WO2019131129A1 - 非水電解質二次電池用正極活物質の製造方法 - Google Patents

非水電解質二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2019131129A1
WO2019131129A1 PCT/JP2018/045667 JP2018045667W WO2019131129A1 WO 2019131129 A1 WO2019131129 A1 WO 2019131129A1 JP 2018045667 W JP2018045667 W JP 2018045667W WO 2019131129 A1 WO2019131129 A1 WO 2019131129A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium metal
active material
composite oxide
electrode active
Prior art date
Application number
PCT/JP2018/045667
Other languages
English (en)
French (fr)
Inventor
孝哉 杤尾
敏信 金井
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880082277.XA priority Critical patent/CN111512478B/zh
Priority to JP2019562952A priority patent/JP7178615B2/ja
Priority to US16/957,180 priority patent/US11616227B2/en
Priority to CN202311015772.8A priority patent/CN117185362A/zh
Priority to EP18897129.5A priority patent/EP3734721B1/en
Publication of WO2019131129A1 publication Critical patent/WO2019131129A1/ja
Priority to JP2022176010A priority patent/JP7345125B2/ja
Priority to US18/111,204 priority patent/US20230216046A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method of manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • Secondary batteries such as lithium ion secondary batteries are one type of non-aqueous electrolyte secondary batteries, and are used in a wide range of fields such as mobile phones, digital cameras, notebook PCs, hybrid cars, electric cars and the like.
  • a lithium metal oxide is used as a positive electrode active material
  • a carbon material such as graphite is mainly used as a negative electrode active material.
  • Patent Document 1 describes a general formula Li z Ni 1 -xy Co x M y O 2 (where, 0.10 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0 .35, 0.97 V z 1.
  • M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and the primary particles are aggregated
  • An alkaline solution in which a tungsten compound is dissolved is added to and mixed with the lithium metal composite oxide powder consisting of secondary particles formed by mixing, and the resulting mixture is heat-treated to obtain fine particles containing W and Li
  • the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries formed in the surface of the primary particle of the said lithium metal complex oxide powder is disclosed.
  • the general formula Li z Ni 1 -xy Co x M y O 2 (where 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0.95 ⁇ z)
  • Primary particle represented by ⁇ 1.30, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and secondary particles formed by aggregation of primary particles Heat treatment of a tungsten mixture in which a lithium metal composite oxide powder is mixed with a lithium-free tungsten compound powder to form a lithium tungstate compound on the primary particle surface of the lithium metal composite oxide
  • a method of manufacturing a positive electrode active material is disclosed.
  • JP 2012-79464 A JP, 2016-127004, A
  • lithium metal composite oxides are excellent positive electrode active materials, There is a problem that the discharge capacity at low temperature decreases.
  • the formation of particles containing W and Li on the primary particle surface of the lithium metal composite oxide improves the discharge capacity at a low temperature.
  • W and Li are contained on the primary particle surface of the lithium metal composite oxide having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, using the methods disclosed in Patent Documents 1 and 2 above. Even if particles are formed, the discharge capacity at low temperatures is hardly improved.
  • an object of the present disclosure is to use a lithium metal composite oxide having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, and a secondary non-aqueous electrolyte capable of improving the discharge capacity at low temperatures. It is providing the manufacturing method of the positive electrode active material for batteries.
  • the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery which is one embodiment of the present disclosure, the general formula Li z Ni 1-x-y Co x M y O 2 (where, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.1, 0.97 ⁇ z ⁇ 1.20, M represents at least one element selected from Mn, W, Mg, Mo, Nb, Ti, Si, and Al)
  • the addition amount of the alkaline solution is The content is 0.1 to 10% by mass with respect to the lithium metal composite oxide powder.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery capable of improving the discharge capacity at a low temperature can be obtained.
  • a lithium metal composite oxide comprising a primary particle represented by at least one element selected from W, Mg, Mo, NbTi, Si and Al) and a secondary particle constituted by aggregation of the primary particle,
  • a primary particle represented by at least one element selected from W, Mg, Mo, NbTi, Si and Al
  • secondary particle constituted by aggregation of the primary particle
  • the tungsten compound powder is difficult to disperse in the secondary particles, so the inside of the secondary particles It is difficult to form particles containing W and Li on the primary particle surface, and the discharge capacity at low temperature can not be sufficiently improved.
  • the alkaline solution can be dispersed to the inside of secondary particles, It is possible to form particles containing W and Li on the primary particle surface inside the secondary particles.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment, the general formula Li z Ni 1-x-y Co x M y O 2 ( where, 0 ⁇ x ⁇ 0.1,0 ⁇ y Primary particle represented by ⁇ 0.1, 0.97 ⁇ z ⁇ 1.20, M is at least one element selected from Mn, W, Mg, Mo, NbTi, Si and Al, and the above primary
  • the amount added is the above-mentioned lithium It is characterized in that it is 0.1 to 10% by mass with respect
  • the predetermined amount of the alkaline solution in which the tungsten compound is dissolved is added to the lithium metal composite oxide powder and mixed, thereby dispersing the alkaline solution to the inside of the secondary particles of the lithium metal composite oxide. And, excessive elution of Li in the lithium metal composite oxide to the alkaline solution side can be suppressed. That is, according to the manufacturing method according to the present embodiment, excessive elution of Li in the lithium metal composite oxide is suppressed, and particles containing W and Li are formed on the primary particle surface inside the secondary particles.
  • the positive electrode active material for nonaqueous electrolyte secondary batteries which can suppress the fall of the discharge capacity in low temperature is obtained.
  • an alkaline solution in which a tungsten compound is dissolved (hereinafter, an alkaline solution in which a tungsten compound is dissolved) in a lithium metal composite oxide powder consisting of primary particles and secondary particles composed of aggregated primary particles.
  • This is a process of adding a predetermined amount of an alkali solution (W) and mixing.
  • W alkali solution
  • Lithium metal composite oxide powder represented by the general formula Li z Ni 1-x-y Co x M y O 2 ( where, 0 ⁇ x ⁇ 0.1,0 ⁇ y ⁇ 0.10,0.97 ⁇ z ⁇ 1
  • M is a primary particle represented by Mn, W, Mg, Mo, Nb, Ti, Si, and at least one element selected from Al, and a secondary particle formed by aggregation of the primary particle.
  • a lithium metal composite oxide powder consisting of particles is used.
  • x in the general formula is preferably 0 ⁇ x ⁇ 0.06
  • y in the general formula is preferably 0 ⁇ y ⁇ 0. More preferably, .06.
  • the lithium metal composite oxide powder is composed of primary particles and secondary particles formed by aggregation of primary particles in terms of improvement of output characteristics of the non-aqueous electrolyte secondary battery, etc. It is preferred to have possible voids and grain boundaries.
  • the average particle size of the primary particles is, for example, preferably 500 nm or less, and more preferably in the range of 50 nm to 300 nm.
  • the average particle size of the primary particles is the average value of the major axis of each of 10 primary particles obtained from the cross-sectional SEM image of the particles.
  • the average particle diameter of the secondary particles is, for example, preferably in the range of 1 ⁇ m to 50 ⁇ m, and more preferably in the range of 5 ⁇ m to 20 ⁇ m.
  • the average particle size of the secondary particles is a volume average particle size measured by a laser diffraction method.
  • the alkaline solution (W) may be prepared, for example, by adding and dissolving a tungsten compound while stirring the alkaline solution using a reaction vessel with a stirrer. It is preferable that the tungsten compound be completely dissolved in the alkaline solution from the uniformity of dispersion.
  • the tungsten compound may be one that can be dissolved in an alkali solution, and it is preferable to use a tungsten compound that is easily soluble in alkali, such as tungsten oxide, lithium tungstate, ammonium tungstate and the like.
  • the amount of tungsten dissolved in the alkaline solution is preferably an amount necessary to form particles containing W and Li on the primary particle surface of the lithium metal composite oxide, for example, nickel contained in the lithium metal composite oxide Preferably, it is 0.01 to 1.0 mol% with respect to the total molar amount of cobalt and M.
  • the tungsten concentration of the alkaline solution (W) is, for example, preferably 0.05 mol / L or more, and more preferably 0.05 to 2 mol / L. If the amount is less than 0.05 mol / l, the tungsten concentration is low, so the amount of particles containing W and Li formed on the primary particle surface is reduced, and the discharge capacity at low temperature is reduced compared to the case where the above range is satisfied. May.
  • an alkali used for an alkaline solution it is preferable to use the general alkaline solution which does not contain a harmful
  • the amount of lithium hydroxide is preferably 1.5 to 10.0 in atomic ratio to W. The use of lithium hydroxide in this range facilitates the formation of particles containing W and Li on the primary particle surface.
  • the alkaline solution is preferably an aqueous solution, since the alkaline solution (W) is dispersed in the secondary particles of the lithium metal composite oxide.
  • solvents such as alcohol with high volatility
  • a solvent may evaporate, before an alkaline solution (W) penetrates inside a secondary particle.
  • the pH of the alkaline solution may be any pH at which the tungsten compound is dissolved, and is preferably 9 to 12.
  • the pH is less than 9, the elution amount of lithium in the lithium metal composite oxide is large, and the improvement effect of the discharge capacity at low temperature may be reduced as compared with the case where the above range is satisfied.
  • the pH exceeds 12, the amount of excess alkali remaining in the lithium metal composite oxide is too much, and the battery characteristics may be deteriorated.
  • the alkaline solution (W) it is preferable to add and mix the alkaline solution (W) while stirring the lithium metal composite oxide powder.
  • the addition amount of the alkaline solution (W) may be 0.1 to 10% by mass with respect to the lithium metal composite oxide powder in order to suppress the elution amount of lithium in the lithium metal composite oxide, but 0
  • the content is preferably 1 to 3.0% by mass.
  • the primary particle which can not be contacted with an alkaline solution (W) increases that the addition amount of an alkaline solution (W) is less than 0.1 mass% with respect to lithium metal complex oxide powder.
  • W alkaline solution
  • the temperature of the alkali solution (W) when added to the lithium metal composite oxide powder is preferably in the range of 60 ° C. to 90 ° C. in terms of improvement of discharge capacity at low temperature.
  • the temperature of the alkaline solution (W) exceeds 90 ° C., drying of the alkaline solution (W) becomes fast, and there is a possibility that the dispersion may not be sufficiently dispersed (penetrated) inside the secondary particles.
  • the temperature of the alkaline solution (W) is less than 60 ° C., the solubility of W in the alkaline solution decreases, and there is a risk that particles containing W and Li may precipitate before being sufficiently dispersed in the secondary particles. is there.
  • the temperature of the alkaline solution (W) is 60 ° C. to 90 ° C. Compared to the case, the discharge capacity at low temperature may be reduced.
  • the alkali solution By mixing with the lithium metal complex oxide powder while spraying or dropping the alkali solution (W) using a common mixer, the alkali solution (to the extent that the form of the lithium metal complex oxide powder is not destroyed W) can be mixed well.
  • a general mixer for example, T.K. K. Hibis mix, shaker mixer, Loedige mixer, Julia mixer, V blender, etc. can be used.
  • the step of washing the lithium metal composite oxide powder with water may be provided before the first step in order to improve the battery capacity and the safety.
  • This water washing may be performed by a known method and conditions, and may be performed in a range in which lithium is eluted from the lithium metal composite oxide and the battery characteristics are not deteriorated.
  • the water content after mixing with the alkaline solution (W) is the dried lithium metal complex oxide powder and the alkaline solution (W) It is preferred not to exceed the maximum moisture content of the mixture.
  • lithium when the water content is increased, lithium may be eluted from the lithium metal composite oxide, and the improvement effect of the discharge capacity at a low temperature may be reduced.
  • the lithium metal composite oxide is washed with water and then dried and then mixed with an alkali solution (W), the number of times of drying may increase and productivity may decrease.
  • the second step is a step of heat treating the mixed alkali solution (W) and the lithium metal composite oxide powder.
  • W in the alkaline solution (W) and Li in the alkaline solution (W) or Li eluted from the lithium metal complex oxide particles containing W and Li can be used as a primary lithium metal complex oxide. It can be formed on the surface of particles.
  • the addition amount of the alkaline solution (W) is an appropriate amount as described above, excessive elution of Li from the lithium metal composite oxide is suppressed.
  • the heat treatment method is not particularly limited, in order to prevent deterioration of the electrical characteristics when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, the heat treatment may be performed at a temperature of 100 to 600 ° C. in an oxygen atmosphere or a vacuum atmosphere. preferable.
  • the heat treatment temperature is less than 100 ° C., evaporation of water may not be sufficient, and particles containing W and Li may not be sufficiently formed on the surface of the primary particles of the lithium metal composite oxide.
  • the heat treatment temperature exceeds 600 ° C., the primary particles of the lithium metal composite oxide may be sintered and a part of W may be dissolved in the lithium metal composite oxide. That is, in any case, the improvement effect of the discharge capacity at a low temperature may be reduced as compared with the case where the heat treatment temperature is 100 to 600 ° C.
  • the atmosphere during the heat treatment is preferably an oxidizing atmosphere such as an oxygen atmosphere or a vacuum atmosphere to avoid reaction with moisture and carbonic acid in the atmosphere.
  • the heat treatment time is not particularly limited, but preferably 2 to 10 hours in order to fully evaporate the water content of the alkaline solution (W) to form particles containing W and Li.
  • the non-aqueous electrolyte secondary battery according to the present embodiment accommodates, for example, an electrode body in which an electrode (positive electrode, negative electrode) and a separator are stacked or wound together with a non-aqueous electrolyte in a container such as a battery can or laminate. Obtained by The positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte in the present embodiment are, for example, as follows.
  • the positive electrode includes, for example, a positive electrode current collector such as a metal foil, and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil
  • a positive electrode mixture layer formed on the positive electrode current collector.
  • a foil of a metal stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface, or the like can be used.
  • the positive electrode mixture layer preferably contains a positive electrode active material, and additionally contains a conductive material, a binder and the like.
  • the positive electrode is prepared, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder and the like on the positive electrode current collector, drying the coated film, and rolling to obtain a positive electrode mixture layer. It can be produced by forming on both sides of the current collector.
  • the positive electrode active material includes the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the manufacturing method according to the present embodiment described above.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the manufacturing method according to the present embodiment has, for example, the general formula Li z Ni 1 -x-y Co x M y O 2 (where 0 ⁇ x ⁇ 0.1).
  • a lithium metal composite oxide powder comprising particles and secondary particles formed by aggregation of the primary particles, and particles containing W and Li formed on the surface of primary particles of the lithium metal composite oxide powder It is a positive electrode active material.
  • carbon powders such as carbon black, acetylene black, ketjen black, and graphite may be used alone or in combination of two or more.
  • binder examples include fluorine-based polymers and rubber-based polymers.
  • fluorine-based polymer polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or a modified product thereof, etc.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • a rubber-based polymer ethylene-propylene-isoprene copolymer, ethylene-propylene-butadiene copolymer A combination etc. are mentioned and you may use these individually or in combination of 2 or more types.
  • the negative electrode includes, for example, a negative electrode current collector such as a metal foil, and a negative electrode mixture layer formed on the negative electrode current collector.
  • a negative electrode current collector such as a metal foil
  • a negative electrode mixture layer formed on the negative electrode current collector.
  • the negative electrode current collector a foil of a metal stable in the potential range of the negative electrode such as copper, a film in which the metal is disposed on the surface, or the like can be used.
  • the negative electrode mixture layer preferably contains a negative electrode active material, and additionally contains a thickener, a binder and the like.
  • a negative electrode mixture slurry in which water is dispersed in water at a predetermined weight ratio of a negative electrode active material, a thickener, and a binder is applied onto the negative electrode current collector, and the coating is dried. Then, it can be manufactured by rolling and forming a negative electrode mixture layer on both sides of the negative electrode current collector.
  • a carbon material capable of absorbing and releasing lithium ions can be used, and in addition to graphite, non-graphitizable carbon, graphitizable carbon, fibrous carbon, coke, carbon black and the like should be used.
  • graphite non-graphitizable carbon
  • graphitizable carbon graphitizable carbon
  • fibrous carbon coke, carbon black and the like should be used.
  • silicon, tin and alloys or oxides mainly composed of these can be used as non-carbon materials.
  • PTFE polystyrene-butadiene copolymer
  • SBR styrene-butadiene copolymer
  • CMC Carboxymethyl cellulose
  • Nonaqueous solvent (organic solvent) of the nonaqueous electrolyte carbonates, lactones, ethers, ketones, esters and the like can be used, and two or more of these solvents can be mixed and used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate
  • linear carbonates such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate
  • mixed solvents of cyclic carbonate and linear carbonate and the like.
  • electrolyte salt of the non-aqueous electrolyte LiPF 6 , LiBF 4 , LICF 3 SO 3 or the like and mixtures thereof can be used.
  • the amount of electrolyte salt dissolved in the non-aqueous solvent can be, for example, 0.5 to 2.0 mol / L.
  • a porous sheet or the like having ion permeability and insulation is used.
  • the porous sheet include a microporous thin film, a woven fabric, a non-woven fabric and the like.
  • olefin resins such as polyethylene and polypropylene, cellulose and the like are preferable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • it may be a multilayer separator including a polyethylene layer and a polypropylene layer, and may be a separator in which a material such as an aramid resin or a ceramic is coated on the surface of the separator.
  • Example 1 [Production of positive electrode active material] 80 g of pure water was added to 100 g of a lithium metal composite oxide powder represented by Li 1.03 Ni 0.91 Co 0.045 Al 0.045 O 2 (average particle diameter 12 ⁇ m of secondary particles) and mixed for 5 minutes The mixture was then filtered and separated to prepare a lithium metal composite oxide powder whose moisture content was adjusted to 5%. Also, by adding 1.19 g of tungsten oxide (WO 3 ) to an aqueous solution of 0.21 g of lithium hydroxide (LiOH) dissolved in 10 ml of pure water and stirring, an alkaline solution containing tungsten ( W) got.
  • tungsten oxide WO 3
  • LiOH lithium hydroxide
  • an alkaline solution (W) at 25 ° C. is sprayed while stirring 100 g of the lithium metal composite oxide powder using a mixing apparatus (TK Hibis Mix, manufactured by Primix Co., Ltd.) to obtain an alkaline solution.
  • a mixture of (W) and lithium metal composite oxide powder was obtained.
  • the obtained mixture is placed in a magnesia baking vessel, heated in a vacuum to 180 ° C. at a temperature rising rate of 3 ° C./min, heat treated for 3 hours, and thereafter furnace cooled to room temperature.
  • the positive electrode active material was obtained.
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide. Moreover, when the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Example 2 A positive electrode active material was produced in the same manner as in Example 1 except that 2 g of an alkaline solution (W) at 70 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • W alkaline solution
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Example 3 A positive electrode active material was produced in the same manner as in Example 1 except that 0.3 g of an alkaline solution (W) at 25 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • W alkaline solution
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.03 mol% with respect to the total mole number of Ni, Co, and Al.
  • Example 4 Tungsten-containing alkaline solution (W) by adding 0.476 g of tungsten oxide (WO 3 ) to an aqueous solution of 0.084 g of lithium hydroxide (LiOH) dissolved in 10 ml of pure water and stirring.
  • tungsten oxide WO 3
  • LiOH lithium hydroxide
  • a positive electrode active material was produced in the same manner as in Example 1 except that 5 g of the alkaline solution (W) at 70 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 1 A positive electrode active material was produced in the same manner as in Example 1 except that 0.5 g of tungsten oxide powder was added to 100 g of the lithium metal composite oxide powder. When the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide. Moreover, when the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.2 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 2 A positive electrode active material was produced in the same manner as in Example 1 except that 20 g of an alkaline solution (W) at 25 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • W alkaline solution
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 1.0 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 3 The lithium metal complex oxide powder whose moisture content was adjusted to 5% in Example 1 was placed in a magnesia baking vessel, heated in vacuum to a temperature of 180 ° C. at a heating rate of 3 ° C./min, and heat treated for 3 hours. Thereafter, furnace cooling to room temperature was performed to obtain a positive electrode active material of Comparative Example 3.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • LiPF 6 lithium hexafluorophosphate
  • test cell The positive electrode of Example 1 and a negative electrode made of lithium metal foil were laminated so as to face each other via a separator, and this was wound to fabricate an electrode body. Then, the electrode body and the non-aqueous electrolyte were inserted into an aluminum outer package to prepare a test cell. Test cells were produced in the same manner as in the other examples and comparative examples.
  • the alkaline solution in which a tungsten compound is dissolved in a lithium metal composite oxide powder having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, the alkaline solution
  • the positive electrode active material manufactured by setting the addition amount of in the range of 0.1 to 10% by mass with respect to the lithium metal complex oxide powder is used.
  • Comparative Example 1 using a positive electrode active material produced by adding and mixing a tungsten compound powder to a lithium metal composite oxide powder in which the ratio of nickel is high and the ratio of cobalt is 10 mol% or less, Comparative Example 2 In the step of adding an alkaline solution having a tungsten compound dissolved therein to a lithium metal composite oxide powder having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, the amount of the alkaline solution added is The positive electrode active material manufactured as 20 mass% with respect to the said lithium metal complex oxide powder is used.
  • Example 5 The same as in Example 1 except that a lithium metal composite oxide powder represented by Li 1.03 Ni 0.91 Co 0.06 Al 0.03 O 2 (average particle diameter of secondary particles 12 ⁇ m) was used A positive electrode active material was produced.
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Example 6 A positive electrode active material was produced in the same manner as in Example 5 except that 2 g of an alkaline solution (W) at 70 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • W alkaline solution
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 4 A positive electrode active material was produced in the same manner as in Example 5 except that 0.5 g of tungsten oxide powder was added to 100 g of the lithium metal composite oxide powder.
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.2 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 5 The lithium metal complex oxide powder whose moisture content was adjusted to 5% in Example 5 was placed in a magnesia baking vessel, heated in vacuum to a temperature of 180 ° C. at a heating rate of 3 ° C./min, and heat treated for 3 hours. Thereafter, furnace cooling to room temperature was performed to obtain a positive electrode active material of Comparative Example 5.
  • Example 5 and 6 and Comparative Examples 4 and 5 were charged and discharged under the same conditions as described above, and the initial discharge capacity and the discharge capacity at a low temperature were measured. The results are shown in Table 2.
  • the improvement rate of the discharge capacity at a low temperature shown in Table 2 is the discharge capacity at a low temperature of the test cell of Comparative Example 5 as 100% (reference), and the improvement rate of the discharge capacity at a low temperature It is a relative expression of discharge capacity.
  • Examples 5 to 6 in the step of adding and mixing an alkaline solution in which a tungsten compound is dissolved in a lithium metal composite oxide powder having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, the alkaline solution
  • the positive electrode active material manufactured by setting the addition amount of in the range of 0.1 to 10% by mass with respect to the lithium metal complex oxide powder is used.
  • Comparative Example 4 a positive electrode active material manufactured by adding and mixing a tungsten compound powder to a lithium metal composite oxide powder in which the ratio of nickel is high and the ratio of cobalt is 10 mol% or less is used.
  • Example 5 to 6 and Comparative Example 4 are compared, the improvement rate of the discharge capacity at a low temperature is greatly increased as compared with Comparative Example 4 in any of Examples 5 to 6.
  • Example 5 to 6 in Example 6 in which the temperature of the alkali solution was 70 ° C. when added to the lithium metal composite oxide powder, the improvement rate of the discharge capacity at a low temperature was most increased.
  • Example 7 Li 1.03 Ni 0.92 Co 0.02 Al 0.05 Mn 0.01 O 2 Example except using lithium metal complex oxide powder (average particle diameter of secondary particles 12 ⁇ m) A positive electrode active material was produced in the same manner as in 1. When the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide. Moreover, when the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Example 8 A positive electrode active material was produced in the same manner as in Example 7 except that 2 g of an alkaline solution (W) at 70 ° C. was sprayed onto 100 g of the lithium metal composite oxide powder.
  • W alkaline solution
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.1 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 6 A positive electrode active material was produced in the same manner as in Example 7 except that 0.5 g of tungsten oxide powder was added to 100 g of the lithium metal composite oxide powder.
  • the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide.
  • the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.2 mol% with respect to the total mole number of Ni, Co, and Al.
  • Comparative Example 7 The lithium metal complex oxide powder whose moisture content was adjusted to 5% in Example 7 was placed in a magnesia baking vessel, heated in vacuum to a temperature of 180 ° C. at a heating rate of 3 ° C./min, and heat treated for 3 hours. Thereafter, furnace cooling to room temperature was performed to obtain a positive electrode active material of Comparative Example 7.
  • Example 7 and 8 and Comparative Examples 6 and 7 were charged and discharged under the same conditions as above, and the initial discharge capacity and the discharge capacity at low temperature were measured.
  • the results are shown in Table 3.
  • the improvement rate of the discharge capacity at a low temperature shown in Table 3 is the discharge capacity at a low temperature of the test cell of Comparative Example 7 as 100% (reference), and the improvement rate of the discharge capacity at a low temperature of other Examples and Comparative Examples. It is a relative expression of discharge capacity.
  • Examples 7 to 8 in the step of adding and mixing an alkaline solution in which a tungsten compound is dissolved into a lithium metal composite oxide powder having a high proportion of nickel and a proportion of cobalt of 10 mol% or less, the alkaline solution
  • the positive electrode active material manufactured by setting the addition amount of in the range of 0.1 to 10% by mass with respect to the lithium metal complex oxide powder is used.
  • Comparative Example 6 a positive electrode active material manufactured by adding and mixing a tungsten compound powder to a lithium metal composite oxide powder in which the ratio of nickel is high and the ratio of cobalt is 10 mol% or less is used.
  • Example 7 to 8 and Comparative Example 6 are compared, the improvement rate of the discharge capacity at a low temperature is greatly increased as compared with Comparative Example 6 in any of Examples 7 to 8.
  • Example 8 in which the temperature of the alkali solution was 70 ° C. when added to the lithium metal composite oxide powder, the improvement rate of the discharge capacity at a low temperature was most increased.
  • Reference Example 1 [Production of positive electrode active material] 0.5 g of tungsten oxide powder was added to 100 g of lithium metal composite oxide powder (average particle diameter of 12 ⁇ m of secondary particles) represented by Li 1.03 Ni 0.82 Co 0.15 Al 0.03 O 2 A positive electrode active material was produced in the same manner as in Example 1 except for the above. When the obtained positive electrode active material was analyzed by SEM / EDS, it was confirmed that particles containing W and Li were formed on the primary particle surface of the lithium metal composite oxide. Moreover, when the tungsten content of the obtained positive electrode active material was analyzed by the ICP method, it was 0.2 mol% with respect to the total mole number of Ni, Co, and Al. And except having used the obtained positive electrode active material, the test cell was produced similarly to Example 1. FIG.
  • Reference Example 3 A test cell was prepared in the same manner as in Example 1 except that a lithium metal composite oxide powder represented by Li 1.03 Ni 0.82 Co 0.15 Al 0.03 O 2 was used as a positive electrode active material. .
  • the test cells of each reference example were charged and discharged under the same conditions as above, and the initial discharge capacity and the discharge capacity at a low temperature were measured. The results are shown in Table 2.
  • the improvement rate of the discharge capacity at a low temperature shown in Table 2 is the discharge capacity at a low temperature of the other reference example relative to the discharge capacity at a low temperature of the test cell of the reference example 3 being 100%. It is a representation.
  • Reference Example 1 using a positive electrode active material produced by adding and mixing a tungsten compound powder to a lithium metal composite oxide powder in which the ratio of nickel is high and the ratio of cobalt exceeds 10 mol%, Reference Example 2 In the step of adding an alkaline solution in which a tungsten compound is dissolved to a lithium metal composite oxide powder having a high proportion of nickel and a proportion of cobalt exceeding 10 mol%, the amount of the alkaline solution added is The positive electrode active material manufactured as 2 mass% with respect to the said lithium metal complex oxide powder is used. In all of these reference examples 1 and 2, as shown in Table 2, the improvement rate of the discharge capacity at a low temperature did not increase significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本開示の一態様である非水電解質二次電池用正極活物質の製造方法は、一般式LizNi1-x-yCoxMyO2(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、Nb、Ti、Si、及びAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する第1工程と、混合した前記アルカリ溶液と前記リチウム金属複合酸化物粉末を100~600℃で熱処理する第2工程と、を有し、前記第1工程において、前記アルカリ溶液の添加量は、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%である。

Description

非水電解質二次電池用正極活物質の製造方法
 本開示は、非水電解質二次電池用正極活物質の製造方法に関する。
 リチウムイオン二次電池等の二次電池は、非水電解質二次電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン二次電池は、正極活物質としてリチウム金属酸化物を用い、負極活物質としてグラファイトなどの炭素材を用いるものが主流となっている。
 正極活物質の製造方法として、例えば、特許文献1には、一般式LiNi1-x-yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合し、得られた混合物を熱処理することにより、WおよびLiを含む微粒子を、前記リチウム金属複合酸化物粉末の一次粒子の表面に形成する非水電解質二次電池用正極活物質の製造方法が開示されている。
 また、例えば、特許文献2には、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、リチウムを含有しないタングステン化合物粉末を混合したタングステン混合物を熱処理することにより、リチウム金属複合酸化物の一次粒子表面にタングステン酸リチウム化合物を形成する非水電解質二次電池用正極活物質の製造方法が開示されている。
特開2012-79464号公報 特開2016-127004号公報
 ところで、ニッケルの比率が高く、コバルトの比率が10モル%以下である(上記一般式で言えば、0≦x≦0.1)リチウム金属複合酸化物は、優れた正極活物質であるが、低温での放電容量が低下するという問題がある。
 一般的に、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子を形成することで、低温での放電容量が改善される。しかし、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物の一次粒子表面に、上記特許文献1及び2に開示されている方法を用いて、W及びLiを含む粒子を形成しても、低温での放電容量はほとんど改善されない。
 そこで、本開示の目的は、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物を用いつつ、低温での放電容量を改善することが可能な非水電解質二次電池用正極活物質の製造方法を提供することである。
 本開示の一態様である非水電解質二次電池用正極活物質の製造方法は、一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、Nb、Ti、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する第1工程と、混合した前記アルカリ溶液と前記リチウム金属複合酸化物粉末を熱処理することにより、W及びLiを含む粒子を、前記リチウム金属複合酸化物粉末の一次粒子の表面に形成する第2工程と、を有し、前記第1工程において、前記アルカリ溶液の添加量は、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%であることを特徴とする。
 本開示の一態様によれば、低温での放電容量を改善することが可能な非水電解質二次電池用正極活物質が得られる。
 一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、NbTi、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物は、例えば、非水電解質二次電池の高エネルギー密度化を可能とする等の点で優れた正極活物質であるが、低温(例えば-10℃以下)での放電容量が低下するという問題がある。低温での放電容量を改善するためには、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子を形成することが考えられる。W及びLiを含む粒子は、リチウムイオン伝導性が高いため、W及びLiを含む粒子を一次粒子表面に形成することで、リチウム金属複合酸化物の反応抵抗が低減し、低温での放電容量が改善される。
 しかし、上記特許文献2の技術のように、リチウム金属複合酸化物粉末とタングステン化合物粉末とを混合して熱処理する方法では、タングステン化合物粉末が二次粒子内部に分散し難いため、二次粒子内部の一次粒子表面にW及びLiを含む粒子が形成され難く、低温での放電容量を十分に改善することができない。上記特許文献1の技術のように、リチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する方法では、当該アルカリ溶液を二次粒子内部まで分散させることができるため、二次粒子内部の一次粒子表面にW及びLiを含む粒子を形成することは可能である。しかし、本発明者らが鋭意検討した結果、一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、Nb、Ti、Si、及びAlから選ばれる少なくとも1種の元素)のように、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物を用いる場合に、上記アルカリ溶液の添加量が多いと、当該リチウム金属複合酸化物中のLiがアルカリ溶液側に過剰に溶出するため、当該リチウム金属複合酸化物自身の抵抗上昇等が生じ、低温での放電容量を十分に改善することができないことを見出した。そこで、本発明者らは更なる検討を進め、以下に示す態様の非水電解質二次電池用正極活物質の製造方法を想到するに至った。
 本実施形態に係る非水電解質二次電池用正極活物質の製造方法は、一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、NbTi、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する第1工程と、混合した前記アルカリ溶液と前記リチウム金属複合酸化物粉末を熱処理することにより、W及びLiを含む粒子を、前記リチウム金属複合酸化物粉末の一次粒子の表面に形成する第2工程と、を有し、前記第1工程において、前記アルカリ溶液の添加量は、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%であることを特徴とする。このように、上記リチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を上記所定量添加し、混合することで、当該アルカリ溶液をリチウム金属複合酸化物の二次粒子内部まで分散させ、且つリチウム金属複合酸化物中のLiがアルカリ溶液側に過剰に溶出することが抑えられる。すなわち、本実施形態に係る製造方法によれば、リチウム金属複合酸化物中のLiの過剰溶出が抑制され、また、W及びLiを含む粒子が二次粒子内部の一次粒子表面に形成されるため、低温での放電容量の低下を抑制することが可能な非水電解質二次電池用正極活物質が得られる。
 以下、本実施形態に係る非水電解質二次電池用正極活物質の製造方法を工程ごとに詳細に説明する。
 [第1工程]
 第1工程は、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液(以下、タングステン化合物を溶解させたアルカリ溶液をアルカリ溶液(W)と称す。)を所定量添加して混合する工程である。これにより、リチウム金属複合酸化物粉末の二次粒子外面に露出している一次粒子表面だけでなく、二次粒子内部の一次粒子表面に、アルカリ溶液(W)を接触させることができる。
 リチウム金属複合酸化物粉末は、一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.10、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、Nb、Ti、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末が用いられる。非水電解質二次電池の高エネルギー密度化を図る点等から、一般式中のxは、0≦x≦0.06であることが好ましく、さらに一般式中のyは、0≦y≦0.06であることがより好ましい。
 リチウム金属複合酸化物粉末は、非水電解質二次電池の出力特性の向上等の点で、一次粒子および一次粒子が凝集して構成された二次粒子からなり、二次粒子に電解液の浸透可能な空隙および粒界を有することが好ましい。一次粒子の平均粒径は、例えば、500nm以下であることが好ましく、50nm~300nmの範囲であることがより好ましい。一次粒子の平均粒子径は、粒子の断面SEM画像から、10個の一次粒子それぞれの長径を求め、それらの平均値である。二次粒子の平均粒径は、例えば、1μm~50μmの範囲であることが好ましく、5μm~20μmの範囲であることがより好ましい。二次粒子の平均粒径は、レーザー回折法によって測定される体積平均粒径である。
 アルカリ溶液(W)の調製方法は、例えば、撹拌装置付の反応槽を用いてアルカリ溶液を撹拌しながらタングステン化合物を添加して溶解すればよい。タングステン化合物は、アルカリ溶液に完全に溶解させることが、分散の均一性から好ましい。
 タングステン化合物は、アルカリ溶液に溶解可能なものであればよく、酸化タングステン、タングステン酸リチウム、タングステン酸アンモニウムなど、アルカリに対して易溶性のタングステン化合物を用いることが好ましい。
 アルカリ溶液に溶解させるタングステン量は、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子を形成させるために必要な量とすることが好ましく、例えば、リチウム金属複合酸化物に含まれるニッケル、コバルトおよびMの総モル量に対して、0.01~1.0モル%とすることが好ましい。
 また、アルカリ溶液(W)のタングステン濃度は、例えば、0.05mol/L以上であることが好ましく、0.05~2mol/lであることがより好ましい。0.05mol/l未満では、タングステン濃度が低いため、一次粒子表面に形成されるW及びLiを含む粒子の量が少なくなり、上記範囲を満たす場合と比較して、低温での放電容量が低下する場合がある。
 アルカリ溶液に用いるアルカリとしては、高い充放電容量を得る等の点で、正極活物質にとって有害な不純物を含まない一般的なアルカリ溶液を用いることが好ましい。不純物混入の虞がないアンモニア、水酸化リチウムを用いることが好ましく、特に水酸化リチウムを用いることが好ましい。水酸化リチウムを用いる場合には、水酸化リチウム量をWに対して原子比で1.5~10.0とすることが好ましい。この範囲の水酸化リチウムを用いることで、一次粒子表面にW及びLiを含む粒子の形成が容易となる。
 また、アルカリ溶液は、アルカリ溶液(W)を、リチウム金属複合酸化物の二次粒子内部に分散させること等から、水溶液であることが好ましい。なお、揮発性が高いアルコールなどの溶媒を制限するものではないが、当該溶媒を用いると、アルカリ溶液(W)が二次粒子内部に浸透する前に、溶媒が蒸発する虞がある。
 アルカリ溶液のpHは、タングステン化合物が溶解するpHであればよいが、9~12であることが好ましい。pHが9未満の場合には、リチウム金属複合酸化物中のリチウムの溶出量が多くなり、上記範囲を満たす場合と比較して、低温での放電容量の改善効果が低下する場合がある。また、pHが12を超えると、リチウム金属複合酸化物に残留する過剰なアルカリが多くなり過ぎて電池特性が劣化する虞がある。
 第1工程では、リチウム金属複合酸化物粉末を撹拌しながらアルカリ溶液(W)を添加し、混合することが好ましい。アルカリ溶液(W)の添加量は、リチウム金属複合酸化物中のリチウムの溶出量を抑えるために、リチウム金属複合酸化物粉末に対して、0.1~10質量%であればよいが、0.1~3.0質量%であることが好ましい。アルカリ溶液(W)の添加量が、リチウム金属複合酸化物粉末に対して10質量を超えると、リチウム金属複合酸化物中のリチウムが過剰に溶出されるため、リチウム金属複合酸化物自身の抵抗上昇等により、低温での放電容量の改善を十分に図ることができない。また、アルカリ溶液(W)の添加量が、リチウム金属複合酸化物粉末に対して0.1質量%未満であると、アルカリ溶液(W)と接触できない一次粒子が増加する。その結果、最終的に得られる正極活物質において、W及びLiを含む粒子が形成されていない一次粒子が多く存在するため、低温での放電容量の改善を十分に図ることができない。
 リチウム金属複合酸化物粉末に添加する際のアルカリ溶液(W)の温度は、低温での放電容量の改善の点で、60℃~90℃の範囲であることが好ましい。アルカリ溶液(W)の温度が90℃を超えると、アルカリ溶液(W)の乾燥が速くなり、二次粒子内部に十分に分散(浸透)しない虞がある。アルカリ溶液(W)の温度が60℃未満であると、アルカリ溶液に対するWの溶解度が低下し、二次粒子内部に十分に分散する前に、W及びLiを含む粒子が析出してしまう虞がある。すなわち、いずれの場合も、最終的に得られる正極活物質において、W及びLiを含む粒子が形成されていない一次粒子が多く存在するため、アルカリ溶液(W)の温度が60℃~90℃の場合と比較して、低温での放電容量が低下する場合がある。
 一般的な混合機を使用して、アルカリ溶液(W)を噴霧あるいは滴下しながら、リチウム金属複合酸化物粉末と混合することによって、リチウム金属複合酸化物粉末の形骸が破壊されない程度にアルカリ溶液(W)と十分に混合することができる。一般的な混合機として例えば、T.K.ハイビスミックスやシェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができる。
 本実施形態の製造方法においては、電池容量および安全性を向上させるために、第1工程の前に、リチウム金属複合酸化物粉末の水洗工程を設けてもよい。この水洗は、公知の方法および条件でよく、リチウム金属複合酸化物からリチウムが溶出して電池特性が劣化しない範囲で行えばよい。水洗した場合、固液分離のみで乾燥せずにアルカリ溶液(W)を噴霧、混合することが好ましい。固液分離のみで乾燥せずにアルカリ溶液(W)と混合する場合には、アルカリ溶液(W)との混合後の水分率が、乾燥したリチウム金属複合酸化物粉末とアルカリ溶液(W)の混合物の最大水分率を超えないようにすることが好ましい。なお、水分率が多くなると、リチウム金属複合酸化物からリチウムが溶出して、低温での放電容量の改善効果が低下する場合がある。リチウム金属複合酸化物を水洗後、乾燥してからアルカリ溶液(W)を混合する場合は、乾燥回数が増加するため生産性が低下する場合がある。
 [第2工程]
 第2工程は、混合したアルカリ溶液(W)とリチウム金属複合酸化物粉末を熱処理する工程である。これにより、アルカリ溶液(W)中のWと、アルカリ溶液(W)中のLiもしくはリチウム金属複合酸化物から溶出されたLiとから、WおよびLiを含む粒子を、リチウム金属複合酸化物の一次粒子の表面に形成することができる。なお、アルカリ溶液(W)の添加量は前述したように適切な量であるため、リチウム金属複合酸化物からLiが過剰に溶出されることは抑制される。
 熱処理方法は特に限定されないが、非水系電解質二次電池用正極活物質として用いたときの電気特性の劣化を防止するため、酸素雰囲気あるいは真空雰囲気中で100~600℃の温度で熱処理することが好ましい。熱処理温度が100℃未満では、水分の蒸発が十分ではなく、リチウム金属複合酸化物の一次粒子の表面にW及びLiを含む粒子が十分に形成されない場合がある。一方、熱処理温度が600℃を超えると、リチウム金属複合酸化物の一次粒子が焼結を起こすとともに一部のWがリチウム金属複合酸化物に固溶されてしまう場合がある。すなわち、いずれの場合も、熱処理温度が100~600℃の場合と比較して、低温での放電容量の改善効果が低下する場合がある。
 熱処理時の雰囲気は、雰囲気中の水分や炭酸との反応を避けるため、酸素雰囲気などのような酸化性雰囲気あるいは真空雰囲気とすることが好ましい。熱処理時間は、特に限定されないが、アルカリ溶液(W)の水分を十分に蒸発させて、W及びLiを含む粒子を形成するために2~10時間とすることが好ましい。
 なお、本実施形態に係る非水電解質二次電池は、例えば、電極(正極、負極)とセパレータとを積層又は巻回した電極体を非水電解質と共に電池缶やラミネート等の収容体に収容することにより得られる。本実施形態における正極、負極、セパレータ、非水電解質は、例えば以下の通りである。
 <正極>
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合材層とを備える。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
 正極合材層は、正極活物質を含み、その他に、導電材及び結着材等を含むことが好適である。正極は、例えば、正極活物質、導電材、結着材等を含む正極合材スラリーを正極集電体上に塗布し、塗膜を乾燥させた後、圧延して正極合材層を正極集電体の両面に形成することにより作製できる。
 正極活物質は、前述した本実施形態に係る製造方法により得られる非水電解質二次電池用正極活物質を含む。本実施形態に係る製造方法により得られる非水電解質二次電池用正極活物質は、例えば、一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.10、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、NbTi、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、前記リチウム金属複合酸化物粉末の一次粒子の表面に形成されたW及びLiを含む粒子とを有する正極活物質である。
 導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末を単独で、あるいは2種以上組み合わせて用いてもよい。
 結着材としては、フッ素系高分子、ゴム系高分子等が挙げられる。例えば、フッ素系高分子としてポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等、ゴム系高分子としてエチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられ、これらを単独で、あるいは2種以上を組み合わせて用いてもよい。
 <負極>
 負極は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極合材層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質を含み、その他に、増粘材、結着材等を含むことが好適である。負極は、例えば、負極活物質と、増粘材と、結着材とを所定の重量比として、水に分散させた負極合材スラリーを負極集電体上に塗布し、塗膜を乾燥させた後、圧延して負極合材層を負極集電体の両面に形成することにより作製できる。
 負極活物質としては、リチウムイオンの吸蔵・放出が可能な炭素材料を用いることができ、黒鉛の他に、難黒鉛性炭素、易黒鉛性炭素、繊維状炭素、コークス及びカーボンブラック等を用いることができる。さらに、非炭素系材料として、シリコン、スズ及びこれらを主とする合金や酸化物を用いることができる。
 結着材としては、正極の場合と同様にPTFE等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。増粘材としては、カルボキシメチルセルロース(CMC)等を用いることができる。
 <非水電解質>
 非水電解質の非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、ケトン類、エステル類等を用いることができ、これらの溶媒の2種以上を混合して用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、環状カーボネートと鎖状カーボネートの混合溶媒等を用いることができる。
 非水電解質の電解質塩としては、LiPF、LiBF、LICFSO等及びこれらの混合物を用いることができる。非水溶媒に対する電解質塩の溶解量は、例えば0.5~2.0mol/Lとすることができる。
 <セパレータ>
 セパレータには、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質の製造]
 Li1.03Ni0.91Co0.045Al0.045で表されるリチウム金属複合酸化物粉末(二次粒子の平均粒径12μm)100gに純水80gを加え、5分混ぜた後に濾過・分離し、水分率を5%に調整したリチウム金属複合酸化物粉末を準備した。また、10mlの純水に0.21gの水酸化リチウム(LiOH)を溶解した水溶液中に、1.19gの酸化タングステン(WO)を添加して撹拌することにより、タングステンを含有したアルカリ溶液(W)を得た。
 次に、混合装置(T.K.ハイビスミックス、プライミクス株式会社製)を用いて上記リチウム金属複合酸化物粉末100gを撹拌しながら、25℃のアルカリ溶液(W)を2g噴霧して、アルカリ溶液(W)とリチウム金属複合酸化物粉末の混合物を得た。得られた混合物を、マグネシア製焼成容器に入れ、真空中において、昇温速度3℃/分で180℃まで昇温して3時間熱処理し、その後室温まで炉冷することにより、実施例1の正極活物質を得た。
 得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <実施例2>
 上記リチウム金属複合酸化物粉末100gに、70℃のアルカリ溶液(W)を2g噴霧したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <実施例3>
 上記リチウム金属複合酸化物粉末100gに、25℃のアルカリ溶液(W)を0.3g噴霧したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.03モル%であった。
 <実施例4>
 10mlの純水に0.084gの水酸化リチウム(LiOH)を溶解した水溶液中に、0.476gの酸化タングステン(WO)を添加して撹拌することにより、タングステンを含有したアルカリ溶液(W)を得た。上記リチウム金属複合酸化物粉末100gに、70℃の上記アルカリ溶液(W)を5g噴霧したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <比較例1>
 上記リチウム金属複合酸化物粉末100gに、酸化タングステン粉末0.5gを添加したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.2モル%であった。
 <比較例2>
 上記リチウム金属複合酸化物粉末100gに、25℃のアルカリ溶液(W)を20g噴霧したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、1.0モル%であった。
 <比較例3>
 実施例1において水分率を5%に調整した上記リチウム金属複合酸化物粉末をマグネシア製焼成容器に入れ、真空中において、昇温速度3℃/分で180℃まで昇温して3時間熱処理し、その後室温まで炉冷することにより、比較例3の正極活物質を得た。
 [正極の作製]
 実施例1の正極活物質を91質量部、導電材としてアセチレンブラックを7質量部、結着剤としてポリフッ化ビニリデンを2質量部の割合で混合した。当該混合物を混練機(T.K.ハイビスミックス、プライミクス株式会社製)を用いて混練し、正極合材スラリーを調製した。次いで、正極合材スラリーを厚さ15μmのアルミニウム箔に塗布し、塗膜を乾燥してアルミニウム箔に正極合材層を形成した。これを実施例1の正極とした。その他の実施例及び比較例も同様にして正極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 実施例1の正極と、リチウム金属箔からなる負極とを、セパレータを介して互いに対向するように積層し、これを巻回して、電極体を作製した。次いで、電極体及び上記非水電解質をアルミニウム製の外装体に挿入し、試験セルを作製した。その他の実施例及び比較例も同様にして試験セルを作製した。
 [初期放電容量の測定]
 環境温度25℃の下、各実施例及び各比較例の試験セルを0.2Cの定電流で電池電圧が4.3Vになるまで定電流充電した後、電流値が0.05mAになるまで4.3Vで定電圧充電し、0.2Cの定電流で電池電圧が2.5Vになるまで定電流放電した。この時の放電容量を測定した。これを初期放電容量として、表1に示す。
 [低温での放電容量の測定]
 上記充放電を行った各実施例及び各比較例の試験セルに対して、環境温度25℃で上記と同様の条件で充電した後、環境温度-30℃の下30分保持した後、環境温度-30℃で上記と同様の条件で放電を行った。この時の放電容量を測定し、その結果を表1に示す。なお、表1に示す低温での放電容量の改善率は、比較例3の試験セルの低温での放電容量を100%(基準)として、その他の実施例及び比較例の試験セルの低温での放電容量を相対的に表したものである。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する工程において、前記アルカリ溶液の添加量を、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%の範囲として製造した正極活物質を用いている。一方、比較例1では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末にタングステン化合物粉末を添加、混合して製造した正極活物質を用い、比較例2では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する工程において、前記アルカリ溶液の添加量を、前記リチウム金属複合酸化物粉末に対して、20質量%として製造した正極活物質を用いている。これらの実施例1~3及び比較例1~2を比べると、実施例1~3はいずれも、比較例1~2と比べて、低温での放電容量の改善率が大きく上昇した。また、実施例1~3の中では、リチウム金属複合酸化物粉末に添加する際のアルカリ溶液の温度を70℃にした実施例2において、低温での放電容量の改善率が最も上昇した。
 <実施例5>
 Li1.03Ni0.91Co0.06Al0.03で表されるリチウム金属複合酸化物粉末(二次粒子の平均粒径12μm)を使用したこと以外は実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <実施例6>
 上記リチウム金属複合酸化物粉末100gに、70℃のアルカリ溶液(W)を2g噴霧したこと以外は、実施例5と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <比較例4>
 上記リチウム金属複合酸化物粉末100gに、酸化タングステン粉末0.5gを添加したこと以外は、実施例5と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.2モル%であった。
 <比較例5>
 実施例5において水分率を5%に調整した上記リチウム金属複合酸化物粉末をマグネシア製焼成容器に入れ、真空中において、昇温速度3℃/分で180℃まで昇温して3時間熱処理し、その後室温まで炉冷することにより、比較例5の正極活物質を得た。
 実施例5、6及び比較例4、5の試験セルに対して、上記と同様の条件で充放電を行い、初期放電容量及び低温での放電容量を測定した。その結果を表2に示す。なお、表2に示す低温での放電容量の改善率は、比較例5の試験セルの低温での放電容量を100%(基準)として、その他の実施例及び比較例の試験セルの低温での放電容量を相対的に表したものである。
Figure JPOXMLDOC01-appb-T000002
 実施例5~6では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する工程において、前記アルカリ溶液の添加量を、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%の範囲として製造した正極活物質を用いている。一方、比較例4では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末にタングステン化合物粉末を添加、混合して製造した正極活物質を用いている。これらの実施例5~6及び比較例4を比べると、実施例5~6はいずれも、比較例4と比べて、低温での放電容量の改善率が大きく上昇した。また、実施例5~6の中では、リチウム金属複合酸化物粉末に添加する際のアルカリ溶液の温度を70℃にした実施例6において、低温での放電容量の改善率が最も上昇した。
 <実施例7>
 Li1.03Ni0.92Co0.02Al0.05Mn0.01で表されるリチウム金属複合酸化物粉末(二次粒子の平均粒径12μm)を使用したこと以外は実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <実施例8>
 上記リチウム金属複合酸化物粉末100gに、70℃のアルカリ溶液(W)を2g噴霧したこと以外は、実施例7と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.1モル%であった。
 <比較例6>
 上記リチウム金属複合酸化物粉末100gに、酸化タングステン粉末0.5gを添加したこと以外は、実施例7と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.2モル%であった。
 <比較例7>
 実施例7において水分率を5%に調整した上記リチウム金属複合酸化物粉末をマグネシア製焼成容器に入れ、真空中において、昇温速度3℃/分で180℃まで昇温して3時間熱処理し、その後室温まで炉冷することにより、比較例7の正極活物質を得た。
 実施例7、8及び比較例6、7の試験セルに対して、上記と同様の条件で充放電を行い、初期放電容量及び低温での放電容量を測定した。その結果を表3に示す。なお、表3に示す低温での放電容量の改善率は、比較例7の試験セルの低温での放電容量を100%(基準)として、その他の実施例及び比較例の試験セルの低温での放電容量を相対的に表したものである。
Figure JPOXMLDOC01-appb-T000003
 実施例7~8では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する工程において、前記アルカリ溶液の添加量を、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%の範囲として製造した正極活物質を用いている。一方、比較例6では、ニッケルの比率が高く、コバルトの比率が10モル%以下であるリチウム金属複合酸化物粉末にタングステン化合物粉末を添加、混合して製造した正極活物質を用いている。これらの実施例7~8及び比較例6を比べると、実施例7~8はいずれも、比較例6と比べて、低温での放電容量の改善率が大きく上昇した。また、実施例7~8の中では、リチウム金属複合酸化物粉末に添加する際のアルカリ溶液の温度を70℃にした実施例8において、低温での放電容量の改善率が最も上昇した。
 <参考例1>
 [正極活物質の製造]
 Li1.03Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粉末(二次粒子の平均粒径12μm)100gに、酸化タングステン粉末0.5gを添加したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.2モル%であった。そして、得られた正極活物質を用いたこと以外は、実施例1と同様に試験セルを作製した。
 <参考例2>
 Li1.03Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粉末(二次粒子の平均粒径12μm)100gに、70℃のアルカリ溶液(W)を2g添加したこと以外は、実施例1と同様に正極活物質を作製した。得られた正極活物質をSEM/EDSにより分析したところ、リチウム金属複合酸化物の一次粒子表面にW及びLiを含む粒子が形成されていることを確認した。また、得られた正極活物質のタングステン含有量をICP法により分析したところ、Ni、Co、Alの総モル数に対して、0.2モル%であった。そして、得られた正極活物質を用いたこと以外は、実施例1と同様に試験セルを作製した。
 <参考例3>
 Li1.03Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粉末を正極活物質として使用したこと以外は、実施例1と同様に試験セルを作製した。
 各参考例の試験セルに対して、上記と同様の条件で充放電を行い、初期放電容量及び低温での放電容量を測定した。その結果を表2に示す。なお、表2に示す低温での放電容量の改善率は、参考例3の試験セルの低温での放電容量を100%として、その他の参考例の試験セルの低温での放電容量を相対的に表したものである。
Figure JPOXMLDOC01-appb-T000004
 参考例1では、ニッケルの比率が高く、また、コバルトの比率が10モル%を超えるリチウム金属複合酸化物粉末に、タングステン化合物粉末を添加、混合して製造した正極活物質を用い、参考例2では、ニッケルの比率が高く、また、コバルトの比率が10モル%を超えるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する工程において、前記アルカリ溶液の添加量を、前記リチウム金属複合酸化物粉末に対して、2質量%として製造した正極活物質を用いている。このような参考例1~2はいずれも、表2に示す通り、低温での放電容量の改善率は大きく上昇しなかった。

Claims (5)

  1.  一般式LiNi1-x-yCo(但し、0≦x≦0.1、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、Nb、Ti、Si、及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン化合物を溶解させたアルカリ溶液を添加、混合する第1工程と、
     混合した前記アルカリ溶液と前記リチウム金属複合酸化物粉末を100~600℃で熱処理する第2工程と、を有し、
     前記第1工程において、前記アルカリ溶液の添加量は、前記リチウム金属複合酸化物粉末に対して、0.1~10質量%である、非水電解質二次電池用正極活物質の製造方法。
  2.  前記第1工程において、前記リチウム金属複合酸化物粉末に添加する際の前記アルカリ溶液の温度は、25~90℃の範囲である、請求項1に記載の非水電解質二次電池用正極活物質の製造方法。
  3.  前記第1工程において、前記リチウム金属複合酸化物粉末に添加する際の前記アルカリ溶液の温度は、60~90℃の範囲である、請求項2に記載の非水電解質二次電池用正極活物質の製造方法。
  4.  前記リチウム金属複合酸化物粉末は、一般式LiNi1-x-yCo(但し、0≦x≦0.06、0≦y≦0.1、0.97≦z≦1.20、Mは、Mn、W、Mg、Mo、NbTi、Si、及びAlから選ばれる少なくとも1種の元素)で表される、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質の製造方法。
  5.  前記第1工程の前に、前記リチウム金属複合酸化物粉末と水を混合した後、固液分離する工程Aを有する請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質の製造方法。
PCT/JP2018/045667 2017-12-28 2018-12-12 非水電解質二次電池用正極活物質の製造方法 WO2019131129A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880082277.XA CN111512478B (zh) 2017-12-28 2018-12-12 非水电解质二次电池用正极活性物质的制造方法
JP2019562952A JP7178615B2 (ja) 2017-12-28 2018-12-12 非水電解質二次電池用正極活物質の製造方法
US16/957,180 US11616227B2 (en) 2017-12-28 2018-12-12 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
CN202311015772.8A CN117185362A (zh) 2017-12-28 2018-12-12 非水电解质二次电池用正极活性物质的制造方法
EP18897129.5A EP3734721B1 (en) 2017-12-28 2018-12-12 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
JP2022176010A JP7345125B2 (ja) 2017-12-28 2022-11-02 非水電解質二次電池用正極活物質の製造方法
US18/111,204 US20230216046A1 (en) 2017-12-28 2023-02-17 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253579 2017-12-28
JP2017253579 2017-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/957,180 A-371-Of-International US11616227B2 (en) 2017-12-28 2018-12-12 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
US18/111,204 Continuation US20230216046A1 (en) 2017-12-28 2023-02-17 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2019131129A1 true WO2019131129A1 (ja) 2019-07-04

Family

ID=67066473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045667 WO2019131129A1 (ja) 2017-12-28 2018-12-12 非水電解質二次電池用正極活物質の製造方法

Country Status (5)

Country Link
US (2) US11616227B2 (ja)
EP (1) EP3734721B1 (ja)
JP (2) JP7178615B2 (ja)
CN (2) CN117185362A (ja)
WO (1) WO2019131129A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242505A (zh) * 2019-07-18 2021-01-19 丰田自动车株式会社 非水电解质二次电池
US11962000B2 (en) 2019-07-18 2024-04-16 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883556B (zh) * 2022-06-29 2024-06-14 蜂巢能源科技股份有限公司 一种超高镍正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079464A (ja) 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2015216105A (ja) * 2014-04-25 2015-12-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2016127004A (ja) 2014-12-26 2016-07-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
WO2017018099A1 (ja) * 2015-07-30 2017-02-02 住友金属鉱山株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2017078136A1 (ja) * 2015-11-05 2017-05-11 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
JP2017084513A (ja) * 2015-10-26 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822708B2 (ja) * 2011-12-16 2015-11-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
CA2947003A1 (en) * 2014-06-26 2015-12-30 Toda Kogyo Corp. Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP6090608B2 (ja) * 2014-11-28 2017-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP7055587B2 (ja) * 2015-09-25 2022-04-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法
JP6343753B2 (ja) * 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079464A (ja) 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2015216105A (ja) * 2014-04-25 2015-12-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2016127004A (ja) 2014-12-26 2016-07-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
WO2017018099A1 (ja) * 2015-07-30 2017-02-02 住友金属鉱山株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2017084513A (ja) * 2015-10-26 2017-05-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
WO2017078136A1 (ja) * 2015-11-05 2017-05-11 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242505A (zh) * 2019-07-18 2021-01-19 丰田自动车株式会社 非水电解质二次电池
US20210020900A1 (en) * 2019-07-18 2021-01-21 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
US11962000B2 (en) 2019-07-18 2024-04-16 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
US11967700B2 (en) * 2019-07-18 2024-04-23 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer

Also Published As

Publication number Publication date
JP7178615B2 (ja) 2022-11-28
EP3734721A1 (en) 2020-11-04
EP3734721A4 (en) 2021-03-17
JP7345125B2 (ja) 2023-09-15
US20230216046A1 (en) 2023-07-06
CN117185362A (zh) 2023-12-08
EP3734721B1 (en) 2022-02-02
US20200335780A1 (en) 2020-10-22
CN111512478B (zh) 2023-08-18
JPWO2019131129A1 (ja) 2021-01-07
US11616227B2 (en) 2023-03-28
JP2023015188A (ja) 2023-01-31
CN111512478A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
EP3331069B1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and nonaqueous electrolyte secondary battery
US11056681B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5822708B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
KR102034270B1 (ko) 비수계 전해질 이차 전지용 정극 활물질 및 그의 제조 방법
KR20130051012A (ko) 비수계 전해질 2차 전지용 정극 활물질과 그의 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 2차 전지
JP7345125B2 (ja) 非水電解質二次電池用正極活物質の製造方法
CN111741928B (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
JP2017117766A (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
CN113825725B (zh) 非水电解质二次电池用正极活性物质及非水电解质二次电池用正极
US11329274B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
KR102364783B1 (ko) 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 이차 전지
JP6511761B2 (ja) 非水系電解質二次電池用正極活物質用の被覆複合酸化物粒子の製造方法及び当該製造方法によって製造される被覆複合酸化物粒子を用いた非水系電解質二次電池
CN113382965A (zh) 非水电解质二次电池用正极活性物质的制造方法
JPWO2019163847A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6860962B2 (ja) 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
WO2015059779A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897129

Country of ref document: EP

Effective date: 20200728