WO2019131144A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2019131144A1
WO2019131144A1 PCT/JP2018/045734 JP2018045734W WO2019131144A1 WO 2019131144 A1 WO2019131144 A1 WO 2019131144A1 JP 2018045734 W JP2018045734 W JP 2018045734W WO 2019131144 A1 WO2019131144 A1 WO 2019131144A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
vacuum ultraviolet
irradiation
light irradiation
Prior art date
Application number
PCT/JP2018/045734
Other languages
French (fr)
Japanese (ja)
Inventor
岩田 和也
秀明 柏木
勝 友野
古閑 法久
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201880081427.5A priority Critical patent/CN111492314A/en
Priority to JP2019562960A priority patent/JP6920469B2/en
Priority to KR1020207020141A priority patent/KR20200097777A/en
Publication of WO2019131144A1 publication Critical patent/WO2019131144A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/68Lamps in which the main discharge is between parts of a current-carrying guide, e.g. halo lamp

Definitions

  • the present disclosure relates to a light irradiation apparatus that irradiates light to a substrate.
  • Patent Document 1 in a semiconductor device manufacturing process, a process of forming a resist film on the surface of a substrate, a process of exposing, a process of patterning a resist, and a process of irradiating light at a wavelength of 200 nm or less on the front surface of the resist And sequentially performing the step of etching the lower layer film of the resist film.
  • the step of irradiating light having a wavelength of 200 nm or less (hereinafter, simply referred to as a step of irradiating light) is performed, for example, for the purpose of improving the roughness (concave and convex) of the resist film.
  • a plurality of lamps are disposed on the substrate from the viewpoint of securing the irradiation intensity while shortening the irradiation distance.
  • each lamp is a point light source
  • the irradiation range on the wafer is circular. In the case where the irradiation range is circular, if the lamps are arranged such that the irradiation ranges of the lamps do not overlap, portions where light is not irradiated (or the irradiation intensity becomes weak) may occur.
  • the present disclosure describes a light irradiation device capable of improving the uniformity of the light irradiation distribution on the irradiation surface of the substrate.
  • a light irradiation apparatus includes: a plurality of light irradiation units that irradiate vacuum vacuum ultraviolet light having a conical light path with a light source at the top toward a substrate; and a vacuum irradiated from a plurality of light irradiation units. And a light shielding portion provided corresponding to each light irradiation portion so as to shield an overlapping portion of the irradiation range of the ultraviolet light, wherein the light shielding portion is formed in a polygonal shape as viewed from the traveling direction of the vacuum ultraviolet light. ing.
  • the overlapping portion of the plurality of vacuum ultraviolet light irradiated toward the substrate along the conical light path is shielded by the polygonal light shielding portion provided corresponding to each light irradiation portion. It is done.
  • the irradiation range is circular. There will be a portion where the light is not irradiated (or a portion where the irradiation intensity becomes weak).
  • the light shielding portion that shields the overlapping portion of the plurality of vacuum ultraviolet light is formed in a polygonal shape as viewed from the traveling direction of the vacuum ultraviolet light.
  • substrate becomes polygonal shape.
  • substrate can be improved.
  • the light shielding portion may have a cylindrical light shielding member which is formed in a cylindrical shape by extending in the traveling direction of the vacuum ultraviolet light.
  • the light shielding portion provided corresponding to the light irradiation portion extends in the height direction (the advancing direction of the vacuum ultraviolet light) and is formed in a cylindrical shape, whereby light irradiation of light other than the light irradiation portion to which the light shielding portion corresponds.
  • the influence of vacuum ultraviolet light from one part for example, the next light irradiation part
  • overlapping of the irradiation range with the vacuum ultraviolet light of the other light irradiation parts can be appropriately prevented, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
  • the light shielding portion especially the cylindrical light shielding portion
  • the shadow of the light shielding portion may be projected onto the irradiation surface of the substrate, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate may be degraded by the shadow.
  • the separation distance adjusting part for example, it is possible to adjust the spread of the irradiation light from the adjacent light shielding parts to the substrate. Can be eliminated by overlapping each other.
  • the light irradiation unit may be configured to include a deuterium lamp.
  • a deuterium lamp in addition to vacuum ultraviolet light having a wavelength of 200 nm or less, near ultraviolet light having a wavelength of greater than 200 nm can be irradiated to the substrate.
  • the wavelength range of the spectrum of light irradiated from the deuterium lamp is relatively wide, for example, in the case where a resist pattern is formed on the surface of the substrate, the resist pattern has the energy of light of various wavelengths. It will be received. As a result, various reactions occur on the surface of the resist pattern to increase the fluidity, and as a result, the effect of improving the surface roughness can be improved.
  • the deuterium lamp may generate vacuum ultraviolet light having a wavelength of 200 nm or less, for example, a wavelength of 160 nm or less.
  • 160 nm or less is the peak wavelength of the continuous spectrum, and by generating vacuum ultraviolet light of 160 nm or less, for example, when a resist pattern is formed on the surface of the substrate, the surface is roughened.
  • the improvement effect of can be further improved.
  • the irradiation distribution can be positively adjusted by making the illuminance value, the light beam angle, or the height of the light irradiation unit (distance from the substrate) different from each other for the plurality of light irradiation units, Depending on the irradiation condition, the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
  • Irradiation light originates in the internal electrode structure of a light source (lamp), and the variation in intensity exists.
  • the diffusion part above the light shielding part the variation of the irradiation light is averaged, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
  • the substrate may further include a substrate rotation unit configured to rotate the substrate in a state in which the irradiation surface of the substrate is opposed to the light irradiation unit. As a result, the irradiation place is changed, so that the uniformity of the light irradiation distribution on the irradiation surface can be further improved.
  • a substrate rotation unit configured to rotate the substrate in a state in which the irradiation surface of the substrate is opposed to the light irradiation unit.
  • the light shielding portion may be made of a material having a reflectance of 90% or less of vacuum ultraviolet light.
  • the cylindrical light shielding member may extend in the traveling direction over substantially the entire area between the light emitting unit and the substrate. Thereby, it can suppress more appropriately that the vacuum ultraviolet light of another light irradiation part and an irradiation range overlap.
  • the cylindrical light shielding member may be provided at a position close to the substrate between the light emitting unit and the substrate.
  • vacuum ultraviolet light it is necessary to evacuate the processing chamber to a low oxygen state by a vacuum pump.
  • the cylindrical light shielding member is provided substantially in the entire area between the light irradiation unit and the substrate, it is difficult for the vacuum pump to evacuate the inside of the processing chamber, and the above-described vacuuming may not be performed smoothly.
  • by providing the cylindrical light shielding member (only) in the region closer to the substrate it is easier to perform the above-described vacuuming as compared to the case where the cylindrical light shielding member is provided substantially in the entire area between the light irradiation portion and the substrate. can do.
  • the cylindrical light shielding member may have a length equal to or less than half of the total length between the light emitting unit and the substrate. This can facilitate vacuum drawing in the processing chamber.
  • the light blocking portion may have a plate-like light blocking member formed in a plate shape.
  • the plate-like thin member as the light shielding member, it is possible to appropriately evacuate the processing chamber without inhibiting the exhaust by the vacuum pump in the processing chamber.
  • the light shielding portion is formed in a cylindrical shape extending in the traveling direction of vacuum ultraviolet light and formed in a cylindrical light shielding member provided at a position near the substrate between the light irradiation portion and the substrate, and a plate-shaped light shielding formed in a plate shape
  • the plate-shaped light shielding member may be provided below the cylindrical light shielding member.
  • the cylindrical light shielding member is provided below the cylindrical light shielding member while appropriately suppressing the overlapping of the irradiation ranges of the vacuum ultraviolet light.
  • the irradiation range of vacuum ultraviolet light can be appropriately limited by the plate-like light shielding member.
  • the length of the cylindrical light shielding member can be shortened, and the exhaust by the vacuum pump can be appropriately performed to evacuate the processing chamber appropriately.
  • the plate-shaped light shielding member may be provided in contact with the lower end of the cylindrical light shielding member. Thereby, it can suppress that a vacuum ultraviolet light leaks out between a cylindrical light shielding member and a plate-shaped light shielding member, and it can suppress appropriately that the irradiation range of vacuum ultraviolet light overlaps.
  • the size of the region through which light passes may be smaller than that of the cylindrical light blocking member when viewed from the traveling direction.
  • the irradiation range of vacuum ultraviolet light can be appropriately limited by a plate-shaped light shielding member.
  • the plate-shaped light shielding member may be provided to be separated from the lower end of the cylindrical light shielding member. Thereby, the vacuuming by a vacuum pump can be performed more appropriately.
  • the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be improved.
  • FIG. 1 is a schematic view (longitudinal sectional side view) showing a substrate processing apparatus of the present embodiment.
  • a substrate processing apparatus 1 shown in FIG. 1 is an apparatus for performing predetermined processing on a wafer W (substrate).
  • the wafer W has a disk shape, but may be a wafer in which a part of a circle is cut away or a non-circular shape such as a polygon.
  • the wafer W may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates.
  • the substrate processing apparatus 1 is described as an apparatus for improving the surface roughness of the resist pattern formed on the surface of the wafer W by irradiating the wafer W with light.
  • the resist pattern is formed by exposing and developing a resist film formed on the wafer W.
  • the substrate processing apparatus 1 includes a processing container 21, a mounting table 20, a housing 43, and a light irradiation device 4.
  • a processing container 21 As shown in FIG. 1, the substrate processing apparatus 1 includes a processing container 21, a mounting table 20, a housing 43, and a light irradiation device 4.
  • FIG. 1 only a part of the configuration included in the light irradiation device 4 is shown.
  • the processing container 21 is, for example, a vacuum container provided in the atmosphere, and is a container for storing the wafer W transferred by the transfer mechanism (not shown). In the substrate processing apparatus 1, processing on the wafer W is performed in a state where the wafer W is stored in the processing container 21.
  • a transfer port 22 is formed on the side wall of the processing container 21. The transfer port 22 is an opening for carrying the wafer W into and out of the processing container 21. The transfer port 22 is opened and closed by a gate valve 23.
  • the mounting table 20 is a circular table provided in the processing container 21.
  • the mounting table 20 horizontally mounts the wafer W such that the center of the wafer W overlaps the center thereof.
  • three elevating pins (not shown) are provided so as to penetrate the mounting table 20 in the thickness direction (vertical direction).
  • the lower end of the elevation pin is connected to an elevation mechanism (not shown), and can be moved (elevation) vertically by the elevation mechanism.
  • the lift pins reach their upper ends above the top surface of the mounting table 20 in a state of being lifted by the lift mechanism, and enter the processing container 21 via the transfer port 22 with the wafer (not shown). Deliver W.
  • the housing 43 is provided on the top of the processing container 21.
  • the housing 43 accommodates a plurality of deuterium lamps 40 (light emitting units) of the light emitting device 4.
  • the light irradiation device 4 is a configuration related to the irradiation of light to the surface of the wafer W for the purpose of improving the roughness (unevenness) of the surface of the resist pattern.
  • the light irradiation device 4 will be described in detail with reference to FIGS. 2 and 3 as well.
  • FIG. 2 is a schematic view showing the light irradiation device 4 of the substrate processing apparatus 1 of FIG.
  • FIG. 3 is an explanatory view showing the irradiation range of the light irradiation device 4 (a plan view of the irradiation range).
  • the light irradiation device 4 includes a plurality of deuterium lamps 40 (light irradiation units) and a plurality of polygonal cylinders 50 (cylindrical light shielding members).
  • the deuterium lamp 40 irradiates the wafer W with vacuum ultraviolet light having a wavelength of 200 nm or less. More specifically, the deuterium lamp 40 emits, for example, light having a wavelength of 115 nm to 400 nm, that is, light having a continuous spectrum of 115 nm to 400 nm. As described above, the light irradiated from the deuterium lamp 40 includes vacuum ultraviolet light (Vacuum Ultra Violet Light: VUV light), that is, light having a wavelength of 10 nm to 200 nm. In addition to vacuum ultraviolet light (vacuum ultraviolet light), light irradiated from the deuterium lamp 40 also includes near ultraviolet light (near ultraviolet light) whose wavelength is greater than 200 nm. The wavelength of the peak of the continuous spectrum of the light emitted from the deuterium lamp 40 of the present embodiment is, for example, 160 nm or less and 150 nm or more.
  • the resist pattern on the surface of the wafer W receives various energy of light, and as a result, on the surface of the resist pattern Various reactions occur. Specifically, since chemical bonds at various positions in molecules constituting the resist film are broken to form various compounds, the orientation of the molecules present in the resist film before light irradiation is eliminated. The surface free energy of the resist film is reduced, and the internal stress is reduced. That is, by using the deuterium lamp 40 as the light source, the fluidity of the surface of the resist pattern can be enhanced, and as a result, the effect of improving the surface roughness of the wafer W can be improved.
  • the light irradiated to the resist film is likely to reach the deep layer of the resist film as the wavelength is larger.
  • the wavelength of the peak of the spectrum of the light emitted from the deuterium lamp 40 is included in the vacuum ultraviolet light band (10 nm to 200 nm) as described above, the light irradiated from the deuterium lamp 40 , The intensity of light having a relatively large wavelength is small. For this reason, there are few things which reach the deep layer of a resist film by the light irradiated from the deuterium lamp 40, and in the deep layer of a resist film, the cutting
  • the deuterium lamp 40 generates top hat light having a flat intensity distribution as compared to light of Gaussian distribution. Even in the case of top hat type light, the intensity distribution is not completely flat, and the light intensity becomes weaker as it is separated from the central side (directly below the light source 41).
  • the deuterium lamp 40 emits light having a spread emitted from the light source 41 (see FIG. 1), which is a point light source, and specifically, vacuum ultraviolet light taking a conical light path with the light source 41 at the top. Toward the wafer W.
  • the light irradiated from the deuterium lamp 40 has a circular irradiation range on the irradiation surface when the light shielding is not performed, but a part of the light is shielded by the polygon cylinder 50 described later
  • the irradiation range becomes a polygonal shape (hexagonal in the example of the present embodiment) (details will be described later).
  • FIG. 1 and FIG. 2 etc. the outermost light path among the light paths of the vacuum ultraviolet light is shown by a dashed dotted line.
  • the light irradiation device 4 includes a plurality of deuterium lamps 40.
  • the deuterium lamps 40 are arranged at predetermined intervals so that the light irradiation distribution on the irradiation surface of the wafer W becomes uniform. For example, as shown in FIG. 3, one deuterium lamp 40 is provided immediately above the center of the wafer W, and along the circumference (specifically, slightly inside of the circumference) of the disk-shaped wafer W. Six deuterium lamps 40 are provided at equal intervals.
  • a shutter (not shown) may be provided between the deuterium lamp 40 and the polygonal cylinder 50.
  • the deuterium lamps 40 have the same illuminance value of the vacuum ultraviolet light to be irradiated, the light beam angle of the vacuum ultraviolet light to be irradiated, and the separation distance from the wafer W.
  • the polygonal cylinder 50 is a light shielding portion provided corresponding to each of the deuterium lamps 40 so as to shield the overlap of the irradiation ranges of vacuum ultraviolet light irradiated from the plurality of deuterium lamps 40.
  • the polygonal cylinder 50 removes (absorbs, cuts) the light emission of the end region of the vacuum ultraviolet light emitted from the deuterium lamp 40 to emit vacuum ultraviolet light from the plurality of deuterium lamps 40. It may be to block the overlap of
  • the polygonal cylinder 50 corresponds to the deuterium lamp 40 in a one-to-one correspondence with the polygonal cylinder 50 corresponding to the deuterium lamp 40, and is provided immediately below the light source 41 of the deuterium lamp 40. Say (see Figure 3).
  • the polygon tube 50 is provided so that the light source 41 is positioned on the central axis when viewed from the traveling direction of the vacuum ultraviolet light.
  • the polygon cylinder 50 extends in the traveling direction of the vacuum ultraviolet light over substantially the entire area between the deuterium lamp 40 and the wafer W.
  • the substantially entire area between the deuterium lamp 40 and the wafer W is at least half the length of the entire length between the deuterium lamp 40 and the wafer W.
  • the polygon tube 50 can be appropriately suppressed from overlapping the vacuum ultraviolet light of the other deuterium lamps 40 by being extended over substantially the entire area between the deuterium lamps 40 and the wafer W.
  • the polygon cylinder 50 is formed in a polygonal shape, specifically, a regular hexagonal shape as viewed from the direction of travel of vacuum ultraviolet light (see FIG. 3). As shown in FIG. 3, when viewed from the traveling direction of vacuum ultraviolet light, the plurality of polygonal cylinders 50 are provided in close contact with each other without any gap between adjacent polygonal cylinders 50.
  • the polygonal cylinder 50 provided corresponding to the deuterium lamp 40 located above the center of the wafer W has each side of the regular hexagon the other polygon It is provided in contact with the opposite side of a cylinder 50 (six polygon cylinders 50 provided corresponding to the deuterium lamps 40 provided at equal intervals along the circumference of the wafer W).
  • the six polygonal cylinders 50 provided corresponding to the deuterium lamps 40 provided at equal intervals along the circumference of the wafer W have one side at the center The two sides of the polygonal cylinder 50 are in contact with the adjacent sides of the polygonal cylinder 50 adjacent to each other on the circumference.
  • the polygonal cylinder 50 is formed in a cylindrical shape extending in the traveling direction of the vacuum ultraviolet light (see FIG. 2).
  • the polygon tube 50 may be made of any material as long as it has a low reflectance to vacuum ultraviolet light and a high absorption (cut) rate.
  • the material having a low reflectance means, for example, a material having a reflectance of 90% or less, for example, 60% or less, for vacuum ultraviolet light.
  • a substrate of SUS, aluminum or the like coated with an organic film for reducing the reflectance, for forming irregularities on the surface of the substrate described above What has been subjected to blasting treatment, roughening treatment, or the like can be used.
  • the surface roughening treatment is, for example, an alumite treatment performed on aluminum as a base material.
  • the above-described metal such as SUS or aluminum may be used as the base material, but a resin material or the like with a low outgas may be used as the base material.
  • the polygonal tube 50 extends from immediately below the light source 41 to a position close to the irradiation surface of the wafer W.
  • the vacuum ultraviolet light irradiated from each deuterium lamp 40 is a light source It passes through the inside of the corresponding polygon cylinder 50 from the point 41 to the irradiation surface of the wafer W, and the irradiation range on the wafer W becomes a range corresponding to the shape of the polygon cylinder 50 (see FIG. 3).
  • the plurality of polygonal cylinders 50 are continuous (in close contact with each other), the irradiation ranges of the vacuum ultraviolet light passing through the adjacent polygonal cylinders 50 on the wafer W are continuous with each other. Not overlapping (or overlapping range is small).
  • the shape of the polygonal cylinder 50 may be determined such that a portion (portion away from the center) where the intensity of vacuum ultraviolet light emitted from the light source 41 of the deuterium lamp 40 is weak can be shielded.
  • the shape of the polygon tube 50 is determined such that light is blocked, for example, from 70 to 80%, for example, 90% or more of the strongest portion, for example.
  • the light irradiation device 4 of the substrate processing apparatus 1 irradiates the wafer W with vacuum ultraviolet light having a wavelength of 200 nm or less and taking a conical optical path with the light source 41 at the top.
  • Polygon cylinder 50 provided corresponding to each deuterium lamp 40 so as to shield the overlapping portion of the plurality of deuterium lamps 40 and the irradiation range of the vacuum ultraviolet light irradiated from the plurality of deuterium lamps 40
  • the polygonal cylinder 50 is formed in a polygonal shape as viewed from the traveling direction of vacuum ultraviolet light.
  • FIGS. 4 (a) and 4 (b) are explanatory views of a light irradiation apparatus according to a comparative example.
  • FIG. 4A schematically shows a light irradiation device in which a plurality of deuterium lamps 40 are provided.
  • FIG. 4 (b) shows the irradiation intensity of the light irradiation device shown in FIG. 4 (a).
  • the broken line shows the irradiation intensity of each deuterium lamp 40
  • the solid line shows the adjacent weights.
  • the total irradiation intensity of the hydrogen lamp 40 is shown.
  • FIGS. 4A and 4B when the deuterium lamp 40 is disposed so that the irradiation ranges of the lights do not overlap as much as possible (the center deuterium lamp shown in FIG. 4A) In the deuterium lamp 40 and the right side deuterium lamp 40), since the irradiation range is circular, a portion E2 (see FIG. 4B) in which the irradiation intensity of light becomes weak is generated.
  • the irradiation range of the light irradiated from each point deuterium lamp 40 is sufficiently overlapped (the deuterium in the center shown in FIG.
  • the problem is that the lamp 40 and the deuterium lamp 40 on the left side are required, and in this case, the irradiation intensity of the overlapping portion E1 (see FIG. 4B) becomes extremely strong.
  • the wafer W is irradiated with light from a plurality of light sources, it is difficult to uniformly irradiate the light to the irradiation surface of the wafer W.
  • the light irradiation device 4 overlapping portions of a plurality of vacuum ultraviolet light irradiated toward the wafer W with a conical light path are provided corresponding to the respective deuterium lamps 40.
  • the light is shielded by the polygonal tube 50.
  • the irradiation range of each vacuum ultraviolet light in the wafer W becomes polygonal. Since the irradiation range is not circular as in the comparative example shown in FIG. 4 but is polygonal (specifically, regular hexagonal), the irradiation ranges of vacuum ultraviolet light having passed through adjacent polygon tubes 50 are continuous with each other. It is possible not to overlap (or to reduce the overlapping range) as well. That is, according to the light irradiation apparatus 4 of this embodiment, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be improved.
  • the polygonal cylinder 50 described above is formed in a tubular shape extending in the direction of travel of vacuum ultraviolet light.
  • the polygonal cylinder 50 provided corresponding to the deuterium lamp 40 extends in the height direction (the advancing direction of the vacuum ultraviolet light) and is formed in a cylindrical shape, so that the corresponding polygonal cylinder 50 corresponds to the deuterium
  • the influence of vacuum ultraviolet light from deuterium lamps 40 other than the lamp 40 can be appropriately eliminated. That is, overlapping of the irradiation range with the vacuum ultraviolet light of the other deuterium lamp 40 can be appropriately prevented, and the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved.
  • the light irradiation device 4 described above uses the deuterium lamp 40 as a light irradiation unit, and the near ultraviolet light having a wavelength of more than 200 nm is also Can be irradiated.
  • the wavelength range of the spectrum of the light irradiated from the deuterium lamp 40 is relatively wide, for example, when a resist pattern is formed on the surface of the wafer W, the resist pattern is a light of various wavelengths. It will receive energy. As a result, various reactions occur on the surface of the resist pattern to increase the fluidity, and as a result, the effect of improving the surface roughness can be improved.
  • the above-described deuterium lamp 40 generates vacuum ultraviolet light having a wavelength of 160 nm or less.
  • the wavelength of the peak of the continuous spectrum is 160 nm or less. Therefore, for example, when a resist pattern is formed on the surface of the wafer W by generating vacuum ultraviolet light of 160 nm or less Can further improve the roughening improvement effect.
  • the illuminance value of the vacuum ultraviolet light emitted from a part of the deuterium lamp 40x among the plurality of light irradiation parts is the illuminance of the vacuum ultraviolet light irradiated from the other deuterium lamps 40. It may be different from the value.
  • the illuminance value of the vacuum ultraviolet light emitted from the deuterium lamp 40 x is larger than the illuminance value of the vacuum ultraviolet light irradiated from the deuterium lamp 40.
  • the light ray angle of the vacuum ultraviolet light emitted from a part of the deuterium lamp 40 y among the plurality of light irradiation parts is the light ray of the vacuum ultraviolet light irradiated from another deuterium lamp 40. It may be different from the angle.
  • the light ray angle of vacuum ultraviolet light emitted from the deuterium lamp 40y is made larger than the light ray angle of vacuum ultraviolet light emitted from the deuterium lamp 40.
  • FIG. 7 even if the separation distance between a part of the deuterium lamps 40 z of the plurality of light irradiation parts from the wafer W is different from the separation distance between the other deuterium lamps 40 and the wafer W Good.
  • the separation distance between the deuterium lamp 40z and the wafer W is smaller than the separation distance between the deuterium lamp 40 and the wafer W.
  • the irradiation distribution can be positively adjusted by making the illuminance value, the light beam angle, or the height (the distance from the wafer W) different among the plurality of light irradiation units.
  • the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved according to the irradiation condition from the above.
  • the light irradiation device may further include a separation distance adjustment unit 60 shown in FIG.
  • the separation distance adjustment unit 60 is a mechanism that adjusts the separation distance of the polygonal cylinder 50, which is a light shielding unit, from the wafer W. Specifically, the separation distance adjustment unit 60 adjusts the separation distance between the polygon cylinder 50 and the wafer W by moving the polygon cylinder 50 up and down according to the control of the controller (not shown).
  • the polygonal cylinder 50 is configured to irradiate light uniformly to the irradiation surface of the wafer W by forming the irradiation range into a polygonal shape, but the polygonal cylinder 50 is provided.
  • the shadow of the polygon tube 50 is projected on the irradiation surface of the wafer W, and the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can not be sufficiently achieved by the shadow.
  • the height (the distance from the wafer W) of the polygonal cylinder 50 by the separation distance adjusting unit 60 for example, the spread of the irradiation light to the wafer W from the adjacent polygonal cylinder 50 is adjusted It is possible to eliminate the shadowed portion by overlapping the irradiation lights.
  • the height of the polygonal cylinder 50 adjusted by the separation distance adjustment unit 60 is determined by, for example, evaluating in advance the irradiation angle from the deuterium lamp 40, the illuminance of each part of the wafer W, and the like. .
  • the light irradiation apparatus may further include a wafer rotating unit 70 (substrate rotating unit) shown in FIG.
  • the wafer rotation unit 70 is a mechanism that rotates the wafer W in a state where the irradiation surface of the wafer W is opposed to the deuterium lamp 40.
  • the wafer rotation unit 70 is connected to the mounting table 20 on which the wafer W is mounted via the rotation axis, and the rotation table is rotated according to the control of the controller (not shown). 20 and the wafer W mounted on the mounting table 20 are rotated.
  • the light irradiation apparatus may rotate the polygon cylinder 50 and the deuterium lamp 40 with respect to the wafer W instead of the wafer W.
  • the light irradiation apparatus may further include a parallel movement unit that reciprocates the polygon cylinder 50 or the wafer W in a direction (horizontal direction) parallel to the irradiation surface of the wafer W by about 10 mm.
  • the irradiation position of the deuterium lamp 40 changes, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved.
  • the aspect in which the wafer W is reciprocated in the direction parallel to the irradiation surface is different from the aspect in which the wafer W is rotated, and there is an advantage that a portion (for example, the center of rotation) where the irradiation location does not change hardly occurs.
  • the number of the deuterium lamps 40 capable of irradiating the entire surface of the wafer W simultaneously can be obtained.
  • the number of the polygon cylinder 50 and the deuterium lamp 40 may be small (for example, one by one).
  • the light irradiation apparatus may further include a diffusion unit 80 shown in FIG.
  • the diffusion unit 80 is a member that diffuses vacuum ultraviolet light above the polygonal cylinder 50.
  • the diffusion unit 80 is a mesh-like member, and has a function of reflecting and diffusing a part of vacuum ultraviolet light.
  • the diffusion unit 80 may be a rod-like member as long as it reflects and diffuses part of the vacuum ultraviolet light.
  • the area of the portion for reflecting and diffusing the vacuum ultraviolet light is smaller than the area of the portion for passing the vacuum ultraviolet light downward.
  • the diffusion part 80 is provided above the polygonal cylinder 50, so that the variation of the irradiation light is averaged.
  • the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved.
  • polygonal cylinder 50 has been described as having a regular hexagonal shape as viewed from the traveling direction of vacuum ultraviolet light, the present invention is not limited to this.
  • the number of polygonal cylinders 50 is not limited to the example shown in FIG. 3, and for example, as shown in FIG. 11B, a total of 13 polygonal cylinders 50y may be provided.
  • the light shielding portion has been described as the polygonal cylinder 50, the invention is not limited to this, and the light shielding portion may be a cylinder extending in the height direction if it is formed in a polygonal shape as viewed from the traveling direction of vacuum ultraviolet light. It does not have to be a member of the shape.
  • the light shielding portion may have a mask 200 (plate-like light shielding member) formed in a plate shape.
  • the mask 200 is formed in a polygonal shape as seen from the traveling direction of the vacuum ultraviolet light, similarly to the polygonal tube 50. Specifically, as shown in FIG.
  • the mask 200 is in the form of a thin plate having a small thickness (thickness in the traveling direction of vacuum ultraviolet light). Even when such a mask 200 is provided, the irradiation range of each vacuum ultraviolet light on the wafer W becomes a polygonal shape, so that the irradiation area of the vacuum ultraviolet light does not overlap while the light is not irradiated (or the irradiation intensity becomes weak). Can be suppressed.
  • the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be improved.
  • the mask 200 is formed in a thin plate shape as described above, the exhaust by the vacuum pump in the processing chamber can be facilitated as compared with the case where the polygonal cylinder 50 is provided. By this, the vacuum suction in the processing chamber can be more appropriately performed.
  • the light shielding portion is formed in a cylindrical shape extending in the traveling direction of the vacuum ultraviolet light and at a position closer to the wafer W between the deuterium lamp 40 and the wafer W (that is, a lower position).
  • a mask 200 formed in a plate shape.
  • the polygon cylinder 250 has a length equal to or less than half of the total length between the deuterium lamp 40 and the wafer W, for example.
  • the polygon cylinder 250 is provided only in a region smaller than the polygon cylinder 50 (see FIG. 2) provided substantially in the entire area between the deuterium lamp 40 and the wafer W and close to the wafer W. It is done.
  • the mask 200 is provided below the polygon cylinder 250, and more specifically, in contact with the lower end of the polygon cylinder 250.
  • the mask 200 may be provided at a position as close to the wafer W as possible from the viewpoint of limiting the irradiation range of light, but the mask 200 is separated from the wafer W by a distance (for example, 30 mm) that enables transfer of the wafer W by the arm. doing.
  • the size of the region through which light passes is made smaller than that of the polygon cylinder 250 when viewed from the direction of travel of vacuum ultraviolet light. Thereby, the irradiation range of vacuum ultraviolet light can be appropriately limited by the mask 200.
  • the substrate processing apparatus includes a processing chamber 210 and a light source chamber 212.
  • the processing chamber 210 includes a housing 214, a rotation holding unit 216, a gate valve 218, and a vacuum pump 222.
  • the housing 214 is, for example, a part of a vacuum container provided in the atmosphere, and is configured to be able to store the wafer W transferred by a transfer mechanism (not shown).
  • the housing 214 presents a bottomed cylindrical body opened upward. Through holes 214 a and 214 c are provided on the wall surface of the housing 214.
  • the rotation holding unit 216 includes a rotating unit 216a, a shaft 216b, and a holding unit 216c.
  • the rotating unit 216a operates based on an operation signal from a controller (not shown) to rotate the shaft 216b.
  • the rotating unit 216a is, for example, a power source such as an electric motor.
  • the holding portion 216c is provided at the tip of the shaft 216b.
  • the holding unit 216 c can hold the wafer W in a state in which the posture of the wafer W is substantially horizontal.
  • the rotating unit 216a rotates while the wafer W is placed on the holding unit 216c, the wafer W rotates around an axis (rotational axis) perpendicular to the surface.
  • the gate valve 218 is disposed on the outer surface of the side wall of the housing 214.
  • the gate valve 218 operates based on an instruction of a controller (not shown), and is configured to close and open the through hole 214a of the housing 214.
  • the through hole 214 a is opened by the gate valve 218, the wafer W can be carried into and out of the housing 214. That is, the through hole 214 a also functions as an entrance and exit of the wafer W.
  • the vacuum pump 222 is configured to discharge the gas from the inside of the housing 214 to bring the inside of the housing 214 into a vacuum state (low oxygen state).
  • the light source chamber 212 includes a housing 224, a partition wall 226, a shutter member 228, and a plurality of deuterium lamps 40.
  • the housing 224 is, for example, a part of a vacuum vessel provided in an air atmosphere.
  • the housing 224 presents a bottomed cylindrical body opened downward.
  • the housing 224 is disposed such that the open end of the housing 224 faces the open end of the housing 214.
  • the partition wall 226 is disposed between the housings 214 and 224, and is configured to partition a space in the housing 214 and a space in the housing 224.
  • the partition wall 226 functions as a top wall of the housing 214 and also functions as a bottom wall of the housing 224. That is, the case 224 is disposed adjacent to the case 214 in a direction perpendicular to the surface of the wafer W.
  • the space V in the housing 224 after being partitioned by the partition wall 226 is a flat space whose height in the vertical direction is smaller than the size in the horizontal direction.
  • the partition wall 226 is provided with a plurality of through holes 226a.
  • the plurality of through holes 226a are arranged to overlap the shutter member 228 in the vertical direction.
  • Each of the plurality of through holes 226a is closed by a window member capable of transmitting vacuum ultraviolet light.
  • the window member may be, for example, glass (eg, magnesium fluoride glass).
  • the shutter member 228 is disposed in the space V, and is configured to be able to block and pass vacuum ultraviolet light emitted by the deuterium lamp 40.
  • the shutter member 228 has, for example, a disk shape.
  • the shutter member 228 is provided with a plurality of through holes.
  • a mask provided below the polygon cylinder 250 while appropriately suppressing overlapping of the irradiation ranges of vacuum ultraviolet light by the polygon cylinder 250 The irradiation range of vacuum ultraviolet light can be appropriately limited by 200.
  • the length of the polygonal cylinder 250 can be shortened, and the exhaust by the vacuum pump 222 can be appropriately performed to appropriately evacuate the processing chamber 210.
  • the mask 200 is provided in contact with the lower end of the polygonal cylinder 250, thereby suppressing the leakage of vacuum ultraviolet light from between the polygonal cylinder 250 and the mask 200, and the irradiation range of the vacuum ultraviolet light Can be appropriately suppressed.
  • the light shielding portion may be formed only by the small polygonal cylinder 250 provided below (that is, without providing the mask 200).
  • the mask 200 may be provided to be separated from the lower end of the polygonal cylinder 250. Accordingly, the evacuation by the vacuum pump 222 can be easily performed, and the evacuation by the vacuum pump 222 can be more appropriately performed.
  • the size of the region through which light of the mask 200 and the polygon cylinder 50 passes may be substantially the same as viewed from the direction of travel of vacuum ultraviolet light.
  • the polygon cylinder 50 may be provided with one or several holes.
  • Light irradiation device 40, 40x, 40y, 40z Deuterium lamp (light irradiation part) 41 Light source 50, 50x, 50y Polygonal cylinder (light shielding part, cylindrical light shielding member) 60 Distance Adjustment unit 70 wafer rotation unit (substrate rotation unit) 80 diffusion unit 200 mask (light shielding unit, plate-like light shielding member) W wafer

Abstract

This light irradiation device is provided with: a plurality of deuterium lamps that irradiate a wafer W with vacuum ultraviolet light the wavelength of which is 200 nm or less and the optical path of which has a conical shape with a light source as a vertex; and polygonal tubes that are provided to correspond to each of the deuterium lamps so as to block an overlapping portion of irradiation ranges of the vacuum ultraviolet light radiated from the plurality of deuterium lamps, wherein the polygonal tubes are formed with a polygonal shape when viewed from the traveling direction of the vacuum ultraviolet light.

Description

光照射装置Light irradiation device
 本開示は、基板に光を照射する光照射装置に関する。 The present disclosure relates to a light irradiation apparatus that irradiates light to a substrate.
 特許文献1には、半導体デバイスの製造プロセスにおいて、基板の表面にレジスト膜を形成する工程と、露光する工程と、レジストをパターニングする工程と、レジストの前面に波長200nm以下の光を照射する工程と、レジスト膜の下層膜のエッチングを行う工程と、を順に行うことが記載されている。波長200nm以下の光を照射する工程(以下、単に光を照射する工程という。)は、例えばレジスト膜のラフネス(凸凹)を改善することを目的として行われる。 In Patent Document 1, in a semiconductor device manufacturing process, a process of forming a resist film on the surface of a substrate, a process of exposing, a process of patterning a resist, and a process of irradiating light at a wavelength of 200 nm or less on the front surface of the resist And sequentially performing the step of etching the lower layer film of the resist film. The step of irradiating light having a wavelength of 200 nm or less (hereinafter, simply referred to as a step of irradiating light) is performed, for example, for the purpose of improving the roughness (concave and convex) of the resist film.
特許第3342856号公報Patent No. 3342856
 直径300mm程度の基板に対して上述した光を照射する工程を実施する場合には、照射距離を短くしつつ照射強度を担保する観点から、複数のランプが基板上に配置される。ここで、各ランプは点光源であり、ウェハにおける照射範囲は円形となる。照射範囲が円形である場合には、各ランプの照射範囲が重ならないように各ランプを配置すると、光が照射されない(あるいは照射強度が弱くなる)部分が生じてしまう。一方で、照射強度が弱くなる部分が生じないようにするためには、各ランプの照射範囲の一部を重ねる必要があり、この場合には重なる部分の照射強度が極端に強くなることが問題となる。以上のように、基板に対して複数のランプにより光を照射する構成においては、基板の照射面に均一に光を照射することが難しい。 In the case of performing the above-described process of irradiating the substrate with a diameter of about 300 mm, a plurality of lamps are disposed on the substrate from the viewpoint of securing the irradiation intensity while shortening the irradiation distance. Here, each lamp is a point light source, and the irradiation range on the wafer is circular. In the case where the irradiation range is circular, if the lamps are arranged such that the irradiation ranges of the lamps do not overlap, portions where light is not irradiated (or the irradiation intensity becomes weak) may occur. On the other hand, it is necessary to overlap a part of the irradiation range of each lamp in order to prevent the occurrence of a portion where the irradiation intensity becomes weak, and in this case the problem that the irradiation intensity of the overlapping portion becomes extremely strong It becomes. As described above, in the configuration in which the substrate is irradiated with light by the plurality of lamps, it is difficult to uniformly irradiate the light to the irradiation surface of the substrate.
 そこで、本開示は、基板の照射面における光照射分布の均一性を向上させることが可能な光照射装置を説明する。 Thus, the present disclosure describes a light irradiation device capable of improving the uniformity of the light irradiation distribution on the irradiation surface of the substrate.
 本開示の一態様に係る光照射装置は、光源を頂点とした円錐状の光路をとる真空紫外光を基板に向けて照射する複数の光照射部と、複数の光照射部から照射される真空紫外光の照射範囲の重なり部分を遮光するように、各光照射部に対応して設けられた遮光部と、を備え、遮光部は、真空紫外光の進行方向から見て多角形状に形成されている。 A light irradiation apparatus according to an aspect of the present disclosure includes: a plurality of light irradiation units that irradiate vacuum vacuum ultraviolet light having a conical light path with a light source at the top toward a substrate; and a vacuum irradiated from a plurality of light irradiation units. And a light shielding portion provided corresponding to each light irradiation portion so as to shield an overlapping portion of the irradiation range of the ultraviolet light, wherein the light shielding portion is formed in a polygonal shape as viewed from the traveling direction of the vacuum ultraviolet light. ing.
 本開示の光照射装置では、円錐状の光路をとって基板に向けて照射される複数の真空紫外光の重なり部分が、各光照射部に対応して設けられた多角形状の遮光部によって遮光されている。ここで、基板における照射範囲が円形となる複数の点光源から基板に光が照射される場合、各光の照射範囲が重ならないように各点光源を配置すると、照射範囲が円形であることから光が照射されない部分(あるいは照射強度が弱くなる部分)が生じてしまう。一方で、光が照射されない部分(あるいは照射強度が弱くなる部分)が生じないようにするためには、各点光源から照射される光の照射範囲の一部を重ねる必要があり、この場合には重なる部分の照射強度が極端に強くなることが問題となる。このように、従来、基板に対して複数の光源から光を照射する構成においては、基板の照射面に均一に光を照射することが困難であった。この点、本開示の光照射装置では、複数の真空紫外光の重なり部分を遮光する遮光部が真空紫外光の進行方向からみて多角形状に形成されている。これにより、基板における各真空紫外光の照射範囲が多角形状となる。このことで、照射範囲が円形である場合と異なり、照射範囲が重ならないようにしつつ光が照射されない部分(あるいは照射強度が弱くなる部分)が生じることを抑制できる。すなわち、本開示の光照射装置によれば、基板の照射面における光照射分布の均一性を向上させることができる。 In the light irradiation device of the present disclosure, the overlapping portion of the plurality of vacuum ultraviolet light irradiated toward the substrate along the conical light path is shielded by the polygonal light shielding portion provided corresponding to each light irradiation portion. It is done. Here, when light is irradiated onto the substrate from a plurality of point light sources where the irradiation range on the substrate is circular, if the point light sources are arranged so that the irradiation ranges of the light do not overlap, the irradiation range is circular. There will be a portion where the light is not irradiated (or a portion where the irradiation intensity becomes weak). On the other hand, it is necessary to overlap a part of the irradiation range of the light irradiated from each point light source in order to prevent the occurrence of the part where the light is not irradiated (or the part where the irradiation intensity becomes weak). The problem is that the irradiation intensity of the overlapping portion becomes extremely strong. As described above, conventionally, in the configuration in which light is emitted from a plurality of light sources to the substrate, it has been difficult to uniformly irradiate light to the irradiation surface of the substrate. In this respect, in the light irradiation device of the present disclosure, the light shielding portion that shields the overlapping portion of the plurality of vacuum ultraviolet light is formed in a polygonal shape as viewed from the traveling direction of the vacuum ultraviolet light. Thereby, the irradiation range of each vacuum ultraviolet light in a board | substrate becomes polygonal shape. By this, unlike the case where the irradiation range is circular, it is possible to suppress the occurrence of a portion where light is not irradiated (or a portion where the irradiation intensity becomes weak) while preventing the irradiation ranges from overlapping. That is, according to the light irradiation apparatus of this indication, the uniformity of light irradiation distribution in the irradiation surface of a board | substrate can be improved.
 遮光部は、真空紫外光の進行方向に延びて筒状に形成された筒状遮光部材を有していてもよい。光照射部に対応して設けられた遮光部が高さ方向(真空紫外光の進行方向)に伸びて筒状に形成されていることにより、当該遮光部が対応する光照射部以外の光照射部(例えば隣の光照射部)からの真空紫外光の影響を適切に排除することができる。すなわち、他の光照射部の真空紫外光と照射範囲が重なることを適切に防止し、基板の照射面における光照射分布の均一性をより向上させることができる。 The light shielding portion may have a cylindrical light shielding member which is formed in a cylindrical shape by extending in the traveling direction of the vacuum ultraviolet light. The light shielding portion provided corresponding to the light irradiation portion extends in the height direction (the advancing direction of the vacuum ultraviolet light) and is formed in a cylindrical shape, whereby light irradiation of light other than the light irradiation portion to which the light shielding portion corresponds The influence of vacuum ultraviolet light from one part (for example, the next light irradiation part) can be appropriately eliminated. That is, overlapping of the irradiation range with the vacuum ultraviolet light of the other light irradiation parts can be appropriately prevented, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
 遮光部の基板との離間距離を調整する離間距離調整部を更に備えていてもよい。遮光部(特に筒状の遮光部)が設けられることにより、当該遮光部の影が基板の照射面に投影されてしまい、当該影によって基板の照射面における光照射分布の均一性が悪化するおそれがある。この点、遮光部の高さ(基板との離間距離)が離間距離調整部によって調整されることにより、例えば隣り合う遮光部からの基板への照射光の広がりを調整することができ、照射光を互いに重ねあうこと等により影となる部分を解消することができる。 You may further provide the separation distance adjustment part which adjusts the separation distance with the board | substrate of a light-shielding part. By providing the light shielding portion (especially the cylindrical light shielding portion), the shadow of the light shielding portion may be projected onto the irradiation surface of the substrate, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate may be degraded by the shadow. There is. In this respect, by adjusting the height of the light shielding part (distance from the substrate) by the separation distance adjusting part, for example, it is possible to adjust the spread of the irradiation light from the adjacent light shielding parts to the substrate. Can be eliminated by overlapping each other.
 光照射部は、重水素ランプを含んで構成されていてもよい。重水素ランプが用いられることにより、波長が200nm以下の真空紫外光に加えて、波長が200nmよりも大きい近紫外光についても基板に対して照射することができる。このように、重水素ランプから照射される光のスペクトルの波長域は比較的広いため、例えば基板の表面にレジストパターンが形成されている場合において、当該レジストパターンは様々な波長の光のエネルギーを受けることとなる。これにより、レジストパターンの表面においては様々な反応が起こることによって流動性が高くなり、その結果、当該表面の荒れの改善効果を向上させることができる。 The light irradiation unit may be configured to include a deuterium lamp. By using a deuterium lamp, in addition to vacuum ultraviolet light having a wavelength of 200 nm or less, near ultraviolet light having a wavelength of greater than 200 nm can be irradiated to the substrate. As described above, since the wavelength range of the spectrum of light irradiated from the deuterium lamp is relatively wide, for example, in the case where a resist pattern is formed on the surface of the substrate, the resist pattern has the energy of light of various wavelengths. It will be received. As a result, various reactions occur on the surface of the resist pattern to increase the fluidity, and as a result, the effect of improving the surface roughness can be improved.
 重水素ランプは、波長が200nm以下、例えば、波長が160nm以下の真空紫外光を発生させてもよい。重水素ランプでは、例えば160nm以下が連続スペクトルのピークの波長となるため、当該160nm以下の真空紫外光を発生させることによって、例えば基板の表面にレジストパターンが形成されている場合において、表面の荒れの改善効果をより向上させることができる。 The deuterium lamp may generate vacuum ultraviolet light having a wavelength of 200 nm or less, for example, a wavelength of 160 nm or less. In the case of a deuterium lamp, for example, 160 nm or less is the peak wavelength of the continuous spectrum, and by generating vacuum ultraviolet light of 160 nm or less, for example, when a resist pattern is formed on the surface of the substrate, the surface is roughened. The improvement effect of can be further improved.
 複数の光照射部は、照射する真空紫外光の照度値、照射する真空紫外光の光線角度、及び基板との離間距離の少なくとも一つが互いに異なっていてもよい。このように、複数の光照射部について、照度値、光線角度、又は光照射部の高さ(基板との離間距離)を互いに異ならせることによって、照射分布を積極的に調整することができ、照射状況に応じて、基板の照射面における光照射分布の均一性をより向上させることができる。 In the plurality of light irradiation units, at least one of the illuminance value of the vacuum ultraviolet light to be irradiated, the light beam angle of the vacuum ultraviolet light to be irradiated, and the distance from the substrate may be different from each other. Thus, the irradiation distribution can be positively adjusted by making the illuminance value, the light beam angle, or the height of the light irradiation unit (distance from the substrate) different from each other for the plurality of light irradiation units, Depending on the irradiation condition, the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
 遮光部の上方において真空紫外光を拡散させる拡散部を更に備えていてもよい。照射光は光源(ランプ)の内部電極構造に由来して強度のばらつきが存在する。この点、遮光部の上方に拡散部が設けられていることにより、照射光のばらつきが平均化され、基板の照射面における光照射分布の均一性をより向上させることができる。 You may further provide the spreading | diffusion part which spread | diffuses vacuum-ultraviolet light above the light-shielding part. Irradiation light originates in the internal electrode structure of a light source (lamp), and the variation in intensity exists. In this respect, by providing the diffusion part above the light shielding part, the variation of the irradiation light is averaged, and the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be further improved.
 基板の照射面を光照射部に対向させた状態で基板を回転させる基板回転部を更に備えていてもよい。これにより、照射場所が変化することとなるので、照射面における光照射分布の均一性をより向上させることができる。 The substrate may further include a substrate rotation unit configured to rotate the substrate in a state in which the irradiation surface of the substrate is opposed to the light irradiation unit. As a result, the irradiation place is changed, so that the uniformity of the light irradiation distribution on the irradiation surface can be further improved.
 遮光部又は基板を、基板の照射面に平行な方向に往復移動させる平行移動部を更に備えていてもよい。この場合においても、照射場所が変化することとなるので、照射面における光照射分布の均一性をより向上させることができる。なお、照射面に平行な方向に往復移動させる態様においては、基板を回転させる態様と異なり、照射場所が変化しない部分(例えば回転中心)が生じにくい。また、遮光部は、真空紫外光の反射率が90%以下の材質によって構成されていてもよい。 You may further provide the parallel displacement part which reciprocates a light-shielding part or a board | substrate in the direction parallel to the irradiation surface of a board | substrate. Also in this case, since the irradiation location changes, the uniformity of the light irradiation distribution on the irradiation surface can be further improved. Note that, in the aspect in which the substrate is reciprocated in the direction parallel to the irradiation surface, unlike the aspect in which the substrate is rotated, a portion (for example, the center of rotation) in which the irradiation location does not change hardly occurs. The light shielding portion may be made of a material having a reflectance of 90% or less of vacuum ultraviolet light.
 筒状遮光部材は、前記光照射部及び前記基板間の略全域にわたって、前記進行方向に延びていてもよい。これにより、他の光照射部の真空紫外光と照射範囲が重なることをより適切に抑制することができる。 The cylindrical light shielding member may extend in the traveling direction over substantially the entire area between the light emitting unit and the substrate. Thereby, it can suppress more appropriately that the vacuum ultraviolet light of another light irradiation part and an irradiation range overlap.
 筒状遮光部材は、光照射部及び基板間において、基板寄りの位置に設けられていてもよい。真空紫外光を用いる場合には、真空ポンプによって真空引きをして処理室内を低酸素状態とする必要がある。筒状遮光部材が光照射部及び基板間の略全域に設けられている場合には、処理室内において真空ポンプによる排気が行いにくくなり、上述した真空引きを円滑に行うことができないおそれがある。この点、筒状遮光部材が基板寄りの領域に(のみ)設けられることにより、筒状遮光部材を光照射部及び基板間の略全域に設ける場合と比較して、上述した真空引きを行いやすくすることができる。 The cylindrical light shielding member may be provided at a position close to the substrate between the light emitting unit and the substrate. In the case of using vacuum ultraviolet light, it is necessary to evacuate the processing chamber to a low oxygen state by a vacuum pump. When the cylindrical light shielding member is provided substantially in the entire area between the light irradiation unit and the substrate, it is difficult for the vacuum pump to evacuate the inside of the processing chamber, and the above-described vacuuming may not be performed smoothly. In this respect, by providing the cylindrical light shielding member (only) in the region closer to the substrate, it is easier to perform the above-described vacuuming as compared to the case where the cylindrical light shielding member is provided substantially in the entire area between the light irradiation portion and the substrate. can do.
 筒状遮光部材は、前記光照射部及び前記基板間の全長の半分以下の長さであってもよい。これにより、処理室内の真空引きをより行いやすくすることができる。 The cylindrical light shielding member may have a length equal to or less than half of the total length between the light emitting unit and the substrate. This can facilitate vacuum drawing in the processing chamber.
 遮光部は、板状に形成された板状遮光部材を有していてもよい。このように、板状の薄い部材が遮光部材として用いられることにより、処理室内での真空ポンプによる排気を阻害することなく、適切に処理室内の真空引きを行うことができる。 The light blocking portion may have a plate-like light blocking member formed in a plate shape. Thus, by using the plate-like thin member as the light shielding member, it is possible to appropriately evacuate the processing chamber without inhibiting the exhaust by the vacuum pump in the processing chamber.
 遮光部は、真空紫外光の進行方向に延びて筒状に形成されると共に光照射部及び基板間において基板寄りの位置に設けられた筒状遮光部材と、板状に形成された板状遮光部材とを有し、板状遮光部材は、筒状遮光部材の下方に設けられていてもよい。このように筒状遮光部材と板状遮光部材を組み合わせて用いることにより、筒状遮光部材によって真空紫外光の照射範囲が重なることを適切に抑制しつつ、筒状遮光部材の下方に設けられた板状遮光部材によって真空紫外光の照射範囲を適切に限定することができる。また、板状遮光部材を用いることによって、筒状遮光部材の長さを短くすることができ、真空ポンプによる排気を適切に行い処理室内の真空引きを適切に行うことができる。 The light shielding portion is formed in a cylindrical shape extending in the traveling direction of vacuum ultraviolet light and formed in a cylindrical light shielding member provided at a position near the substrate between the light irradiation portion and the substrate, and a plate-shaped light shielding formed in a plate shape The plate-shaped light shielding member may be provided below the cylindrical light shielding member. As described above, by using the cylindrical light shielding member and the plate-like light shielding member in combination, the cylindrical light shielding member is provided below the cylindrical light shielding member while appropriately suppressing the overlapping of the irradiation ranges of the vacuum ultraviolet light. The irradiation range of vacuum ultraviolet light can be appropriately limited by the plate-like light shielding member. Further, by using the plate-like light shielding member, the length of the cylindrical light shielding member can be shortened, and the exhaust by the vacuum pump can be appropriately performed to evacuate the processing chamber appropriately.
 板状遮光部材は、筒状遮光部材の下端に接するように設けられていてもよい。これにより、筒状遮光部材と板状遮光部材との間から真空紫外光が漏れ出すことを抑制し、真空紫外光の照射範囲が重なることを適切に抑制することができる。 The plate-shaped light shielding member may be provided in contact with the lower end of the cylindrical light shielding member. Thereby, it can suppress that a vacuum ultraviolet light leaks out between a cylindrical light shielding member and a plate-shaped light shielding member, and it can suppress appropriately that the irradiation range of vacuum ultraviolet light overlaps.
 板状遮光部材は、進行方向から見て、光を通す領域の大きさが筒状遮光部材よりも小さくてもよい。これにより、板状遮光部材によって真空紫外光の照射範囲を適切に限定することができる。 In the plate-like light blocking member, the size of the region through which light passes may be smaller than that of the cylindrical light blocking member when viewed from the traveling direction. Thereby, the irradiation range of vacuum ultraviolet light can be appropriately limited by a plate-shaped light shielding member.
 板状遮光部材は、筒状遮光部材の下端から離間するように設けられていてもよい。これにより、真空ポンプによる真空引きをより適切に行うことができる。 The plate-shaped light shielding member may be provided to be separated from the lower end of the cylindrical light shielding member. Thereby, the vacuuming by a vacuum pump can be performed more appropriately.
 本開示によれば、基板の照射面における光照射分布の均一性を向上させることができる。 According to the present disclosure, the uniformity of the light irradiation distribution on the irradiation surface of the substrate can be improved.
本実施形態の基板処理装置を示す模式図である。It is a schematic diagram which shows the substrate processing apparatus of this embodiment. 図1の基板処理装置の光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus of the substrate processing apparatus of FIG. 光照射装置の照射範囲を示す説明図である。It is explanatory drawing which shows the irradiation range of light irradiation apparatus. 比較例に係る光照射装置の説明図である。It is explanatory drawing of the light irradiation apparatus which concerns on a comparative example. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置の照射範囲を示す説明図である。It is explanatory drawing which shows the irradiation range of the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る照射部を示す模式図である。It is a schematic diagram which shows the irradiation part which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification. 変形例に係る光照射装置を示す模式図である。It is a schematic diagram which shows the light irradiation apparatus which concerns on a modification.
 本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings, but the following present embodiments are exemplifications for describing the present invention, and are not intended to limit the present invention to the following contents. In the description, the same elements or elements having the same function will be denoted by the same reference numerals, and redundant description will be omitted.
[基板処理装置の構成]
 図1は、本実施形態の基板処理装置を示す模式図(縦断側面図)である。図1に示す基板処理装置1は、ウェハW(基板)に対して所定の処理を行う装置である。ウェハWは、円板状を呈するが、円形の一部が切り欠かれていたり、多角形などの円形以外の形状を呈するウェハを用いてもよい。ウェハWは、例えば、半導体基板、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。本実施形態では、基板処理装置1が、ウェハWに光を照射することにより、ウェハWの表面に形成されたレジストパターンの表面の荒れを改善する装置であるとして説明する。なお、当該レジストパターンは、ウェハWに形成されたレジスト膜が露光され、現像されることにより形成されるものである。
[Configuration of substrate processing apparatus]
FIG. 1 is a schematic view (longitudinal sectional side view) showing a substrate processing apparatus of the present embodiment. A substrate processing apparatus 1 shown in FIG. 1 is an apparatus for performing predetermined processing on a wafer W (substrate). The wafer W has a disk shape, but may be a wafer in which a part of a circle is cut away or a non-circular shape such as a polygon. The wafer W may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates. In the present embodiment, the substrate processing apparatus 1 is described as an apparatus for improving the surface roughness of the resist pattern formed on the surface of the wafer W by irradiating the wafer W with light. The resist pattern is formed by exposing and developing a resist film formed on the wafer W.
 図1に示すように、基板処理装置1は、処理容器21と、載置台20と、筐体43と、光照射装置4と、を備える。なお、図1においては、光照射装置4に含まれる構成の一部のみを示している。 As shown in FIG. 1, the substrate processing apparatus 1 includes a processing container 21, a mounting table 20, a housing 43, and a light irradiation device 4. In FIG. 1, only a part of the configuration included in the light irradiation device 4 is shown.
 処理容器21は、例えば大気雰囲気中に設けられた真空容器であり、搬送機構(不図示)によって搬送されたウェハWを収納する容器である。基板処理装置1では、処理容器21内にウェハWが収納された状態でウェハWに対する処理が行われる。処理容器21の側壁には、搬送口22が形成されている。搬送口22は、処理容器21に対してウェハWを搬入出するための開口である。搬送口22は、ゲートバルブ23によって開閉される。 The processing container 21 is, for example, a vacuum container provided in the atmosphere, and is a container for storing the wafer W transferred by the transfer mechanism (not shown). In the substrate processing apparatus 1, processing on the wafer W is performed in a state where the wafer W is stored in the processing container 21. A transfer port 22 is formed on the side wall of the processing container 21. The transfer port 22 is an opening for carrying the wafer W into and out of the processing container 21. The transfer port 22 is opened and closed by a gate valve 23.
 載置台20は、処理容器21内に設けられた円形の台である。載置台20は、その中心にウェハWの中心が重なるようにしてウェハWを水平に載置する。載置台20を厚さ方向(垂直方向)に貫通するようにして、例えば3本の昇降ピン(不図示)が設けられている。当該昇降ピンは、その下端が昇降機構(不図示)に接続されており、昇降機構によって垂直方向に移動(昇降)可能とされている。昇降ピンは、昇降機構によって上昇した状態において、その上端が載置台20の上面よりも上方に達し、搬送口22を介して処理容器21内に進入した搬送機構(不図示)との間でウェハWの受け渡しを行う。 The mounting table 20 is a circular table provided in the processing container 21. The mounting table 20 horizontally mounts the wafer W such that the center of the wafer W overlaps the center thereof. For example, three elevating pins (not shown) are provided so as to penetrate the mounting table 20 in the thickness direction (vertical direction). The lower end of the elevation pin is connected to an elevation mechanism (not shown), and can be moved (elevation) vertically by the elevation mechanism. The lift pins reach their upper ends above the top surface of the mounting table 20 in a state of being lifted by the lift mechanism, and enter the processing container 21 via the transfer port 22 with the wafer (not shown). Deliver W.
 筐体43は、処理容器21の上部に設けられている。筐体43は、光照射装置4の複数の重水素ランプ40(光照射部)を収容している。光照射装置4は、レジストパターンの表面の荒れ(凸凹)の改善を目的とした、ウェハWの表面への光の照射に係る構成である。以下、図2及び図3も参照しながら、光照射装置4の詳細について説明する。 The housing 43 is provided on the top of the processing container 21. The housing 43 accommodates a plurality of deuterium lamps 40 (light emitting units) of the light emitting device 4. The light irradiation device 4 is a configuration related to the irradiation of light to the surface of the wafer W for the purpose of improving the roughness (unevenness) of the surface of the resist pattern. Hereinafter, the light irradiation device 4 will be described in detail with reference to FIGS. 2 and 3 as well.
[光照射装置の構成]
 図2は、図1の基板処理装置1の光照射装置4を示す模式図である。図3は、光照射装置4の照射範囲を示す説明図(照射範囲を平面視した図)である。図2に示すように、光照射装置4は、複数の重水素ランプ40(光照射部)と、複数の多角形筒50(筒状遮光部材)と、を備えている。
[Configuration of light irradiation device]
FIG. 2 is a schematic view showing the light irradiation device 4 of the substrate processing apparatus 1 of FIG. FIG. 3 is an explanatory view showing the irradiation range of the light irradiation device 4 (a plan view of the irradiation range). As shown in FIG. 2, the light irradiation device 4 includes a plurality of deuterium lamps 40 (light irradiation units) and a plurality of polygonal cylinders 50 (cylindrical light shielding members).
 重水素ランプ40は、波長が200nm以下の真空紫外光をウェハWに向けて照射する。より詳細には、重水素ランプ40は、例えば115nm~400nmの波長の光、すなわち115nm~400nmの連続スペクトルをなす光を照射する。上述したように、重水素ランプ40から照射される光には真空紫外光(Vacuum Ultra Violet Light:VUV光)、すなわち波長が10nm~200nmである光が含まれる。また、重水素ランプ40から照射される光には、真空紫外光(真空紫外線)の他に、波長が200nmよりも大きい近紫外光(近紫外線)についても含まれる。本実施形態の重水素ランプ40から照射される光の連続スペクトルのピークの波長は、例えば160nm以下、150nm以上である。 The deuterium lamp 40 irradiates the wafer W with vacuum ultraviolet light having a wavelength of 200 nm or less. More specifically, the deuterium lamp 40 emits, for example, light having a wavelength of 115 nm to 400 nm, that is, light having a continuous spectrum of 115 nm to 400 nm. As described above, the light irradiated from the deuterium lamp 40 includes vacuum ultraviolet light (Vacuum Ultra Violet Light: VUV light), that is, light having a wavelength of 10 nm to 200 nm. In addition to vacuum ultraviolet light (vacuum ultraviolet light), light irradiated from the deuterium lamp 40 also includes near ultraviolet light (near ultraviolet light) whose wavelength is greater than 200 nm. The wavelength of the peak of the continuous spectrum of the light emitted from the deuterium lamp 40 of the present embodiment is, for example, 160 nm or less and 150 nm or more.
 このように、重水素ランプ40から照射される光のスペクトルの波長域は比較的広いため、ウェハW表面のレジストパターンは様々な光のエネルギーを受けることとなり、その結果として当該レジストパターンの表面では様々な反応が起こる。具体的には、レジスト膜を構成する分子中の様々な位置における化学結合が切断されて様々な化合物が生成されるため、光照射前にレジスト膜に存在していた分子が持つ配向性が解消され、レジスト膜の表面自由エネルギーが低下し、内部応力が低下する。すなわち、光源として重水素ランプ40を用いることにより、レジストパターンの表面の流動性が高くなり、その結果としてウェハWの表面の荒れの改善効果を向上させることができる。 As described above, since the wavelength range of the spectrum of the light irradiated from the deuterium lamp 40 is relatively wide, the resist pattern on the surface of the wafer W receives various energy of light, and as a result, on the surface of the resist pattern Various reactions occur. Specifically, since chemical bonds at various positions in molecules constituting the resist film are broken to form various compounds, the orientation of the molecules present in the resist film before light irradiation is eliminated. The surface free energy of the resist film is reduced, and the internal stress is reduced. That is, by using the deuterium lamp 40 as the light source, the fluidity of the surface of the resist pattern can be enhanced, and as a result, the effect of improving the surface roughness of the wafer W can be improved.
 ここで、レジスト膜に照射される光については、波長が大きいほどレジスト膜の深層へ到達しやすい。この点、重水素ランプ40から照射される光のスペクトルのピークの波長は、上述したように真空紫外光の帯域(10nm~200nm)に含まれているため、重水素ランプ40から照射される光について、比較的大きい波長を持つ光の強度は小さい。このため、重水素ランプ40から照射される光でレジスト膜の深層へ到達するものは少なく、レジスト膜の深層においては上記の分子の結合の切断を抑えることができる。すなわち、光源として重水素ランプ40を用いることにより、レジストパターンにおいて光照射により反応する領域を表面側に限定することができる。 Here, the light irradiated to the resist film is likely to reach the deep layer of the resist film as the wavelength is larger. In this point, since the wavelength of the peak of the spectrum of the light emitted from the deuterium lamp 40 is included in the vacuum ultraviolet light band (10 nm to 200 nm) as described above, the light irradiated from the deuterium lamp 40 , The intensity of light having a relatively large wavelength is small. For this reason, there are few things which reach the deep layer of a resist film by the light irradiated from the deuterium lamp 40, and in the deep layer of a resist film, the cutting | disconnection of the bond of said molecule | numerator can be suppressed. That is, by using the deuterium lamp 40 as a light source, it is possible to limit the area of the resist pattern that responds to light irradiation to the surface side.
 重水素ランプ40は、ガウシアン分布の光と比較して強度分布がフラットなトップハット型の光を生成する。なお、トップハット型の光であっても、強度分布が完全にフラットになっているわけではなく、中央側(光源41の直下)から離れるにしたがって光の強度が弱くなる。重水素ランプ40は、点光源である光源41(図1参照)から出射される広がりを持った光を照射し、具体的には、光源41を頂点とした円錐状の光路をとる真空紫外光をウェハWに向けて照射する。このように、重水素ランプ40から照射される光は、遮光等を行わない場合には、照射面において照射範囲が円形となるものであるが、後述する多角形筒50によって一部が遮光されることにより、ウェハWの照射面においては、照射範囲が多角形状(本実施形態の例では六角形状)となる(詳細は後述)。なお、図1及び図2等においては、真空紫外光の光路のうち最も外側の光路が一点鎖線で示されている。 The deuterium lamp 40 generates top hat light having a flat intensity distribution as compared to light of Gaussian distribution. Even in the case of top hat type light, the intensity distribution is not completely flat, and the light intensity becomes weaker as it is separated from the central side (directly below the light source 41). The deuterium lamp 40 emits light having a spread emitted from the light source 41 (see FIG. 1), which is a point light source, and specifically, vacuum ultraviolet light taking a conical light path with the light source 41 at the top. Toward the wafer W. As described above, the light irradiated from the deuterium lamp 40 has a circular irradiation range on the irradiation surface when the light shielding is not performed, but a part of the light is shielded by the polygon cylinder 50 described later As a result, on the irradiation surface of the wafer W, the irradiation range becomes a polygonal shape (hexagonal in the example of the present embodiment) (details will be described later). In FIG. 1 and FIG. 2 etc., the outermost light path among the light paths of the vacuum ultraviolet light is shown by a dashed dotted line.
 光照射装置4は、複数の重水素ランプ40を備えている。各重水素ランプ40は、ウェハWの照射面における光照射分布が均一になるように、所定の間隔で配置されている。例えば、図3に示すように、ウェハWの中心の直上に1つの重水素ランプ40が設けられるとともに、円板状のウェハWの円周上(詳細には円周の少し内側)に沿って等間隔で6個の重水素ランプ40が設けられる。なお、重水素ランプ40と多角形筒50との間には、シャッター(不図示)が設けられていてもよい。なお、複数の重水素ランプ40は、互いに、照射する真空紫外光の照度値、照射する真空紫外光の光線角度、及びウェハWとの離間距離が同一とされる。 The light irradiation device 4 includes a plurality of deuterium lamps 40. The deuterium lamps 40 are arranged at predetermined intervals so that the light irradiation distribution on the irradiation surface of the wafer W becomes uniform. For example, as shown in FIG. 3, one deuterium lamp 40 is provided immediately above the center of the wafer W, and along the circumference (specifically, slightly inside of the circumference) of the disk-shaped wafer W. Six deuterium lamps 40 are provided at equal intervals. A shutter (not shown) may be provided between the deuterium lamp 40 and the polygonal cylinder 50. The deuterium lamps 40 have the same illuminance value of the vacuum ultraviolet light to be irradiated, the light beam angle of the vacuum ultraviolet light to be irradiated, and the separation distance from the wafer W.
 多角形筒50は、複数の重水素ランプ40から照射される真空紫外光の照射範囲の重なりを遮光するように、各重水素ランプ40に対応して設けられた遮光部である。多角形筒50は、重水素ランプ40から照射される真空紫外光の端部領域の発光を除去(吸収、カット)することにより、複数の重水素ランプ40から照射される真空紫外光の照射範囲の重なりを遮光するものであってもよい。多角形筒50が重水素ランプ40に対応して設けられているとは、多角形筒50が重水素ランプ40に一対一で対応し、重水素ランプ40の光源41の直下に設けられていることをいう(図3参照)。より具体的には、多角形筒50は、真空紫外光の進行方向から見て、その中心軸上に光源41が位置するように設けられている。多角形筒50は、重水素ランプ40及びウェハW間の略全域にわたって、真空紫外光の進行方向に延びている。重水素ランプ40及びウェハW間の略全域とは、少なくとも重水素ランプ40及びウェハW間の全長の半分以上の長さである。多角形筒50は、重水素ランプ40及びウェハW間の略全域にわたって延びていることによって、他の重水素ランプ40の真空紫外光と照射範囲が重なることを適切に抑制することができる。 The polygonal cylinder 50 is a light shielding portion provided corresponding to each of the deuterium lamps 40 so as to shield the overlap of the irradiation ranges of vacuum ultraviolet light irradiated from the plurality of deuterium lamps 40. The polygonal cylinder 50 removes (absorbs, cuts) the light emission of the end region of the vacuum ultraviolet light emitted from the deuterium lamp 40 to emit vacuum ultraviolet light from the plurality of deuterium lamps 40. It may be to block the overlap of The polygonal cylinder 50 corresponds to the deuterium lamp 40 in a one-to-one correspondence with the polygonal cylinder 50 corresponding to the deuterium lamp 40, and is provided immediately below the light source 41 of the deuterium lamp 40. Say (see Figure 3). More specifically, the polygon tube 50 is provided so that the light source 41 is positioned on the central axis when viewed from the traveling direction of the vacuum ultraviolet light. The polygon cylinder 50 extends in the traveling direction of the vacuum ultraviolet light over substantially the entire area between the deuterium lamp 40 and the wafer W. The substantially entire area between the deuterium lamp 40 and the wafer W is at least half the length of the entire length between the deuterium lamp 40 and the wafer W. The polygon tube 50 can be appropriately suppressed from overlapping the vacuum ultraviolet light of the other deuterium lamps 40 by being extended over substantially the entire area between the deuterium lamps 40 and the wafer W.
 多角形筒50は、真空紫外光の進行方向から見て多角形状、具体的には正六角形状に形成されている(図3参照)。図3に示すように、複数の多角形筒50は、真空紫外光の進行方向から見ると、隣り合う多角形筒50同士が隙間なく密着して設けられている。より詳細には、複数の多角形筒50のうち、ウェハWの中心の上方に位置する重水素ランプ40に対応して設けられた多角形筒50は、正六角形の各辺が他の多角形筒50(ウェハWの円周上に沿って等間隔で設けられた重水素ランプ40に対応して設けられた6個の多角形筒50)の対向する辺と接して設けられている。また、複数の多角形筒50のうち、ウェハWの円周上に沿って等間隔で設けられた重水素ランプ40に対応して設けられた6個の多角形筒50は、1辺が中央の多角形筒50の対向する辺と接するとともに、2辺が上記円周上で隣り合う多角形筒50の隣り合う辺と接している。 The polygon cylinder 50 is formed in a polygonal shape, specifically, a regular hexagonal shape as viewed from the direction of travel of vacuum ultraviolet light (see FIG. 3). As shown in FIG. 3, when viewed from the traveling direction of vacuum ultraviolet light, the plurality of polygonal cylinders 50 are provided in close contact with each other without any gap between adjacent polygonal cylinders 50. More specifically, among the plurality of polygonal cylinders 50, the polygonal cylinder 50 provided corresponding to the deuterium lamp 40 located above the center of the wafer W has each side of the regular hexagon the other polygon It is provided in contact with the opposite side of a cylinder 50 (six polygon cylinders 50 provided corresponding to the deuterium lamps 40 provided at equal intervals along the circumference of the wafer W). Further, among the plurality of polygonal cylinders 50, the six polygonal cylinders 50 provided corresponding to the deuterium lamps 40 provided at equal intervals along the circumference of the wafer W have one side at the center The two sides of the polygonal cylinder 50 are in contact with the adjacent sides of the polygonal cylinder 50 adjacent to each other on the circumference.
 また、多角形筒50は、真空紫外光の進行方向に伸びて筒状に形成されている(図2参照)。多角形筒50は、真空紫外光に対して反射率が低く吸収(カット)率が高いものであればどのような材質によって構成されていてもよい。反射率が低い材質とは、例えば真空紫外光の反射率が90%以下、例えば60%以下の材質をいう。具体的には、多角形筒50の材質としては、SUS又はアルミ等の基材の表面に反射率を低減させる有機膜を塗布したもの、上述した基材の表面に凸凹面を形成するためのブラスト処理、粗面化処理を施したもの等を用いることができる。なお、粗面化処理とは、例えば基材であるアルミに対して行うアルマイト処理等である。真空雰囲気であることを考慮すると上述したSUS又はアルミ等の金属を基材としてもよいが、低アウトガスの樹脂材料等を基材として用いてもよい。多角形筒50は光源41の直下からウェハWの照射面に近接する位置まで伸びている。このように、重水素ランプ40の直下に設けられた多角形筒50がウェハWの照射面に近接する位置まで伸びていることにより、各重水素ランプ40から照射される真空紫外光は、光源41からウェハWの照射面に到達するまで対応する多角形筒50内を通過することとなり、ウェハWにおける照射範囲は、多角形筒50の形状(図3参照)に応じた範囲となる。上述したように、複数の多角形筒50は連続している(隙間なく密着している)ため、互いに隣り合う多角形筒50を通過した真空紫外光のウェハWにおける照射範囲は互いに連続するとともに重複していない(あるいは、重複範囲が小さい)。 In addition, the polygonal cylinder 50 is formed in a cylindrical shape extending in the traveling direction of the vacuum ultraviolet light (see FIG. 2). The polygon tube 50 may be made of any material as long as it has a low reflectance to vacuum ultraviolet light and a high absorption (cut) rate. The material having a low reflectance means, for example, a material having a reflectance of 90% or less, for example, 60% or less, for vacuum ultraviolet light. Specifically, as the material of the polygonal cylinder 50, a substrate of SUS, aluminum or the like coated with an organic film for reducing the reflectance, for forming irregularities on the surface of the substrate described above What has been subjected to blasting treatment, roughening treatment, or the like can be used. The surface roughening treatment is, for example, an alumite treatment performed on aluminum as a base material. In consideration of the vacuum atmosphere, the above-described metal such as SUS or aluminum may be used as the base material, but a resin material or the like with a low outgas may be used as the base material. The polygonal tube 50 extends from immediately below the light source 41 to a position close to the irradiation surface of the wafer W. As described above, since the polygonal cylinder 50 provided directly under the deuterium lamp 40 extends to a position close to the irradiation surface of the wafer W, the vacuum ultraviolet light irradiated from each deuterium lamp 40 is a light source It passes through the inside of the corresponding polygon cylinder 50 from the point 41 to the irradiation surface of the wafer W, and the irradiation range on the wafer W becomes a range corresponding to the shape of the polygon cylinder 50 (see FIG. 3). As described above, since the plurality of polygonal cylinders 50 are continuous (in close contact with each other), the irradiation ranges of the vacuum ultraviolet light passing through the adjacent polygonal cylinders 50 on the wafer W are continuous with each other. Not overlapping (or overlapping range is small).
 なお、多角形筒50は、重水素ランプ40の光源41から出射された真空紫外光の強度が弱い部分(中心から離れた部分)が遮光可能となるように、形状が決定されてもよい。多角形筒50は、例えば最も強度が強い部分の70~80%、例えば90%以上の強度を担保できる部分以外の光が遮光されるように、形状が決定される。 The shape of the polygonal cylinder 50 may be determined such that a portion (portion away from the center) where the intensity of vacuum ultraviolet light emitted from the light source 41 of the deuterium lamp 40 is weak can be shielded. The shape of the polygon tube 50 is determined such that light is blocked, for example, from 70 to 80%, for example, 90% or more of the strongest portion, for example.
[作用効果]
 上述したように、本実施形態に係る基板処理装置1の光照射装置4は、波長が200nm以下であって光源41を頂点とした円錐状の光路をとる真空紫外光をウェハWに向けて照射する複数の重水素ランプ40と、複数の重水素ランプ40から照射される真空紫外光の照射範囲の重なり部分を遮光するように、各重水素ランプ40に対応して設けられた多角形筒50と、を備え、多角形筒50は、真空紫外光の進行方向から見て多角形状に形成されている。
[Function effect]
As described above, the light irradiation device 4 of the substrate processing apparatus 1 according to this embodiment irradiates the wafer W with vacuum ultraviolet light having a wavelength of 200 nm or less and taking a conical optical path with the light source 41 at the top. Polygon cylinder 50 provided corresponding to each deuterium lamp 40 so as to shield the overlapping portion of the plurality of deuterium lamps 40 and the irradiation range of the vacuum ultraviolet light irradiated from the plurality of deuterium lamps 40 The polygonal cylinder 50 is formed in a polygonal shape as viewed from the traveling direction of vacuum ultraviolet light.
 従来、ウェハWにおける照射範囲が円形となる複数の点光源からウェハWに光が照射される場合には、ウェハWの照射面に均一に光を照射することが困難であった。このことについて、比較例に係る光照射装置の説明図である図4(a)及び図4(b)を参照して説明する。図4(a)は、複数の重水素ランプ40が設けられた光照射装置を模式的に示している。図4(b)は、図4(a)に示す光照射装置の照射強度を示しており、具体的には、破線は各重水素ランプ40の照射強度を示しており、実線は隣り合う重水素ランプ40の合計の照射強度を示している。図4(a)及び図4(b)に示すように、各光の照射範囲が極力重ならないように重水素ランプ40が配置された場合(図4(a)中に示す中央の重水素ランプ40及び右側の重水素ランプ40を参照)には、照射範囲が円形であることから光の照射強度が弱くなる部分E2(図4(b)参照)が生じてしまう。一方で、照射強度が弱くなる部分E2が生じないようにするためには、各点重水素ランプ40から照射される光の照射範囲を十分に重ねる(図4(a)に示す中央の重水素ランプ40及び左側の重水素ランプ40を参照)必要があり、この場合には重なる部分E1(図4(b)参照)の照射強度が極端に強くなることが問題となる。このように、従来、ウェハWに対して複数の光源から光を照射する構成においては、ウェハWの照射面に均一に光を照射することが困難であった。 Conventionally, when the wafer W is irradiated with light from a plurality of point light sources in which the irradiation range on the wafer W is circular, it is difficult to uniformly irradiate the light to the irradiation surface of the wafer W. This will be described with reference to FIGS. 4 (a) and 4 (b), which are explanatory views of a light irradiation apparatus according to a comparative example. FIG. 4A schematically shows a light irradiation device in which a plurality of deuterium lamps 40 are provided. FIG. 4 (b) shows the irradiation intensity of the light irradiation device shown in FIG. 4 (a). Specifically, the broken line shows the irradiation intensity of each deuterium lamp 40, and the solid line shows the adjacent weights. The total irradiation intensity of the hydrogen lamp 40 is shown. As shown in FIGS. 4A and 4B, when the deuterium lamp 40 is disposed so that the irradiation ranges of the lights do not overlap as much as possible (the center deuterium lamp shown in FIG. 4A) In the deuterium lamp 40 and the right side deuterium lamp 40), since the irradiation range is circular, a portion E2 (see FIG. 4B) in which the irradiation intensity of light becomes weak is generated. On the other hand, in order to prevent the occurrence of the portion E2 where the irradiation intensity is weakened, the irradiation range of the light irradiated from each point deuterium lamp 40 is sufficiently overlapped (the deuterium in the center shown in FIG. The problem is that the lamp 40 and the deuterium lamp 40 on the left side are required, and in this case, the irradiation intensity of the overlapping portion E1 (see FIG. 4B) becomes extremely strong. As described above, conventionally, in the configuration in which the wafer W is irradiated with light from a plurality of light sources, it is difficult to uniformly irradiate the light to the irradiation surface of the wafer W.
 この点、本実施形態に係る光照射装置4では、円錐状の光路をとってウェハWに向けて照射される複数の真空紫外光の重なり部分が、各重水素ランプ40に対応して設けられた多角形筒50によって遮光されている。これにより、ウェハWにおける各真空紫外光の照射範囲が多角形状となる。照射範囲が図4に示す比較例のように円形ではなく、多角形状(具体的には正六角形状)となることにより、隣り合う多角形筒50を通過した真空紫外光の照射範囲を互いに連続させるとともに重複させない(あるいは重複範囲を小さくする)ことが可能となる。すなわち、本実施形態の光照射装置4によれば、ウェハWの照射面における光照射分布の均一性を向上させることができる。 In this point, in the light irradiation device 4 according to the present embodiment, overlapping portions of a plurality of vacuum ultraviolet light irradiated toward the wafer W with a conical light path are provided corresponding to the respective deuterium lamps 40. The light is shielded by the polygonal tube 50. Thereby, the irradiation range of each vacuum ultraviolet light in the wafer W becomes polygonal. Since the irradiation range is not circular as in the comparative example shown in FIG. 4 but is polygonal (specifically, regular hexagonal), the irradiation ranges of vacuum ultraviolet light having passed through adjacent polygon tubes 50 are continuous with each other. It is possible not to overlap (or to reduce the overlapping range) as well. That is, according to the light irradiation apparatus 4 of this embodiment, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be improved.
 上述した多角形筒50は、真空紫外光の進行方向に延びて筒状に形成されている。重水素ランプ40に対応して設けられた多角形筒50が高さ方向(真空紫外光の進行方向)に伸びて筒状に形成されていることにより、当該多角形筒50が対応する重水素ランプ40以外の重水素ランプ40(例えば隣の重水素ランプ40)からの真空紫外光の影響を適切に排除することができる。すなわち、他の重水素ランプ40の真空紫外光と照射範囲が重なることを適切に防止し、ウェハWの照射面における光照射分布の均一性をより向上させることができる。 The polygonal cylinder 50 described above is formed in a tubular shape extending in the direction of travel of vacuum ultraviolet light. The polygonal cylinder 50 provided corresponding to the deuterium lamp 40 extends in the height direction (the advancing direction of the vacuum ultraviolet light) and is formed in a cylindrical shape, so that the corresponding polygonal cylinder 50 corresponds to the deuterium The influence of vacuum ultraviolet light from deuterium lamps 40 other than the lamp 40 (for example, the next deuterium lamp 40) can be appropriately eliminated. That is, overlapping of the irradiation range with the vacuum ultraviolet light of the other deuterium lamp 40 can be appropriately prevented, and the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved.
 また、上述した光照射装置4は、重水素ランプ40を光照射部として用いることにより、波長が200nm以下の真空紫外光に加えて、波長が200nmよりも大きい近紫外光についてもウェハWに対して照射することができる。このように、重水素ランプ40から照射される光のスペクトルの波長域は比較的広いため、例えばウェハWの表面にレジストパターンが形成されている場合において、当該レジストパターンは様々な波長の光のエネルギーを受けることとなる。これにより、レジストパターンの表面においては様々な反応が起こることによって流動性が高くなり、その結果、当該表面の荒れの改善効果を向上させることができる。 In addition to the vacuum ultraviolet light having a wavelength of 200 nm or less, the light irradiation device 4 described above uses the deuterium lamp 40 as a light irradiation unit, and the near ultraviolet light having a wavelength of more than 200 nm is also Can be irradiated. As described above, since the wavelength range of the spectrum of the light irradiated from the deuterium lamp 40 is relatively wide, for example, when a resist pattern is formed on the surface of the wafer W, the resist pattern is a light of various wavelengths. It will receive energy. As a result, various reactions occur on the surface of the resist pattern to increase the fluidity, and as a result, the effect of improving the surface roughness can be improved.
 また、上述した重水素ランプ40は、波長が160nm以下の真空紫外光を発生させる。重水素ランプ40では、例えば160nm以下が連続スペクトルのピークの波長となるため、当該160nm以下の真空紫外光を発生させることによって、例えばウェハWの表面にレジストパターンが形成されている場合において、表面の荒れの改善効果をより向上させることができる。 The above-described deuterium lamp 40 generates vacuum ultraviolet light having a wavelength of 160 nm or less. In the deuterium lamp 40, for example, the wavelength of the peak of the continuous spectrum is 160 nm or less. Therefore, for example, when a resist pattern is formed on the surface of the wafer W by generating vacuum ultraviolet light of 160 nm or less Can further improve the roughening improvement effect.
[変形例]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、図5に示すように、複数の光照射部のうち一部の重水素ランプ40xから照射される真空紫外光の照度値が、他の重水素ランプ40から照射される真空紫外光の照度値と異なっていてもよい。図5に示す例では、重水素ランプ40xから照射される真空紫外光の照度値が重水素ランプ40から照射される真空紫外光の照度値よりも大きくされている。また、図6に示すように、複数の光照射部のうち一部の重水素ランプ40yから照射される真空紫外光の光線角度が、他の重水素ランプ40から照射される真空紫外光の光線角度と異なっていてもよい。図6に示す例では、重水素ランプ40yから照射される真空紫外光の光線角度が重水素ランプ40から照射される真空紫外光の光線角度よりも大きくされている。また、図7に示すように、複数の光照射部のうち一部の重水素ランプ40zのウェハWとの離間距離が、他の重水素ランプ40のウェハWとの離間距離と異なっていてもよい。図7に示す例では、重水素ランプ40zのウェハWとの離間距離が、重水素ランプ40のウェハWとの離間距離よりも小さくされている。このように、複数の光照射部について、照度値、光線角度、又は高さ(ウェハWとの離間距離)を互いに異ならせることによって、照射分布を積極的に調整することができ、光照射部からの照射状況に応じて、ウェハWの照射面における光照射分布の均一性をより向上させることができる。
[Modification]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment. For example, as shown in FIG. 5, the illuminance value of the vacuum ultraviolet light emitted from a part of the deuterium lamp 40x among the plurality of light irradiation parts is the illuminance of the vacuum ultraviolet light irradiated from the other deuterium lamps 40. It may be different from the value. In the example shown in FIG. 5, the illuminance value of the vacuum ultraviolet light emitted from the deuterium lamp 40 x is larger than the illuminance value of the vacuum ultraviolet light irradiated from the deuterium lamp 40. Further, as shown in FIG. 6, the light ray angle of the vacuum ultraviolet light emitted from a part of the deuterium lamp 40 y among the plurality of light irradiation parts is the light ray of the vacuum ultraviolet light irradiated from another deuterium lamp 40. It may be different from the angle. In the example shown in FIG. 6, the light ray angle of vacuum ultraviolet light emitted from the deuterium lamp 40y is made larger than the light ray angle of vacuum ultraviolet light emitted from the deuterium lamp 40. Further, as shown in FIG. 7, even if the separation distance between a part of the deuterium lamps 40 z of the plurality of light irradiation parts from the wafer W is different from the separation distance between the other deuterium lamps 40 and the wafer W Good. In the example shown in FIG. 7, the separation distance between the deuterium lamp 40z and the wafer W is smaller than the separation distance between the deuterium lamp 40 and the wafer W. As described above, the irradiation distribution can be positively adjusted by making the illuminance value, the light beam angle, or the height (the distance from the wafer W) different among the plurality of light irradiation units. The uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved according to the irradiation condition from the above.
 また、光照射装置は、図8に示す離間距離調整部60を更に備えていてもよい。離間距離調整部60は、遮光部である多角形筒50のウェハWとの離間距離を調整する機構である。具体的には、離間距離調整部60は、コントローラ(不図示)の制御に応じて多角形筒50を昇降させることにより、多角形筒50のウェハWとの離間距離を調整する。上述したように、多角形筒50は照射範囲を多角形状にすることによりウェハWの照射面に均一に光を照射することを目的とした構成であるが、多角形筒50が設けられることにより、当該多角形筒50の影がウェハWの照射面に投影されてしまい、当該影によってウェハWの照射面における光照射分布の均一性が十分に図られないことが考えられる。この点、多角形筒50の高さ(ウェハWとの離間距離)が離間距離調整部60によって調整されることにより、例えば隣り合う多角形筒50からのウェハWへの照射光の広がりを調整することができ、照射光を互いに重ねあうこと等により影となる部分を解消することができる。なお、離間距離調整部60によって調整される多角形筒50の高さは、例えば、重水素ランプ40からの照射角、及び、ウェハWにおける各部の照度等を事前に評価することにより決定される。 In addition, the light irradiation device may further include a separation distance adjustment unit 60 shown in FIG. The separation distance adjustment unit 60 is a mechanism that adjusts the separation distance of the polygonal cylinder 50, which is a light shielding unit, from the wafer W. Specifically, the separation distance adjustment unit 60 adjusts the separation distance between the polygon cylinder 50 and the wafer W by moving the polygon cylinder 50 up and down according to the control of the controller (not shown). As described above, the polygonal cylinder 50 is configured to irradiate light uniformly to the irradiation surface of the wafer W by forming the irradiation range into a polygonal shape, but the polygonal cylinder 50 is provided. It is conceivable that the shadow of the polygon tube 50 is projected on the irradiation surface of the wafer W, and the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can not be sufficiently achieved by the shadow. In this respect, by adjusting the height (the distance from the wafer W) of the polygonal cylinder 50 by the separation distance adjusting unit 60, for example, the spread of the irradiation light to the wafer W from the adjacent polygonal cylinder 50 is adjusted It is possible to eliminate the shadowed portion by overlapping the irradiation lights. The height of the polygonal cylinder 50 adjusted by the separation distance adjustment unit 60 is determined by, for example, evaluating in advance the irradiation angle from the deuterium lamp 40, the illuminance of each part of the wafer W, and the like. .
 また、光照射装置は、図9に示すウェハ回転部70(基板回転部)を更に備えていてもよい。ウェハ回転部70は、ウェハWの照射面を重水素ランプ40に対向させた状態でウェハWを回転させる機構である。具体的には、ウェハ回転部70は、ウェハWを載置する載置台20と回転軸を介して接続されており、コントローラ(不図示)の制御に応じて回転軸を回転させることにより載置台20及び該載置台20に載置されたウェハWを回転させる。ウェハWが回転することによって、重水素ランプ40の照射場所が変化することとなるので、ウェハWの照射面における光照射分布の均一性をより向上させることができる。なお、光照射装置は、ウェハWではなく、多角形筒50及び重水素ランプ40をウェハWに対して回転させるものであってもよい。また、光照射装置は、多角形筒50又はウェハWを、ウェハWの照射面に平行な方向(水平方向)に10mm程度往復移動させる平行移動部を更に備えていてもよい。この場合においても、重水素ランプ40の照射場所が変化することとなるので、ウェハWの照射面における光照射分布の均一性をより向上させることができる。なお、照射面に平行な方向に往復移動させる態様においては、ウェハWを回転させる態様と異なり、照射場所が変化しない部分(例えば回転中心)が生じにくいというメリットがある。例えば、複数本の多角形筒50及び重水素ランプ40を、ウェハWに対して回転させると共に並行な方向にスキャン動作させることにより、ウェハWの全面を同時に照射可能な数の重水素ランプ40を設けなくても、ウェハWの全面に対して真空紫外光を照射することができる。このように多角形筒50及び重水素ランプ40をスキャン動作等させる場合には、多角形筒50及び重水素ランプ40が少数(例えば1つずつ等)であってもよい。 In addition, the light irradiation apparatus may further include a wafer rotating unit 70 (substrate rotating unit) shown in FIG. The wafer rotation unit 70 is a mechanism that rotates the wafer W in a state where the irradiation surface of the wafer W is opposed to the deuterium lamp 40. Specifically, the wafer rotation unit 70 is connected to the mounting table 20 on which the wafer W is mounted via the rotation axis, and the rotation table is rotated according to the control of the controller (not shown). 20 and the wafer W mounted on the mounting table 20 are rotated. Since the irradiation position of the deuterium lamp 40 changes as the wafer W rotates, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved. The light irradiation apparatus may rotate the polygon cylinder 50 and the deuterium lamp 40 with respect to the wafer W instead of the wafer W. In addition, the light irradiation apparatus may further include a parallel movement unit that reciprocates the polygon cylinder 50 or the wafer W in a direction (horizontal direction) parallel to the irradiation surface of the wafer W by about 10 mm. Also in this case, since the irradiation position of the deuterium lamp 40 changes, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved. Note that the aspect in which the wafer W is reciprocated in the direction parallel to the irradiation surface is different from the aspect in which the wafer W is rotated, and there is an advantage that a portion (for example, the center of rotation) where the irradiation location does not change hardly occurs. For example, by rotating the plurality of polygonal cylinders 50 and the deuterium lamps 40 with respect to the wafer W and scanning them in parallel directions, the number of the deuterium lamps 40 capable of irradiating the entire surface of the wafer W simultaneously can be obtained. Even if not provided, vacuum ultraviolet light can be irradiated on the entire surface of the wafer W. When the polygon cylinder 50 and the deuterium lamp 40 are subjected to a scanning operation or the like as described above, the number of the polygon cylinder 50 and the deuterium lamp 40 may be small (for example, one by one).
 また、光照射装置は、図10に示す拡散部80を更に備えていてもよい。拡散部80は、多角形筒50の上方において真空紫外光を拡散させる部材である。図10に示す例では、拡散部80はメッシュ状の部材であり、真空紫外光の一部を反射拡散させる機能を有する。なお、拡散部80は真空紫外光の一部を反射拡散させるものであれば、棒状の部材等であってもよい。拡散部80では、真空紫外光を反射拡散させる部分の面積が、真空紫外光を下方に向かって通過させる部分の面積よりも小さい。照射光は光源(ランプ)の内部電極構造に由来して強度のばらつきが存在するところ、多角形筒50の上方に拡散部80が設けられていることにより、照射光のばらつきが平均化され、ウェハWの照射面における光照射分布の均一性をより向上させることができる。 In addition, the light irradiation apparatus may further include a diffusion unit 80 shown in FIG. The diffusion unit 80 is a member that diffuses vacuum ultraviolet light above the polygonal cylinder 50. In the example shown in FIG. 10, the diffusion unit 80 is a mesh-like member, and has a function of reflecting and diffusing a part of vacuum ultraviolet light. The diffusion unit 80 may be a rod-like member as long as it reflects and diffuses part of the vacuum ultraviolet light. In the diffusion section 80, the area of the portion for reflecting and diffusing the vacuum ultraviolet light is smaller than the area of the portion for passing the vacuum ultraviolet light downward. Since the irradiation light originates in the internal electrode structure of the light source (lamp) and there is a variation in the intensity, the diffusion part 80 is provided above the polygonal cylinder 50, so that the variation of the irradiation light is averaged. The uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be further improved.
 また、多角形筒50は真空紫外光の進行方向から見て正六角形状であるとして説明したがこれに限定されず、例えば図11(a)に示すように多角形筒50xが四角形状であってもよい。また、多角形筒50の数は図3に示した例に限定されず、例えば図11(b)に示すように合計13個の多角形筒50yが設けられていてもよい。 Further, although the polygonal cylinder 50 has been described as having a regular hexagonal shape as viewed from the traveling direction of vacuum ultraviolet light, the present invention is not limited to this. For example, as shown in FIG. May be Further, the number of polygonal cylinders 50 is not limited to the example shown in FIG. 3, and for example, as shown in FIG. 11B, a total of 13 polygonal cylinders 50y may be provided.
 また、遮光部が多角形筒50であるとして説明したがこれに限定されず、遮光部は真空紫外光の進行方向から見て多角形状に形成されたものであれば、高さ方向に伸びる筒状の部材でなくてもよい。例えば、図12に示されるように、遮光部は、板状に形成されたマスク200(板状遮光部材)を有していてもよい。マスク200は、多角形筒50と同様に、真空紫外光の進行方向から見て多角形状に形成されている。具体的には、図13(a)に示されるように、真空紫外光の進行方向から見て六角形状のマスク200a又は四角形状のマスク200b等を用いることができる。マスク200は、多角形筒50と異なり、厚み(真空紫外光の進行方向の厚み)が小さい薄板状とされている。このようなマスク200を設けることによっても、ウェハWにおける各真空紫外光の照射範囲が多角形状となり、真空紫外光の照射範囲が重ならないようにしつつ光が照射されない部分(あるいは照射強度が弱くなる部分)が生じることを抑制できる。すなわち、マスク200によれば、ウェハWの照射面における光照射分布の均一性を向上させることができる。また、マスク200は、上述したように薄板状とされているため、多角形筒50を設ける場合と比較して、処理室内での真空ポンプによる排気を行いやすくすることができる。このことで、処理室内の真空引きをより適切に行うことができる。 Although the light shielding portion has been described as the polygonal cylinder 50, the invention is not limited to this, and the light shielding portion may be a cylinder extending in the height direction if it is formed in a polygonal shape as viewed from the traveling direction of vacuum ultraviolet light. It does not have to be a member of the shape. For example, as shown in FIG. 12, the light shielding portion may have a mask 200 (plate-like light shielding member) formed in a plate shape. The mask 200 is formed in a polygonal shape as seen from the traveling direction of the vacuum ultraviolet light, similarly to the polygonal tube 50. Specifically, as shown in FIG. 13A, it is possible to use a hexagonal mask 200a or a square mask 200b or the like as viewed from the direction of travel of vacuum ultraviolet light. Unlike the polygonal tube 50, the mask 200 is in the form of a thin plate having a small thickness (thickness in the traveling direction of vacuum ultraviolet light). Even when such a mask 200 is provided, the irradiation range of each vacuum ultraviolet light on the wafer W becomes a polygonal shape, so that the irradiation area of the vacuum ultraviolet light does not overlap while the light is not irradiated (or the irradiation intensity becomes weak). Can be suppressed. That is, according to the mask 200, the uniformity of the light irradiation distribution on the irradiation surface of the wafer W can be improved. In addition, since the mask 200 is formed in a thin plate shape as described above, the exhaust by the vacuum pump in the processing chamber can be facilitated as compared with the case where the polygonal cylinder 50 is provided. By this, the vacuum suction in the processing chamber can be more appropriately performed.
 また、図14に示されるように、遮光部は、真空紫外光の進行方向に延びて筒状に形成されると共に重水素ランプ40及びウェハW間においてウェハW寄りの位置(すなわち下方寄りの位置)に設けられた多角形筒250と、板状に形成されたマスク200とを有していてもよい。多角形筒250は、例えば重水素ランプ40及びウェハW間の全長の半分以下の長さとされる。このように、多角形筒250は、重水素ランプ40及びウェハW間の略全域に設けられた多角形筒50(図2参照)と比べて小型であって且つウェハWに近い領域にのみ設けられている。マスク200は、多角形筒250の下方に設けられており、より詳細には、多角形筒250の下端に接するように設けられている。マスク200は、光の照射範囲を限定する観点から極力ウェハWに近い位置に設けられていてもよいが、アームによるウェハWの搬送が可能になる程度の距離(例えば30mm)だけウェハWから離間している。マスク200は、真空紫外光の進行方向から見て、光を通す領域の大きさが多角形筒250よりも小さくされている。これにより、マスク200によって真空紫外光の照射範囲を適切に限定することができる。 Further, as shown in FIG. 14, the light shielding portion is formed in a cylindrical shape extending in the traveling direction of the vacuum ultraviolet light and at a position closer to the wafer W between the deuterium lamp 40 and the wafer W (that is, a lower position). And a mask 200 formed in a plate shape. The polygon cylinder 250 has a length equal to or less than half of the total length between the deuterium lamp 40 and the wafer W, for example. Thus, the polygon cylinder 250 is provided only in a region smaller than the polygon cylinder 50 (see FIG. 2) provided substantially in the entire area between the deuterium lamp 40 and the wafer W and close to the wafer W. It is done. The mask 200 is provided below the polygon cylinder 250, and more specifically, in contact with the lower end of the polygon cylinder 250. The mask 200 may be provided at a position as close to the wafer W as possible from the viewpoint of limiting the irradiation range of light, but the mask 200 is separated from the wafer W by a distance (for example, 30 mm) that enables transfer of the wafer W by the arm. doing. In the mask 200, the size of the region through which light passes is made smaller than that of the polygon cylinder 250 when viewed from the direction of travel of vacuum ultraviolet light. Thereby, the irradiation range of vacuum ultraviolet light can be appropriately limited by the mask 200.
 ここで、図14の基板処理装置の基本構成についても説明する。図14に示されるように、当該基板処理装置は、処理室210と、光源室212とを備える。処理室210は、筐体214と、回転保持部216と、ゲートバルブ218と、真空ポンプ222とを含む。筐体214は、例えば大気雰囲気中に設けられた真空容器の一部であり、図示しない搬送機構によって搬送されたウェハWを収納可能に構成されている。筐体214は、上方に向けて開口された有底筒状体を呈している。筐体214の壁面には、貫通孔214a,214cが設けられている。 Here, the basic configuration of the substrate processing apparatus of FIG. 14 will also be described. As shown in FIG. 14, the substrate processing apparatus includes a processing chamber 210 and a light source chamber 212. The processing chamber 210 includes a housing 214, a rotation holding unit 216, a gate valve 218, and a vacuum pump 222. The housing 214 is, for example, a part of a vacuum container provided in the atmosphere, and is configured to be able to store the wafer W transferred by a transfer mechanism (not shown). The housing 214 presents a bottomed cylindrical body opened upward. Through holes 214 a and 214 c are provided on the wall surface of the housing 214.
 回転保持部216は、回転部216aと、シャフト216bと、保持部216cとを有する。回転部216aは、コントローラ(不図示)からの動作信号に基づいて動作し、シャフト216bを回転させる。回転部216aは、例えば電動モータ等の動力源である。保持部216cは、シャフト216bの先端部に設けられている。保持部216cは、ウェハWの姿勢が略水平の状態でウェハWを保持可能である。保持部216cにウェハWが載置された状態で回転部216aが回転すると、ウェハWは、その表面に対して垂直な軸(回転軸)周りで回転する。 The rotation holding unit 216 includes a rotating unit 216a, a shaft 216b, and a holding unit 216c. The rotating unit 216a operates based on an operation signal from a controller (not shown) to rotate the shaft 216b. The rotating unit 216a is, for example, a power source such as an electric motor. The holding portion 216c is provided at the tip of the shaft 216b. The holding unit 216 c can hold the wafer W in a state in which the posture of the wafer W is substantially horizontal. When the rotating unit 216a rotates while the wafer W is placed on the holding unit 216c, the wafer W rotates around an axis (rotational axis) perpendicular to the surface.
 ゲートバルブ218は、筐体214の側壁の外表面に配置されている。ゲートバルブ218は、コントローラ(不図示)の指示に基づいて動作し、筐体214の貫通孔214aを閉鎖及び開放するように構成されている。ゲートバルブ218によって貫通孔214aが開放されている場合、筐体214に対してウェハWを搬入出可能である。すなわち、貫通孔214aはウェハWの出入口としても機能する。 The gate valve 218 is disposed on the outer surface of the side wall of the housing 214. The gate valve 218 operates based on an instruction of a controller (not shown), and is configured to close and open the through hole 214a of the housing 214. When the through hole 214 a is opened by the gate valve 218, the wafer W can be carried into and out of the housing 214. That is, the through hole 214 a also functions as an entrance and exit of the wafer W.
 真空ポンプ222は、筐体214内から気体を排出して、筐体214内を真空状態(低酸素状態)とするように構成されている。 The vacuum pump 222 is configured to discharge the gas from the inside of the housing 214 to bring the inside of the housing 214 into a vacuum state (low oxygen state).
 光源室212は、筐体224と、仕切壁226と、シャッタ部材228と、複数の重水素ランプ40とを含む。 The light source chamber 212 includes a housing 224, a partition wall 226, a shutter member 228, and a plurality of deuterium lamps 40.
 筐体224は、例えば大気雰囲気中に設けられた真空容器の一部である。筐体224は、下方に向けて開口された有底筒状体を呈している。筐体224は、筐体224の開放端が筐体214の開放端に向かい合うように配置されている。 The housing 224 is, for example, a part of a vacuum vessel provided in an air atmosphere. The housing 224 presents a bottomed cylindrical body opened downward. The housing 224 is disposed such that the open end of the housing 224 faces the open end of the housing 214.
 仕切壁226は、筐体214,224の間に配置されており、筐体214内の空間と筐体224内の空間とを仕切るように構成されている。換言すれば、仕切壁226は、筐体214の天壁として機能すると共に、筐体224の底壁として機能する。すなわち、筐体224は、ウェハWの表面に垂直な方向において、筐体214と隣り合うように配置されている。仕切壁226によって仕切られた後の筐体224内の空間Vは、垂直方向における高さが水平方向におけるサイズと比較して小さい偏平空間となっている。 The partition wall 226 is disposed between the housings 214 and 224, and is configured to partition a space in the housing 214 and a space in the housing 224. In other words, the partition wall 226 functions as a top wall of the housing 214 and also functions as a bottom wall of the housing 224. That is, the case 224 is disposed adjacent to the case 214 in a direction perpendicular to the surface of the wafer W. The space V in the housing 224 after being partitioned by the partition wall 226 is a flat space whose height in the vertical direction is smaller than the size in the horizontal direction.
 仕切壁226には、複数の貫通孔226aが設けられている。複数の貫通孔226aは、垂直方向においてシャッタ部材228と重なり合うように配置されている。複数の貫通孔226aはそれぞれ、真空紫外光が透過可能な窓部材によって塞がれている。窓部材は、例えば、ガラス(例えば、フッ化マグネシウムガラス)であってもよい。 The partition wall 226 is provided with a plurality of through holes 226a. The plurality of through holes 226a are arranged to overlap the shutter member 228 in the vertical direction. Each of the plurality of through holes 226a is closed by a window member capable of transmitting vacuum ultraviolet light. The window member may be, for example, glass (eg, magnesium fluoride glass).
 シャッタ部材228は、空間V内に配置されており、重水素ランプ40が照射する真空紫外光を遮断及び通過可能に構成されている。シャッタ部材228は、例えば円板状を呈している。シャッタ部材228には、複数の貫通孔が設けられている。 The shutter member 228 is disposed in the space V, and is configured to be able to block and pass vacuum ultraviolet light emitted by the deuterium lamp 40. The shutter member 228 has, for example, a disk shape. The shutter member 228 is provided with a plurality of through holes.
 上述したような多角形筒250及びマスク200を組み合わせて用いることにより、多角形筒250によって真空紫外光の照射範囲が重なることを適切に抑制しつつ、多角形筒250の下方に設けられたマスク200によって真空紫外光の照射範囲を適切に限定することができる。また、マスク200を用いることによって、多角形筒250の長さを短くすることができ、真空ポンプ222による排気を適切に行い処理室210内の真空引きを適切に行うことができる。また、マスク200が多角形筒250の下端に接するように設けられていることにより、多角形筒250とマスク200との間から真空紫外光が漏れ出すことを抑制し、真空紫外光の照射範囲が重なることを適切に抑制することができる。なお、下方に設けられた小型の多角形筒250のみによって(すなわちマスク200を設けずに)遮光部が形成されていてもよい。 By combining and using the polygon cylinder 250 and the mask 200 as described above, a mask provided below the polygon cylinder 250 while appropriately suppressing overlapping of the irradiation ranges of vacuum ultraviolet light by the polygon cylinder 250 The irradiation range of vacuum ultraviolet light can be appropriately limited by 200. In addition, by using the mask 200, the length of the polygonal cylinder 250 can be shortened, and the exhaust by the vacuum pump 222 can be appropriately performed to appropriately evacuate the processing chamber 210. Further, the mask 200 is provided in contact with the lower end of the polygonal cylinder 250, thereby suppressing the leakage of vacuum ultraviolet light from between the polygonal cylinder 250 and the mask 200, and the irradiation range of the vacuum ultraviolet light Can be appropriately suppressed. In addition, the light shielding portion may be formed only by the small polygonal cylinder 250 provided below (that is, without providing the mask 200).
 なお、図15に示されるように、マスク200は多角形筒250の下端から離間するように設けられていてもよい。これにより、真空ポンプ222による排気が行いやすくなり、真空ポンプ222による真空引きをより適切に行うことができる。図15の構成では、真空紫外光の進行方向から見て、マスク200及び多角形筒50の光を通す領域の大きさが同程度とされてもよい。なお、真空引きを容易に行う観点から、多角形筒50に一又は複数の孔が設けられていてもよい。 As shown in FIG. 15, the mask 200 may be provided to be separated from the lower end of the polygonal cylinder 250. Accordingly, the evacuation by the vacuum pump 222 can be easily performed, and the evacuation by the vacuum pump 222 can be more appropriately performed. In the configuration of FIG. 15, the size of the region through which light of the mask 200 and the polygon cylinder 50 passes may be substantially the same as viewed from the direction of travel of vacuum ultraviolet light. In addition, from a viewpoint of performing vacuuming easily, the polygon cylinder 50 may be provided with one or several holes.
 4…光照射装置、40,40x,40y,40z…重水素ランプ(光照射部)、41…光源、50,50x,50y…多角形筒(遮光部、筒状遮光部材)、60…離間距離調整部、70…ウェハ回転部(基板回転部)、80…拡散部、200…マスク(遮光部、板状遮光部材)、W…ウェハ。 4 Light irradiation device 40, 40x, 40y, 40z Deuterium lamp (light irradiation part) 41 Light source 50, 50x, 50y Polygonal cylinder (light shielding part, cylindrical light shielding member) 60 Distance Adjustment unit 70 wafer rotation unit (substrate rotation unit) 80 diffusion unit 200 mask (light shielding unit, plate-like light shielding member) W wafer

Claims (19)

  1.  光源を頂点とした円錐状の光路をとる真空紫外光を基板に向けて照射する複数の光照射部と、
     前記複数の光照射部から照射される前記真空紫外光の照射範囲の重なり部分を遮光するように、各光照射部に対応して設けられた遮光部と、を備え、
     前記遮光部は、前記真空紫外光の進行方向から見て多角形状に形成されている、光照射装置。
    A plurality of light irradiators for irradiating vacuum ultraviolet light toward a substrate, which has a conical light path with a light source at the top;
    A light shielding portion provided corresponding to each light irradiation portion so as to shield an overlapping portion of the irradiation range of the vacuum ultraviolet light irradiated from the plurality of light irradiation portions;
    The said light shielding part is a light irradiation apparatus currently formed in polygonal shape seeing from the advancing direction of the said vacuum ultraviolet light.
  2.  前記遮光部は、前記真空紫外光の進行方向に延びて筒状に形成された筒状遮光部材を有する、請求項1記載の光照射装置。 The light irradiation apparatus according to claim 1, wherein the light shielding portion includes a cylindrical light shielding member which is formed in a cylindrical shape extending in a traveling direction of the vacuum ultraviolet light.
  3.  前記筒状遮光部材は、前記光照射部及び前記基板間の略全域にわたって、前記進行方向に延びている、請求項2記載の光照射装置。 The light irradiation apparatus according to claim 2, wherein the cylindrical light shielding member extends in the traveling direction substantially over the entire area between the light irradiation unit and the substrate.
  4.  前記筒状遮光部材は、前記光照射部及び前記基板間において、前記基板寄りの位置に設けられている、請求項2記載の光照射装置。 The light irradiation apparatus according to claim 2, wherein the cylindrical light shielding member is provided at a position closer to the substrate between the light irradiation unit and the substrate.
  5.  前記筒状遮光部材は、前記光照射部及び前記基板間の全長の半分以下の長さである、請求項4記載の光照射装置。 The light irradiation apparatus according to claim 4, wherein the cylindrical light shielding member has a length equal to or less than half of a total length between the light irradiation unit and the substrate.
  6.  前記遮光部は、板状に形成された板状遮光部材を有する、請求項1~5のいずれか一項記載の光照射装置。 The light irradiation device according to any one of claims 1 to 5, wherein the light shielding portion has a plate-like light shielding member formed in a plate shape.
  7.  前記遮光部は、前記真空紫外光の進行方向に延びて筒状に形成されると共に前記光照射部及び前記基板間において前記基板寄りの位置に設けられた筒状遮光部材と、板状に形成された板状遮光部材とを有し、
     前記板状遮光部材は、前記筒状遮光部材の下方に設けられている、請求項1記載の光照射装置。
    The light shielding portion is formed in a plate shape, extending in the traveling direction of the vacuum ultraviolet light and being formed into a cylindrical shape, and the cylindrical light shielding member provided at a position close to the substrate between the light irradiation portion and the substrate. And a plate-shaped light shielding member,
    The light irradiation apparatus according to claim 1, wherein the plate-like light blocking member is provided below the cylindrical light blocking member.
  8.  前記板状遮光部材は、前記筒状遮光部材の下端に接するように設けられている、請求項7記載の光照射装置。 The light irradiation apparatus according to claim 7, wherein the plate-like light shielding member is provided in contact with a lower end of the cylindrical light shielding member.
  9.  前記板状遮光部材は、前記進行方向から見て、光を通す領域の大きさが前記筒状遮光部材よりも小さい、請求項8記載の光照射装置。 The light irradiation apparatus according to claim 8, wherein the plate-like light blocking member has a smaller size of a region through which light passes when viewed from the traveling direction than the cylindrical light blocking member.
  10.  前記板状遮光部材は、前記筒状遮光部材の下端から離間するように設けられている、請求項7記載の光照射装置。 The light irradiation apparatus according to claim 7, wherein the plate-like light shielding member is provided to be separated from the lower end of the cylindrical light shielding member.
  11.  前記遮光部の前記基板との離間距離を調整する離間距離調整部を更に備える、請求項1~10のいずれか一項記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 10, further comprising: a separation distance adjustment part configured to adjust a separation distance between the light shielding part and the substrate.
  12.  前記光照射部は、重水素ランプを含んで構成されている、請求項1~11のいずれか一項記載の光照射装置。 The light emitting device according to any one of claims 1 to 11, wherein the light emitting portion includes a deuterium lamp.
  13.  前記重水素ランプは、波長が200nm以下の真空紫外光を発生させる、請求項12記載の光照射装置。 The light irradiation apparatus according to claim 12, wherein the deuterium lamp generates vacuum ultraviolet light having a wavelength of 200 nm or less.
  14.  前記重水素ランプは、波長が160nm以下の真空紫外光を発生させる、請求項13記載の光照射装置。 The light irradiation apparatus according to claim 13, wherein the deuterium lamp generates vacuum ultraviolet light having a wavelength of 160 nm or less.
  15.  前記複数の光照射部は、照射する前記真空紫外光の照度値、照射する前記真空紫外光の光線角度、及び前記基板との離間距離の少なくとも一つが互いに異なる、請求項1~14のいずれか一項記載の光照射装置。 The illumination value of the vacuum ultraviolet light to be irradiated, the light beam angle of the vacuum ultraviolet light to be irradiated, and the separation distance from the substrate are different from each other in the plurality of light irradiation units. The light irradiation apparatus according to one of the items.
  16.  前記遮光部の上方において前記真空紫外光を拡散させる拡散部を更に備える、請求項1~15のいずれか一項記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 15, further comprising a diffusion unit that diffuses the vacuum ultraviolet light above the light shielding unit.
  17.  前記基板の照射面を前記光照射部に対向させた状態で前記基板を回転させる基板回転部を更に備える、請求項1~16のいずれか一項記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 16, further comprising a substrate rotation unit configured to rotate the substrate in a state in which the irradiation surface of the substrate is opposed to the light irradiation unit.
  18.  前記遮光部又は前記基板を、前記基板の照射面に平行な方向に往復移動させる平行移動部を更に備える、請求項1~17のいずれか一項記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 17, further comprising: a parallel movement unit configured to reciprocate the light shielding unit or the substrate in a direction parallel to the irradiation surface of the substrate.
  19.  前記遮光部は、真空紫外光の反射率が90%以下の材質によって構成されている、請求項1~18のいずれか一項記載の光照射装置。 The light irradiation apparatus according to any one of claims 1 to 18, wherein the light shielding portion is made of a material having a reflectance of 90% or less of vacuum ultraviolet light.
PCT/JP2018/045734 2017-12-26 2018-12-12 Light irradiation device WO2019131144A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880081427.5A CN111492314A (en) 2017-12-26 2018-12-12 Light irradiation device
JP2019562960A JP6920469B2 (en) 2017-12-26 2018-12-12 Light irradiation device
KR1020207020141A KR20200097777A (en) 2017-12-26 2018-12-12 Light irradiation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017249509 2017-12-26
JP2017-249509 2017-12-26
JP2018-115179 2018-06-18
JP2018115179 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019131144A1 true WO2019131144A1 (en) 2019-07-04

Family

ID=67063536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045734 WO2019131144A1 (en) 2017-12-26 2018-12-12 Light irradiation device

Country Status (5)

Country Link
JP (1) JP6920469B2 (en)
KR (1) KR20200097777A (en)
CN (1) CN111492314A (en)
TW (1) TWI804543B (en)
WO (1) WO2019131144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040026A (en) * 2019-09-03 2021-03-11 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and storage medium
JP7100398B1 (en) 2021-05-06 2022-07-13 株式会社 ベアック Exposure device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534926A (en) * 1991-07-30 1993-02-12 Sanee Giken Kk Exposing device
JP2001284235A (en) * 2000-03-31 2001-10-12 Canon Inc Projection exposure system and device manufacturing method
JP2009163205A (en) * 2007-12-31 2009-07-23 Lg Display Co Ltd Exposure apparatus and exposure method for photosensitive film
JP2009224377A (en) * 2008-03-13 2009-10-01 Tokyo Electron Ltd Method and apparatus of substrate treatment
JP2010066520A (en) * 2008-09-11 2010-03-25 Protec Co Ltd Light source device for exposure apparatus
JP2014209548A (en) * 2013-03-28 2014-11-06 ウシオ電機株式会社 Light irradiation device
JP2016192343A (en) * 2015-03-31 2016-11-10 ウシオ電機株式会社 Light source device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597981B2 (en) * 1985-08-28 1997-04-09 ソニー株式会社 Method for curing resist film
JP3342856B2 (en) 1999-10-22 2002-11-11 株式会社半導体先端テクノロジーズ Method for forming fine pattern and method for manufacturing semiconductor device
JP2005197349A (en) * 2004-01-05 2005-07-21 Semiconductor Leading Edge Technologies Inc Fine patterning method and fabrication process of semiconductor device
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
KR101353012B1 (en) * 2009-11-17 2014-01-22 가부시키가이샤 히다치 하이테크놀로지즈 Sample treatment device, sample treatment system, and method for treating a sample
JP5251994B2 (en) * 2010-08-06 2013-07-31 ウシオ電機株式会社 Light irradiation apparatus and light irradiation method
JP5598239B2 (en) * 2010-10-08 2014-10-01 ウシオ電機株式会社 Light irradiation device
JP2013229454A (en) * 2012-04-26 2013-11-07 Hitachi High-Technologies Corp Vuv processing unit and processing method having thickness monitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534926A (en) * 1991-07-30 1993-02-12 Sanee Giken Kk Exposing device
JP2001284235A (en) * 2000-03-31 2001-10-12 Canon Inc Projection exposure system and device manufacturing method
JP2009163205A (en) * 2007-12-31 2009-07-23 Lg Display Co Ltd Exposure apparatus and exposure method for photosensitive film
JP2009224377A (en) * 2008-03-13 2009-10-01 Tokyo Electron Ltd Method and apparatus of substrate treatment
JP2010066520A (en) * 2008-09-11 2010-03-25 Protec Co Ltd Light source device for exposure apparatus
JP2014209548A (en) * 2013-03-28 2014-11-06 ウシオ電機株式会社 Light irradiation device
JP2016192343A (en) * 2015-03-31 2016-11-10 ウシオ電機株式会社 Light source device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040026A (en) * 2019-09-03 2021-03-11 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and storage medium
JP7356847B2 (en) 2019-09-03 2023-10-05 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method, and storage medium
JP7100398B1 (en) 2021-05-06 2022-07-13 株式会社 ベアック Exposure device
WO2022234783A1 (en) * 2021-05-06 2022-11-10 株式会社 ベアック Exposure apparatus
JP2022173032A (en) * 2021-05-06 2022-11-17 株式会社 ベアック Exposure device

Also Published As

Publication number Publication date
JP6920469B2 (en) 2021-08-18
CN111492314A (en) 2020-08-04
KR20200097777A (en) 2020-08-19
TW201939169A (en) 2019-10-01
TWI804543B (en) 2023-06-11
JPWO2019131144A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
KR20230092846A (en) Substrate processing apparatus and method for processing substrates
WO2019131144A1 (en) Light irradiation device
JP2009164525A (en) Heat treatment apparatus
JP6894256B2 (en) Heat treatment method and heat treatment equipment
JP2010205577A (en) Method of lighting light source device
KR20190013471A (en) Exhaust method of heat treatment apparatus
KR20190024666A (en) Heat treatment apparatus and heat treatment method
US10795265B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP2008279396A (en) Ultraviolet irradiation device
US11798823B2 (en) Light irradiation type thermal process apparatus using a gas ring
KR20190033003A (en) Particle removal method and heat treatment apparatus
JP6847610B2 (en) Heat treatment equipment
JP4578051B2 (en) UV irradiation equipment
JP2016181641A (en) Heat processing device
JP5891255B2 (en) Heat treatment equipment
JP5349802B2 (en) Heat treatment equipment
JP2004119942A (en) Ultraviolet irradiation device
JP2015088663A (en) Substrate processing apparatus, and substrate processing method
TWI713118B (en) Heat treatment apparatus
JP2009302131A (en) Heat treatment apparatus
JP4983829B2 (en) UV irradiation equipment
JP2020160136A (en) Lamp module and liquid crystal panel manufacturing device
JP2024053196A (en) Light heating device
JP2022158150A (en) Substrate processing device and substrate processing method
JP2022106561A (en) Thermal processing device and thermal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020141

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18897684

Country of ref document: EP

Kind code of ref document: A1