのが良く、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成されたポリエステルフィルムが好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよいが、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明のフィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由からポリエステルフィルムであることが好ましい。
(Polyester film)
The polyester constituting the polyester film used as the substrate in the release film of the present invention is not particularly limited, and polyester film generally used as a release film substrate can be film-molded, but Preferably, it is a crystalline linear saturated polyester composed of an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or these Further preferred is a copolymer having as a main component a component of the resin of (1), and particularly preferred is a polyester film formed of polyethylene terephthalate. In polyethylene terephthalate, the repeating unit of ethylene terephthalate is preferably 90 mol% or more, more preferably 95 mol% or more, and small amounts of other dicarboxylic acid components and diol components may be copolymerized, but from the viewpoint of cost And those produced solely from terephthalic acid and ethylene glycol. In addition, known additives, for example, an antioxidant, a light stabilizer, an ultraviolet light absorber, a crystallizing agent and the like may be added within a range not to inhibit the effect of the film of the present invention. The polyester film is preferably a polyester film because of the height of the elastic modulus in both directions and the like.
 上記ポリエチレンテレフタレートフィルムの固有粘度は0.50~0.70dl/gが好ましく、0.52~0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が発生しづらく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料は十分に真空乾燥することが好ましい。 The intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g. When the intrinsic viscosity is 0.50 dl / g or more, breakage is less likely to occur in the stretching step, which is preferable. On the contrary, when it is 0.70 dl / g or less, it is preferable because the cutting property when cutting into a predetermined product width is good and dimensional defects do not occur. In addition, it is preferable that the raw material be sufficiently vacuum dried.
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを一軸又は二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。 The method for producing the polyester film in the present invention is not particularly limited, and a method generally used conventionally can be used. For example, the polyester is melted by an extruder, extruded into a film, cooled by a rotary cooling drum to obtain an unstretched film, and obtained by uniaxially or biaxially stretching the unstretched film. It can. A biaxially stretched film can be obtained by sequentially biaxially stretching a longitudinally or transversely uniaxially stretched film in the transverse direction or longitudinal direction, or by simultaneously biaxially stretching an unstretched film in the longitudinal direction and transverse direction. It can.
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横各々の方向に1~8倍、特に2~6倍の延伸をすることが好ましい。 In the present invention, the stretching temperature at the time of stretching the polyester film is preferably at least the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, particularly 2 to 6 times in each of the longitudinal and transverse directions.
 上記ポリエステルフィルムは、厚みが12~50μmであることが好ましく、さらに好ましくは12~38μmであり、より好ましくは、15μm~31μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や離型層の加工工程、セラミックグリーンシートの成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましく、さらには、使用する離型フィルムの面積当たりの材料が少なくなるため経済的観点からも好ましい。 The polyester film preferably has a thickness of 12 to 50 μm, more preferably 12 to 38 μm, and still more preferably 15 to 31 μm. If the thickness of the film is 12 μm or more, it is preferable because there is no risk of deformation due to heat at the time of film production, processing step of the release layer, and molding of the ceramic green sheet. On the other hand, if the thickness of the film is 50 μm or less, the amount of film discarded after use is not extremely large, which is preferable in reducing the environmental impact, and furthermore, the material per area of the release film used is small. It is also preferable from the economic point of view.
 上記ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わないが、少なくとも片面には実質的に無機粒子を含まない表面層Aを有する積層ポリエステルフィルムであることが好ましい。2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、粒子などを含有することができる表面層Bを有することが好ましい。積層構成としては、離型層を塗布する側の層を表面層A、その反対面の層を表面層B、これら以外の芯層を芯層Cとすると、厚み方向の層構成は離型層/表面層A/表面層B、あるいは離型層/表面層A/芯層C/表面層B等の積層構造が挙げられる。当然ながら芯層Cは複数の層構成であっても構わない。また、表面層Bには粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性を付与するため、表面層B上には粒子とバインダーを含んだコート層(D)を設けることが好ましい。 The polyester film substrate may be a single layer or a multilayer of two or more layers, but it is a laminated polyester film having a surface layer A substantially free of inorganic particles on at least one side. preferable. In the case of a laminated polyester film having a multilayer structure of two or more layers, it is preferable to have a surface layer B capable of containing particles and the like on the opposite surface of the surface layer A substantially free of inorganic particles. In the laminated structure, assuming that the layer to which the release layer is applied is the surface layer A, the layer on the opposite surface is the surface layer B, and the core layers other than these are the core layer C, the layer configuration in the thickness direction is the release layer. / Layer structure of surface layer A / surface layer B, or release layer / surface layer A / core layer C / surface layer B, etc. may be mentioned. Naturally, the core layer C may have a plurality of layer configurations. The surface layer B can also contain no particles. In that case, it is preferable to provide a coat layer (D) containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film into a roll.
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面を形成する表面層Aは、実質的に無機粒子を含有しないことが好ましい。このとき、表面層Aの領域表面平均粗さ(Sa)は、7nm以下が好ましい。Saが7nm以下であると、離型層の膜厚が2.0μm以下、更に薄く0.5μm以下のような薄膜でも、積層する超薄層セラミックグリーンシートの成型時にピンホールなどの発生が起こりにくく好ましい。表面層Aの領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であって構わない。但し表面層A上に後述のアンカーコート層などを設ける場合は、コート層に実質的に無機粒子を含まないことが好ましく、コート層積層後の領域表面平均粗さ(Sa)が前記範囲内であることが好ましい。本発明において「無機粒子を実質的に含有しない」とは、ケイ光X線分析で無機元素を定量した場合に50ppm以下であることにより定義され、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量である。これは積極的に無機粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 In the polyester film substrate in the present invention, it is preferable that the surface layer A forming the surface to which the release layer is applied does not substantially contain inorganic particles. At this time, the area average surface roughness (Sa) of the surface layer A is preferably 7 nm or less. If Sa is 7 nm or less, even if the thickness of the release layer is 2.0 μm or less, and even a thin film such as 0.5 μm or less, pinholes or the like occur during molding of the ultra-thin ceramic green sheet to be laminated Hard and preferred. The area average surface roughness (Sa) of the surface layer A is preferably as small as possible, but may be 0.1 nm or more. However, when providing the below-mentioned anchor coat layer etc. on surface layer A, it is preferable that an inorganic particle is not included in a coat layer substantially, and the field surface average roughness (Sa) after coat layer lamination is within the above-mentioned range. Is preferred. In the present invention, "substantially free of inorganic particles" is defined as 50 ppm or less when the inorganic element is quantified by fluorescent X-ray analysis, preferably 10 ppm or less, and most preferably below the detection limit. Content. This is because, even if the inorganic particles are not positively added to the film, contamination components derived from extraneous foreign matter, stains attached to the lines and devices in the manufacturing process of the raw material resin or the film are peeled off and mixed in the film. It is because there is a case.
 本発明におけるポリエステルフィルム基材が積層フィルムである場合において、離型層を塗布する表面層Aと反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を含有することが好ましい。含有される粒子含有量は、表面層B中に粒子の合計で5000~15000ppmであることが好ましい。このとき、表面層Bのフィルムの領域表面平均粗さ(Sa)は、1~40nmの範囲であることが好ましい。より好ましくは、5~35nmの範囲である。表面層Bのシリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシートを成型後に巻き取った場合でもセラミックグリーンシートにピンホールなどの欠点を発生させることがなく好ましい。 In the case where the polyester film substrate in the present invention is a laminated film, the surface layer B forming the surface opposite to the surface layer A to which the release layer is applied is in the form of particles from the viewpoint of film slipperiness and air escapeability. It is preferable to contain, in particular, silica particles and / or calcium carbonate particles. The content of particles contained is preferably 5,000 to 15,000 ppm in total of particles in the surface layer B. At this time, the area average surface roughness (Sa) of the film of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm. When the total of the silica particles and / or calcium carbonate particles in the surface layer B is 5000 ppm or more and Sa is 1 nm or more, air can be uniformly released when the film is rolled up, and the winding appearance is good. The good planarity makes it suitable for the production of ultra-thin ceramic green sheets. In addition, when the total amount of silica particles and / or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, aggregation of the lubricant is difficult to occur and coarse protrusions can not be formed, so the ceramic green sheet of ultrathin layer is wound after molding Even in this case, the ceramic green sheet is preferable without causing defects such as pinholes.
 上記表面層Bに含有する粒子としては、透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子などを用いることができ、他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。 As particles contained in the surface layer B, it is more preferable to use silica particles and / or calcium carbonate particles from the viewpoint of transparency and cost. In addition to silica and / or calcium carbonate, inert inorganic particles and / or heat resistant organic particles can be used, and examples of other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, etc. Be Further, as the heat resistant organic particles, crosslinked polyacrylic particles, crosslinked polystyrene particles, benzoguanamine particles and the like can be mentioned. When silica particles are used, porous colloidal silica is preferable, and when calcium carbonate particles are used, light calcium carbonate which has been surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the slippage of the lubricant. .
 上記表面層Bに添加する粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面に粗大粒子によるピンホールが発生するおそれがなく好ましい。なお、粒子の平均粒子径の測定方法は、加工後のフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子100個を観察し、その平均値をもって平均粒子径とする方法で行うことができる。本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒子径は円相当径として計算することができる。円相当径は、観察された粒子の面積を円周率(π)で除し、平方根を算出し2倍した値である。 The average particle diameter of the particles added to the surface layer B is preferably 0.1 μm to 2.0 μm and particularly preferably 0.5 μm to 1.0 μm. If the average particle size of the particles is 0.1 μm or more, the slipperiness of the release film is good and preferable. In addition, if the average particle diameter is 2.0 μm or less, there is no possibility of generation of pinholes due to coarse particles on the surface of the release layer, which is preferable. In addition, the measuring method of the average particle diameter of particle | grains observes the particle of the cross section of the film after a process with a scanning electron microscope, observes 100 particle | grains, and carries out it by the method of making it the average particle diameter Can. The shape of the particles is not particularly limited as long as the object of the present invention is satisfied, and spherical particles and irregular-shaped non-spherical particles can be used. The particle diameter of the irregularly shaped particles can be calculated as the equivalent circle diameter. The equivalent circle diameter is a value obtained by dividing the area of the observed particles by the circular constant (π), calculating the square root and doubling it.
 表面層Bには素材の異なる粒子を2種類以上含有させてもよい。また、同種の粒子で平均粒子径の異なるものを含有させてもよい。 The surface layer B may contain two or more types of particles different in material. Also, particles of the same type but different in average particle size may be contained.
 表面層Bに粒子を含まない場合は、表面層B上に粒子を含んだコート層で易滑性を持たせることも好ましい。本コート層を設ける手段は、特に限定されないが、ポリエステルフィルムの製膜中に塗工する所謂インラインコート法で設けることが好ましい。また、ポリエステルフィルムの離型層を積層しない側の表面に易滑性を持たせるコート層を設ける場合には、ポリエステルフィルムは表面層A及びBを有している必要はなく、無機粒子を実質的に含有しない単層のポリエステルフィルムからなっていてもよい。 In the case where the surface layer B does not contain particles, it is also preferable to make the surface layer B have a lubricity by a coat layer containing the particles. Although the means to provide this coating layer is not specifically limited, It is preferable to provide by what is called the in-line coating method coated in film forming of a polyester film. Moreover, when providing the coat layer which gives slipperiness to the surface of the side which does not laminate the mold release layer of a polyester film, the polyester film does not need to have the surface layers A and B, and it is necessary to May be composed of a single-layer polyester film not contained.
 表面層Bの領域表面平均粗さ(Sa)は、40nm以下が好ましく、35nm以下がより好ましく、さらに好ましくは30nm以下である。また、表面層Bあるいは単層ポリエステルフィルムの離型層を積層しない側の表面にコート層(D)で易滑性を持たせる場合は、その表面のSaは、コート層を積層した表面を測定するものとし、前記の表面層Bの領域表面平均粗さ(Sa)と同等範囲であることが好ましい。 The area average surface roughness (Sa) of the surface layer B is preferably 40 nm or less, more preferably 35 nm or less, and still more preferably 30 nm or less. Also, when the surface layer B or the surface of the single-layer polyester film not to be laminated is provided with lubricity by the coat layer (D), Sa on the surface is the surface on which the coat layer is laminated. It is preferable that the area of the surface layer B be in the same range as the surface average roughness (Sa).
(コート層D)
 前記のポリエステルフィルムについて離型層を積層しない側の表面のコート層D中には、少なくともバインダー樹脂及び粒子が含まれていることが好ましい。
(Coat layer D)
Preferably, at least a binder resin and particles are contained in the coat layer D on the surface of the polyester film on the side where the release layer is not laminated.
(コート層Dのバインダー樹脂)
 易滑塗布層を構成するバインダー樹脂としては特に限定されないが、ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でも粒子の保持、密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、ポリエステルフィルムとのなじみを考慮した場合、ポリエステル樹脂が特に好ましい。溶剤への溶解性、分散性、さらには基材フィルムや他の層との接着性を達成させるため、バインダーのポリエステルは共重合ポリエステルであることが好ましい。なお、ポリエステル樹脂はポリウレタン変性されていても良い。また、ポリエステル基材フィルム上の易滑塗布層を構成する他の好ましいバインダー樹脂としてはウレタン樹脂が挙げられる。ウレタン樹脂としてはポリカーボネートポリウレタン樹脂が挙げられる。さらに、ポリエステル樹脂、ポリウレタン樹脂は併用しても良く、上記の他のバインダー樹脂を併用してもよい。
(Binder resin of coat layer D)
Although it does not specifically limit as a binder resin which comprises a lubricious application layer, As a specific example of a polymer, a polyester resin, an acrylic resin, a urethane resin, polyvinyl-type resin (polyvinyl alcohol etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose , Hydroxycellulose, starches and the like. Among these, it is preferable to use a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of retention of particles and adhesion. In addition, polyester resins are particularly preferable in consideration of familiarity with polyester films. In order to achieve the solubility in solvents, the dispersibility, and the adhesion to the substrate film and other layers, the polyester of the binder is preferably a copolyester. The polyester resin may be polyurethane-modified. Moreover, urethane resin is mentioned as another preferable binder resin which comprises the easily slipping coating layer on a polyester base film. Polycarbonate polyurethane resin is mentioned as a urethane resin. Furthermore, polyester resin and polyurethane resin may be used in combination, and the other binder resin described above may be used in combination.
(コート層Dの架橋剤)
 本発明において、易滑塗布層中に架橋構造を形成させるために、易滑塗布層は架橋剤が含まれて形成されていてもよい。架橋剤を含有させることにより、高温高湿下での密着性を更に向上させることが可能になる。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系、アジリジン等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(Cross-linking agent for coat layer D)
In the present invention, in order to form a crosslinked structure in the slippery coating layer, the slippery coating layer may be formed to contain a crosslinking agent. By including the crosslinking agent, it is possible to further improve the adhesion under high temperature and high humidity. Specific examples of the crosslinking agent include ureas, epoxys, melamines, isocyanates, oxazolines, carbodiimides, and aziridine. Moreover, in order to accelerate | stimulate a crosslinking reaction, a catalyst etc. can be used suitably as needed.
(コート層D中の粒子)
 易滑塗布層は、表面にすべり性を付与するために、滑剤粒子を含むことが好ましい。粒子は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、酸化ジルコニウム、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、水酸化マグネシウム、硫酸バリウム等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられるが、塗布層に適度な滑り性を与えるために、シリカが特に好ましく使用される。
(Particles in the coat layer D)
The slippery coating layer preferably contains lubricant particles in order to impart slipperiness to the surface. The particles may be inorganic particles or organic particles, and are not particularly limited. (1) Silica, kaolinite, talc, light calcium carbonate, ground calcium carbonate, zeolite, alumina, Barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, zirconium oxide, titanium dioxide, satin white, aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrolysed halloysite, calcium carbonate, magnesium carbonate, calcium phosphate, hydroxide Inorganic particles such as magnesium and barium sulfate, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / Iso Although organic particles such as styrene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane, phenol, diallyl phthalate, polyester, etc. may be mentioned, suitable for the coating layer Silica is particularly preferably used to impart slip properties.
 粒子の平均粒径は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。粒子の平均粒径は10nm以上であると、凝集しにくく、滑り性が確保できて好ましい。 The average particle diameter of the particles is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more. When the average particle diameter of the particles is 10 nm or more, aggregation is difficult and slipperiness can be secured, which is preferable.
 粒子の平均粒径は1000nm以下であることが好ましく、より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子の平均粒径が1000nm以下であると、透明性が保たれ、また、粒子が脱落することがなく好ましい。 The average particle diameter of the particles is preferably 1000 nm or less, more preferably 800 nm or less, and still more preferably 600 nm or less. Transparency is maintained as the average particle diameter of particle | grains is 1000 nm or less, and it is preferable without particle | grains falling off.
 また、例えば、平均粒径が10~270nm程度の小さい粒子と、平均粒径が300~1000nm程度の大きい粒子を混用することも、後述の領域表面平均粗さ(Sa)、最大突起高さ(RP)を小さく保ちながら、粗さ曲線要素の平均長さ(RSm)を小さくして、すべり性と平滑性を両立させる上で好ましく、特に好ましくは、30nm以上250nm以下の小さい粒子と、平均粒径が350~600nmの大きい粒子を併用することである。小さい粒子と大きい粒子を混用する場合、塗布層固形分全体に対して、小さい粒子の質量含有率を大きい粒子の質量含有率より大きくしておくことが好ましい。 For example, it is also possible to mix small particles with an average particle diameter of about 10 to 270 nm and large particles with an average particle diameter of about 300 to 1000 nm, the area surface average roughness (Sa) described below, and the maximum projection height ( It is preferable to keep the average length (RSm) of the roughness curvilinear element small and keep slipperiness and smoothness compatible while keeping the RP) small, and particularly preferred is a small particle of 30 nm or more and 250 nm or less, and an average particle It is to use large particles having a diameter of 350 to 600 nm in combination. When small particles and large particles are mixed, it is preferable to make the mass content of small particles larger than the mass content of large particles with respect to the total solid content of the coating layer.
 上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。 From the viewpoint of reducing pinholes, it is preferable not to use recycled raw materials or the like in the surface layer A, which is the layer on which the release layer is provided, in order to prevent mixing of particles such as a lubricant.
 上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さく好ましい。 It is preferable that the thickness ratio of surface layer A which is a layer at the side which provides the said mold release layer is 20% or more and 50% or less of the total layer thickness of a base film. If it is 20% or more, the influence of particles contained in the surface layer B or the like is not easily received from the inside of the film, and the area surface average roughness Sa easily meets the above range, which is preferable. The use ratio of the reproduction | regeneration raw material in surface layer B can be increased as it is 50% or less of the thickness of the whole layer of a base film, an environmental impact is small and preferable.
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の芯層C)には、50~90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、表面層Bに含まれる滑剤の種類や量、粒子径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。 Further, from the viewpoint of economy, 50 to 90% by mass of film scraps and plastic bottle recycled raw materials can be used for the layers other than the surface layer A (surface layer B or core layer C described above). Even in this case, it is preferable that the type and amount of the lubricant contained in the surface layer B, the particle diameter, and the area surface average roughness (Sa) satisfy the above range.
 また、後に塗布する離型層などの密着性を向上させたり、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。コート層も設ける場合は、各層のSaはコート層表面の測定値で代用する。また、表面層Aの表面にこれらコート層を設ける場合は、粒子を含有しないことが好ましい。 In addition, a film after stretching or uniaxial stretching in the film forming process on the surface of the surface layer A and / or the surface layer B in order to improve adhesion of a release layer applied later or to prevent charging etc. May be provided with a coating layer, or may be subjected to corona treatment or the like. When a coat layer is also provided, Sa of each layer is substituted by the measurement value of the coat layer surface. Moreover, when providing these coat layers on the surface of surface layer A, it is preferable not to contain particle | grains.
(離型層)
 本発明の離型層は、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と前記エネルギー線硬化型化合物(I)と非相溶であり相分離して海島構造を形成する樹脂(II)と、離型成分(III)とを少なくとも含む塗膜を硬化してなることが好ましい。エネルギー線硬化型化合物(I)と樹脂(II)が相分離して海島構造を形成することで、適度な高さの凹凸を簡便に形成でき、粗大突起が発生しないことから、グリーンシートにピンホールなどが発生しない。また、平面部分がほとんどなくなり、点での剥離となるため脆質な超薄層セラミックグリーンシートであっても、ジッピング無く剥離することができるため、クラックや変形などのダメージを抑制することができる。
(Release layer)
The release layer of the present invention is incompatible with the energy ray-curable compound (I) having three or more reactive groups in one molecule and the energy ray-curable compound (I) and is phase separated to form a sea-island structure. It is preferable to cure the coating film containing at least the resin (II) forming the resin and the mold release component (III). By forming the sea-island structure by the phase separation of the energy ray-curable compound (I) and the resin (II), it is possible to easily form asperities with an appropriate height, and no coarse projections are generated. No holes occur. In addition, since the flat portion is almost absent and peeling occurs at points, even a brittle ultra-thin ceramic green sheet can be peeled without dipping, so that damage such as cracking or deformation can be suppressed. .
(1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I))
 本発明で用いるエネルギー線硬化型化合物(I)としては、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物を用いることができる。1分子内に3以上の反応性基を有することで、高弾性率の離型層となり、グリーンシート剥離時の離型層の変形を抑制し、重剥離化を抑制することができる。また、離型層の耐溶剤性を向上させることができるためスラリー塗工時に溶剤による離型層の浸食なども防げるため好ましい。また、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物としては、エネルギー線により直接的に反応するか、または間接的に発生した活性種により反応するかは特に限定しない。エネルギー線硬化型化合物(I)の離型層形成用塗布液中の固形分中の含有量としては、60~98質量%が好ましく、75~97質量%が好ましい。60質量%以上添加することで架橋度を維持し、高弾性率を得ることができる。
(Energy ray curable compound (I) having three or more reactive groups in one molecule)
As the energy ray-curable compound (I) used in the present invention, an energy ray-curable compound having three or more reactive groups in one molecule can be used. By having three or more reactive groups in one molecule, it becomes a release layer having a high elastic modulus, and deformation of the release layer at the time of green sheet peeling can be suppressed, and heavy peeling can be suppressed. In addition, since the solvent resistance of the release layer can be improved, the erosion of the release layer by the solvent can be prevented at the time of slurry coating, which is preferable. Moreover, as an energy ray-curable compound having three or more reactive groups in one molecule, it is not particularly limited whether to react directly by energy rays or by reactive species generated indirectly. The content of the energy ray-curable compound (I) in the solid component in the release layer-forming coating solution is preferably 60 to 98% by mass, and more preferably 75 to 97% by mass. By adding 60% by mass or more, the degree of crosslinking can be maintained, and a high elastic modulus can be obtained.
 エネルギー線硬化型化合物(I)の反応性基としては、(メタ)アクリロイル基、アルケニル基、アクリルアミド基、マレイミド基、エポキシ基、シクロヘキセンオキシド基などが挙げられる。その中でも、加工性に優れる(メタ)アクリロイル基を有するエネルギー線硬化型化合物が好ましい。 Examples of the reactive group of the energy ray-curable compound (I) include a (meth) acryloyl group, an alkenyl group, an acrylamide group, a maleimide group, an epoxy group and a cyclohexene oxide group. Among them, an energy ray curable compound having a (meth) acryloyl group excellent in processability is preferable.
 (メタ)アクリロイル基を有するエネルギー線硬化型化合物としては、モノマー、オリゴマー、ポリマーに限定されず使用できる。また、少なくとも1分子内に3以上の反応性基を有する化合物を含有していることが好ましいが、分子内に1~2の反応性基を有する化合物など2以上の化合物を混合して使用することもできる。これら反応基数が少ない化合物を混合することで、カールなどを抑制することができる。 The energy ray-curable compound having a (meth) acryloyl group can be used without limitation to monomers, oligomers and polymers. Further, it is preferable to contain a compound having three or more reactive groups in at least one molecule, but two or more compounds such as a compound having one or two reactive groups in the molecule are mixed and used. It can also be done. By mixing a compound having a small number of reactive groups, curling and the like can be suppressed.
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型モノマーとしては、イソシアヌル酸トリアクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレートとそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。 As energy ray curable monomers having three or more (meth) acryloyl groups in the molecule, isocyanuric acid triacrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tri Methylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate ) Multifunctional (meth) acrylates such as acrylates and their ethylene oxide modified products, propylene oxide modified products, caprolactone modified products, etc. That.
 分子内に1~2の反応性基を有するエネルギー線硬化型モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレートなどのモノマー類とそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。 As energy ray curable monomers having 1 or 2 reactive groups in the molecule, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, cyclopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, Nonyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, cyclic trimethylolpropane formaler (Meth) acrylate, hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate , Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, pentamethyl piperidinyl (meth) acrylate, tetramethyl piperidinyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, nonanediol di (meth) acrylate, bisphenol A di (meth) a Relate, neopentyl glycol di (meth) acrylate, monomers and their ethylene oxide-modified products such as cyclohexane diol di (meth) acrylate, propylene oxide-modified products, caprolactone-modified products, and the like.
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型オリゴマー類としては、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシアクリレート、シリコーン変性アクリレートなどが挙げられ、一般に市販されているものが使用できる。例えば、荒川化学工業社製ビームセット(登録商標)シリーズ、新中村化学社製NKオリゴシリーズ、ダイセル・オルネクス社製EBECRYLシリーズ、大阪有機化学工業社製ビスコートシリーズ、共栄社化学社製ウレタンアクリレートシリーズ、DIC社製ユニディックシリーズなどが挙げられる。 Examples of energy ray curable oligomers having 3 or more (meth) acryloyl groups in the molecule include urethane acrylate, polyester acrylate, polyether acrylate, epoxy acrylate, silicone modified acrylate, etc. It can be used. For example, beam set (registered trademark) series manufactured by Arakawa Chemical Industries, NK Oligo series manufactured by Shin-Nakamura Chemical Co., Ltd. EBECRYL series manufactured by Daicel Ornex Co., Ltd., biscoat series manufactured by Osaka Organic Chemical Industry Co., Ltd., urethane acrylate series manufactured by Kyoeisha Chemical Co., Ltd. Examples include the Unidic series manufactured by DIC.
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型ポリマー類としては、ポリマーに(メタ)アクリロイル基をグラフトしたグラフトポリマーや、多官能アクリルモノマーをポリマー末端に付加させたブロックポリマーなどが挙げられる。前記のようなポリマー類としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリオルガノシロキサンなど使用でき、特に限定されるものではない。 Examples of energy ray-curable polymers having three or more (meth) acryloyl groups in the molecule include graft polymers in which (meth) acryloyl groups are grafted to the polymer, block polymers in which a polyfunctional acrylic monomer is added to the polymer end, etc. Can be mentioned. As the polymers as described above, acrylic resin, epoxy resin, polyester resin, polyorganosiloxane and the like can be used, and it is not particularly limited.
(樹脂(II))
 本発明で用いる樹脂(II)としては、エネルギー線硬化型化合物(I)と同一の溶媒に溶解又は分散し塗剤の状態では両者が溶解又は分散した状態であるが、塗布後、溶媒の乾燥、硬化を経て形成された離型層中では相互に非相溶であり、エネルギー線硬化型化合物(I)を海成分とし樹脂(II)を島成分として海島構造を形成することが好ましく、樹脂(II)としては前記要件を満たせば特に限定せず使用できる。2以上の樹脂を同時に用いることもできる。樹脂(II)の離型層形成用塗布液中の固形分中の含有量として、1~40質量%が好ましく、1~10質量%が好ましい。1質量%以上含有させることで十分な凹凸を形成することができ、40質量%以下にすることで離型層の架橋度が高く、剥離時の温度依存性が低く好ましい。
(Resin (II))
The resin (II) used in the present invention is dissolved or dispersed in the same solvent as the energy ray curable compound (I) and both are dissolved or dispersed in the state of a coating agent, but after application, the solvent is dried. It is preferable to form a sea-island structure by using the energy ray-curable compound (I) as the sea component and the resin (II) as the island component, since they are mutually incompatible in the release layer formed through curing. (II) can be used without particular limitation as long as the above requirements are satisfied. Two or more resins can also be used simultaneously. The content of the resin (II) in the solid content in the release layer-forming coating solution is preferably 1 to 40% by mass, and more preferably 1 to 10% by mass. Sufficient unevenness can be formed by containing 1% by mass or more, and by setting the amount to 40% by mass or less, the degree of crosslinking of the release layer is high, and the temperature dependency at peeling is low, which is preferable.
 樹脂(II)としては、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリエステルウレタン樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、セルロース系樹脂など、溶剤可溶型であれば特に限定なく使用できるが、エネルギー線硬化型化合物(I)と非相溶の樹脂であることが条件となる。 As the resin (II), for example, any solvent-soluble resin such as polyester resin, acrylic resin, urethane resin, polyester urethane resin, polyimide resin, polyamideimide resin, cellulose resin can be used without particular limitation. The condition is that the resin is incompatible with the energy ray-curable compound (I).
 ポリエステル樹脂としては、特に限定されず、市販のものを使用することができる。例えば、東洋紡社製バイロン(登録商標)シリーズ、日本合成化学工業社製ニチゴーポリエスター(登録商標)シリーズなどが挙げられる。 The polyester resin is not particularly limited, and commercially available resins can be used. For example, Bayon (registered trademark) series manufactured by Toyobo Co., Ltd., Nichigo Polyester (registered trademark) series manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and the like can be mentioned.
 アクリル樹脂としては、アクリル酸エステルを重合したオリゴマー、ポリマーをいい、ホモポリマーであってもコポリマーであっても構わない。また、市販のものを使用することができる。例えば、DIC株式会社製アクリディック(登録商標)シリーズ、東亞合成社製ARFON(登録商標)シリーズなどが挙げられる。 The acrylic resin is an oligomer or a polymer obtained by polymerizing an acrylic ester, and may be a homopolymer or a copolymer. Moreover, a commercially available thing can be used. For example, the acryl Corporation (registered trademark) series ARICON (trade name) manufactured by Toagosei Co., Ltd. and the like, and the like may be mentioned.
 ポリエステルウレタン樹脂としては、東洋紡社製バイロン(登録商標)URシリーズなどを挙げることができる。 Examples of the polyester urethane resin include Byron (registered trademark) UR series manufactured by Toyobo Co., Ltd.
(離型成分(III))
 本発明で用いる離型成分(III)としては、ポリオルガノシロキサン、フッ素化合物、長鎖アルキル化合物、ワックス類などグリーンシートとの間で離型性を発揮できる材料であればよく特に限定はない。またこれらの材料に(メタ)アクリロイル基などを有するエネルギー線硬化型化合物(I)と反応して結合できる官能基を有する材料が好ましい。また2種以上の材料を混合して用いることもできる。離型成分(III)の離型層形成用塗布液中の固形分中の含有量としては、0.05~10質量%が好ましく、0.1~5質量%がさらに好ましい。0.05質量%以上添加されていれば剥離力が軽くでき、10質量%以下であれば離型成分のセラミックグリーンシート等への移行が抑えられるため好ましい。
(Release component (III))
The releasing component (III) used in the present invention is not particularly limited as long as it is a material capable of exhibiting releasing property with the green sheet, such as polyorganosiloxane, fluorine compound, long chain alkyl compound, and waxes. Moreover, the material which has a functional group which can react and couple | bond with energy-beam-curable compound (I) which has a (meth) acryloyl group etc. to these materials is preferable. Also, two or more kinds of materials can be mixed and used. The content of the release component (III) in the solid content in the release layer-forming coating solution is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass. If the content is 0.05% by mass or more, the peeling force can be lightened, and if the content is 10% by mass or less, the transfer of the releasing component to the ceramic green sheet or the like can be suppressed, which is preferable.
 ポリオルガノシロキサンとしては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリフェニルシロキサンなどの他、一部を有機変性したシロキサン系化合物や、ポリオルガノシロキサンを有するブロックポリマーや、ポリオルガノシロキサンをグラフトしたポリマーなども使用できる。市販のものとしては、例えば、ビックケミージャパン社製BYK(登録商標)シリーズ、日油社製モディパー(登録商標)シリーズなど使用できる。 As polyorganosiloxanes, in addition to polydimethylsiloxane, polydiethylsiloxane, polyphenylsiloxane, etc., siloxane compounds having a partial organic modification, block polymers having polyorganosiloxanes, polymers obtained by grafting polyorganosiloxanes, etc. It can be used. As a commercially available product, for example, BYK (registered trademark) series manufactured by Big Chemie Japan Co., Ltd., Modiper (registered trademark) series manufactured by NOF Corporation, and the like can be used.
 フッ素化合物としては、特に限定されず、市販のものを使用することができる。例えば、DIC社製メガファック(登録商標)シリーズなどが挙げられる。 The fluorine compound is not particularly limited, and commercially available ones can be used. For example, Megafuck (registered trademark) series manufactured by DIC Corporation can be mentioned.
 長鎖アルキル化合物としては、長鎖アルキルアクリレートを共重合したアクリルポリマーや、長鎖アルキルをグラフトしたグラフトポリマー、長鎖アルキルを末端に付加させたブロックポリマーなどが挙げられる。また特に限定されず、市販のものを使用することができる。例えば、日立化成社製テスファイン(登録商標)シリーズ、ライオン・スペシャリティ・ケミカルズ社製ピーロイル(登録商標)などが挙げられる。 Examples of long chain alkyl compounds include acrylic polymers copolymerized with long chain alkyl acrylates, graft polymers grafted with long chain alkyl, and block polymers with long chain alkyl end-added. Moreover, it does not specifically limit, A commercially available thing can be used. For example, Tesfine (registered trademark) series manufactured by Hitachi Chemical Co., Ltd., and Peiroil (registered trademark) manufactured by Lion Specialty Chemicals, etc. may be mentioned.
 活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線のような電磁波、電子線、イオンビーム、中性子線およびα線のような粒子線等が挙げられ、これらの中でも、製造コストに優れる紫外線を用いるのが好ましい。 Examples of the active energy ray include infrared rays, visible rays, ultraviolet rays, electromagnetic waves such as X-rays, electron beams, ion beams, particle rays such as neutrons and alpha rays, and the like, among them, the production cost It is preferable to use excellent ultraviolet light.
 前記活性エネルギー線を照射するときの雰囲気は、一般的な空気中でも窒素ガス雰囲気下でも構わない。窒素ガス雰囲気では、酸素濃度を減少させることでラジカル反応がスムーズに進行し離型層の弾性率を向上させることができるが、空気中で照射しても実用上問題なければ、空気中で照射する方が経済的観点から好ましい。 The atmosphere when the active energy ray is irradiated may be a general air or a nitrogen gas atmosphere. In a nitrogen gas atmosphere, the radical reaction can proceed smoothly by reducing the oxygen concentration, and the elastic modulus of the release layer can be improved. It is preferable from the economical point of view.
(光重合開始剤)
 本発明の離型層にラジカル重合系化合物を用いる場合は、光重合開始剤を添加することが好ましい。光重合開始剤としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート等が挙げられる。特に、表面硬化性に優れるとされる、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチルプロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンが好ましく、中でも2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチル
チオ)フェニル]-2-モルフォリノプロパン-1-オンが特に好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Photopolymerization initiator)
When a radical polymerization compound is used in the release layer of the present invention, it is preferable to add a photopolymerization initiator. Specific examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4 -Diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloro anthraquinone, (2,4,6-trimethyl And benzyl diphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate and the like. In particular, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methylpropan-1-one, which is considered to be excellent in surface curability. 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One is preferred, among which 2-hydroxy-2-methyl-1-phenyl-propan-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one are particularly preferred. preferable. These may be used alone or in combination of two or more.
 光重合開始剤の添加量は、特に限定されないが、例えば、離型層形成用塗布液中の固形分として0.1から20質量%程度含有させることが好ましい。 Although the addition amount of a photoinitiator is not specifically limited, For example, it is preferable to contain about 0.1 to 20 mass% as solid content in the coating liquid for release layer formation.
 本発明における離型層には、粒子径が1μm以下の粒子などを含有することができるが、ピンホール発生の観点から粒子など突起を形成するものは含有しないほうが好ましい。 The releasing layer in the present invention can contain particles having a particle diameter of 1 μm or less, but it is preferable not to contain particles forming projections such as particles from the viewpoint of generation of pinholes.
 本発明における離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。 An adhesion improver, an additive such as an antistatic agent, or the like may be added to the release layer in the present invention as long as the effects of the present invention are not impaired. Further, in order to improve the adhesion to the substrate, it is also preferable to subject the polyester film surface to pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment or the like before the release coating layer is provided.
 本発明において、離型層の厚みは、その使用目的に応じて設定すれば良く、特に限定されないが、好ましくは、硬化後の離型層が0.2~3.5μmとなる範囲がよく、より好ましくは、0.5~3.0μmである。離型層の厚みが0.2μm以上であるとエネルギー線硬化型共重合ポリマーの硬化性が良く、離型層の弾性率が向上するため良好な剥離性能が得られ好ましい。また、3.5μm以下であると、離型フィルムの厚みが薄くなってもカールを起こしにくくセラミックグリーンシートを成型、乾燥する過程で走行性不良を起こさず好ましい。 In the present invention, the thickness of the release layer may be set according to the purpose of use, and is not particularly limited, but preferably the range from 0.2 to 3.5 μm of the release layer after curing is preferable. More preferably, it is 0.5 to 3.0 μm. When the thickness of the release layer is 0.2 μm or more, the curability of the energy ray-curable copolymer is good, and the elastic modulus of the release layer is improved. Further, when the thickness is 3.5 μm or less, curling is unlikely to occur even when the thickness of the release film is reduced, and thus it is preferable because the running property is not deteriorated in the process of molding and drying the ceramic green sheet.
 本発明の離型フィルムは、離型層表面が適度な凹凸があることが好ましい。そのため、離型層表面の領域表面平均粗さ(Sa)が5~40nmであることが好ましい。また、前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であることが更に好ましい。さらには領域表面平均粗さ(Sa)は5~20nmが好ましく、8.5~20nmであることが更に好ましい。その際同時に最大突起高さ(Rp)が50nm以下であることが特に好ましい。領域表面粗さ(Sa)が5nm以上であれば、セラミックグリーンシート剥離時に、ジッピングが軽減され、超薄層のグリーンシートであってもダメージ無く容易に剥離することができる。また領域表面粗さ(Sa)が40nm以下であれば、セラミックの粒径よりも十分に小さく、グリーンシートの表面形状に影響を及ぼすことが無い。前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であれば、更にピンホール欠点を生じるおそれが少なくなり好ましい。最大突起高さ(Rp)は小さいことが好ましいが、領域表面平均粗さ(Sa)を5nm以上に調節する関係で、最大突起高さ(Rp)も5nm以上であっても構わず、10nm以上であっても構わない。前記のような離型層の表面粗さ(Sa)や最大突起高さ(Rp)の範囲に調節するためには、種々の要因が関連しているが、主に、ポリエステルフィルムの表面層A又は単層のポリエステルフィルムが無機粒子を実質的に含有しないため、離型層を積層する表面の粗さが小さいことと、離型層が1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)を海成分とし、前記エネルギー線硬化型化合物(I)と非相溶であり島成分となる樹脂(II)を含有して硬化されていることが関係していると言える。離型層の表面粗さ(Sa)や最大突起高さ(Rp)を上記のような適度な範囲に調節する方法は特に限定されないが、主に、エネルギー線硬化型化合物(I)と樹脂(II)の材質の組合せや含有割合を調節することにより好ましく達成できる。 In the release film of the present invention, it is preferable that the surface of the release layer has appropriate irregularities. Therefore, it is preferable that the area surface average roughness (Sa) of the release layer surface is 5 to 40 nm. Further, it is more preferable that the above-mentioned Sa is satisfied, and the maximum projection height (Rp) on the surface of the releasing layer is 60 nm or less. Furthermore, the area surface average roughness (Sa) is preferably 5 to 20 nm, and more preferably 8.5 to 20 nm. At the same time, it is particularly preferred that the maximum projection height (Rp) be 50 nm or less. When the area surface roughness (Sa) is 5 nm or more, the zipping can be reduced at the time of peeling of the ceramic green sheet, and even an ultrathin layer green sheet can be easily peeled without damage. When the area surface roughness (Sa) is 40 nm or less, the particle size of the ceramic is sufficiently smaller than the particle size of the ceramic, and the surface shape of the green sheet is not affected. If the above-mentioned Sa is satisfied and the maximum projection height (Rp) on the surface of the releasing layer is 60 nm or less, the possibility of causing a pinhole defect is further reduced, which is preferable. Although the maximum projection height (Rp) is preferably small, the maximum projection height (Rp) may also be 5 nm or more, 10 nm or more, because the area surface average roughness (Sa) is adjusted to 5 nm or more. It does not matter. In order to adjust the surface roughness (Sa) and the maximum projection height (Rp) of the release layer as described above, various factors are related, but mainly the surface layer A of the polyester film Since the single layer polyester film does not substantially contain inorganic particles, the surface roughness on which the release layer is laminated is small, and the release layer has three or more reactive groups in one molecule. A curable compound (I) and the energy beam curable compound (I) as a sea component, and a resin (II) which is incompatible with the energy beam curable compound (I) and becomes an island component, are cured It can be said that what is being done is related. The method of adjusting the surface roughness (Sa) and the maximum projection height (Rp) of the release layer to the appropriate range as described above is not particularly limited, but mainly the energy ray-curable compound (I) and the resin ( This can be achieved preferably by adjusting the combination and content ratio of the materials of II).
 本発明の離型層フィルムの離型層表面の静摩擦係数は、0.05以上2.00以下であることが好ましい。より好ましくは0.1以上1.00以下であり、さらに好ましくは0.1以上0.50以下である。静摩擦係数が前記の範囲であれば、塗工設備のロールと離型層表面との滑りが良く過度な力がかからないため、離型層表面への傷が減少し、グリーンシートへのダメージを軽減でき、良好なグリーンシート表面が得られる。
 また、本発明の離型フィルムの離型層表面の動摩擦係数は、1.00以下であることが好ましい。前記の範囲であれば、工程中でテンション異常が起こることなく、良好なグリーンシート表面が得られる。
 前記の離型層表面の静摩擦係数と動摩擦係数の範囲に調節することは、前記の離型層の表面粗さ(Sa)や最大突起高さ(Rp)の範囲と関係があり、その調節方法に特に限定はないが、主に、エネルギー線硬化型化合物(I)と樹脂(II)の材質の組合せや含有割合を調節することにより好ましく達成できる。
The static friction coefficient of the release layer surface of the release layer film of the present invention is preferably 0.05 or more and 2.00 or less. More preferably, it is 0.1 or more and 1.00 or less, and still more preferably 0.1 or more and 0.50 or less. If the coefficient of static friction is within the above range, the surface of the coating layer and the surface of the mold release layer slip well and no excessive force is applied, so the damage to the surface of the mold release layer is reduced and damage to the green sheet is reduced. And a good green sheet surface is obtained.
Moreover, it is preferable that the dynamic friction coefficient of the mold release layer surface of the mold release film of this invention is 1.00 or less. Within the above range, a good green sheet surface can be obtained without tension abnormality occurring in the process.
Adjusting the range of the static friction coefficient and the dynamic friction coefficient of the release layer surface is related to the range of the surface roughness (Sa) and the maximum projection height (Rp) of the release layer, and the adjustment method There is no particular limitation, but it can be preferably achieved mainly by adjusting the combination and content ratio of the materials of the energy ray-curable compound (I) and the resin (II).
 本発明において、離型層の形成方法は、特に限定されず、離型性の化合物を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に塗布等により展開し、溶媒等を乾燥により除去後、硬化させる方法が用いられる。 In the present invention, the method for forming the releasing layer is not particularly limited, and a coating liquid in which a releasing compound is dissolved or dispersed is spread on one surface of the polyester film of the substrate by coating etc. The method of making it harden | cure after removing by drying is used.
 本発明の離型層を基材フィルム上に溶液塗布により塗布する場合の溶媒乾燥の乾燥温度は、50℃以上、120℃以下であることが好ましく、60℃以上、100℃以下であることがより好ましい。その乾燥時間は、30秒以下が好ましく、20秒以下がより好ましい。さらに溶剤乾燥後、活性エネルギー線を照射し硬化反応を進行させることが好ましい。この時用いる活性エネルギー線としては、紫外線、電子線、X線などを使用することができるが、紫外線が使用しやすく好ましい。照射する紫外線量としては光量で30~300mJ/cmが好ましく、より好ましくは、30~200mJ/cmである。30mJ/cm以上とすることで組成物の硬化が十分進行し、300mJ/cm以下とするこ
とで加工時の速度を向上させることができるため経済的に離型フィルムを作成することができ好ましい。
It is preferable that the drying temperature of solvent drying in the case of apply | coating the release layer of this invention on a base film by solution application is 50 degreeC or more and 120 degrees C or less, and is 60 degrees C or more and 100 degrees C or less More preferable. The drying time is preferably 30 seconds or less and more preferably 20 seconds or less. Furthermore, after solvent drying, it is preferable to irradiate an active energy ray to advance the curing reaction. As the active energy ray used at this time, ultraviolet rays, electron beams, X-rays, etc. can be used, but ultraviolet rays are preferred because they are easy to use. The amount of ultraviolet light to be irradiated is preferably 30 to 300 mJ / cm 2 , and more preferably 30 to 200 mJ / cm 2 in light amount. By setting it to 30 mJ / cm 2 or more, the curing of the composition proceeds sufficiently, and by setting it to 300 mJ / cm 2 or less, the processing speed can be improved, so that the mold release film can be economically produced. preferable.
 本発明において、離型層を塗布するときの塗液の表面張力は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。 In the present invention, the surface tension of the coating liquid when the release layer is applied is not particularly limited, but is preferably 30 mN / m or less. By setting the surface tension as described above, the coating property after coating can be improved, and unevenness on the surface of the coated film after drying can be reduced.
 上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 Any known coating method can be applied as the coating method of the above coating solution, for example, roll coating such as gravure coating or reverse coating, bar coating such as wire bar, die coating, spray coating, air knife A conventionally known method such as a coating method can be used.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した。なお、以下、重量平均分子量を単にMwと記載することがある。 EXAMPLES The present invention will be described by way of examples to describe the present invention in detail, but the present invention is not limited to these examples. The characteristic values used in the present invention were evaluated using the following method. Hereinafter, the weight average molecular weight may be simply referred to as Mw.
(1)基材フィルム厚み
 ミリトロン(電子マイクロインジケーター)を用い、測定すべきフィルムの任意の4箇所より5cm角サンプル4枚を切り取り、一枚あたり各5点(計20点)測定して平均値を厚みとした。
(1) Substrate film thickness By using Millitron (electronic micro indicator), 4 pieces of 5 cm square samples are cut out from any 4 parts of the film to be measured, and each 5 pieces (20 pieces in total) are measured and averaged Thickness.
(2)離型層厚み
 離型層の厚みは、光干渉式膜厚計(F20、フィルメトリクス社製)を用いて測定した。(離型層の屈折率は1.52として算出)
(2) Release Layer Thickness The thickness of the release layer was measured using an optical interference type film thickness meter (F20, manufactured by Filmetrics, Inc.). (The refractive index of the release layer is calculated as 1.52.)
(3)領域表面粗さ(Sa)、最大突起高さ(Rp)
 非接触表面形状計測システム(VertScan R550H-M100、菱化システム社製)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(Rp)は7回測定し最大値と最小値を除いた5回の最大値を使用した。
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:50倍
  ・0.5×Tubeレンズ
 (解析条件)
  ・面補正:  4次補正
  ・補間処理: 完全補間
(3) Region surface roughness (Sa), maximum projection height (Rp)
It is a value measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100, manufactured by Ryoka System Co., Ltd.). The area surface average roughness (Sa) was an average value of 5 measurements, and the maximum projection height (Rp) was 7 measurements, and the maximum value of 5 values excluding the maximum value and the minimum value was used.
(Measurement condition)
-Measurement mode: WAVE mode-Objective lens: 50x-0.5 x Tube lens (analysis conditions)
-Face correction: 4th order correction-Interpolation: Complete interpolation
(4)セラミックグリーンシートのピンホール評価
 下記、材料からなる組成物を攪拌混合し、直径0.5mmのジルコニアビーズを分散媒とするビーズミルを用いて60分間分散し、セラミックスラリーを調製した。
 トルエン                      76.3質量部
 エタノール                     76.3質量部
 チタン酸バリウム(富士チタン社製 HPBT-1)  35.0質量部
 ポリビニルブチラール                 3.5質量部
 (積水化学工業社製 エスレック(登録商標)BM-S)
 DOP(フタル酸ジオクチル)             1.8質量部
 次いで離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のセラミックグリーンシートが0.8μmになるように塗工し90℃で2分乾燥後、離型フィルムを剥離し、セラミックグリーンシートを得た。
 得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cmの範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。測定は5回測定し平均値を採用した。
○:ピンホールの発生がほぼなし(目安:ピンホールが測定面積当たり2個以下)
△:ピンホールの発生があり(目安:ピンホールが測定面積当たり3個以上、5個以下)×:ピンホールの発生が多数あり(目安:ピンホールが測定面積当たり6個以上)
(4) Pinhole Evaluation of Ceramic Green Sheet The composition consisting of the following materials was stirred and mixed, and dispersed for 60 minutes using a bead mill using zirconia beads with a diameter of 0.5 mm as a dispersion medium to prepare a ceramic slurry.
Toluene 76.3 parts by mass Ethanol 76.3 parts by mass Barium titanate (HPBT-1 manufactured by Fuji Titanium Co., Ltd.) 35.0 parts by mass Polyvinyl butyral 3.5 parts by mass (S-Rec (registered trademark) BM-S manufactured by Sekisui Chemical Co., Ltd. )
Next, 1.8 parts by mass of DOP (dioctyl phthalate) is applied to the release surface of the release film sample using an applicator so that the ceramic green sheet after drying is 0.8 μm and dried at 90 ° C. for 2 minutes, The release film was peeled off to obtain a ceramic green sheet.
In the central region of the film width direction of the obtained ceramic green sheet, light is applied from the opposite surface of the ceramic slurry application surface in the range of 25 cm 2 , and the occurrence of pinholes where light is seen to be transmitted is observed. It judged visually. The measurement was performed 5 times and the average value was adopted.
○: Occurrence of pinholes is almost nonexistent (estimate: no more than 2 pinholes per measurement area)
Δ: occurrence of pinholes (indication: 3 or more, 5 or less pinholes per measurement area) ×: many occurrence of pinholes (indication: 6 or more pinholes per measurement area)
(5)セラミックグリーンシートへのダメージ評価
 前記方法で作成したセラミックグリーンシート付き離型フィルムを30mm幅、80mm長さにカットし、剥離力測定用サンプルとした。除電機(キーエンス社製、SJ-F020)を用いて除電した後に、剥離試験機(協和界面科学社製、VPA-3)を用いて、剥離角度30度、剥離温度25℃、剥離速度10m/minで剥離した。剥離する向きとしては、剥離試験機付属のSUS板上に両面接着テープ(日東電工社製、No.535A)を貼りつけ、その上にセラミックグリーンシート側を両面テープと接着する形で離型フィルムを固定し、離型フィルム側を引っ張る形で剥離した。剥離後のセラミックグリーンシートの離型フィルムと接していた表面に関して、フィルム幅方向の中央領域において1250μm×900μmの範囲を走査型電子顕微鏡にて100倍観察し、10回測定した平均値を採用した。下記基準で目視判定した。

○:剥離時のダメージなし(目安:クラックおよび変形の発生がなし)
△:剥離時に軽度のダメージあり(目安:クラックおよび変形が測定面積当たり1個以上、3個以下)
×:剥離時に重度のダメージあり(目安:クラックおよび変形が4個以上)

 なお、本評価方法における剥離角度とは、剥離試験機に固定した評価サンプル軸に対し、離型フィルムを引っ張る方向の角度を指す。剥離温度とは、装置付属のヒーター式ステージシステムを用いて固定した離型フィルムを加熱した時の温度である。ハンディータイプ温度計(安立計器社製、HD-1400E)を用いて、測定サンプルが該当温度になったことを確認後、剥離を行っている。
(5) Evaluation of damage to ceramic green sheet The release film with a ceramic green sheet prepared by the above method was cut into a width of 30 mm and a length of 80 mm, and used as a sample for measurement of peel force. After removing electricity using an electric discharge machine (manufactured by Keyence Corporation, SJ-F020), using a peeling tester (VPA-3 manufactured by Kyowa Interface Science Co., Ltd.), the peeling angle is 30 degrees, the peeling temperature is 25 ° C., and the peeling speed is 10 m / m. It peeled in min. As a peeling direction, a double-sided adhesive tape (Nitto Denko Co., Ltd., No. 535A) is stuck on a SUS plate attached to a peeling tester, and a release film is formed by bonding the ceramic green sheet side to the double-sided tape on it. Were fixed and peeled off in the form of pulling the release film side. With respect to the surface of the ceramic green sheet after peeling, which was in contact with the mold release film, a range of 1250 μm × 900 μm was observed 100 times with a scanning electron microscope in the central region in the film width direction, and an average value measured ten times was adopted. . It judged visually according to the following standard.

○: no damage at peeling (indication: no occurrence of cracks and deformation)
:: Mild damage occurred during peeling (Indication: 1 or more and 3 or less cracks and deformations per measurement area)
X: There is severe damage at the time of exfoliation (Indication: 4 or more cracks and deformations)

In addition, the peeling angle in this evaluation method points out the angle of the direction which pulls a release film with respect to the evaluation sample axis fixed to the peeling test machine. The peeling temperature is a temperature at which the release film fixed by using a heater type stage system attached to the apparatus is heated. Peeling is performed after confirming that the temperature of the measurement sample has reached the relevant temperature using a handy type thermometer (HD-1400E, manufactured by Anritsu Keiki Co., Ltd.).
(6)静摩擦係数、動摩擦係数
 テンシロン万能試験機((エー・アンド・デイ(株)製、RTG-1210)を用いて、フィルムの離型層表面と、SUS板を接するように重ねたときの、接触面の静摩擦係数(μs)と動摩擦係数(μd)をJIS K-7125に順じて下記条件で測定した。

試験片:幅50mm×長さ60mm
荷重:4.4kg
試験速度:200mm/min
被摩擦材: SUS板
(6) Coefficient of static friction, coefficient of dynamic friction When using a Tensilon universal tester (RTG-1210, manufactured by A & D Co., Ltd.), the mold release layer surface of the film is overlapped with the SUS plate in contact with it The static friction coefficient (μs) and the dynamic friction coefficient (μd) of the contact surface were measured in accordance with JIS K-7125 under the following conditions.

Specimen: Width 50 mm × Length 60 mm
Load: 4.4 kg
Test speed: 200 mm / min
Friction material: SUS plate
(ポリエチレンテレフタレートペレット(PET(1))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒子径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒子径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(1)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(Preparation of polyethylene terephthalate pellets (PET (1)))
As an esterification reaction apparatus, a continuous esterification reaction apparatus was used which was composed of a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material feed port and a product outlet. TPA (terephthalic acid) is 2 tons / hour, EG (ethylene glycol) is 2 moles with respect to 1 mole of TPA, antimony trioxide is produced in an amount such that 160 ppm of Sb atoms are formed with respect to PET, and these slurries are ester The reaction mixture was continuously fed to the first esterification reactor of the esterification reactor, and reacted at 255 ° C. for 4 hours at an average residence time under normal pressure. Then, the reaction product in the first esterification reaction vessel is continuously taken out of the system, supplied to the second esterification reaction vessel, and distilled from the first esterification reaction vessel in the second esterification reaction vessel. The EG solution contains 8% by weight of EG to the produced PET, and further contains an EG solution containing magnesium acetate tetrahydrate in an amount of 65 ppm of Mg atoms to the produced PET, and 40 ppm of P atoms to the produced PET The EG solution containing the following amount of TMPA (trimethyl phosphate) was added, and the reaction was carried out at 260.degree. C. under an atmospheric pressure for an average residence time of 1 hour. Then, the reaction product of the second esterification reaction vessel is continuously taken out of the system, supplied to the third esterification reaction vessel, and 39 MPa (400 kg / cm 2 ) using a high pressure disperser (manufactured by Nippon Seiki Co., Ltd.) 0.2% by mass of porous colloidal silica with an average particle size of 0.9 μm dispersed with an average pressure of 5 passes and an average particle of 1% by mass per ammonium carbonate of an ammonium salt of polyacrylic acid While adding 0.4 mass% of synthetic calcium carbonate having a diameter of 0.6 μm as an EG slurry of 10% each, the reaction was carried out at 260 ° C. at an average residence time of 0.5 hours under normal pressure. The esterification reaction product generated in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reaction apparatus to conduct polycondensation, and a 95% cut diameter sintered a 20 μm stainless steel fiber After filtration with a filter, it was ultrafiltered and extruded in water, and after cooling it was cut into chips to obtain PET chips with an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (1)) . The lubricant content in the PET chip was 0.6% by mass.
(ポリエチレンテレフタレートペレット(PET(2))の調製)
 一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(2)と略す。)
(Preparation of polyethylene terephthalate pellets (PET (2)))
On the other hand, in the manufacture of the above PET chip, a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter referred to as PET (2)).
(ポリエチレンテレフタレートペレット(PET(3))の調製)
 PET(I)の粒子の種類、含有量をポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒子径が0.9μmの合成炭酸カルシウム0.75質量%に変更した以外は、PET(1)と同様にしてPETチップを得た(以後、PET(3)と略す)。PETチップ中の滑剤含有量は0.75質量%であった。
(Preparation of polyethylene terephthalate pellets (PET (3)))
The type and content of particles of PET (I) were changed to 0.75% by mass of synthetic calcium carbonate having an average particle diameter of 0.9 μm, in which 1% by mass of ammonium salt of polyacrylic acid was attached per calcium carbonate, A PET chip was obtained in the same manner as PET (1) (hereinafter referred to as PET (3)). The lubricant content in the PET chip was 0.75% by mass.
(積層フィルムX1の製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(1)を表面層B(反離型面側層)、PET(2)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(1)/(2)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは2nm、表面層BのSaは29nmであった。
(Manufacture of laminated film X1)
After drying, these PET chips are melted at 285 ° C., melted at 290 ° C. by a separate melt extruder extruder, and a 95% cut diameter sintered filter of 15 μm stainless steel fibers, 95% cut diameter Two-stage filtration of a filter made of sintered 15 μm stainless steel particles is carried out and merged in a feed block to make PET (1) a surface layer B (a reverse surface side layer), PET (2) a surface Layer A (release surface side layer) is laminated, extruded in a sheet shape at a speed of 45 m / min (casting), and electrostatically adhered and cooled on a casting drum at 30 ° C. by an electrostatic adhesion method. An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained. The layer ratio was adjusted so that PET (1) / (2) = 60% / 40% in discharge amount calculation of each extruder. Next, this unstretched sheet was heated by an infrared heater and then stretched 3.5 times in the longitudinal direction at a roll temperature of 80 ° C. due to the speed difference between the rolls. Thereafter, it was introduced into a tenter and stretched 4.2 times in the transverse direction at 140 ° C. It was then heat treated at 210 ° C. in the heat setting zone. Thereafter, the film was subjected to a relaxation treatment at 2.3 ° C. in the horizontal direction at 170 ° C. to obtain a 31 μm-thick biaxially stretched polyethylene terephthalate film X1. The Sa of the surface layer A of the obtained film X1 was 2 nm, and the Sa of the surface layer B was 29 nm.
(積層フィルムX2の製造)
 積層フィルムX1と同様の層構成、延伸条件は変更せずに、キャスティング時の速度を変更することで厚みを調整し、25μmの厚みの二軸延伸ポリエチレンテレフタレートフィルムX2を得た。得られたフィルムX2の表面層AのSaは3nm、表面層BのSaは29nmであった。
(Production of laminated film X2)
The thickness was adjusted by changing the speed at the time of casting without changing the layer configuration and the stretching conditions similar to the laminated film X1 to obtain a biaxially stretched polyethylene terephthalate film X2 having a thickness of 25 μm. In the surface layer A of the obtained film X2, Sa was 3 nm, and Sa of the surface layer B was 29 nm.
(積層フィルムX3)
 積層フィルムX3としては、厚み25μmのA4100(コスモシャイン(登録商標)、東洋紡社製)を使用した。A4100は、フィルム中に粒子を実質的に含有せず、表面層B側にインラインコートで粒子を含んだコート層を設けた構成をしている。積層フィルムX3の表面層AのSaは1nm、表面層BのSaは2nmであった。
(Laminated film X3)
As the laminated film X3, A4100 (Cosmo Shine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 25 μm was used. A4100 has the structure which provided the coating layer which contained particle | grains by in-line coating in the surface layer B side substantially without containing particle | grains in a film. Sa of the surface layer A of the laminated film X3 was 1 nm, and Sa of the surface layer B was 2 nm.
(実施例1)
 積層フィルムX1の表面層A上に以下組成の塗布液1をリバースグラビアを用いて乾燥後の離型層膜厚が2.5μmになるように塗工し、90℃で30秒乾燥後、高圧水銀ランプを用いて200mJ/cmとなるように紫外線を照射することで超薄層セラミックグリーンシート製造用離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。

(塗布液1) 
  化合物(I)                 100.00質量部 
  (ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製 A-DPH、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.47質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                 1.26質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                   5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)     459.79質量部
Example 1
Apply coating solution 1 of the following composition onto the surface layer A of the laminated film X1 using reverse gravure so that the thickness of the release layer after drying is 2.5 μm, and after drying for 30 seconds at 90 ° C., high pressure A release film for producing an ultrathin ceramic green sheet was obtained by irradiating ultraviolet rays so as to be 200 mJ / cm 2 using a mercury lamp. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The

(Coating solution 1)
Compound (I) 100.00 parts by mass
(Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid concentration 100%)
Resin (II) Polyester resin 9.47 parts by mass (Toyobo Co., Ltd. Byron (registered trademark) RV 280, solid content concentration 100% by mass)
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV 3505, manufactured by Byk Chem Japan, solid content 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluted solvent (MEK / toluene = 1/1) 459.79 parts by mass
(実施例2)
 樹脂(II)をポリエステルウレタン樹脂(東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)に変更し、下記塗布液2を使用した。塗布液2の固形分濃度は実施例1の塗布液1に比べ減少させた。乾燥後の離型層膜厚が1.5μmになるように塗工した。塗布液2を用いた点と、乾燥後の離型層膜厚が1.5μmになるように塗工した点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。

(塗布液2) 
  化合物(I)                 100.00質量部
  (ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製 A-DPH、固形分濃度100%)
  樹脂(II) ポリエステルウレタン樹脂     31.50質量部
  (東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)
  離型剤(III)                 0.42質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                   5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)     975.42質量部
(Example 2)
Resin (II) was changed to polyester urethane resin (Toyobo Co., Ltd. Byron (registered trademark) UR1400, solid content concentration 30 mass%), and the following coating solution 2 was used. The solid content concentration of the coating solution 2 was reduced as compared to the coating solution 1 of Example 1. It applied so that the release layer film thickness after drying might be 1.5 micrometers. A release film was obtained in the same manner as in Example 1 except that the coating solution 2 was used and the coating was performed so that the thickness of the release layer after drying was 1.5 μm. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The

(Coating solution 2)
Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%)
Resin (II) polyester urethane resin 31.50 parts by mass (Toyobo Co., Ltd. Byron (registered trademark) UR1400, solid content concentration 30 mass%)
Release agent (III) 0.42 parts by mass (Modified polydimethylsiloxane having an acryloyl group, BYK-UV 3505, manufactured by Bick Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluted solvent (MEK / toluene = 1/1) 975.42 parts by mass
(実施例3)
 離型剤(III)の比率を実施例2に比べ増加させた、下記塗布液3を使用した。乾燥後の離型層膜厚が1.8μmになるように塗工した。塗布液3を用いた点と、乾燥後の離型層膜厚が1.8μmになるように塗工した点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。

(塗布液3) 
  化合物(I)                 100.00質量部
  (ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製 A-DPH、固形分濃度100%)    
  樹脂(II) ポリエステルウレタン樹脂      31.50質量部  (東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)
  離型剤(III)                 1.26質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                   5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分100質量%)
  希釈溶剤(MEK/トルエン=1/1)     982.98質量部
(Example 3)
The following coating solution 3 was used, in which the proportion of the releasing agent (III) was increased as compared with that in Example 2. It applied so that the release layer film thickness after drying might be set to 1.8 micrometers. A release film was obtained in the same manner as in Example 1 except that the coating solution 3 was used and the coating was performed so that the thickness of the release layer after drying was 1.8 μm. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The

(Coating solution 3)
Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%)
Resin (II) polyester urethane resin 31.50 parts by mass (Toyobo Co., Ltd. Byron (registered trademark) UR1400, solid content concentration 30 mass%)
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV 3505, manufactured by Byk Chem Japan, solid content 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content 100% by mass)
Diluted solvent (MEK / toluene = 1/1) 982.98 parts by mass
(実施例4)
 実施例3にて使用した塗布液3を、積層フィルムX2の表面層A上に塗工した。積層フィルムX2を用いた点を除いては、実施例3と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。
(Example 4)
The coating solution 3 used in Example 3 was applied onto the surface layer A of the laminated film X2. A release film was obtained in the same manner as in Example 3, except that the laminated film X2 was used. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The
(実施例5)
 実施例3にて使用した塗布液3を、積層フィルムX3の表面層A上に塗工した。積層フィルムX3を用いた点を除いては、実施例3と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。
(Example 5)
The coating liquid 3 used in Example 3 was coated on the surface layer A of the laminated film X3. A release film was obtained in the same manner as in Example 3, except that the laminated film X3 was used. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The
(比較例1)
 実施例1に比べて、樹脂(II)を含まず、離型剤(III)をアクリロイル基を有する含有ポリエーテル変性ポリジメチルシロキサン(BYK UV-3500、ビッグケミー・ジャパン社製 固形分濃度100%)に変更し添加量を増加させ、希釈溶剤を変更した下記塗布液4を使用した。塗布液4を用いた点と、乾燥後の離型層膜厚が1.0μmになるように塗工した点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面粗さSa、最大突起高さRp、セラミックグリーンシートのピンホール評価、セラミックグリーンシートへのダメージ評価、静摩擦係数、動摩擦係数の評価を行った。

(塗布液4) 
  化合物(I)                 100.00質量部
  (ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製 A-DPH、固形分濃度100%)
  離型剤(III)                 1.00質量部
  (アクリロイル基含有ポリエーテル変性ポリジメチルシロキサン BYK UV-3500、ビッグケミー・ジャパン社製 固形分濃度100%))
  光重合開始剤                   5.00質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製 固形分濃度100質量%)
  希釈溶剤(IPA/MEK=3/1)      424.25質量部
(Comparative example 1)
Compared with Example 1, the resin (II) is not contained, and the release agent (III) is an acryloyl group-containing polyether-modified polydimethylsiloxane (BYK UV-3500, 100% solid concentration by Big Chemie Japan) The following coating solution 4 was used in which the amount of addition was increased and the dilution solvent was changed. A release film was obtained in the same manner as in Example 1 except that the coating solution 4 was used and the coating was performed so that the thickness of the release layer after drying was 1.0 μm. The release film thickness, area surface roughness Sa, maximum protrusion height Rp, pinhole evaluation of ceramic green sheet, damage evaluation to ceramic green sheet, static friction coefficient, dynamic friction coefficient are evaluated for the obtained release film. The

(Coating solution 4)
Compound (I) 100.00 parts by mass (Dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd. A-DPH, solid content concentration 100%)
Releasing agent (III) 1.00 parts by mass (Acryloyl group-containing polyether-modified polydimethylsiloxane BYK UV-3500, 100% solid concentration by Big Chemie Japan)
Photopolymerization initiator 5.00 parts by mass (OMNIRAD (registered trademark) 907, IGM Japan GK company solid content concentration 100 mass%)
Diluted solvent (IPA / MEK = 3/1) 424.25 parts by mass
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重くなりすぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートにピンホールなどの欠点を少なくできるセラミックグリーンシート製造用離型フィルムの提供が可能となった。 According to the release film for producing a ceramic green sheet of the present invention, the peeling force does not become too heavy as compared with the conventional release film for producing a ceramic green sheet, and the processability is excellent and the release layer is large. Since there is no protrusion, it has become possible to provide a release film for producing a ceramic green sheet capable of reducing defects such as pinholes in an ultrathin ceramic green sheet having a thickness of 1 μm or less.

Claims (7)

  1.  ポリエステルフィルムの少なくとも片面に直接又は他の層を介して0.2~3.5μmの離型層が積層された離型フィルムであって、前記離型層表面の領域表面粗さ(Sa)が5~40nm、最大山高さ(Rp)が60nm以下であるセラミックグリーンシート製造用離型フィルム。 A release film in which a release layer of 0.2 to 3.5 μm is laminated on at least one surface of a polyester film directly or through another layer, and the area surface roughness (Sa) of the release layer surface is A release film for producing a ceramic green sheet, having a maximum peak height (Rp) of 60 nm or less and 5 to 40 nm.
  2.  離型層が、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)を海成分とし、前記エネルギー線硬化型化合物(I)と非相溶であり島成分となる樹脂(II)と、離型成分(III)を少なくとも含む塗膜が硬化されてなる請求項1に記載のセラミックグリーンシート製造用離型フィルム。 An energy ray-curable compound (I), wherein the releasing layer has three or more reactive groups in one molecule, and the energy ray-curable compound (I) as a sea component, the energy ray-curable compound (I) The release film for producing a ceramic green sheet according to claim 1, wherein the coating film containing at least the resin (II) which is incompatible with the resin and which becomes the island component and the release component (III) is cured.
  3.  離型層が実質的に無機粒子を含有しない請求項1又は2に記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to claim 1 or 2, wherein the release layer contains substantially no inorganic particles.
  4.  ポリエステルフィルムが、少なくとも表面層Aと、前記表面層Aとは反対側の表面層Bを含む2層以上からなる積層ポリエステルフィルムであって、前記表面層A上に離型層が積層されており、表面層Aには実質的に無機粒子が含有されていない請求項1~3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The polyester film is a laminated polyester film comprising at least a surface layer A and two or more layers including a surface layer B opposite to the surface layer A, and a release layer is laminated on the surface layer A. 4. The release film for producing a ceramic green sheet according to any one of claims 1 to 3, wherein the surface layer A is substantially free of inorganic particles.
  5.  表面層Bが粒子を含有し、前記粒子がシリカ粒子及び/又は炭酸カルシウム粒子であり、合計の粒子の含有量が表面層Bの総質量に対して5000~15000ppmである請求項4に記載のセラミックグリーンシート製造用離型フィルム。 The surface layer B contains particles, the particles are silica particles and / or calcium carbonate particles, and the total content of particles is 5,000 to 15,000 ppm with respect to the total mass of the surface layer B. Release film for ceramic green sheet production.
  6.  ポリエステルフィルムが実質的に無機粒子を含有しておらず、ポリエステルフィルムの離型層が積層されていない側に粒子を含むコーティング層が積層されている請求項1~3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The ceramic according to any one of claims 1 to 3, wherein the polyester film is substantially free of inorganic particles, and the coating layer containing the particles is laminated on the side of the polyester film on which the release layer is not laminated. Release film for green sheet production.
  7.  請求項1~6のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みであることを特徴とするセラミックグリーンシートの製造方法。 A method for producing a ceramic green sheet, wherein the ceramic green sheet is molded using the mold release film for producing a ceramic green sheet according to any one of claims 1 to 6, wherein the molded ceramic green sheet has a thickness of 0.2 μm to 1 A method of producing a ceramic green sheet having a thickness of 0 μm.
PCT/JP2018/047027 2017-12-27 2018-12-20 Mold release film for production of ceramic green sheet WO2019131449A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202005633XA SG11202005633XA (en) 2017-12-27 2018-12-20 Release film for production of ceramic green sheet
JP2019502113A JP6822549B2 (en) 2017-12-27 2018-12-20 Release film for manufacturing ceramic green sheets
MYPI2020003262A MY192990A (en) 2017-12-27 2018-12-20 Mold release film for production of ceramic green sheet
KR1020207021350A KR102518776B1 (en) 2017-12-27 2018-12-20 Release Film for Ceramic Green Sheet Manufacturing
CN201880083606.2A CN111527136B (en) 2017-12-27 2018-12-20 Release film for producing ceramic green sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017251188 2017-12-27
JP2017-251188 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131449A1 true WO2019131449A1 (en) 2019-07-04

Family

ID=67067299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047027 WO2019131449A1 (en) 2017-12-27 2018-12-20 Mold release film for production of ceramic green sheet

Country Status (6)

Country Link
JP (2) JP6822549B2 (en)
KR (1) KR102518776B1 (en)
CN (1) CN111527136B (en)
MY (1) MY192990A (en)
SG (1) SG11202005633XA (en)
WO (1) WO2019131449A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049803A (en) * 2018-09-27 2020-04-02 東洋紡株式会社 Release film for producing ceramic green sheet and method for evaluating the same
JP2021024926A (en) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 Hardened film, method for producing the same, and laminate
JP2021054079A (en) * 2019-09-30 2021-04-08 太陽インキ製造株式会社 Laminate structure
WO2023276892A1 (en) * 2021-06-30 2023-01-05 東洋紡株式会社 Release film for molding resin sheets
WO2023032793A1 (en) * 2021-08-31 2023-03-09 東洋紡株式会社 Mold release film for resin sheet molding
WO2024057660A1 (en) * 2022-09-12 2024-03-21 東レ株式会社 Laminated film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202102850UA (en) * 2018-09-27 2021-04-29 Toyo Boseki Release film for production of ceramic green sheet
WO2022085531A1 (en) * 2020-10-22 2022-04-28 東洋紡株式会社 Mold release film for resin sheet molding
CN114393904B (en) * 2022-01-20 2022-10-28 宁波勤邦新材料科技有限公司 Base film of release film for multilayer ceramic capacitor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500367A (en) * 1991-10-15 1995-01-12 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー UV curable silicone mold release composition
JPH11105209A (en) * 1997-10-03 1999-04-20 Asahi Glass Co Ltd Mold release film for thermo-setting resin laminated plate, and manufacture of thermo-setting resin laminated plate
JP2011099097A (en) * 2009-10-08 2011-05-19 Sony Chemical & Information Device Corp Releasant composition, release film, and adhesive tape
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
JP2013060555A (en) * 2011-09-14 2013-04-04 Lintec Corp Mold release film and method for producing the same
JP2015071240A (en) * 2013-10-02 2015-04-16 リンテック株式会社 Release film
JP2015134476A (en) * 2014-01-17 2015-07-27 リンテック株式会社 Mold release film, method for producing green sheet and method for producing multilayer ceramic electronic component
JP2015195291A (en) * 2014-03-31 2015-11-05 リンテック株式会社 Release film for ceramic green sheet production process
JP2016060158A (en) * 2014-09-19 2016-04-25 東洋紡株式会社 Release film for producing ceramic sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117899A (en) 1998-10-15 2000-04-25 Teijin Ltd Release film
JP2007186594A (en) 2006-01-13 2007-07-26 Toray Advanced Film Co Ltd Coated film
TWI499639B (en) * 2009-10-06 2015-09-11 Dexerials Corp A release agent composition, a release film, and a subsequent film using the same
SG11201406068PA (en) 2012-03-28 2014-11-27 Lintec Corp Parting film for step for producing ceramic green sheet
MY168431A (en) 2012-03-28 2018-11-09 Lintec Corp Release film for ceramic green sheet producion process
CN105324245B (en) 2013-06-18 2017-03-15 东丽株式会社 The biaxial orientation laminated polyester film of the demoulding
JP6502092B2 (en) 2014-12-26 2019-04-17 太陽誘電株式会社 Multilayer ceramic capacitor
JP6781540B2 (en) 2015-10-30 2020-11-04 太陽誘電株式会社 Barium titanate powder, additive manufacturing capacitors and their manufacturing methods
JP6790420B2 (en) * 2016-03-31 2020-11-25 東洋紡株式会社 Release laminated film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500367A (en) * 1991-10-15 1995-01-12 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー UV curable silicone mold release composition
JPH11105209A (en) * 1997-10-03 1999-04-20 Asahi Glass Co Ltd Mold release film for thermo-setting resin laminated plate, and manufacture of thermo-setting resin laminated plate
JP2011099097A (en) * 2009-10-08 2011-05-19 Sony Chemical & Information Device Corp Releasant composition, release film, and adhesive tape
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
JP2013060555A (en) * 2011-09-14 2013-04-04 Lintec Corp Mold release film and method for producing the same
JP2015071240A (en) * 2013-10-02 2015-04-16 リンテック株式会社 Release film
JP2015134476A (en) * 2014-01-17 2015-07-27 リンテック株式会社 Mold release film, method for producing green sheet and method for producing multilayer ceramic electronic component
JP2015195291A (en) * 2014-03-31 2015-11-05 リンテック株式会社 Release film for ceramic green sheet production process
JP2016060158A (en) * 2014-09-19 2016-04-25 東洋紡株式会社 Release film for producing ceramic sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049803A (en) * 2018-09-27 2020-04-02 東洋紡株式会社 Release film for producing ceramic green sheet and method for evaluating the same
JP7427359B2 (en) 2018-09-27 2024-02-05 東洋紡株式会社 Release film for ceramic green sheet production and its evaluation method
JP2021024926A (en) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 Hardened film, method for producing the same, and laminate
JP7156204B2 (en) 2019-08-02 2022-10-19 三菱ケミカル株式会社 Cured film, its production method and laminate
JP2021054079A (en) * 2019-09-30 2021-04-08 太陽インキ製造株式会社 Laminate structure
WO2023276892A1 (en) * 2021-06-30 2023-01-05 東洋紡株式会社 Release film for molding resin sheets
WO2023032793A1 (en) * 2021-08-31 2023-03-09 東洋紡株式会社 Mold release film for resin sheet molding
WO2024057660A1 (en) * 2022-09-12 2024-03-21 東レ株式会社 Laminated film

Also Published As

Publication number Publication date
SG11202005633XA (en) 2020-07-29
JPWO2019131449A1 (en) 2020-01-16
MY192990A (en) 2022-09-20
CN111527136B (en) 2022-12-30
JP6822549B2 (en) 2021-01-27
KR20200098678A (en) 2020-08-20
CN111527136A (en) 2020-08-11
JP7017168B2 (en) 2022-02-08
JP2020175668A (en) 2020-10-29
KR102518776B1 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
JP7017168B2 (en) Release film for manufacturing ceramic green sheets
JP6693614B1 (en) Release film for manufacturing ceramic green sheets
JP7427359B2 (en) Release film for ceramic green sheet production and its evaluation method
JP6962217B2 (en) Release film for manufacturing ceramic green sheets
JP7367810B2 (en) Release film for ceramic green sheet production
WO2022186184A1 (en) Laminated film and method for manufacturing laminated film
JP2022025703A (en) Laminated film
JP6702520B1 (en) Release film for manufacturing ceramic green sheets
JP6973054B2 (en) Release film for manufacturing ceramic green sheets
JP7180064B2 (en) Release film for manufacturing ceramic green sheets
JP2009241575A (en) Biaxially oriented laminated polyester film
JP7188536B2 (en) Release film for manufacturing ceramic green sheets
JP7188537B2 (en) Release film for manufacturing ceramic green sheets
JP7188535B2 (en) Release film for manufacturing ceramic green sheets
JP7306514B2 (en) Release film for manufacturing ceramic green sheets
JP7327554B2 (en) Release film for manufacturing ceramic green sheets
WO2023032793A1 (en) Mold release film for resin sheet molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019502113

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021350

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18896396

Country of ref document: EP

Kind code of ref document: A1