WO2019131079A1 - Compound including boron as spiro atom and macromolecular compound thereof - Google Patents

Compound including boron as spiro atom and macromolecular compound thereof Download PDF

Info

Publication number
WO2019131079A1
WO2019131079A1 PCT/JP2018/045231 JP2018045231W WO2019131079A1 WO 2019131079 A1 WO2019131079 A1 WO 2019131079A1 JP 2018045231 W JP2018045231 W JP 2018045231W WO 2019131079 A1 WO2019131079 A1 WO 2019131079A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
aryl
hydrogen
heteroaryl
formula
Prior art date
Application number
PCT/JP2018/045231
Other languages
French (fr)
Japanese (ja)
Inventor
琢次 畠山
麻由 亀田
靖宏 近藤
笹田 康幸
梁井 元樹
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to CN201880083233.9A priority Critical patent/CN111527094B/en
Priority to KR1020207021715A priority patent/KR102674465B1/en
Priority to JP2019562931A priority patent/JP7341412B2/en
Publication of WO2019131079A1 publication Critical patent/WO2019131079A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound having a spiro atom of boron and a polymer compound having the same as a repeating unit, an organic electroluminescent device using these compounds, an organic field effect transistor and an organic thin film solar cell, and a display device and a lighting device About.
  • a display device using a light emitting element that emits electric field can be variously studied because power saving and thinning can be achieved, and furthermore, an organic electroluminescent element made of an organic material can be easily reduced in weight and size. It has been actively considered from that.
  • organic materials having emission characteristics such as blue, which is one of the three primary colors of light and organic materials provided with charge transport ability (having the possibility of becoming a semiconductor or a superconductor) such as holes and electrons
  • charge transport ability having the possibility of becoming a semiconductor or a superconductor
  • the organic EL element has a structure comprising a pair of electrodes comprising an anode and a cathode, and one or more layers disposed between the pair of electrodes and containing an organic compound.
  • Layers containing an organic compound include a light emitting layer, and a charge transport / injection layer that transports or injects a charge such as a hole or an electron, and various organic materials suitable for these layers have been developed.
  • benzofluorene compounds and the like As materials for light emitting layers, for example, benzofluorene compounds and the like have been developed (WO 2004/061047).
  • a hole transport material for example, triphenylamine compounds and the like have been developed (Japanese Patent Laid-Open No. 2001-172232).
  • an electron transport material for example, an anthracene compound and the like have been developed (Japanese Patent Laid-Open No. 2005-170911).
  • the present inventors found a novel compound having boron as a spiro atom, and succeeded in producing it. Moreover, it discovered that the outstanding organic EL element was obtained by arrange
  • Item 1 The compound represented by following General formula (1), or the high molecular compound which makes the structure represented by General formula (1) a repeating unit.
  • Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring
  • ring B is a heteroaryl ring
  • ring A and ring B and / or ring C and ring D combine
  • the ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone
  • X 1 to X 4 are each independently C or N
  • Ring A, ring C and ring D are each independently an aryl ring having 6 to 30 carbon atoms or a heteroaryl ring having 2 to 30 carbon atoms
  • ring B is a heteroaryl ring having 2 to 30 carbon atoms
  • a ring and B ring and / or C ring and D ring may form a ring structure, and at least one hydrogen in these rings may be substituted, provided that A ring alone and D ring Acridine based substituents are excluded as substituents to the ring alone
  • X 1 to X 4 are each independently C or N
  • Ring A, ring C and ring D are each independently a benzene ring, naphthalene ring, indane ring, indene ring, indene ring, furan ring, thiophene ring, benzofuran ring or benzothiophene ring
  • ring B is a pyrrole ring, pyridine A ring, pyrazine ring, pyrimidine ring, pyridazine ring, quinoline ring or isoquinoline ring, wherein A ring and B ring and / or C ring and D ring may combine to form a ring structure, and at least at these rings
  • One hydrogen may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
  • X 1 to X 4 are C
  • Z 1 and Z 2 are each independently a single bond
  • -CR 2- , -CR CR-, -
  • Item 4 The compound according to any one of Items 1 to 3, which is represented by the following General Formula (2).
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl
  • Z 1 and Z 2 can not simultaneously be a single bond
  • R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or ary
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to, At least one hydrogen in the compound represented by formula (2) may be substituted with cyano, halogen or deuterium.
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, alkyl or cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond, R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo Optionally substituted with alkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 , Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl having 6 to 15 carbon atoms together with the a ring, c
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl
  • the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring
  • At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium. 5.
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon number 6-16 aryl, C2-C15 heteroaryl, C1-C6 alkyl or C3-C12 cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond, R 1 to R 16 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or
  • R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring.
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed, At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon Aryl of 6 to 16, aryl of 2 to 15 carbons, alkyl of 1 to 6 carbons or cycloalkyl of 3 to 12 carbons, provided that Z 1 and Z 2 are not simultaneously a single bond , R 1 to R 4 and R 9 to R 16 are hydrogen, R 5 to R 8 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted
  • Item 8. The compound according to item 1, represented by the following chemical structural formula.
  • R is independently hydrogen, aryl , Heteroaryl, diaryla
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to, At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium. 5.
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl and at least one hydrogen in R is , Aryl, heteroaryl, alkyl or cycloalkyl, provided that any one or more of Z 1 or Z 2 is —NR—, and the R, R 1 , R 8 , R 9 And / or R 16 is combined with a single bond, —CR 2 —, —O—, —S— or —NR— to form a ring structure, wherein each of R is independently hydrogen, And at least one hydrogen in R may be substituted with aryl, alkyl or cycloalkyl; R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl
  • the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring
  • At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium. 5.
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that And any one or more of 1 or Z 2 is -NR-, and the R, R 1 , R 8 , R 9 and / or R 16 is a single bond, -CR 2- , -O-, -S- or -NR- combine to form a ring structure, wherein each R independently represents hydrogen, aryl having 6 to 16 carbon atoms, alkyl having 1 to 6 carbons, or 3 to 6 carbon atoms 12 cycloalkyl and at least one hydrogen in R is Aryl having 6 to 16 may be substituted by cycl
  • R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring.
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed, At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or
  • Z 1 is a single bond, -O-, -S-, -Se- or -NR-, and Z 2 is -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, Z 2 R in -NR- and R 8 or R 9 are combined with a single bond, -CR 2- , -O-, -S- or -NR- to form a ring structure, where R is And each independently hydrogen, aryl having 6 to 16 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, Item 12.
  • Item 13 The compound according to item 1, represented by the following chemical structural formula.
  • Item 14 The compound or polymer compound according to any one of Items 1 to 13, wherein at least one of a substituent to a C ring or at least one of R 9 to R 12 is a group represented by the following partial structural formula (TSG1). At least one hydrogen in the group represented by the above formula (TSG1) may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, Y is a single bond, -O-, -S-, -Se-, -NR-,> CR 2 , or> SiR 2 , wherein each of R is independently hydrogen, aryl, hetero The aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, adjacent groups of R may combine to form an aryl ring having 6 to 15 carbon atoms.
  • TSG1 The group represented by the partial structural formula (TSG1) is a partial structural formula (TSG100), a formula (TSG110), a formula (TSG111), a formula (TSG112), a formula (TSG113), a formula (TSG120) or a formula (TSG121).
  • TSG14 The compound or polymer compound according to item 14, which is a group represented by At least one hydrogen in the above structural formula may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy.
  • Item 16 The compound according to item 14, represented by the following chemical structural formula.
  • Item 17. The compound or polymer compound according to any one of items 14 to 16, which satisfies the following formula. ⁇ E ST ⁇ 0.20 eV
  • Item 18. A material for an organic device, comprising the compound or the polymer compound according to any one of Items 1 to 17.
  • Item 19 The material for an organic device according to Item 18, wherein the material for an organic device is a material for an organic electroluminescent element, a material for an organic field effect transistor, or a material for an organic thin film solar cell.
  • Item 20 An organic electroluminescent device comprising: a pair of electrodes comprising an anode and a cathode; and an organic layer disposed between the pair of electrodes and containing the material for an organic electroluminescent device according to Item 19.
  • Item 21 Furthermore, it has an electron transport layer and / or an electron injection layer, and at least one of the electron transport layer and the electron injection layer is selected from the group consisting of quinolinol metal complexes, pyridine derivatives, phenanthroline derivatives, borane derivatives and benzimidazole derivatives
  • the electron transport layer and / or the electron injection layer may further be selected from alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, oxides of alkaline earth metals, and alkaline earth metals.
  • Item 21. at least one selected from the group consisting of halides, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals
  • the organic electroluminescent element as described in.
  • Item 23 It is an organic electroluminescent element which has a light emitting layer, Comprising: The said light emitting layer is At least one host compound as a first component, As a second component, at least one heat-activated delayed phosphor; An organic electroluminescent device comprising a compound represented by the following general formula (1) or a polymer compound having a structure represented by the general formula (1) as a repeating unit as the first component or the second component.
  • Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring
  • ring B is a heteroaryl ring
  • ring A and ring B and / or ring C and ring D combine
  • the ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone
  • X 1 to X 4 are each independently C or N
  • Item 24 The organic electroluminescent device according to Item 23, which comprises, as the first component, a compound represented by General Formula (1) or a polymer compound having a structure represented by General Formula (1) as a repeating unit.
  • Item 25 The organic electroluminescent device according to Item 23, comprising, as the second component, a compound represented by General Formula (1) or a polymer compound having a structure represented by General Formula (1) as a repeating unit.
  • Item 26 A display comprising the organic electroluminescent device according to any one of items 20 to 25.
  • Item 27 An illuminating device comprising the organic electroluminescent device according to any one of items 20 to 25.
  • a novel compound having a spiro atom of boron, or a polymer compound having the same as a repeating unit which can be used as a material for organic devices such as organic EL elements.
  • An excellent organic EL device can be provided by using these compounds.
  • the compound which makes boron a spiro atom, and its high molecular compound is a high molecular compound which makes a structure denoted by a compound denoted by the following general formula (1) or a general formula (1) as a repeating unit, Preferably, it is a compound represented by the following general formula (2), or a polymer compound having a structure represented by the general formula (2) as a repeating unit.
  • the polymer compound is also collectively referred to simply as the “compound”.
  • the compound represented by the general formula (1) of the present invention utilizes a spiro structure centering on a boron atom or a bridge of a C ring and a D ring by a boron atom to form a donor structure and an acceptor structure in the molecule. It has high triplet energy by being separated.
  • the high triplet energy can be utilized for the peripheral material of a host or a light emitting layer.
  • HOMO and LUMO localize HOMO on the A ring and / or D ring
  • LUMO localize on the B ring and / or C ring centering on the spiro structure centered on the boron atom
  • it may be used as one component of a host compound to be used in combination of two or more types, or may be used as one component of a host compound used in a multi-layered light emitting layer which may be adjacent to each other.
  • DA type TADF compound when it is a thermally activated delayed fluorescence molecule (referred to as “DA type TADF compound”), a TADF light emitting material (emitting dopant) or an assisting dopant in a TAF (TADF Assisting Fluorescence) device
  • HOMO and LUMO utilize a bridge of C ring and D ring by a boron atom, and HOMO is localized on a C ring and / or C ring substituted donor structure, and LUMO is B It takes a molecular orbital localized on the ring, but in the case of LUMO, part of it may exude to the C ring.
  • the emitting dopant and the assisting dopant may be contained in adjacent different layers.
  • fluorescent light emitting compound when it does not have thermally activated delayed fluorescence (referred to as “fluorescent light emitting compound”), it is used as an emitting dopant in TTF (Triplet-Triplet Fusion) light emitting material (dopant) or TAF (TADF Assisting Fluorescence) device can do.
  • TTF Triplet-Triplet Fusion
  • dopant light emitting material
  • TAF TADF Assisting Fluorescence
  • a substituent in which Z 1 and / or Z 2 has a cyclic structure with A ring, B ring, C ring and / or D ring, etc., and HOMO and LUMO are partially compared Take molecular orbitals that overlap
  • the emitting dopant and the assisting dopant may be contained in adjacent different layers.
  • Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring
  • ring B is a heteroaryl ring
  • ring A and ring B and / or ring C and ring D combine
  • the ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone
  • X 1 to X 4 are each independently C or N
  • Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl
  • Z 1 and Z 2 can not simultaneously be a single bond
  • R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl
  • the ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring
  • At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to, At least one hydrogen in the compound represented by formula (2) may be substituted with cyano, halogen or deuterium.
  • Ring A, ring C and ring D are each independently an aryl ring or a heteroaryl ring.
  • Ring B is a heteroaryl ring containing at least one nitrogen.
  • aryl ring examples include an aryl ring having 6 to 30 carbon atoms, preferably an aryl ring having 6 to 16 carbon atoms, and an aryl ring having 6 to 12 carbon atoms Is more preferable, and an aryl ring having 6 to 10 carbon atoms is particularly preferable.
  • aryl ring adjacent groups among “R 1 to R 4 and R 9 to R 16 defined in the general formula (2) are bonded together to form a ring, c ring or d ring Corresponding to the formed aryl ring having 9 to 30 carbon atoms, and the a ring (or c ring, d ring) is already composed of a benzene ring having 6 carbon atoms, a 5-membered ring is condensed thereto The total carbon number 9 of the fused rings is the lower limit carbon number.
  • aryl ring examples include a benzene ring which is a monocyclic ring, a biphenyl ring which is a bicyclic ring, a naphthalene ring which is a fused bicyclic ring, and a terphenyl ring which is a tricyclic ring (m-terphenyl, o -Terphenyl, p-terphenyl), fused tricyclic ring system, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, benzofluorene ring, fused five ring system Examples include ring systems such as perylene ring and pentacene ring.
  • the fluorene ring and the benzofluorene ring also include structures in which a fluorene ring
  • heteroaryl ring examples include a heteroaryl ring having 2 to 30 carbon atoms, preferably a heteroaryl ring having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • a ring is more preferable, a C 2-15 heteroaryl ring is more preferable, and a C 2-10 heteroaryl ring is particularly preferable.
  • the “heteroaryl ring” for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom can be mentioned.
  • heteroaryl ring examples include a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring (unsubstituted, alkyl-substituted such as methyl or aryl-substituted such as phenyl), oxa Diazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring , Benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquino
  • Ring A and ring B and / or ring C and ring D may be combined to form a ring structure, and the linking group in this case includes the same groups as Z 1 and Z 2, and may be a single bond Good.
  • At least one hydrogen in the ring structure formed by combining the "aryl ring” or “heteroaryl ring” as ring A to ring D, ring A with ring B and / or ring C with ring D is a first ring.
  • the substituent may be substituted, and the first substituent may be further substituted by a second substituent.
  • the first substituent includes aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, etc., and the second substituent And aryl, heteroaryl, alkyl or cycloalkyl and the like.
  • the substituents “R 1 to R 16 ” and “adjacent groups among R 1 to R 16 are bonded to each other to form a ring, b ring, c ring or It also corresponds to a substituent to "an aryl ring or heteroaryl ring formed with ring d", and the second substituent also corresponds to a further substituent to these.
  • aryl and the “aryl” and the “heteroaryl” as the second substituent include the monovalent groups of the “aryl ring” and the “heteroaryl ring” described above.
  • alkyl as the first and second substituents may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms. .
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons (C3-C6 branched alkyl) is more preferable, and C1-C4 alkyl (C3-C4 branched alkyl) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • cycloalkyl As the “cycloalkyl” as the first and second substituents, a cycloalkyl consisting of one ring, a cycloalkyl consisting of a plurality of rings, a cycloalkyl containing a double bond which is not conjugated in the ring, and an exocyclic branch
  • cycloalkyl having 3 to 20 carbon atoms For example, cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 3 to 12 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, or 6 carbon atoms may be used. And the like.
  • cycloalkyl having 5 to 10 carbon atoms is preferable, and cycloalkyl having 6 to 10 carbon atoms is more preferable.
  • cycloalkyl cyclopropyl, methylcyclopropyl, cyclobutyl, methylcyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl, methylcyclohexyl, cycloheptyl, methylcycloheptyl, cyclooctyl, methylcyclooctyl, cyclononyl, methylcyclononyl , Cyclodecyl, methylcyclodecyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3 .0.1] hexyl, bicyclo [2.2.1] heptyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, a
  • alkynyl as the first substituent include groups in which one or more of —CH 2 —CH 2 — in the above “alkyl” is substituted with —C ⁇ C—, preferably one or more groups. Groups in which two are substituted, more preferably one are mentioned.
  • alkoxy examples include straight-chain having 1 to 24 carbon atoms and branched alkoxy having 3 to 24 carbon atoms.
  • C1-C18 alkoxy branched alkoxy having 3 to 18 carbon atoms
  • alkoxy having 1 to 12 carbons branched alkoxy having 3 to 12 carbon atoms
  • C1 to 6 carbons are preferable.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • acridine based substituents are excluded.
  • the acridine-based substituent is a monovalent group of acridine and an acridine derivative.
  • the acridine derivative is acridine having a substituent, and examples of the substituent include an alkyl group and an aryl group.
  • substituents to A ring (a ring) alone and D ring (d ring) alone preferably, it is a substituent having not only an acridine substituent but also a nitrogen atom, and the nitrogen atom is a ring ( Groups which are directly bonded to a ring a) and ring D directly (such as an amino group) are also removed, and more preferably, substituents having a nitrogen atom are also removed.
  • At least one of a substituent to ring C or at least one of R 9 to R 12 be a group represented by the following partial structural formula (TSG 1).
  • At least one hydrogen in the group represented by the above formula (TSG1) may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, Descriptions of the first and second substituents described above can be cited.
  • Y in the group represented by the above formula (TSG1) is a single bond, -O-, -S-, -Se-, -NR-,> CR 2 or> SiR 2 , where R is , Each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, the descriptions of the first and second substituents described above are cited can do.
  • adjacent groups of R may be bonded to each other to form an aryl ring having 6 to 15 carbon atoms, and for the details of the aryl ring, the description of the ring A to ring D described above is cited. be able to.
  • TSG1 Specific examples of the group represented by the partial structural formula (TSG1) include the following partial structural formula (TSG100), formula (TSG110), formula (TSG111), formula (TSG112), formula (TSG113), formula (TSG120) or The group represented by formula (TSG121) is mentioned.
  • Me in the formula is a methyl group.
  • At least one hydrogen in the above structural formula may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, the first and second as described above. Descriptions of the substituents of can be cited.
  • Alkylene, alkenylene, alkynylene or arylene as Z 1 and Z 2 includes the “alkyl”, “alkenyl”, “alkynyl” or “aryl” divalent group described above as the monovalent group.
  • the description of these groups can refer to the description of the first and second substituents described above.
  • R and A ring, B ring, C ring and / or D ring (a ring, b ring, c ring and / or D ring) are adjacent to each other, they are combined to form a ring structure.
  • R preferably R of "-NR-" and R 1 , R 8 , R 9 and / or R 16 are a single bond, -CR 2- , -O-, -S- or -NR- combines with each other to form a ring structure, wherein each R independently represents hydrogen, aryl, alkyl or cycloalkyl (for the description of these groups, the first and second substituents described above And at least one hydrogen in R may be aryl, alkyl or cycloalkyl (for descriptions of these groups, reference may be made to the descriptions of the first and second substituents described above). Can be substituted).
  • the specific ring structure formed will be described later.
  • Z 1 and Z 2 are not simultaneously a single bond.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine or chlorine.
  • the compound of the present invention comprises a fused ring moiety containing A ring and D ring (a ring and d ring) and a fused ring moiety containing B ring and C ring (b ring and c ring) It is a compound in which boron is spiro bonded as a spiro atom.
  • a substituent may be bonded to each ring or Z 1 and Z 2 , first, the basic skeleton of the spiro compound will be described below.
  • the boron “B” which is a spiro atom is a carbon in ring A, ring C and ring D (formula In particular, it is bonded to “C” (not shown) and coordinated to one nitrogen “N” in ring B.
  • X 1 to X 4 are each independently C (carbon) or N (nitrogen)
  • Z 1 is a linking group of ring A and ring D
  • Z 2 is a linking group of ring B and ring C.
  • the following general formula (1-C) is a structural formula in which X 1 to X 4 are C (carbon), and the general formula (1-N) has a structure in which X 1 to X 4 is N (nitrogen) It is a formula.
  • Each of X 1 to X 4 can be independently selected from C or N, and forms other than the following structural formula may be possible.
  • Z 1 and Z 2 include the following partial structural formulas (a) to (v).
  • R in the partial structural formula is each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one of them is Hydrogen may be substituted by aryl, heteroaryl, alkyl or cycloalkyl.
  • Z 1 is the formula (g), the formula (q) or the formula (u), preferably the formula (g) or the formula (u), more preferably the formula (g) .
  • Examples of ring A, ring C and ring D include partial structural formulas (P) to (Xb) shown below.
  • the bond interrupted by a wavy line indicates a binding site to the spiro atom “B” or Z 1 or Z 2 in the general formula (1).
  • the partial structural formulas in the general formula (1) are preferably all the same partial structure, but may be different types of partial structures. Also in the following partial structural formulas, illustration of substituents is omitted.
  • R in the partial structural formula is each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one of them is Hydrogen may be substituted by aryl, heteroaryl, alkyl or cycloalkyl.
  • the ring B includes, for example, a pyridine ring, a pyridazine ring, a pyrimidine ring or a triazine ring, and in these rings, one nitrogen is coordinated to the spiro atom "B".
  • structural formulas containing such a ring B include, for example, the following general formulas (10) to (145) as modified examples of the above-mentioned formula (1-C). The same applies to the case where the above formulas (1-N) or X 1 to X 4 are other combinations.
  • the structural formula is preferably formula (10), formula (15) or formula (135), and more preferably formula (10).
  • Ring A, ring C and ring D may have the same structure or may be different.
  • ring A, ring C and ring D may have different structures, they are represented by the following general formula.
  • Z 1 and Z 2 may have the same structure or may be different. Examples of Z 1 and Z 2 independently selected from partial structural formulas (a) to (v) are listed below.
  • Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1)
  • the case where the ether bond of partial structural formula (g) and the amine bond of formula (q) are selected as Z 1 and Z 2 in the formula (145P-Z-1) is shown below.
  • Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1)
  • the case where an ether bond of partial structural formula (g) and a single bond of formula (u) are selected as Z 1 and Z 2 in the formula (145P-Z-1) is shown below.
  • Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) Or (145P-Z-1), a case where a single bond of partial structural formula (u) and an ether bond of formula (g) are selected as Z 1 and Z 2 is shown below.
  • Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) Or (145P-Z-1), a case where a single bond of partial structural formula (u) and an amine bond of formula (q) are selected as Z 1 and Z 2 is shown below.
  • J1 partial structural formula (J1) to J74).
  • Me is a methyl group
  • tBu is a t-butyl group.
  • partial structural formula (J1) to formula (J3), formula (J11), formula (J12), formula (J38) or formula (J41) to formula (J44) are preferable, and more preferably J1), formula (J3), formula (J11), formula (J12), formula (J41) or formula (J44), and more preferably formula (J11).
  • the general formula (10P-j-1), formula (10P-k-1), formula (10P-p-1) or formula (10P-q-1) in the Z 1 and Z 2 as a partial structural formula (j Formula (k), formula (p) or formula (q) is selected, and R in this partial structural formula is hydrogen, partial structural formula (J1), formula (J3), formula (J6), formula ( When it is J9), Formula (J11), or Formula (J21), it is represented by following Structural formula.
  • “Me” is a methyl group
  • tBu is a t-butyl group
  • partial structure (q) is selected as and Z 2
  • R in this partial structure is hydrogen, partial structure (J1), formula (J3), formula (J6), formula (J9), formula (J11) Or when it is a formula (J21), it represents with following Structural formula.
  • a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula
  • R is a partial structural formula (J11) and adjacent R and B ring (b ring) are bonded to form a ring structure, they are represented by the following structural formula.
  • a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula
  • R is a partial structural formula (J11) and adjacent R and C rings (c rings) are bonded to form a ring structure, they are represented by the following structural formula.
  • a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula
  • R is a partial structural formula (J11) and adjacent R, B ring (b ring) and C ring (c ring) combine to form a ring structure, they are represented by the following structural formula.
  • partial structural formula (q) is selected as Z 1 in general formula (10P-q-1) or formula (10P-qg-1), and R in this partial structural formula is a partial structural formula (J11) When adjacent R and A ring (a ring) or D ring (d ring) combine to form a ring structure, they are represented by the following structural formula.
  • partial structural formula (q) is selected as Z 1 in general formula (10P-q-1) or formula (10P-qg-1), and R in this partial structural formula is a partial structural formula (J11) When adjacent R and A ring (a ring) and D ring (d ring) combine to form a ring structure, they are represented by the following structural formula.
  • the partial structural formula (J11) is selected as the partial structural formula (q) as Z 1 or Z 2 in the general formula (10P-Z-1) and the partial structural formula (J11) as R in the partial structural formula (q)
  • a general formula (10P-gq-21-J11), Formula (10P-gq-22-J11), Formula (10P-gq-23-J11), Formula (10P-gq-24-J11), Formula (10P-gq-25) -J11 formula (10P-q-21-J11), formula (10P-q-22-J11), formula (10P-q-23-J11), formula (10P-q-24-J11), formula (10P-q-24-J11) 10P-q-25-J11), formula (10P-uq-21-J11), formula (10P-uq-22-J11),
  • partial structural formula (J1) to formula (J3), formula (J11), formula (J12), formula (J38) or formula (J41) to formula (J44) are preferable, and more preferably J1), formula (J3), formula (J11), formula (J12), formula (J41) or formula (J44), and more preferably formula (J11).
  • a ring and a ring are selected.
  • substructures (J81) to (J91) are used as substituents of HO, HOMO and LUMO can be separated between the a and d rings and the substituents for the a and d rings.
  • substructures (J32) to (J46) are used as substituents for the b ring and c ring, HOMO and LUMO are selected between the b ring and c ring and the substituents for the b ring and c ring. It can be separated.
  • a part of hydrogen atoms in ring a and ring d in General Formula (10P-g-1) may be substituted, or adjacent substituents may be combined to form an aryl ring or a heteroaryl ring together with ring a or ring d.
  • it is represented by the following structural formula. It lists with the unsubstituted compound of Formula (10P-g-100).
  • “Me” is a methyl group
  • tBu is a t-butyl group
  • the hydrogen atoms in rings a to d in general formula (10P-g-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
  • part of the hydrogen atoms in ring a and ring d in General Formula (10P-gq-1) are substituted, or adjacent substituents are combined to form an aryl ring or heteroaryl together with ring a or ring d.
  • a ring is formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-gq-100).
  • the hydrogen atoms in rings a to d in general formula (10P-gq-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
  • R in the general formula (10P-gq-1) is the formula (J11), it is represented by the following structural formula.
  • the hydrogen atom in ring a to d in the general formula (10P-gq-21-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good. Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
  • the hydrogen atom in ring a to d in the general formula (10P-gq-23-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good.
  • Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
  • the hydrogen atom in ring a to d in the general formula (10P-gq-25-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good.
  • Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
  • a part of hydrogen atoms in ring a and ring d in General Formula (10P-gu-1) are substituted, or adjacent substituents are combined to form an aryl ring or a heteroaryl ring together with ring a or ring d.
  • it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-gu-100).
  • the hydrogen atoms in rings a to d in general formula (10P-gu-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
  • a part of hydrogen atoms in ring a and ring d in General Formula (10P-ug-1) may be substituted, or adjacent substituents may be combined to form an aryl ring or a heteroaryl ring together with ring a or ring d.
  • it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-ug-100).
  • the hydrogen atoms in rings a to d in general formula (10P-ug-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
  • a part of hydrogen atoms in ring a and ring d in General Formula (10P-uq-1) are substituted, or adjacent substituents are combined to form an aryl ring or heteroaryl together with ring a or ring d.
  • a ring is formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-uq-100).
  • the hydrogen atoms in rings a to d in general formula (10P-uq-1) may be each independently substituted with the same or different structure. For example, it is represented by the following structural formula.
  • Ring A, ring C and ring D in the general formula (10) may independently have the same structure or different structures, and a hydrogen atom in ring A, ring C, ring D and ring b is Each may be independently substituted with groups having the same structure or different structures. For example, it is represented by the following structural formula.
  • E S Singlet excitation energy
  • E T 1240 / B from the maximum emission wavelength B of the fluorescence spectrum (nm).
  • ⁇ E ST is, for example, “Purely organic electroluminescent material realizing 100% conversion from electricity to light”, H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Katsuaki, S. Kubo, T. Komino It can also be calculated by the method described in H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.
  • “Thermally activated delayed fluorescent substance” absorbs thermal energy to cause an inverse intersystem crossing from an excited triplet state to an excited singlet state, and is radiatively deactivated from the excited singlet state to give delayed fluorescence. It means a compound that can emit radiation.
  • “thermally activated delayed fluorescence” also includes those that undergo high-order triplets in the process of excitation from an excitation triplet state to an excitation singlet state. For example, the article by Monkman et al. Of Durham University (NATURE COMMUNICATIONS, 7: 13680, DOI: 10.1038 / ncomms 13680), the article by Hoseki et al.
  • the compounds represented by the general formulas (1) and (2) have, first, an A ring (a ring), a D ring (d ring), a B ring (b ring) and a C ring (c ring) Is linked by a linking group (a group containing Z 1 and Z 2 ) to produce an intermediate (first reaction), and then A ring (a ring), B ring (b ring), C ring (c)
  • the final product can be prepared by bonding the ring) and the D ring (d ring) with a boron atom (second reaction) (Scheme (1) and Scheme (2)).
  • first reaction for example, in the case of an etherification reaction, general reactions such as a nucleophilic substitution reaction and an Ullmann reaction can be used, and in the case of an amination reaction, a general reaction such as a Buchwald-Hartwig reaction can be used.
  • second reaction metal-boron transmetallation can be used.
  • the second reaction is a reaction in which the A ring (a ring), the B ring (b ring), the C ring (c ring) and the D ring (d ring) are linked by introducing a boron atom, and the scheme (1)
  • intermediates substituted with halogen (Hal) such as chlorine, bromine and iodine are shown as intermediates.
  • the intermediate (1-C) or ((C) is obtained by orthometalating the halogen atom of the dihalogen compound intermediate (1-A) or (2-A) with n-butyllithium, sec-butyllithium or t-butyllithium, etc.
  • 2-C) (wherein M is a metal such as lithium).
  • the intermediates (1-B) and (2-B), which are halogen compounds, are first metallized with n-butyllithium, sec-butyllithium, t-butyllithium or the like, and then boron trichloride or triolum Boron fluoride or the like is added, and metal-boron metal exchange is performed to obtain intermediates (1-D) and (2-D). Then, the intermediate (1-C) or (2-C) prepared above is added and metal-boron is exchanged with the intermediate (1-D) or (2-D) to give a compound of the general formula The compounds of 1) or (2) can be obtained.
  • the compound represented by the general formula (1) or (2) is an intermediate in which a halogen atom is not introduced by selective metallation. Can be manufactured (Scheme (3), Scheme (4)).
  • the orthometalation reagents used in the above Schemes (1) to (4) include alkyllithiums such as methyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, lithium diisopropylamide, lithium tetramethyl Organic alkali compounds such as piperidid, lithium hexamethyl disilazide, potassium hexamethyl disilazide and the like can be mentioned.
  • a coordination additive can be added during metallation to dissociate the association, thereby improving the reactivity.
  • N, N ', N, N'-tetramethylethylenediamine (TMEDA), hexamethylphosphoramide (HMPA), dimethylpropyleneurea (DMPU) and the like can be mentioned.
  • boron trifluoride boron trichloride, boron tribromide, boron tribromide, and other halides of boron such as boron triiodide are used.
  • alkoxy borane compounds such as trimethyl borate and the like, boron, and alkoxy borane compounds such as 4,4,5,5-tetramethyl-1,3,2-dioxaborolane; and aryloxy compounds such as triphenyl borate.
  • the polymer compound (I) is a polymer compound which is formed by sharing a part of the structure of the formula (1) (for example, any one of the ring A to the ring D) with each other,
  • the polymer compound (II) is a polymer compound obtained by linking the structure of the formula (1) via the crosslinked structure XL, provided that EC is a terminal structure
  • the polymer compound (III) is a polymer compound having a structure of the formula (1) as a side chain of a linear polymer, provided that EC is a terminal structure and MU is a monomer unit in which a polymerizable group is polymerized
  • the dimer (i) is a dimer formed by sharing a part of the structure of the formula (1) (for example, any of ring A to ring D) with one another.
  • the dimer (ii) is a dimer formed by linking the structure of the formula (1) via the crosslinked structure XL.
  • the form in which the partial structure of the formula (1), the cross-linked structure XL, the terminal structure EC and the monomer unit MU are bonded is described above.
  • a form in which they are bonded by a single bond an alkylene group having 1 to 3 carbon atoms, a phenylene group, a naphthalene group or the like may be used.
  • the a ring in the partial structure of the formula (10P-gq-100-J11) and the d ring in the partial structure of the formula (10P-g-100) are dimers (crosslinking structure XL (single bond)) as a linking group
  • ii crosslinking structure XL (single bond)
  • a dimer (ii) with the cross-linked structure XL (single bond) as a linking group it is represented by the following formula (ii-2).
  • the terminal structure EC in the polymer compound (II) is hydrogen or a monovalent aryl ring or heteroaryl ring having 6 to 30 carbon atoms, preferably hydrogen or a monovalent aryl ring having 6 to 18 carbon atoms .
  • the crosslinked structure XL in the polymer compound (II) and the dimer (ii) is a single bond or a divalent aryl ring or heteroaryl ring having 6 to 30 carbon atoms, preferably a single bond or 6 to carbon atoms It is an 18 divalent aryl ring, more preferably a single bond or a divalent aryl ring having 6 to 12 carbon atoms.
  • aryl rings in the structures EC and XL include a benzene ring which is a single ring system, a biphenyl ring which is a bicyclic system, a naphthalene ring which is a fused bicyclic system, and a terphenyl ring which is a three-ring system -Terphenyl, o-terphenyl, p-terphenyl), fused tricyclic ring system, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, benzo ring Examples thereof include a fluorene ring, a condensed pentacyclic ring system perylene ring, and a pentacene ring.
  • the fluorene ring and the benzofluorene ring also include
  • heteroaryl rings in the structures EC and XL include, for example, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring (unsubstituted, alkyl-substituted such as methyl, phenyl and the like) Aryl substituted), oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole Ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, c
  • the A ring (a ring) -Z 1 -D is used as in the synthesis method of Schemes (1) to (4).
  • the ring, the halogenation reaction, or the boroxidation reaction can be appropriately combined and synthesized.
  • a (meth) acrylate derivative of the structure of the formula (1) a meta (acrylamide) derivative, an epoxy derivative, an oxetane derivative, a norbornene derivative, a dicyclopentadiene derivative using a known method
  • they can be synthesized using radical polymerization, cationic polymerization, anionic polymerization, ring-opening metathesis polymerization, etc., using an indene derivative as a starting material.
  • the reactive functional group of the halide and boronic acid derivative in Suzuki-Miyaura coupling may be replaced as appropriate, and the same applies to Kumada-Tamao-Coliue coupling and Negishi coupling.
  • the functional groups involved in these reactions may be interchanged.
  • you may replace metal magnesium and an isopropyl Grignard reagent suitably.
  • the boronic acid ester may be used as it is or may be hydrolyzed with an acid and used as a boronic acid.
  • alkyl groups other than those exemplified can also be used as the alkyl group of the ester moiety.
  • the palladium catalyst used in the coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2, palladium (II): Pd (OAc) 2, tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3, tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 ( dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri t-butylphosphino) palladium (0): Pd (t-Bu 3 P) 2 , [1 , 1′-Bis (diphenylphosphino) ferrocene] dichlor
  • a phosphine compound may be optionally added to the palladium catalyst.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphos) Fino) ferrocene, 2,2'-bis (di-t-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2 '-(di-t-butylphosphino)
  • the base used in the coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogencarbonate, sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, Examples include potassium acetate, tripotassium phosphate, and potassium fluoride.
  • the base may be added as an aqueous solution and reacted in a two-phase system.
  • a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
  • the radically polymerizable, cationically polymerizable or anionically polymerizable polymerizable group used for the synthesis of the polymer compound (III) there may be mentioned (meth) acrylic group, allyl group, vinyl group, epoxide group, oxetane and the like.
  • a radical generator is preferably used in the case of radical polymerization, and an acid generator and a base generator are preferably used in the case of cationic polymerization and anionic polymerization.
  • the polymerization initiator may be one type of compound or a mixture of two or more types of compounds.
  • the ring-opened metathesis polymerizable polymerizable group used for the synthesis of the polymer compound (III) includes a cyclic alkene structure and a cyclic alkyne structure, and specifically, a norbornene structure, a dicyclopentadiene structure, an indene structure And cyclopentene structures.
  • a catalyst used for ring-opening metathesis polymerization complexes such as ruthenium, molybdenum, and tungsten are used, and examples thereof include Grubbs catalyst.
  • solvent used in the coupling reaction and the polymerization reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, anisole, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, Examples thereof include diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, ethanol, t-butyl alcohol, cyclopentyl methyl ether and isopropyl alcohol. These solvents can be selected appropriately, and may be used alone or as a mixed solvent.
  • a polymer compound When producing a polymer compound, it may be produced in one step or may be produced through multiple steps. Alternatively, it may be carried out by a batch polymerization method in which the raw materials are all put in the reaction vessel and then the reaction is started, or may be carried out by the drop polymerization method in which the raw materials are dropped and added. It may carry out by the precipitation polymerization method which precipitates with it, and it can synthesize
  • the desired product is obtained by conducting the reaction in a state where the partial structural compound of the formula (1) having a polymerizable group and the compound having a terminal structure (EC) are added to a reaction vessel.
  • a compound having a terminal structure (EC) is added and reacted to obtain a target product.
  • the primary structure of the polymer can be controlled by selecting the polymerizable group of the monomer unit (MU). For example, as shown in Scheme (1) to (3), a polymer having a random primary structure (1 in Scheme (5)), a polymer having a regular primary structure (2 and 3 in Scheme (5)), etc. Can be synthesized, and can be used in appropriate combination according to the object.
  • MU monomer unit
  • dimers (i) and (ii) it is preferable that the dipole moment formed by each of the partial structure of the two formulas (1) and the linking group (XL) cancel each other.
  • dimers (i) and (ii) have high symmetry.
  • Organic Device The compound according to the present invention and the polymer compound thereof can be used as a material for an organic device.
  • an organic device an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell etc. are mentioned, for example.
  • FIG. 1 is a schematic cross-sectional view showing the organic EL element according to the present embodiment.
  • the organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103. Provided on the light emitting layer 105 provided on the hole transport layer 104, the electron transport layer 106 provided on the light emitting layer 105, and the electron transport layer 106 provided on the light emitting layer 105. And the cathode 108 provided on the electron injection layer 107.
  • the organic electroluminescent device 100 is, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer in reverse manufacturing order.
  • An electron transport layer 106 provided on the light emitting layer 107, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, and a hole transport layer 104;
  • the hole injection layer 103 provided thereover and the anode 102 provided on the hole injection layer 103 may be provided.
  • the minimum structural unit is configured of the anode 102, the light emitting layer 105 and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, the electron injection
  • the layer 107 is an optional layer.
  • Each of the layers may be a single layer or a plurality of layers.
  • the layer which comprises an organic electroluminescent element other than the structure aspect of "substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode” mentioned above, "Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode", “substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode "," substrate / Anode / light emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / light emitting
  • the substrate 101 is a support of the organic electroluminescent device 100, and usually, quartz, glass, metal, plastic or the like is used.
  • the substrate 101 is formed in a plate shape, a film shape, or a sheet shape according to the purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate or polysulfone are preferable.
  • soda lime glass, alkali-free glass, or the like may be used, and the thickness may be sufficient to maintain mechanical strength.
  • the upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • alkali-free glass is preferable because less elution ions from glass is preferable, but soda lime glass with a barrier coat such as SiO 2 may also be commercially available. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance the gas barrier properties, and a plate, a film or a sheet made of a synthetic resin having particularly low gas barrier properties is used as the substrate 101 When using it, it is preferable to provide a gas barrier film.
  • the anode 102 plays a role of injecting holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 is provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 via these. .
  • Materials forming the anode 102 include inorganic compounds and organic compounds.
  • the inorganic compound for example, metal (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxide (oxide of indium, oxide of tin, indium-tin oxide (ITO), indium-zinc oxide Substances (IZO etc.), metal halides (copper iodide etc.), copper sulfide, carbon black, ITO glass, Nesa glass etc.
  • the organic compound include polythiophenes such as poly (3-methylthiophene), and conductive polymers such as polypyrrole and polyaniline. In addition, it can select suitably from the substances used as an anode of an organic electroluminescent element, and can use it.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, and the resistance of the transparent electrode is not limited in view of the power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / sq or less functions as a device electrode, but at present it is also possible to supply a substrate of about 10 ⁇ / sq, for example 100 to 5 ⁇ / sq, preferably 50 to 5 ⁇ It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but usually it is often used in the range of 50 to 300 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or into the hole transport layer 104.
  • the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 via the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or two or more hole injecting / transporting materials, or a mixture of a hole injecting / transporting material and a polymer binder. Be done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injecting / transporting material to form a layer.
  • the hole injecting / transporting substance As the hole injecting / transporting substance, it is necessary to efficiently inject / transport holes from the positive electrode between the electrodes given an electric field, the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do.
  • the substance has a small ionization potential, a large hole mobility, and a high stability, and is a substance which hardly generates an impurity serving as a trap during production and use.
  • the compound according to the present invention and the polymer compound thereof can be used as materials for forming the hole injection layer 103 and the hole transport layer 104.
  • photoconductive materials compounds conventionally used as charge transport materials for holes, p-type semiconductors, and known compounds used for hole injection layer and hole transport layer of organic electroluminescent device And any compound can be selected and used.
  • carbazole derivatives N-phenylcarbazole, polyvinylcarbazole and the like
  • biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole)
  • triarylamine derivatives aromatic tertiary Polymer having amino in the main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-Diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl-N, N'-
  • polycarbonates or styrene derivatives having the above-mentioned monomer in the side chain polyvinylcarbazole, polysilane etc. It is not particularly limited as long as it is a compound capable of forming a thin film necessary for manufacturing a device, injecting holes from the anode, and transporting holes.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donors.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the light emitting layer 105 is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light emitting layer 105 may be a compound (light emitting compound) that emits light by being excited by the recombination of holes and electrons, and can form a stable thin film shape, and a solid state Preferably, they are compounds that exhibit strong luminescence (fluorescence) efficiency.
  • the compound according to the present invention and the polymer compound thereof can be used as the material for the light emitting layer.
  • the light emitting layer may be a single layer or a plurality of layers, and is formed of the material for the light emitting layer (host material, dopant material).
  • the host material and the dopant material may be of one type or a combination of two or more.
  • the dopant material may be contained in the entire host material, partially contained or may be contained. As a doping method, it can be formed by co-evaporation with a host material, but it may be simultaneously vapor-deposited after being previously mixed with the host material.
  • the amount of host material used varies depending on the type of host material, and may be determined in accordance with the characteristics of the host material.
  • the standard of the amount of host material used is preferably 50 to 99.999% by weight of the entire light emitting layer material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight It is.
  • the compound according to the present invention and the polymer compound thereof can also be used as a host material.
  • the amount of dopant material used varies depending on the type of dopant material, and may be determined in accordance with the characteristics of the dopant material.
  • the standard for the amount of dopant used is preferably 0.001 to 50% by weight, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight of the entire light emitting layer material. is there.
  • the above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
  • the compounds according to the invention and their macromolecular compounds can also be used as dopant materials.
  • the amount of the dopant material used is preferably low, because the concentration quenching phenomenon can be prevented, but the amount of the dopant material used is high
  • the concentration is preferable in terms of the efficiency of the heat activation delayed fluorescence mechanism.
  • the amount used be low.
  • the indication of the usage of the host material, assist dopant material and dopant material is 40 to 99.999% by weight, 59 to 1% by weight and 20 to 20% by weight of the entire light emitting layer material. It is 0.001 wt%, preferably 60 to 99.99 wt%, 39 to 5 wt% and 10 to 0.01 wt%, respectively, more preferably 70 to 99.95 wt%, 29 to 10 % By weight and 5 to 0.05% by weight.
  • the compound according to the present invention and the polymer compound thereof can also be used as an assist dopant material.
  • condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, bisstyrylanthracene derivatives and distyrylbenzene derivatives, etc.
  • Bisstyryl derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, fluorene derivatives, benzofluorene derivatives and the like can be mentioned.
  • the dopant material to be used in combination with the compound according to the present invention and the polymer compound thereof is not particularly limited, and known compounds can be used, and among various materials depending on the desired emission color It can be selected.
  • fused ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopyrene, dibenzopyrene, rubrene and chrysene
  • benzoxazole derivatives benzothiazole derivatives, benzoimidazole derivatives, benzotriazole derivatives, oxazoles Derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenyl butadiene derivatives, cyclopentadiene derivatives, bis st
  • blue to blue-green dopant materials include, for example, naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perphenylene, fluorene, indene, chrysene and the like, and aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complexes such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene, etc.
  • Aromatic complexes such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzo
  • Ring compounds and derivatives thereof distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiasia Azole derivatives such as carbazole, carbazole, oxazole, oxadiazole and triazole and metal complexes thereof and N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1, Aromatic amine derivatives represented by 1'-diamine may, for example, be mentioned.
  • green to yellow dopant materials examples include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, naphthacene derivatives such as rubrene, etc.
  • Preferred examples of the blue-green dopant material include compounds introduced with a substituent capable of achieving longer wavelength such as aryl, heteroaryl, arylvinyl, amino and cyano.
  • naphthalimide derivatives such as bis (diisopropylphenyl) perylene tetracarboximide, perinone derivatives, rare earth complexes such as Eu complex having acetylacetone or benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and analogs thereof, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridones Derivative, phenoxazine derivative, oxazine derivative, quinazoline derivative, pyrrolopyridine derivative, squarylium derivative, biolanthrone derivative, phenazine derivative, fenoxazo Derivatives, thiadiazolopyrene derivatives and
  • a dopant it can be used suitably selected from the chemical compounds etc. which are described in Chemical Industry 2004 June issue page 13 and the reference etc. which were given to it.
  • amines having a stilbene structure perylene derivatives, borane derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives or pyrene derivatives are particularly preferable.
  • An amine having a stilbene structure is represented by, for example, the following formula.
  • Ar 1 is an m-valent group derived from aryl having 6 to 30 carbon atoms
  • Ar 2 and Ar 3 are each independently aryl having 6 to 30 carbon atoms, but Ar 1 to Ar At least one of 3 has a stilbene structure, Ar 1 to Ar 3 may be substituted, and m is an integer of 1 to 4.
  • the amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
  • Ar 2 and Ar 3 are each independently an aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
  • aryl having 6 to 30 carbon atoms are benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, stilbene, distyrylbenzene, distyrylbiphenyl, distyryl. And fluorene.
  • amines having stilbene structure are N, N, N ', N'-tetra (4-biphenylyl) -4,4'-diaminostilbene, N, N, N', N'-tetra (1-naphthyl) ) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (2-naphthyl) -4,4′-diaminostilbene, N, N′-di (2-naphthyl) -N, N '-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthryl) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis (Diphenylamino) styryl] -biphenyl, 1,4-bis [4'-bis (diphenylamino) styryl]
  • perylene derivatives include, for example, 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9'-anthryl) -8,11-di (t-butyl) perylene, 3,3'-bis (8,11-di (t-butyl) perylenyl) and the like.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, and JP-A-2001-217077 may be used.
  • borane derivatives include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9'-anthryl) dimesitylborylnaphthalene, 4- (10 ') -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
  • borane derivatives described in WO 2000/40586 and the like may be used.
  • the aromatic amine derivative is represented, for example, by the following formula.
  • Ar 4 is an n-valent group derived from aryl having 6 to 30 carbon atoms
  • Ar 5 and Ar 6 are each independently aryl having 6 to 30 carbon atoms
  • Ar 4 to Ar 6 are It may be substituted
  • n is an integer of 1 to 4.
  • Ar 4 is a divalent group derived from anthracene, chrysene, fluorene, benzofluorene or pyrene
  • Ar 5 and Ar 6 are each independently aryl having 6 to 30 carbon atoms
  • n is 2 and aromatic amine derivatives are more preferred.
  • aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, pentacene and the like.
  • aromatic amine derivative as a chrysene type, for example, N, N, N ', N'-tetraphenyl chrysene-6,12-diamine, N, N, N', N'-tetra (p-tolyl) Chrysene-6,12-diamine, N, N, N ', N'-tetra (m-tolyl) chrysene-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysene -6,12-diamine, N, N, N ', N'-tetra (naphthalen-2-yl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl ) Chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-
  • N, N, N ', N'-tetraphenylpyrene-1,6-diamine N, N, N', N'-tetra (p-tolyl) pyrene-1,6 -Diamine
  • N, N, N ', N'-tetra (m-tolyl) pyrene-1,6-diamine N, N, N', N'-tetrakis (4-isopropylphenyl) pyrene-1,6- Diamines
  • anthracene type for example, N, N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N ', N'-tetra (p-tolyl) anthracene-9,10-diamine N, N, N ', N'-tetra (m-tolyl) anthracene-9, 10-diamine, N, N, N ', N'- tetrakis (4-isopropylphenyl) anthracene-9, 10- diamine, N, N'-diphenyl-N, N'-di (p-tolyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (m-tolyl) anthracene-9,10- Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthracene-9,10-diamine
  • Examples of coumarin derivatives include coumarin-6, coumarin-334 and the like.
  • coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, and JP-A-6-298758 may be used.
  • Examples of pyran derivatives include the following DCM and DCJTB.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or into the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 via the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials, or a mixture of an electron transport / injection material and a polymer binder.
  • the electron injecting / transporting layer is a layer that injects electrons from the cathode and is responsible for transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are efficiently transported. For this purpose, it is preferable that the substance has a large electron affinity, a large electron mobility, and is excellent in stability and in which impurities serving as traps are less likely to be generated during production and use. However, considering the transport balance of holes and electrons, the electron transport capacity is so large when it mainly plays a role of being able to efficiently block the flow of holes from the anode to the cathode side without recombination.
  • the electron injecting / transporting layer in the present embodiment may also include the function of a layer capable of efficiently blocking the movement of holes.
  • the compound according to the present invention and the polymer compound thereof can be used as a material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107.
  • the photoconductive material can be optionally selected from compounds conventionally used conventionally as an electron transfer compound, and known compounds used in the electron injection layer and the electron transport layer of the organic electroluminescent device. .
  • compounds comprising an aromatic ring or heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus, pyrrole derivatives And at least one selected from a fused ring derivative thereof and a metal complex having an electron accepting nitrogen.
  • fused ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives.
  • metal complexes having an electron accepting nitrogen include hydroxyazole complexes such as hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes. These materials may be used alone or in combination with different materials.
  • pyridine derivatives naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles Derivatives (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene etc.), thiophene derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-) Triazole etc.), thiadiazole derivative, metal complex of oxine derivative, quinolinol metal complex, quinoxaline derivative, polymer of quinoxaline derivative, benzazole compound, gallium complex, pyrazole derivative, perfluorinated fluoride Nylene derivatives
  • metal complexes having an electron accepting nitrogen can also be used, for example, hydroxyazole complexes such as quinolinol metal complexes and hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, benzoquinoline metal complexes, etc. can give.
  • hydroxyazole complexes such as quinolinol metal complexes and hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, benzoquinoline metal complexes, etc. can give.
  • quinolinol metal complexes quinolinol metal complexes, bipyridine derivatives, phenanthroline derivatives or borane derivatives are preferable.
  • the quinolinol metal complex is a compound represented by the following general formula (E-1).
  • R 1 to R 6 are hydrogen or a substituent
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3) , 4-Dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( (Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolate) aluminum, bis (2-methyl-8-) Quinolinolate) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis
  • the bipyridine derivative is a compound represented by the following general formula (E-2).
  • G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8.
  • carbon not used for binding of pyridine-pyridine or pyridine-G may be substituted.
  • G in formula (E-2) examples include the following structural formulas.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • pyridine derivative examples include 2,5-bis (2,2'-pyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2'-) Pyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilol, 2,5-bis (2,2'-pyridin-5-yl) -1,1-dimethyl-3,4- Diphenylsilole, 2,5-bis (2,2'-pyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilol, 9,10-di (2,2'-pyridine-6) -Yl) anthracene, 9,10-di (2,2'-pyridin-5-yl) anthracene, 9,10-di (2,3'-pyridin-6-yl) anthracene, 9,10-di (2 , 3'-Pyridin-5-yl,
  • the phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E- 3-2).
  • R 1 to R 8 are hydrogen or a substituent, and adjacent groups may be bonded to each other to form a fused ring
  • G represents a simple bond or an n-valent linking group
  • n is 2 It is an integer of ⁇ 8.
  • G in the general formula (E-3-2) for example, the same structural formula as G described in the section of bipyridine derivative can be mentioned.
  • phenanthroline derivative examples include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthrolin-5-yl) pyridine, 1,3,5-tri (1,10-phenanthrolin-5-yl) benzene, 9,9'-difluoro And -bis (1,10-phenanthrolin-5-yl), vasocuproin and 1,3-bis (2-phenyl-1,10-phenanthrolin-9-yl) benzene.
  • a phenanthroline derivative is used for the electron transporting layer and the electron injecting layer.
  • the substituent itself has a three-dimensional steric structure, or with a phenanthroline skeleton or A derivative having a three-dimensional steric structure by steric repulsion with an adjacent substituent or a derivative in which a plurality of phenanthroline skeletons are linked is preferable.
  • a compound including a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in a linking unit is more preferable.
  • the borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
  • each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano
  • R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl
  • X is optionally substituted arylene
  • Y is An optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl
  • n is each independently an integer of 0 to 3.
  • each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano
  • R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl
  • each of R 21 and R 22 independently represents hydrogen, alkyl, At least one of optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • X 1 is an optionally substituted arylene having a carbon number of 20 or less
  • n is each independently an integer of 0 to 3
  • m is each independently an integer of 0 to 4.
  • R 31 to R 34 each independently represent either methyl, isopropyl or phenyl
  • R 35 and R 36 each independently represent any of hydrogen, methyl, isopropyl or phenyl It is.
  • each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, and X 1 represents an optionally substituted arylene having a carbon number of 20 or less And n is each independently an integer of 0 to 3.
  • R 31 to R 34 are each independently any of methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
  • each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano
  • R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl
  • X 1 represents an optionally substituted arylene having 10 or less carbon atoms
  • Y 1 is an optionally substituted aryl having 14 or less carbon atoms
  • n is each independently an integer of 0 to 3.
  • R 31 to R 34 each independently represent either methyl, isopropyl or phenyl
  • R 35 and R 36 each independently represent any of hydrogen, methyl, isopropyl or phenyl It is.
  • the benzimidazole derivative is a compound represented by the following general formula (E-5).
  • Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted. Particularly preferred is a benzimidazole derivative in which Ar 1 is anthryl which may be substituted.
  • aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthyl-1-yl, acenaphthyl-3-yl, acenaphthyl-4-yl, acenaphthyl-5-yl, and fluorene-1-l.
  • benzimidazole derivatives are 1-phenyl-2- (4- (10-phenylanthracene-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracene-9-yl) phenyl) -1-l Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracene-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10) -(Naphthalen-2-yl) anthracene-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9- (9
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer various materials can be used as long as the material has a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, alkali From the group consisting of oxides of earth metals, halides of alkaline earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals At least one selected can be suitably used.
  • alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), Ca (1.2. And alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and materials having a work function of 2.9 eV or less are particularly preferable.
  • more preferable reducing substances are alkali metals of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals are particularly high in reducing ability, and the addition of a relatively small amount to the material forming the electron transport layer or the electron injection layer can improve the emission luminance and prolong the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable as a reducing substance having a work function of 2.9 eV or less, and in particular, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs By including Cs, the reduction ability can be efficiently exhibited, and by addition to the material for forming the electron transport layer or the electron injection layer, the emission luminance in the organic EL element can be improved and the lifetime can be prolonged.
  • the cathode 108 plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it can efficiently inject electrons into the organic layer, but the same material as the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium Indium alloy, aluminum-lithium alloy such as lithium fluoride / aluminum, etc. are preferable.
  • Lithium, sodium, potassium, cesium, calcium, magnesium or alloys containing these low work function metals are effective for enhancing the electron injection efficiency to improve the device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals for electrode protection, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride It is preferable to stack a hydrocarbon-based polymer compound or the like as a preferred example.
  • the method for producing these electrodes is also not particularly limited as long as conduction can be taken, such as resistance heating evaporation, electron beam evaporation, sputtering, ion plating and coating.
  • ⁇ Binder which may be used in each layer>
  • the materials used for the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer described above can form each layer independently, but polyvinyl chloride, polycarbonate, or the like as a polymer binder Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin Etc., and can be used by dispersing it in a solvent-soluble resin such as phenol resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, etc. is there.
  • a solvent-soluble resin such as phenol resin, xylene
  • Each layer constituting the organic electroluminescent element is formed of a material to be constituted of each layer by a method such as evaporation, resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, printing, spin coating or casting, or the like. It can be formed by using a thin film. There is no particular limitation on the film thickness of each layer formed in this way, and it can be appropriately set according to the property of the material, but it is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured by a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions differ depending on the type of material, the desired crystal structure and association structure of the film, and the like.
  • the deposition conditions are generally: boat heating temperature +50 to + 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / sec, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m It is preferable to set appropriately in the range.
  • an organic electric field comprising a light emitting layer / electron transport layer / electron injection layer / cathode comprising anode / hole injection layer / hole transport layer / host material and dopant material
  • a method for manufacturing a light emitting element is described. After forming a thin film of an anode material on a suitable substrate by vapor deposition or the like to prepare an anode, thin films of a hole injection layer and a hole transport layer are formed on the anode.
  • a host material and a dopant material are co-deposited thereon to form a thin film to form a light emitting layer, an electron transporting layer and an electron injecting layer are formed on the light emitting layer, and a thin film made of a cathode material is deposited by evaporation or the like.
  • the intended organic electroluminescent element is obtained by forming it as a cathode.
  • the anode When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied as + and the cathode may be applied as-polarity, and when a voltage of about 2 to 40 V is applied, it is transparent or semitransparent. Luminescence can be observed from the electrode side (anode or cathode, and both).
  • the organic electroluminescent device also emits light when a pulse current or an alternating current is applied.
  • the waveform of the alternating current to apply may be arbitrary.
  • the present invention can also be applied to a display device provided with an organic electroluminescent device or a lighting device provided with an organic electroluminescent device.
  • the display device or the illumination device provided with the organic electroluminescent device can be manufactured by a known method such as connecting the organic electroluminescent device according to the present embodiment and a known drive device, and can be DC drive, pulse drive, AC It can drive, using suitably well-known drive methods, such as a drive.
  • Examples of the display device include a panel display such as a color flat panel display, a flexible display such as a flexible color organic electroluminescent (EL) display, and the like (for example, Japanese Patent Application Laid-Open Nos. 10-335066 and 2003-321546). See Japanese Patent Laid-Open Publication No. 2004-281086 etc.
  • a display method of a display a matrix and / or a segment system etc. are mentioned, for example.
  • the matrix display and the segment display may coexist in the same panel.
  • pixels for display are two-dimensionally arranged in a lattice shape, a mosaic shape, or the like, and a character or an image is displayed by a set of pixels.
  • the shape and size of the pixels depend on the application. For example, for displaying images and characters on personal computers, monitors, and televisions, square pixels with one side of 300 ⁇ m or less are usually used, and in the case of a large display such as a display panel, pixels with one side of mm order become.
  • monochrome display pixels of the same color may be arranged, but in color display, red, green and blue pixels are displayed side by side. In this case, there are typically delta types and stripe types.
  • a line sequential driving method or an active matrix may be used.
  • the line-sequential drive has an advantage that the structure is simple, in consideration of the operation characteristics, the active matrix may be superior in some cases, so it is necessary to use this in accordance with the application.
  • a pattern is formed so as to display predetermined information, and a predetermined area is made to emit light.
  • predetermined information For example, time and temperature displays on digital watches and thermometers, operation status displays on audio devices and induction cookers, and panel displays on automobiles can be mentioned.
  • the lighting device examples include a lighting device such as interior lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, and JP 2004-119211 A). Etc.).
  • Backlights are mainly used for the purpose of improving the visibility of display devices that do not emit light themselves, and are used for liquid crystal display devices, clocks, audio devices, automobile panels, display boards, signs, and the like.
  • backlights for liquid crystal display devices particularly for personal computer applications where thinning is an issue, considering that thinning is difficult because the conventional method is composed of a fluorescent lamp and a light guide plate
  • the backlight using the light emitting element according to is characterized by being thin and lightweight.
  • the compound according to the present invention and the polymer compound thereof can be used for the production of an organic field effect transistor, an organic thin film solar cell, etc. in addition to the above-described organic electroluminescent device.
  • An organic field effect transistor is a transistor that controls current by an electric field generated by voltage input, and a gate electrode is provided in addition to a source electrode and a drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the flow of electrons (or holes) flowing between the source electrode and the drain electrode can be arbitrarily blocked to control the current.
  • a field effect transistor is easier to miniaturize than a simple transistor (bipolar transistor), and is often used as an element constituting an integrated circuit or the like.
  • a source electrode and a drain electrode are provided in contact with the organic semiconductor active layer formed using the compound according to the present invention and the polymer compound thereof, and further the organic semiconductor active layer
  • the gate electrode may be provided with the insulating layer (dielectric layer) in contact with the gate electrode.
  • Examples of the element structure include the following structures.
  • the organic field effect transistor configured in this way is The present invention can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display.
  • the organic thin film solar cell has a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are stacked on a transparent substrate such as glass.
  • the photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side.
  • the compound according to the present invention and the polymer compound thereof can be used as a material of a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer depending on the physical properties.
  • the compound according to the present invention and the polymer compound thereof can function as a hole transport material or an electron transport material in an organic thin film solar cell.
  • the organic thin film solar cell may be appropriately provided with a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer and the like in addition to the above.
  • known materials used for the organic thin film solar cell can be appropriately selected and used in combination.
  • Step 1 To di-para-tolyl ether (10.1 g) and dimethylformamide (200 ml), add 1,3-dibromo-5,5-dimethylhydantoin (DBH: 55.9 g, 200 mmol), Heated and stirred for time. The reaction solution was cooled to room temperature, water (500 ml) was added, and then extracted with toluene (200 ml ⁇ 5 times). The solvent was distilled off by distillation at 140 ° C. under normal pressure. The crude product was filtered through a silica gel short path column, and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was washed with hexane to give 1,1′-oxybis (2-bromo-4-methylbenzene) as a white solid (10.8 g, yield 61%).
  • DBH 1,3-dibromo-5,5-dimethylhydantoin
  • Step 3 Add butyllithium (245 ml, 3.9 mmol) to 2- (2-bromophenoxy) pyridine (0.971 g, 3.9 mmol) and toluene (50 ml) at -78 ° C. under a nitrogen atmosphere, and then at 0 ° C. Stir for 1 hour. Furthermore, boron tribromide (0.380 ml, 0.50 mmol) was added at ⁇ 78 ° C., and the boron intermediate was prepared by stirring at 0 ° C. for 15 minutes. Also at the same time, butyllithium (4.90 ml) at ⁇ 78 ° C.
  • Synthesis example (2) Synthesis of the compound of formula (10P-g-101) (alternative method) The yield is improved by performing the second and third steps of the synthesis example (1) by the following method.
  • Step 3 Butyllithium (6.00 ml) at ⁇ 78 ° C. under nitrogen atmosphere to 1,1′-oxybis (2-bromo-4-methylbenzene) (1.70 g, 4.8 mmol) and diethyl ether (30 ml)
  • the lithium intermediate was prepared by adding 9.6 mmol) and stirring at 0 ° C. for 1 hour. Meanwhile, boron tribromide (0.451 ml, 4.8 mmol) was added to 2-phenoxypyridine (0.812 g, 4.8 mmol) and toluene (20 ml) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C.
  • the boron intermediate was prepared by This was added to the reaction solution containing a lithium intermediate at ⁇ 78 ° C., and stirred at 0 ° C. for 1 hour.
  • the reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to obtain a crude product. After that, washing with hexane gave the compound of the formula (10P-g-101) as a yellow solid (0.710 g, yield 40%).
  • reaction solution was cooled to room temperature, filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave N, N-diphenylpyridin-2-amine as a white solid (6.52 g, yield 88%).
  • boron tribromide (0.285 ml, 3.0 mmol) was added to N, N-diphenylpyridin-2-amine (0.724 g, 2.9 mmol) and toluene (20 ml) at room temperature under a nitrogen atmosphere, and 90 After preparing a boron intermediate by heating and stirring at 1 ° C.
  • reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at ⁇ 78 ° C., and stirred at 0 ° C. for 1 hour.
  • the reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to obtain a crude product. Then, the compound was washed with hexane to give the compound of the formula (10P-gq-101-J11) as a yellow solid (0.813 mg, yield 61%).
  • Step 1 2-bromophenol (6.30 ml, 59.7 mmol), potassium carbonate (10.3 g, 77.4 mmol) and 1,3-dimethyl-2-imidazolidinone (DMI: 150 ml) under a nitrogen atmosphere, At room temperature, 1-bromo-2-fluorobenzene (5.50 ml, 50.3 mmol) was added, and the mixture was heated and stirred at 200 ° C. for 24 hours. The reaction solution was cooled to room temperature, toluene (200 ml) was added, and then extracted with water (150 ml ⁇ 3 times). The crude product was distilled at 70 ° C. under 4.6 ⁇ 10 ⁇ 2 Pa to obtain 2,2′-oxybis (bromobenzene) as a colorless liquid (3.46 g, 23% yield).
  • DMI 1,3-dimethyl-2-imidazolidinone
  • Second Step Add butyl lithium (14.0 ml) to 2,2′-oxybis (bromobenzene) (3.52 g, 10.7 mmol) and diethyl ether (30 ml) at ⁇ 78 ° C. under a nitrogen atmosphere, and at 0 ° C.
  • the lithium intermediate was prepared by stirring for 1 hour.
  • boron tribromide (1.02 ml, 10.7 mmol) is added to 2-phenoxypyridine (1.75 g, 10.2 mmol) and toluene (30 ml) at room temperature under a nitrogen atmosphere, and stirred at 90 ° C. for 1 hour
  • the reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole.
  • Phenylboronic acid (2.93 g, 24 mmol), tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 : 1.74 g, 1.5 mmol), potassium carbonate (8.30 g, 60 mmol), water ( 5-bromo-2-chloropyridine (3.87 g, 20 mmol) was added to 80 ml) and 1,4-dioxane (80 ml) at room temperature under nitrogen atmosphere, and stirred at room temperature for 45 hours. The solvent of the reaction solution was evaporated under reduced pressure, and then extracted with toluene (100 ml ⁇ 3 times), and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was washed with hexane and purified by silica gel short path column to obtain 2-chloro-5-phenylpyridine as a white solid (1.69 g, yield 44%).
  • reaction solution containing the lithium intermediate at ⁇ 78 ° C., stirred at 0 ° C. for 1 hour and at room temperature for 19 hours.
  • the reaction solution was filtered through a silica gel short path column, and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was purified by silica gel short path column to obtain a compound of formula (10P-gq-342-J11) as a pale yellow solid (0.548 g, yield 21%).
  • reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at ⁇ 78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave the compound of the formula (10P-gq-23-J11) as a yellow solid (3.30 g, yield 75%).
  • the compound according to the present invention and the polymer compound according to the present invention can be synthesized by a method according to the above-described synthesis example by appropriately changing the compound of the raw material.
  • the compound When evaluating the absorption characteristics and the emission characteristics (fluorescence and phosphorescence) of the compound to be evaluated, the compound may be dissolved in a solvent and evaluated in a solvent or in a thin film state. Furthermore, when evaluating in the thin film state, depending on the mode of use of the compound in the organic EL element, when thin filming only the compound is to be evaluated (single component vapor deposition film) and the compound dispersed in an appropriate matrix material (Co-deposited film) may be evaluated.
  • PMMA polymethyl methacrylate
  • a thin film sample dispersed in PMMA is prepared, for example, by dissolving PMMA and a compound to be evaluated in toluene, and then forming a thin film on a transparent support substrate (10 mm ⁇ 10 mm) made of quartz by a spin coating method.
  • a transparent support substrate (10 mm ⁇ 10 mm) made of quartz by a spin coating method.
  • a method of producing a single component vapor deposited film is described below.
  • a transparent support substrate made of quartz or glass is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum deposition boat containing a compound to be evaluated is mounted.
  • the vacuum tank is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and the deposition boat containing the compound is heated to deposit an appropriate film thickness to form a single component deposition film.
  • a method of preparing a thin film sample when the matrix material is a host material is described below.
  • a transparent support substrate made of quartz or glass is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum deposition boat containing a host material, a molybdenum deposition boat containing a dopant material Wear
  • the vacuum chamber is depressurized to 5 ⁇ 10 -4 Pa, and the deposition boat containing the host material and the deposition boat containing the dopant material are simultaneously heated to obtain an appropriate film thickness.
  • Form a mixed film of material and dopant material is controlled in accordance with the set weight ratio of the host material and the dopant material.
  • Example 1 A transparent support substrate made of ITO vapor-deposited glass and a molybdenum evaporation boat containing the compound (10P-gq-101-J11) are fixed to a commercially available evaporation system (manufactured by Showa Vacuum Co., Ltd.), and the vacuum chamber is The pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa, and the compound (10 P-gq-101-J11) was heated and evaporated to a film thickness of 50 nm to form a single-component deposited film. The photoelectron yield spectrum, the absorption spectrum in the visible region, the fluorescence spectrum and the phosphorescence spectrum of the obtained single component vapor deposition film were measured.
  • the results are shown as differences with respect to the compound mCBP used in Comparative Example 1 (Table 1).
  • singlet energy (S 1 ) and triplet energy (T 1 ) are first excited singlet energy and first excited triplet energy unless otherwise noted.
  • ⁇ E ST is the difference between singlet energy and triplet energy.
  • Example 2 A single-component deposited film was produced by the method according to Example 1 except that the compound (10P-gq-101-J11) was changed to the compound (10P-g-101), and each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated
  • Comparative Example 1 A single-component deposited film was prepared by the method according to Example 1, except that the compound (10P-gq-101-J11) was changed to the compound mCBP (3,3'-di (9H-carbazolyl-9-yl) biphenyl). And each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated
  • Comparative Example 2 A single-component deposited film was produced by the method according to Example 1 except that the compound (10P-gq-101-J11) was changed to the compound CBP, and each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated
  • organic EL elements according to Example 3, Example 4 and Comparative Example 3 can be produced with the layer configuration shown in Table 2.
  • HAT-CN is 1,4,5,8,9,12- Hexaazatriphenylene hexa-carbonitrile
  • TB is N 4, N 4, N 4 ', N 4' - tetra ([ 1,1'-biphenyl] -4-yl)-[1,1'-biphenyl] -4,4'-diamine
  • TcTa is tris (4-carbazolyl-9-ylphenyl) amine
  • CBP is 4,4'-di (9H-carbazolyl-9-yl) -1,1'-biphenyl
  • Ir (PPy) 3 is tris (2-phenylpyridine) iridium (III)
  • TBi is 1,3 5,5-tris (1-phenyl-1H-benzo [d] imidazol-2-yl) benzene.
  • the chemical structure is shown below.
  • Example 3 ⁇ Device using compound (10P-g-101) as host material of light emitting layer> A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm is used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and HAT-CN, TBB, TcTa, compound (10P-g-101), Ir (PPy) 3 , TPBi and LiF Attach a crucible for vapor deposition made of tantalum and a crucible for vapor deposition made of aluminum nitride containing aluminum.
  • a commercially available vapor deposition apparatus Choshu Sangyo Co., Ltd.
  • HAT-CN, TBB, TcTa compound (10P-g-101), Ir (PPy) 3 , TPBi and LiF Attach a crucible for vapor deposition made of tantalum and a crucible for vapor deposition made of aluminum nitride containing aluminum.
  • the following layers are sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 5 nm, and then TBB is heated to deposit a film thickness to 65 nm. Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-g-101) and Ir (PPy) 3 are simultaneously heated and evaporated to a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of compound (10P-g-101) to Ir (PPy) 3 is approximately 95 to 5.
  • TPBi is heated and evaporated to a film thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer so far is 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
  • Green light emission can be obtained by applying a DC voltage with the ITO electrode as an anode and the LiF / aluminum electrode as a cathode.
  • Example 4 ⁇ Element using Compound (10P-gq-101-J11) as host material of light emitting layer>
  • An organic EL device can be obtained by the method according to Example 3 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound (10P-gq-101-J11).
  • light emission can be obtained by applying a DC voltage.
  • Comparative Example 3 ⁇ Device using compound CBP as host material of light emitting layer> An organic EL device can be obtained by the method according to Example 3, except that the compound (10P-g-101), which is the host material of the light emitting layer, is replaced with the compound CBP.
  • organic EL elements according to Example 5 and Example 6 can be manufactured with the layer configuration shown in Table 3.
  • Example 5 ⁇ Device using compound (10P-g-101) for electron transport layer>
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and HAT-CN, TBB, TcTa, CBP, Ir (PPy) 3 , compound (10P-g-101) and LiF Attach a crucible for vapor deposition made of tantalum and a crucible for vapor deposition made of aluminum nitride containing aluminum.
  • the following layers are sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 10 nm, and then TBB is heated to deposit a film to a thickness of 20 nm Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, CBP and Ir (PPy) 3 are simultaneously heated and evaporated to a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of CBP to Ir (PPy) 3 is approximately 95 to 5.
  • the compound (10P-g-101) is heated and evaporated to a film thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer so far is 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
  • Green light emission can be obtained by applying a DC voltage with the ITO electrode as an anode and the LiF / aluminum electrode as a cathode.
  • Example 6 ⁇ Device using compound (10P-gq-101-J11) for the electron transport layer>
  • An organic EL device can be obtained by the method according to Example 5 except that the compound (10P-g-101) in the electron transport layer is changed to the compound (10P-gq-101-J11).
  • light emission can be obtained by applying a DC voltage.
  • organic EL elements according to Example 7, Example 8 and Comparative Example 4 can be manufactured with the layer configuration shown in Table 4.
  • Firpic is bis [2- (4,6-difluorophenyl) pyridinato-N, C2] (picolinato) iridium (III). The chemical structure is shown below.
  • Example 7 ⁇ Device using compound (10P-g-101) as host material of light emitting layer> A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm is used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of HAT-CN, TBB, TcTa, compound (10P-g-101), Firpic, TPBi and LiF was loaded A tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum are mounted.
  • the following layers are sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 5 nm, and then TBB is heated to deposit a film thickness to 65 nm. Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-g-101) and Firpic are simultaneously heated to deposit a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of the compound (10P-g-101) to the Firpic is approximately 95 to 5.
  • TPBi is heated and evaporated to a film thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer is 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
  • Example 8 ⁇ Element using Compound (10P-gq-101-J11) as host material of light emitting layer>
  • An organic EL device can be obtained by the method according to Example 7 except that the compound (10P-g-101) which is the host material of the light emitting layer is changed to the compound (10P-gq-101-J11). Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Comparative Example 4 ⁇ Device using compound mCBP as host material of light emitting layer>
  • An organic EL device can be obtained by the method according to Example 7 except that the compound (10P-g-101) as the host material of the light emitting layer is changed to the compound mCBP. Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • organic EL elements according to Examples 9 to 16 and Comparative Examples 5 to 8 were produced with the layer configurations shown in Table 5.
  • NPD N, N′-bis (naphthylene-1-yl) -N, N′-bis (phenyl) benzene
  • mCP 1,3-bis (carbazolyl-9-yl) Benzene
  • DBNA2 is 9-([1,1′-biphenyl] -3-yl-N, N, 5,11-tetraphenyl-5,9-dihydro-5,9-diaza-13b-boranaphtho [3 , 2,1-de] anthracene-3-amine
  • DBNA3 is N, N, 5,9-tetraphenyl-5,9-dihydro-5,9-diaza-13b-boranaphtho [3,2,1- "4CzIPN” is a dimer which shares one benzene ring of each other of de] anthracene-7-amine, "2,4,5,6-tetra (9H-carbazol
  • Example 9 ⁇ Device using compound (10P-g-101) as host and DABNA2 as dopant> A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.) and made of tantalum containing NPD, TcTa, mCP, compound (10P-g-101), DABNA2, TSPO1 and LiF.
  • An evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer.
  • the compound (10P-g-101) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (10P-g-101) to DABNA2 was about 98: 2.
  • TSPO1 was heated and vapor deposited to a film thickness of 40 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
  • Example 10 ⁇ Device using compound (10P-gq-101-J1) as host and DABNA2 as dopant>
  • An organic EL device was obtained by the method according to Example 9, except that the compound (10P-g-101) as the host material of the light emitting layer was changed to the compound (10P-gq-101-J11). Blue light emission was obtained when a DC voltage was applied to both electrodes. The light emission luminance was 10 cd / m 2 at a drive voltage of 3.82 V and a current density of 0.04 mA / cm 2 , and the external quantum efficiency at this time was 22.6%.
  • the light emission luminance was 100 cd / m 2 at a drive voltage of 4.70 V and a current density of 0.66 mA / cm 2 , and the external quantum efficiency at this time was 15.3%.
  • the external quantum efficiencies at 10 cd / m 2 and 100 cd / m 2 were both superior to those of Comparative Example 5.
  • Comparative Example 5 ⁇ Device using compound mCBP as host and DABNA2 as dopant> An organic EL device was obtained by the method according to Example 5, except that the compound (10P-g-101) as the host material of the light emitting layer was changed to the compound mCBP.
  • the compound (10P-g-101) as the host material of the light emitting layer was changed to the compound mCBP.
  • blue emission having a peak top at about 467 nm was obtained.
  • the light emission luminance was 10 cd / m 2 at a drive voltage of 3.65 V and a current density of 0.06 mA / cm 2 , and the external quantum efficiency at this time was 18.2%.
  • the light emission luminance was 100 cd / m 2 at a drive voltage of 5.13 V and a current density of 0.92 mA / cm 2 , and the external quantum efficiency at this time was 11.4%.
  • Example 11 ⁇ Device using compound (10P-g-101) as host and DABNA3 as dopant> An organic EL element is obtained by the method according to Example 9 except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound DABNA3. Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Example 12 ⁇ Device using compound (10P-gq-101-J11) as host and DABNA3 as dopant> Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound DABNA3
  • the organic EL element is obtained by Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Comparative Example 6 ⁇ Device using compound mCBP as host and DABNA3 as dopant> An organic EL device is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound mCBP and the compound DABNA2 which is the dopant material is replaced with the compound DABNA3. Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Example 13 ⁇ Device using compound (10P-g-101) as host and 4CzIPN as dopant> An organic EL element is obtained by the method according to Example 9 except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound 4CzIPN. Green light emission can be obtained by applying a DC voltage to both electrodes.
  • Example 14 ⁇ Device using compound (10P-gq-101-J11) as host and 4CzIPN as dopant> Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound 4CzIPN
  • the organic EL element is obtained by Green light emission can be obtained by applying a DC voltage to both electrodes.
  • Comparative Example 7 ⁇ Device using compound mCBP as host and 4CzIPN as dopant>
  • An organic EL element is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound mCBP and the compound DABNA2 which is the dopant material is replaced with the compound 4CzIPN.
  • Green light emission can be obtained by applying a DC voltage to both electrodes.
  • Example 15 ⁇ Device using compound (10P-g-101) as host and CzBPCN as dopant> An organic EL device is obtained by the method according to Example 9, except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound CzBPCN. Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Example 16 ⁇ Device using compound (10P-gq-101-J11) as host and CzBPCN as dopant> Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound CzBPCN
  • the organic EL element is obtained by Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Comparative Example 8 ⁇ Device using compound mCBP as host and CzBPCN as dopant> An organic EL device is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound mCBP and the compound DABNA2 which is the dopant material is replaced by the compound CzBPCN. Blue light emission is obtained when a DC voltage is applied to both electrodes.
  • Example 17 ⁇ Device using compound (10P-gq-100-J11) as host and DABNA2 as dopant>
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of NPD, TcTa, mCP, compound (10P-gq-100-J11), DABNA2, TSPO1 and LiF was loaded.
  • a tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer.
  • the compound (10P-gq-100-J11) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (10P-gq-100-J11) to DABNA2 was about 98: 2.
  • TSPO1 was heated and vapor deposited to a film thickness of 40 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
  • the light emission luminance was 10 cd / m 2 at a drive voltage of 4.00 V and a current density of 0.04 mA / cm 2 , and the external quantum efficiency at this time was 25.0%.
  • the light emission luminance was 100 cd / m 2 at a drive voltage of 4.84 V and a current density of 0.48 mA / cm 2 , and the external quantum efficiency at this time was 21.0%.
  • organic EL elements according to Examples 18, 19 and Comparative Examples 9, 10 were produced with the layer configurations shown in Table 7.
  • Example 18 ⁇ Device using compound (10P-gq-100-J11) as host and DABNA2 as dopant>
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of NPD, TcTa, mCP, compound (10P-gq-100-J11), DABNA2, TSPO1 and LiF was loaded.
  • a tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 2.0 ⁇ 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer.
  • the compound (10P-gq-100-J11) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (10P-gq-100-J11) to DABNA2 was about 98: 2.
  • TSPO1 was heated and vapor deposited to a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
  • Comparative Example 9 ⁇ Device using compound mCBP as host and DABNA2 as dopant> An organic EL device was obtained by the method according to Example 18 except that the compound (10P-gq-100-J11) as the host material of the light emitting layer was changed to the compound mCBP.
  • the compound (10P-gq-100-J11) as the host material of the light emitting layer was changed to the compound mCBP.
  • blue emission having a peak top at about 467 nm was obtained.
  • the light emission luminance was 10 cd / m 2 at a drive voltage of 4.50 V and a current density of 0.06 mA / cm 2 , and the external quantum efficiency at this time was 17.6%.
  • the light emission luminance was 100 cd / m 2 at a drive voltage of 5.38 V and a current density of 0.83 mA / cm 2 , and the external quantum efficiency at this time was 12.4%.
  • Example 19 ⁇ Device using compound (10P-gq-100-J11) as host and DABNA3 as dopant>
  • An organic EL device was obtained by the method according to Example 18 except that DABNA3 was used as the dopant material of the light emitting layer.
  • DABNA3 was used as the dopant material of the light emitting layer.
  • blue emission having a peak top at about 472 nm was obtained.
  • the light emission luminance was 10 cd / m 2 at a drive voltage of 4.00 V and a current density of 0.03 mA / cm 2 , and the external quantum efficiency at this time was 34.5%.
  • the emission luminance was 100 cd / m 2 at a drive voltage of 5.38 V and a current density of 0.34 mA / cm 2 , and the external quantum efficiency at this time was 32.7%.
  • the external quantum efficiency at 10 cd / m 2 and 100 cd / m 2 were both excellent.
  • the S 1 excitation energy calculated using the PBE 0 / 6-31 G (d) method was 18 nm shorter than the emission wavelength obtained by the measurement, and ⁇ E ST was about 10 times smaller. Moreover, although the value of the calculated oscillator strength was very small, the actually measured PLQY was very high.
  • the compound is a TADF-active fluorescent material under the assumption that the calculated values and the comparative example 1 have a similar tendency.
  • the actual emission wavelength may be shorter than the calculation result of the S 1 excitation energy
  • the actually measured ⁇ E ST may be larger than the calculation result
  • the PLQY also has a large oscillator strength. It was assumed that there is a large possibility compared to the calculation results. Therefore, it is considered that those with ⁇ E ST calculated less than 0.20 eV can be used as TADF fluorescent materials, and those smaller than 0.02 eV can be used more effectively as TADF fluorescent materials.
  • the oscillator strength is 0.0002 or more, high PLQY can be obtained, and when it is smaller than 0.0002, low PLQY can be obtained. Also, it is assumed that the actual emission wavelength is close to the calculation result of the S 1 excitation energy but may shift somewhat.
  • the choice of materials for organic devices such as organic EL elements can be increased by providing a novel compound in which boron is a spiro atom. Further, by using a novel compound in which boron is a spiro atom as a material for an organic EL element, it is possible to provide an excellent organic EL element, a display device including the same, a lighting device including the same, and the like.
  • organic electroluminescent device 101 substrate 102 anode 103 hole injection layer 104 hole transport layer 105 light emitting layer 106 electron transport layer 107 electron injection layer 108 cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

By using this novel compound which is represented by general formula (1) and which includes boron as a spiro atom, and a macromolecular compound of said compound, the present invention provides a superior organic EL element. (1): Rings A-D are each an aryl ring, a heteroaryl ring, or the like which is optionally substituted, with the proviso that an acridine substituent cannot be the substituent solely for ring A or ring D; X1-X4 each independently represent C or N; Z1 and Z2 each represent a single bond or a linking group such as alkylene that may be partially substituted, with the proviso that Z1 and Z2 are not both single bonds simultaneously; and at least one hydrogen atom in the compound represented by formula (1) is optionally substituted by cyano, a halogen, or a deuterium atom.

Description

ホウ素をスピロ原子とした化合物およびその高分子化合物Compounds having a spiro atom of boron and polymer compounds thereof
 本発明は、ホウ素をスピロ原子とした化合物およびそれを繰り返し単位とする高分子化合物、これらの化合物を用いた有機電界発光素子、有機電界効果トランジスタおよび有機薄膜太陽電池、並びに、表示装置および照明装置に関する。 The present invention relates to a compound having a spiro atom of boron and a polymer compound having the same as a repeating unit, an organic electroluminescent device using these compounds, an organic field effect transistor and an organic thin film solar cell, and a display device and a lighting device About.
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。 Conventionally, a display device using a light emitting element that emits electric field can be variously studied because power saving and thinning can be achieved, and furthermore, an organic electroluminescent element made of an organic material can be easily reduced in weight and size. It has been actively considered from that. In particular, development of organic materials having emission characteristics such as blue, which is one of the three primary colors of light, and organic materials provided with charge transport ability (having the possibility of becoming a semiconductor or a superconductor) such as holes and electrons The development has been actively studied so far for both high molecular weight compounds and low molecular weight compounds.
 有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。 The organic EL element has a structure comprising a pair of electrodes comprising an anode and a cathode, and one or more layers disposed between the pair of electrodes and containing an organic compound. Layers containing an organic compound include a light emitting layer, and a charge transport / injection layer that transports or injects a charge such as a hole or an electron, and various organic materials suitable for these layers have been developed.
 発光層用材料としては、例えばベンゾフルオレン系化合物などが開発されている(国際公開第2004/061047号公報)。また、正孔輸送材料としては、例えばトリフェニルアミン系化合物などが開発されている(特開2001-172232号公報)。また、電子輸送材料としては、例えばアントラセン系化合物などが開発されている(特開2005-170911号公報)。 As materials for light emitting layers, for example, benzofluorene compounds and the like have been developed (WO 2004/061047). In addition, as a hole transport material, for example, triphenylamine compounds and the like have been developed (Japanese Patent Laid-Open No. 2001-172232). In addition, as an electron transport material, for example, an anthracene compound and the like have been developed (Japanese Patent Laid-Open No. 2005-170911).
 近年では有機EL素子や有機薄膜太陽電池に使用する材料としてトリフェニルアミン誘導体を改良した材料も報告されている(国際公開第2012/118164号公報)。この材料は既に実用化されていたN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD)を参考にして、トリフェニルアミンを構成する芳香環同士を連結することでその平面性を高めたことを特徴とする材料である。このような化合物の例は他にも見られ(国際公開第2011/107186号公報、国際公開第2015/102118号公報)、三重項励起子のエネルギー(T1)が大きい共役構造を有する化合物は、より短い波長の燐光を発することができるため、青色の発光層用材料として有益である。また、ホウ素原子と酸素原子または硫黄原子を含むヘテラボリン環を有する化合物についても同様の検討がされた報告もある(国際公開第2015/072537号公報)。 In recent years, a material obtained by improving a triphenylamine derivative as a material used for an organic EL element or an organic thin film solar cell has also been reported (WO 2012/118164). This material is referred to N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD) which has already been put to practical use. It is a material characterized in that its planarity is enhanced by linking aromatic rings constituting triphenylamine. Other examples of such compounds are also found (WO 2011/107186, WO 2015/102118), and compounds having a conjugated structure in which the energy (T1) of triplet excitons is large are It is useful as a blue light emitting layer material because it can emit phosphorescence of a shorter wavelength. In addition, there is also a report in which the same examination was carried out also for a compound having a heteraboline ring containing a boron atom and an oxygen atom or a sulfur atom (WO 2015/072537).
国際公開第2004/061047号公報International Publication No. 2004/061047 特開2001-172232号公報JP, 2001-172232, A 特開2005-170911号公報JP 2005-170911 A 国際公開第2012/118164号公報International Publication No. 2012/118164 国際公開第2011/107186号公報International Publication No. 2011/107186 国際公開第2015/102118号公報International Publication No. 2015/102118 国際公開第2015/072537号公報International Publication No. 2015/072537
 上述するように、有機EL素子等の有機デバイスに用いられる材料としては種々の材料が開発されているが、有機デバイス用材料の選択肢を増やすために、従来とは異なる化合物からなる材料の開発が望まれている。 As described above, various materials have been developed as materials used for organic devices such as organic EL elements, but in order to increase the choice of materials for organic devices, development of materials composed of compounds different from conventional ones It is desired.
 本発明者らは、上記課題を解決するため鋭意検討した結果、ホウ素をスピロ原子とした新規な化合物を見出し、その製造に成功した。また、この化合物を含有する層を一対の電極間に配置して有機EL素子を構成することにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のような化合物またはそれを繰り返し単位とする高分子化合物、さらにはこれらの化合物を含む有機デバイス用材料を提供する。 As a result of intensive studies to solve the above problems, the present inventors found a novel compound having boron as a spiro atom, and succeeded in producing it. Moreover, it discovered that the outstanding organic EL element was obtained by arrange | positioning the layer containing this compound between a pair of electrodes and comprising an organic EL element, and completed this invention. That is, the present invention provides a compound as described below, a polymer compound having the same as a repeating unit, and a material for an organic device containing these compounds.
項1.
 下記一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物。
Figure JPOXMLDOC01-appb-C000015
(上記式(1)中、
 A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、B環はヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
 X~Xは、それぞれ独立して、CまたはNであり、
 ZおよびZは、それぞれ独立して、単結合、アルキレン、アルケニレン、アルキニレンまたはアリーレンであり、これらにおける任意の-CH-は、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよく、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
 式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 1.
The compound represented by following General formula (1), or the high molecular compound which makes the structure represented by General formula (1) a repeating unit.
Figure JPOXMLDOC01-appb-C000015
(In the above formula (1),
Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring, ring B is a heteroaryl ring, ring A and ring B and / or ring C and ring D combine The ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
X 1 to X 4 are each independently C or N,
Z 1 and Z 2 are each independently a single bond, alkylene, alkenylene, alkynylene or arylene, and arbitrary —CH 2 — in these is —C (= CR 2 ) —, —C (= C (= C) = O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-,- C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= S)-,- S (= O) —, —S (= O) 2 —, —SiR 2 —, —NR—, or —N = N— may be substituted, wherein R is independently , Hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl , Alkoxy or aryloxy, wherein at least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent to R with A ring, B ring, C ring and / or The ring D may be combined to form a ring structure, provided that Z 1 and Z 2 are not simultaneously a single bond,
At least one hydrogen in the compound or structure represented by formula (1) may be substituted with cyano, halogen or deuterium. )
項2.
 A環、C環およびD環は、それぞれ独立して、炭素数6~30のアリール環または炭素数2~30のヘテロアリール環であり、B環は炭素数2~30のヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
 X~Xは、それぞれ独立して、CまたはNであり、
 ZおよびZは、それぞれ独立して、単結合、-(CR-(nは1~12)、-CR=CR-、-C≡C-、-(CR=CR-CR-(nは1~4)、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-C(=O)C(=O)-、-C(=O)OC(=O)-、-(CR-O)-(nは1~12)、-(CR-O-(nは1~12)、-(CR-CR-O)-(nは1~6)、-O-、-S-、-SS-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、-N=N-、または、フェニレンであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
 式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項1に記載の化合物または高分子化合物。
Item 2.
Ring A, ring C and ring D are each independently an aryl ring having 6 to 30 carbon atoms or a heteroaryl ring having 2 to 30 carbon atoms, and ring B is a heteroaryl ring having 2 to 30 carbon atoms, , A ring and B ring and / or C ring and D ring may form a ring structure, and at least one hydrogen in these rings may be substituted, provided that A ring alone and D ring Acridine based substituents are excluded as substituents to the ring alone,
X 1 to X 4 are each independently C or N,
Z 1 and Z 2 are each independently a single bond,-(CR 2 ) n- (n is 1 to 12), -CR = CR-, -C≡C-,-(CR = CR-CR 2 N- (n is 1 to 4), -C (= CR 2 )-, -C (= C (= O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-, -C (= S) S-, -C (= O) NR-, -C (= O) C (= O)-, -C (= O) OC (= O)-,-(CR 2 -O) n- (n is 1 to 12),-(CR 2 ) n -O- (n is 1 to 12),-(CR 2 -CR 2 -O) n- (n is 1 to 6), -O-, -S-, -SS-, -Se-, -Po-, -P (= O)- , -P (= S) -, - S (= O) -, - S (= O) 2 -, - SiR 2 -, - NR -, - N = N-, or Phenylene, wherein each R is independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy , At least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent R, A, B ring, C ring and / or D ring are bonded A ring structure may be formed, provided that Z 1 and Z 2 are not simultaneously a single bond,
At least one hydrogen in the compound or structure represented by the formula (1) may be substituted with cyano, halogen or deuterium
Item 6. The compound or polymer compound according to item 1.
項3.
 A環、C環およびD環は、それぞれ独立して、ベンゼン環、ナフタレン環、インダン環、インデン環、フラン環、チオフェン環、ベンゾフラン環またはベンゾチオフェン環であり、B環は、ピロール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環またはイソキノリン環であり、A環とB環および/またはC環とD環は結合して環構造を形成してもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
 X~XはCであり、
 ZおよびZは、それぞれ独立して、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
 式(1)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項1または2に記載の化合物。
Item 3.
Ring A, ring C and ring D are each independently a benzene ring, naphthalene ring, indane ring, indene ring, indene ring, furan ring, thiophene ring, benzofuran ring or benzothiophene ring, and ring B is a pyrrole ring, pyridine A ring, pyrazine ring, pyrimidine ring, pyridazine ring, quinoline ring or isoquinoline ring, wherein A ring and B ring and / or C ring and D ring may combine to form a ring structure, and at least at these rings One hydrogen may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
X 1 to X 4 are C,
Z 1 and Z 2 are each independently a single bond, -CR 2- , -CR = CR-, -C (= O)-, -C (= S)-, -O-, -S-, -Se -, - P (= O ) -, - P (= S) -, - S (= O) -, - SiR 2 -, - NR-, or is phenylene, wherein, R represents respectively Independently, hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, and at least one hydrogen in R is aryl, R may be substituted with heteroaryl, alkyl or cycloalkyl, and adjacent R, A ring, B ring, C ring and / or D ring may combine to form a ring structure, Z 1 and Z 2 can not simultaneously be a single bond,
At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen or deuterium.
A compound according to item 1 or 2.
項4.
 下記一般式(2)で表される、項1~3のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000016
(上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZおよびZが同時に単結合であることはなく、
 R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~30のアリール環または炭素数6~30のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~30のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 4.
The compound according to any one of Items 1 to 3, which is represented by the following General Formula (2).
Figure JPOXMLDOC01-appb-C000016
(In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl And Z 1 and Z 2 can not simultaneously be a single bond,
R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 30 carbon atoms or a heteroaryl having 6 to 30 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to,
At least one hydrogen in the compound represented by formula (2) may be substituted with cyano, halogen or deuterium. )
項5.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
 R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項4に記載の化合物。
Item 5.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, alkyl or cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond,
R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo Optionally substituted with alkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl having 6 to 15 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl And the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
5. The compound according to item 4.
項6.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または1,2-フェニレンであり、ここで、Rは、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
 R~R16は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~12のアリール環または炭素数6~10のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項4または5に記載の化合物。
Item 6.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon number 6-16 aryl, C2-C15 heteroaryl, C1-C6 alkyl or C3-C12 cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond,
R 1 to R 16 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that R 1 to R 4 and R 13 to R 16 are acridine based substituents, respectively. He
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
Item 6. The compound according to item 4 or 5.
項7.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
 R~RおよびR~R16は、水素であり、
 R~Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
 また、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 請求項4~6のいずれかに記載の化合物。
Item 7.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon Aryl of 6 to 16, aryl of 2 to 15 carbons, alkyl of 1 to 6 carbons or cycloalkyl of 3 to 12 carbons, provided that Z 1 and Z 2 are not simultaneously a single bond ,
R 1 to R 4 and R 9 to R 16 are hydrogen,
R 5 to R 8 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons,
Further, adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, and at least one hydrogen in the formed ring is carbon Aryl of 6 to 16 carbon, heteroaryl of 2 to 15 carbons, diarylamino (wherein aryl is aryl of 6 to 12 carbons), alkyl of 1 to 6 carbons, cycloalkyl of 3 to 12 carbons, It may be substituted with 1 to 6 alkoxy or aryloxy having 6 to 16 carbon atoms, and at least one hydrogen in these may be aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, or 1 carbon atom And may be substituted with an alkyl of up to 6 or a cycloalkyl having 3 to 12 carbon atoms,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
The compound according to any one of claims 4 to 6.
項8.
 下記化学構造式で表される、項1に記載の化合物。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Item 8.
Item 4. The compound according to item 1, represented by the following chemical structural formula.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
項9.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、アリール、ヘテロアリールまたはシクロアルキルであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンで結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~30のアリール環または炭素数6~30のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~30のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項4に記載の化合物。
Item 9.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is aryl, hetero At least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, provided that any one or more of Z 1 or Z 2 is -NR- And R 1 , R 1 , R 8 , R 9 and / or R 16 each represents a single bond, -CR 2- , -CR = CR-, -C (= O)-, -C (= S) -, -O-, -S-, -Se-, -P (= O)-, -P (= S)-, -S (= O)-, -SiR 2- , -NR-, or phenylene To form a ring structure, wherein R is independently hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl May be replaced by
R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 30 carbon atoms or a heteroaryl having 6 to 30 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
5. The compound according to item 4.
項10.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-または-NR-であり、ここで、Rは、アリールであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、アルキルまたはシクロアルキルであり、Rにおける少なくとも1つの水素は、アリール、アルキルまたはシクロアルキルで置換されていてもよく、
 R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項4に記載の化合物。
Item 10.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl and at least one hydrogen in R is , Aryl, heteroaryl, alkyl or cycloalkyl, provided that any one or more of Z 1 or Z 2 is —NR—, and the R, R 1 , R 8 , R 9 And / or R 16 is combined with a single bond, —CR 2 —, —O—, —S— or —NR— to form a ring structure, wherein each of R is independently hydrogen, And at least one hydrogen in R may be substituted with aryl, alkyl or cycloalkyl;
R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo Optionally substituted with alkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl having 6 to 15 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl And the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
5. The compound according to item 4.
項11.
 上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-または-NR-であり、ここで、Rは、炭素数6~16のアリールであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
 R~R16は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~12のアリール環または炭素数6~10のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
 項4に記載の化合物。
Item 11.
In the above formula (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that And any one or more of 1 or Z 2 is -NR-, and the R, R 1 , R 8 , R 9 and / or R 16 is a single bond, -CR 2- , -O-, -S- or -NR- combine to form a ring structure, wherein each R independently represents hydrogen, aryl having 6 to 16 carbon atoms, alkyl having 1 to 6 carbons, or 3 to 6 carbon atoms 12 cycloalkyl and at least one hydrogen in R is Aryl having 6 to 16 may be substituted by cycloalkyl alkyl or 3-12 carbon atoms having 1 to 6 carbon atoms,
R 1 to R 16 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that R 1 to R 4 and R 13 to R 16 are acridine based substituents, respectively. He
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
5. The compound according to item 4.
項12.
 上記式(2)中、
 Zは、単結合、-O-、-S-、-Se-または-NR-であり、Zは-NR-であり、ここでRは、炭素数6~16のアリールであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、Zの-NR-におけるRと、RまたはRとは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルである、
 項9~11のいずれかに記載の化合物。
Item 12.
In the above formula (2),
Z 1 is a single bond, -O-, -S-, -Se- or -NR-, and Z 2 is -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, Z 2 R in -NR- and R 8 or R 9 are combined with a single bond, -CR 2- , -O-, -S- or -NR- to form a ring structure, where R is And each independently hydrogen, aryl having 6 to 16 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons,
Item 12. The compound according to any one of Items 9 to 11.
項13.
 下記化学構造式で表される、項1に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Item 13.
Item 4. The compound according to item 1, represented by the following chemical structural formula.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
項14.
 C環への置換基またはR~R12の少なくとも1つが下記部分構造式(TSG1)で表される基である、項1~13のいずれかに記載の化合物または高分子化合物。
Figure JPOXMLDOC01-appb-C000024
 上記式(TSG1)で表される基における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、
 Yは、単結合、-O-、-S-、-Se-、-NR-、>CR、または、>SiRであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、Rのうちの隣接する基同士が結合して炭素数6~15のアリール環を形成していてもよい。
Item 14.
The compound or polymer compound according to any one of Items 1 to 13, wherein at least one of a substituent to a C ring or at least one of R 9 to R 12 is a group represented by the following partial structural formula (TSG1).
Figure JPOXMLDOC01-appb-C000024
At least one hydrogen in the group represented by the above formula (TSG1) may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy,
Y is a single bond, -O-, -S-, -Se-, -NR-,> CR 2 , or> SiR 2 , wherein each of R is independently hydrogen, aryl, hetero The aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, adjacent groups of R may combine to form an aryl ring having 6 to 15 carbon atoms.
項15.
 前記部分構造式(TSG1)で表される基が、下記部分構造式(TSG100)、式(TSG110)、式(TSG111)、式(TSG112)、式(TSG113)、式(TSG120)または式(TSG121)で表される基である、項14に記載の化合物または高分子化合物。
Figure JPOXMLDOC01-appb-C000025
 上記構造式における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよい。
Item 15.
The group represented by the partial structural formula (TSG1) is a partial structural formula (TSG100), a formula (TSG110), a formula (TSG111), a formula (TSG112), a formula (TSG113), a formula (TSG120) or a formula (TSG121). Item 15. The compound or polymer compound according to item 14, which is a group represented by
Figure JPOXMLDOC01-appb-C000025
At least one hydrogen in the above structural formula may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy.
項16.
 下記化学構造式で表される、項14に記載の化合物。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Item 16.
Item 15. The compound according to item 14, represented by the following chemical structural formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
項17.
 下記式を満たす、項14~16のいずれかに記載の化合物または高分子化合物。
  ΔEST ≦ 0.20eV
Item 17.
Item 17. The compound or polymer compound according to any one of items 14 to 16, which satisfies the following formula.
ΔE ST ≦ 0.20 eV
項18.
 項1~17のいずれかに記載の化合物または高分子化合物を含有する、有機デバイス用材料。
Item 18.
Item 18. A material for an organic device, comprising the compound or the polymer compound according to any one of Items 1 to 17.
項19.
 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、項18に記載の有機デバイス用材料。
Item 19.
Item 19. The material for an organic device according to Item 18, wherein the material for an organic device is a material for an organic electroluminescent element, a material for an organic field effect transistor, or a material for an organic thin film solar cell.
項20.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、項19に記載の有機電界発光素子用材料を含有する有機層とを有する、有機電界発光素子。
Item 20.
Item 20. An organic electroluminescent device comprising: a pair of electrodes comprising an anode and a cathode; and an organic layer disposed between the pair of electrodes and containing the material for an organic electroluminescent device according to Item 19.
項21.
 さらに、電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、項20に記載の有機電界発光素子。
Item 21.
Furthermore, it has an electron transport layer and / or an electron injection layer, and at least one of the electron transport layer and the electron injection layer is selected from the group consisting of quinolinol metal complexes, pyridine derivatives, phenanthroline derivatives, borane derivatives and benzimidazole derivatives The organic electroluminescent device according to Item 20, which contains at least one selected.
項22.
 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、項21に記載の有機電界発光素子。
Item 22.
The electron transport layer and / or the electron injection layer may further be selected from alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, oxides of alkaline earth metals, and alkaline earth metals. Item 21. at least one selected from the group consisting of halides, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals The organic electroluminescent element as described in.
項23.
 発光層を有する有機電界発光素子であって、前記発光層が、
 第1成分として、少なくとも1種のホスト化合物と、
 第2成分として、少なくとも1種の熱活性化型遅延蛍光体とを含み、
 前記第1成分または第2成分として、下記一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を有する、有機電界発光素子。
Figure JPOXMLDOC01-appb-C000028
(上記式(1)中、
 A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、B環はヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
 X~Xは、それぞれ独立して、CまたはNであり、
 ZおよびZは、それぞれ独立して、単結合、アルキレン、アルケニレン、アルキニレンまたはアリーレンであり、これらにおける任意の-CH-は、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよく、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
 式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 23.
It is an organic electroluminescent element which has a light emitting layer, Comprising: The said light emitting layer is
At least one host compound as a first component,
As a second component, at least one heat-activated delayed phosphor;
An organic electroluminescent device comprising a compound represented by the following general formula (1) or a polymer compound having a structure represented by the general formula (1) as a repeating unit as the first component or the second component.
Figure JPOXMLDOC01-appb-C000028
(In the above formula (1),
Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring, ring B is a heteroaryl ring, ring A and ring B and / or ring C and ring D combine The ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
X 1 to X 4 are each independently C or N,
Z 1 and Z 2 are each independently a single bond, alkylene, alkenylene, alkynylene or arylene, and arbitrary —CH 2 — in these is —C (= CR 2 ) —, —C (= C (= C) = O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-,- C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= S)-,- S (= O) —, —S (= O) 2 —, —SiR 2 —, —NR—, or —N = N— may be substituted, wherein R is independently , Hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl , Alkoxy or aryloxy, wherein at least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent to R with A ring, B ring, C ring and / or The ring D may be combined to form a ring structure, provided that Z 1 and Z 2 are not simultaneously a single bond,
At least one hydrogen in the compound or structure represented by formula (1) may be substituted with cyano, halogen or deuterium. )
項24.
 第1成分として、一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を含む、項23に記載の有機電界発光素子。
Item 24.
Item 24. The organic electroluminescent device according to Item 23, which comprises, as the first component, a compound represented by General Formula (1) or a polymer compound having a structure represented by General Formula (1) as a repeating unit.
項25.
 第2成分として、一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を含む、項23に記載の有機電界発光素子。
Item 25.
Item 24. The organic electroluminescent device according to Item 23, comprising, as the second component, a compound represented by General Formula (1) or a polymer compound having a structure represented by General Formula (1) as a repeating unit.
項26.
 項20~25のいずれかに記載の有機電界発光素子を備えた表示装置。
Item 26.
A display comprising the organic electroluminescent device according to any one of items 20 to 25.
項27.
 項20~25のいずれかに記載の有機電界発光素子を備えた照明装置。
Item 27.
An illuminating device comprising the organic electroluminescent device according to any one of items 20 to 25.
 本発明の好ましい態様によれば、例えば有機EL素子等の有機デバイス用材料として用いることができる、ホウ素をスピロ原子とした新規な化合物、またはそれを繰り返し単位とする高分子化合物を提供することができ、これらの化合物を用いることで優れた有機EL素子を提供することができる。 According to a preferred embodiment of the present invention, it is possible to provide a novel compound having a spiro atom of boron, or a polymer compound having the same as a repeating unit, which can be used as a material for organic devices such as organic EL elements. An excellent organic EL device can be provided by using these compounds.
本実施形態に係る有機EL素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic EL element which concerns on this embodiment.
1.ホウ素をスピロ原子とする化合物およびその高分子化合物
 本発明は、下記一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物であり、好ましくは下記一般式(2)で表される化合物、または一般式(2)で表される構造を繰り返し単位とする高分子化合物である。以下、高分子化合物もまとめて単に「化合物」ともいう。
Figure JPOXMLDOC01-appb-C000029
1. The compound which makes boron a spiro atom, and its high molecular compound The present invention is a high molecular compound which makes a structure denoted by a compound denoted by the following general formula (1) or a general formula (1) as a repeating unit, Preferably, it is a compound represented by the following general formula (2), or a polymer compound having a structure represented by the general formula (2) as a repeating unit. Hereinafter, the polymer compound is also collectively referred to simply as the “compound”.
Figure JPOXMLDOC01-appb-C000029
 本発明の一般式(1)で表される化合物は、ホウ素原子を中心とするスピロ構造またはホウ素原子によるC環およびD環の橋かけを利用し、分子内でドナー性構造とアクセプター性構造を分離させることで高い三重項エネルギーを有する。 The compound represented by the general formula (1) of the present invention utilizes a spiro structure centering on a boron atom or a bridge of a C ring and a D ring by a boron atom to form a donor structure and an acceptor structure in the molecule. It has high triplet energy by being separated.
 特に、ドナー性構造とアクセプター性構造の分離によるHOMOおよびLUMOの分離が完全に成されている場合、その高い三重項エネルギーを利用してホストや発光層の周辺材料に利用できる。この場合、例えば、HOMOおよびLUMOは、ホウ素原子を中心とするスピロ構造を中心として、A環および/またはD環上にHOMOが局在化し、B環および/またはC環上にLUMOが局在化した分子軌道をとる。ホストとして利用する場合、2種以上用いるホスト化合物の1成分として用いてよく、また隣り合ってもよい多層の発光層に用いられるホスト化合物の1成分として用いてもよい。 In particular, when separation of HOMO and LUMO is completely achieved by separation of a donor structure and an acceptor structure, the high triplet energy can be utilized for the peripheral material of a host or a light emitting layer. In this case, for example, HOMO and LUMO localize HOMO on the A ring and / or D ring, and LUMO localize on the B ring and / or C ring centering on the spiro structure centered on the boron atom Take a molecular orbital When used as a host, it may be used as one component of a host compound to be used in combination of two or more types, or may be used as one component of a host compound used in a multi-layered light emitting layer which may be adjacent to each other.
 また、特に、熱活性化型遅延蛍光性の分子である場合(「D-A型TADF化合物」と呼ぶ)、TADFの発光材料(エミッティングドーパント)またはTAF(TADF Assisting Fluorescence)素子におけるアシスティングドーパントに利用することができる。この場合は、例えば、HOMOおよびLUMOは、ホウ素原子によるC環およびD環の橋かけを利用し、HOMOがC環および/またはC環に置換したドナー性構造上に局在化し、LUMOがB環上に局在化した分子軌道をとるが、LUMOについては一部がC環上まで染み出すことがある。アシスティングドーパントとして利用する場合、エミッティングドーパントとアシスティングドーパントが隣接した異なる層に含まれていてもよい。 In addition, in particular, when it is a thermally activated delayed fluorescence molecule (referred to as “DA type TADF compound”), a TADF light emitting material (emitting dopant) or an assisting dopant in a TAF (TADF Assisting Fluorescence) device It can be used to In this case, for example, HOMO and LUMO utilize a bridge of C ring and D ring by a boron atom, and HOMO is localized on a C ring and / or C ring substituted donor structure, and LUMO is B It takes a molecular orbital localized on the ring, but in the case of LUMO, part of it may exude to the C ring. When used as an assisting dopant, the emitting dopant and the assisting dopant may be contained in adjacent different layers.
 また、熱活性化型遅延蛍光性を有しない場合(「蛍光発光化合物」と呼ぶ)、TTF(Triplet-Triplet Fusion)の発光材料(ドーパント)またはTAF(TADF Assisting Fluorescence)素子におけるエミッティングドーパントに利用することができる。この場合は、例えば、Zおよび/またはZの置換基が、A環、B環、C環および/またはD環と環状構造を形成した分子などであり、HOMOおよびLUMOが部分的に比較的大きく重なった分子軌道をとる。エミッティングドーパントとして利用する場合、エミッティングドーパントとアシスティングドーパントが隣接した異なる層に含まれていてもよい。 In addition, when it does not have thermally activated delayed fluorescence (referred to as “fluorescent light emitting compound”), it is used as an emitting dopant in TTF (Triplet-Triplet Fusion) light emitting material (dopant) or TAF (TADF Assisting Fluorescence) device can do. In this case, for example, a substituent in which Z 1 and / or Z 2 has a cyclic structure with A ring, B ring, C ring and / or D ring, etc., and HOMO and LUMO are partially compared Take molecular orbitals that overlap When used as an emitting dopant, the emitting dopant and the assisting dopant may be contained in adjacent different layers.
 まず、上記式(1)中、
 A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、B環はヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
 X~Xは、それぞれ独立して、CまたはNであり、
 ZおよびZは、それぞれ独立して、単結合、アルキレン、アルケニレン、アルキニレンまたはアリーレンであり、これらにおける任意の-CH-は、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよく、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
 式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。
First, in the above equation (1),
Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring, ring B is a heteroaryl ring, ring A and ring B and / or ring C and ring D combine The ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
X 1 to X 4 are each independently C or N,
Z 1 and Z 2 are each independently a single bond, alkylene, alkenylene, alkynylene or arylene, and arbitrary —CH 2 — in these is —C (= CR 2 ) —, —C (= C (= C) = O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-,- C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= S)-,- S (= O) —, —S (= O) 2 —, —SiR 2 —, —NR—, or —N = N— may be substituted, wherein R is independently , Hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl , Alkoxy or aryloxy, wherein at least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent to R with A ring, B ring, C ring and / or The ring D may be combined to form a ring structure, provided that Z 1 and Z 2 are not simultaneously a single bond,
At least one hydrogen in the compound or structure represented by formula (1) may be substituted with cyano, halogen or deuterium.
 また、上記式(2)中、
 ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZおよびZが同時に単結合であることはなく、
 R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
 また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~30のアリール環または炭素数6~30のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~30のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
 式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。
 なお、上記式(2)において、ZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンで結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
Also, in the above equation (2),
Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl And Z 1 and Z 2 can not simultaneously be a single bond,
R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 30 carbon atoms or a heteroaryl having 6 to 30 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to,
At least one hydrogen in the compound represented by formula (2) may be substituted with cyano, halogen or deuterium.
In the above formula (2), one or more of Z 1 and Z 2 are —NR—, and the R, R 1 , R 8 , R 9 and / or R 16 is a single bond , -CR 2- , -CR = CR-, -C (= O)-, -C (= S)-, -O-, -S-, -Se-, -P (= O)-, -P (= S)-, -S (= O)-, -SiR 2- , -NR- or phenylene to form a ring structure, wherein R is independently hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl In It may be.
 以下、一般式(2)は一般式(1)に含まれる好ましい一形態であるため、両式に共通する説明は一般式(1)の説明で代表し、一般式(2)の説明としては省略する場合もある。 Hereinafter, since General formula (2) is one preferable form contained in General formula (1), the description common to both types is represented by description of General formula (1), As description of General formula (2) It may be omitted.
 A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環である。B環は少なくとも1つの窒素を含むヘテロアリール環である。 Ring A, ring C and ring D are each independently an aryl ring or a heteroaryl ring. Ring B is a heteroaryl ring containing at least one nitrogen.
 A環、C環およびD環としての「アリール環」としては、例えば、炭素数6~30のアリール環があげられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(2)で規定された「R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に形成された炭素数9~30のアリール環」に対応し、また、a環(またはc環、d環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。 Examples of the "aryl ring" as ring A, ring C and ring D include an aryl ring having 6 to 30 carbon atoms, preferably an aryl ring having 6 to 16 carbon atoms, and an aryl ring having 6 to 12 carbon atoms Is more preferable, and an aryl ring having 6 to 10 carbon atoms is particularly preferable. In this “aryl ring”, adjacent groups among “R 1 to R 4 and R 9 to R 16 defined in the general formula (2) are bonded together to form a ring, c ring or d ring Corresponding to the formed aryl ring having 9 to 30 carbon atoms, and the a ring (or c ring, d ring) is already composed of a benzene ring having 6 carbon atoms, a 5-membered ring is condensed thereto The total carbon number 9 of the fused rings is the lower limit carbon number.
 具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、ベンゾフルオレン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。また、フルオレン環やベンゾフルオレン環には、フルオレン環やベンゾフルオレン環がスピロ結合した構造も含まれる。 Specific examples of the "aryl ring" include a benzene ring which is a monocyclic ring, a biphenyl ring which is a bicyclic ring, a naphthalene ring which is a fused bicyclic ring, and a terphenyl ring which is a tricyclic ring (m-terphenyl, o -Terphenyl, p-terphenyl), fused tricyclic ring system, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, benzofluorene ring, fused five ring system Examples include ring systems such as perylene ring and pentacene ring. The fluorene ring and the benzofluorene ring also include structures in which a fluorene ring and a benzofluorene ring are spiro-bonded.
 A環~D環としての「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環があげられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などがあげられる。なお、この「ヘテロアリール環」は、一般式(2)で規定された「R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に形成された炭素数6~30のヘテロアリール環」や「R~Rのうちの隣接する基同士が結合してb環と共に形成された炭素数6~30のヘテロアリール環」に対応し、また、b環がすでに炭素数5のピリジン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 Examples of the "heteroaryl ring" as ring A to ring D include a heteroaryl ring having 2 to 30 carbon atoms, preferably a heteroaryl ring having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. A ring is more preferable, a C 2-15 heteroaryl ring is more preferable, and a C 2-10 heteroaryl ring is particularly preferable. Further, as the “heteroaryl ring”, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom can be mentioned. In this “heteroaryl ring”, adjacent groups among “R 1 to R 4 and R 9 to R 16 defined in the general formula (2) are combined with each other to form a ring, c ring or d ring It corresponds to “C 6-30 heteroaryl ring” formed together with “C 6-30 hetero ring formed by bonding together adjacent groups of R 5 to R 8 together with the b ring”. Also, since the b ring is already composed of a pyridine ring having 5 carbon atoms, the total carbon number 6 of the fused ring in which a 5-membered ring is fused is the lower limit carbon number.
 具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環(無置換、メチルなどのアルキル置換またはフェニルなどのアリール置換)、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ナフトベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ナフトベンゾチオフェン環、ベンゾホスホール環、ジベンゾホスホール環、ベンゾホスホールオキシド環、ジベンゾホスホールオキシド環、フラザン環、オキサジアゾール環、チアントレン環などがあげられる。 Specific examples of the “heteroaryl ring” include a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring (unsubstituted, alkyl-substituted such as methyl or aryl-substituted such as phenyl), oxa Diazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring , Benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carbazole ring, acridine ring, Noxatiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolizine ring, furan ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, naphthobenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, naphthobenzothiophene ring, Examples thereof include a benzophosphoro ring, a dibenzophosphoro ring, a benzophosphorooxide ring, a dibenzophosphorooxide ring, a furazan ring, an oxadiazole ring, and a thianthrene ring.
 A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、この場合の結合基としてはZおよびZと同じ基が挙げられるほか、単結合でもよい。 Ring A and ring B and / or ring C and ring D may be combined to form a ring structure, and the linking group in this case includes the same groups as Z 1 and Z 2, and may be a single bond Good.
 A環~D環としての「アリール環」や「ヘテロアリール環」、またA環とB環および/またはC環とD環が結合して形成された環構造における少なくとも1つの水素は第1の置換基で置換されていてもよく、第1の置換基はさらに第2の置換基で置換されていてもよい。第1の置換基としては、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシなどが挙げられ、第2の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。第1の置換基は、一般式(2)では置換基「R~R16」や、「R~R16のうちの隣接する基同士が結合してa環、b環、c環またはd環と共に形成したアリール環やヘテロアリール環」への置換基にも相当し、第2の置換基はこれらへのさらなる置換基にも相当する。 At least one hydrogen in the ring structure formed by combining the "aryl ring" or "heteroaryl ring" as ring A to ring D, ring A with ring B and / or ring C with ring D is a first ring. The substituent may be substituted, and the first substituent may be further substituted by a second substituent. The first substituent includes aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, etc., and the second substituent And aryl, heteroaryl, alkyl or cycloalkyl and the like. As the first substituent, in General Formula (2), the substituents “R 1 to R 16 ” and “adjacent groups among R 1 to R 16 are bonded to each other to form a ring, b ring, c ring or It also corresponds to a substituent to "an aryl ring or heteroaryl ring formed with ring d", and the second substituent also corresponds to a further substituent to these.
 第1の置換基としての「アリール」や「ヘテロアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、「アリールオキシ」のアリール、第2の置換基としての「アリール」、「ヘテロアリール」としては上述した「アリール環」または「ヘテロアリール環」の一価の基があげられる。 As the first substituent, “aryl” or “heteroaryl” or “diarylamino” aryl, “diheteroarylamino” heteroaryl, “aryl heteroarylamino” aryl and heteroaryl, “aryloxy” Examples of the aryl and the “aryl” and the “heteroaryl” as the second substituent include the monovalent groups of the “aryl ring” and the “heteroaryl ring” described above.
 第1および第2の置換基としての「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。 The “alkyl” as the first and second substituents may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms. . Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons (C3-C6 branched alkyl) is more preferable, and C1-C4 alkyl (C3-C4 branched alkyl) is particularly preferable.
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 Specific examples of the alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n- Tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-hepta Sill, n- octadecyl, such as n- eicosyl, and the like.
 第1および第2の置換基としての「シクロアルキル」としては、1つの環からなるシクロアルキル、複数の環からなるシクロアルキル、環内で共役しない二重結合を含むシクロアルキルおよび環外に分岐を含むシクロアルキルのいずれでもよく、例えば、炭素数3~20のシクロアルキル、炭素数3~14のシクロアルキル、炭素数3~12のシクロアルキル、炭素数5~10のシクロアルキル、炭素数6~10のシクロアルキルなどが挙げられる。これらの中でも、炭素数5~10のシクロアルキルが好ましく、炭素数6~10のシクロアルキルがより好ましい。 As the “cycloalkyl” as the first and second substituents, a cycloalkyl consisting of one ring, a cycloalkyl consisting of a plurality of rings, a cycloalkyl containing a double bond which is not conjugated in the ring, and an exocyclic branch For example, cycloalkyl having 3 to 20 carbon atoms, cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 3 to 12 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, or 6 carbon atoms may be used. And the like. Among these, cycloalkyl having 5 to 10 carbon atoms is preferable, and cycloalkyl having 6 to 10 carbon atoms is more preferable.
 具体的なシクロアルキルとしては、シクロプロピル、メチルシクロプロピル、シクロブチル、メチルシクロブチル、シクロペンチル、メチルシクロペンチル、シクロヘキシル、メチルシクロヘキシル、シクロヘプチル、メチルシクロヘプチル、シクロオクチル、メチルシクロオクチル、シクロノニル、メチルシクロノニル、シクロデシル、メチルシクロデシル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、デカヒドロナフチル、アダマンチル、ジアマンチル、デカヒドロアズレニルなどが挙げられる。 As specific cycloalkyl, cyclopropyl, methylcyclopropyl, cyclobutyl, methylcyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl, methylcyclohexyl, cycloheptyl, methylcycloheptyl, cyclooctyl, methylcyclooctyl, cyclononyl, methylcyclononyl , Cyclodecyl, methylcyclodecyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3 .0.1] hexyl, bicyclo [2.2.1] heptyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, adamantyl, diamantyl, decahydroazulenyl etc. Can be mentioned.
 第1の置換基としての「アルケニル」としては、上記「アルキル」における1つまたは複数の-CH-CH-が-C=C-で置換された基が挙げられ、好ましくは1つまたは2つが置換され、より好ましくは1つが置換された基が挙げられる。 Examples of “alkenyl” as the first substituent include groups in which one or more of —CH 2 —CH 2 — in the above “alkyl” is substituted with —C = C—, preferably one or more groups. Groups in which two are substituted, more preferably one are mentioned.
 第1の置換基としての「アルキニル」としては、上記「アルキル」における1つまたは複数の-CH-CH-が-C≡C-で置換された基が挙げられ、好ましくは1つまたは2つが置換され、より好ましくは1つが置換された基が挙げられる。 Examples of “alkynyl” as the first substituent include groups in which one or more of —CH 2 —CH 2 — in the above “alkyl” is substituted with —C≡C—, preferably one or more groups. Groups in which two are substituted, more preferably one are mentioned.
 第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。 Examples of “alkoxy” as the first substituent include straight-chain having 1 to 24 carbon atoms and branched alkoxy having 3 to 24 carbon atoms. C1-C18 alkoxy (branched alkoxy having 3 to 18 carbon atoms) is preferable, alkoxy having 1 to 12 carbons (branched alkoxy having 3 to 12 carbon atoms) is more preferable, and C1 to 6 carbons are preferable. (More preferably 3 to 6 carbon atoms in the branched chain), particularly preferably alkoxy having 1 to 4 carbon atoms (the alkoxy having 3 to 4 carbon atoms).
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。 Specific examples of the alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
 ただしA環(a環)単独およびD環(d環)単独への置換基としては、アクリジン系置換基は除かれる。このアクリジン系置換基とは、アクリジンおよびアクリジン誘導体の一価の基である。アクリジン誘導体とは置換基を有するアクリジンであり、置換基としては例えばアルキル基、アリール基などが挙げられる。また、A環(a環)単独およびD環(d環)単独への置換基としては、好ましくは、アクリジン系置換基だけでなく、窒素原子を有する置換基であって窒素原子がA環(a環)単独およびD環(d環)単独に直接結合する基(例えばアミノ基など)も除かれ、より好ましくは、窒素原子を有する置換基も除かれる。 However, as a substituent to A ring (a ring) alone and D ring (d ring) alone, acridine based substituents are excluded. The acridine-based substituent is a monovalent group of acridine and an acridine derivative. The acridine derivative is acridine having a substituent, and examples of the substituent include an alkyl group and an aryl group. Moreover, as a substituent to A ring (a ring) alone and D ring (d ring) alone, preferably, it is a substituent having not only an acridine substituent but also a nitrogen atom, and the nitrogen atom is a ring ( Groups which are directly bonded to a ring a) and ring D directly (such as an amino group) are also removed, and more preferably, substituents having a nitrogen atom are also removed.
 また、C環への置換基またはR~R12の少なくとも1つが下記部分構造式(TSG1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
In addition, it is preferable that at least one of a substituent to ring C or at least one of R 9 to R 12 be a group represented by the following partial structural formula (TSG 1).
Figure JPOXMLDOC01-appb-C000030
 上記式(TSG1)で表される基における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらの基の詳細については、上述した第1および第2の置換基の説明を引用することができる。 At least one hydrogen in the group represented by the above formula (TSG1) may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, Descriptions of the first and second substituents described above can be cited.
 上記式(TSG1)で表される基におけるYは、単結合、-O-、-S-、-Se-、-NR-、>CR、または、>SiRであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらの基の詳細については、上述した第1および第2の置換基の説明を引用することができる。また、Rのうちの隣接する基同士が結合して炭素数6~15のアリール環を形成していてもよく、このアリール環の詳細については、上述したA環~D環の説明を引用することができる。 Y in the group represented by the above formula (TSG1) is a single bond, -O-, -S-, -Se-, -NR-,> CR 2 or> SiR 2 , where R is , Each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, the descriptions of the first and second substituents described above are cited can do. In addition, adjacent groups of R may be bonded to each other to form an aryl ring having 6 to 15 carbon atoms, and for the details of the aryl ring, the description of the ring A to ring D described above is cited. be able to.
 部分構造式(TSG1)で表される基の具体例としては、下記部分構造式(TSG100)、式(TSG110)、式(TSG111)、式(TSG112)、式(TSG113)、式(TSG120)または式(TSG121)で表される基が挙げられる。式中の「Me」はメチル基である。
Figure JPOXMLDOC01-appb-C000031
 上記構造式における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらの基の詳細については、上述した第1および第2の置換基の説明を引用することができる。
Specific examples of the group represented by the partial structural formula (TSG1) include the following partial structural formula (TSG100), formula (TSG110), formula (TSG111), formula (TSG112), formula (TSG113), formula (TSG120) or The group represented by formula (TSG121) is mentioned. "Me" in the formula is a methyl group.
Figure JPOXMLDOC01-appb-C000031
At least one hydrogen in the above structural formula may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and for details of these groups, the first and second as described above. Descriptions of the substituents of can be cited.
 ZおよびZとしてのアルキレン、アルケニレン、アルキニレンまたはアリーレンは、一価の基として上で説明した「アルキル」、「アルケニル」、「アルキニル」または「アリール」の二価の基が挙げられる。これらにおける任意の-CH-は、-CR-、-C(=CR)-、-CR=CR-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=R)-、-P(=O)(-R)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよい。 Alkylene, alkenylene, alkynylene or arylene as Z 1 and Z 2 includes the “alkyl”, “alkenyl”, “alkynyl” or “aryl” divalent group described above as the monovalent group. Arbitrary -CH 2- in these is -CR 2- , -C (= CR 2 )-, -CR = CR-, -C (= C (= O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-, -C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= R)-, -P (= O) (-R)-, -P ( = S)-, -S (= O)-, -S (= O) 2- , -SiR 2- , -NR- or -N = N- may be substituted.
 ZおよびZにおける「-CR-」、「-C(=CR)-」、「-CR=CR-」、「-C(=O)NR-」、「-P(=R)-」、「-P(=O)(-R)-」、「-SiR-」または「-NR-」の中のRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。これらの基の説明は、上述した第1および第2の置換基の説明を引用することができる。 “-CR 2- ”, “-C (= CR 2 )-”, “-CR = CR-”, “-C (= O) NR-”, “-P (= R)” in Z 1 and Z 2 R in-, -P (= O) (-R)-, -SiR 2- or -NR- is each independently hydrogen, aryl, heteroaryl, diarylamino, Diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, and at least one hydrogen in R may be substituted by aryl, heteroaryl, alkyl or cycloalkyl . The description of these groups can refer to the description of the first and second substituents described above.
 また、上記Rと、A環、B環、C環および/またはD環(a環、b環、c環および/またはD環)とが隣接する場合、これらは結合して環構造を形成していてもよく、この結合基としては単結合の他にアルキレン結合などが挙げられ、当該結合基中の一部の-CH-は、-NR-、-O-または-S-で置換されてよく、-CH-または-CH=の隣がヘテロ原子でない場合に-CH-または-CH=はヘテロ原子で置換されてもよい。前記「-NR-」の詳細は上述する説明を引用することができる。 Further, when the above R and A ring, B ring, C ring and / or D ring (a ring, b ring, c ring and / or D ring) are adjacent to each other, they are combined to form a ring structure. The linking group includes, in addition to a single bond, an alkylene bond and the like, and a part of -CH 2- in the linking group is substituted by -NR-, -O- or -S- Te well, -CH 2 - or when -CH = next is not a heteroatom -CH 2 - or -CH = may be replaced with a heteroatom. Details of the “—NR—” can be cited from the above description.
 さらに具体的には、例えば上記式(2)において、上記R(好ましくは「-NR-」のR)と、R、R、Rおよび/またはR16とは、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンで結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシ(これらの基の説明は、上述した第1および第2の置換基の説明を引用することができる)であり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキル(これらの基の説明は、上述した第1および第2の置換基の説明を引用することができる)で置換されていてもよい。好ましくは、上記R(好ましくは「-NR-」のR)と、R、R、Rおよび/またはR16とが、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、アルキルまたはシクロアルキル(これらの基の説明は、上述した第1および第2の置換基の説明を引用することができる)であり、Rにおける少なくとも1つの水素は、アリール、アルキルまたはシクロアルキル(これらの基の説明は、上述した第1および第2の置換基の説明を引用することができる)で置換されていてもよい。形成された具体的な環構造は後述する。 More specifically, for example, in the above-mentioned formula (2), the above R (preferably R of "-NR-"), R 1 , R 8 , R 9 and / or R 16 is a single bond, -CR 2- , -CR = CR-, -C (= O)-, -C (= S)-, -O-, -S-, -Se-, -P (= O)-, -P (= S ), —S (= O) —, —SiR 2 —, —NR— or phenylene to form a ring structure, wherein each R independently represents hydrogen, aryl, heteroaryl , Diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy (the description of these groups refers to the description of the first and second substituents described above Can) and less in R At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the description of these groups can refer to the description of the first and second substituents described above). Preferably, the above R (preferably R of "-NR-") and R 1 , R 8 , R 9 and / or R 16 are a single bond, -CR 2- , -O-, -S- or -NR- combines with each other to form a ring structure, wherein each R independently represents hydrogen, aryl, alkyl or cycloalkyl (for the description of these groups, the first and second substituents described above And at least one hydrogen in R may be aryl, alkyl or cycloalkyl (for descriptions of these groups, reference may be made to the descriptions of the first and second substituents described above). Can be substituted). The specific ring structure formed will be described later.
 なお、本発明の化合物においては、ZおよびZが同時に単結合であることはない。 In the compounds of the present invention, Z 1 and Z 2 are not simultaneously a single bond.
 また、本発明の化合物およびその高分子化合物の化学構造中の水素は、その全てまたは一部がシアノ、ハロゲンまたは重水素で置換されていてもよい。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素または塩素である。 In addition, all or part of hydrogens in the chemical structure of the compound of the present invention and the polymer compound thereof may be substituted with cyano, halogen or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine or chlorine.
 次に、本発明の化合物の構造をより具体的に説明する。なお、以降の説明で用いる全ての構造式中の符号は特に断りがない限り上述する定義のとおりである。 Next, the structures of the compounds of the present invention will be described more specifically. In addition, the code | symbol in all the structural formula used by subsequent description is a definition as mentioned above unless there is particular notice.
1-1.化合物の基本骨格の変化について
 本発明の化合物は、A環およびD環(a環およびd環)を含む縮合環部位とB環およびC環(b環およびc環)を含む縮合環部位とがホウ素をスピロ原子としてスピロ結合した化合物である。各環やZおよびZには置換基が結合し得るが、まず、当該スピロ化合物の基本骨格について以下に説明する。以下では基本骨格およびこれに付随する事項についてのみ説明するため、基本的には、構造式中でこの変化に関与しない置換基(式(2)でいえばR~R16など)の記載または説明は省略し、必要な場合にのみ記載または説明をする。また、一般式(2)は一般式(1)に含まれる好ましい一形態であるため、両式に共通する説明は一般式(1)の説明で代表し、一般式(2)の説明としては省略する場合もある。
1-1. Regarding changes in the basic skeleton of the compound, the compound of the present invention comprises a fused ring moiety containing A ring and D ring (a ring and d ring) and a fused ring moiety containing B ring and C ring (b ring and c ring) It is a compound in which boron is spiro bonded as a spiro atom. Although a substituent may be bonded to each ring or Z 1 and Z 2 , first, the basic skeleton of the spiro compound will be described below. In order to describe only the basic skeleton and the matters incidental thereto, basically, the description of the substituent not involved in this change in the structural formula (such as R 1 to R 16 in the case of formula (2)) or The explanation is omitted and only described or explained when necessary. Moreover, since General formula (2) is one preferable form contained in General formula (1), the description common to both types is represented by description of General formula (1), As description of General formula (2) It may be omitted.
 一般式(1)で表される化合物または繰り返し構造(以下、まとめて単に「化合物」ともいう)において、スピロ原子であるホウ素「B」はそれぞれA環、C環およびD環中の炭素(式中では「C」の表記を省略)と結合し、B環中の1つの窒素「N」と配位結合する。X~Xはそれぞれ独立してC(炭素)またはN(窒素)であり、ZはA環およびD環の連結基、ZはB環およびC環の連結基である。 In the compound represented by the general formula (1) or a repeating structure (hereinafter collectively referred to simply as “compound”), the boron “B” which is a spiro atom is a carbon in ring A, ring C and ring D (formula In particular, it is bonded to “C” (not shown) and coordinated to one nitrogen “N” in ring B. X 1 to X 4 are each independently C (carbon) or N (nitrogen), Z 1 is a linking group of ring A and ring D, and Z 2 is a linking group of ring B and ring C.
 一例として、下記一般式(1-C)はX~XがC(炭素)である構造式であり、一般式(1-N)はX~XがN(窒素)である構造式である。X~Xはそれぞれ独立してCまたはNから選択することができ、下記構造式以外の形態もあり得る。 As an example, the following general formula (1-C) is a structural formula in which X 1 to X 4 are C (carbon), and the general formula (1-N) has a structure in which X 1 to X 4 is N (nitrogen) It is a formula. Each of X 1 to X 4 can be independently selected from C or N, and forms other than the following structural formula may be possible.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 ZおよびZとしては、例えば下記部分構造式(a)~式(v)が挙げられる。 Examples of Z 1 and Z 2 include the following partial structural formulas (a) to (v).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 部分構造式中のRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 R in the partial structural formula is each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one of them is Hydrogen may be substituted by aryl, heteroaryl, alkyl or cycloalkyl.
 好ましくは式(e)~式(q)、式(u)または式(v)であり、より好ましくは式(g)~式(j)、式(n)~式(q)、式(u)または式(v)であり、さらに好ましくは式(g)、式(h)、式(q)または式(u)であり、特に好ましくは式(g)、式(q)または式(u)である。 Preferably they are Formula (e)-Formula (q), Formula (u) or Formula (v), More preferably, Formula (g)-Formula (j), Formula (n)-Formula (q), Formula (u) Or the formula (v), more preferably the formula (g), the formula (h), the formula (q) or the formula (u), and particularly preferably the formula (g), the formula (q) or the formula (u) ).
 より具体的には、Zは、式(g)、式(q)または式(u)であり、好ましくは式(g)または式(u)であり、より好ましくは式(g)である。 More specifically, Z 1 is the formula (g), the formula (q) or the formula (u), preferably the formula (g) or the formula (u), more preferably the formula (g) .
 ZおよびZの組み合わせとしては、共に式(g)、式(g)および式(q)、式(g)および式(u)、式(u)および式(g)、または、式(u)および式(q)であり、好ましくは、共に式(g)、式(g)および式(q)、式(g)および式(u)、または、式(u)および式(g)である。 As a combination of Z 1 and Z 2 , Formula (g), Formula (g) and Formula (q), Formula (g) and Formula (u), Formula (u) and Formula (g), or Formula (G) u) and formula (q), preferably both of formula (g), formula (g) and formula (q), formula (g) and formula (u), or formula (u) and formula (g) It is.
 A環、C環およびD環としては、例えば下記部分構造式(P)~式(Xb)が挙げられる。下記の部分構造式において、波線により途切れた結合は、一般式(1)におけるスピロ原子「B」やZまたはZとの結合部位を示す。また、一般式(1)中の部分構造式は全て同じ部分構造であることが好ましいが、異なる種類の部分構造であってよい。下記部分構造式においても置換基の図示は省略している。 Examples of ring A, ring C and ring D include partial structural formulas (P) to (Xb) shown below. In the following partial structural formulas, the bond interrupted by a wavy line indicates a binding site to the spiro atom “B” or Z 1 or Z 2 in the general formula (1). The partial structural formulas in the general formula (1) are preferably all the same partial structure, but may be different types of partial structures. Also in the following partial structural formulas, illustration of substituents is omitted.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 部分構造式中のRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 R in the partial structural formula is each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one of them is Hydrogen may be substituted by aryl, heteroaryl, alkyl or cycloalkyl.
 好ましくは式(P)、式(F)、式(Na)、式(Nb)、式(Ra)、式(BR)、式(Ya)、式(Yb)、式(Z)、式(BZ)、式(S)、式(BS)、式(T)、式(BT)、式(E)、式(BE)、式(L)、式(BL)、式(G)および式(BG)であり、より好ましくは式(P)、式(Na)、式(Ra)、式(Ya)、式(Yb)、式(Z)、式(S)、式(T)、式(E)および式(G)であり、さらに好ましくは式(P)、式(Na)および式(S)であり、最も好ましくは式(P)および式(Na)である。 Preferably, Formula (P), Formula (F), Formula (Na), Formula (Nb), Formula (Ra), Formula (BR), Formula (Ya), Formula (Yb), Formula (Z), Formula (BZ) ), Formula (S), Formula (BS), Formula (T), Formula (BT), Formula (E), Formula (BE), Formula (L), Formula (BL), Formula (G) and Formula (BG) And more preferably formulas (P), (Na), (Ra), (Ya), (Yb), (Z), (S), (T), and (E). And formula (G), more preferably formula (P), formula (Na) and formula (S), and most preferably formula (P) and formula (Na).
 B環としては、例えば、ピリジン環、ピリダジン環、ピリミジン環またはトリアジン環が挙げられ、これらの環において一つの窒素はスピロ原子「B」に配位する。このようなB環を含有する構造式としては、例えば上記式(1-C)を変形した例としては下記一般式(10)~式(145)が挙げられる。上記式(1-N)や、X~Xがその他の組み合わせになった場合でも同様である。 The ring B includes, for example, a pyridine ring, a pyridazine ring, a pyrimidine ring or a triazine ring, and in these rings, one nitrogen is coordinated to the spiro atom "B". Examples of structural formulas containing such a ring B include, for example, the following general formulas (10) to (145) as modified examples of the above-mentioned formula (1-C). The same applies to the case where the above formulas (1-N) or X 1 to X 4 are other combinations.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 構造式としては、好ましくは式(10)、式(15)または式(135)であり、より好ましくは式(10)である。 The structural formula is preferably formula (10), formula (15) or formula (135), and more preferably formula (10).
 上記式(10)~(145)において、A環、C環およびD環が例えば部分構造式(P)である場合は、下記一般式で表される。 In the above formulas (10) to (145), when ring A, ring C and ring D are, for example, partial structural formula (P), they are represented by the following general formula.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 A環、C環およびD環として、例えば上記部分構造式(P)~式(Xb)のいずれかのうち同一構造が選択された場合、一般式(10)の構造は以下の化学構造式で表される。 When the same structure is selected from any of the above partial structural formulas (P) to (Xb) as ring A, ring C and ring D, for example, the structure of general formula (10) is represented by the following chemical structural formula expressed.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 A環、C環およびD環は同一の構造であってもよいし、異なっていてもよい。上記式(10)において、A環、C環およびD環が異なる構造である場合、下記一般式で表される。 Ring A, ring C and ring D may have the same structure or may be different. In the above formula (10), when ring A, ring C and ring D have different structures, they are represented by the following general formula.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 ZおよびZは同一の構造であってもよいし、異なっていてもよい。ZおよびZとして、それぞれ独立して、部分構造式(a)~(v)が選択された一例を以下に挙げる。 Z 1 and Z 2 may have the same structure or may be different. Examples of Z 1 and Z 2 independently selected from partial structural formulas (a) to (v) are listed below.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 これらの中で、好ましくは、一般式(10P-ge-1)、式(10P-gf-1)、式(10P-g-1)、式(10P-gh-1)、式(10P-gi-1)、式(10P-gj-1)、式(10P-gk-1)、式(10P-gm-1)、式(10P-gn-1)、式(10P-gp-1)、式(10P-gq-1)、式(10P-gu-1)、式(10P-qe-1)、式(10P-qf-1)、式(10P-qg-1)、式(10P-qh-1)、式(10P-qi-1)、式(10P-qj-1)、式(10P-qk-1)、式(10P-qm-1)、式(10P-qn-1)、式(10P-qp-1)、式(10P-q-1)、式(10P-qu-1)、式(10P-ue-1)、式(10P-uf-1)、式(10P-ug-1)、式(10P-uh-1)、式(10P-ui-1)、式(10P-uj-1)、式(10P-uk-1)、式(10P-um-1)、式(10P-un-1)、式(10P-up-1)および式(10P-uq-1)であり、より好ましくは、一般式(10P-g-1)、式(10P-gh-1)、式(10P-gi-1)、式(10P-gj-1)、式(10P-gn-1)、式(10P-gp-1)、式(10P-gq-1)、式(10P-gu-1)、式(10P-qg-1)、式(10P-qh-1)、式(10P-qi-1)、式(10P-qj-1)、式(10P-qn-1)、式(10P-qp-1)、式(10P-q-1)、式(10P-qu-1)、式(10P-ug-1)、式(10P-uh-1)、式(10P-ui-1)、式(10P-uj-1)、式(10P-un-1)、式(10P-up-1)および式(10P-uq-1)であり、さらに好ましくは、一般式(10P-g-1)、式(10P-gh-1)、式(10P-gq-1)、式(10P-gu-1)、式(10P-qg-1)、式(10P-qh-1)、式(10P-q-1)、式(10P-qu-1)、式(10P-ug-1)、式(10P-uh-1)および式(10P-uq-1)であり、特に好ましくは、一般式(10P-g-1)、式(10P-gq-1)、式(10P-gu-1)、式(10P-qg-1)、式(10P-q-1)、式(10P-qu-1)、式(10P-ug-1)および式(10P-uq-1)である。 Among these, preferably, general formula (10P-ge-1), formula (10P-gf-1), formula (10P-g-1), formula (10P-gh-1), formula (10P-gi) -1), Formula (10P-gj-1), Formula (10P-gk-1), Formula (10P-gm-1), Formula (10P-gn-1), Formula (10P-gp-1), Formula (10P-gq-1), formula (10P-gu-1), formula (10P-qe-1), formula (10P-qf-1), formula (10P-qg-1), formula (10P-qh-) 1), the formula (10P-qi-1), the formula (10P-qj-1), the formula (10P-qk-1), the formula (10P-qm-1), the formula (10P-qn-1), the formula (10P-qn-1) 10P-qp-1), formula (10P-q-1), formula (10P-qu-1), formula (10P-ue-1), formula (10P-uf-1), formula (10P-ug-1) ), Formula (10P-uh-1), formula (10P-ui-1), formula (10P-uj-1), formula (10P-uk-1), formula (10P-um-1), formula (10P) -un-1), formula (10P-up-1) and formula (10P-uq-1), more preferably general formula (10P-g-1), formula (10P-gh-1), formula (10P-gi-1), formula (10P-gj-1), formula (10P-gn-1), formula (10P-gp-1), formula (10P-gq-1), formula (10P-gu-) 1), the formula (10P-qg-1), the formula (10P-qh-1), the formula (10P- qi-1), equation (10P-qj-1), equation (10P-qn-1), equation (10P-qp-1), equation (10P-q-1), equation (10P-qu-1), Formula (10P-ug-1), Formula (10P-uh-1), Formula (10P-ui-1), Formula (10P-uj-1), Formula (10P-un-1), Formula (10P-up) -1) and formula (10P-uq-1), more preferably general formula (10P-g-1), formula (10P-gh-1), formula (10P-gq-1), formula (10P) -gu-1), formula (10P-qg-1), formula (10P-qh-1), formula (10P-q-1), formula (10P-qu-1), formula (10P-ug-1) , The formula (10P-uh-1) and the formula (10P-uq-1), particularly preferably the general formula (10P-g-1), the formula (10P-gq-1), the formula (10P-gu-1) 1) Formula (10P-qg-1), Formula (10P-q-1), Formula (10P-qu-1), Formula (10P-ug-1) and Formula (10P-uq-1).
 また、一般式(10P-Z-1)、式(12P-Z-1)、式(13P-Z-1)、式(14P-Z-1)、式(15P-Z-1)、式(123P-Z-1)、式(124P-Z-1)、式(125P-Z-1)、式(134P-Z-1)、式(135P-Z-1)または式(145P-Z-1)において、ZおよびZとして部分構造式(g)のエーテル結合が選択された場合を以下に示す。 In addition, general formula (10P-Z-1), formula (12P-Z-1), formula (13P-Z-1), formula (14P-Z-1), formula (15P-Z-1), formula ( 123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) or formula (145P-Z-1) The case where an ether bond of partial structural formula (g) is selected as Z 1 and Z 2 in the above is shown below.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 ZおよびZは異なる構造でもよく、一般式(10P-Z-1)、式(12P-Z-1)、式(13P-Z-1)、式(14P-Z-1)、式(15P-Z-1)、式(123P-Z-1)、式(124P-Z-1)、式(125P-Z-1)、式(134P-Z-1)、式(135P-Z-1)または式(145P-Z-1)において、ZおよびZとして、それぞれ部分構造式(g)のエーテル結合および式(q)のアミン結合が選択された場合を以下に示す。 Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) The case where the ether bond of partial structural formula (g) and the amine bond of formula (q) are selected as Z 1 and Z 2 in the formula (145P-Z-1) is shown below.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 ZおよびZは異なる構造でもよく、一般式(10P-Z-1)、式(12P-Z-1)、式(13P-Z-1)、式(14P-Z-1)、式(15P-Z-1)、式(123P-Z-1)、式(124P-Z-1)、式(125P-Z-1)、式(134P-Z-1)、式(135P-Z-1)または式(145P-Z-1)において、ZおよびZとして、それぞれ部分構造式(g)のエーテル結合および式(u)の単結合が選択された場合を以下に示す。 Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) The case where an ether bond of partial structural formula (g) and a single bond of formula (u) are selected as Z 1 and Z 2 in the formula (145P-Z-1) is shown below.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 ZおよびZは異なる構造でもよく、一般式(10P-Z-1)、式(12P-Z-1)、式(13P-Z-1)、式(14P-Z-1)、式(15P-Z-1)、式(123P-Z-1)、式(124P-Z-1)、式(125P-Z-1)、式(134P-Z-1)、式(135P-Z-1)または式(145P-Z-1)において、ZおよびZとして、それぞれ部分構造式(u)の単結合および式(g)のエーテル結合が選択された場合を以下に示す。 Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) Or (145P-Z-1), a case where a single bond of partial structural formula (u) and an ether bond of formula (g) are selected as Z 1 and Z 2 is shown below.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 ZおよびZは異なる構造でもよく、一般式(10P-Z-1)、式(12P-Z-1)、式(13P-Z-1)、式(14P-Z-1)、式(15P-Z-1)、式(123P-Z-1)、式(124P-Z-1)、式(125P-Z-1)、式(134P-Z-1)、式(135P-Z-1)または式(145P-Z-1)において、ZおよびZとして、それぞれ部分構造式(u)の単結合および式(q)のアミン結合が選択された場合を以下に示す。 Z 1 and Z 2 may have different structures, and they may be represented by the general formula (10P-Z-1), the formula (12P-Z-1), the formula (13P-Z-1), the formula (14P-Z-1), the formula 15P-Z-1), formula (123P-Z-1), formula (124P-Z-1), formula (125P-Z-1), formula (134P-Z-1), formula (135P-Z-1) Or (145P-Z-1), a case where a single bond of partial structural formula (u) and an amine bond of formula (q) are selected as Z 1 and Z 2 is shown below.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 ZおよびZにおける「-CR-」、「-C(=CR)-」、「-CR=CR-」、「-C(=O)NR-」、「-P(=R)-」、「-P(=O)(-R)-」、「-SiR-」または「-NR-」の中のRは、具体的には、下記部分構造式(J1)~式(J74)である。なお、各式中の「Me」はメチル基、「tBu」はt-ブチル基である。 “-CR 2- ”, “-C (= CR 2 )-”, “-CR = CR-”, “-C (= O) NR-”, “-P (= R)” in Z 1 and Z 2 Specifically, R in-, -P (= O) (-R)-, -SiR 2- or -NR- has the following partial structural formula (J1) to J74). In each formula, “Me” is a methyl group, and “tBu” is a t-butyl group.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 これらの中でも、好ましくは部分構造式(J1)~式(J3)、式(J11)、式(J12)、式(J38)または式(J41)~式(J44)であり、より好ましくは式(J1)、式(J3)、式(J11)、式(J12)、式(J41)または式(J44)であり、さらに好ましくは式(J11)である。 Among them, partial structural formula (J1) to formula (J3), formula (J11), formula (J12), formula (J38) or formula (J41) to formula (J44) are preferable, and more preferably J1), formula (J3), formula (J11), formula (J12), formula (J41) or formula (J44), and more preferably formula (J11).
 例えば、一般式(10P-j-1)、式(10P-k-1)、式(10P-p-1)または式(10P-q-1)におけるZおよびZとして部分構造式(j)、式(k)、式(p)または式(q)が選択され、この部分構造式中のRが、水素、部分構造式(J1)、式(J3)、式(J6)、式(J9)、式(J11)または式(J21)である場合は、下記構造式で表される。なお、各構造式中の「Me」はメチル基、「tBu」はt-ブチル基であり、以降の全ての構造式においても同じである。 For example, the general formula (10P-j-1), formula (10P-k-1), formula (10P-p-1) or formula (10P-q-1) in the Z 1 and Z 2 as a partial structural formula (j Formula (k), formula (p) or formula (q) is selected, and R in this partial structural formula is hydrogen, partial structural formula (J1), formula (J3), formula (J6), formula ( When it is J9), Formula (J11), or Formula (J21), it is represented by following Structural formula. In each structural formula, “Me” is a methyl group, and “tBu” is a t-butyl group, and the same applies to all the structural formulas hereinafter.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 例えば、一般式(10P-gq-1)、式(10P-qg-1)、式(10P-qu-1)、式(10P-uq-1)または式(10P-q-1)におけるZおよびZとして部分構造式(q)が選択され、この部分構造式におけるRが、水素、部分構造式(J1)、式(J3)、式(J6)、式(J9)、式(J11)または式(J21)である場合は、下記構造式で表される。 For example, Z 1 in the general formula (10P-gq-1), the formula (10P-qg-1), the formula (10P-qu-1), the formula (10P-uq-1) or the formula (10P-q-1) And partial structure (q) is selected as and Z 2 , R in this partial structure is hydrogen, partial structure (J1), formula (J3), formula (J6), formula (J9), formula (J11) Or when it is a formula (J21), it represents with following Structural formula.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 また、例えば、一般式(10P-gq-1)、式(10P-q-1)または式(10P-uq-1)におけるZとして部分構造式(q)が選択され、この部分構造式中のRが部分構造式(J11)であり、隣接するRとB環(b環)とが結合して環構造を形成する場合は、下記構造式で表される。 Also, for example, a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula When R is a partial structural formula (J11) and adjacent R and B ring (b ring) are bonded to form a ring structure, they are represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 また、例えば、一般式(10P-gq-1)、式(10P-q-1)または式(10P-uq-1)におけるZとして部分構造式(q)が選択され、この部分構造式中のRが部分構造式(J11)であり、隣接するRとC環(c環)とが結合して環構造を形成する場合は、下記構造式で表される。 Also, for example, a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula When R is a partial structural formula (J11) and adjacent R and C rings (c rings) are bonded to form a ring structure, they are represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 また、例えば、一般式(10P-gq-1)、式(10P-q-1)または式(10P-uq-1)におけるZとして部分構造式(q)が選択され、この部分構造式中のRが部分構造式(J11)であり、隣接するRとB環(b環)とC環(c環)とが結合して環構造を形成する場合は、下記構造式で表される。 Also, for example, a partial structural formula (q) is selected as Z 2 in the general formula (10P-gq-1), the formula (10P-q-1) or the formula (10P-uq-1), and in the partial structural formula When R is a partial structural formula (J11) and adjacent R, B ring (b ring) and C ring (c ring) combine to form a ring structure, they are represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 また、例えば、一般式(10P-q-1)または式(10P-qg-1)におけるZとして部分構造式(q)が選択され、この部分構造式中のRが部分構造式(J11)であり、隣接するRとA環(a環)またはD環(d環)とが結合して環構造を形成する場合は、下記構造式で表される。 Also, for example, partial structural formula (q) is selected as Z 1 in general formula (10P-q-1) or formula (10P-qg-1), and R in this partial structural formula is a partial structural formula (J11) When adjacent R and A ring (a ring) or D ring (d ring) combine to form a ring structure, they are represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 また、例えば、一般式(10P-q-1)または式(10P-qg-1)におけるZとして部分構造式(q)が選択され、この部分構造式中のRが部分構造式(J11)であり、隣接するRとA環(a環)およびD環(d環)とが結合して環構造を形成する場合は、下記構造式で表される。 Also, for example, partial structural formula (q) is selected as Z 1 in general formula (10P-q-1) or formula (10P-qg-1), and R in this partial structural formula is a partial structural formula (J11) When adjacent R and A ring (a ring) and D ring (d ring) combine to form a ring structure, they are represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 一般式(10P-Z-1)における、ZまたはZとして部分構造式(q)および部分構造式(q)におけるRとして部分構造式(J11)が選択され、隣接する、Rと、A環(a環)、B環(b環)、C環(c環)および/またはD環(d環)とが結合して環構造を形成する場合、合成の容易さの観点から、一般式(10P-gq-21-J11)、式(10P-gq-22-J11)、式(10P-gq-23-J11)、式(10P-gq-24-J11)、式(10P-gq-25-J11)、式(10P-q-21-J11)、式(10P-q-22-J11)、式(10P-q-23-J11)、式(10P-q-24-J11)、式(10P-q-25-J11)、式(10P-uq-21-J11)、式(10P-uq-22-J11)、式(10P-uq-23-J11)、式(10P-uq-24-J11)および式(10P-uq-25-J11)が好ましい。 The partial structural formula (J11) is selected as the partial structural formula (q) as Z 1 or Z 2 in the general formula (10P-Z-1) and the partial structural formula (J11) as R in the partial structural formula (q) When ring (a ring), B ring (b ring), C ring (c ring) and / or D ring (d ring) are combined to form a ring structure, from the viewpoint of easiness of synthesis, a general formula (10P-gq-21-J11), Formula (10P-gq-22-J11), Formula (10P-gq-23-J11), Formula (10P-gq-24-J11), Formula (10P-gq-25) -J11), formula (10P-q-21-J11), formula (10P-q-22-J11), formula (10P-q-23-J11), formula (10P-q-24-J11), formula (10P-q-24-J11) 10P-q-25-J11), formula (10P-uq-21-J11), formula (10P-uq-22-J11), formula (10P-uq-23-J11), formula (10P-uq-24-) J11) and the formula (10P-uq-25-J11) are preferred.
1-2.化合物の基本骨格への置換基について
 次に、上述した具体例としての基本骨格に対する置換基について説明する。
1-2. Substituents on the Basic Skeleton of the Compound Next, substituents on the basic skeleton as the specific example described above will be described.
 A環~D環としての「アリール環」や「ヘテロアリール環」、またA環とB環および/またはC環とD環が結合して形成された環構造における少なくとも1つの水素への置換基は、具体的には、下記部分構造式(J1)~式(J74)および式(J81)~式(J91)である。なお、各式中の「Me」はメチル基、「tBu」はt-ブチル基である。 “Aryl ring” or “heteroaryl ring” as ring A to ring D, and a substituent to at least one hydrogen in a ring structure formed by combining ring A with ring B and / or ring C and ring D Specifically, they are the following partial structural formulas (J1) to (J74) and formulas (J81) to (J91). In each formula, “Me” is a methyl group, and “tBu” is a t-butyl group.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 これらの中でも、好ましくは部分構造式(J1)~式(J3)、式(J11)、式(J12)、式(J38)または式(J41)~式(J44)であり、より好ましくは式(J1)、式(J3)、式(J11)、式(J12)、式(J41)または式(J44)であり、さらに好ましくは式(J11)である。 Among them, partial structural formula (J1) to formula (J3), formula (J11), formula (J12), formula (J38) or formula (J41) to formula (J44) are preferable, and more preferably J1), formula (J3), formula (J11), formula (J12), formula (J41) or formula (J44), and more preferably formula (J11).
 また、一般式(10P-Z-1)におけるZまたはZとして部分構造式(g)、部分構造式(q)または部分構造式(u)が選択される場合、a環およびd環への置換基として部分構造式(J81)~式(J91)を用いると、a環およびd環とa環およびd環への置換基との間でHOMOおよびLUMOを分離することができる。一方、b環およびc環への置換基として部分構造式(J32)~式(J46)を用いると、b環およびc環とb環およびc環への置換基との間でHOMOおよびLUMOを分離することができる。 When a partial structural formula (g), a partial structural formula (q) or a partial structural formula (u) is selected as Z 1 or Z 2 in the general formula (10P-Z-1), a ring and a ring are selected. When substructures (J81) to (J91) are used as substituents of HO, HOMO and LUMO can be separated between the a and d rings and the substituents for the a and d rings. On the other hand, when substructures (J32) to (J46) are used as substituents for the b ring and c ring, HOMO and LUMO are selected between the b ring and c ring and the substituents for the b ring and c ring. It can be separated.
 例えば、一般式(10P-g-1)におけるa環およびd環における水素原子の一部が置換されたり、隣接する置換基同士が結合してa環またはd環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。式(10P-g-100)の無置換化合物と共に列挙する。なお、各構造式中の「Me」はメチル基、「tBu」はt-ブチル基であり、以降の全ての構造式においても同じである。 For example, a part of hydrogen atoms in ring a and ring d in General Formula (10P-g-1) may be substituted, or adjacent substituents may be combined to form an aryl ring or a heteroaryl ring together with ring a or ring d. When formed, it is represented by the following structural formula. It lists with the unsubstituted compound of Formula (10P-g-100). In each structural formula, “Me” is a methyl group, and “tBu” is a t-butyl group, and the same applies to all the structural formulas hereinafter.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 また、例えば、一般式(10P-g-1)におけるc環における水素原子の一部が置換されたり、隣接する置換基同士が結合してc環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in the c ring in General Formula (10P-g-1) is substituted or adjacent substituents combine to form an aryl ring or a heteroaryl ring with the c ring, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 また、例えば、一般式(10P-g-1)におけるb環における水素原子の一部が置換されたり、隣接する置換基同士が結合してb環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in ring b in General Formula (10P-g-1) is substituted, or adjacent substituents combine to form an aryl ring or heteroaryl ring with ring b, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 一般式(10P-g-1)中のa~d環における水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。例えば下記構造式で表される。 The hydrogen atoms in rings a to d in general formula (10P-g-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 また、例えば、一般式(10P-gq-1)におけるa環およびd環における水素原子の一部が置換されたり、隣接する置換基同士が結合してa環またはd環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。式(10P-gq-100)の無置換化合物と共に列挙する。 Also, for example, part of the hydrogen atoms in ring a and ring d in General Formula (10P-gq-1) are substituted, or adjacent substituents are combined to form an aryl ring or heteroaryl together with ring a or ring d. When a ring is formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-gq-100).
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 また、例えば、一般式(10P-gq-1)におけるc環における水素原子の一部が置換されたり、隣接する置換基同士が結合してc環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in the c ring in General Formula (10P-gq-1) is substituted or adjacent substituents combine to form an aryl ring or a heteroaryl ring with the c ring, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 また、例えば、一般式(10P-gq-1)におけるb環における水素原子の一部が置換されたり、隣接する置換基同士が結合してb環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in ring b in general formula (10P-gq-1) is substituted or adjacent substituents are combined to form an aryl ring or heteroaryl ring with ring b, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 一般式(10P-gq-1)中のa~d環における水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。例えば下記構造式で表される。 The hydrogen atoms in rings a to d in general formula (10P-gq-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 また、例えば、一般式(10P-gq-1)におけるRが式(J11)の場合は、下記構造式で表される。 Further, for example, when R in the general formula (10P-gq-1) is the formula (J11), it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 一般式(10P-gq-21-J11)中のa~d環における水素原子およびN-RのRであるフェニルの水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。b環、c環およびN-RのRであるフェニルへの置換基は、b環-Z結合に対して対称になるように置換される方が、合成の容易さの観点から好ましい。例えば下記構造式で表される。 The hydrogen atom in ring a to d in the general formula (10P-gq-21-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good. Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 一般式(10P-gq-23-J11)中のa~d環における水素原子およびN-RのRであるフェニルの水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。b環、c環およびN-RのRであるフェニルへの置換基は、b環-Z結合に対して対称になるように置換される方が、合成の容易さの観点から好ましい。例えば下記構造式で表される。 The hydrogen atom in ring a to d in the general formula (10P-gq-23-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good. Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 一般式(10P-gq-25-J11)中のa~d環における水素原子およびN-RのRであるフェニルの水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。b環、c環およびN-RのRであるフェニルへの置換基は、b環-Z結合に対して対称になるように置換される方が、合成の容易さの観点から好ましい。例えば下記構造式で表される。 The hydrogen atom in ring a to d in the general formula (10P-gq-25-J11) and the hydrogen atom of phenyl which is R in NR are each independently substituted with the same or different structure. It is also good. Substituents to phenyl which is R in b ring, c ring and N—R are preferably substituted so as to be symmetrical with respect to b ring —Z 2 bond from the viewpoint of easiness of synthesis. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 例えば、一般式(10P-gu-1)におけるa環およびd環における水素原子の一部が置換されたり、隣接する置換基同士が結合してa環またはd環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。式(10P-gu-100)の無置換化合物と共に列挙する。 For example, a part of hydrogen atoms in ring a and ring d in General Formula (10P-gu-1) are substituted, or adjacent substituents are combined to form an aryl ring or a heteroaryl ring together with ring a or ring d. When formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-gu-100).
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 また、例えば、一般式(10P-gu-1)におけるc環における水素原子の一部が置換されたり、隣接する置換基同士が結合してc環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in the c ring in General Formula (10P-gu-1) is substituted or adjacent substituents combine to form an aryl ring or a heteroaryl ring with the c ring, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 また、例えば、一般式(10P-gu-1)におけるb環における水素原子の一部が置換されたり、隣接する置換基同士が結合してb環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in ring b in General Formula (10P-gu-1) is substituted or adjacent substituents combine to form an aryl ring or heteroaryl ring with ring b, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
 一般式(10P-gu-1)中のa~d環における水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。例えば下記構造式で表される。 The hydrogen atoms in rings a to d in general formula (10P-gu-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 例えば、一般式(10P-ug-1)におけるa環およびd環における水素原子の一部が置換されたり、隣接する置換基同士が結合してa環またはd環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。式(10P-ug-100)の無置換化合物と共に列挙する。 For example, a part of hydrogen atoms in ring a and ring d in General Formula (10P-ug-1) may be substituted, or adjacent substituents may be combined to form an aryl ring or a heteroaryl ring together with ring a or ring d. When formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-ug-100).
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 また、例えば、一般式(10P-ug-1)におけるc環における水素原子の一部が置換されたり、隣接する置換基同士が結合してc環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in the c ring in General Formula (10P-ug-1) is substituted or adjacent substituents combine to form an aryl ring or a heteroaryl ring with the c ring, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
 また、例えば、一般式(10P-ug-1)におけるb環における水素原子の一部が置換されたり、隣接する置換基同士が結合してb環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in ring b in General Formula (10P-ug-1) is substituted, or adjacent substituents combine to form an aryl ring or heteroaryl ring with ring b, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
 一般式(10P-ug-1)中のa~d環における水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。例えば下記構造式で表される。 The hydrogen atoms in rings a to d in general formula (10P-ug-1) may be each independently substituted with the same structure or a different structure. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
 また、例えば、一般式(10P-uq-1)におけるa環およびd環における水素原子の一部が置換されたり、隣接する置換基同士が結合してa環またはd環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。式(10P-uq-100)の無置換化合物と共に列挙する。 Also, for example, a part of hydrogen atoms in ring a and ring d in General Formula (10P-uq-1) are substituted, or adjacent substituents are combined to form an aryl ring or heteroaryl together with ring a or ring d. When a ring is formed, it is represented by the following structural formula. It lists with the unsubstituted compound of a formula (10P-uq-100).
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
 また、例えば、一般式(10P-uq-1)におけるc環における水素原子の一部が置換されたり、隣接する置換基同士が結合してc環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in the c ring in General Formula (10P-uq-1) is substituted, or adjacent substituents combine to form an aryl ring or a heteroaryl ring with the c ring, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
 また、例えば、一般式(10P-uq-1)におけるb環における水素原子の一部が置換されたり、隣接する置換基同士が結合してb環と共にアリール環やヘテロアリール環を形成した場合は、下記構造式で表される。 Also, for example, when a part of hydrogen atoms in ring b in general formula (10P-uq-1) is substituted, or adjacent substituents combine to form an aryl ring or heteroaryl ring with ring b, , It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
 一般式(10P-uq-1)中のa~d環における水素原子は、それぞれ独立して、同一の構造または異なる構造で置換されていてもよい。例えば下記構造式で表される。 The hydrogen atoms in rings a to d in general formula (10P-uq-1) may be each independently substituted with the same or different structure. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
 一般式(10)におけるA環、C環およびD環はそれぞれ独立して同一の構造であっても、異なる構造であってもよく、A環、C環、D環およびb環における水素原子はそれぞれ独立して同一の構造または異なる構造の基で置換されていてもよい。例えば下記構造式で表される。 Ring A, ring C and ring D in the general formula (10) may independently have the same structure or different structures, and a hydrogen atom in ring A, ring C, ring D and ring b is Each may be independently substituted with groups having the same structure or different structures. For example, it is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
1-3.化合物の励起エネルギーについて
 本発明の化合物の一重項励起エネルギー(E)と三重項励起エネルギー(E)との差ΔEST(=E-E)は、0.20eV以下であることが好ましく、0.02eV以下であることがより好ましい。このエネルギー差は熱活性化遅延蛍光を得るのに十分小さい値である。
1-3. The difference ΔE ST (= E S -E T ) between the singlet excitation energy (E S ) and the triplet excitation energy (E T ) of the compound of the present invention with respect to the excitation energy of the compound is 0.20 eV or less Preferably, it is more preferably 0.02 eV or less. This energy difference is a sufficiently small value to obtain heat activation delayed fluorescence.
 一重項励起エネルギー(E)は、蛍光スペクトルの極大発光波長B(nm)からE=1240/Bで算出される。また、三重項励起エネルギー(E)は、燐光スペクトルの極大発光波長C(nm)からE=1240/Cで算出される。
 また、ΔESTは、例えば、“Purely organic electroluminescent material realizing 100% conversion from electricity to light”, H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Katsuaki, S. Kubo,T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.に記載の方法でも算出することができる。
Singlet excitation energy (E S) is calculated by E S = 1240 / B from the maximum emission wavelength B of the fluorescence spectrum (nm). The triplet excitation energy (E T ) is calculated from E T = 1240 / C from the maximum emission wavelength C (nm) of the phosphorescence spectrum.
In addition, ΔE ST is, for example, “Purely organic electroluminescent material realizing 100% conversion from electricity to light”, H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Katsuaki, S. Kubo, T. Komino It can also be calculated by the method described in H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.
 「熱活性化型遅延蛍光体」とは、熱エネルギーを吸収して励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して遅延蛍光を放射しうる化合物のことを意味する。ただし、「熱活性化型遅延蛍光」とは、励起三重項状態から励起一重項状態への励起過程で高次三重項を経るものも含む。
 例えば、Durham大学のMonkmanらによる論文(NATURE COMMUNICATIONS,7:13680,DOI: 10.1038/ncomms13680)、産業技術総合研究所の細貝らによる論文(Hosokai et al., Sci. Adv. 2017;3: e1603282)、京都大学の佐藤らによる論文(Scientific Reports,7:4820,DOI:10.1038/s41598-017-05007-7)および、同じく京都大学の佐藤らによる学会発表(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機ELにおける高効率発光の機構、京都大学大学院工学研究科)などが挙げられる。
“Thermally activated delayed fluorescent substance” absorbs thermal energy to cause an inverse intersystem crossing from an excited triplet state to an excited singlet state, and is radiatively deactivated from the excited singlet state to give delayed fluorescence. It means a compound that can emit radiation. However, “thermally activated delayed fluorescence” also includes those that undergo high-order triplets in the process of excitation from an excitation triplet state to an excitation singlet state.
For example, the article by Monkman et al. Of Durham University (NATURE COMMUNICATIONS, 7: 13680, DOI: 10.1038 / ncomms 13680), the article by Hoseki et al. Of the National Institute of Advanced Industrial Science and Technology (Hosokai et al., Sci. Adv. 2017; 3: e 1603282) Thesis by Sato et al. Of Kyoto University (Scientific Reports, 7: 4820, DOI: 10.1038 / s 41598-017-05007-7), and also the academic presentation by Sato et al. Of Kyoto University (The 98th Annual Meeting of the Chemical Society of Japan, No. 2I4-15, Mechanism of highly efficient light emission in organic EL using DABNA as light emitting molecule, Kyoto University Graduate School of Engineering).
2.本発明の化合物およびその高分子化合物の製造方法2. Compound of the present invention and process for producing the polymer compound
 一般式(1)や(2)で表される化合物は、基本的には、まずA環(a環)とD環(d環)およびB環(b環)とC環(c環)とを結合基(ZやZを含む基)で結合させることで中間体を製造し(第1反応)、その後に、A環(a環)、B環(b環)、C環(c環)およびD環(d環)をホウ素原子で結合させることで最終生成物を製造することができる(第2反応)(Scheme(1)およびScheme(2))。 Basically, the compounds represented by the general formulas (1) and (2) have, first, an A ring (a ring), a D ring (d ring), a B ring (b ring) and a C ring (c ring) Is linked by a linking group (a group containing Z 1 and Z 2 ) to produce an intermediate (first reaction), and then A ring (a ring), B ring (b ring), C ring (c) The final product can be prepared by bonding the ring) and the D ring (d ring) with a boron atom (second reaction) (Scheme (1) and Scheme (2)).
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
 第1反応では、例えばエーテル化反応であれば、求核置換反応、ウルマン反応といった一般的反応が利用でき、アミノ化反応で有ればブッフバルト-ハートウィッグ反応といった一般的反応が利用できる。また、第2反応では、メタル-ホウ素の金属交換反応が利用できる。 In the first reaction, for example, in the case of an etherification reaction, general reactions such as a nucleophilic substitution reaction and an Ullmann reaction can be used, and in the case of an amination reaction, a general reaction such as a Buchwald-Hartwig reaction can be used. In the second reaction, metal-boron transmetallation can be used.
 第2反応は、ホウ素原子を導入することでA環(a環)、B環(b環)、C環(c環)およびD環(d環)を結合させる反応であり、Scheme(1)および(2)では例えば中間体として塩素、臭素、ヨウ素といったハロゲン(Hal)が置換している中間体を用いた場合を示す。ジハロゲン化合物である中間体(1-A)や(2-A)をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でハロゲン原子をオルトメタル化し、中間体(1-C)や(2-C)とする(式中のMはリチウム等の金属)。一方でハロゲン化合物である中間体(1-B)や(2-B)をまずn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でハロゲン原子をメタル化し、次いで三塩化ホウ素や三臭化ホウ素等を加え、メタル-ホウ素の金属交換を行い中間体(1-D)や(2-D)とする。そこへ先ほど調製した中間体(1-C)や(2-C)を加えて中間体(1-D)や(2-D)とのメタル-ホウ素の金属交換を行うことで、一般式(1)または(2)の化合物を得ることができる。 The second reaction is a reaction in which the A ring (a ring), the B ring (b ring), the C ring (c ring) and the D ring (d ring) are linked by introducing a boron atom, and the scheme (1) In (2) and (2), for example, intermediates substituted with halogen (Hal) such as chlorine, bromine and iodine are shown as intermediates. The intermediate (1-C) or ((C) is obtained by orthometalating the halogen atom of the dihalogen compound intermediate (1-A) or (2-A) with n-butyllithium, sec-butyllithium or t-butyllithium, etc. 2-C) (wherein M is a metal such as lithium). On the other hand, the intermediates (1-B) and (2-B), which are halogen compounds, are first metallized with n-butyllithium, sec-butyllithium, t-butyllithium or the like, and then boron trichloride or triolum Boron fluoride or the like is added, and metal-boron metal exchange is performed to obtain intermediates (1-D) and (2-D). Then, the intermediate (1-C) or (2-C) prepared above is added and metal-boron is exchanged with the intermediate (1-D) or (2-D) to give a compound of the general formula The compounds of 1) or (2) can be obtained.
 また、メタル化に対する活性が高い水素原子を有する中間体を用いれば選択的メタル化によってハロゲン原子を導入していない中間体であっても、一般式(1)や(2)で表される化合物を製造することができる(Scheme(3)、Scheme(4))。 Further, if an intermediate having a hydrogen atom having high activity for metallation is used, the compound represented by the general formula (1) or (2) is an intermediate in which a halogen atom is not introduced by selective metallation. Can be manufactured (Scheme (3), Scheme (4)).
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
 この第2反応では、中間体(1-E)や(2-E)の水素原子をオルトメタル化し、中間体(1-C)や(2-C)とする(式中のMはリチウム等の金属)。一方で中間体(1-F)や(2-F)の水素原子をメタル化し、次いで三塩化ホウ素や三臭化ホウ素等を加え、メタル-ホウ素の金属交換を行い中間体(1-D)や(2-D)とする。そこへ先ほど調製した中間体(1-C)や(2-C)を加えて中間体(1-D)や(2-D)とのメタル-ホウ素の金属交換を行うことで、一般式(1)または(2)の化合物を得ることができる。 In this second reaction, the hydrogen atoms of intermediates (1-E) and (2-E) are orthometalated to intermediates (1-C) and (2-C) (wherein M represents lithium or the like) Metal). On the other hand, the hydrogen atom of intermediates (1-F) and (2-F) is metallized, and then boron trichloride, boron tribromide, etc. are added to carry out metal-boron metal exchange to obtain intermediates (1-D) And (2-D). Then, the intermediate (1-C) or (2-C) prepared above is added and metal-boron is exchanged with the intermediate (1-D) or (2-D) to give a compound of the general formula The compounds of 1) or (2) can be obtained.
 なお、上記Scheme(1)~(4)で使用するオルトメタル化試薬としては、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム、リチウムジイソプロピルアミド、リチウムテトラメチルピペリジド、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなどの有機アルカリ化合物が挙げられる。 The orthometalation reagents used in the above Schemes (1) to (4) include alkyllithiums such as methyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, lithium diisopropylamide, lithium tetramethyl Organic alkali compounds such as piperidid, lithium hexamethyl disilazide, potassium hexamethyl disilazide and the like can be mentioned.
 メタル化の際に配位性添加剤を加え、会合を解離させてやると反応性を向上させることができる。配位性添加剤としては、N,N’,N,N’-テトラメチルエチレンジアミン(TMEDA)やヘキサメチルホスホラミド(HMPA)、ジメチルプロピレンウレア(DMPU)などが挙げられる。 A coordination additive can be added during metallation to dissociate the association, thereby improving the reactivity. As the coordinating additive, N, N ', N, N'-tetramethylethylenediamine (TMEDA), hexamethylphosphoramide (HMPA), dimethylpropyleneurea (DMPU) and the like can be mentioned.
 なお、上記Scheme(1)~(4)で使用するメタル-ホウ素の金属交換試薬としては、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三ヨウ化ホウ素などのホウ素のハロゲン化物の他、ホウ酸トリメチル等のホウ素のアルコキシ化物4,4,5,5-テトラメチル-1,3,2-ジオキサボロランのようなアルコキシボラン化合物、ホウ酸トリフェニルのようなアリールオキシ化物などが挙げられる。 As metal-boron transmetallation reagents used in the above-mentioned Schemes (1) to (4), boron trifluoride, boron trichloride, boron tribromide, boron tribromide, and other halides of boron such as boron triiodide are used. And alkoxy borane compounds such as trimethyl borate and the like, boron, and alkoxy borane compounds such as 4,4,5,5-tetramethyl-1,3,2-dioxaborolane; and aryloxy compounds such as triphenyl borate.
 また、一般式(1)で表される構造を繰り返し単位とする高分子化合物の形態としては、模式図(I)~(III)が挙げられ、高分子化合物の一形態である特に2量体については模式図(i)および(ii)が挙げられる。以降の説明では、一般式(2)の高分子化合物についても同様に当てはまる。 Further, as a form of the polymer compound having the structure represented by the general formula (1) as a repeating unit, schematic diagrams (I) to (III) can be mentioned, and in particular, a dimer which is one form of the polymer compound The schematic diagrams (i) and (ii) can be mentioned. The same applies to the polymer compound of the general formula (2) in the following description.
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
 高分子化合物(I)は、式(1)の構造の一部(例えばA環~D環のいずれかなど)を互いに共有して形成された高分子化合物、
 高分子化合物(II)は、式(1)の構造が架橋構造XLを介して連結してできた高分子化合物、ただしECは末端構造であり、
 高分子化合物(III)は、直鎖高分子の側鎖として式(1)の構造を有する高分子化合物、ただし、ECは末端構造、MUは重合性基が重合したモノマー単位であり、
 2量体(i)は、式(1)の構造の一部(例えばA環~D環のいずれかなど)を互いに共有して形成された2量体、
 2量体(ii)は、式(1)の構造が架橋構造XLを介して連結してできた2量体である。
The polymer compound (I) is a polymer compound which is formed by sharing a part of the structure of the formula (1) (for example, any one of the ring A to the ring D) with each other,
The polymer compound (II) is a polymer compound obtained by linking the structure of the formula (1) via the crosslinked structure XL, provided that EC is a terminal structure,
The polymer compound (III) is a polymer compound having a structure of the formula (1) as a side chain of a linear polymer, provided that EC is a terminal structure and MU is a monomer unit in which a polymerizable group is polymerized,
The dimer (i) is a dimer formed by sharing a part of the structure of the formula (1) (for example, any of ring A to ring D) with one another.
The dimer (ii) is a dimer formed by linking the structure of the formula (1) via the crosslinked structure XL.
 高分子化合物(I)~(III)および2量体(i)および(ii)における部分構造である式(1)の構造は、同一の構造であっても異なる構造であってもよい。また、高分子化合物(I)および2量体(i)において、式(1)の部分構造同士は、互いに、A環(a環)、B環(b環)、C環(c環)、D環(d環)またはZ(Z)であるN-R(R=アリール環)のアリール環を利用して結合する。この結合態様は、これらの環を複数の部分構造で共有するようにして結合した形態であってもよく、また、これらの環同士が縮合するようにして結合した形態であってもよい。また、高分子化合物(II)、(III)および2量体(ii)において、式(1)の部分構造と、架橋構造XL、末端構造ECおよびモノマー単位MUとが結合する形態については、前述した環同士の共有や縮合の結合形態に加えて、単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で結合した形態であってもよい。 The structures of the formula (1) which are partial structures in the polymer compounds (I) to (III) and the dimers (i) and (ii) may be the same or different. Further, in the polymer compound (I) and the dimer (i), partial structures of the formula (1) are mutually A ring (a ring), B ring (b ring), C ring (c ring), Bonding is performed using the aryl ring of NR (R = aryl ring) which is ring D (ring d) or Z 1 (Z 2 ). This bonding mode may be in a form in which these rings are bonded together so as to be shared by a plurality of partial structures, or may be in a form in which these rings are bonded together in a condensed manner. Further, in the polymer compounds (II), (III) and the dimer (ii), the form in which the partial structure of the formula (1), the cross-linked structure XL, the terminal structure EC and the monomer unit MU are bonded is described above. In addition to the above-described shared or condensed bond forms of the rings, a form in which they are bonded by a single bond, an alkylene group having 1 to 3 carbon atoms, a phenylene group, a naphthalene group or the like may be used.
 例えば、式(10P-g-100)の部分構造におけるa環およびd環を互いに共有して高分子化合物(I)を形成する場合は、下記式(I-1)で表される。
Figure JPOXMLDOC01-appb-C000150
For example, when the a ring and the d ring in the partial structure of the formula (10P-g-100) are mutually shared to form the polymer compound (I), it is represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000150
 例えば、式(10P-gq-100-J11)の部分構造におけるa環およびN-Rのアリール環(フェニル環)を互いに共有して高分子化合物(I)を形成する場合は、下記式(I-2)で表される。
Figure JPOXMLDOC01-appb-C000151
For example, when the a ring and the aryl ring (phenyl ring) in the partial structure of the formula (10P-gq-100-J11) are mutually shared to form the polymer compound (I), the following formula (I It is represented by -2).
Figure JPOXMLDOC01-appb-C000151
 例えば、式(10P-gq-100-J11)の部分構造におけるa環およびd環が、架橋構造XL(m-フェニレン環)を連結基として高分子化合物(II)を形成する場合は、下記式(II-1)で表される。なお末端構造ECはフェニル基である。
Figure JPOXMLDOC01-appb-C000152
For example, when the a ring and the d ring in the partial structure of the formula (10P-gq-100-J11) form the polymer compound (II) with the crosslinked structure XL (m-phenylene ring) as a linking group, the following formula It is represented by (II-1). The terminal structure EC is a phenyl group.
Figure JPOXMLDOC01-appb-C000152
 例えば、式(10P-gq-100-J11)の部分構造におけるa環と式(10P-g-100)の部分構造におけるd環とが架橋構造XL(単結合)を連結基として2量体(ii)を形成する場合は、下記式(ii-1)で表される。
Figure JPOXMLDOC01-appb-C000153
For example, the a ring in the partial structure of the formula (10P-gq-100-J11) and the d ring in the partial structure of the formula (10P-g-100) are dimers (crosslinking structure XL (single bond)) as a linking group In the case of forming ii), it is represented by the following formula (ii-1).
Figure JPOXMLDOC01-appb-C000153
 例えば、式(10P-gq-100-J11)の部分構造におけるN-Rのアリール環(フェニル環)と式(10P-gq-100-J11)の部分構造におけるN-Rのアリール環(フェニル環)とが架橋構造XL(単結合)を連結基として2量体(ii)を形成する場合は、下記式(ii-2)で表される。
Figure JPOXMLDOC01-appb-C000154
For example, the aryl ring (phenyl ring) of NR in the partial structure of the formula (10P-gq-100-J11) and the aryl ring (phenyl ring) of NR in the partial structure of the formula (10P-gq-100-J11) And when it forms a dimer (ii) with the cross-linked structure XL (single bond) as a linking group, it is represented by the following formula (ii-2).
Figure JPOXMLDOC01-appb-C000154
 高分子化合物(II)における末端構造ECは、水素または炭素数6~30の一価のアリール環またはヘテロアリール環であり、好ましくは、水素または炭素数6~18の一価のアリール環である。 The terminal structure EC in the polymer compound (II) is hydrogen or a monovalent aryl ring or heteroaryl ring having 6 to 30 carbon atoms, preferably hydrogen or a monovalent aryl ring having 6 to 18 carbon atoms .
 高分子化合物(II)および2量体(ii)における架橋構造XLは、単結合または炭素数6~30の二価のアリール環またはヘテロアリール環であり、好ましくは、単結合または炭素数6~18の二価のアリール環であり、より好ましくは、単結合または炭素数6~12の二価のアリール環である。 The crosslinked structure XL in the polymer compound (II) and the dimer (ii) is a single bond or a divalent aryl ring or heteroaryl ring having 6 to 30 carbon atoms, preferably a single bond or 6 to carbon atoms It is an 18 divalent aryl ring, more preferably a single bond or a divalent aryl ring having 6 to 12 carbon atoms.
 構造ECおよびXLにおける具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、ベンゾフルオレン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。また、フルオレン環やベンゾフルオレン環には、フルオレン環やベンゾフルオレン環がスピロ結合した構造も含まれる。 Specific “aryl rings” in the structures EC and XL include a benzene ring which is a single ring system, a biphenyl ring which is a bicyclic system, a naphthalene ring which is a fused bicyclic system, and a terphenyl ring which is a three-ring system -Terphenyl, o-terphenyl, p-terphenyl), fused tricyclic ring system, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, benzo ring Examples thereof include a fluorene ring, a condensed pentacyclic ring system perylene ring, and a pentacene ring. The fluorene ring and the benzofluorene ring also include structures in which a fluorene ring and a benzofluorene ring are spiro-bonded.
 構造ECおよびXLにおける具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環(無置換、メチルなどのアルキル置換またはフェニルなどのアリール置換)、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ナフトベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ナフトベンゾチオフェン環、ベンゾホスホール環、ジベンゾホスホール環、ベンゾホスホールオキシド環、ジベンゾホスホールオキシド環、フラザン環、オキサジアゾール環、チアントレン環などがあげられる。 Specific “heteroaryl rings” in the structures EC and XL include, for example, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring (unsubstituted, alkyl-substituted such as methyl, phenyl and the like) Aryl substituted), oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole Ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carba Ring, acridine ring, phenoxathiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolizine ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, naphthobenzofuran ring, thiophene ring, benzothiophene ring, Dibenzothiophene ring, naphthobenzothiophene ring, benzophosphoro ring, dibenzophosphoro ring, benzophosphoro ring, dibenzophosphoro ring, furazan ring, oxadiazole ring, thianthrene ring and the like.
 高分子化合物(I)および(II)および2量体(i)および(ii)については、Scheme(1)~(4)の合成方法のように、A環(a環)-Z-D環(d環)連結構造およびB環(b環)-Z-C環(c環)連結構造を合成した後に、ホウ素を導入する方法、または、式(1)の構造のハロゲン化アリール誘導体とアリールボロン酸誘導体を出発原料として、またはハロゲン化アリールボロン酸誘導体とハロゲン化アリール誘導体とアリールボロン酸誘導体を出発物質として、鈴木・宮浦カップリング、熊田・玉尾・コリューカップリング、根岸カップリング、ハロゲン化反応、またはホウ酸化反応を適宜組み合わせて合成することができる。また、高分子化合物(III)については、公知の方法を用いて、式(1)の構造の(メタ)アクリレート誘導体、メタ(アクリルアミド)誘導体、エポキシ誘導体、オキセタン誘導体、ノルボルネン誘導体、ジシクロペンタジエン誘導体またはインデン誘導体を出発原料として、ラジカル重合、カチオン重合、アニオン重合、または開環メタセシス重合などを用いて合成することができる。 As for the macromolecular compounds (I) and (II) and the dimers (i) and (ii), the A ring (a ring) -Z 1 -D is used as in the synthesis method of Schemes (1) to (4). A method of introducing boron after synthesizing a ring (d ring) linked structure and a B ring (b ring) -Z 2 -C ring (c ring) linked structure, or a halogenated aryl derivative of the structure of formula (1) Suzuki-Miyaura coupling, Kumada-Tamao-Corrie coupling, Negishi cup, starting from starting materials with halogenated arylboronic acid derivatives and halogenated arylboronic acid derivatives with halogenated aryl derivatives and arylboronic acid derivatives The ring, the halogenation reaction, or the boroxidation reaction can be appropriately combined and synthesized. In addition, for the polymer compound (III), a (meth) acrylate derivative of the structure of the formula (1), a meta (acrylamide) derivative, an epoxy derivative, an oxetane derivative, a norbornene derivative, a dicyclopentadiene derivative using a known method Alternatively, they can be synthesized using radical polymerization, cationic polymerization, anionic polymerization, ring-opening metathesis polymerization, etc., using an indene derivative as a starting material.
 上述したカップリング反応について、鈴木-宮浦カップリングにおけるハロゲン化物とボロン酸誘導体は、その反応性官能基は適宜入れ替わってもよく、熊田・玉尾・コリューカップリングや根岸カップリングにおいても同様にそれらの反応に関わる官能基は入れ替わっていてもよい。またGrignard試薬に変換する場合には金属マグネシウムとイソプロピルグリニア試薬は適宜入れ替えてもよい。ボロン酸エステルはそのまま使用してもよく、あるいは酸で加水分解してボロン酸として使用してもよい。ボロン酸エステルとして用いる場合には、そのエステル部分のアルキル基は例示した以外のアルキル基も用いることができる。 Regarding the above-mentioned coupling reaction, the reactive functional group of the halide and boronic acid derivative in Suzuki-Miyaura coupling may be replaced as appropriate, and the same applies to Kumada-Tamao-Coliue coupling and Negishi coupling. The functional groups involved in these reactions may be interchanged. Moreover, when converting into a Grignard reagent, you may replace metal magnesium and an isopropyl Grignard reagent suitably. The boronic acid ester may be used as it is or may be hydrolyzed with an acid and used as a boronic acid. When used as a boronic acid ester, alkyl groups other than those exemplified can also be used as the alkyl group of the ester moiety.
 カップリング反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0):Pd(t-BuP)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II):Pd(dppf)Cl、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(1:1):Pd(dppf)Cl・CHCl、PdCl{P(t-Bu)-(p-NMe-Ph)}:(A-taPhos)PdCl、パラジウム ビス(ジベンジリデン)、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、PdCl[P(t-Bu)-(p-NMe-Ph)]:(A-taPhos)PdCl(Pd-132:商標;ジョンソン・マッセイ社製)などがあげられる。 Specific examples of the palladium catalyst used in the coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2, palladium (II): Pd (OAc) 2, tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3, tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 ( dba) 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri t-butylphosphino) palladium (0): Pd (t-Bu 3 P) 2 , [1 , 1′-Bis (diphenylphosphino) ferrocene] dichloropalladium (II ): Pd (dppf) Cl 2 , [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (1: 1): Pd (dppf) Cl 2 · CH 2 Cl 2 , PdCl 2 {P (t-Bu) 2 - (p-NMe 2 -Ph)} 2: (A- ta Phos) 2 PdCl 2, palladium bis (dibenzylideneacetone), [1,3-bis (diphenylphosphino) propane] Nickel (II) dichloride, PdCl 2 [P (t-Bu) 2- (p-NMe 2 -Ph)] 2 : (A- ta Phos) 2 PdCl 2 (Pd-132: trademark; manufactured by Johnson Matthey) Etc.
 また、カップリング反応を促進させるため、場合により上記パラジウム触媒にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルなどがあげられる。 Moreover, in order to accelerate a coupling reaction, a phosphine compound may be optionally added to the palladium catalyst. Specific examples of the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphos) Fino) ferrocene, 2,2'-bis (di-t-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2 '-(di-t-butylphosphino) -1,1'-binaphthyl, or 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl and the like.
 カップリング反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、酢酸カリウム、リン酸三カリウム、またはフッ化カリウムなどがあげられる。 Specific examples of the base used in the coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogencarbonate, sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, Examples include potassium acetate, tripotassium phosphate, and potassium fluoride.
 塩基は水溶液として加え2相系で反応させてもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。 The base may be added as an aqueous solution and reacted in a two-phase system. When reacting in a two-phase system, a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
 また、高分子化合物(III)の合成に用いられるラジカル重合、カチオン重合またはアニオン重合可能な重合性基は、(メタ)アクリル基、アリル基、ビニル基、エポキシド基およびオキセタンなどがあげられる。ラジカル重合、カチオン重合およびアニオン重合の重合開始剤は、ラジカル重合の場合はラジカル発生剤が好ましく用いられ、カチオン重合およびアニオン重合の場合は酸発生剤および塩基発生剤が好ましく用いられる。重合開始剤は、1種の化合物であっても、2種以上の化合物の混合物であってもよい。 Further, as the radically polymerizable, cationically polymerizable or anionically polymerizable polymerizable group used for the synthesis of the polymer compound (III), there may be mentioned (meth) acrylic group, allyl group, vinyl group, epoxide group, oxetane and the like. As the polymerization initiator for radical polymerization, cationic polymerization and anionic polymerization, a radical generator is preferably used in the case of radical polymerization, and an acid generator and a base generator are preferably used in the case of cationic polymerization and anionic polymerization. The polymerization initiator may be one type of compound or a mixture of two or more types of compounds.
 また、高分子化合物(III)の合成に用いられる開環メタセシス重合可能な重合性基は、環状アルケン構造および環状アルキン構造があげられ、具体的には、ノルボルネン構造、ジシクロペンタジエン構造、インデン構造およびシクロペンテン構造などが挙げられる。開環メタセシス重合に用いられる触媒としては、ルテニウム、モリブデン、および、タングステンなどの錯体が用いられ、例えば、グラブス触媒などが挙げられる。 Further, the ring-opened metathesis polymerizable polymerizable group used for the synthesis of the polymer compound (III) includes a cyclic alkene structure and a cyclic alkyne structure, and specifically, a norbornene structure, a dicyclopentadiene structure, an indene structure And cyclopentene structures. As a catalyst used for ring-opening metathesis polymerization, complexes such as ruthenium, molybdenum, and tungsten are used, and examples thereof include Grubbs catalyst.
 また、上記カップリング反応や重合反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、アニソール、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、t-ブチルアルコール、シクロペンチルメチルエーテルまたはイソプロピルアルコールなどがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Further, specific examples of the solvent used in the coupling reaction and the polymerization reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, anisole, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, Examples thereof include diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, ethanol, t-butyl alcohol, cyclopentyl methyl ether and isopropyl alcohol. These solvents can be selected appropriately, and may be used alone or as a mixed solvent.
 高分子化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、一段階で合成する際、重合性基を有する式(1)の部分構造化合物および末端構造(EC)を有する化合物を反応容器に加えた状態で反応を行うことで目的物を得る。また、多段階で合成する際、モノマーユニット(MU)を目的の分子量まで重合した後、末端構造(EC)を有する化合物を加えて反応させることで目的物を得る。 When producing a polymer compound, it may be produced in one step or may be produced through multiple steps. Alternatively, it may be carried out by a batch polymerization method in which the raw materials are all put in the reaction vessel and then the reaction is started, or may be carried out by the drop polymerization method in which the raw materials are dropped and added. It may carry out by the precipitation polymerization method which precipitates with it, and it can synthesize | combine combining these suitably. For example, when synthesizing in one step, the desired product is obtained by conducting the reaction in a state where the partial structural compound of the formula (1) having a polymerizable group and the compound having a terminal structure (EC) are added to a reaction vessel. In addition, when synthesizing in multiple steps, after the monomer unit (MU) is polymerized to a target molecular weight, a compound having a terminal structure (EC) is added and reacted to obtain a target product.
 また、モノマーユニット(MU)の重合性基を選べばポリマーの一次構造を制御することができる。例えば、Scheme(5)の1~3に示すように、ランダムな一次構造を有するポリマー(Scheme(5)の1)、規則的な一次構造を有するポリマー(Scheme(5)の2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。 Also, the primary structure of the polymer can be controlled by selecting the polymerizable group of the monomer unit (MU). For example, as shown in Scheme (1) to (3), a polymer having a random primary structure (1 in Scheme (5)), a polymer having a regular primary structure (2 and 3 in Scheme (5)), etc. Can be synthesized, and can be used in appropriate combination according to the object.
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
 特に、2量体(i)および(ii)において、2つの式(1)の部分構造および連結基(XL)のそれぞれが形成する双極子モーメントが打ち消し合う方が好ましい。この場合、2量体(i)および(ii)は高い対称性を有する。 In particular, in the dimers (i) and (ii), it is preferable that the dipole moment formed by each of the partial structure of the two formulas (1) and the linking group (XL) cancel each other. In this case, dimers (i) and (ii) have high symmetry.
3.有機デバイス
 本発明に係る化合物およびその高分子化合物は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などが挙げられる。
3. Organic Device The compound according to the present invention and the polymer compound thereof can be used as a material for an organic device. As an organic device, an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell etc. are mentioned, for example.
3-1.有機電界発光素子
 本発明に係る化合物およびその高分子化合物は、例えば、有機電界発光素子の材料として用いることができる。以下に、本実施形態に係る有機EL素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機EL素子を示す概略断面図である。
3-1. Organic Electroluminescent Device The compound according to the present invention and the polymer compound thereof can be used, for example, as a material of an organic electroluminescent device. Below, the organic EL element which concerns on this embodiment is demonstrated in detail based on drawing. FIG. 1 is a schematic cross-sectional view showing the organic EL element according to the present embodiment.
<有機電界発光素子の構造>
 図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
<Structure of Organic Electroluminescent Device>
The organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103. Provided on the light emitting layer 105 provided on the hole transport layer 104, the electron transport layer 106 provided on the light emitting layer 105, and the electron transport layer 106 provided on the light emitting layer 105. And the cathode 108 provided on the electron injection layer 107.
 なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。 Note that the organic electroluminescent device 100 is, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer in reverse manufacturing order. An electron transport layer 106 provided on the light emitting layer 107, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, and a hole transport layer 104; The hole injection layer 103 provided thereover and the anode 102 provided on the hole injection layer 103 may be provided.
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。 Not all the layers described above are required, and the minimum structural unit is configured of the anode 102, the light emitting layer 105 and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, the electron injection The layer 107 is an optional layer. Each of the layers may be a single layer or a plurality of layers.
 有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。 As an aspect of the layer which comprises an organic electroluminescent element, other than the structure aspect of "substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode" mentioned above, "Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode "," substrate / Anode / light emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / hole transport layer / light emitting layer / electron injection layer / cathode "," substrate / anode / hole transport layer / light emitting layer / Electron Transport Layer / Cathode, Substrate / Anode / Hole Injection Layer / Light Emitting Layer / Electron Injection Layer / Cathode, Substrate / Anode / Hole Injection Layer / Light Emitting Layer / Electron Okuso / cathode "," substrate / anode / light emitting layer / electron transporting layer / cathode "may be configured aspect of the" substrate / anode / light emitting layer / electron injection layer / cathode ".
<有機電界発光素子における基板>
 基板101は、有機電界発光素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<Substrate in Organic Electroluminescent Device>
The substrate 101 is a support of the organic electroluminescent device 100, and usually, quartz, glass, metal, plastic or the like is used. The substrate 101 is formed in a plate shape, a film shape, or a sheet shape according to the purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used. Among them, a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate or polysulfone are preferable. In the case of a glass substrate, soda lime glass, alkali-free glass, or the like may be used, and the thickness may be sufficient to maintain mechanical strength. The upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less. With regard to the material of glass, alkali-free glass is preferable because less elution ions from glass is preferable, but soda lime glass with a barrier coat such as SiO 2 may also be commercially available. it can. The substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance the gas barrier properties, and a plate, a film or a sheet made of a synthetic resin having particularly low gas barrier properties is used as the substrate 101 When using it, it is preferable to provide a gas barrier film.
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
<Anode in Organic Electroluminescent Device>
The anode 102 plays a role of injecting holes into the light emitting layer 105. In the case where the hole injection layer 103 and / or the hole transport layer 104 is provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 via these. .
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。 Materials forming the anode 102 include inorganic compounds and organic compounds. As the inorganic compound, for example, metal (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxide (oxide of indium, oxide of tin, indium-tin oxide (ITO), indium-zinc oxide Substances (IZO etc.), metal halides (copper iodide etc.), copper sulfide, carbon black, ITO glass, Nesa glass etc. Examples of the organic compound include polythiophenes such as poly (3-methylthiophene), and conductive polymers such as polypyrrole and polyaniline. In addition, it can select suitably from the substances used as an anode of an organic electroluminescent element, and can use it.
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。 The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, and the resistance of the transparent electrode is not limited in view of the power consumption of the light emitting element. For example, an ITO substrate of 300 Ω / sq or less functions as a device electrode, but at present it is also possible to supply a substrate of about 10 Ω / sq, for example 100 to 5 Ω / sq, preferably 50 to 5 Ω It is particularly desirable to use a low resistance product of / □. The thickness of ITO can be arbitrarily selected according to the resistance value, but usually it is often used in the range of 50 to 300 nm.
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
<Hole Injection Layer in Organic Electroluminescent Device, Hole Transport Layer>
The hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or into the hole transport layer 104. The hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 via the hole injection layer 103 to the light emitting layer 105. The hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or two or more hole injecting / transporting materials, or a mixture of a hole injecting / transporting material and a polymer binder. Be done. In addition, an inorganic salt such as iron (III) chloride may be added to the hole injecting / transporting material to form a layer.
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。 As the hole injecting / transporting substance, it is necessary to efficiently inject / transport holes from the positive electrode between the electrodes given an electric field, the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For this purpose, it is preferable that the substance has a small ionization potential, a large hole mobility, and a high stability, and is a substance which hardly generates an impurity serving as a trap during production and use.
 正孔注入層103および正孔輸送層104を形成する材料としては、本発明に係る化合物およびその高分子化合物を使用することができる。また、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。 As materials for forming the hole injection layer 103 and the hole transport layer 104, the compound according to the present invention and the polymer compound thereof can be used. Among photoconductive materials, compounds conventionally used as charge transport materials for holes, p-type semiconductors, and known compounds used for hole injection layer and hole transport layer of organic electroluminescent device And any compound can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole and the like), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary) Polymer having amino in the main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-Diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl-N, N'-diphenyl-4,4'-diphenyl-1,1'-diamine, 4, N 4 '- diphenyl -N 4, N 4' - bis (9-phenyl -9H- carbazol-3-yl) - [1,1'-biphenyl] -4,4'-diamine, N 4, N 4 , N 4 ′ , N 4 ′ -tetra [1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4′-diamine, 4,4 ′, 4 ′ ′-tris (Triphenylamine derivatives such as 3-methylphenyl (phenyl) amino) triphenylamine, starburst amine derivatives, stilbene derivatives, phthalocyanine derivatives (metal free, copper phthalocyanine etc), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives And thiophene derivatives, oxadiazole derivatives, quinoxaline derivatives (eg, 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7, 0,11-Hexacarbonitrile etc.), heterocyclic compounds such as porphyrin derivatives, polysilane etc. In the polymer system, polycarbonates or styrene derivatives having the above-mentioned monomer in the side chain, polyvinylcarbazole, polysilane etc. It is not particularly limited as long as it is a compound capable of forming a thin film necessary for manufacturing a device, injecting holes from the anode, and transporting holes.
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005-167175号公報)。 It is also known that the conductivity of the organic semiconductor is strongly affected by its doping. Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property. Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donors. (For example, the documents “M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (22), 3202-3204 (1998)) and the documents“ J. Blochwwitz, M. See Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998)). These generate so-called holes by the electron transfer process in the electron donating base substance (hole transporting substance). Depending on the number of holes and the mobility, the conductivity of the base material changes considerably. As a matrix material having a hole transport property, for example, benzidine derivatives (TPD etc.) or starburst amine derivatives (TDATA etc.) or specific metal phthalocyanines (especially zinc phthalocyanine (ZnPc) etc.) are known (eg, zinc phthalocyanine (ZnPc)). JP 2005-167175 A).
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。本発明では、発光層用の材料として、本発明に係る化合物およびその高分子化合物を用いることができる。
<Light emitting layer in organic electroluminescent device>
The light emitting layer 105 is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied. The material for forming the light emitting layer 105 may be a compound (light emitting compound) that emits light by being excited by the recombination of holes and electrons, and can form a stable thin film shape, and a solid state Preferably, they are compounds that exhibit strong luminescence (fluorescence) efficiency. In the present invention, the compound according to the present invention and the polymer compound thereof can be used as the material for the light emitting layer.
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。 The light emitting layer may be a single layer or a plurality of layers, and is formed of the material for the light emitting layer (host material, dopant material). Each of the host material and the dopant material may be of one type or a combination of two or more. The dopant material may be contained in the entire host material, partially contained or may be contained. As a doping method, it can be formed by co-evaporation with a host material, but it may be simultaneously vapor-deposited after being previously mixed with the host material.
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50~99.999重量%であり、より好ましくは80~99.95重量%であり、さらに好ましくは90~99.9重量%である。本発明に係る化合物およびその高分子化合物はホスト材料としても使用することもできる。 The amount of host material used varies depending on the type of host material, and may be determined in accordance with the characteristics of the host material. The standard of the amount of host material used is preferably 50 to 99.999% by weight of the entire light emitting layer material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight It is. The compound according to the present invention and the polymer compound thereof can also be used as a host material.
 ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~50重量%であり、より好ましくは0.05~20重量%であり、さらに好ましくは0.1~10重量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。本発明に係る化合物およびその高分子化合物はドーパント材料としても使用することもできる。 The amount of dopant material used varies depending on the type of dopant material, and may be determined in accordance with the characteristics of the dopant material. The standard for the amount of dopant used is preferably 0.001 to 50% by weight, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight of the entire light emitting layer material. is there. The above range is preferable in that, for example, the concentration quenching phenomenon can be prevented. The compounds according to the invention and their macromolecular compounds can also be used as dopant materials.
 一方、熱活性化遅延蛍光ドーパント材料を用いた有機電界発光素子においては、ドーパント材料の使用量は低濃度である方が濃度消光現象を防止できるという点で好ましいが、ドーパント材料の使用量が高濃度である方が熱活性化遅延蛍光機構の効率の点からは好ましい。さらには、熱活性化遅延蛍光アシストドーパント材料を用いた有機電界発光素子においては、アシストドーパント材料の熱活性化遅延蛍光機構の効率の点からは、アシストドーパント材料の使用量に比べてドーパント材料の使用量が低濃度である方が好ましい。 On the other hand, in an organic electroluminescent device using a thermally activated delayed fluorescence dopant material, the amount of the dopant material used is preferably low, because the concentration quenching phenomenon can be prevented, but the amount of the dopant material used is high The concentration is preferable in terms of the efficiency of the heat activation delayed fluorescence mechanism. Furthermore, in an organic electroluminescent device using a thermally activated delayed fluorescence assisted dopant material, from the viewpoint of the efficiency of the thermally activated delayed fluorescence mechanism of the assisted dopant material, compared to the amount of the assisted dopant material used, It is preferable that the amount used be low.
 アシストドーパント材料が使用される場合における、ホスト材料、アシストドーパント材料およびドーパント材料の使用量の目安は、それぞれ、発光層用材料全体の40~99.999重量%、59~1重量%および20~0.001重量%であり、好ましくは、それぞれ、60~99.99重量、39~5重量%および10~0.01重量%であり、より好ましくは、70~99.95重量、29~10重量%および5~0.05重量%である。本発明に係る化合物およびその高分子化合物はアシストドーパント材料としても使用することもできる。 In the case where an assist dopant material is used, the indication of the usage of the host material, assist dopant material and dopant material is 40 to 99.999% by weight, 59 to 1% by weight and 20 to 20% by weight of the entire light emitting layer material. It is 0.001 wt%, preferably 60 to 99.99 wt%, 39 to 5 wt% and 10 to 0.01 wt%, respectively, more preferably 70 to 99.95 wt%, 29 to 10 % By weight and 5 to 0.05% by weight. The compound according to the present invention and the polymer compound thereof can also be used as an assist dopant material.
 本発明に係る化合物およびその高分子化合物と併用することができるホスト材料としては、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、フルオレン誘導体、ベンゾフルオレン誘導体などが挙げられる。 As host materials that can be used in combination with the compound according to the present invention and the polymer compound thereof, condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, bisstyrylanthracene derivatives and distyrylbenzene derivatives, etc. Bisstyryl derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, fluorene derivatives, benzofluorene derivatives and the like can be mentioned.
 また、本発明に係る化合物およびその高分子化合物と併用することができるドーパント材料としては、特に限定されず、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。 Further, the dopant material to be used in combination with the compound according to the present invention and the polymer compound thereof is not particularly limited, and known compounds can be used, and among various materials depending on the desired emission color It can be selected. Specifically, for example, fused ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopyrene, dibenzopyrene, rubrene and chrysene, benzoxazole derivatives, benzothiazole derivatives, benzoimidazole derivatives, benzotriazole derivatives, oxazoles Derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenyl butadiene derivatives, cyclopentadiene derivatives, bis styryl anthracene derivatives and bis styryl derivatives such as distyryl benzene derivatives (Japanese Patent Application Laid-Open No. 1-245087), Bis-styrylarylene derivative (Japanese Patent Application Laid-open No. 2-24727) Gazette), diazaindacene derivative, furan derivative, benzofuran derivative, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, phenylisobenzofuran, etc. Isobenzofuran derivative, dibenzofuran derivative, 7-dialkylamino coumarin derivative, 7-piperidino coumarin derivative, 7-hydroxy coumarin derivative, 7-methoxy coumarin derivative, 7-acetoxy coumarin derivative, 3-benzothiazolyl coumarin derivative, 3 -Coumarin derivatives such as -benzoimidazolyl coumarin derivatives, 3-benzoxazolyl coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, polymethine derivatives, Ninine derivatives, oxobenzoanthracene derivatives, xanthene derivatives, rhodamine derivatives, fluorescein derivatives, pyrilium derivatives, carbostyril derivatives, acridine derivatives, oxazine derivatives, phenylene oxide derivatives, quinacridone derivatives, quinazoline derivatives, pyrrolopyridine derivatives, furopyridine derivatives, 1, 2,5-thiadiazolopyrene derivatives, pyrromethene derivatives, perinone derivatives, pyrrolopyrrole derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives, acridone derivatives, deazaflavin derivatives, fluorene derivatives, benzofluorene derivatives and the like.
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。 Examples of blue to blue-green dopant materials include, for example, naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perphenylene, fluorene, indene, chrysene and the like, and aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complexes such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene, etc. Ring compounds and derivatives thereof, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiasia Azole derivatives such as carbazole, carbazole, oxazole, oxadiazole and triazole and metal complexes thereof and N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1, Aromatic amine derivatives represented by 1'-diamine may, for example, be mentioned.
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Examples of green to yellow dopant materials include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, naphthacene derivatives such as rubrene, etc. Preferred examples of the blue-green dopant material include compounds introduced with a substituent capable of achieving longer wavelength such as aryl, heteroaryl, arylvinyl, amino and cyano.
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Furthermore, as an orange to red dopant material, naphthalimide derivatives such as bis (diisopropylphenyl) perylene tetracarboximide, perinone derivatives, rare earth complexes such as Eu complex having acetylacetone or benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and analogs thereof, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridones Derivative, phenoxazine derivative, oxazine derivative, quinazoline derivative, pyrrolopyridine derivative, squarylium derivative, biolanthrone derivative, phenazine derivative, fenoxazo Derivatives, thiadiazolopyrene derivatives and the like, and further, to the compounds exemplified as the above blue to blue green and green to yellow dopant materials, substituents capable of increasing the wavelength of aryl, heteroaryl, aryl vinyl, amino, cyano etc. The introduced compounds are also mentioned as suitable examples.
 その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。 In addition, as a dopant, it can be used suitably selected from the chemical compounds etc. which are described in Chemical Industry 2004 June issue page 13 and the reference etc. which were given to it.
 上述するドーパント材料の中でも、特にスチルベン構造を有するアミン、ペリレン誘導体、ボラン誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体またはピレン誘導体が好ましい。 Among the above-mentioned dopant materials, amines having a stilbene structure, perylene derivatives, borane derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives or pyrene derivatives are particularly preferable.
 スチルベン構造を有するアミンは、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000156
 当該式中、Arは炭素数6~30のアリールに由来するm価の基であり、ArおよびArは、それぞれ独立して炭素数6~30のアリールであるが、Ar~Arの少なくとも1つはスチルベン構造を有し、Ar~Arは置換されていてもよく、そして、mは1~4の整数である。
An amine having a stilbene structure is represented by, for example, the following formula.
Figure JPOXMLDOC01-appb-C000156
In the formula, Ar 1 is an m-valent group derived from aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 are each independently aryl having 6 to 30 carbon atoms, but Ar 1 to Ar At least one of 3 has a stilbene structure, Ar 1 to Ar 3 may be substituted, and m is an integer of 1 to 4.
 スチルベン構造を有するアミンは、下記式で表されるジアミノスチルベンがより好ましい。
Figure JPOXMLDOC01-appb-C000157
 当該式中、ArおよびArは、それぞれ独立して炭素数6~30のアリールであり、ArおよびArは置換されていてもよい。
The amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
Figure JPOXMLDOC01-appb-C000157
In the formula, Ar 2 and Ar 3 are each independently an aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、スチルベン、ジスチリルベンゼン、ジスチリルビフェニル、ジスチリルフルオレンなどが挙げられる。 Specific examples of the aryl having 6 to 30 carbon atoms are benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, stilbene, distyrylbenzene, distyrylbiphenyl, distyryl. And fluorene.
 スチルベン構造を有するアミンの具体例は、N,N,N’,N’-テトラ(4-ビフェニリル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4,4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどが挙げられる。
 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたスチルベン構造を有するアミンを用いてもよい。
Specific examples of amines having stilbene structure are N, N, N ', N'-tetra (4-biphenylyl) -4,4'-diaminostilbene, N, N, N', N'-tetra (1-naphthyl) ) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (2-naphthyl) -4,4′-diaminostilbene, N, N′-di (2-naphthyl) -N, N '-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthryl) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis (Diphenylamino) styryl] -biphenyl, 1,4-bis [4'-bis (diphenylamino) styryl] -benzene, 2,7-bis [4'-bis (diphenylamino) styryl] -9,9-dimethyl Fluorene, 4,4'-bis (9-ethyl-3-cal) And bazovinylene) -biphenyl, 4,4'-bis (9-phenyl-3-carbazovinylene) -biphenyl and the like.
Further, amines having a stilbene structure described in JP-A-2003-349056, JP-A-2001-307884, etc. may be used.
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
Examples of perylene derivatives include, for example, 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9'-anthryl) -8,11-di (t-butyl) perylene, 3,3'-bis (8,11-di (t-butyl) perylenyl) and the like.
Further, JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, and JP-A-2001-217077 may be used.
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
Examples of borane derivatives include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9'-anthryl) dimesitylborylnaphthalene, 4- (10 ') -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
In addition, borane derivatives described in WO 2000/40586 and the like may be used.
 芳香族アミン誘導体は、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000158
 当該式中、Arは炭素数6~30のアリールに由来するn価の基であり、ArおよびArはそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは1~4の整数である。
The aromatic amine derivative is represented, for example, by the following formula.
Figure JPOXMLDOC01-appb-C000158
In the formula, Ar 4 is an n-valent group derived from aryl having 6 to 30 carbon atoms, Ar 5 and Ar 6 are each independently aryl having 6 to 30 carbon atoms, and Ar 4 to Ar 6 are It may be substituted, and n is an integer of 1 to 4.
 特に、Arがアントラセン、クリセン、フルオレン、ベンゾフルオレンまたはピレンに由来する2価の基であり、ArおよびArがそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは2である、芳香族アミン誘導体がより好ましい。 In particular, Ar 4 is a divalent group derived from anthracene, chrysene, fluorene, benzofluorene or pyrene, Ar 5 and Ar 6 are each independently aryl having 6 to 30 carbon atoms, and Ar 4 to Ar 6 Is optionally substituted, and n is 2 and aromatic amine derivatives are more preferred.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、ペンタセンなどが挙げられる。 Specific examples of the aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, pentacene and the like.
 芳香族アミン誘導体としては、クリセン系としては、例えば、N,N,N’,N’-テトラフェニルクリセン-6,12-ジアミン、N,N,N’,N’-テトラ(p-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(m-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(ナフタレン-2-イル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)クリセン-6,12-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)クリセン-6,12-ジアミンなどが挙げられる。 As an aromatic amine derivative, as a chrysene type, for example, N, N, N ', N'-tetraphenyl chrysene-6,12-diamine, N, N, N', N'-tetra (p-tolyl) Chrysene-6,12-diamine, N, N, N ', N'-tetra (m-tolyl) chrysene-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysene -6,12-diamine, N, N, N ', N'-tetra (naphthalen-2-yl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl ) Chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis ( 4-ethylphenyl) chrysene-6 12-diamine, N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-t-butyl And phenyl) chrysene-6, 12-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) chrysene-6, 12-diamine and the like.
 また、ピレン系としては、例えば、N,N,N’,N’-テトラフェニルピレン-1,6-ジアミン、N,N,N’,N’-テトラ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラ(m-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)ピレン-1,6-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)-3,8-ジフェニルピレン-1,6-ジアミン、N,N,N,N-テトラフェニルピレン-1,8-ジアミン、N,N’-ビス(ビフェニル-4-イル)-N,N’-ジフェニルピレン-1,8-ジアミン、N,N-ジフェニル-N,N-ビス-(4-トリメチルシラニル-フェニル)-1H,8H-ピレン-1,6-ジアミンなどが挙げられる。 Moreover, as pyrene, for example, N, N, N ', N'-tetraphenylpyrene-1,6-diamine, N, N, N', N'-tetra (p-tolyl) pyrene-1,6 -Diamine, N, N, N ', N'-tetra (m-tolyl) pyrene-1,6-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) pyrene-1,6- Diamines, N, N, N ', N'-tetrakis (3,4-dimethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) pyrene-1 , 6-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) ) Pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-isopropyl) Nyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-t-butylphenyl) pyrene-1,6-diamine, N, N'-bis (4-isopropylphenyl) ) -N, N'-di (p-tolyl) pyrene-1,6-diamine, N, N, N ', N'-tetrakis (3,4-dimethylphenyl) -3,8-diphenylpyrene-1, 6-diamine, N, N, N, N-tetraphenylpyrene-1,8-diamine, N, N'-bis (biphenyl-4-yl) -N, N'-diphenylpyrene-1,8-diamine, N 1 , N 6 -diphenyl-N 1 , N 6 -bis- (4-trimethylsilanyl-phenyl) -1H, 8H-pyrene- 1 , 6 -diamine and the like can be mentioned.
 また、アントラセン系としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(m-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(m-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセンなどが挙げられる。 Moreover, as an anthracene type, for example, N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N ', N'-tetra (p-tolyl) anthracene-9,10-diamine N, N, N ', N'-tetra (m-tolyl) anthracene-9, 10-diamine, N, N, N ', N'- tetrakis (4-isopropylphenyl) anthracene-9, 10- diamine, N, N'-diphenyl-N, N'-di (p-tolyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (m-tolyl) anthracene-9,10- Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthra -9,10-diamine, N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-bis (4 -T-Butylphenyl) anthracene-9,10-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6- Di-t-butyl-N, N, N ', N'-tetra (p-tolyl) anthracene-9,10-diamine, 2,6-di-t-butyl-N, N'-diphenyl-N, N '-Bis (4-isopropylphenyl) anthracene-9,10-diamine, 2,6-di-t-butyl-N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl ) Anthracene-9,10-dia , 2,6-dicyclohexyl-N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6-dicyclohexyl-N, N ' -Bis (4-isopropylphenyl) -N, N'-bis (4-t-butylphenyl) anthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, 9,10- Bis (4-di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p -Tolylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino And -9- (6-diphenylamino-2-naphthyl) anthracene.
 また、他には、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニルなどがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
In addition to the above, [4- (4-diphenylamino-phenyl) naphthalen-1-yl] -diphenylamine, [6- (4-diphenylamino-phenyl) naphthalen-2-yl] -diphenylamine, 4,4 ′ -Bis [4-diphenylaminonaphthalen-1-yl] biphenyl, 4,4'-bis [6-diphenylaminonaphthalen-2-yl] biphenyl, 4,4 "-bis [4-diphenylaminonaphthalen-1-yl] ] -P-terphenyl, 4,4 "-bis [6-diphenylaminonaphthalen-2-yl] -p-terphenyl and the like.
In addition, aromatic amine derivatives described in JP-A-2006-156888 may be used.
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
Examples of coumarin derivatives include coumarin-6, coumarin-334 and the like.
In addition, coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, and JP-A-6-298758 may be used.
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000159
 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
Examples of pyran derivatives include the following DCM and DCJTB.
Figure JPOXMLDOC01-appb-C000159
In addition, Japanese Patent Application Laid-Open Nos. 2005-126399, 2005-097283, 2002-234892, 2001-220577, 2001-081090, and 2001-052869. You may use the pyran derivative described in etc.
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
<Electron Injection Layer in Organic Electroluminescent Device, Electron Transport Layer>
The electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or into the electron transport layer 106. The electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 via the electron injection layer 107 to the light emitting layer 105. The electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials, or a mixture of an electron transport / injection material and a polymer binder.
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。 The electron injecting / transporting layer is a layer that injects electrons from the cathode and is responsible for transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are efficiently transported. For this purpose, it is preferable that the substance has a large electron affinity, a large electron mobility, and is excellent in stability and in which impurities serving as traps are less likely to be generated during production and use. However, considering the transport balance of holes and electrons, the electron transport capacity is so large when it mainly plays a role of being able to efficiently block the flow of holes from the anode to the cathode side without recombination. Even if it is not high, the effect of improving the light emission efficiency is equal to that of a material having a high electron transport capacity. Therefore, the electron injecting / transporting layer in the present embodiment may also include the function of a layer capable of efficiently blocking the movement of holes.
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、本発明に係る化合物およびその高分子化合物を使用することができる。また、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。 As a material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107, the compound according to the present invention and the polymer compound thereof can be used. The photoconductive material can be optionally selected from compounds conventionally used conventionally as an electron transfer compound, and known compounds used in the electron injection layer and the electron transport layer of the organic electroluminescent device. .
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香環もしくは複素芳香環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 As materials used for the electron transport layer or the electron injection layer, compounds comprising an aromatic ring or heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus, pyrrole derivatives And at least one selected from a fused ring derivative thereof and a metal complex having an electron accepting nitrogen. Specifically, fused ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives. Examples of metal complexes having an electron accepting nitrogen include hydroxyazole complexes such as hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes. These materials may be used alone or in combination with different materials.
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。 Further, as specific examples of other electron transfer compounds, pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles Derivatives (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene etc.), thiophene derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-) Triazole etc.), thiadiazole derivative, metal complex of oxine derivative, quinolinol metal complex, quinoxaline derivative, polymer of quinoxaline derivative, benzazole compound, gallium complex, pyrazole derivative, perfluorinated fluoride Nylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives (such as 2,2′-bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene), imidazopyridine derivatives, borane derivatives, benzo Imidazole derivatives (such as tris (N-phenylbenzoimidazol-2-yl) benzene, benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, oligopyridine derivatives such as terpyridine, bipyridine derivatives, terpyridine derivatives (1,3-bis (4 '-(2,2': 6'2 ''-terpyridinyl) benzene and the like, naphthyridine derivatives (such as bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenyl phosphine oxide), aldazine Derivatives, carbazole derivatives, Lumpur derivatives, phosphorus oxide derivatives, such as bis-styryl derivatives.
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。 In addition, metal complexes having an electron accepting nitrogen can also be used, for example, hydroxyazole complexes such as quinolinol metal complexes and hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, benzoquinoline metal complexes, etc. can give.
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 The above-described materials may be used alone or in combination with different materials.
 上述した材料の中でも、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体またはボラン誘導体が好ましい。 Among the above-mentioned materials, quinolinol metal complexes, bipyridine derivatives, phenanthroline derivatives or borane derivatives are preferable.
 キノリノール系金属錯体は、下記一般式(E-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000160
 式中、R~Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
The quinolinol metal complex is a compound represented by the following general formula (E-1).
Figure JPOXMLDOC01-appb-C000160
In the formula, R 1 to R 6 are hydrogen or a substituent, M is Li, Al, Ga, Be or Zn, and n is an integer of 1 to 3.
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。 Specific examples of quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3) , 4-Dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( (Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolate) aluminum, bis (2-methyl-8-) Quinolinolate) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis (2-methyl-) 8-quinolinolato) (4-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,3-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,6-dimethyl (Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (3,4-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolate) aluminum, bis (2 -Methyl-8-quinolinolato) (3,5-di-t- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,6-diphenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,6-triphenylphenolate) aluminum Bis (2-methyl-8-quinolinolato) (2,4,6-trimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,5,6-tetramethylphenolate) aluminum, Bis (2-methyl-8-quinolinolato) (1-naphtholate) aluminum, bis (2-methyl-8-quinolinolate) (2-naphtholate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (2-phenyl) Phenolate) Aluminum, bis (2,4-dimethyl-8-quinolinola) G) (3-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (4-phenylphenolato) aluminum, bis (2,4-dimethyl-8-quinolinolate) (3,5-dimethyl) (Phenolate) aluminum, bis (2,4-dimethyl-8-quinolinolato) (3,5-di-t-butylphenolate) aluminum, bis (2-methyl-8-quinolinolato) aluminum-μ-oxo-bis (phenolate) 2-Methyl-8-quinolinolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) aluminum-μ-oxo-bis (2,4-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-4-al) Ethyl-8-quinolinolato) aluminium-μ-oxo-bis (2-methyl-4-ethyl- -Quinolinolato) aluminum, bis (2-methyl-4-methoxy-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-4-methoxy-8-quinolinolato) aluminum, bis (2-methyl-5-cyano) -8-quinolinolato) aluminium-μ-oxo-bis (2-methyl-5-cyano-8-quinolinolate) aluminium, bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminium-μ-oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum, bis (10-hydroxybenzo [h] quinoline) beryllium and the like.
 ビピリジン誘導体は、下記一般式(E-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000161
 式中、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、ピリジン-ピリジンまたはピリジン-Gの結合に用いられない炭素は置換されていてもよい。
The bipyridine derivative is a compound represented by the following general formula (E-2).
Figure JPOXMLDOC01-appb-C000161
In the formula, G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. In addition, carbon not used for binding of pyridine-pyridine or pyridine-G may be substituted.
 一般式(E-2)のGとしては、例えば、以下の構造式があげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000162
Examples of G in formula (E-2) include the following structural formulas. In the following structural formulas, each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
Figure JPOXMLDOC01-appb-C000162
 ピリジン誘導体の具体例としては、2,5-ビス(2,2’-ピリジン-6-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ピリジン-6-イル)-1,1-ジメチル-3,4-ジメシチルシロール、2,5-ビス(2,2’-ピリジン-5-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ピリジン-5-イル)-1,1-ジメチル-3,4-ジメシチルシロール、9,10-ジ(2,2’-ピリジン-6-イル)アントラセン、9,10-ジ(2,2’-ピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ピリジン-6-イル)アントラセン、9,10-ジ(2,3’-ピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,3’-ピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ピリジン-5-イル)-2-フェニルアントラセン、3,4-ジフェニル-2,5-ジ(2,2’-ピリジン-6-イル)チオフェン、3,4-ジフェニル-2,5-ジ(2,3’-ピリジン-5-イル)チオフェン、6’,6”-ジ(2-ピリジル)2,2’:4’,4”:2”,2”’-クアテルピリジンなどがあげられる。 Specific examples of the pyridine derivative include 2,5-bis (2,2'-pyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2'-) Pyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilol, 2,5-bis (2,2'-pyridin-5-yl) -1,1-dimethyl-3,4- Diphenylsilole, 2,5-bis (2,2'-pyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilol, 9,10-di (2,2'-pyridine-6) -Yl) anthracene, 9,10-di (2,2'-pyridin-5-yl) anthracene, 9,10-di (2,3'-pyridin-6-yl) anthracene, 9,10-di (2 , 3'-Pyridin-5-yl) anthracene, 9,10-di (2,3'-pyridine) 6-yl) -2-phenylanthracene, 9,10-di (2,3'-pyridin-5-yl) -2-phenylanthracene, 9,10-di (2,2'-pyridin-6-yl) -2-phenylanthracene, 9,10-di (2,2'-pyridin-5-yl) -2-phenylanthracene, 9,10-di (2,4'-pyridin-6-yl) -2-phenyl Anthracene, 9,10-di (2,4'-pyridin-5-yl) -2-phenylanthracene, 9,10-di (3,4'-pyridin-6-yl) -2-phenylanthracene, 9, 10-di (3,4'-pyridin-5-yl) -2-phenylanthracene, 3,4-diphenyl-2,5-di (2,2'-pyridin-6-yl) thiophene, 3,4- Diphenyl-2,5-di (2,3'-pyridin) 5-yl) thiophene, 6 ', 6 "- di (2-pyridyl) 2,2': 4 ', 4": 2 ", 2"' - like quaterphenyl pyridine.
 フェナントロリン誘導体は、下記一般式(E-3-1)または(E-3-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000163
 式中、R~Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、一般式(E-3-2)のGとしては、例えば、ビピリジン誘導体の欄で説明したGと同じ構造式があげられる。
The phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E- 3-2).
Figure JPOXMLDOC01-appb-C000163
In the formula, R 1 to R 8 are hydrogen or a substituent, and adjacent groups may be bonded to each other to form a fused ring, G represents a simple bond or an n-valent linking group, and n is 2 It is an integer of ~ 8. In addition, as G in the general formula (E-3-2), for example, the same structural formula as G described in the section of bipyridine derivative can be mentioned.
 フェナントロリン誘導体の具体例としては、4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどがあげられる。 Specific examples of the phenanthroline derivative include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthrolin-5-yl) pyridine, 1,3,5-tri (1,10-phenanthrolin-5-yl) benzene, 9,9'-difluoro And -bis (1,10-phenanthrolin-5-yl), vasocuproin and 1,3-bis (2-phenyl-1,10-phenanthrolin-9-yl) benzene.
 特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有する誘導体、あるいは複数のフェナントロリン骨格を連結した誘導体が好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。 In particular, the case where a phenanthroline derivative is used for the electron transporting layer and the electron injecting layer will be described. In order to obtain stable light emission over a long period of time, a material excellent in thermal stability and thin film formability is desired, and among phenanthroline derivatives, the substituent itself has a three-dimensional steric structure, or with a phenanthroline skeleton or A derivative having a three-dimensional steric structure by steric repulsion with an adjacent substituent or a derivative in which a plurality of phenanthroline skeletons are linked is preferable. Furthermore, in the case of linking a plurality of phenanthroline skeletons, a compound including a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in a linking unit is more preferable.
 ボラン誘導体は、下記一般式(E-4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000164
 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。
The borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
Figure JPOXMLDOC01-appb-C000164
In the formula, each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano And R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, X is optionally substituted arylene, and Y is An optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl, and n is each independently an integer of 0 to 3.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-1)で表される化合物、さらに下記一般式(E-4-1-1)~(E-4-1-4)で表される化合物が好ましい。具体例としては、9-[4-(4-ジメシチルボリルナフタレン-1-イル)フェニル]カルバゾール、9-[4-(4-ジメシチルボリルナフタレン-1-イル)ナフタレン-1-イル]カルバゾールなどがあげられる。
Figure JPOXMLDOC01-appb-C000165
 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。
Among the compounds represented by the above general formula (E-4), compounds represented by the following general formula (E-4-1), and further the following general formulas (E-4-1-1) to (E-4) The compound represented by -1-4) is preferable. As a specific example, 9- [4- (4-dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-dimesitylborylnaphthalen-1-yl) naphthalen-1-yl And the like.
Figure JPOXMLDOC01-appb-C000165
In the formula, each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano And R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, and each of R 21 and R 22 independently represents hydrogen, alkyl, At least one of optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, and X 1 is an optionally substituted arylene having a carbon number of 20 or less And n is each independently an integer of 0 to 3, and m is each independently an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000166
 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000166
In each formula, R 31 to R 34 each independently represent either methyl, isopropyl or phenyl, and R 35 and R 36 each independently represent any of hydrogen, methyl, isopropyl or phenyl It is.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-2)で表される化合物、さらに下記一般式(E-4-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000167
 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。
Among the compounds represented by the above general formula (E-4), a compound represented by the following general formula (E-4-2), and a compound further represented by the following general formula (E-4-2-1) Is preferred.
Figure JPOXMLDOC01-appb-C000167
In the formula, each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, and X 1 represents an optionally substituted arylene having a carbon number of 20 or less And n is each independently an integer of 0 to 3.
Figure JPOXMLDOC01-appb-C000168
 式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000168
In the formula, R 31 to R 34 are each independently any of methyl, isopropyl or phenyl, and R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-3)で表される化合物、さらに下記一般式(E-4-3-1)または(E-4-3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000169
 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0~3の整数である。
Among the compounds represented by the above general formula (E-4), compounds represented by the following general formula (E-4-3), and further the following general formula (E-4-3-1) or (E-4) The compound represented by -3-2) is preferable.
Figure JPOXMLDOC01-appb-C000169
In the formula, each of R 11 and R 12 independently represents at least one of hydrogen, alkyl, aryl which may be substituted, silyl which is substituted, nitrogen-containing heterocycle which may be substituted, or cyano R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, and X 1 represents an optionally substituted arylene having 10 or less carbon atoms And Y 1 is an optionally substituted aryl having 14 or less carbon atoms, and n is each independently an integer of 0 to 3.
Figure JPOXMLDOC01-appb-C000170
 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000170
In each formula, R 31 to R 34 each independently represent either methyl, isopropyl or phenyl, and R 35 and R 36 each independently represent any of hydrogen, methyl, isopropyl or phenyl It is.
 ベンゾイミダゾール誘導体は、下記一般式(E-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000171
 式中、Ar~Arはそれぞれ独立に水素または置換されてもよい炭素数6~30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
The benzimidazole derivative is a compound represented by the following general formula (E-5).
Figure JPOXMLDOC01-appb-C000171
In the formula, Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted. Particularly preferred is a benzimidazole derivative in which Ar 1 is anthryl which may be substituted.
 炭素数6~30のアリールの具体例は、フェニル、1-ナフチル、2-ナフチル、アセナフチレン-1-イル、アセナフチレン-3-イル、アセナフチレン-4-イル、アセナフチレン-5-イル、フルオレン-1-イル、フルオレン-2-イル、フルオレン-3-イル、フルオレン-4-イル、フルオレン-9-イル、フェナレン-1-イル、フェナレン-2-イル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル、1-アントリル、2-アントリル、9-アントリル、フルオランテン-1-イル、フルオランテン-2-イル、フルオランテン-3-イル、フルオランテン-7-イル、フルオランテン-8-イル、トリフェニレン-1-イル、トリフェニレン-2-イル、ピレン-1-イル、ピレン-2-イル、ピレン-4-イル、クリセン-1-イル、クリセン-2-イル、クリセン-3-イル、クリセン-4-イル、クリセン-5-イル、クリセン-6-イル、ナフタセン-1-イル、ナフタセン-2-イル、ナフタセン-5-イル、ペリレン-1-イル、ペリレン-2-イル、ペリレン-3-イル、ペンタセン-1-イル、ペンタセン-2-イル、ペンタセン-5-イル、ペンタセン-6-イルである。 Specific examples of the aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthyl-1-yl, acenaphthyl-3-yl, acenaphthyl-4-yl, acenaphthyl-5-yl, and fluorene-1-l. , Fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthene-1-yl, fluoranthene-2-yl, fluoranthene-3-yl, fluoranthene-7-yl, fluoranthene-8-yl, Triphenylene-1-yl, triphenylene-2-yl, N-l-yl, pyren-2-yl, pyren-4-yl, chrysen-1-yl, chrysen-2-yl, chrysen-3-yl, chrysen-4-yl, chrysen-5-yl, chrysene- 6-yl, naphthacene-1-yl, naphthacene-2-yl, naphthacene-5-yl, perylene-1-yl, perylene-2-yl, perylene-3-yl, pentacene-1-yl, pentacene-2-yl Yl, pentacene-5-yl, pentacene-6-yl.
 ベンゾイミダゾール誘導体の具体例は、1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールである。 Specific examples of benzimidazole derivatives are 1-phenyl-2- (4- (10-phenylanthracene-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracene-9-yl) phenyl) -1-l Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracene-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10) -(Naphthalen-2-yl) anthracene-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (naphthale) -2-yl) anthracene-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 1- (4- (9,10-di (naphthalen-2-yl) anthracene-2-yl) Phenyl) -2-phenyl-1H-benzo [d] imidazole, 5- (9,10-di (naphthalen-2-yl) anthracen-2-yl) -1,2-diphenyl-1H-benzo [d] imidazole It is.
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する材料であれば、様々な材料が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。 The electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer. As this reducing substance, various materials can be used as long as the material has a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, alkali From the group consisting of oxides of earth metals, halides of alkaline earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals At least one selected can be suitably used.
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下の材料が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 As preferable reducing substances, alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), Ca (1.2. And alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and materials having a work function of 2.9 eV or less are particularly preferable. Among these, more preferable reducing substances are alkali metals of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs. These alkali metals are particularly high in reducing ability, and the addition of a relatively small amount to the material forming the electron transport layer or the electron injection layer can improve the emission luminance and prolong the life of the organic EL element. Further, a combination of two or more alkali metals is also preferable as a reducing substance having a work function of 2.9 eV or less, and in particular, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred. By including Cs, the reduction ability can be efficiently exhibited, and by addition to the material for forming the electron transport layer or the electron injection layer, the emission luminance in the organic EL element can be improved and the lifetime can be prolonged.
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
<Cathode in Organic Electroluminescent Device>
The cathode 108 plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer 106.
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。 The material for forming the cathode 108 is not particularly limited as long as it can efficiently inject electrons into the organic layer, but the same material as the material for forming the anode 102 can be used. Among them, metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium Indium alloy, aluminum-lithium alloy such as lithium fluoride / aluminum, etc. are preferable. Lithium, sodium, potassium, cesium, calcium, magnesium or alloys containing these low work function metals are effective for enhancing the electron injection efficiency to improve the device characteristics. However, these low work function metals are generally often unstable in the atmosphere. In order to improve this point, for example, it is known to use a highly stable electrode by doping the organic layer with a small amount of lithium, cesium or magnesium. As other dopants, inorganic salts such as lithium fluoride, cesium fluoride, lithium oxide and cesium oxide can also be used. However, it is not limited to these.
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。 Furthermore, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals for electrode protection, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride It is preferable to stack a hydrocarbon-based polymer compound or the like as a preferred example. The method for producing these electrodes is also not particularly limited as long as conduction can be taken, such as resistance heating evaporation, electron beam evaporation, sputtering, ion plating and coating.
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<Binder which may be used in each layer>
The materials used for the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer described above can form each layer independently, but polyvinyl chloride, polycarbonate, or the like as a polymer binder Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin Etc., and can be used by dispersing it in a solvent-soluble resin such as phenol resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, etc. is there.
<有機電界発光素子の作製方法>
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
<Method of Manufacturing Organic Electroluminescent Device>
Each layer constituting the organic electroluminescent element is formed of a material to be constituted of each layer by a method such as evaporation, resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, printing, spin coating or casting, or the like. It can be formed by using a thin film. There is no particular limitation on the film thickness of each layer formed in this way, and it can be appropriately set according to the property of the material, but it is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured by a crystal oscillation type film thickness measuring device or the like. In the case of thin film formation using a vapor deposition method, the vapor deposition conditions differ depending on the type of material, the desired crystal structure and association structure of the film, and the like. The deposition conditions are generally: boat heating temperature +50 to + 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / sec, substrate temperature −150 to + 300 ° C., film thickness 2 nm to 5 μm It is preferable to set appropriately in the range.
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Next, as an example of a method for producing an organic electroluminescent device, an organic electric field comprising a light emitting layer / electron transport layer / electron injection layer / cathode comprising anode / hole injection layer / hole transport layer / host material and dopant material A method for manufacturing a light emitting element is described. After forming a thin film of an anode material on a suitable substrate by vapor deposition or the like to prepare an anode, thin films of a hole injection layer and a hole transport layer are formed on the anode. A host material and a dopant material are co-deposited thereon to form a thin film to form a light emitting layer, an electron transporting layer and an electron injecting layer are formed on the light emitting layer, and a thin film made of a cathode material is deposited by evaporation or the like. The intended organic electroluminescent element is obtained by forming it as a cathode. In the preparation of the organic electroluminescent device described above, it is also possible to prepare the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer and the anode in this order. It is possible.
 このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied as + and the cathode may be applied as-polarity, and when a voltage of about 2 to 40 V is applied, it is transparent or semitransparent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescent device also emits light when a pulse current or an alternating current is applied. In addition, the waveform of the alternating current to apply may be arbitrary.
<有機電界発光素子の応用例>
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
<Application Example of Organic Electroluminescent Device>
The present invention can also be applied to a display device provided with an organic electroluminescent device or a lighting device provided with an organic electroluminescent device.
The display device or the illumination device provided with the organic electroluminescent device can be manufactured by a known method such as connecting the organic electroluminescent device according to the present embodiment and a known drive device, and can be DC drive, pulse drive, AC It can drive, using suitably well-known drive methods, such as a drive.
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 Examples of the display device include a panel display such as a color flat panel display, a flexible display such as a flexible color organic electroluminescent (EL) display, and the like (for example, Japanese Patent Application Laid-Open Nos. 10-335066 and 2003-321546). See Japanese Patent Laid-Open Publication No. 2004-281086 etc. Moreover, as a display method of a display, a matrix and / or a segment system etc. are mentioned, for example. The matrix display and the segment display may coexist in the same panel.
 マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix, pixels for display are two-dimensionally arranged in a lattice shape, a mosaic shape, or the like, and a character or an image is displayed by a set of pixels. The shape and size of the pixels depend on the application. For example, for displaying images and characters on personal computers, monitors, and televisions, square pixels with one side of 300 μm or less are usually used, and in the case of a large display such as a display panel, pixels with one side of mm order become. In monochrome display, pixels of the same color may be arranged, but in color display, red, green and blue pixels are displayed side by side. In this case, there are typically delta types and stripe types. As a method of driving this matrix, either a line sequential driving method or an active matrix may be used. Although the line-sequential drive has an advantage that the structure is simple, in consideration of the operation characteristics, the active matrix may be superior in some cases, so it is necessary to use this in accordance with the application.
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。 In the segment system (type), a pattern is formed so as to display predetermined information, and a predetermined area is made to emit light. For example, time and temperature displays on digital watches and thermometers, operation status displays on audio devices and induction cookers, and panel displays on automobiles can be mentioned.
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。 Examples of the lighting device include a lighting device such as interior lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, and JP 2004-119211 A). Etc.). Backlights are mainly used for the purpose of improving the visibility of display devices that do not emit light themselves, and are used for liquid crystal display devices, clocks, audio devices, automobile panels, display boards, signs, and the like. In particular, as backlights for liquid crystal display devices, particularly for personal computer applications where thinning is an issue, considering that thinning is difficult because the conventional method is composed of a fluorescent lamp and a light guide plate, the present embodiment The backlight using the light emitting element according to is characterized by being thin and lightweight.
3-2.その他の有機デバイス
 本発明に係る化合物およびその高分子化合物は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
3-2. Other Organic Devices The compound according to the present invention and the polymer compound thereof can be used for the production of an organic field effect transistor, an organic thin film solar cell, etc. in addition to the above-described organic electroluminescent device.
 有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができる。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。 An organic field effect transistor is a transistor that controls current by an electric field generated by voltage input, and a gate electrode is provided in addition to a source electrode and a drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the flow of electrons (or holes) flowing between the source electrode and the drain electrode can be arbitrarily blocked to control the current. A field effect transistor is easier to miniaturize than a simple transistor (bipolar transistor), and is often used as an element constituting an integrated circuit or the like.
 有機電界効果トランジスタの構造は、通常、本発明に係る化合物およびその高分子化合物を用いて形成される有機半導体活性層に接してソース電極及びドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
 このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子等として適用できる。
In the structure of the organic field effect transistor, generally, a source electrode and a drain electrode are provided in contact with the organic semiconductor active layer formed using the compound according to the present invention and the polymer compound thereof, and further the organic semiconductor active layer The gate electrode may be provided with the insulating layer (dielectric layer) in contact with the gate electrode. Examples of the element structure include the following structures.
(1) substrate / gate electrode / insulator layer / source electrode / drain electrode / organic semiconductor active layer (2) substrate / gate electrode / insulator layer / organic semiconductor active layer / source electrode / drain electrode (3) substrate / organic Semiconductor active layer / source electrode / drain electrode / insulator layer / gate electrode (4) substrate / source electrode / drain electrode / organic semiconductor active layer / insulator layer / gate electrode The organic field effect transistor configured in this way is The present invention can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display.
 有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る化合物およびその高分子化合物は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る化合物およびその高分子化合物は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。 The organic thin film solar cell has a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are stacked on a transparent substrate such as glass. The photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side. The compound according to the present invention and the polymer compound thereof can be used as a material of a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer depending on the physical properties. The compound according to the present invention and the polymer compound thereof can function as a hole transport material or an electron transport material in an organic thin film solar cell. The organic thin film solar cell may be appropriately provided with a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer and the like in addition to the above. For the organic thin film solar cell, known materials used for the organic thin film solar cell can be appropriately selected and used in combination.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によってなんら限定されない。以下は実施例で合成した化合物である。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited at all by these examples. The following are compounds synthesized in the examples.
 合成例(1)
 式(10P-g-101)の化合物:2,8’-ジメチル-5λ,6λ-スピロ[ベンゾ[e]ピリド[2,1-b][1,3,4]オキサアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000172
Synthesis example (1)
Compounds of formula (10P-g-101): 2,8'- dimethyl -5λ 4, 4 - spiro [benzo [e] pyrido [2,1-b] [1,3,4] oxa-aza Helsingborg Nin - Synthesis of 6,10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000172
 第1工程
 ジ-パラ-トリルエーテル(10.1g)およびジメチルホルムアミド(200ml)に、1,3-ジブロモ-5,5-ジメチルヒダントイン(DBH:55.9g、200mmol)を加え、70℃で2時間加熱撹拌した。反応溶液を室温まで冷やして水(500ml)を加えた後、トルエン(200ml×5回)で抽出した。常圧下140℃で蒸留することで溶媒を留去した。粗生成物をシリカゲルショートパスカラムにより濾過し、溶媒を減圧流去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体として1,1’-オキシビス(2-ブロモ-4-メチルベンゼン)を得た(10.8g、収率61%)。
Figure JPOXMLDOC01-appb-C000173
Step 1 To di-para-tolyl ether (10.1 g) and dimethylformamide (200 ml), add 1,3-dibromo-5,5-dimethylhydantoin (DBH: 55.9 g, 200 mmol), Heated and stirred for time. The reaction solution was cooled to room temperature, water (500 ml) was added, and then extracted with toluene (200 ml × 5 times). The solvent was distilled off by distillation at 140 ° C. under normal pressure. The crude product was filtered through a silica gel short path column, and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was washed with hexane to give 1,1′-oxybis (2-bromo-4-methylbenzene) as a white solid (10.8 g, yield 61%).
Figure JPOXMLDOC01-appb-C000173
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.31(s,6H)、6.71(d,2H)、7.02(d,2H)、7.35(s,2H).
 13C-NMR(CDCl,101MHz);20.4(2C)、113.7(2C)、119.1(2C)、129.1(2C)、134.1(2C)、134.8(2C)、151.2(2C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.31 (s, 6 H), 6.71 (d, 2 H), 7.02 (d, 2 H), 7. 35 (s, 2 H).
13 C-NMR (CDCl 3 , 101 MHz); 20.4 (2 C), 113.7 (2 C), 119.1 (2 C), 129.1 (2 C), 134.1 (2 C), 134.8 ( 13 2C), 151.2 (2C).
 第2工程
 2-ヨードピリジン(3.20ml、30mmol)、ヨウ化銅(0.573g、3.0mmol)、2-ピコリン酸(0.745g、61mmol)、リン酸三カリウム(12.9g、60mmol)およびジメチルスルホキシド(150ml)に窒素雰囲気下、室温で2-ブロモフェノール(3.80ml、36mmol)を加え、100℃で14時間加熱撹拌した。反応溶液を室温まで冷やして水(500ml)を加えた後、酢酸エチル(250ml×3回)で抽出した。粗生成物をシリカゲルショートパスカラムにより濾過し、溶媒を留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体として2-(2-ブロモフェノキシ)ピリジンを得た(4.88g、収率65%)。
Figure JPOXMLDOC01-appb-C000174
Second step 2-iodopyridine (3.20 ml, 30 mmol), copper iodide (0.573 g, 3.0 mmol), 2-picolinic acid (0.745 g, 61 mmol), tripotassium phosphate (12.9 g, 60 mmol) 2-Bromophenol (3.80 ml, 36 mmol) was added to dimethylsulfoxide (150 ml) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 100 ° C. for 14 hours. The reaction solution was cooled to room temperature, water (500 ml) was added, and then extracted with ethyl acetate (250 ml × 3 times). The crude product was filtered through a silica gel short path column and the solvent was distilled off to obtain a crude product. After that, washing with hexane gave 2- (2-bromophenoxy) pyridine as a white solid (4.88 g, yield 65%).
Figure JPOXMLDOC01-appb-C000174
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);6.96-7.00(m,2H)、7.12(t,1H)、7.21(d,1H)、7.36(t,1H)、7.63(d,1H)、7.71(t,1H)、8.15(t,1H).
 13C-NMR(CDCl,101MHz);111.4(1C)、116.7(1C)、118.7(1C)、123.9(1C)、126.5(1C)、128.7(1C)、133.8(1C)、139.6(1C)、147.7(1C)、151.1(1C)、163.1(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 6.96-7.00 (m, 2 H), 7.12 (t, 1 H), 7.21 (d, 1 H), 7. 36 (t, 1 H) , 7.63 (d, 1 H), 7.71 (t, 1 H), 8. 15 (t, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 111.4 (1 C), 116.7 (1 C), 118.7 (1 C), 123.9 (1 C), 126.5 (1 C), 128.7 (12 C). 1C), 133.8 (1 C), 139.6 (1 C), 147.7 (1 C), 151.1 (1 C), 163.1 (1 C).
 第3工程
 2-(2-ブロモフェノキシ)ピリジン(0.971g、3.9mmol)およびトルエン(50ml)に窒素雰囲気下、-78℃でブチルリチウム(245ml、3.9mmol)を加え、0℃で1時間撹拌した。さらに、-78℃で三臭化ホウ素(0.380ml、0.50mmol)を加え、0℃で15分間撹拌することでホウ素中間体を調製した。また同時に、1,1’-オキシビス(2-ブロモ-4-メチルベンゼン)(1.36g、3.8mmol)およびジエチルエーテル(50ml)に窒素雰囲気下、-78℃でブチルリチウム(4.90ml、7.8mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。これを-78℃でホウ素中間体に加え、0℃で1時間撹拌した。反応溶液をシリカゲルショートパスカラムにより濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、淡黄色固体として式(10P-g-101)の化合物を得た(0.224mg、収率16%)。
Figure JPOXMLDOC01-appb-C000175
Step 3: Add butyllithium (245 ml, 3.9 mmol) to 2- (2-bromophenoxy) pyridine (0.971 g, 3.9 mmol) and toluene (50 ml) at -78 ° C. under a nitrogen atmosphere, and then at 0 ° C. Stir for 1 hour. Furthermore, boron tribromide (0.380 ml, 0.50 mmol) was added at −78 ° C., and the boron intermediate was prepared by stirring at 0 ° C. for 15 minutes. Also at the same time, butyllithium (4.90 ml) at −78 ° C. under nitrogen atmosphere to 1,1′-oxybis (2-bromo-4-methylbenzene) (1.36 g, 3.8 mmol) and diethyl ether (50 ml) The lithium intermediate was prepared by adding 7.8 mmol) and stirring at 0 ° C. for 1 hour. This was added to the boron intermediate at −78 ° C. and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to obtain a crude product. Then, the compound was washed with hexane to give the compound of the formula (10P-g-101) as a pale yellow solid (0.224 mg, yield 16%).
Figure JPOXMLDOC01-appb-C000175
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.13(s,6H)、6.80(s,2H)、6.93(t,1H)、6.98-7.08(m,6H)、7.18(t,2H)、7.23(d,1H)、7.70(d,1H)、7.79(t,1H).
 13C-NMR(CDCl,101MHz);20.8(2C)、114.2(1C)、115.0(1C)、115.4(2C)、118.9(1C)、125.5(1C)、126.7(1C)、128.7(2C)、130.9(2C)、134.8(2C)、135.1(1C)、141.8(1C)、144.4(1C)、152.5(1C)、154.9(2C)、157.6(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.13 (s, 6 H), 6.80 (s, 2 H), 6.93 (t, 1 H), 6.98-7.08 (m, 6 H) 7.18 (t, 2 H), 7.23 (d, 1 H), 7. 70 (d, 1 H), 7.79 (t, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 20.8 (2 C), 114.2 (1 C), 115.0 (1 C), 115.4 (2 C), 118.9 (1 C), 125.5 (12 C) 1C), 126.7 (1 C), 128.7 (2 C), 130.9 (2 C), 134.8 (2 C), 135.1 (1 C), 141.8 (1 C), 144.4 (1 C) ), 152.5 (1 C), 154.9 (2 C), 157.6 (1 C).
 合成例(2)
 式(10P-g-101)の化合物の合成(別法)
 上記合成例(1)の第2および第3工程は以下の方法で行うことで収率が改善される。
Synthesis example (2)
Synthesis of the compound of formula (10P-g-101) (alternative method)
The yield is improved by performing the second and third steps of the synthesis example (1) by the following method.
 第2工程
 2-ブロモピリジン(2.90ml、30mmol)、ヨウ化銅(0.557g、2.9mmol)、2-ピコリン酸(0.372g、3.0mmol)、リン酸三カリウム(12.5g、59mmol)およびジメチルスルホキシド(200ml)に窒素雰囲気下、室温でフェノール(3.20ml、36mmol)を加え、90℃で4時間加熱撹拌した。反応溶液を室温まで冷やしてジクロロメタン(200ml)を加えた後、1N水酸化ナトリウム水溶液(150ml×2回)、水(150ml×2回)で抽出した。得られた粗生成物をヘキサンで洗浄することにより、白色固体として2-フェノキシピリジンを得た(4.88g、収率65%)。
Figure JPOXMLDOC01-appb-C000176
Second step 2-bromopyridine (2.90 ml, 30 mmol), copper iodide (0.557 g, 2.9 mmol), 2-picolinic acid (0.372 g, 3.0 mmol), tripotassium phosphate (12.5 g) Phenol (3.20 ml, 36 mmol) was added to 59 mmol) and dimethyl sulfoxide (200 ml) at room temperature under nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C. for 4 hours. The reaction solution was cooled to room temperature and dichloromethane (200 ml) was added, followed by extraction with 1N aqueous sodium hydroxide solution (150 ml × 2 times) and water (150 ml × 2 times). The obtained crude product was washed with hexane to give 2-phenoxypyridine as a white solid (4.88 g, yield 65%).
Figure JPOXMLDOC01-appb-C000176
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);6.96-7.00(m,2H)、7.12(t,1H)、7.21(d,1H)、7.36(t,1H)、7.63(d,1H)、7.71(t,1H)、8.15(t,1H).
 13C-NMR(CDCl,101MHz);111.4(1C)、116.7(1C)、118.7(1C)、123.9(1C)、126.5(1C)、128.7(1C)、133.8(1C)、139.6(1C)、147.7(1C)、151.1(1C)、163.1(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 6.96-7.00 (m, 2 H), 7.12 (t, 1 H), 7.21 (d, 1 H), 7. 36 (t, 1 H) , 7.63 (d, 1 H), 7.71 (t, 1 H), 8. 15 (t, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 111.4 (1 C), 116.7 (1 C), 118.7 (1 C), 123.9 (1 C), 126.5 (1 C), 128.7 (12 C). 1C), 133.8 (1 C), 139.6 (1 C), 147.7 (1 C), 151.1 (1 C), 163.1 (1 C).
 第3工程
 1,1’-オキシビス(2-ブロモ-4-メチルベンゼン)(1.70g、4.8mmol)およびジエチルエーテル(30ml)に窒素雰囲気下、-78℃でブチルリチウム(6.00ml、9.6mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、2-フェノキシピリジン(0.812g、4.8mmol)およびトルエン(20ml)に窒素雰囲気下、室温で三臭化ホウ素(0.451ml、4.8mmol)を加え、90℃で1時間加熱撹拌することでホウ素中間体を調製した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液をシリカゲルショートパスカラムにより濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、黄色固体として式(10P-g-101)の化合物を得た(0.710g、収率40%)。
Figure JPOXMLDOC01-appb-C000177
Step 3: Butyllithium (6.00 ml) at −78 ° C. under nitrogen atmosphere to 1,1′-oxybis (2-bromo-4-methylbenzene) (1.70 g, 4.8 mmol) and diethyl ether (30 ml) The lithium intermediate was prepared by adding 9.6 mmol) and stirring at 0 ° C. for 1 hour. Meanwhile, boron tribromide (0.451 ml, 4.8 mmol) was added to 2-phenoxypyridine (0.812 g, 4.8 mmol) and toluene (20 ml) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C. for 1 hour The boron intermediate was prepared by This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to obtain a crude product. After that, washing with hexane gave the compound of the formula (10P-g-101) as a yellow solid (0.710 g, yield 40%).
Figure JPOXMLDOC01-appb-C000177
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.13(s,6H)、6.80(s,2H)、6.93(t,1H)、6.98-7.08(m,6H)、7.18(t,2H)、7.23(d,1H)、7.70(d,1H)、7.79(t,1H).
 13C-NMR(CDCl,101MHz);20.8(2C)、114.2(1C)、115.0(1C)、115.4(2C)、118.9(1C)、125.5(1C)、126.7(1C)、128.7(2C)、130.9(2C)、134.8(2C)、135.1(1C)、141.8(1C)、144.4(1C)、152.5(1C)、154.9(2C)、157.6(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.13 (s, 6 H), 6.80 (s, 2 H), 6.93 (t, 1 H), 6.98-7.08 (m, 6 H) 7.18 (t, 2 H), 7.23 (d, 1 H), 7. 70 (d, 1 H), 7.79 (t, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 20.8 (2 C), 114.2 (1 C), 115.0 (1 C), 115.4 (2 C), 118.9 (1 C), 125.5 (12 C) 1C), 126.7 (1 C), 128.7 (2 C), 130.9 (2 C), 134.8 (2 C), 135.1 (1 C), 141.8 (1 C), 144.4 (1 C) ), 152.5 (1 C), 154.9 (2 C), 157.6 (1 C).
 合成例(3)
 式(10P-gq-101-J11)の化合物:2,8’-ジメチル-11-フェニル-11H-5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000178
Synthesis example (3)
Formula (10P-gq-101-J11 ) compounds: 2,8'- dimethyl-11-phenyl--11H-5λ 4, 4 - spiro [benzo [c] pyrido [2,1-f] [1, 5 , 2] Synthesis of diazaborin-6,10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000178
 ジフェニルアミン(5.06g、30mmol)、酢酸パラジウム(II)(65.3mg、0.29mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(SPhos:0.128g、0.31mmol)、ナトリウム-tert-ブトキシド(3.48g、36mmol)およびトルエン(150ml)に窒素雰囲気下、室温で2-ブロモピリジン(3.00ml、31mmol)を加え、90℃で1時間加熱撹拌した。反応溶液を室温まで冷やして、シリカゲルショートパスカラムにより濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体としてN,N-ジフェニルピリジン-2-アミンを得た(6.52g、収率88%)。
Figure JPOXMLDOC01-appb-C000179
Diphenylamine (5.06 g, 30 mmol), palladium (II) acetate (65.3 mg, 0.29 mmol), 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl (SPhos: 0.128 g, 0.31 mmol), To sodium-tert-butoxide (3.48 g, 36 mmol) and toluene (150 ml) were added 2-bromopyridine (3.00 ml, 31 mmol) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C. for 1 hour. The reaction solution was cooled to room temperature, filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave N, N-diphenylpyridin-2-amine as a white solid (6.52 g, yield 88%).
Figure JPOXMLDOC01-appb-C000179
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);6.74-6.79(m,2H)、7.12(t,2H)、7.18(d,4H)、7.32(t,4H)、7.44(dd,1H)、8.23(d,1H).
 13C-NMR(CDCl,101MHz);13.8(1C)、116.1(1C)、124.5(2C)、126.3(4C)、129.3(4C)、137.2(1C)、146.1(2C)、148.3(1C)、159.0(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 6.74-6.79 (m, 2H), 7.12 (t, 2H), 7.18 (d, 4H), 7.32 (t, 4H) 7.44 (dd, 1 H), 8.23 (d, 1 H).
13 C NMR (CDCl 3 , 101 MHz); 13.8 (1 C), 116.1 (1 C), 124.5 (2 C), 126.3 (4 C), 129.3 (4 C), 137.2 (13 1C), 146.1 (2C), 148.3 (1C), 159.0 (1C).
 1,1’-オキシビス(2-ブロモ-4-メチルベンゼン)(1.04g、2.9mmol)およびジエチルエーテル(20ml)に窒素雰囲気下、-78℃でブチルリチウム(3.80ml、6.1mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、N,N-ジフェニルピリジン-2-アミン(0.724g、2.9mmol)およびトルエン(20ml)に窒素雰囲気下、室温で三臭化ホウ素(0.285ml、3.0mmol)を加え、90℃で1時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容量が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液をシリカゲルショートパスカラムにより濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、黄色固体として式(10P-gq-101-J11)の化合物を得た(0.813mg、収率61%)。
Figure JPOXMLDOC01-appb-C000180
Butyllithium (3.80 ml, 6.1 mmol) at −78 ° C. under nitrogen atmosphere with 1,1′-oxybis (2-bromo-4-methylbenzene) (1.04 g, 2.9 mmol) and diethyl ether (20 ml) ) Was added and stirred at 0 ° C. for 1 hour to prepare a lithium intermediate. On the other hand, boron tribromide (0.285 ml, 3.0 mmol) was added to N, N-diphenylpyridin-2-amine (0.724 g, 2.9 mmol) and toluene (20 ml) at room temperature under a nitrogen atmosphere, and 90 After preparing a boron intermediate by heating and stirring at 1 ° C. for 1 hour, the reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to obtain a crude product. Then, the compound was washed with hexane to give the compound of the formula (10P-gq-101-J11) as a yellow solid (0.813 mg, yield 61%).
Figure JPOXMLDOC01-appb-C000180
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.20(s,6H)、6.27(d,1H)、6.38(d,1H)、6.57(dd,1H)、6.90(dd,1H)、6.94(dd,1H)、6.98-7.01(m,3H)、7.04-7.06(m,4H)、7.32(dd,1H)、7.51(d,2H)、7.64(t,1H)、7.70(d,1H)、7.75(t,2H).
 13C-NMR(CDCl,126MHz);21.0(2C)、113.4(1C)、114.3(1C)、114.9(1C)、115.2(2C)、123.9(1C)、125.5(1C)、128.2(2C)、129.5(1C)、130.3(2C)、130.7(2C)、131.5(2C)、134.8(2C)、135.1(1C)、138.8(1C)、140.0(1C)、141.3(1C)、145.1(1C)、151.2(1C)、154.5(2C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.20 (s, 6 H), 6.27 (d, 1 H), 6.38 (d, 1 H), 6.57 (dd, 1 H), 6.90 (Dd, 1H), 6.94 (dd, 1H), 6.98-7.01 (m, 3H), 7.04-7.06 (m, 4H), 7.32 (dd, 1H), 7.51 (d, 2 H), 7.64 (t, 1 H), 7. 70 (d, 1 H), 7.75 (t, 2 H).
13 C-NMR (CDCl 3 , 126 MHz); 21.0 (2 C), 113.4 (1 C), 114.3 (1 C), 114.9 (1 C), 115.2 (2 C), 123.9 (12 C). 1C), 125.5 (1C), 128.2 (2C), 129.5 (1C), 130.3 (2C), 130.7 (2C), 131.5 (2C), 134.8 (2C) ), 135.1 (1 C), 138.8 (1 C), 140.0 (1 C), 141.3 (1 C), 145.1 (1 C), 151.2 (1 C), 154.5 (2 C) .
 合成例(4)
 式(10P-gq-100-J11)の化合物:11-フェニル-11H-5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000181
Synthesis example (4)
Formula (10P-gq-100-J11 ) compounds: 11-phenyl -11H-5λ 4, 4 - spiro [benzo [c] pyrido [2,1-f] [1,5,2] Jiazaborinin -6, Synthesis of 10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000181
 2,2’-オキシビス(ブロモベンゼン)(3.46g、10.6mmol)およびジエチルエーテル(30ml)に窒素雰囲気下、-78℃でブチルリチウム(13.7ml、21.2mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、N,N-ジフェニルピリジン-2-アミン(2.67g、10.8mmol)およびトルエン(30ml)に窒素雰囲気下、室温で三臭化ホウ素(1.01ml、10.6mmol)を加え、90℃で1時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液を、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、淡黄色固体として式(10P-gq-100-J11)の化合物を得た(1.87g、収率42%)。
Figure JPOXMLDOC01-appb-C000182
Add butyl lithium (13.7 ml, 21.2 mmol) to 2,2'-oxybis (bromobenzene) (3.46 g, 10.6 mmol) and diethyl ether (30 ml) at -78 ° C under a nitrogen atmosphere, The lithium intermediate was prepared by stirring for 1 hour. Meanwhile, boron tribromide (1.01 ml, 10.6 mmol) was added to N, N-diphenylpyridin-2-amine (2.67 g, 10.8 mmol) and toluene (30 ml) at room temperature under a nitrogen atmosphere, and 90 After preparing a boron intermediate by heating and stirring at 1 C for 1 hour, the reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. Then, the compound was washed with hexane to give the compound of the formula (10P-gq-100-J11) as a pale yellow solid (1.87 g, 42% yield).
Figure JPOXMLDOC01-appb-C000182
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,500MHz);6.26(d,1H)、6.37(d,1H)、6.57(dd,1H)、6.85-6.97(m,5H)、7.16(d,2H)、7.21(dd,2H)、7.28(d,2H)、7.32(dd,1H)、7.49(d,2H)、7.64(t,1H)、7.70(d,1H)、7.74(dd,2H).
 13C-NMR(CDCl,128MHz);113.4(1C)、114.3(1C)、114.8(1C)、115.6(2C)、122.3(2C)、124.0(1C)、125.6(1C)、127.4(2C)、129.5(1C)、130.3(2C)、131.5(2C)、134.7(2C)、135.1(1C)、138.9(1C)、139.9(1C)、141.2(1C)、145.0(1C)、151.2(1C)、156.3(2C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 500 MHz); 6.26 (d, 1 H), 6.37 (d, 1 H), 6.57 (dd, 1 H), 6.85-6. 97 (m, 5 H) 7.16 (d, 2 H), 7.21 (dd, 2 H), 7. 28 (d, 2 H), 7.32 (dd, 1 H), 7.49 (d, 2 H), 7.64 ( t, 1 H), 7. 70 (d, 1 H), 7.7 4 (dd, 2 H).
13 C-NMR (CDCl 3 , 128 MHz); 113.4 (1 C), 114.3 (1 C), 114.8 (1 C), 115.6 (2 C), 122.3 (2 C), 124.0 (12 C). 1C), 125.6 (1C), 127.4 (2C), 129.5 (1C), 130.3 (2C), 131.5 (2C), 134.7 (2C), 135.1 (1C) ), 138.9 (1 C), 139.9 (1 C), 141.2 (1 C), 145.0 (1 C), 151.2 (1 C), 156.3 (2 C).
 合成例(5)
 式(10P-g-100)の化合物:5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000183
Synthesis example (5)
Compounds of formula (10P-g-100): 5λ 4, 6λ 4 - spiro [benzo [c] pyrido [2,1-f] [1,5,2] Jiazaborinin -6,10'- dibenzo [b, e Synthesis of [1,4] oxaborinin]
Figure JPOXMLDOC01-appb-C000183
 第1工程
 2-ブロモフェノール(6.30ml、59.7mmol)、炭酸カリウム(10.3g、77.4mmol)および1,3-ジメチル-2-イミダゾリジノン(DMI:150ml)に窒素雰囲気下、室温で1-ブロモ-2-フルオロベンゼン(5.50ml、50.3mmol)を加え、200℃で24時間加熱撹拌した。反応溶液を室温まで冷やしてトルエン(200ml)を加えた後、水(150ml×3回)で抽出した。粗生成物を4.6×10-2Pa下、70℃で蒸留することにより無色液体として2,2’-オキシビス(ブロモベンゼン)を得た(3.46g、収率23%)。
Figure JPOXMLDOC01-appb-C000184
Step 1 2-bromophenol (6.30 ml, 59.7 mmol), potassium carbonate (10.3 g, 77.4 mmol) and 1,3-dimethyl-2-imidazolidinone (DMI: 150 ml) under a nitrogen atmosphere, At room temperature, 1-bromo-2-fluorobenzene (5.50 ml, 50.3 mmol) was added, and the mixture was heated and stirred at 200 ° C. for 24 hours. The reaction solution was cooled to room temperature, toluene (200 ml) was added, and then extracted with water (150 ml × 3 times). The crude product was distilled at 70 ° C. under 4.6 × 10 −2 Pa to obtain 2,2′-oxybis (bromobenzene) as a colorless liquid (3.46 g, 23% yield).
Figure JPOXMLDOC01-appb-C000184
 第2工程
 2,2’-オキシビス(ブロモベンゼン)(3.52g、10.7mmol)およびジエチルエーテル(30ml)に窒素雰囲気下、-78℃でブチルリチウム(14.0ml)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、2-フェノキシピリジン(1.75g、10.2mmol)およびトルエン(30ml)に窒素雰囲気下、室温で三臭化ホウ素(1.02ml、10.7mmol)を加え、90℃で1時間撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液を、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、淡黄色固体として式(10P-g-100)の化合物を得た(1.84g、収率52%)。
Figure JPOXMLDOC01-appb-C000185
Second Step Add butyl lithium (14.0 ml) to 2,2′-oxybis (bromobenzene) (3.52 g, 10.7 mmol) and diethyl ether (30 ml) at −78 ° C. under a nitrogen atmosphere, and at 0 ° C. The lithium intermediate was prepared by stirring for 1 hour. Meanwhile, boron tribromide (1.02 ml, 10.7 mmol) is added to 2-phenoxypyridine (1.75 g, 10.2 mmol) and toluene (30 ml) at room temperature under a nitrogen atmosphere, and stirred at 90 ° C. for 1 hour After preparing the boron intermediate, the reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave the compound of the formula (10P-g-100) as a pale yellow solid (1.84 g, yield 52%).
Figure JPOXMLDOC01-appb-C000185
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,500MHz);6.89(t,2H)、6.92(dd,1H)、7.00(d,1H)、7.04-7.07(m,3H)、7.16-7.18(m,3H)、7.20-7.25(m,4H)、7.70(d,1H)、7.78(t,1H).
 13C-NMR(CDCl,128MHz);114.2(1C)、115.1(1C)、115.8(2C)、118.9(1C)、122.3(2C)、125.6(1C)、126.8(1C)、127.9(2C)、134.7(2C)、135.0(1C)、141.9(1C)、144.2(1C)、152.5(1C)、156.7(2C)、157.7(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 500 MHz); 6.89 (t, 2 H), 6.92 (dd, 1 H), 7.00 (d, 1 H), 7.04-7.07 (m, 3 H) 7.16-7.18 (m, 3 H), 7.20-7. 25 (m, 4 H), 7. 70 (d, 1 H), 7.78 (t, 1 H).
13 C-NMR (CDCl 3 , 128 MHz); 114.2 (1 C), 115.1 (1 C), 115.8 (2 C), 118.9 (1 C), 122.3 (2 C), 125.6 (12 C) 1C), 126.8 (1 C), 127.9 (2 C), 134.7 (2 C), 135.0 (1 C), 141.9 (1 C), 144.2 (1 C), 152.5 (1 C) ), 156.7 (2C), 157.7 (1C).
 合成例(6)
 式(10P-gq-303-J11)の化合物:2-メチル-11-フェニル-11H-5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000186
Synthesis example (6)
Formula (10P-gq-303-J11 ) compounds: 2-Methyl-11-phenyl--11H-5λ 4, 4 - spiro [benzo [c] pyrido [2,1-f] [1,5,2] Synthesis of diazaborin-6,10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000186
 ジフェニルアミン(9.31g、5mmol)、酢酸パラジウム(II)(0.113g、0.51mmol)、SPhos(0.208g、0.51mmol)、ナトリウム-tert-ブトキシド(5.58g、60mmol)およびトルエン(150ml)に窒素雰囲気下、室温で2-ブロモ-4-メチルピリジン(5.65ml、50mmol)を加え、90℃で1時間加熱撹拌した。反応溶液を室温まで冷やして、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体として4-メチル-N,N-ジフェニルピリジン-2-アミン(7.82g、収率61%)を得た。
Figure JPOXMLDOC01-appb-C000187
Diphenylamine (9.31 g, 5 mmol), palladium (II) acetate (0.113 g, 0.51 mmol), SPhos (0.208 g, 0.51 mmol), sodium tert-butoxide (5.58 g, 60 mmol) and toluene ( To 150 ml) was added 2-bromo-4-methylpyridine (5.65 ml, 50 mmol) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C. for 1 hour. The reaction solution was cooled to room temperature, filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave 4-methyl-N, N-diphenylpyridin-2-amine (7.82 g, yield 61%) as a white solid.
Figure JPOXMLDOC01-appb-C000187
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.19(s,3H)、6.58(s,1H)、6.63(d,1H)、7.11(t,2H)、7.16(d,4H)、7.31(t,4H)、8.10(d,1H).
 13C-NMR(CDCl,101MHz);21.2(1C)、114.4(1C)、117.7(1C)、124.3(2C)、126.2(4C)、129.3(4C)、146.3(2C)、148.0(1C)、148.4(1C)、159.2(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.19 (s, 3 H), 6.58 (s, 1 H), 6.63 (d, 1 H), 7.11 (t, 2 H), 7.16 (D, 4 H), 7.31 (t, 4 H), 8. 10 (d, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 21.2 (1 C), 114.4 (1 C), 117.7 (1 C), 124.3 (2 C), 126.2 (4 C), 129.3 (12 C). 4C), 146.3 (2C), 148.0 (1C), 148.4 (1C), 159.2 (1C).
 2,2’-オキシビス(ブロモベンゼン)(3.27g、10.0mmol)およびジエチルエーテル(30ml)に窒素雰囲気下、-78℃でブチルリチウム(12.9ml、20.0mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、4-メチル-N,N-ジフェニルピリジン-2-アミン(2.60g、10.0mmol)およびトルエン(30ml)に窒素雰囲気下、室温で三臭化ホウ素(0.946ml、10.0mmol)を加え、90℃で1時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液を、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、淡黄色固体として式(10P-gq-303-J11)の化合物(0.52g、収率12%)を得た。
Figure JPOXMLDOC01-appb-C000188
Add butyl lithium (12.9 ml, 20.0 mmol) to 2,2'-oxybis (bromobenzene) (3.27 g, 10.0 mmol) and diethyl ether (30 ml) at -78 ° C under a nitrogen atmosphere, The lithium intermediate was prepared by stirring for 1 hour. On the other hand, boron tribromide (0.946 ml, 10.0 mmol) at room temperature in a nitrogen atmosphere with 4-methyl-N, N-diphenylpyridine-2-amine (2.60 g, 10.0 mmol) and toluene (30 ml) Was added and the mixture was heated and stirred at 90.degree. C. for 1 hour to prepare a boron intermediate, and then concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. Thereafter, the residue was washed with hexane to obtain the compound of the formula (10P-gq-303-J11) (0.52 g, yield 12%) as a pale yellow solid.
Figure JPOXMLDOC01-appb-C000188
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.17(s,3H)、6.13(s,1H)、6.21(d,1H)、6.39(d,1H)、6.85~6.95(m,5H)、7.15(d,2H)、7.20(t,2H)、7.26(d,2H)、7.48(d,2H)、7.56(d,1H)、7.64(t,1H)、7.74(t,2H).
 13C-NMR(CDCl,101MHz);21.5(1C)、112.8(1C)、114.5(1C)、115.5(2C)、116.7(1C)、122.2(2C)、123.7(1C)、125.5(1C)、127.3(2C)、129.4(1C)、130.4(2C)、131.5(2C)、134.7(2C)、135.1(1C)、140.0(1C)、141.3(1C)、144.3(2C)、151.0(1C)、156.3(1C)、207.0(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.17 (s, 3 H), 6. 13 (s, 1 H), 6.21 (d, 1 H), 6. 39 (d, 1 H), 6.85 To 6.95 (m, 5H), 7.15 (d, 2H), 7.20 (t, 2H), 7.26 (d, 2H), 7.48 (d, 2H), 7.56 ( d, 1 H), 7.64 (t, 1 H), 7.74 (t, 2 H).
13 C-NMR (CDCl 3 , 101 MHz); 21.5 (1 C), 112.8 (1 C), 114.5 (1 C), 115.5 (2 C), 116.7 (1 C), 122.2 (12 C) 2C), 123.7 (1C), 125.5 (1C), 127.3 (2C), 129.4 (1C), 130.4 (2C), 131.5 (2C), 134.7 (2C) ), 135.1 (1C), 140.0 (1C), 141.3 (1C), 144.3 (2C), 151.0 (1C), 156.3 (1C), 207.0 (1C) .
 合成例(7)
 式(10P-gq-301-J11)の化合物:4-メチル-11-フェニル-11H-5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000189
Synthesis example (7)
Formula (10P-gq-301-J11 ) compounds: 4-methyl-11-phenyl--11H-5λ 4, 4 - spiro [benzo [c] pyrido [2,1-f] [1,5,2] Synthesis of diazaborin-6,10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000189
 ジフェニルアミン(9.38g、55mmol)、酢酸パラジウム(II)(0.116g、0.52mmol)、SPhos(0.214g、0.52mmol)、ナトリウム-tert-ブトキシド(6.34g、66mmol)およびトルエン(200ml)に窒素雰囲気下、室温で2-ブロモ-6-メチルピリジン(5.68ml、50mmol)を加え、90℃で2時間加熱撹拌した。反応溶液を室温まで冷やして、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体として6-メチル-N,N-ジフェニルピリジン-2-アミン(7.80g、収率60%)を得た。
Figure JPOXMLDOC01-appb-C000190
Diphenylamine (9.38 g, 55 mmol), palladium (II) acetate (0.116 g, 0.52 mmol), SPhos (0.214 g, 0.52 mmol), sodium tert-butoxide (6.34 g, 66 mmol) and toluene ( To 200 ml) was added 2-bromo-6-methylpyridine (5.68 ml, 50 mmol) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 90 ° C. for 2 hours. The reaction solution was cooled to room temperature, filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave 6-methyl-N, N-diphenylpyridin-2-amine (7.80 g, yield 60%) as a white solid.
Figure JPOXMLDOC01-appb-C000190
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.38(s,3H)、6.50(d,1H)、6.66(d,1H)、7.09(t,2H)、7.16(d,4H)、7.28(t,4H)、7.33(t,1H).
 13C-NMR(CDCl,101MHz);24.4(1C)、111.4(1C)、115.9(1C)、123.9(2C)、126.0(4C)、129.1(4C)、137.5(1C)、146.3(2C)、157.2(1C)、159.2(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.38 (s, 3 H), 6.50 (d, 1 H), 6.66 (d, 1 H), 7.09 (t, 2 H), 7.16 (D, 4H), 7.28 (t, 4H), 7.33 (t, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 24.4 (1 C), 111.4 (1 C), 115.9 (1 C), 123.9 (2 C), 126.0 (4 C), 129.1 (12 C). 4C), 137.5 (1 C), 146.3 (2 C), 157.2 (1 C), 159.2 (1 C).
 2,2’-オキシビス(ブロモベンゼン)(9.97g、30mmol)およびジエチルエーテル(100ml)に窒素雰囲気下、-78℃でブチルリチウム(38.2ml、60mmol)を加え、0℃で1時間撹拌することでリチウム中間体を調製した。一方、6-メチル-N,N-ジフェニルピリジン-2-アミン(7.82g、30.0mmol)およびトルエン(100ml)に窒素雰囲気下、室温で三臭化ホウ素(2.85ml、30.0mmol)を加え、90℃で1時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液を、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、淡黄色固体として式(10P-gq-301-J11)の化合物(3.08g、収率24%)を得た。
Figure JPOXMLDOC01-appb-C000191
Add butyl lithium (38.2 ml, 60 mmol) to 2,2'-oxybis (bromobenzene) (9.97 g, 30 mmol) and diethyl ether (100 ml) at -78 ° C under nitrogen atmosphere and stir at 0 ° C for 1 hour The lithium intermediate was prepared by On the other hand, boron tribromide (2.85 ml, 30.0 mmol) at room temperature in a nitrogen atmosphere with 6-methyl-N, N-diphenylpyridin-2-amine (7.82 g, 30.0 mmol) and toluene (100 ml) Was added and the mixture was heated and stirred at 90.degree. C. for 1 hour to prepare a boron intermediate, and then concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. Thereafter, the residue was washed with hexane to give the compound of the formula (10P-gq-301-J11) (3.08 g, yield 24%) as a pale yellow solid.
Figure JPOXMLDOC01-appb-C000191
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);2.01(s,3H)、5.99(dt,1H)、6.41(d,1H)、6.48(d,1H)、6.71~6.76(m,3H)、6.88(t,2H)、7.09~7.10(m,4H)、7.14(t,2H)、7.31(dd,1H)、7.45(d,2H)、7.62(t,1H)、7.73(t,2H).
 13C-NMR(CDCl,101MHz);25.4(1C)、112.4(1C)、113.8(1C)、115.3(2C)、118.5(1C)、122.4(2C)、123.7(1C)、124.9(1C)、126.8(2C)、129.2(1C)、130.3(2C)、131.6(2C)、133.3(2C)、135.1(1C)、138.1(1C)、139.0(1C)、141.2(1C)、153.4(1C)、154.9(2C)、156.1(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 2.01 (s, 3 H), 5.99 (dt, 1 H), 6.41 (d, 1 H), 6.48 (d, 1 H), 6.71 To 6.76 (m, 3H), 6.88 (t, 2H), 7.09 to 7.10 (m, 4H), 7.14 (t, 2H), 7.31 (dd, 1H), 7.45 (d, 2 H), 7.62 (t, 1 H), 7.73 (t, 2 H).
13 C-NMR (CDCl 3 , 101 MHz); 25.4 (1 C), 112.4 (1 C), 113.8 (1 C), 115.3 (2 C), 118.5 (1 C), 122.4 (12 C). 2C), 123.7 (1C), 124.9 (1C), 126.8 (2C), 129.2 (1C), 130.3 (2C), 131.6 (2C), 133.3 (2C) ), 135.1 (1C), 138.1 (1C), 139.0 (1C), 141.2 (1C), 153.4 (1C), 154.9 (2C), 156.1 (1C) .
 合成例(8)
 式(10P-gq-342-J11)の化合物:3,11-ジフェニル-11H-5λ,6λ-スピロ[ベンゾ[c]ピリド[2,1-f][1,5,2]ジアザボリニン-6,10’-ジベンゾ[b,e][1,4]オキサボリニン]の合成
Figure JPOXMLDOC01-appb-C000192
Synthesis example (8)
The compound of the formula (10P-gq-342-J11): 3,11-diphenyl-11H-5λ 4 , 6λ 4 -spiro [benzo [c] pyrido [2,1-f] [1,5,2] diazaborinin Synthesis of 6,10'-dibenzo [b, e] [1,4] oxaborinine]
Figure JPOXMLDOC01-appb-C000192
 フェニルボロン酸(2.93g、24mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh:1.74g、1.5mmol)、炭酸カリウム(8.30g、60mmol)、水(80ml)および1,4-ジオキサン(80ml)に窒素雰囲気下、室温で5-ブロモ-2-クロロピリジン(3.87g、20mmol)を加え、室温で45時間攪拌した。反応溶液の溶媒を減圧留去した後、トルエン(100ml×3回)で抽出し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄し、シリカゲルショートパスカラムで精製することにより、白色固体として2-クロロ-5-フェニルピリジンを得た(1.69g、収率44%)。
Figure JPOXMLDOC01-appb-C000193
Phenylboronic acid (2.93 g, 24 mmol), tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 : 1.74 g, 1.5 mmol), potassium carbonate (8.30 g, 60 mmol), water ( 5-bromo-2-chloropyridine (3.87 g, 20 mmol) was added to 80 ml) and 1,4-dioxane (80 ml) at room temperature under nitrogen atmosphere, and stirred at room temperature for 45 hours. The solvent of the reaction solution was evaporated under reduced pressure, and then extracted with toluene (100 ml × 3 times), and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was washed with hexane and purified by silica gel short path column to obtain 2-chloro-5-phenylpyridine as a white solid (1.69 g, yield 44%).
Figure JPOXMLDOC01-appb-C000193
 ジフェニルアミン(0.934g、5.5mmol)、酢酸パラジウム(II)(22.4mg、0.10mmol)、SPhos(82.2mg、0.20mmol)、ナトリウム-tert-ブトキシド(0.579g、6.0mmol)およびo-キシレン(20ml)に窒素雰囲気下、室温で2-クロロ-5-フェニルピリジン(0.948g、5.0mmol)を加え、130℃で6時間加熱攪拌した。反応溶液をフロリジルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、シリカゲルショートパスカラムで精製することにより、白色固体としてN,N,5-トリフェニルピリジン-2-アミンを得た(1.55g、収率96%)。
Figure JPOXMLDOC01-appb-C000194
Diphenylamine (0.934 g, 5.5 mmol), palladium (II) acetate (22.4 mg, 0.10 mmol), SPhos (82.2 mg, 0.20 mmol), sodium tert-butoxide (0.579 g, 6.0 mmol) ) And o-xylene (20 ml) were added 2-chloro-5-phenylpyridine (0.948 g, 5.0 mmol) at room temperature under a nitrogen atmosphere, and heated and stirred at 130 ° C. for 6 hours. The reaction solution was filtered through a Florisil short path column, and the solvent was evaporated under reduced pressure to obtain a crude product. Then, the residue was purified by silica gel short path column to obtain N, N, 5-triphenylpyridin-2-amine as a white solid (1.55 g, yield 96%).
Figure JPOXMLDOC01-appb-C000194
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);6.83(d,1H)、7.15(t,2H)、7.22(d,4H)、7.34(m,5H)、7.43(t,2H)、7.53(d,2H)、7.67(dd,1H)、8.48(s,1H).
 13C-NMR(CDCl,101MHz);113.6(1C)、124.6(2C)、126.3(4C)、126.4(2C)、127.2(1C)、128.9(2C)、129.1(1C)、129.4(4C)、135.8(1C)、138.0(1C)、146.0(2C)、146.5(1C)、158.2(1C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 6.83 (d, 1 H), 7.15 (t, 2 H), 7.22 (d, 4 H), 7. 34 (m, 5 H), 7.43 (T, 2H), 7.53 (d, 2H), 7.67 (dd, 1H), 8.48 (s, 1H).
13 C-NMR (CDCl 3 , 101 MHz); 113.6 (1 C), 124.6 (2 C), 126.3 (4 C), 126.4 (2 C), 127.2 (1 C), 128.9 (12 C). 2C), 129.1 (1 C), 129.4 (4 C), 135.8 (1 C), 138.0 (1 C), 146.0 (2 C), 146.5 (1 C), 158.2 (1 C) ).
 2,2’-オキシビス(ブロモベンゼン)(1.70g、5.2mmol)およびジエチルエーテル(20ml)に窒素雰囲気下、-78℃でブチルリチウム(6.50ml、10mmol)を加え、0℃で3時間撹拌することでリチウム中間体を調製した。一方、N,N,5-トリフェニルピリジン-2-アミン(1.65g、5.1mmol)およびトルエン(30ml)に窒素雰囲気下、室温で三臭化ホウ素(0.480ml、5.1mmol)を加え、90℃で4時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の1になるまで0℃の減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌及び室温で19時間攪拌した。反応溶液をシリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、シリカゲルショートパスカラムで精製することにより、淡黄色固体として式(10P-gq-342-J11)の化合物を得た(0.548g、収率21%)。
Figure JPOXMLDOC01-appb-C000195
Add butyl lithium (6.50 ml, 10 mmol) to 2,2'-oxybis (bromobenzene) (1.70 g, 5.2 mmol) and diethyl ether (20 ml) at -78 ° C under a nitrogen atmosphere and The lithium intermediate was prepared by stirring for time. On the other hand, boron tribromide (0.480 ml, 5.1 mmol) in N, N, 5-triphenylpyridin-2-amine (1.65 g, 5.1 mmol) and toluene (30 ml) at room temperature under a nitrogen atmosphere In addition, after preparing a boron intermediate by heating and stirring at 90 ° C. for 4 hours, the reaction solution was concentrated under reduced pressure at 0 ° C. until the volume of the reaction solution became about one third. This was added to the reaction solution containing the lithium intermediate at −78 ° C., stirred at 0 ° C. for 1 hour and at room temperature for 19 hours. The reaction solution was filtered through a silica gel short path column, and the solvent was evaporated under reduced pressure to obtain a crude product. Thereafter, the residue was purified by silica gel short path column to obtain a compound of formula (10P-gq-342-J11) as a pale yellow solid (0.548 g, yield 21%).
Figure JPOXMLDOC01-appb-C000195
NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl,400MHz);6.28(d,1H)、6.47(d,1H)、6.91(dd,1H)、6.95(dd,1H)、6.97(dd,2H)、7.01(dd,1H)、7.10(dd,2H)、7.18(dd,2H)、7.22(m,2H)、7.26(m,1H)、7.29(d,2H)、7.33(dd,2H)、7.53(dd,2H)、7.55(dd,1H)、7.65(t,1H)、7.76(t,2H)、7.92(s,1H).
 13C-NMR(CDCl,101MHz);113.7(1C)、114.4(1C)、115.7(2C)、122.3(2C)、124.0(1C)、125.7(1C)、126.0(2C)、127.5(2C)、128.0(1C)、128.1(1C)、129.1(2C)、129.5(1C)、130.2(2C)、131.5(2C)、134.6(2C)、135.1(1C)、135.3(1C)、137.7(1C)、140.0(1C)、141.2(1C)、142.5(1C)、150.2(1C)、156.4(2C).
The structure of the obtained compound was confirmed by NMR measurement.
1 H-NMR (CDCl 3 , 400 MHz); 6.28 (d, 1 H), 6.47 (d, 1 H), 6.91 (dd, 1 H), 6.95 (dd, 1 H), 6.97 (Dd, 2H), 7.01 (dd, 1H), 7.10 (dd, 2H), 7.18 (dd, 2H), 7.22 (m, 2H), 7.26 (m, 1H) , 7.29 (d, 2 H), 7.33 (dd, 2 H), 7.53 (dd, 2 H), 7.55 (dd, 1 H), 7.65 (t, 1 H), 7.76 ( t, 2H), 7.92 (s, 1H).
13 C-NMR (CDCl 3 , 101 MHz); 113.7 (1 C), 114.4 (1 C), 115.7 (2 C), 122.3 (2 C), 124.0 (1 C), 125.7 (12 C). 1C), 126.0 (2C), 127.5 (2C), 128.0 (1C), 128.1 (1C), 129.1 (2C), 129.5 (1C), 130.2 (2C) ), 131.5 (2C), 134.6 (2C), 135.1 (1C), 135.3 (1C), 137.7 (1C), 140.0 (1C), 141.2 (1C) , 142.5 (1C), 150.2 (1C), 156.4 (2C).
 合成例(9)
 式(10P-gq-23-J11)の化合物:5λ,10λ-スピロ[ジベンゾ[b,e][1,4]オキサボリニン-10,6’-ピリド[1’,2’:1,6][1,5,2]ジアザボリニノ[3,4,5-kl]フェノキサジン]の合成
Figure JPOXMLDOC01-appb-C000196
Synthesis example (9)
Formula (10P-gq-23-J11 ) of the compound: 5 [lambda] 4, 10 [lambda] 4 - spiro [dibenzo [b, e] [1,4] Okisaborinin -10,6'- pyrido [1 ', 2': 1,6 Synthesis of [1,5,2] diazaborinino [3,4,5-kl] phenoxazine]
Figure JPOXMLDOC01-appb-C000196
 フェノキサジン(6.00g、33mmol)、酢酸パラジウム(II)(79.6mg、0.35mmol)、SPhos(0.122g、0.30mmol)、ナトリウム-tert-ブトキシド(3.88g、40mmol)およびトルエン(100ml)に窒素雰囲気下、室温で2-ブロモピリジン(2.90ml、30mmol)を加え、60℃で2時間加熱撹拌した。反応溶液を室温まで冷やして、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、白色固体としてフェノキサジン誘導体を得た(6.15g、収率79%)。
Figure JPOXMLDOC01-appb-C000197
Phenoxazine (6.00 g, 33 mmol), palladium (II) acetate (79.6 mg, 0.35 mmol), SPhos (0.122 g, 0.30 mmol), sodium tert-butoxide (3.88 g, 40 mmol) and toluene To (100 ml) was added 2-bromopyridine (2.90 ml, 30 mmol) at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 60 ° C. for 2 hours. The reaction solution was cooled to room temperature, filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave a phenoxazine derivative as a white solid (6.15 g, yield 79%).
Figure JPOXMLDOC01-appb-C000197
 H-NMR(CDCl,400MHz);6.42(d,2H)、6.69-6.81(m,6H)、7.28(dd,1H)、7.36(d,1H)、7.84(dt,1H)、8.68(dd,1H).
 13C-NMR(CDCl,101MHz);115.8(2C)、116.0(2C)、122.1(1C)、122.3(1C)、122.7(1C)、123.2(2C)、132.9(2C)、139.4(1C)、145.6(2C)、150.6(1C)、153.9(1C).
1 H-NMR (CDCl 3 , 400 MHz); 6.42 (d, 2 H), 6.69-6. 81 (m, 6 H), 7. 28 (dd, 1 H), 7. 36 (d, 1 H) , 7.84 (dt, 1 H), 8.68 (dd, 1 H).
13 C-NMR (CDCl 3 , 101 MHz); 115.8 (2 C), 116.0 (2 C), 122.1 (1 C), 122.3 (1 C), 122.7 (1 C), 123.2 (12 C). 2C), 132.9 (2C), 139.4 (1C), 145.6 (2C), 150.6 (1C), 153.9 (1C).
 2,2’-オキシビス(ブロモベンゼン)(3.28g、10.0mmol)およびジエチルエーテル(25ml)に窒素雰囲気下、-78℃でブチルリチウム(12.7ml、19.9mmol)を加え、0℃で2時間撹拌することでリチウム中間体を調製した。一方、フェノキサジン誘導体(2.63g、10.1mmol)およびトルエン(30ml)に窒素雰囲気下、室温で三臭化ホウ素(1.00ml、10.5mmol)を加え、90℃で4時間加熱撹拌することでホウ素中間体を調製した後、反応溶液の容積が全体の約3分の2になるまで減圧下で濃縮した。これを-78℃でリチウム中間体を含む反応溶液に加え、0℃で1時間撹拌した。反応溶液を、シリカゲルショートパスカラムで濾過し、溶媒を減圧留去して粗生成物を得た。その後、ヘキサンで洗浄することにより、黄色固体として式(10P-gq-23-J11)の化合物を得た(3.30g、収率75%)。
Figure JPOXMLDOC01-appb-C000198
Add butyllithium (12.7 ml, 19.9 mmol) to 2,2'-oxybis (bromobenzene) (3.28 g, 10.0 mmol) and diethyl ether (25 ml) at -78 ° C under a nitrogen atmosphere, The lithium intermediate was prepared by stirring for 2 hours. Meanwhile, boron tribromide (1.00 ml, 10.5 mmol) is added to a phenoxazine derivative (2.63 g, 10.1 mmol) and toluene (30 ml) at room temperature under a nitrogen atmosphere, and the mixture is heated and stirred at 90 ° C. for 4 hours After preparing the boron intermediate, the reaction solution was concentrated under reduced pressure until the volume of the reaction solution became about two thirds of the whole. This was added to the reaction solution containing a lithium intermediate at −78 ° C., and stirred at 0 ° C. for 1 hour. The reaction solution was filtered through a silica gel short pass column, and the solvent was evaporated under reduced pressure to give a crude product. After that, washing with hexane gave the compound of the formula (10P-gq-23-J11) as a yellow solid (3.30 g, yield 75%).
Figure JPOXMLDOC01-appb-C000198
 H-NMR(CDCl,400MHz);6.76-6.80(m,3H)、6.88(dd,1H)、7.00-7.06(m,2H)、7.08-7.12(m,3H)、7.21-7.27(m,5H)、7.30(d,1H)、7.36(dt,1H)、7.60(dt,1H)、7.66-7.70(m,2H).
 13C-NMR(CDCl,101MHz);113.2(1C)、114.0(1C)、115.9(1C)、116.1(1C)、117.3(1C)、118.4(1C)、118.9(1C)、122.3(1C)、122.4(1C)、123.6(1C)、126.0(1C)、126.7(1C)、127.6(1C)、128.3(1C)、128.3(1C)、128.5(1C)、129.0(1C)、133.3(1C)、135.2(1C)、139.5(1C)、145.0(1C)、145.1(1C)、149.4(1C)、149.7(1C)、155.3(1C)、158.7(1C).
1 H-NMR (CDCl 3 , 400 MHz); 6.76-6.80 (m, 3 H), 6.88 (dd, 1 H), 7.00-7.06 (m, 2 H), 7.08- 7.12 (m, 3 H), 7.21-7. 27 (m, 5 H), 7. 30 (d, 1 H), 7. 36 (dt, 1 H), 7. 60 (dt, 1 H), 7 .66-7.70 (m, 2H).
13 C-NMR (CDCl 3 , 101 MHz); 113.2 (1 C), 114.0 (1 C), 115.9 (1 C), 116.1 (1 C), 117.3 (1 C), 118.4 (11 C) 1C), 118.9 (1 C), 122.3 (1 C), 122.4 (1 C), 123.6 (1 C), 126.0 (1 C), 126.7 (1 C), 127.6 (1 C) 128.3 (1C), 128.3 (1C), 128.5 (1C), 129.0 (1C), 133.3 (1C), 135.2 (1C), 139.5 (1C) , 145.0 (1C), 145.1 (1C), 149.4 (1C), 149.7 (1C), 155.3 (1C), 158.7 (1C).
 原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明に係る化合物およびその高分子化合物を合成することができる。 The compound according to the present invention and the polymer compound according to the present invention can be synthesized by a method according to the above-described synthesis example by appropriately changing the compound of the raw material.
<基礎物性の評価>
 評価対象の化合物の吸収特性と発光特性(蛍光と燐光)を評価する場合、化合物を溶媒に溶解して溶媒中で評価する場合と薄膜状態で評価する場合がある。さらに、薄膜状態で評価する場合は、化合物の有機EL素子における使用の態様に応じて、化合物のみを薄膜化し評価する場合(単成分蒸着膜)と化合物を適切なマトリックス材料中に分散して薄膜化(共蒸着膜)して評価する場合がある。
<Evaluation of basic physical properties>
When evaluating the absorption characteristics and the emission characteristics (fluorescence and phosphorescence) of the compound to be evaluated, the compound may be dissolved in a solvent and evaluated in a solvent or in a thin film state. Furthermore, when evaluating in the thin film state, depending on the mode of use of the compound in the organic EL element, when thin filming only the compound is to be evaluated (single component vapor deposition film) and the compound dispersed in an appropriate matrix material (Co-deposited film) may be evaluated.
分散膜の作製
 マトリックス材料としては、市販のPMMA(ポリメチルメタクリレート)等を用いることができる。PMMAに分散した薄膜サンプルは、例えば、PMMAと評価対象の化合物をトルエン中で溶解させた後、スピンコーティング法により石英製の透明支持基板(10mm×10mm)上に薄膜を形成して作製することができる。
Production of dispersed film As a matrix material, commercially available PMMA (polymethyl methacrylate) or the like can be used. A thin film sample dispersed in PMMA is prepared, for example, by dissolving PMMA and a compound to be evaluated in toluene, and then forming a thin film on a transparent support substrate (10 mm × 10 mm) made of quartz by a spin coating method. Can.
単成分蒸着膜の作製
 単成分蒸着膜の作製方法を以下に記す。石英製またはガラス製の透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、評価対象の化合物を入れたモリブデン製蒸着用ボートを装着する。次に、真空槽を5×10-4Paまで減圧し、化合物が入った蒸着用ボートを加熱して適切な膜厚になるように蒸着し、単成分蒸着膜を形成する。
Preparation of Single Component Vapor Deposited Film A method of producing a single component vapor deposited film is described below. A transparent support substrate made of quartz or glass is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum deposition boat containing a compound to be evaluated is mounted. Next, the vacuum tank is depressurized to 5 × 10 −4 Pa, and the deposition boat containing the compound is heated to deposit an appropriate film thickness to form a single component deposition film.
共蒸着膜の作製
 マトリックス材料がホスト材料である場合の薄膜サンプルの作製方法を以下に記す。石英製またはガラス製の透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、ホスト材料を入れたモリブデン製蒸着用ボート、ドーパント材料を入れたモリブデン製蒸着用ボートを装着する。次に、真空槽を5×10-4Paまで減圧し、ホスト材料が入った蒸着用ボートとドーパント材料が入った蒸着用ボートを同時に加熱して適切な膜厚になるように蒸着してホスト材料とドーパント材料の混合薄膜を形成する。ホスト材料とドーパント材料の設定重量比に応じて蒸着速度を制御する。
Preparation of co-deposited film A method of preparing a thin film sample when the matrix material is a host material is described below. A transparent support substrate made of quartz or glass is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum deposition boat containing a host material, a molybdenum deposition boat containing a dopant material Wear Next, the vacuum chamber is depressurized to 5 × 10 -4 Pa, and the deposition boat containing the host material and the deposition boat containing the dopant material are simultaneously heated to obtain an appropriate film thickness. Form a mixed film of material and dopant material. The deposition rate is controlled in accordance with the set weight ratio of the host material and the dopant material.
吸収特性と発光特性の評価
 吸収スペクトルの測定は、紫外可視近赤外分光光度計((株)島津製作所、UV-2600)を用いて行う。また、蛍光スペクトルまたは燐光スペクトルの測定は、分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて行う。蛍光スペクトルの測定に対しては、室温で適切な励起波長で励起しフォトルミネッセンスを測定する。燐光スペクトルの測定に対しては、付属の冷却ユニットを使用して、サンプルを液体窒素に浸した状態(温度77K)で測定する。燐光スペクトルを観測するため、光学チョッパを使用して励起光照射から測定開始までの遅れ時間を調整する。サンプルは適切な励起波長で励起しフォトルミネッセンスを測定する。
Evaluation of absorption characteristics and emission characteristics Measurement of absorption spectra is performed using an ultraviolet visible near infrared spectrophotometer (UV-2600 manufactured by Shimadzu Corporation). Further, the measurement of the fluorescence spectrum or the phosphorescence spectrum is performed using a spectrofluorimeter (F-7000 manufactured by Hitachi High-Tech Co., Ltd.). For the measurement of the fluorescence spectrum, photoluminescence is measured by excitation at room temperature with an appropriate excitation wavelength. For the measurement of the phosphorescence spectrum, the sample is measured in the state of being immersed in liquid nitrogen (temperature 77 K) using the attached cooling unit. In order to observe the phosphorescence spectrum, an optical chopper is used to adjust the delay time from the excitation light irradiation to the measurement start. The sample is excited at an appropriate excitation wavelength to measure photoluminescence.
<有機EL素子としての評価>
 以下、本発明に係る化合物を使用して有機EL素子としての評価を行った。
<Evaluation as an organic EL element>
Hereinafter, the compound according to the present invention was used to evaluate as an organic EL element.
<実施例1>
 ITOの蒸着されたガラス製の透明支持基板および化合物(10P-gq-101-J11)を入れたモリブデン製蒸着用ボートを市販の蒸着装置(昭和真空(株)製)に固定し、真空槽を5×10-4Paまで減圧し、化合物(10P-gq-101-J11)を加熱して50nmの膜厚になるまで蒸着し、単成分蒸着膜を形成した。得られた単成分蒸着膜の光電子収量スペクトル、可視領域における吸収スペクトル、蛍光スペクトルおよび燐光スペクトルを測定した。光電子収量スペクトルによりイオン化ポテンシャル(Ip)を、蛍光ピークの長波長側の端から求まるエネルギーギャップ(Eg)および前記イオン化ポテンシャルから電子親和力(Ea)を、蛍光スペクトルのピークトップから一重項エネルギー(S)を、そして燐光スペクトルのピークトップから三重項エネルギー(T)をそれぞれ求めた。結果は、比較例1で用いた化合物mCBPに対する差として示した(表1)。なお、特に断りのない限り、一重項エネルギー(S)および三重項エネルギー(T)は、第一励起一重項エネルギーおよび第一励起三重項エネルギーである。また、ΔESTは一重項エネルギーおよび三重項エネルギーの差である。
Example 1
A transparent support substrate made of ITO vapor-deposited glass and a molybdenum evaporation boat containing the compound (10P-gq-101-J11) are fixed to a commercially available evaporation system (manufactured by Showa Vacuum Co., Ltd.), and the vacuum chamber is The pressure was reduced to 5 × 10 −4 Pa, and the compound (10 P-gq-101-J11) was heated and evaporated to a film thickness of 50 nm to form a single-component deposited film. The photoelectron yield spectrum, the absorption spectrum in the visible region, the fluorescence spectrum and the phosphorescence spectrum of the obtained single component vapor deposition film were measured. The ionization potential (Ip) by the photoelectron yield spectrum, the energy gap (Eg) determined from the long wavelength side of the fluorescence peak and the electron affinity (Ea) from the ionization potential, singlet energy (S 1 ) from the peak top of the fluorescence spectrum And the triplet energy (T 1 ) from the peak top of the phosphorescence spectrum. The results are shown as differences with respect to the compound mCBP used in Comparative Example 1 (Table 1). In addition, singlet energy (S 1 ) and triplet energy (T 1 ) are first excited singlet energy and first excited triplet energy unless otherwise noted. Also, ΔE ST is the difference between singlet energy and triplet energy.
<実施例2>
 化合物(10P-gq-101-J11)を化合物(10P-g-101)に替えた以外は実施例1に準じた方法で単成分蒸着膜を作製し、各スペクトルを測定した。また各スペクトルから、イオン化ポテンシャル(Ip)などを求め、比較例1に対する差として表1に示した。
Example 2
A single-component deposited film was produced by the method according to Example 1 except that the compound (10P-gq-101-J11) was changed to the compound (10P-g-101), and each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated | required from each spectrum, and it showed in Table 1 as a difference with respect to the comparative example 1.
<比較例1>
 化合物(10P-gq-101-J11)を化合物mCBP(3,3’-ジ(9H-カルバゾリル-9-イル)ビフェニル)に替えた以外は実施例1に準じた方法で単成分蒸着膜を作製し、各スペクトルを測定した。また各スペクトルから、イオン化ポテンシャル(Ip)などを求め、表1に示した。比較例1は実施例1、実施例2および比較例2に対する基準である。
Figure JPOXMLDOC01-appb-C000199
Comparative Example 1
A single-component deposited film was prepared by the method according to Example 1, except that the compound (10P-gq-101-J11) was changed to the compound mCBP (3,3'-di (9H-carbazolyl-9-yl) biphenyl). And each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated | required from each spectrum, and it showed in Table 1. Comparative Example 1 is a standard for Example 1, Example 2 and Comparative Example 2.
Figure JPOXMLDOC01-appb-C000199
<比較例2>
 化合物(10P-gq-101-J11)を化合物CBPに替えた以外は実施例1に準じた方法で単成分蒸着膜を作製し、各スペクトルを測定した。また各スペクトルから、イオン化ポテンシャル(Ip)などを求め、比較例1に対する差として表1に示した。
Figure JPOXMLDOC01-appb-C000200
Comparative Example 2
A single-component deposited film was produced by the method according to Example 1 except that the compound (10P-gq-101-J11) was changed to the compound CBP, and each spectrum was measured. Moreover, ionization potential (Ip) etc. were calculated | required from each spectrum, and it showed in Table 1 as a difference with respect to the comparative example 1.
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-T000201
Figure JPOXMLDOC01-appb-T000201
 以上、本発明に係る化合物の一部について基礎物性を評価し、高い三重項励起エネルギー(T)や負に大きなΔESTなどを有することを示したが、評価を行っていない他の化合物も同じ基本骨格を有し、全体としても類似の構造を有する化合物であり、当業者においては同様に優れた特性を有することを理解できる。 Above, for some of the compounds according to the present invention evaluates the basic physical properties, high but was shown to have such triplet excitation energy (T 1) or negatively large Delta] E ST, also other compounds not evaluated It is a compound having the same basic skeleton and having a similar structure as a whole, and it can be understood by those skilled in the art that the compound has excellent properties as well.
<有機EL素子の作製および特性評価>
 例えば表2に示す層構成で実施例3、実施例4および比較例3に係る有機EL素子を作製できる。
<Production and characterization of organic EL device>
For example, organic EL elements according to Example 3, Example 4 and Comparative Example 3 can be produced with the layer configuration shown in Table 2.
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000202
 表2において、「HAT-CN」は1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、「TBB」はN,N,N’,N’-テトラ([1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「TcTa」はトリス(4-カルバゾリル-9-イルフェニル)アミン、「CBP」は4,4’-ジ(9H-カルバゾリル-9-イル)-1,1’-ビフェニル、「Ir(PPy)」はトリス(2-フェニルピリジン)イリジウム(III)、「TPBi」は1,3,5-トリス(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)ベンゼンである。以下に化学構造を示す。 In Table 2, "HAT-CN" is 1,4,5,8,9,12- Hexaazatriphenylene hexa-carbonitrile, "TBB" is N 4, N 4, N 4 ', N 4' - tetra ([ 1,1'-biphenyl] -4-yl)-[1,1'-biphenyl] -4,4'-diamine, "TcTa" is tris (4-carbazolyl-9-ylphenyl) amine, "CBP" is 4,4'-di (9H-carbazolyl-9-yl) -1,1'-biphenyl, "Ir (PPy) 3 " is tris (2-phenylpyridine) iridium (III), "TPBi" is 1,3 5,5-tris (1-phenyl-1H-benzo [d] imidazol-2-yl) benzene. The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
<実施例3>
<化合物(10P-g-101)を発光層のホスト材料に用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とする。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT-CN、TBB、TcTa、化合物(10P-g-101)、Ir(PPy)、TPBiおよびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着する。
Example 3
<Device using compound (10P-g-101) as host material of light emitting layer>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm is used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and HAT-CN, TBB, TcTa, compound (10P-g-101), Ir (PPy) 3 , TPBi and LiF Attach a crucible for vapor deposition made of tantalum and a crucible for vapor deposition made of aluminum nitride containing aluminum.
 透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を2.0×10-4Paまで減圧し、まず、HAT-CNを加熱して膜厚5nmになるように蒸着し、次いで、TBBを加熱して膜厚65nmになるように蒸着し、更にTcTaを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成する。次に、化合物(10P-g-101)とIr(PPy)を同時に加熱して膜厚30nmになるように蒸着して発光層を形成する。化合物(10P-g-101)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節する。次に、TPBiを加熱して膜厚50nmになるように蒸着して電子輸送層を形成する。これまでの各層の蒸着速度は0.01~1nm/秒である。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子が得られる。 The following layers are sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 5 nm, and then TBB is heated to deposit a film thickness to 65 nm. Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-g-101) and Ir (PPy) 3 are simultaneously heated and evaporated to a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of compound (10P-g-101) to Ir (PPy) 3 is approximately 95 to 5. Next, TPBi is heated and evaporated to a film thickness of 50 nm to form an electron transport layer. The deposition rate of each layer so far is 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加することで緑色発光が得られる。 Green light emission can be obtained by applying a DC voltage with the ITO electrode as an anode and the LiF / aluminum electrode as a cathode.
<実施例4>
<化合物(10P-gq-101-J11)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替えた以外は実施例3に準じた方法で有機EL素子を得られる。また、同様に直流電圧を印加することで発光が得られる。
Example 4
<Element using Compound (10P-gq-101-J11) as host material of light emitting layer>
An organic EL device can be obtained by the method according to Example 3 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound (10P-gq-101-J11). Similarly, light emission can be obtained by applying a DC voltage.
<比較例3>
<化合物CBPを発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物CBPに替えた以外は実施例3に準じた方法で有機EL素子を得られる。
Comparative Example 3
<Device using compound CBP as host material of light emitting layer>
An organic EL device can be obtained by the method according to Example 3, except that the compound (10P-g-101), which is the host material of the light emitting layer, is replaced with the compound CBP.
 また、例えば表3に示す層構成で実施例5および実施例6に係る有機EL素子を作製できる。 For example, organic EL elements according to Example 5 and Example 6 can be manufactured with the layer configuration shown in Table 3.
Figure JPOXMLDOC01-appb-T000204
Figure JPOXMLDOC01-appb-T000204
<実施例5>
<化合物(10P-g-101)を電子輸送層に用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とする。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT-CN、TBB、TcTa、CBP、Ir(PPy)、化合物(10P-g-101)およびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着する。
Example 5
<Device using compound (10P-g-101) for electron transport layer>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm is used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and HAT-CN, TBB, TcTa, CBP, Ir (PPy) 3 , compound (10P-g-101) and LiF Attach a crucible for vapor deposition made of tantalum and a crucible for vapor deposition made of aluminum nitride containing aluminum.
 透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を2.0×10-4Paまで減圧し、まず、HAT-CNを加熱して膜厚10nmになるように蒸着し、次いで、TBBを加熱して膜厚20nmになるように蒸着し、更にTcTaを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成する。次に、CBPとIr(PPy)を同時に加熱して膜厚30nmになるように蒸着して発光層を形成する。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節する。次に、化合物(10P-g-101)を加熱して膜厚50nmになるように蒸着して電子輸送層を形成する。これまでの各層の蒸着速度は0.01~1nm/秒である。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子が得られる。 The following layers are sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 10 nm, and then TBB is heated to deposit a film to a thickness of 20 nm Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, CBP and Ir (PPy) 3 are simultaneously heated and evaporated to a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of CBP to Ir (PPy) 3 is approximately 95 to 5. Next, the compound (10P-g-101) is heated and evaporated to a film thickness of 50 nm to form an electron transport layer. The deposition rate of each layer so far is 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加することで緑色発光が得られる。 Green light emission can be obtained by applying a DC voltage with the ITO electrode as an anode and the LiF / aluminum electrode as a cathode.
<実施例6>
<化合物(10P-gq-101-J11)を電子輸送層に用いた素子>
 電子輸送層の化合物(10P-g-101)を化合物(10P-gq-101-J11)に替えた以外は実施例5に準じた方法で有機EL素子を得られる。また、同様に直流電圧を印加することで発光が得られる。
Example 6
<Device using compound (10P-gq-101-J11) for the electron transport layer>
An organic EL device can be obtained by the method according to Example 5 except that the compound (10P-g-101) in the electron transport layer is changed to the compound (10P-gq-101-J11). Similarly, light emission can be obtained by applying a DC voltage.
 また、例えば表4に示す層構成で実施例7、実施例8および比較例4に係る有機EL素子を作製できる。 For example, organic EL elements according to Example 7, Example 8 and Comparative Example 4 can be manufactured with the layer configuration shown in Table 4.
Figure JPOXMLDOC01-appb-T000205
Figure JPOXMLDOC01-appb-T000205
 表4において、「Firpic」はビス[2-(4,6-ジフルオロフェニル)ピリジナト-N,C2](ピコリナト)イリジウム(III)である。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000206
In Table 4, "Firpic" is bis [2- (4,6-difluorophenyl) pyridinato-N, C2] (picolinato) iridium (III). The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000206
<実施例7>
<化合物(10P-g-101)を発光層のホスト材料に用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とする。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT-CN、TBB、TcTa、化合物(10P-g-101)、Firpic、TPBiおよびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着する。
Example 7
<Device using compound (10P-g-101) as host material of light emitting layer>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm is used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of HAT-CN, TBB, TcTa, compound (10P-g-101), Firpic, TPBi and LiF was loaded A tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum are mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を2.0×10-4Paまで減圧し、まず、HAT-CNを加熱して膜厚5nmになるように蒸着し、次いで、TBBを加熱して膜厚65nmになるように蒸着し、更にTcTaを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成する。次に、化合物(10P-g-101)とFirpicを同時に加熱して膜厚30nmになるように蒸着して発光層を形成する。化合物(10P-g-101)とFirpicの重量比がおよそ95対5になるように蒸着速度を調節する。次に、TPBiを加熱して膜厚50nmになるように蒸着して電子輸送層を形成する。各層の蒸着速度は0.01~1nm/秒である。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子が得られる。 The following layers are sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, HAT-CN is heated to deposit to a film thickness of 5 nm, and then TBB is heated to deposit a film thickness to 65 nm. Further, TcTa is heated and evaporated to a film thickness of 10 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-g-101) and Firpic are simultaneously heated to deposit a film thickness of 30 nm to form a light emitting layer. The deposition rate is adjusted so that the weight ratio of the compound (10P-g-101) to the Firpic is approximately 95 to 5. Next, TPBi is heated and evaporated to a film thickness of 50 nm to form an electron transport layer. The deposition rate of each layer is 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to 100 nm in thickness to 0.1 to 2 nm / nm. It vapor-deposits with the vapor deposition rate of second, and forms a cathode, and an organic EL element is obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、青色発光が得られる。 When a direct current voltage is applied with the ITO electrode as an anode and the LiF / aluminum electrode as a cathode, blue light emission is obtained.
<実施例8>
<化合物(10P-gq-101-J11)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替えた以外は実施例7に準じた方法で有機EL素子を得られる。両電極に直流電圧を印加すると青色発光が得られる。
Example 8
<Element using Compound (10P-gq-101-J11) as host material of light emitting layer>
An organic EL device can be obtained by the method according to Example 7 except that the compound (10P-g-101) which is the host material of the light emitting layer is changed to the compound (10P-gq-101-J11). Blue light emission is obtained when a DC voltage is applied to both electrodes.
<比較例4>
<化合物mCBPを発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物mCBPに替えた以外は実施例7に準じた方法で有機EL素子を得られる。両電極に直流電圧を印加すると青色発光が得られる。
Comparative Example 4
<Device using compound mCBP as host material of light emitting layer>
An organic EL device can be obtained by the method according to Example 7 except that the compound (10P-g-101) as the host material of the light emitting layer is changed to the compound mCBP. Blue light emission is obtained when a DC voltage is applied to both electrodes.
 次に、表5に示す層構成で実施例9~16および比較例5~8に係る有機EL素子を作製した。 Next, organic EL elements according to Examples 9 to 16 and Comparative Examples 5 to 8 were produced with the layer configurations shown in Table 5.
Figure JPOXMLDOC01-appb-T000207
Figure JPOXMLDOC01-appb-T000207
 表5おいて、「NPD」はN,N’-ビス(ナフチレン-1-イル)-N,N’-ビス(フェニル)ベンゼン、「mCP」は1,3-ビス(カルバゾリル-9-イル)ベンゼン、「DABNA2」は9-([1,1’-ビフェニル]-3-イル-N,N,5,11-テトラフェニル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセン-3-アミン、「DABNA3」はN,N,5,9-テトラフェニル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセン-7-アミンの互いの1つのベンゼン環を共有する2量体、「4CzIPN」は2,4,5,6-テトラ(9H-カルバゾール-9-イル)イソフタロニトリル、「CzBPCN」は4,4’,6,6’-テトラ(9H-カルバゾール-9-イル)―[1,1’-ビフェニル]-3,3’-ジカルボニトリル、「TSPO1」はジフェニル-4-トリフェニルシリルフェニルホスフィンオキサイドである。以下に化学構造を示す。 In Table 5, “NPD” is N, N′-bis (naphthylene-1-yl) -N, N′-bis (phenyl) benzene, and “mCP” is 1,3-bis (carbazolyl-9-yl) Benzene, “DABNA2” is 9-([1,1′-biphenyl] -3-yl-N, N, 5,11-tetraphenyl-5,9-dihydro-5,9-diaza-13b-boranaphtho [3 , 2,1-de] anthracene-3-amine, “DABNA3” is N, N, 5,9-tetraphenyl-5,9-dihydro-5,9-diaza-13b-boranaphtho [3,2,1- "4CzIPN" is a dimer which shares one benzene ring of each other of de] anthracene-7-amine, "2,4,5,6-tetra (9H-carbazol-9-yl) isophthalonitrile," "CzBPCN" Is 4,4 ', 6, '-Tetra (9H-carbazol-9-yl)-[1,1'-biphenyl] -3,3'-dicarbonitrile, "TSPO1" is diphenyl-4-triphenylsilylphenyl phosphine oxide. Indicates the chemical structure.
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
<実施例9>
<ホストに化合物(10P-g-101)を、ドーパントにDABNA2を用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、NPD、TcTa、mCP、化合物(10P-g-101)、DABNA2、TSPO1およびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
Example 9
<Device using compound (10P-g-101) as host and DABNA2 as dopant>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.) and made of tantalum containing NPD, TcTa, mCP, compound (10P-g-101), DABNA2, TSPO1 and LiF. An evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着し、次いで、TcTaを加熱して膜厚15nmになるように蒸着し、更にmCPを加熱して膜厚15nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、化合物(10P-g-101)とDABNA2を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(10P-g-101)とDABNA2の重量比がおよそ98対2になるように蒸着速度を調節した。次に、TSPO1を加熱して膜厚40nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子を得た。 The following layers were formed sequentially on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-g-101) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted so that the weight ratio of the compound (10P-g-101) to DABNA2 was about 98: 2. Next, TSPO1 was heated and vapor deposited to a film thickness of 40 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約466nmをピークする青色発光が得られた。駆動電圧4.10V、電流密度0.05mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は18.2%であった。 When an ITO electrode was used as an anode and a LiF / aluminum electrode was used as a cathode, and a DC voltage was applied, blue light emission having a peak of about 466 nm was obtained. The light emission luminance was 10 cd / m 2 at a drive voltage of 4.10 V and a current density of 0.05 mA / cm 2 , and the external quantum efficiency at this time was 18.2%.
<実施例10>
<ホストに化合物(10P-gq-101-J1)を、ドーパントにDABNA2を用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替えた以外は実施例9に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると青色発光が得られた。駆動電圧3.82V、電流密度0.04mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は22.6%であった。駆動電圧4.70V、電流密度0.66mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は15.3%であった。比較例5に対して、10cd/mおよび100cd/mにおける外部量子効率は共に優れていた。
Example 10
<Device using compound (10P-gq-101-J1) as host and DABNA2 as dopant>
An organic EL device was obtained by the method according to Example 9, except that the compound (10P-g-101) as the host material of the light emitting layer was changed to the compound (10P-gq-101-J11). Blue light emission was obtained when a DC voltage was applied to both electrodes. The light emission luminance was 10 cd / m 2 at a drive voltage of 3.82 V and a current density of 0.04 mA / cm 2 , and the external quantum efficiency at this time was 22.6%. The light emission luminance was 100 cd / m 2 at a drive voltage of 4.70 V and a current density of 0.66 mA / cm 2 , and the external quantum efficiency at this time was 15.3%. The external quantum efficiencies at 10 cd / m 2 and 100 cd / m 2 were both superior to those of Comparative Example 5.
<比較例5>
<ホストに化合物mCBPを、ドーパントにDABNA2を用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物mCBPに替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約467nmにピークトップを有する青色発光が得られた。駆動電圧3.65V、電流密度0.06mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は18.2%であった。駆動電圧5.13V、電流密度0.92mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は11.4%であった。
Comparative Example 5
<Device using compound mCBP as host and DABNA2 as dopant>
An organic EL device was obtained by the method according to Example 5, except that the compound (10P-g-101) as the host material of the light emitting layer was changed to the compound mCBP. When DC voltage was applied to both electrodes, blue emission having a peak top at about 467 nm was obtained. The light emission luminance was 10 cd / m 2 at a drive voltage of 3.65 V and a current density of 0.06 mA / cm 2 , and the external quantum efficiency at this time was 18.2%. The light emission luminance was 100 cd / m 2 at a drive voltage of 5.13 V and a current density of 0.92 mA / cm 2 , and the external quantum efficiency at this time was 11.4%.
<実施例11>
<ホストに化合物(10P-g-101)を、ドーパントにDABNA3を用いた素子>
 発光層のドーパント材料である化合物DABNA2を化合物DABNA3に替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Example 11
<Device using compound (10P-g-101) as host and DABNA3 as dopant>
An organic EL element is obtained by the method according to Example 9 except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound DABNA3. Blue light emission is obtained when a DC voltage is applied to both electrodes.
<実施例12>
<ホストに化合物(10P-gq-101-J11)を、ドーパントにDABNA3を用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替え、ドーパント材料である化合物DABNA2を化合物DABNA3に替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Example 12
<Device using compound (10P-gq-101-J11) as host and DABNA3 as dopant>
Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound DABNA3 The organic EL element is obtained by Blue light emission is obtained when a DC voltage is applied to both electrodes.
<比較例6>
<ホストに化合物mCBPを、ドーパントにDABNA3を用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物mCBPに替え、ドーパント材料である化合物DABNA2を化合物DABNA3に替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Comparative Example 6
<Device using compound mCBP as host and DABNA3 as dopant>
An organic EL device is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound mCBP and the compound DABNA2 which is the dopant material is replaced with the compound DABNA3. Blue light emission is obtained when a DC voltage is applied to both electrodes.
<実施例13>
<ホストに化合物(10P-g-101)を、ドーパントに4CzIPNを用いた素子>
 発光層のドーパント材料である化合物DABNA2を化合物4CzIPNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると緑色発光が得られる。
Example 13
<Device using compound (10P-g-101) as host and 4CzIPN as dopant>
An organic EL element is obtained by the method according to Example 9 except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound 4CzIPN. Green light emission can be obtained by applying a DC voltage to both electrodes.
<実施例14>
<ホストに化合物(10P-gq-101-J11)を、ドーパントに4CzIPNを用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替え、ドーパント材料である化合物DABNA2を化合物4CzIPNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると緑色発光が得られる。
Example 14
<Device using compound (10P-gq-101-J11) as host and 4CzIPN as dopant>
Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound 4CzIPN The organic EL element is obtained by Green light emission can be obtained by applying a DC voltage to both electrodes.
<比較例7>
<ホストに化合物mCBPを、ドーパントに4CzIPNを用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物mCBPに替え、ドーパント材料である化合物DABNA2を化合物4CzIPNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると緑色発光が得られる。
Comparative Example 7
<Device using compound mCBP as host and 4CzIPN as dopant>
An organic EL element is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced with the compound mCBP and the compound DABNA2 which is the dopant material is replaced with the compound 4CzIPN. Green light emission can be obtained by applying a DC voltage to both electrodes.
<実施例15>
<ホストに化合物(10P-g-101)を、ドーパントにCzBPCNを用いた素子>
 発光層のドーパント材料である化合物DABNA2を化合物CzBPCNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Example 15
<Device using compound (10P-g-101) as host and CzBPCN as dopant>
An organic EL device is obtained by the method according to Example 9, except that the compound DABNA2 which is a dopant material of the light emitting layer is changed to the compound CzBPCN. Blue light emission is obtained when a DC voltage is applied to both electrodes.
<実施例16>
<ホストに化合物(10P-gq-101-J11)を、ドーパントにCzBPCNを用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物(10P-gq-101-J11)に替え、ドーパント材料である化合物DABNA2を化合物CzBPCNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Example 16
<Device using compound (10P-gq-101-J11) as host and CzBPCN as dopant>
Method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound (10P-gq-101-J11) and the compound DABNA2 which is the dopant material is replaced by the compound CzBPCN The organic EL element is obtained by Blue light emission is obtained when a DC voltage is applied to both electrodes.
<比較例8>
<ホストに化合物mCBPを、ドーパントにCzBPCNを用いた素子>
 発光層のホスト材料である化合物(10P-g-101)を化合物mCBPに替え、ドーパント材料である化合物DABNA2を化合物CzBPCNに替えた以外は実施例9に準じた方法で有機EL素子が得られる。両電極に直流電圧を印加すると青色発光が得られる。
Comparative Example 8
<Device using compound mCBP as host and CzBPCN as dopant>
An organic EL device is obtained by the method according to Example 9 except that the compound (10P-g-101) which is the host material of the light emitting layer is replaced by the compound mCBP and the compound DABNA2 which is the dopant material is replaced by the compound CzBPCN. Blue light emission is obtained when a DC voltage is applied to both electrodes.
 次に、表6に示す層構成で実施例17に係る有機EL素子を作製した。 Next, an organic EL element according to Example 17 was produced with the layer configuration shown in Table 6.
Figure JPOXMLDOC01-appb-T000209
Figure JPOXMLDOC01-appb-T000209
<実施例17>
<ホストに化合物(10P-gq-100-J11)を、ドーパントにDABNA2を用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、NPD、TcTa、mCP、化合物(10P-gq-100-J11)、DABNA2、TSPO1およびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
Example 17
<Device using compound (10P-gq-100-J11) as host and DABNA2 as dopant>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm was used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of NPD, TcTa, mCP, compound (10P-gq-100-J11), DABNA2, TSPO1 and LiF was loaded. A tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着し、次いで、TcTaを加熱して膜厚15nmになるように蒸着し、更にmCPを加熱して膜厚15nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、化合物(10P-gq-100-J11)とDABNA2を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(10P-gq-100-J11)とDABNA2の重量比がおよそ98対2になるように蒸着速度を調節した。次に、TSPO1を加熱して膜厚40nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子を得た。 The following layers were formed sequentially on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-gq-100-J11) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted so that the weight ratio of the compound (10P-gq-100-J11) to DABNA2 was about 98: 2. Next, TSPO1 was heated and vapor deposited to a film thickness of 40 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約469nmをピークする青色発光が得られた。駆動電圧4.00V、電流密度0.04mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は25.0%であった。駆動電圧4.84V、電流密度0.48mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は21.0%であった。 When an ITO electrode was used as an anode and a LiF / aluminum electrode was used as a cathode, and a direct current voltage was applied, blue light emission having a peak of about 469 nm was obtained. The light emission luminance was 10 cd / m 2 at a drive voltage of 4.00 V and a current density of 0.04 mA / cm 2 , and the external quantum efficiency at this time was 25.0%. The light emission luminance was 100 cd / m 2 at a drive voltage of 4.84 V and a current density of 0.48 mA / cm 2 , and the external quantum efficiency at this time was 21.0%.
 次に、表7に示す層構成で実施例18、19および比較例9、10に係る有機EL素子を作製した。 Next, organic EL elements according to Examples 18, 19 and Comparative Examples 9, 10 were produced with the layer configurations shown in Table 7.
Figure JPOXMLDOC01-appb-T000210
Figure JPOXMLDOC01-appb-T000210
<実施例18>
<ホストに化合物(10P-gq-100-J11)を、ドーパントにDABNA2を用いた素子>
 スパッタリングにより製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、NPD、TcTa、mCP、化合物(10P-gq-100-J11)、DABNA2、TSPO1およびLiFのそれぞれを入れたタンタル製蒸着用ルツボ、およびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
Example 18
<Device using compound (10P-gq-100-J11) as host and DABNA2 as dopant>
A 26 mm × 28 mm × 0.7 mm glass substrate (Opto Science Co., Ltd.) obtained by polishing an ITO film formed by sputtering to 50 nm was used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (Choshu Sangyo Co., Ltd.), and each of NPD, TcTa, mCP, compound (10P-gq-100-J11), DABNA2, TSPO1 and LiF was loaded. A tantalum evaporation crucible and an aluminum nitride evaporation crucible containing aluminum were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着し、次いで、TcTaを加熱して膜厚15nmになるように蒸着し、更にmCPを加熱して膜厚15nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、化合物(10P-gq-100-J11)とDABNA2を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(10P-gq-100-J11)とDABNA2の重量比がおよそ98対2になるように蒸着速度を調節した。次に、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように0.1~2nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子を得た。 The following layers were formed sequentially on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 2.0 × 10 -4 Pa, first, NPD is heated to deposit 40 nm thick, and then TcTa is heated to deposit 15 nm thick, The mCP was heated and evaporated to a film thickness of 15 nm to form a three-layer hole injection layer and a hole transport layer. Next, the compound (10P-gq-100-J11) and DABNA2 were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted so that the weight ratio of the compound (10P-gq-100-J11) to DABNA2 was about 98: 2. Next, TSPO1 was heated and vapor deposited to a film thickness of 30 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit 1 nm thick at a deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated to a thickness of 100 nm to 0.1 to 2 nm / It vapor-deposited at the vapor deposition rate of second, the cathode was formed, and the organic EL element was obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約469nmにピークトップを有する青色発光が得られた。駆動電圧3.98V、電流密度0.04mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は25.0%であった。駆動電圧4.66V、電流密度0.48mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は19.8%であった。下記比較例9に対して、10cd/mおよび100cd/mにおける外部量子効率は共に優れていた。 When an ITO electrode was used as an anode and a LiF / aluminum electrode was used as a cathode and a DC voltage was applied, blue light emission having a peak top at about 469 nm was obtained. The emission luminance was 10 cd / m 2 at a drive voltage of 3.98 V and a current density of 0.04 mA / cm 2 , and the external quantum efficiency at this time was 25.0%. The light emission luminance was 100 cd / m 2 at a drive voltage of 4.66 V and a current density of 0.48 mA / cm 2 , and the external quantum efficiency at this time was 19.8%. Against the following Comparative Example 9, the external quantum efficiency at 10 cd / m 2 and 100 cd / m 2 were both excellent.
<比較例9>
<ホストに化合物mCBPを、ドーパントにDABNA2を用いた素子>
 発光層のホスト材料である化合物(10P-gq-100-J11)を化合物mCBPに替えた以外は実施例18に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約467nmにピークトップを有する青色発光が得られた。駆動電圧4.50V、電流密度0.06mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は17.6%であった。駆動電圧5.38V、電流密度0.83mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は12.4%であった。
Comparative Example 9
<Device using compound mCBP as host and DABNA2 as dopant>
An organic EL device was obtained by the method according to Example 18 except that the compound (10P-gq-100-J11) as the host material of the light emitting layer was changed to the compound mCBP. When DC voltage was applied to both electrodes, blue emission having a peak top at about 467 nm was obtained. The light emission luminance was 10 cd / m 2 at a drive voltage of 4.50 V and a current density of 0.06 mA / cm 2 , and the external quantum efficiency at this time was 17.6%. The light emission luminance was 100 cd / m 2 at a drive voltage of 5.38 V and a current density of 0.83 mA / cm 2 , and the external quantum efficiency at this time was 12.4%.
<実施例19>
<ホストに化合物(10P-gq-100-J11)を、ドーパントにDABNA3を用いた素子>
 発光層のドーパント材料であるDABNA3に替えた以外は実施例18に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約472nmにピークトップを有する青色発光が得られた。駆動電圧4.00V、電流密度0.03mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は34.5%であった。駆動電圧5.38V、電流密度0.34mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は32.7%であった。下記比較例10に対して、10cd/mおよび100cd/mにおける外部量子効率は共に優れていた。
Example 19
<Device using compound (10P-gq-100-J11) as host and DABNA3 as dopant>
An organic EL device was obtained by the method according to Example 18 except that DABNA3 was used as the dopant material of the light emitting layer. When a DC voltage was applied to both electrodes, blue emission having a peak top at about 472 nm was obtained. The light emission luminance was 10 cd / m 2 at a drive voltage of 4.00 V and a current density of 0.03 mA / cm 2 , and the external quantum efficiency at this time was 34.5%. The emission luminance was 100 cd / m 2 at a drive voltage of 5.38 V and a current density of 0.34 mA / cm 2 , and the external quantum efficiency at this time was 32.7%. Against the following Comparative Example 10, the external quantum efficiency at 10 cd / m 2 and 100 cd / m 2 were both excellent.
<比較例10>
<ホストに化合物mCBPを、ドーパントにDABNA3を用いた素子>
 発光層のホスト材料である化合物(10P-gq-100-J11)を化合物mCBPに替え、発光層のドーパント材料であるDABNA3に替えた以外は実施例18に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約471nmにピークトップを有する青色発光が得られた。駆動電圧4.43V、電流密度0.05mA/cmにおいて、発光輝度は10cd/mであり、この時の外部量子効率は22.5%であった。駆動電圧5.20V、電流密度0.63mA/cmにおいて、発光輝度は100cd/mであり、この時の外部量子効率は18.7%であった。
Comparative Example 10
<Device using compound mCBP as host and DABNA3 as dopant>
An organic EL device was obtained by the method according to Example 18 except that the compound (10P-gq-100-J11) which is the host material of the light emitting layer was changed to the compound mCBP and DABNA3 which was the dopant material of the light emitting layer. . When a DC voltage was applied to both electrodes, blue emission having a peak top at about 471 nm was obtained. The emission luminance was 10 cd / m 2 at a drive voltage of 4.43 V and a current density of 0.05 mA / cm 2 , and the external quantum efficiency at this time was 22.5%. The emission luminance was 100 cd / m 2 at a drive voltage of 5.20 V and a current density of 0.63 mA / cm 2 , and the external quantum efficiency at this time was 18.7%.
<TADF化合物としての評価>
 次に、DFT計算を用いてTADF活性である発光材料の構造を設計した。PBE0/6-31G(d)法を用いて基底状態の構造最適化を行った後、Time-dependent DFT法を用いて基底状態からの垂直励起エネルギーを計算し、ΔESTおよび振動子強度を見積もった。全ての計算は量子化学計算プログラムFirefly (A. A. Granovsky, Firefly version 8)を用いて行った。
<Evaluation as a TADF compound>
Next, DFT calculations were used to design the structure of the light emitting material that is TADF active. After performing structure optimization of the ground state using the PBE0 / 6-31G (d) method, calculate the vertical excitation energy from the ground state using the time-dependent DFT method, and estimate the ΔE ST and the oscillator strength. The All calculations were performed using the quantum chemistry program Firefly (A. A. Granovsky, Firefly version 8).
<計算比較例1>
 下記比較化合物(TADF-EM1)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.37eV(波長に換算すると522nm)、0.0003、および、ΔESTは0.008eVと見積もられた。
Figure JPOXMLDOC01-appb-C000211
Calculation Comparison Example 1
The S 1 excitation energy, oscillator strength and ΔE ST of the following comparison compound (TADF-EM1) are estimated to be 2.37 eV (522 nm in terms of wavelength), 0.0003 and ΔE ST of 0.008 eV, respectively. It was done.
Figure JPOXMLDOC01-appb-C000211
 九州大学安田教授らの発表(Chem. Commun., 2017, 53, 8723-8726)によれば、論文中において計算方法としてPBE0/6-31G(d)を用いて計算された、S励起エネルギー、振動子強度およびΔESTは、それぞれ、2.34eV(波長に換算すると530nm)、0.0057および0.008eVと見積もられた。また、発光波長、PLQYおよびΔESTの実測値は、それぞれ、504nm、97%および0.06eVであった。 According to the presentation by Professor Yasuda of Kyushu University (Chem. Commun., 2017, 53, 8723-8726), S 1 excitation energy calculated using PBE0 / 6-31G (d) as a calculation method in the paper The oscillator strength and ΔE ST were estimated to be 2.34 eV (530 nm in terms of wavelength), 0.0057 and 0.008 eV, respectively. In addition, the measured values of the emission wavelength, PLQY and ΔE ST were 504 nm, 97% and 0.06 eV, respectively.
 本計算比較例において、PBE0/6-31G(d)法を用いて計算されたS励起エネルギーは、実測により求められた発光波長より18nm短く、ΔESTは10倍程度小さかった。また、計算による振動子強度の値は非常に小さかったが、実測のPLQYは非常に高かった。 In the present comparative example, the S 1 excitation energy calculated using the PBE 0 / 6-31 G (d) method was 18 nm shorter than the emission wavelength obtained by the measurement, and ΔE ST was about 10 times smaller. Moreover, although the value of the calculated oscillator strength was very small, the actually measured PLQY was very high.
 本発明の含ホウ素スピロ構造を有する分子であれば、計算比較例1と実測値が同様の傾向であるとの仮定のもとに、当該化合物がTADF活性な蛍光材料であるかどうかを判別した。具体的には、実際の発光波長はS励起エネルギーの計算結果に比べて短くなる可能性があり、実測のΔESTは計算結果に比べて大きく可能性があり、PLQYについても振動子強度の計算結果に比べて大きく可能性があると仮定した。そこで、計算結果のΔESTが0.20eVより小さいものはTADF蛍光材料として使用可能であり、0.02eVより小さいものはTADF蛍光材料としてより有効に使用可能であるとした。また、振動子強度が0.0002以上であれば高いPLQYを得られ、0.0002より小さいときは低いPLQYが得られるとした。また、実際の発光波長はS励起エネルギーの計算結果に近いが多少シフトする可能性があるとした。 In the case of a molecule having a boron-containing spiro structure of the present invention, it was determined whether the compound is a TADF-active fluorescent material under the assumption that the calculated values and the comparative example 1 have a similar tendency. . Specifically, the actual emission wavelength may be shorter than the calculation result of the S 1 excitation energy, the actually measured ΔE ST may be larger than the calculation result, and the PLQY also has a large oscillator strength. It was assumed that there is a large possibility compared to the calculation results. Therefore, it is considered that those with ΔE ST calculated less than 0.20 eV can be used as TADF fluorescent materials, and those smaller than 0.02 eV can be used more effectively as TADF fluorescent materials. In addition, when the oscillator strength is 0.0002 or more, high PLQY can be obtained, and when it is smaller than 0.0002, low PLQY can be obtained. Also, it is assumed that the actual emission wavelength is close to the calculation result of the S 1 excitation energy but may shift somewhat.
<計算実施例1>
 化合物(10P-g-295)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、3.08eV(波長に換算すると403nm)、0.0138、および、ΔESTは0.135eVと見積もられた。計算結果より、化合物(10P-g-295)は非常に深い青色発光が得られ、TADF蛍光材料として使用可能であり、高いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000212
Calculation Example 1
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-g-295) are estimated to be 3.08 eV (403 nm in terms of wavelength), 0.0138 and ΔE ST as 0.135 eV, respectively. It was done. From the calculation results, it was predicted that the compound (10P-g-295) obtained very deep blue emission, could be used as a TADF fluorescent material, and had high PLQY.
Figure JPOXMLDOC01-appb-C000212
<計算実施例2>
 化合物(10P-g-2011)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.76eV(波長に換算すると449nm)、0.0000、および、ΔESTは0.003eVと見積もられた。計算結果より、化合物(10P-g-2011)は青色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、低いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000213
Calculation Example 2
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-g-2011) are estimated to be 2.76 eV (converted to wavelength 449 nm), 0.0000 and ΔE ST of 0.003 eV, respectively. It was done. From the calculation results, it was predicted that the compound (10P-g-2011) can emit blue light, can be more effectively used as a TADF fluorescent material, and has low PLQY.
Figure JPOXMLDOC01-appb-C000213
<計算実施例3>
 化合物(10P-g-2021)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.40eV(波長に換算すると517nm)、0.0000、および、ΔESTは0.003eVと見積もられた。計算結果より、化合物(10P-g-2021)は緑色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、低いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000214
Calculation Example 3
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-g-2021) are estimated to be 2.40 eV (converted to wavelength 517 nm), 0.0000 and ΔE ST of 0.003 eV, respectively. It was done. From the calculation results, it was predicted that the compound (10P-g-2021) gave green light emission, could be more effectively used as a TADF fluorescent material, and had low PLQY.
Figure JPOXMLDOC01-appb-C000214
<計算実施例4>
 化合物(10P-g-2031)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.90eV(波長に換算すると427nm)、0.0000、および、ΔESTは0.004eVと見積もられた。計算結果より、化合物(10P-g-2031)は青色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、低いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000215
Calculation Example 4
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-g-2031) are estimated to be 2.90 eV (converted to wavelength 427 nm), 0.0000 and ΔE ST of 0.004 eV, respectively. It was done. From the calculation results, it was predicted that the compound (10P-g-2031) emits blue light, can be more effectively used as a TADF fluorescent material, and has a low PLQY.
Figure JPOXMLDOC01-appb-C000215
<計算実施例5>
 化合物(10P-g-2041)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.77eV(波長に換算すると447nm)、0.0000、および、ΔESTは0.003eVと見積もられた。計算結果より、化合物(10P-g-2041)は青色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、低いPLQYを有すると予想された。
Calculation Example 5
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-g-2041) are estimated to be 2.77 eV (converted to wavelength 447 nm), 0.0000 and ΔE ST of 0.003 eV, respectively. It was done. From the calculation results, it was predicted that the compound (10P-g-2041) emits blue light, can be more effectively used as a TADF fluorescent material, and has a low PLQY.
<計算実施例6>
 化合物(10P-gq-2011-J11)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.88eV(波長に換算すると430nm)、0.0020、および、ΔESTは0.038eVと見積もられた。計算結果より、化合物(10P-gq-2011-J11)は深い青色発光が得られ、TADF蛍光材料として使用可能であり、高いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000217
Calculation Example 6
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-gq-2011-J11) are respectively 2.88 eV (430 nm in terms of wavelength), 0.0020, and ΔE ST is 0.038 eV It was estimated. From the calculation results, it was predicted that the compound (10P-gq-2011-J11) obtained deep blue luminescence, could be used as a TADF fluorescent material, and had high PLQY.
Figure JPOXMLDOC01-appb-C000217
<計算実施例7>
 化合物(10P-gq-2021-J11)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、2.54eV(波長に換算すると488nm)、0.0042、および、ΔESTは0.014eVと見積もられた。計算結果より、化合物(10P-gq-2021-J11)は青色~緑色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、高いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000218
Calculation Example 7
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-gq-2021-J11) are respectively 2.54 eV (488 nm in terms of wavelength), 0.0042, and ΔE ST is 0.014 eV. It was estimated. From the calculation results, it was predicted that the compound (10P-gq-2021-J11) emits blue to green light, can be more effectively used as a TADF fluorescent material, and has high PLQY.
Figure JPOXMLDOC01-appb-C000218
<計算実施例8>
 化合物(10P-gq-2031-J11)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、3.05eV(波長に換算すると406nm)、0.0016、および、ΔESTは0.147eVと見積もられた。計算結果より、化合物(10P-gq-2031-J11)は深い青色発光が得られ、TADF蛍光材料として使用可能であり、高いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000219
Calculation Example 8
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-gq-2031-J11) are 3.05 eV (406 nm in terms of wavelength), 0.0016, and ΔE ST is 0.147 eV, respectively. It was estimated. From the calculation results, it was predicted that the compound (10P-gq-2031-J11) obtained deep blue emission, was usable as a TADF fluorescent material, and had high PLQY.
Figure JPOXMLDOC01-appb-C000219
<計算実施例9>
 化合物(10P-gq-2041-J11)のS励起エネルギー、振動子強度およびΔESTは、それぞれ、4.62eV(波長に換算すると474nm)、0.0006、および、ΔESTは0.006eVと見積もられた。計算結果より、化合物(10P-gq-2041-J11)は青色~緑色発光が得られ、TADF蛍光材料としてより有効に使用可能であり、高いPLQYを有すると予想された。
Figure JPOXMLDOC01-appb-C000220
Calculation Example 9
The S 1 excitation energy, oscillator strength and ΔE ST of the compound (10P-gq-2041-J11) are 4.62 eV (converted to wavelength 474 nm), 0.0006, and ΔE ST is 0.006 eV, respectively. It was estimated. From the calculation results, it was predicted that the compound (10P-gq-2041-J11) emitted blue to green light, could be used more effectively as a TADF fluorescent material, and had high PLQY.
Figure JPOXMLDOC01-appb-C000220
 以上、本発明に係る化合物の一部について、有機EL素子用材料としての評価を行い、優れた有機デバイス用材料であること示したが、評価を行っていない他の化合物も同じ基本骨格を有し、全体としても類似の構造を有する化合物であり、当業者においては同様に優れた有機デバイス用材料であることを理解できる。 As mentioned above, although some of the compounds according to the present invention were evaluated as materials for organic EL elements and showed that they were excellent materials for organic devices, other compounds not evaluated also have the same basic skeleton. It is a compound having a similar structure as a whole, and it can be understood by those skilled in the art that the material is an excellent material for organic devices as well.
 本発明では、ホウ素をスピロ原子とした新規な化合物を提供することで、有機EL素子等の有機デバイス用材料の選択肢を増やすことができる。また、ホウ素をスピロ原子とした新規な化合物を有機EL素子用材料として用いることで、優れた有機EL素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 In the present invention, the choice of materials for organic devices such as organic EL elements can be increased by providing a novel compound in which boron is a spiro atom. Further, by using a novel compound in which boron is a spiro atom as a material for an organic EL element, it is possible to provide an excellent organic EL element, a display device including the same, a lighting device including the same, and the like.
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極
 
100 organic electroluminescent device 101 substrate 102 anode 103 hole injection layer 104 hole transport layer 105 light emitting layer 106 electron transport layer 107 electron injection layer 108 cathode

Claims (27)

  1.  下記一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、B環はヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
     X~Xは、それぞれ独立して、CまたはNであり、
     ZおよびZは、それぞれ独立して、単結合、アルキレン、アルケニレン、アルキニレンまたはアリーレンであり、これらにおける任意の-CH-は、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよく、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
     式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
    The compound represented by following General formula (1), or the high molecular compound which makes the structure represented by General formula (1) a repeating unit.
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1),
    Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring, ring B is a heteroaryl ring, ring A and ring B and / or ring C and ring D combine The ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
    X 1 to X 4 are each independently C or N,
    Z 1 and Z 2 are each independently a single bond, alkylene, alkenylene, alkynylene or arylene, and arbitrary —CH 2 — in these is —C (= CR 2 ) —, —C (= C (= C) = O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-,- C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= S)-,- S (= O) —, —S (= O) 2 —, —SiR 2 —, —NR—, or —N = N— may be substituted, wherein R is independently , Hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl , Alkoxy or aryloxy, wherein at least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent to R with A ring, B ring, C ring and / or The ring D may be combined to form a ring structure, provided that Z 1 and Z 2 are not simultaneously a single bond,
    At least one hydrogen in the compound or structure represented by formula (1) may be substituted with cyano, halogen or deuterium. )
  2.  A環、C環およびD環は、それぞれ独立して、炭素数6~30のアリール環または炭素数2~30のヘテロアリール環であり、B環は炭素数2~30のヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
     X~Xは、それぞれ独立して、CまたはNであり、
     ZおよびZは、それぞれ独立して、単結合、-(CR-(nは1~12)、-CR=CR-、-C≡C-、-(CR=CR-CR-(nは1~4)、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-C(=O)C(=O)-、-C(=O)OC(=O)-、-(CR-O)-(nは1~12)、-(CR-O-(nは1~12)、-(CR-CR-O)-(nは1~6)、-O-、-S-、-SS-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、-N=N-、または、フェニレンであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
     式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項1に記載の化合物または高分子化合物。
    Ring A, ring C and ring D are each independently an aryl ring having 6 to 30 carbon atoms or a heteroaryl ring having 2 to 30 carbon atoms, and ring B is a heteroaryl ring having 2 to 30 carbon atoms, , A ring and B ring and / or C ring and D ring may form a ring structure, and at least one hydrogen in these rings may be substituted, provided that A ring alone and D ring Acridine based substituents are excluded as substituents to the ring alone,
    X 1 to X 4 are each independently C or N,
    Z 1 and Z 2 are each independently a single bond,-(CR 2 ) n- (n is 1 to 12), -CR = CR-, -C≡C-,-(CR = CR-CR 2 N- (n is 1 to 4), -C (= CR 2 )-, -C (= C (= O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-, -C (= S) S-, -C (= O) NR-, -C (= O) C (= O)-, -C (= O) OC (= O)-,-(CR 2 -O) n- (n is 1 to 12),-(CR 2 ) n -O- (n is 1 to 12),-(CR 2 -CR 2 -O) n- (n is 1 to 6), -O-, -S-, -SS-, -Se-, -Po-, -P (= O)- , -P (= S) -, - S (= O) -, - S (= O) 2 -, - SiR 2 -, - NR -, - N = N-, or Phenylene, wherein each R is independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy , At least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent R, A, B ring, C ring and / or D ring are bonded A ring structure may be formed, provided that Z 1 and Z 2 are not simultaneously a single bond,
    At least one hydrogen in the compound or structure represented by the formula (1) may be substituted with cyano, halogen or deuterium
    The compound or polymer compound according to claim 1.
  3.  A環、C環およびD環は、それぞれ独立して、ベンゼン環、ナフタレン環、インダン環、インデン環、フラン環、チオフェン環、ベンゾフラン環またはベンゾチオフェン環であり、B環は、ピロール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環またはイソキノリン環であり、A環とB環および/またはC環とD環は結合して環構造を形成してもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
     X~XはCであり、
     ZおよびZは、それぞれ独立して、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
     式(1)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項1または2に記載の化合物。
    Ring A, ring C and ring D are each independently a benzene ring, naphthalene ring, indane ring, indene ring, indene ring, furan ring, thiophene ring, benzofuran ring or benzothiophene ring, and ring B is a pyrrole ring, pyridine A ring, pyrazine ring, pyrimidine ring, pyridazine ring, quinoline ring or isoquinoline ring, wherein A ring and B ring and / or C ring and D ring may combine to form a ring structure, and at least at these rings One hydrogen may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
    X 1 to X 4 are C,
    Z 1 and Z 2 are each independently a single bond, -CR 2- , -CR = CR-, -C (= O)-, -C (= S)-, -O-, -S-, -Se -, - P (= O ) -, - P (= S) -, - S (= O) -, - SiR 2 -, - NR-, or is phenylene, wherein, R represents respectively Independently, hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, and at least one hydrogen in R is aryl, R may be substituted with heteroaryl, alkyl or cycloalkyl, and adjacent R, A ring, B ring, C ring and / or D ring may combine to form a ring structure, Z 1 and Z 2 can not simultaneously be a single bond,
    At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 1 or 2.
  4.  下記一般式(2)で表される、請求項1~3のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZおよびZが同時に単結合であることはなく、
     R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~30のアリール環または炭素数6~30のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~30のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
    The compound according to any one of claims 1 to 3, which is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl And Z 1 and Z 2 can not simultaneously be a single bond,
    R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 30 carbon atoms or a heteroaryl having 6 to 30 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to,
    At least one hydrogen in the compound represented by formula (2) may be substituted with cyano, halogen or deuterium. )
  5.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
     R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4に記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, aryl , Heteroaryl, alkyl or cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond,
    R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo Optionally substituted with alkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl having 6 to 15 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl And the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 4.
  6.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または1,2-フェニレンであり、ここで、Rは、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
     R~R16は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~12のアリール環または炭素数6~10のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4または5に記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon number 6-16 aryl, C2-C15 heteroaryl, C1-C6 alkyl or C3-C12 cycloalkyl, provided that Z 1 and Z 2 are not simultaneously a single bond,
    R 1 to R 16 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that R 1 to R 4 and R 13 to R 16 are acridine based substituents, respectively. He
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 4 or 5.
  7.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、ただしZおよびZが同時に単結合であることはなく、
     R~RおよびR~R16は、水素であり、
     R~Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
     また、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4~6のいずれかに記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is hydrogen, carbon Aryl of 6 to 16, aryl of 2 to 15 carbons, alkyl of 1 to 6 carbons or cycloalkyl of 3 to 12 carbons, provided that Z 1 and Z 2 are not simultaneously a single bond ,
    R 1 to R 4 and R 9 to R 16 are hydrogen,
    R 5 to R 8 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons,
    Further, adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, and at least one hydrogen in the formed ring is carbon Aryl of 6 to 16 carbon, heteroaryl of 2 to 15 carbons, diarylamino (wherein aryl is aryl of 6 to 12 carbons), alkyl of 1 to 6 carbons, cycloalkyl of 3 to 12 carbons, It may be substituted with 1 to 6 alkoxy or aryloxy having 6 to 16 carbon atoms, and at least one hydrogen in these may be aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, or 1 carbon atom And may be substituted with an alkyl of up to 6 or a cycloalkyl having 3 to 12 carbon atoms,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    The compound according to any one of claims 4 to 6.
  8.  下記化学構造式で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    The compound according to claim 1, which is represented by the following chemical structural formula.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  9.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-、-NR-、または、1,2-フェニレンであり、ここで、Rは、アリール、ヘテロアリールまたはシクロアルキルであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-CR=CR-、-C(=O)-、-C(=S)-、-O-、-S-、-Se-、-P(=O)-、-P(=S)-、-S(=O)-、-SiR-、-NR-、または、フェニレンで結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~30のアリール環または炭素数6~30のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~30のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4に記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se-, -NR- or 1,2-phenylene, wherein R is aryl, hetero At least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, provided that any one or more of Z 1 or Z 2 is -NR- And R 1 , R 1 , R 8 , R 9 and / or R 16 each represents a single bond, -CR 2- , -CR = CR-, -C (= O)-, -C (= S) -, -O-, -S-, -Se-, -P (= O)-, -P (= S)-, -S (= O)-, -SiR 2- , -NR-, or phenylene To form a ring structure, wherein R is independently hydrogen, aryl , Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy, at least one hydrogen in R is aryl, heteroaryl, alkyl or cycloalkyl May be replaced by
    R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy or aryloxy; At least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 30 carbon atoms or a heteroaryl having 6 to 30 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 30 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, at least one hydrogen in these being aryl , Heteroaryl, alkyl or cycloalkyl, provided that they contain a ring or d ring Acridine system substituents excluded as substituents to,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 4.
  10.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-または-NR-であり、ここで、Rは、アリールであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、アリール、アルキルまたはシクロアルキルであり、Rにおける少なくとも1つの水素は、アリール、アルキルまたはシクロアルキルで置換されていてもよく、
     R~R16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4に記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl and at least one hydrogen in R is , Aryl, heteroaryl, alkyl or cycloalkyl, provided that any one or more of Z 1 or Z 2 is —NR—, and the R, R 1 , R 8 , R 9 And / or R 16 is combined with a single bond, —CR 2 —, —O—, —S— or —NR— to form a ring structure, wherein each of R is independently hydrogen, And at least one hydrogen in R may be substituted with aryl, alkyl or cycloalkyl;
    R 1 to R 16 are each independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, heteroaryl, alkyl or cyclo Optionally substituted with alkyl, with the exception of acridine based substituents as R 1 -R 4 and R 13 -R 16 ,
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl having 6 to 15 carbon atoms together with the a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 15 carbon atoms together with the b ring, in the formed ring At least one hydrogen may be substituted by aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl And the acridine-based substituent is removed as a substituent to the ring formed to include the a ring or the d ring,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 4.
  11.  上記式(2)中、
     ZおよびZは、それぞれ独立して、単結合、-O-、-S-、-Se-または-NR-であり、ここで、Rは、炭素数6~16のアリールであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしZまたはZのいずれか1つ以上が-NR-であって、当該Rと、R、R、Rおよび/またはR16とは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
     R~R16は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしR~RおよびR13~R16としてアクリジン系置換基は除かれ、
     また、R~RおよびR~R16のうちの隣接する基同士が結合してa環、c環またはd環と共に炭素数9~12のアリール環または炭素数6~10のヘテロアリール環を形成していてもよく、R~Rのうちの隣接する基同士が結合してb環と共に炭素数6~10のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~6のアルキル、炭素数3~12のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、ただしa環またはd環を含んで形成された環への置換基としてアクリジン系置換基は除かれ、
     式(2)で表される化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、
     請求項4に記載の化合物。
    In the above formula (2),
    Z 1 and Z 2 are each independently a single bond, -O-, -S-, -Se- or -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that And any one or more of 1 or Z 2 is -NR-, and the R, R 1 , R 8 , R 9 and / or R 16 is a single bond, -CR 2- , -O-, -S- or -NR- combine to form a ring structure, wherein each R independently represents hydrogen, aryl having 6 to 16 carbon atoms, alkyl having 1 to 6 carbons, or 3 to 6 carbon atoms 12 cycloalkyl and at least one hydrogen in R is Aryl having 6 to 16 may be substituted by cycloalkyl alkyl or 3-12 carbon atoms having 1 to 6 carbon atoms,
    R 1 to R 16 each independently represent hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 15 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 6 alkyl, cycloalkyl having 3 to 12 carbons, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these is aryl having 6 to 16 carbons, having carbons It may be substituted with 2 to 15 heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, provided that R 1 to R 4 and R 13 to R 16 are acridine based substituents, respectively. He
    Further, adjacent groups among R 1 to R 4 and R 9 to R 16 are combined to form an aryl ring having 9 to 12 carbon atoms or a heteroaryl having 6 to 10 carbon atoms together with a ring, c ring or d ring. The ring may be formed, and adjacent groups among R 5 to R 8 may be combined to form a heteroaryl ring having 6 to 10 carbon atoms together with the b ring, in the formed ring At least one hydrogen is aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, diarylamino (wherein aryl is aryl having 6 to 12 carbons), alkyl having 1 to 6 carbons, 3 to 6 carbons 12 cycloalkyl, alkoxy having 1 to 6 carbons or aryloxy having 6 to 16 carbons, and at least one hydrogen in these may be aryl having 6 to 16 carbons, 2 carbons 15 heteroaryl, alkyl substituted with 1 to 6 carbons or cycloalkyl substituted with 3 to 12 carbons, with acridine substitution as a substituent to the ring formed including the a ring or the d ring Groups are removed,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen or deuterium.
    A compound according to claim 4.
  12.  上記式(2)中、
     Zは、単結合、-O-、-S-、-Se-または-NR-であり、Zは-NR-であり、ここでRは、炭素数6~16のアリールであり、Rにおける少なくとも1つの水素は、炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、Zの-NR-におけるRと、RまたはRとは、単結合、-CR-、-O-、-S-または-NR-で結合して環構造を形成し、ここで、Rは、それぞれ独立して、水素、炭素数6~16のアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルである、
     請求項9~11のいずれかに記載の化合物。
    In the above formula (2),
    Z 1 is a single bond, -O-, -S-, -Se- or -NR-, and Z 2 is -NR-, wherein R is aryl having 6 to 16 carbon atoms, R is At least one hydrogen in the above may be substituted with aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons, Z 2 R in -NR- and R 8 or R 9 are combined with a single bond, -CR 2- , -O-, -S- or -NR- to form a ring structure, where R is And each independently hydrogen, aryl having 6 to 16 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 12 carbons,
    A compound according to any of claims 9-11.
  13.  下記化学構造式で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The compound according to claim 1, which is represented by the following chemical structural formula.
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  14.  C環への置換基またはR~R12の少なくとも1つが下記部分構造式(TSG1)で表される基である、請求項1~13のいずれかに記載の化合物または高分子化合物。
    Figure JPOXMLDOC01-appb-C000010
     上記式(TSG1)で表される基における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、
     Yは、単結合、-O-、-S-、-Se-、-NR-、>CR、または、>SiRであり、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、Rのうちの隣接する基同士が結合して炭素数6~15のアリール環を形成していてもよい。
    The compound or polymer compound according to any one of claims 1 to 13, wherein a substituent to ring C or at least one of R 9 to R 12 is a group represented by the following partial structural formula (TSG1).
    Figure JPOXMLDOC01-appb-C000010
    At least one hydrogen in the group represented by the above formula (TSG1) may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy,
    Y is a single bond, -O-, -S-, -Se-, -NR-,> CR 2 , or> SiR 2 , wherein each of R is independently hydrogen, aryl, hetero The aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, adjacent groups of R may combine to form an aryl ring having 6 to 15 carbon atoms.
  15.  前記部分構造式(TSG1)で表される基が、下記部分構造式(TSG100)、式(TSG110)、式(TSG111)、式(TSG112)、式(TSG113)、式(TSG120)または式(TSG121)で表される基である、請求項14に記載の化合物または高分子化合物。
    Figure JPOXMLDOC01-appb-C000011
     上記構造式における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよい。
    The group represented by the partial structural formula (TSG1) is a partial structural formula (TSG100), a formula (TSG110), a formula (TSG111), a formula (TSG112), a formula (TSG113), a formula (TSG120) or a formula (TSG121). The compound or polymer compound according to claim 14, which is a group represented by
    Figure JPOXMLDOC01-appb-C000011
    At least one hydrogen in the above structural formula may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy.
  16.  下記化学構造式で表される、請求項14に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    The compound according to claim 14, which is represented by the following chemical structural formula.
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
  17.  下記式を満たす、請求項14~16のいずれかに記載の化合物または高分子化合物。
      ΔEST ≦ 0.20eV
    The compound or polymer compound according to any one of claims 14 to 16, which satisfies the following formula.
    ΔE ST ≦ 0.20 eV
  18.  請求項1~17のいずれかに記載の化合物または高分子化合物を含有する、有機デバイス用材料。 A material for an organic device comprising the compound or polymer compound according to any one of claims 1 to 17.
  19.  前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、請求項18に記載の有機デバイス用材料。 The material for an organic device according to claim 18, wherein the material for an organic device is a material for an organic electroluminescent device, a material for an organic field effect transistor, or a material for an organic thin film solar cell.
  20.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項19に記載の有機電界発光素子用材料を含有する有機層とを有する、有機電界発光素子。 An organic electroluminescent device comprising: a pair of electrodes comprising an anode and a cathode; and an organic layer disposed between the pair of electrodes and containing the material for an organic electroluminescent device according to claim 19.
  21.  さらに、電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項20に記載の有機電界発光素子。 Furthermore, it has an electron transport layer and / or an electron injection layer, and at least one of the electron transport layer and the electron injection layer is selected from the group consisting of quinolinol metal complexes, pyridine derivatives, phenanthroline derivatives, borane derivatives and benzimidazole derivatives 21. The organic electroluminescent device according to claim 20, which contains at least one selected.
  22.  前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項21に記載の有機電界発光素子。 The electron transport layer and / or the electron injection layer may further be selected from alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, oxides of alkaline earth metals, and alkaline earth metals. The at least one selected from the group consisting of halides, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals. The organic electroluminescent element as described in 21.
  23.  発光層を有する有機電界発光素子であって、前記発光層が、
     第1成分として、少なくとも1種のホスト化合物と、
     第2成分として、少なくとも1種の熱活性化型遅延蛍光体とを含み、
     前記第1成分または第2成分として、下記一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を有する、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000014
    (上記式(1)中、
     A環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、B環はヘテロアリール環であり、A環とB環および/またはC環とD環は結合して環構造を形成していてもよく、これらの環における少なくとも1つの水素は置換されていてもよく、ただしA環単独およびD環単独への置換基としてアクリジン系置換基は除かれ、
     X~Xは、それぞれ独立して、CまたはNであり、
     ZおよびZは、それぞれ独立して、単結合、アルキレン、アルケニレン、アルキニレンまたはアリーレンであり、これらにおける任意の-CH-は、-C(=CR)-、-C(=C(=O))-、-C(=O)-、-C(=S)-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-C(=S)S-、-C(=O)NR-、-O-、-S-、-Se-、-Po-、-P(=O)-、-P(=S)-、-S(=O)-、-S(=O)-、-SiR-、-NR-、または、-N=N-で置換されていてもよく、ここで、Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシまたはアリールオキシであり、Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、隣接する、Rと、A環、B環、C環および/またはD環とは結合して環構造を形成していてもよく、ただしZおよびZが同時に単結合であることはなく、
     式(1)で表される化合物または構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。)
    It is an organic electroluminescent element which has a light emitting layer, Comprising: The said light emitting layer is
    At least one host compound as a first component,
    As a second component, at least one heat-activated delayed phosphor;
    An organic electroluminescent device comprising a compound represented by the following general formula (1) or a polymer compound having a structure represented by the general formula (1) as a repeating unit as the first component or the second component.
    Figure JPOXMLDOC01-appb-C000014
    (In the above formula (1),
    Ring A, ring C and ring D are each independently an aryl ring or heteroaryl ring, ring B is a heteroaryl ring, ring A and ring B and / or ring C and ring D combine The ring structure may be formed, and at least one hydrogen in these rings may be substituted, provided that the acridine-based substituent is removed as a substituent to ring A alone and ring D alone,
    X 1 to X 4 are each independently C or N,
    Z 1 and Z 2 are each independently a single bond, alkylene, alkenylene, alkynylene or arylene, and arbitrary —CH 2 — in these is —C (= CR 2 ) —, —C (= C (= C) = O))-, -C (= O)-, -C (= S)-, -C (= O) O-, -C (= S) O-, -C (= O) S-,- C (= S) S-, -C (= O) NR-, -O-, -S-, -Se-, -Po-, -P (= O)-, -P (= S)-,- S (= O) —, —S (= O) 2 —, —SiR 2 —, —NR—, or —N = N— may be substituted, wherein R is independently , Hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkynyl , Alkoxy or aryloxy, wherein at least one hydrogen in R may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and adjacent to R with A ring, B ring, C ring and / or The ring D may be combined to form a ring structure, provided that Z 1 and Z 2 are not simultaneously a single bond,
    At least one hydrogen in the compound or structure represented by formula (1) may be substituted with cyano, halogen or deuterium. )
  24.  第1成分として、一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を含む、請求項23に記載の有機電界発光素子。 The organic electroluminescent device according to claim 23, comprising, as the first component, a compound represented by the general formula (1) or a polymer compound having a structure represented by the general formula (1) as a repeating unit.
  25.  第2成分として、一般式(1)で表される化合物、または一般式(1)で表される構造を繰り返し単位とする高分子化合物を含む、請求項23に記載の有機電界発光素子。 The organic electroluminescent device according to claim 23, comprising, as the second component, a compound represented by the general formula (1) or a polymer compound having a structure represented by the general formula (1) as a repeating unit.
  26.  請求項20~25のいずれかに記載の有機電界発光素子を備えた表示装置。 A display comprising the organic electroluminescent device according to any one of claims 20 to 25.
  27.  請求項20~25のいずれかに記載の有機電界発光素子を備えた照明装置。
     
    A lighting device comprising the organic electroluminescent device according to any one of claims 20 to 25.
PCT/JP2018/045231 2017-12-25 2018-12-10 Compound including boron as spiro atom and macromolecular compound thereof WO2019131079A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880083233.9A CN111527094B (en) 2017-12-25 2018-12-10 Compound, polymer compound, material for organic element, organic electroluminescent element, display device, and lighting device
KR1020207021715A KR102674465B1 (en) 2017-12-25 2018-12-10 Compounds containing boron as a spiro atom and their high molecular compounds
JP2019562931A JP7341412B2 (en) 2017-12-25 2018-12-10 Compounds with boron as a spiro atom and their polymer compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-247278 2017-12-25
JP2017247278 2017-12-25
JP2018-186382 2018-10-01
JP2018186382 2018-10-01

Publications (1)

Publication Number Publication Date
WO2019131079A1 true WO2019131079A1 (en) 2019-07-04

Family

ID=67067055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045231 WO2019131079A1 (en) 2017-12-25 2018-12-10 Compound including boron as spiro atom and macromolecular compound thereof

Country Status (5)

Country Link
JP (1) JP7341412B2 (en)
KR (1) KR102674465B1 (en)
CN (1) CN111527094B (en)
TW (1) TWI770328B (en)
WO (1) WO2019131079A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098220A1 (en) * 2020-09-29 2022-03-31 Universal Dispaly Corporation Organic electroluminescent materials and devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542119B1 (en) 2021-11-03 2023-06-13 동의대학교 산학협력단 Composition for preventing or treating inflammatory airway diseases caused fine dust comprising syneilesis aconitifolia (bunge) maxim extract
CN113896741B (en) * 2021-11-11 2024-01-19 吉林大学 Spiro structure compound containing boron-nitrogen coordination bond and organic electroluminescent device using same as light-emitting layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070094A (en) * 2013-09-27 2015-04-13 日本放送協会 Organic electroluminescent element
WO2015072537A1 (en) * 2013-11-18 2015-05-21 国立大学法人九州大学 Light-emitting material, organic light-emitting element, and compound
WO2016178827A1 (en) * 2015-05-01 2016-11-10 Dow Global Technologies Llc Four-coordinate boron compounds
WO2017126443A1 (en) * 2016-01-21 2017-07-27 学校法人関西学院 Polycyclic aromatic compound
CN108484656A (en) * 2018-06-01 2018-09-04 华侨大学 A kind of preparation method of four-coordination triarylboron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735703B2 (en) 1999-12-21 2006-01-18 大阪大学長 Electroluminescence element
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP2005170911A (en) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd Aromatic compound and organic electroluminescent element using the same
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
JP5591996B2 (en) 2011-03-03 2014-09-17 国立大学法人九州大学 Novel compounds, charge transport materials and organic devices
TWI636056B (en) 2014-02-18 2018-09-21 學校法人關西學院 Polycyclic aromatic compound and method for production the same, material for organic device and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070094A (en) * 2013-09-27 2015-04-13 日本放送協会 Organic electroluminescent element
WO2015072537A1 (en) * 2013-11-18 2015-05-21 国立大学法人九州大学 Light-emitting material, organic light-emitting element, and compound
WO2016178827A1 (en) * 2015-05-01 2016-11-10 Dow Global Technologies Llc Four-coordinate boron compounds
WO2017126443A1 (en) * 2016-01-21 2017-07-27 学校法人関西学院 Polycyclic aromatic compound
CN108484656A (en) * 2018-06-01 2018-09-04 华侨大学 A kind of preparation method of four-coordination triarylboron

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CROSSLEY, D. L. ET AL.: "Facile Arylation of Four-Coordinate Boron Halides by Borenium Cation Mediated Boro-desilylation and -destannylation", ORGANOMETALLICS, vol. 34, no. 24, 2015, pages 5767 - 5774, ISSN: 0276-7333 *
STANOPPI,M. ET AL.: "Boron-based donor-spiro-acceptor compounds exhibiting thermally activated delayed fluorescence (TADF)", DALTON TRANSACTIONS, vol. 47, no. 31, 2 May 2018 (2018-05-02), pages 10394 - 10398, XP055622880, ISSN: 1477-9226 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098220A1 (en) * 2020-09-29 2022-03-31 Universal Dispaly Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
CN111527094B (en) 2024-03-26
CN111527094A (en) 2020-08-11
KR102674465B1 (en) 2024-06-11
KR20200101969A (en) 2020-08-28
TWI770328B (en) 2022-07-11
JP7341412B2 (en) 2023-09-11
TW201930319A (en) 2019-08-01
JPWO2019131079A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7232448B2 (en) Organic device material and organic electroluminescence device using the same
JP5935199B2 (en) Polycyclic aromatic compounds
JP5353233B2 (en) Anthracene derivative compound having pyridylphenyl group and organic electroluminescence device
WO2019009052A1 (en) Polycyclic aromatic compound
JP7398711B2 (en) Fluorine-substituted polycyclic aromatic compounds
JP5509606B2 (en) Anthracene derivative compound having pyridyl group and organic electroluminescence device
WO2013077141A1 (en) Benzofluorene compound, material for luminescent layer using said compound and organic electroluminescent device
WO2019151204A1 (en) Organic field-effect light emitting element using light emitting material of polycyclic aromatic compound
WO2019074093A1 (en) Polycyclic aromatic dimeric compound
KR20200143653A (en) Polycyclic aromatic compounds
KR20220004116A (en) A compound, a material for an organic device, a composition for forming a light emitting layer, an organic field effect transistor, an organic thin film solar cell, an organic electroluminescent element, a display device, and a lighting device
JP7341412B2 (en) Compounds with boron as a spiro atom and their polymer compounds
JP5783173B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
JP2020026426A (en) Polycyclic aromatic compound and multimer thereof
JP2021172658A (en) Polycyclic aromatic compound
JP7018171B2 (en) Polycyclic aromatic compounds with alkenyl groups and their multimers
JP7417221B2 (en) Polycyclic aromatic compounds
JP2022090294A (en) Polycyclic aromatic compound
KR20210000650A (en) Organic electroluminescent elements, display devices and lighting devices, and compounds
JP7530593B2 (en) Electron transport or injection material containing alkyl-substituted polycyclic aromatic compounds
JP5949354B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
JP2022168846A (en) Polycyclic aromatic compound
JP2021042184A (en) Ionic compound having boron as spiro atom
JP2022161448A (en) Complex having ligand whose precursor is polynuclear aromatic compound and polynuclear aromatic compound
KR20230046226A (en) Polycyclic aromatic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019562931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021715

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18894516

Country of ref document: EP

Kind code of ref document: A1