WO2019129098A1 - 一种多频天线及移动终端 - Google Patents

一种多频天线及移动终端 Download PDF

Info

Publication number
WO2019129098A1
WO2019129098A1 PCT/CN2018/124026 CN2018124026W WO2019129098A1 WO 2019129098 A1 WO2019129098 A1 WO 2019129098A1 CN 2018124026 W CN2018124026 W CN 2018124026W WO 2019129098 A1 WO2019129098 A1 WO 2019129098A1
Authority
WO
WIPO (PCT)
Prior art keywords
trap structure
frequency
antenna
trap
branches
Prior art date
Application number
PCT/CN2018/124026
Other languages
English (en)
French (fr)
Inventor
薛亮
余冬
应李俊
侯猛
尤佳庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/957,492 priority Critical patent/US11626662B2/en
Priority to EP18893526.6A priority patent/EP3709441B1/en
Priority to CN202110937165.1A priority patent/CN113823899B/zh
Priority to CN201880039296.4A priority patent/CN110741507B/zh
Priority to CN202110921084.2A priority patent/CN113809519B/zh
Publication of WO2019129098A1 publication Critical patent/WO2019129098A1/zh
Priority to US18/181,296 priority patent/US20230216196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a multi-frequency antenna and a mobile terminal.
  • the notch structure refers to a grounding branch formed by a metal frame or a flexible circuit board, a laser direct forming technique, or the like on the side or bottom of the mobile phone, and the length is approximately a quarter wavelength of a low frequency. Its function is to attract a part of the low frequency current, which reduces the current intensity of the bottom grip portion, thereby reducing the low frequency drop during hand grip and improving the BHH performance. If the length of the notch structure is limited, the frequency can also be pulled down by a large inductance. The better the environment of the notch structure, the better the performance.
  • the trap structure in the prior art when the trap structure in the prior art is set, the trap structure can only improve one frequency band close to its resonance, and the antenna in the prior art often has multiple frequency bands, thereby causing poor improvement of the trap structure. Affects the communication effect of the antenna.
  • the application provides a multi-frequency antenna and a mobile terminal to improve the communication effect of the multi-frequency antenna.
  • a multi-frequency antenna comprising: a radiating unit connected to the feeder by a feeder, and further comprising
  • a first trap structure located on one side of the radiation unit and coupled to the radiation unit;
  • a second trap structure located at a side of the first trap structure away from the radiating unit, and an end of the second trap structure away from the radiating unit is grounded;
  • the first trap structure is selectively connectable to the ground or the second trap structure, and when the first trap structure is coupled to the second trap structure, the first trap structure passes A first tuning device is coupled to the second notch structure.
  • the first trap structure and the second trap structure are selectively connected with the ground, thereby optimizing all low-frequency BHH performances, improving the performance of the free space, and improving the multi-frequency antenna. Performance.
  • the antenna has a plurality of set frequencies, wherein the highest set frequency is the first set frequency, the lowest set frequency is the second set frequency, and the second notch
  • the frequency of the structure is higher than the first set frequency by a first threshold, the frequency of the first notch structure being lower than the second set frequency by a second threshold.
  • the first set frequency is a frequency corresponding to the B8 frequency band
  • the second set frequency is a frequency corresponding to the B28 frequency band.
  • the first threshold has a frequency of 0 to 300 MHz; and the second threshold has a frequency of 0 to 300 MHz.
  • a second tuning device is further included, the second tuning device includes a plurality of first branches in parallel, and the plurality of first branches in parallel may be the same or different branches; First selection switch;
  • the first trap structure selects one of the plurality of parallel first branches to be grounded by the first selection switch.
  • the resonant frequency of the first notch structure at ground is changed by the second tuning device.
  • the antenna has a plurality of set frequencies, wherein the first notch structure and the antenna are when the antenna is at any one of the plurality of set frequencies
  • the resonant frequency of the component formed when the second tuning device is connected is lower than the set frequency at which the antenna is located by a first threshold.
  • the resonant frequency of the first notch structure at ground is changed by the second tuning device to improve the performance of the antenna.
  • the first tuning device includes a plurality of second branches connected in parallel, and the plurality of parallel second branches may be the same or different branches; and a second selection switch;
  • the second notch structure is connected to the second notch structure by selecting one of the plurality of parallel second branches by the second selection switch.
  • the resonant frequency of the first trap structure when connected to the second trap structure is changed by the first tuning device.
  • the antenna has a plurality of set frequencies, wherein the first trap structure passes through the antenna when the antenna is at any one of the plurality of set frequencies
  • the resonant frequency of the component formed when the first tuning device is coupled to the second trap structure is lower than the set frequency at which the antenna is located by a first threshold.
  • the first tuning device further includes a plurality of parallel third branches connected to the ground; wherein the plurality of parallel third branches may be the same or different branches;
  • the first notch structure selects one of the third branch connections through the second selection switch.
  • the antenna has a plurality of set frequencies, wherein the first notch structure and the antenna are when the antenna is at any one of the plurality of set frequencies
  • the resonant frequency of the component formed when the third branch is connected is lower than the set frequency at which the antenna is located by a first threshold.
  • the antenna further includes a third trap structure, the third trap structure is located at an end of the radiating unit away from the first trap structure, and the third trap structure is far away One end of the radiating element is grounded. The performance of the antenna is further improved.
  • the third tuning device is further included, the third tuning device includes a plurality of fourth branches connected in parallel, and the plurality of parallel fourth branches may be the same or different branches; Third selection switch;
  • the third notch structure selects one of the plurality of parallel fourth branches to be grounded through the third selection switch.
  • the performance of the antenna is further improved.
  • the antenna has a plurality of set frequencies, wherein the first notch structure and the antenna are when the antenna is at any one of the plurality of set frequencies
  • the resonant frequency of the component formed when the third tuning device is connected is lower than the set frequency at which the antenna is located by a first threshold.
  • the first trap structure is integrated with the radiating unit; and: a difference between L1 and L2 is between a third set threshold
  • L1 is the current path length of the second trap structure
  • L2 is the current path length of the connection point of the feed line to the radiating element to the first end of the first trap structure
  • the first end of the first trap structure is an end of the first trap structure adjacent to the second trap structure.
  • a first switch is disposed on the second trap structure; a second switch is disposed on the radiating unit; the second trap structure and the radiating unit further satisfy: a difference between L3 and L4 The value is between the fourth set threshold; wherein, L3 is a current path length of a connection point of the first switch and the second trap structure to an end of the second trap structure away from the radiation unit; L4 is the current path length of the second switch to the first end of the first trap structure. High and low frequency switching is achieved by the first switching switch and the second switching switch.
  • the third trap structure is further disposed at an end of the radiating unit away from the second trap structure and coupled to the radiating unit, and the third trap structure is away from the One end of the radiating element is grounded; wherein a difference between L5 and L6 is between the third set threshold; wherein L5 is a current path length of the third trap structure; L6 is the feeder and the a current path length of a connection point of the radiation unit to a second end of the radiation unit; and a second end of the radiation unit is an end of the radiation unit adjacent to the third notch structure.
  • the communication effect of the antenna is improved by the third notch structure provided.
  • the third trap structure is provided with a third switch; the radiation unit is provided with a fourth switch; the third trap structure and the radiating unit further satisfy: a difference between L7 and L8 a fourth set threshold; wherein L7 is a current path length of a connection point of the third switch and the third trap structure to an end of the third trap structure away from the radiating unit; L8 The current path length of the fourth switch to the second end of the radiating element. High-low frequency switching is achieved by the third switching switch and the fourth switching switch.
  • a mobile terminal comprising the antenna of any of the above.
  • the first trap structure and the second trap structure are selectively connected with the ground, thereby optimizing all low-frequency BHH performances, improving the performance of the free space, and improving the multi-frequency antenna. Performance.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a current flow direction of the antenna structure shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic view showing a current flow direction of the antenna structure shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of current flow when the first trap structure of the antenna structure shown in FIG. 5 is connected to the second trap structure;
  • FIG. 7 is a schematic diagram of current flow when the first notch structure of the antenna structure shown in FIG. 5 is grounded;
  • FIG. 8 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic view showing a current flow direction of the antenna structure shown in FIG. 8;
  • FIG. 10 is a schematic diagram of another antenna structure according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another antenna structure according to an embodiment of the present disclosure.
  • Figure 12a is a schematic diagram of currents of the antenna shown in Figure 10;
  • Figure 12b is a schematic diagram of the current of the antenna shown in Figure 10.
  • a Free Space (FS) state At this time, the mobile terminal is directly placed and is not in contact with the human body.
  • the other is the head-hand (BHH) state, in which the state of the mobile terminal is simulated when the person is in use, and therefore, it is divided into a left-handed hand (Beside Head and Hand Left, BHHL) and a right-handed hand (Beside Head and Hand).
  • BHH head-hand
  • the embodiment of the present application relates to the B8, B20, B28 and other frequency bands, and includes a transmitting frequency band (TX) and a receiving frequency band (RX) for each frequency band, and the specific frequency band ranges are: B8: TX frequency band: 880-915MHz, RX band: 925-960MHz; B20: TX band: 824-849MHz, RX band: 869-894MHz; B28: TX band: 708-743MHz, RX band: 763-798MHz.
  • TX transmitting frequency band
  • RX receiving frequency band
  • the embodiment of the present application provides a multi-frequency antenna, which includes a feed line 30 and a radiating unit 10 connected to the feed line 30.
  • the antenna provided by the embodiment of the present application further provides two notch structures, which are a first notch structure 40 and a second notch structure 50, respectively.
  • the first trap structure 40 is located on one side of the radiating unit 10 and is coupled to the radiating unit 10. When specifically connected by coupling, the radiating unit 10 and the first trap structure 40 are not directly connected. There is a gap between them.
  • the second trap structure 50 is located on a side of the first trap structure 40 remote from the radiating element 10.
  • the second trap structure 50 is grounded away from one end of the first trap structure 40.
  • the first trap structure 40 can be grounded or connected to the second trap structure 50. Therefore, the current path length of the notch structure can be adjusted to meet the requirements of different frequency bands.
  • FIG. 3 when the first trap structure 40 and the second trap structure 50 are connected, they are equivalent to a trap structure, and when specifically connected, the first trap structure 40 passes through the first tuning device 70. Connected to the second trap structure 50.
  • FIG. 1 when the first trap structure 40 is grounded and the end of the second trap structure 50 (the end away from the ground) is suspended, it is equivalent to two trap structures.
  • the embodiments of the present application define the endpoints of different structures on the antenna.
  • the connection point of the radiation unit 10 connected to the feeder 20 is a, and the point connected to the ground line 30.
  • b in the first notch structure 40, one end near the point a is the end point c, and one end away from the point a is the end point d; in the second notch structure 50, one end near the end point d is the end point e, and one end away from the end point d
  • the endpoint f is the connection point of the second notch structure 50 to the ground.
  • FIG. 1 shows a specific structure of an antenna provided by an embodiment of the present application, where the antenna includes a radiating unit 10 , a grounding line 30 , a feeding point line 20 , a first notch structure 40 , and a second notch wave .
  • the structure 50 can be implemented by a structural component of the mobile terminal when applied to the mobile terminal, such as the radiation unit 10, the first notch structure 40, and the second notch structure 50, which form the antenna by using the middle frame of the mobile terminal.
  • the radiation unit 10, the first trap structure 40, and the second trap structure 50 are formed through the sidewalls of the middle frame, and the support plate 100 between the side walls of the middle frame serves as the ground;
  • the wave structure 40, the second trap structure 50 and the radiating element 10 are slitted on the sidewall of the middle frame to form a plurality of isolated metal segments, and respectively serve as the first trap structure 40 and the second trap.
  • the structure 50 and the radiation unit 10 are used.
  • a gap is provided between the support plate 100 and the first trap structure 40, the second trap structure 50, and the radiation unit 10, and the gap serves as a clear space.
  • the first trap structure 40, the second trap structure 50, and the radiating element 10 are all made of a flexible circuit board or other conductive materials.
  • the first trap structure 40 is selectively connectable to ground. Specifically, the first trap structure 40 is grounded through the second tuning device 60 and passes through the disposed second tuning device 60.
  • the current path length of the first notch structure 40 to ground can be varied.
  • the second tuning device 60 includes a plurality of first branches 62 connected in parallel, and a first selection switch 61, and one of the first branch 62 and the first selection switch 61 connected in parallel and ground. Connected, the other is connected to the end d of the first trap structure 40.
  • a plurality of parallel first branches 62 are connected to the ground, and a first selection switch 61 is connected to the end point d.
  • the antenna has a plurality of set frequencies, and the set frequency may be a frequency corresponding to a frequency band such as B8, B20, and B28 in the foregoing.
  • the set frequency of the antenna is the set frequency of the radiating unit, and the component formed when the first trap structure 40 is connected to the second tuning device 60 when the antenna is at any one of the plurality of set frequencies
  • the resonant frequency is lower than the set frequency at which the antenna is located by a first threshold.
  • the first threshold is 0-300 MHz, that is, the resonant frequency of the component formed when the first trap structure 40 is connected to the second tuning device 60.
  • the set frequency is 50MHZ, 150MHZ, 250MHZ, 300MHZ, etc., anywhere between 0 and 300MHZ.
  • a plurality of parallel first branches 62 are provided with different components so that the first trap structure 40 passes through the plurality of parallel first branches 62.
  • the current path length of the first trap structure 40 can be improved, such that the current path length of the first trap structure 40 is close to a quarter wavelength corresponding to the resonant frequency of the radiating element 10, thereby The current is drawn in the past, and the antenna aperture is increased to improve the performance of the antenna.
  • the plurality of parallel first branches 62 may be the same or different branches, and any of the first branches may be a circuit, a wire, an inductor or a capacitor connected in series or in parallel with the inductor and the capacitor; for example, a first branch 62
  • the inductor 63 is disposed on the other, and the first branch 62 is provided with a capacitor, or the first branch 62 is provided with a different combination of inductors and capacitors in series or in parallel.
  • the inductance value of the above-mentioned inductor 63 is determined by different frequency bands of the antenna, so that the antenna can obtain better low frequency performance. As shown in FIG. 2, FIG. 2 shows a current path of an antenna provided by an embodiment of the present application.
  • the current on the first trap structure 40 is used. From the point of view through the endpoint d to the endpoint c, the current on the second trap structure 50 flows from the endpoint f to the endpoint e.
  • the frequency of the second notch structure 50 is higher than the first set frequency by a first threshold frequency
  • first The frequency of the notch structure 40 is lower than the second set frequency by a second threshold.
  • the first set frequency is the highest frequency among the plurality of set frequencies possessed by the antenna
  • the second set frequency is the lowest set frequency among the plurality of set frequencies.
  • the first set frequency is a frequency corresponding to the B8 frequency band
  • the second set frequency is a frequency corresponding to the B28 frequency band.
  • the frequency of the first threshold is 0 to 300 MHz; the frequency of the second threshold is 0 to 300 MHz.
  • the resonance of the second notch structure 50 in the first notch structure 40 and the second notch structure 50 is adjusted to a position higher than the B8 band (the upper range is 0-300 MHz, taking into account FS). And BHH performance is correct), the resonance of the first notch structure 40 is lower than the B28 frequency band (lower range 0-300MHz, taking into account the FS and BHH performance), so that all low frequency BHH can be improved. Improve performance while improving FS performance. If the first trap structure 40 is grounded through the second tuning device 60, the first trap structure 40 can adjust the frequency through the second tuning device 60 such that the resonance of the adjustable first trap structure 40 is located in the radiating element of the antenna.
  • the position of the low resonance is low (such as 0-300MHz lower, taking into account the performance of FS and BHH), and the resonance of the second notch structure 50 is located at a position where the B8 frequency band is high (the high range is 0-300MHz, so as to balance FS and BHH performance shall prevail).
  • the efficiency of the antenna with the notch structure in the prior art is compared with the efficiency of the antenna with the notch structure provided by the embodiment of the present application.
  • Table 1 shows the efficiency of the antenna with the notch structure in the prior art
  • Table 2 shows the efficiency of the antenna with the notch structure provided by the embodiment of the present application.
  • the antenna shown in FIG. 1 of the embodiment of the present application is compared with the antenna in the prior art.
  • Table 1 and Table 2 are for detecting the mobile terminal in the above several states. Antenna performance.
  • the antenna provided in the embodiment of the present application can obtain a gain of 0.5 dB in free space by using the first trap structure 40 and the second trap structure 50, and the BHH performance of the antenna has 1db revenue.
  • first notch structure 40 and the second notch structure 50 are specifically disposed, it is not limited to one of the modes in FIG. 1 described above, and a mode as shown in FIG. 3 may be adopted, in which the first notch structure is adopted.
  • 40 is coupled to the second trap structure 50 to connect the first trap structure 40 and the second trap structure 50 to form a unitary body.
  • the first trap structure 40 and the second trap structure 50 are connected by a first tuning device 70.
  • the first tuning device 70 is used to change the current path length of the connected first notch structure 40 and the second notch structure 50.
  • the first tuning device 70 includes a plurality of second branches 73 connected in parallel, and a second selection switch 71, and in a specific connection, the second branch 73 and the second selection switch 71 in parallel respectively It is connected to the end point d of the first trap structure 40 and the end point e of the second trap structure 50, but is not limited in specific connection, as shown in FIG. 3, the second selection switch 71 and the first trap structure 40 The end point d is connected, and the parallel second branch 73 is connected to the end point e of the second trap structure 50.
  • the second selection switch 71 can also be connected to the end point e of the second trap structure 50, and the parallel second branch 73 is connected to the end point d of the first trap structure 40.
  • the second notch structure 50 can be connected to the second notch structure 50 by selecting one of the plurality of parallel second branches 73 through the second selection switch 71.
  • the first trap structure 40 is connected to the second trap structure 50 through the first tuning device 70.
  • the resonant frequency of the formed component is lower than the set frequency at which the antenna is located (the resonant frequency of the radiating element 10) by a first threshold.
  • the first threshold is 0 to 300 MHz.
  • the resonant frequency of the corresponding first notch structure 40 and the second notch structure 50 is at a frequency lower than the frequency in the B8 band by 0 to 300 MHz.
  • the plurality of parallel second branches 73 may be the same or different branches, and any second The branch may be a circuit, a wire, an inductor 72 or a capacitor 74 in series or parallel with the inductor 72 and the capacitor 74; if a second branch 73 is provided with an inductor 72, and the other second branch 73 is provided with a capacitor 74, or Different combinations of the inductor 72 and the capacitor 74 in series or in parallel are disposed on the second branch 73.
  • the capacitance values of the capacitors 74 disposed on the different second branches 73 are different, and the inductance values of the inductors 72 disposed on the different second branches 73 are also different, so as to be in the first trap structure 40.
  • the current path lengths of the first trap structure 40 and the second trap structure 50 can be changed by the disposed capacitor 74 and the inductor 72, so that the first trap structure 40 and the second trap structure
  • the current path length of 50 is close to a quarter wavelength corresponding to the resonant frequency of the radiating element, thereby attracting the current to improve the performance of the antenna.
  • the first trap structure 40 and the ground may be connected by using different capacitors 74 or small inductors.
  • the first trap structure 40 and the second The trap structure 50 can be selected by connecting different inductors 72 or large capacitors, or by selecting different inductors 72 between the first trap structure 40 and ground.
  • FIG. 4 shows a current path when the first trap structure 40 and the second trap structure 50 are connected in the manner shown in FIG. 3, as shown in FIG.
  • the end point f of the notch structure 50 sequentially flows through the second trap structure 50, the first tuning device 70, the first trap structure 40, and flows to the end point c of the first trap structure 40.
  • Table 3 shows the efficiency of the antenna shown in FIG.
  • the hand grip state is distinguished by the hand model provided on the mobile terminal, and when in the free space state, the second selector switch 71 is turned off, and the resonance of the first trap structure 40 is Near 1.1 GHz, there is a certain improvement in the efficiency of the B8 band (0.4 dB).
  • the second selection switch 71 is connected in series with different components such that the first trap structure 40 resonates at an optimum position in the frequency band.
  • FIG. 5 shows a structure of another antenna provided by an embodiment of the present application, in which the first trap structure 40 is selectable and second by the first tuning device 80.
  • the trap structure 50 is connected to ground. Thereby switching of the first trap structure 40 between the second trap structure 50 and the ground is achieved. Thereby, the current path length on the first trap structure 40 and the second trap structure 50 is changed.
  • the current path length of the first trap structure 40 and the second trap structure 50 is made close to a quarter wavelength corresponding to the resonant frequency of the antenna radiating element, thereby attracting the current to improve the performance of the antenna.
  • the first tuning device 70 When the first tuning device 70 is specifically disposed, the first tuning device 70 includes a plurality of parallel second branches 73, a plurality of parallel third branches 75, and a second selection switch 71, wherein the second selection switch 71 Connected to the first trap structure 40, the second selection switch 71 is connected to the end point d of the first trap structure 40 when specifically connected.
  • a plurality of parallel second branches 73 are connected to the second trap structure 50 (end point e), and a plurality of parallel third branches 75 are connected to the ground.
  • the first notch structure 40 is connected by one of the second branch 73 or the third branch 75 by the third selection opening.
  • the plurality of parallel second branches 73 may be the same or different branches, and any of the second branches 73 may be a circuit or a wire in which the inductor and the capacitor are connected in series or in parallel.
  • the capacitance values of the capacitors disposed on the different second branches 73 are different; when only the inductor is included, the inductance values of the inductors disposed on the different second branches 73 are also different, or
  • a second branch 73 is provided with an inductor, the other second branch 73 is provided with a capacitor, or the second branch 73 is provided with a different combination of inductors and capacitors connected in series or in parallel.
  • the current path length can be changed by the set capacitance and inductance.
  • the first trap structure 40 and the ground may be connected with different capacitors or small inductors.
  • the wave structure 50 can be selected by connecting different inductors or large capacitors, or different inductors can be selected between the first trap structure 40 and the ground, as shown in FIG. 6, which shows that the first trap structure 40 passes through
  • the second selection switch 71 selects a current path when the second branch 73 is connected to the second trap structure 50. As shown in FIG. 6, the current flows from the end point f of the second trap structure 50 sequentially through the second trap structure. 50.
  • the first tuning device 70 and the first trap structure 40 flow to the end point c of the first trap structure 40.
  • the plurality of parallel connected third branches 75 are provided with different components, and the plurality of parallel connected third branches 75 may be the same or different branches, and any of the third branches 75 may be connected in series or in parallel with the inductor and the capacitor. Circuit, wire, inductor or capacitor; if only capacitor is included, the capacitance of the capacitor set on the different third branch 75 is different; when only the inductor is included, the inductance of the inductor set on the different third branch 75 The same is true, or, for example, a third branch 75 is provided with an inductor, the other third branch 75 is provided with a capacitor, or the third branch 75 is provided with a series or parallel inductor and capacitor, etc. combination.
  • FIG. 7 shows a current path when the first notch structure 40 selects a third branch 75 to be connected to the ground through the second selection switch 71.
  • the current on the first trap structure 40 sequentially flows from the point through the end point d to the end point c, and the current on the second trap structure 50 flows from the end point f to the end point e.
  • the free space of the antenna and the head performance can be effectively improved.
  • FIG. 8 shows the structure of another antenna provided by an embodiment of the present application.
  • the antenna includes the first trap structure 40 and the second trap structure 50, and the connection between the first trap structure 40, the second trap structure 50 and the ground can be performed in the manner shown in FIG.
  • the connection method shown in FIG. 3 can also be adopted, and the connection method shown in FIG. 5 can also be adopted.
  • the first notch structure 40 and the second notch structure 50 shown in FIG. 8 are connected in the manner shown in FIG.
  • the antenna also includes a third notch structure 90.
  • the third trap structure 90 is located at one end of the radiating element 10 away from the first trap structure 40. As shown in FIG. 8, the first trap structure 40 is located on the end a side of the radiating element 10, and the third trap structure 90 is located. The end point b side of the radiating element 10. And the third trap structure 90 is grounded away from one end of the radiating unit 10. At a particular ground, the third trap structure 90 is grounded through the third tuning device 80.
  • the third tuning device 80 includes a plurality of parallel fourth branches 82 and a third selection switch 81, and the third notch structure selects one of the plurality of parallel fourth branches 82 by the third selection switch 81. Branch 82 is grounded.
  • the third trap structure 90 is resonated by the component formed when the first tuning device 80 is connected to the ground.
  • the frequency is lower than the set frequency at which the antenna is located (the resonant frequency of the radiating element 10) by a first threshold.
  • the first threshold is 0 to 300 MHz.
  • the plurality of parallel connected fourth branches 82 may be the same or different branches, and any of the fourth branches 82 may be circuits or wires in series or in parallel with the inductor and the capacitor. Inductance or capacitance; if only the capacitor is included, the capacitance values of the capacitors disposed on the different fourth branches 82 are different; when only the inductor is included, the inductance values of the inductors disposed on the different fourth branches 82 are also different, or For example, a fourth branch 82 is provided with an inductor, another fourth branch 82 is provided with a capacitor, or the fourth branch 82 is provided with a different combination of inductors and capacitors connected in series or in parallel.
  • FIG. 9 shows a current path of an antenna provided by an embodiment of the present application.
  • the current on the third notch structure 90 is grounded when the third notch structure 90 is grounded. From the location, the third notch structure 90 is near the end of the radiating element 10.
  • Table 4 and Table 5 For antenna efficiency, refer to Table 4 and Table 5.
  • the antenna shown in Fig. 8 adds a fixed third trap structure 90 on the right side to the antenna shown in Fig. 5, thereby improving the FS performance of the antenna.
  • the B28 frequency band increased by 0.5dB
  • the B20 frequency band increased by 0.2dB
  • the B8 frequency band increased by 0.2dB.
  • the overall performance of the antenna is improved.
  • the current path length is such that the current path length of the set trap structure is close to a quarter wavelength corresponding to the resonant frequency of the antenna radiating element, so that current can be absorbed onto the trap structure to improve the performance of the antenna.
  • the communication effect of the antenna can also be improved by the following manner.
  • the first trap structure 40 and the radiation unit 10 are integrated in a specific arrangement.
  • the first trap structure 40 is coupled to the second trap structure 50, and the difference between the second trap structure 50 and the radiating unit 10 is: the difference between L1 and L2 is between a third set threshold; wherein L1 is The current path length of the second trap structure 50; L2 is the current path length of the connection point of the feed line 20 and the radiating element 10 to the first end of the first trap structure 40; and the first end of the first trap structure 40
  • the first trap structure 40 is adjacent to one end of the second trap structure 50.
  • L1 and L2 are approximately equal, or the second notch structure 50 may be set in such a manner that L1 of L1 and L2 of L2 are approximately equal to each other as shown in FIG.
  • the effective length of the left slot is compared with 1/3 of the effective length of the main resonance branch, and the in-band resonance is the ring mode formed by the feed point to the left slot position when the left seam is held.
  • One frequency not the original 0.5 multiplier.
  • the first switching switch SW1 is disposed on the second trap structure 50; the second switching switch SW2 is disposed on the radiating unit 10; the second trap structure 50 and the radiating unit 10 also satisfy: L3 The difference from L4 is between the fourth set threshold; wherein L3 is the current path length of the connection point of the first switch SW1 and the second trap structure 50 to the end of the second trap structure 50 away from the radiating unit 10; L4 is the current path length of the second switch SW2 to the first end of the first trap structure 40. High-low frequency switching is achieved by the first switching switch SW1 and the second switching switch SW2.
  • the third trap structure 90 is located on the side of the radiating element 10 away from the second trap structure 50 and coupled to the radiating element 10, and the third trap structure 90 One end away from the radiating element 10 is grounded; wherein the difference between L5 and L6 is between a third set threshold; wherein L5 is the current path length of the third trap structure 90; L6 is the connection of the feed line 20 to the radiating element 10. The current path length points to the second end of the radiating element 10; and the second end of the radiating element 10 is one end of the radiating element 10 near the third trap structure 90.
  • the communication effect of the antenna is improved by the third notch structure 90 provided.
  • the third trap structure 90 is provided with a third switch SW3; the radiation unit 10 is provided with a fourth switch SW4; the third trap structure 90 and the radiating unit 10 also satisfy the difference between L7 and L8. a fourth set threshold; wherein L7 is a current path length from a connection point of the third switch SW3 and the third trap structure 90 to an end of the third trap structure 90 away from the radiating unit 10; L8 is a fourth switch SW4 The length of the current path to the second end of the radiating element 10. High-low frequency switching is achieved by the set third switching switch SW3 and the fourth switching switch SW4.
  • L1 is approximately equal to L2
  • the first switch SW1 is set to the third switch SW3.
  • L3 is approximately equal to L4.
  • the antenna When holding the left side seam (or both sides are being gripped), the antenna still has an efficiency of about -10, which can be regarded as no malignant death. grip.
  • the effective resonance length of the main resonance and the second notch structure 50 is substantially the same (the two resonances are substantially the same frequency), and the currents on the two low frequency branches are reversed at FS, and the radiation efficiency is pitted; in Fig.
  • the current flows from one end of the second trap structure 50 to the end close to the first trap structure 40, and the current flowing from the feed line 20 flows to the first trap structure 40;
  • the direction of current flow in the ground is such that it is adjacent to one end of the first trap structure 40 along the second trap structure 50, and flows to a position where the second trap structure 50 is connected to the ground to flow in the direction of the feed line 20. From the current distribution, it is a ring mode formed from the feed point to the second trap structure 50 (the resonance position coincides with the original radiation efficiency pit position).
  • the efficiency of the low-frequency B5 right-hand mode is increased from the original -18dBi to the sideband -10dBi by the added first notch structure 40 and the second notch structure 50, which can solve the low-frequency malignant death under the two-side slit ID. Hold the problem and hope that the antenna head will reach the target.
  • the antenna provided in the above embodiment is applicable not only to the structure of the metal frame on which the mobile terminal is stitched on both sides, but also to different mobile terminals such as a U-shaped seam, a runway type or a straight seam on both sides.
  • the metal frame structure is applicable not only to the structure of the metal frame on which the mobile terminal is stitched on both sides, but also to different mobile terminals such as a U-shaped seam, a runway type or a straight seam on both sides.
  • the present application also provides a mobile terminal, which may be a mobile phone, a tablet computer, a smart watch, or the like.
  • the mobile terminal includes the antenna of any of the above.
  • the antenna can change the current path length of the entire trap structure by changing the connection manner between the first trap structure 40, the second trap structure 50 and the ground, so that the current path of the trap structure can be set.
  • the length is close to a quarter wavelength corresponding to the resonant frequency of the antenna radiating element so as to be able to sink current onto the notch structure to improve the performance of the antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种多频天线及移动终端,该天线包括:馈电线与所述馈电线连接的辐射单元,还包括,第一陷波结构,位于所述辐射单元一侧且与所述辐射单元耦合连接;第二陷波结构,位于所述第一陷波结构远离所述辐射单元一侧,且所述第二陷波结构远离所述辐射单元的一端接地;所述第一陷波结构可选择的与地或所述第二陷波结构连接,且在所述第一陷波结构与所述第二陷波结构连接时,所述第一陷波结构通过第一调谐器件与所述第二陷波结构连接。在上述技术方案中,通过设置的第一陷波结构与第二陷波结构与地之间可选择的连接,从而可以改善陷波结构自身的谐振,进而可以改善天线不同频段的通信效果,提高了天线的通信效果。

Description

一种多频天线及移动终端
本申请要求于2017年12月28日提交中国受理局、申请号为PCT/CN2017/119444、申请名称为“一种多频天线及移动终端”的PCT国际专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种多频天线及移动终端。
背景技术
近几年的手机发展趋势是屏占比增大,这会使得天线的净空越来越小,进而造成自由空间状态下主天线的性能恶化,无法满足运营商的规格说明书要求。同时因为低频是手机整板辐射,一部分电流会耦合到侧边的金属框上,在头手(Beside Head and Hand,BHH)状态下,当手握上该侧的金属框上之后,就会出现效率的吸收。
陷波结构指的是在手机侧边或底部利用金属边框或柔性电路板、激光直接成型技术等形成的一个接地枝节,长度近似低频的四分之一波长。其作用是将低频的一部分电流吸引过去,降低了底部手握部分的电流强度,从而减小手握时的低频降幅,提升BHH性能。如果陷波结构的长度受限,也可通过串大电感来拉低频率。陷波结构的环境越好,性能越佳。
但现有技术中的陷波结构在设置时,陷波结构只能改善与其谐振相近的一个频段,而现有技术中的天线往往具有多个频段,从而造成陷波结构的改善效果不佳,影响到天线的通信效果。
发明内容
本申请提供了一种多频天线及移动终端,以提高多频天线的通信效果。
第一方面,提供了一种多频天线,该天线包括:馈电线与所述馈电线连接的辐射单元,还包括,
第一陷波结构,位于所述辐射单元一侧且与所述辐射单元耦合连接;
第二陷波结构,位于所述第一陷波结构远离所述辐射单元一侧,且所述第二陷波结构远离所述辐射单元的一端接地;
所述第一陷波结构可选择的与地或所述第二陷波结构连接,且在所述第一陷波结构与所述第二陷波结构连接时,所述第一陷波结构通过第一调谐器件与所述第二陷波结构连接。
在上述技术方案中,通过设置的第一陷波结构与第二陷波结构与地之间可选择的连接,从而优化所有低频的BHH性能的同时、提升自由空间的性能,进而改善多频天线的性能。
在一个具体的实施方案中,所述天线具有多个设定频率,其中最高的设定频率为第一设定频率,最低的设定频率为第二设定频率,且所述第二陷波结构的频率比所述第一设定频率高第一阈值的频率,所述第一陷波结构的频率比所述第二设定频率低第二阈值的频率。提高了天线的性能。
在一个具体的实施方案中,所述第一设定频率为B8频段对应的频率,所述第二设定频率为B28频段对应的频率。
在一个具体的实施方案中,所述第一阈值的频率为0~300MHZ;所述第二阈值的频率为0~~300MHZ。
在一个具体的实施方案中,还包括第二调谐器件,所述第二调谐器件包括多个并联的第一支路,且多个并联的第一支路可为相同或不同的支路;以及第一选择开关;
所述第一陷波结构通过所述第一选择开关选择所述多个并联的第一支路中的一个第一支路接地。通过第二调谐器件改变第一陷波结构在接地时的谐振频率。
在一个具体的实施方案中,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第二调谐器件连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。通过第二调谐器件实现了改变第一陷波结构在接地时的谐振频率,以提高了天线的性能。
在一个具体的实施方案中,所述第一调谐器件包括多个并联的第二支路,且多个并联的第二支路可为相同或不同的支路;以及第二选择开关;
所述第二陷波结构通过所述第二选择开关选择所述多个并联的第二支路中的一个第二支路与所述第二陷波结构连接。通过第一调谐器件改变第一陷波结构与第二陷波结构连接时的谐振频率。
在一个具体的实施方案中,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构通过所述第一调谐器件与所述第二陷波结构连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。提高了天线的性能。
在一个具体的实施方案中,所述第一调谐器件还包括与地连接的多个并联的第三支路;其中,多个并联的第三支路可为相同或不同的支路;
所述第一陷波结构通过所述第二选择开关选择其中的一个第三支路连接。
在一个具体的实施方案中,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第三支路连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
在一个具体的实施方案中,所述天线还包括第三陷波结构,所述第三陷波结构位于所述辐射单元远离所述第一陷波结构一端,且所述第三陷波结构远离所述辐射单元的一端接地。进一步的提高了天线的性能。
在一个具体的实施方案中,还包括第三调谐器件,所述第三调谐器件包括多个并联的第四支路,且多个并联的第四支路可为相同或不同的支路;以及第三选择开关;
所述第三陷波结构通过所述第三选择开关选择所述多个并联的第四支路中的一个第四支路接地。进一步的提高了天线的性能。
在一个具体的实施方案中,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第三调谐器件连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
在具体设置辐射单元、第一陷波结构及第二陷波结构时,所述第一陷波结构与所述辐射单元为一体结构;且:L1与L2的差值介于第三设定阈值;其中,L1为所述第二陷波结构的电流路径长度;L2为所述馈电线与所述辐射单元的连接点到所述第一陷波结构的第一端的电流路径长度;且所述第一陷波结构的第一端为所述第一陷波结构靠近所述第二陷波结构的一端。
此外,在所述第二陷波结构上设置有第一切换开关;所述辐射单元上设置有第二切换开关;所述第二陷波结构及所述辐射单元还满足:L3与L4的差值介于第四设定阈值;其中,L3为所述第一切换开关与所述第二陷波结构的连接点到所述第二陷波结构远离所述辐射单元的一端的电流路径长度;L4为所述第二切换开关到所述第一陷波结构的第一端的电流路径长度。通过设置的第一切换开关及第二切换开关实现高低频的切换。
在一个具体的实施方案中,还包括第三陷波结构,位于所述辐射单元远离所述第二陷波结构的一端并与所述辐射单元耦合连接,且所述第三陷波结构远离所述辐射单元的一端接地;其中,L5与L6的差值介于所述第三设定阈值;其中,L5为所述第三陷波结构的电流路径长度;L6为所述馈电线与所述辐射单元的连接点到所述辐射单元的第二端的电流路径长度;且所述辐射单元的第二端为所述辐射单元靠近所述第三陷波结构的一端。通过设置的第三陷波结构,改善了天线的通信效果。
此外,所述第三陷波结构上设置有第三切换开关;所述辐射单元上设置有第四切换开关;所述第三陷波结构及所述辐射单元还满足:L7与L8的差值介于第四设定阈值;其中,L7为所述第三切换开关与所述第三陷波结构的连接点到所述第三陷波结构远离所述辐射单元的一端的电流路径长度;L8为所述第四切换开关到所述辐射单元的第二端的电流路径长度。通过设置的第三切换开关及第四切换开关实现高低频的切换。
第二方面,提供了一种移动终端,该移动终端包括上述任一项所述的天线。
在上述技术方案中,通过设置的第一陷波结构与第二陷波结构与地之间可选择的连接,从而优化所有低频的BHH性能的同时、提升自由空间的性能,进而改善多频天线的性能。
附图说明
图1为本申请实施例提供的一种天线的结构示意图;
图2为图1所示的天线结构的电流流向示意图;
图3为本申请实施例提供的另一种天线的结构示意图;
图4为图3所示的天线结构的电流流向示意图;
图5为本申请实施例提供的另一种天线的结构示意图;
图6为图5所示的天线结构的第一陷波结构与第二陷波结构连接时的电流流向示意图;
图7为图5所示的天线结构的第一陷波结构接地时的电流流向示意图;
图8为本本申请实施例提供的另一种天线的结构示意图;
图9为图8所示的天线结构的电流流向示意图;
图10为本申请实施例提供的另一天线结构的示意图;
图11为本申请实施例提供的另一天线结构的示意图;
图12a为图10所示的天线的电流示意图;
图12b为图10所示的天线的电流示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步 地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
为了方便理解本申请实施例提供的多频天线,首先说明一下天线性能检测的几种状态,一种为自由空间(Free Space,FS)状态,此时,移动终端直接放置,不与人体接触。另一种为头手(BHH)状态,在该状态模拟移动终端在人使用时的状态,因此,又分为左头手(Beside Head and Hand Left,BHHL)和右头手(Beside Head and Hand Right,BHHR)两种状态。此外,对于天线的频段,本申请实施例中涉及到B8、B20、B28等频段,对于每个频段包含发射频段(TX)和接收频段(RX),具体的频段范围为:B8:TX频段:880-915MHz,RX频段:925-960MHz;B20:TX频段:824-849MHz,RX频段:869-894MHz;B28:TX频段:708-743MHz,RX频段:763-798MHz。
如图1所示,本申请实施例提供了一种多频天线,该多频天线包括:馈电线30以及与该馈电线30连接的辐射单元10,为了改善本申请实施例提供的天线功能,本申请实施例提供的天线还设置了两个陷波结构,分别为第一陷波结构40及第二陷波结构50。其中,第一陷波结构40位于辐射单元10的一侧,并与辐射单元10耦合连接,在具体通过耦合连接时,辐射单元10与第一陷波结构40之间不直接连接,两者之间具有间隙。第二陷波结构50位于第一陷波结构40远离辐射单元10的一侧。此外,该第二陷波结构50远离第一陷波结构40的一端接地。第一陷波结构40既可以接地也可以与第二陷波结构50连接。从而可以实现对陷波结构的电流路径长度进行调整,以适应不同的频段的要求。如图3所示,当第一陷波结构40和第二陷波结构50连接时,其等效为一个陷波结构,并且在具体连接时,第一陷波结构40通过第一调谐器件70与第二陷波结构50连接。如图1所示,当第一陷波结构40接地,而第二陷波结构50末端(远离接地的一端)悬空时,其等效为两个陷波结构。
为了方便描述,本申请实施例对天线上的不同结构的端点进行了定义,如图1中所示,辐射单元10中的与馈电线20连接的连接点为a,与接地线30连接的点为b;第一陷波结构40中,靠近a点的一端为端点c,远离a点一端为端点d;第二陷波结构50中,靠近端点d的一端为端点e,远离端点d的一端为端点f,且在具体设置时,该端点f为第二陷波结构50与地的连接点。
继续参考图1,图1示出了本申请实施例提供的一种天线的具体结构,该天线包含辐射单元10、接地线30、馈点线20、第一陷波结构40及第二陷波结构50,在应用到移动终端中时,该天线结构可以通过移动终端的结构件实现,如采用移动终端的中框形成天线的辐射单元10、第一陷波结构40及第二陷波结构50,在具体形成时,通过中框的侧壁形成辐射单元10、第一陷波结构40及第二陷波结构50,并且中框侧壁之间的支撑板100作为地;其中,第一陷波结构40、第二陷波结构50及辐射单元10之间通过在中框侧壁上进行开缝,从而形成几段隔离的金属段,并分别作为第一陷波结构40、第二陷波结构50及辐射单元10来使用,此外,支撑板100与第一陷波结构40、第二陷波结构50及辐射单元10之间设置有缝隙,该缝隙作为净空间。当然了,还可以采用其他的方式来实现,如第一陷波结构40、第二陷波结构50及辐射单元10均采用柔性电路板或者其他的导电材质来制作而成。
在图1所示的结构中,第一陷波结构40可选择的与地进行连接,具体的,该第一陷 波结构40通过第二调谐器件60接地,并且通过设置的第二调谐器件60可以改变第一陷波结构40到地的电流路径长度。在具体实现时,该第二调谐器件60包括多个并联的第一支路62,以及一个第一选择开关61组成,且并联的第一支路62及第一选择开关61中的一个与地连接,另一个与第一陷波结构40的端点d连接,如图1中所示,多个并联的第一支路62与地连接,第一选择开关61与端点d连接。当然了也可以采用多个并联的第一支路62与端点d连接,第一选择开关61与地连接的方式。
在本申请的实施例中,天线具有多个设定频率,该设定频率可以为上述中的B8、B20、B28等频段对应的频率。且该天线的设定频率即为辐射单元的设定频率,在天线处于多个设定频率中的任一设定频率时,第一陷波结构40与第二调谐器件60连接时形成的组件的谐振频率比天线所处的设定频率低第一阈值的频率,该第一阈值为0~300MHZ,即第一陷波结构40与第二调谐器件60连接时形成的组件的谐振频率比天线所处的设定频率低50MHZ、150MHZ、250MHZ、300MHZ等任意介于0~300MHZ。在具体设置该第二调谐器件60时,其中的多个并联的第一支路62上设置有不同的元器件,以便在第一陷波结构40通过多个并联的第一支路62中的一个第一支路62接地时,可以改善第一陷波结构40的电流路径长度,使得第一陷波结构40的电流路径长度接近辐射单元10的谐振频率对应的四分之一波长,从而将电流吸引过去,等效增大天线口径,以改善天线的性能。如多个并联的第一支路62可为相同或不同的支路,且任一第一支路可为电感与电容串联或者并联的电路、导线、电感或者电容;如一个第一支路62上设置了电感63,另一个第一支路62上设置了电容,或者第一支路62上设置了串联或者并联的电感和电容等等不同的组合。并且上述电感63的电感值由天线的不同频段确定,从而可以使得天线获得更优的低频性能。如图2中所示,图2示出了本申请实施例提供的天线的电流路径,由图2可以看出,在采用第一陷波结构40接地时,第一陷波结构40上的电流从地点依次流经端点d到端点c,第二陷波结构50上的电流从端点f流经到端点e。
在具体设置时,若第一陷波结构40和第二陷波结构50均不包括可调器件时,第二陷波结构50的频率比第一设定频率高第一阈值的频率,第一陷波结构40的频率比第二设定频率低第二阈值的频率。其中,第一设定频率为天线具有的多个设定频率中最高的频率,第二设定频率为多个设定频率中最低的设定频率。在一个具体的实施方案中,第一设定频率为B8频段对应的频率,第二设定频率为B28频段对应的频率。且第一阈值的频率为0~300MHZ;第二阈值的频率为0~~300MHZ。在具体调试时,将第一陷波结构40和第二陷波结构50中的第二陷波结构50的谐振调在比B8频段的偏高的位置(偏高范围0-300MHz,以兼顾FS和BHH性能为准),第一陷波结构40的谐振调在比B28频段偏低的位置(偏低范围0-300MHz,以兼顾FS和BHH性能为准),从而可在提升所有低频的BHH性能的同时,提升FS性能。若第一陷波结构40通过第二调谐器件60来接地,则第一陷波结构40可通过第二调谐器件60来调整频率,使可调第一陷波结构40的谐振位于天线的辐射单元的谐振偏低的位置,(如偏低0-300MHz,以兼顾FS和BHH性能为准),第二陷波结构50的谐振位于B8频段偏高的位置(偏高范围0-300MHz,以兼顾FS和BHH性能为准)。
为了方便理解,下面将现有技术中的带陷波结构的天线与本申请实施例提供的带陷波结构的天线的效率进行对比。一并参考表1及表2,其中,表1示出了现有技术中的带陷波结构的天线的效率,表2示出了本申请实施例提供的带陷波结构的天线的效率。
为了方便理解,将本申请实施例图1所示的天线与现有技术中的天线对比,如表1及表2所示,表1及表2为检测在上述几种状态时的移动终端的天线性能。
表1
Figure PCTCN2018124026-appb-000001
表2
Figure PCTCN2018124026-appb-000002
对比表1及表2可以看出,本申请实施例提供的天线,通过采用第一陷波结构40及第二陷波结构50从而可以在自由空间有0.5dB的收益,并且天线的BHH性能有1db的收益。
在具体设置第一陷波结构40和第二陷波结构50时,不仅限于上述图1中的一种方式,还可以采用如图3所示的方式,在该方式中,第一陷波结构40与第二陷波结构50连接,从而将第一陷波结构40及第二陷波结构50连接形成一个整体。并且在具体连接时,在一个具体的实施方案中,第一陷波结构40及第二陷波结构50之间通过第一调谐器件70连接。该第一调谐器件70用来改变连接后的第一陷波结构40及第二陷波结构50的电流路径长度。在具体设置时,该第一调谐器件70包括多个并联的第二支路73,以及一个第二选择开关71,并且在具体连接时,并联的第二支路73以及第二选择开关71分别与第一陷波结构40的端点d及第二陷波结构50的端点e连接,但是在具体连接时不受限定,如图3所示,第二选择开关71与第一陷波结构40的端点d连接,并联的第二支路73与第二陷波结构50的端点e连接。当然也可以采用第二选择开关71与第二陷波结构50的端点e连接,并联的第二支路73与第一陷波结构40的端点d连接。并且无论采用上述那种方式,均可以实现第二陷波结构50通过第二选择开关71选择多个并联的第二支路73中的一个第二支路73与第二陷波结构50连接。在采用该结构时,对应的天线特性中,在天线处于多个设定频率中的任一设定频率时,第一陷波结构40通过第一调谐器件70与第二陷波结构50连接时形成的组件的谐振频率比天线所处的设定频率(辐射单元10的谐振频率)低第一阈值的频率。该第一阈值为0~300MHZ。如天线工作在B8频段时,对应的第一陷 波结构40与第二陷波结构50连接后的谐振频率处于与B8频段中频率低0~300MHZ的频率。
在具体设置第一调谐器件70时,多个并联的第二支路73上可以设置不同的元器件,多个并联的第二支路73可为相同或不同的支路,且任一第二支路可为电感72与电容74串联或者并联的电路、导线、电感72或者电容74;如一个第二支路73上设置了电感72,另一个第二支路73上设置了电容74,或者第二支路73上设置了串联或者并联的电感72和电容74等等不同的组合。在具体设置时,不同第二支路73上设置的电容74的电容值不同,且不同的第二支路73上设置的电感72的电感值也同样不同,以便于在第一陷波结构40及第二电波结构连接时,可以通过设置的电容74和电感72来改变第一陷波结构40及第二陷波结构50的电流路径长度,使得第一陷波结构40及第二陷波结构50的电流路径长度接近辐射单元的谐振频率对应的四分之一波长,从而将电流吸引过去,以改善天线的性能。此外,在采用上述方式时,在天线通高频时,第一陷波结构40和地可以选择不同的电容74或小电感来连接,在天线通低频时,第一陷波结构40及第二陷波结构50可以选择不同的电感72或者大电容来连接,或者是第一陷波结构40和地之间选择不同电感72。
如图4所示,图4示出了在第一陷波结构40及第二陷波结构50采用如图3所示的方式连接时的电流路径,如图4中所示,电流从第二陷波结构50的端点f依次流经第二陷波结构50、第一调谐器件70、第一陷波结构40并流到第一陷波结构40的端点c。
一并参考表1及表3,其中,表3为图4所示的天线的效率。
表3
Figure PCTCN2018124026-appb-000003
由表1及表3的对比可以看出,借助移动终端上设置的手模感应器来区分手握状态,当自由空间态时,第二选择开关71断开,第一陷波结构40的谐振在1.1GHz附近,对B8频段效率有一定提升(0.4dB)。BHH状态下,第二选择开关71串接不同元器件,使得第一陷波结构40谐振处于该频段最优的位置。
在上述图1及图3的结构中,分别介绍了第一陷波结构40与地连接的方案,及第一陷波结构40与第二陷波结构50连接的方案。除上述方案外,本申请实施例提供的天线还可以采用第一陷波结构40在第二陷波结构50及地之间进行切换连接。具体的,如图5所示,图5示出了本申请实施例提供的另一种天线的结构,在该结构中,第一陷波结构40通过第一调谐器件80可选择的与第二陷波结构50或地连接。从而实现第一陷波结构40在第二陷波结构50及地之间的切换。从而实现改变第一陷波结构40及第二陷波结构50上的电流路径长度。使得第一陷波结构40、第二陷波结构50的电流路径长度接近天线辐 射单元的谐振频率对应的四分之一波长,从而将电流吸引过去,以改善天线的性能。
在具体设置第一调谐器件70时,该第一调谐器件70包括多个并联的第二支路73、多个并联的第三支路75以及第二选择开关71,其中,第二选择开关71与第一陷波结构40连接,具体连接时,第二选择开关71与第一陷波结构40的端点d连接。多个并联的第二支路73与第二陷波结构50连接(端点e),多个并联的第三支路75与地连接。且第一陷波结构40通过第三选择开挂选择其中的一个第二支路73或第三支路75连接。
在具体设置多个第二支路73时,多个并联的第二支路73可为相同或不同的支路,任一第二支路73可为电感与电容串联或者并联的电路、导线、电感或者电容;如仅包含电容时,不同第二支路73上设置的电容的电容值不同;在仅包含电感时,不同的第二支路73上设置的电感的电感值也同样不同,或者,如一个第二支路73上设置了电感,另一个第二支路73上设置了电容,或者第二支路73上设置了串联或者并联的电感和电容等等不同的组合。以便于在第一陷波结构40及第二陷波结构50连接时,可以通过设置的电容和电感来改变电流路径长度。此外,在采用上述方式时,在天线通高频时,第一陷波结构40和地可以选择不同的电容或小电感来连接,在天线通低频时,第一陷波结构40及第二陷波结构50可以选择不同的电感或者大电容来连接,或者是第一陷波结构40和地之间选择不同电感,如图6所示,图6示出了在第一陷波结构40通过第二选择开关71选择一个第二支路73与第二陷波结构50连接时的电流路径,如图6中所示,电流从第二陷波结构50的端点f依次流经第二陷波结构50、第一调谐器件70、第一陷波结构40并流到第一陷波结构40的端点c。
多个并联的第三支路75上设置有不同的元器件,多个并联的第三支路75可为相同或不同的支路,任一第三支路75可为电感与电容串联或者并联的电路、导线、电感或者电容;如仅包含电容时,不同第三支路75上设置的电容的电容值不同;在仅包含电感时,不同的第三支路75上设置的电感的电感值也同样不同,或者,如一个第三支路75上设置了电感,另一个第三支路75上设置了电容,或者第三支路75上设置了串联或者并联的电感和电容等等不同的组合。以便在第一陷波结构40通过多个并联的第三支路75中的一个第三支路75接地时,可以改善第一陷波结构40的电流路径长度。如图7中所示,图7示出了第一陷波结构40通过第二选择开关71选择一个第三支路75与地连接时的电流路径,由图7可以看出,在采用第一陷波结构40接地时,第一陷波结构40上的电流从地点依次流经端点d到端点c,第二陷波结构50上的电流从端点f流经到端点e。并且在采用上述第一陷波结构40及第二陷波结构50时,可以有效的改善天线的自由空间以及头手性能。
表4
Figure PCTCN2018124026-appb-000004
对比表3及表4,可以看出,在采用第一调谐器件70来连接第一陷波结构40及第二陷波结构50时,相比与图3所示的天线来说,提升在FS,B28频段提升0.5dB,B20频段TX提升0.4dB。
如图8所示,图8示出了本申请实施例提供的另一种天线的结构。该天线包含上述的第一陷波结构40及第二陷波结构50,并且第一陷波结构40、第二陷波结构50及地之间的连接方式,既可以采用图1所示的方式,也可以采用图3所示的连接方式,还可以采用图5所示的连接方式。在图8所示的第一陷波结构40及第二陷波结构50采用图8所示的方式进行的连接。此外,该天线还包括第三陷波结构90。
该第三陷波结构90位于辐射单元10远离第一陷波结构40的一端,如图8中所示,第一陷波结构40位于辐射单元10的端点a侧,第三陷波结构90位于辐射单元10的端点b侧。并且该第三陷波结构90远离辐射单元10的一端接地设置。在具体接地时,第三陷波结构90通过第三调谐器件80接地。该第三调谐器件80包括多个并联的第四支路82及第三选择开关81,且第三陷波结构通过第三选择开关81选择多个并联的第四支路82中的一个第四支路82接地。在采用该结构时,对应的天线特性中,在天线处于多个设定频率中的任一设定频率时,第三陷波结构90通过第一调谐器件80与地连接时形成的组件的谐振频率比天线所处的设定频率(辐射单元10的谐振频率)低第一阈值的频率。该第一阈值为0~300MHZ。如天线工作在B8频段时,对应的第三陷波结构90与第二陷波结构50连接后的谐振频率处于与B8频段中频率低0~300MHZ的频率。
在具体设置该第三调谐器件80时,其中多个并联的第四支路82可为相同或不同的支路,任一第四支路82可为电感与电容串联或者并联的电路、导线、电感或者电容;如仅包含电容时,不同第四支路82上设置的电容的电容值不同;在仅包含电感时,不同的第四支路82上设置的电感的电感值也同样不同,或者,如一个第四支路82上设置了电感,另一个第四支路82上设置了电容,或者第四支路82上设置了串联或者并联的电感和电容等等不同的组合。以便在第三陷波结构90通过多个并联的第四支路82中的一个第四支路82接地时,可以改善第三陷波结构90的电流路径长度,使得第三陷波结构90的电流路径长度接近天线辐射单元的谐振频率对应的四分之一波长,从而将电流吸引过去,以改善天线的性能。如图9中所示,图9示出了本申请实施例提供的天线的电流路径,由图9可以看出,在采用第三陷波结构90接地时,第三陷波结构90上的电流从地点流到第三陷波结构90上靠近辐射单元10的端点。对于天线的效率,可以参考表4及表5
表5
Figure PCTCN2018124026-appb-000005
结合表4和表5看,图8所示的天线在图5所示的天线的基础上,增加了右侧的固定 的第三陷波结构90,从而提升了天线的FS性能。并且在B28频段提升0.5dB,B20频段提升0.2dB,B8频段提升0.2dB。整体提高了天线的性能。
通过上述描述可以看出,在本申请实施例提供的天线中,通过改变设置的第一陷波结构40、第二陷波结构50及地之间的连接方式,从而可以改变整个陷波结构的电流路径长度,从而可以使得设置的陷波结构的电流路径长度接近天线辐射单元的谐振频率对应的四分之一波长,以便能够将电流吸收到陷波结构上,以改善天线的性能。
除上述实施例中描述的方案外,在本申请实施例提供的多频天线中,还可以通过以下方式改善天线的通信效果。对于低频来说,如图10所示,在具体设置时,第一陷波结构40与辐射单元10为一体结构。而第一陷波结构40与第二陷波结构50耦合连接,并且第二陷波结构50与辐射单元10之间满足:L1与L2的差值介于第三设定阈值;其中,L1为第二陷波结构50的电流路径长度;L2为馈电线20与辐射单元10的连接点到第一陷波结构40的第一端的电流路径长度;且第一陷波结构40的第一端为第一陷波结构40靠近第二陷波结构50的一端。并且在具体设置时,如图10所示,L1与L2近似相等,或者还可以采用如图11所示中的L1与L2的1/3近似相等的方式设定第二陷波结构50,此时,此时左侧开槽的有效长度是与主谐振分支有效长度的1/3相比拟,当左侧缝被握住时带内谐振是馈点到左侧开槽位置形成的环模的一倍频,而非原来的0.5倍频。在采用上述结构时,在天线工作时,电流在第二陷波结构50上的流动方向与电流在第一陷波结构40及辐射单元10上的流动方向相反,在移动终端被握住时,可以改善天线的通信效果。此外,为了进行高低频切换,在第二陷波结构50上设置有第一切换开关SW1;辐射单元10上设置有第二切换开关SW2;第二陷波结构50及辐射单元10还满足:L3与L4的差值介于第四设定阈值;其中,L3为第一切换开关SW1与第二陷波结构50的连接点到第二陷波结构50远离辐射单元10的一端的电流路径长度;L4为第二切换开关SW2到第一陷波结构40的第一端的电流路径长度。通过设置的第一切换开关SW1及第二切换开关SW2实现高低频的切换。
同样的对于高频来说,如图10所示,第三陷波结构90,位于辐射单元10远离第二陷波结构50的一侧并与辐射单元10耦合连接,且第三陷波结构90远离辐射单元10的一端接地;其中,L5与L6的差值介于第三设定阈值;其中,L5为第三陷波结构90的电流路径长度;L6为馈电线20与辐射单元10的连接点到辐射单元10的第二端的电流路径长度;且辐射单元10的第二端为辐射单元10靠近第三陷波结构90的一端。通过设置的第三陷波结构90,改善了天线的通信效果。
此外,第三陷波结构90上设置有第三切换开关SW3;辐射单元10上设置有第四切换开关SW4;第三陷波结构90及辐射单元10还满足:L7与L8的差值介于第四设定阈值;其中,L7为第三切换开关SW3与第三陷波结构90的连接点到第三陷波结构90远离辐射单元10的一端的电流路径长度;L8为第四切换开关SW4到辐射单元10的第二端的电流路径长度。通过设置的第三切换开关SW3及第四切换开关SW4实现高低频的切换。
为了方便理解对该多频天线的理解,以及图10所示的天线结构为例进行仿真,在图10所示的结构中L1近似等于L2,并且设置了第一切换开关SW1第三切换开关SW3,并且L3近似等于L4。在SW1短路,SW3断开时,多频天线为低频B5的主态(FS+BHHL),此时握住左侧缝仍然存在恶性死亡之握;如图12a所示,当SW1断路,SW3短路(或开路)时为低频B5的MAS态(BHHR),此时握住左侧缝(或两侧缝都被握死)时,天线 仍然有-10左右的效率,可视为无恶性死亡之握。低频MAS态时,主谐振与第二陷波结构50的有效谐振长度基本一致(两个谐振基本同频),FS时两个低频分支上的电流反向,辐射效率出现凹坑;在图12a所示的电流流动中,如实线箭头所示,电流由第二陷波结构50远离第一陷波结构40的一端流向第一陷波结构40,而从馈电线20流出的电流沿辐射单元10流向第一陷波结构40;如虚线箭头所示,位于电路板上的电流,从第二陷波结构50接地的一端流向靠近第一陷波结构40的方向,并从馈电线20的一端流向靠近第一陷波结构40的方向。如图12b所示,当右手握住左侧缝时,主谐振偏走,但带内还剩一个谐振(边带效率-10左右),其电流分布如图12b中实线箭头和虚线箭头所示,如实线箭头所示,电流从第二陷波结构50接地的一端流向靠近第一陷波结构40的一端,而从馈电线20流出的电流,流向第一陷波结构40;如虚线箭头所示,在地中的电流流动方向为:沿第二陷波结构50靠近第一陷波结构40的一端,流向第二陷波结构50与地连接的位置,以流向馈电线20的方向。从电流分布看是从馈点到第二陷波结构50形成的环模(谐振位置与原辐射效率凹坑位置一致)。在仿真时,通过增设的第一陷波结构40及第二陷波结构50,低频B5右手模效率从原来的-18dBi提升到边带-10dBi,可解决两侧缝ID下的低频恶性死亡之握问题并有望下天线头手达标。
应当理解的是,上述实施例中提供的天线不仅适用于移动终端采用两侧缝的金属边框的结构上,还可以应用到两侧缝的U型缝、跑道型或直缝等不同的移动终端的金属边框结构中。
此外,本申请还提供了一种移动终端,该移动终端可以为手机、平板电脑或者智能手表等。并且移动终端包括上述任一项的天线。该天线通过改变设置的第一陷波结构40、第二陷波结构50及地之间的连接方式,从而可以改变整个陷波结构的电流路径长度,从而可以使得设置的陷波结构的电流路径长度接近天线辐射单元的谐振频率对应的四分之一波长,以便能够将电流吸收到陷波结构上,以改善天线的性能。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种多频天线,其特征在于,包括:馈电线、与所述馈电线连接的辐射单元,还包括,
    第一陷波结构,位于所述辐射单元一侧且与所述辐射单元耦合连接;
    第二陷波结构,位于所述第一陷波结构远离所述辐射单元一侧,且所述第二陷波结构远离所述辐射单元的一端接地;
    所述第一陷波结构可选择的与地或所述第二陷波结构连接,且在所述第一陷波结构与所述第二陷波结构连接时,所述第一陷波结构通过第一调谐器件与所述第二陷波结构连接。
  2. 如权利要求1所述的多频天线,其特征在于,所述天线具有多个设定频率,其中最高的设定频率为第一设定频率,最低的设定频率为第二设定频率,且所述第二陷波结构的频率比所述第一设定频率高第一阈值的频率,所述第一陷波结构的频率比所述第二设定频率低第二阈值的频率。
  3. 如权利要求2所述的多频天线,其特征在于,所述第一设定频率为B8频段对应的频率,所述第二设定频率为B28频段对应的频率。
  4. 如权利要求2所述的多频天线,其特征在于,所述第一阈值的频率为0~300MHZ;所述第二阈值的频率为0~~300MHZ。
  5. 如权利要求1所述的多频天线,其特征在于,还包括第二调谐器件,所述第二调谐器件包括多个并联的第一支路,且多个并联的第一支路可为相同或不同的支路;以及第一选择开关;
    所述第一陷波结构通过所述第一选择开关选择所述多个并联的第一支路中的一个第一支路接地。
  6. 如权利要求5所述的多频天线,其特征在于,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第二调谐器件连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
  7. 如权利要求1所述的多频天线,其特征在于,所述第一调谐器件包括多个并联的第二支路,且多个并联的第二支路可为相同或不同的支路;以及第二选择开关;
    所述第二陷波结构通过所述第二选择开关选择所述多个并联的第二支路中的一个第二支路与所述第二陷波结构连接。
  8. 如权利要求7所述的多频天线,其特征在于,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构通过所述第一调谐器件与所述第二陷波结构连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
  9. 如权利要求7所述的多频天线,其特征在于,所述第一调谐器件还包括与地连接的多个并联的第三支路;其中,多个并联的第三支路可为相同或不同的支路;
    所述第一陷波结构通过所述第二选择开关选择其中的一个第三支路连接。
  10. 如权利要求9所述的多频天线,其特征在于,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第三支路连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
  11. 如权利要求1所述的多频天线,其特征在于,所述天线还包括第三陷波结构,所述第三陷波结构位于所述辐射单元远离所述第一陷波结构一端,且所述第三陷波结构远离所述辐射单元的一端接地。
  12. 如权利要求11所述的多频天线,其特征在于,还包括第三调谐器件,所述第三调谐器件包括多个并联的第四支路,且多个并联的第四支路可为相同或不同的支路;以及第三选择开关;
    所述第三陷波结构通过所述第三选择开关选择所述多个并联的第四支路中的一个第四支路接地。
  13. 如权利要求12所述的多频天线,其特征在于,所述天线具有多个设定频率,其中,在所述天线处于所述多个设定频率中的任一设定频率时,所述第一陷波结构与所述第三调谐器件连接时形成的组件的谐振频率比所述天线所处的设定频率低第一阈值的频率。
  14. 如权利要求1所述的多频天线,其特征在于,所述第一陷波结构与所述辐射单元为一体结构;
    L1与L2的差值介于第三设定阈值;其中,
    L1为所述第二陷波结构的电流路径长度;
    L2为所述馈电线与所述辐射单元的连接点到所述第一陷波结构的第一端的电流路径长度;且所述第一陷波结构的第一端为所述第一陷波结构靠近所述第二陷波结构的一端。
  15. 如权利要求14所述的多频天线,其特征在于,所述第二陷波结构上设置有第一切换开关;所述辐射单元上设置有第二切换开关;
    所述第二陷波结构及所述辐射单元还满足:L3与L4的差值介于第四设定阈值;其中,
    L3为所述第一切换开关与所述第二陷波结构的连接点到所述第二陷波结构远离所述辐射单元的一端的电流路径长度;
    L4为所述第二切换开关到所述第一陷波结构的第一端的电流路径长度。
  16. 如权利要求14或15所述的多频天线,其特征在于,还包括
    第三陷波结构,位于所述辐射单元远离所述第二陷波结构的一端并与所述辐射单元耦合连接,且所述第三陷波结构远离所述辐射单元的一端接地;其中,
    L5与L6的差值介于所述第三设定阈值;其中,
    L5为所述第三陷波结构的电流路径长度;
    L6为所述馈电线与所述辐射单元的连接点到所述辐射单元的第二端的电流路径长度;且所述辐射单元的第二端为所述辐射单元靠近所述第三陷波结构的一端。
  17. 如权利要求16所述的多频天线,其特征在于,所述第三陷波结构上设置有第三切换开关;所述辐射单元上设置有第四切换开关;
    所述第三陷波结构及所述辐射单元还满足:L7与L8的差值介于第四设定阈值;其中,
    L7为所述第三切换开关与所述第三陷波结构的连接点到所述第三陷波结构远离所述辐射单元的一端的电流路径长度;
    L8为所述第四切换开关到所述辐射单元的第二端的电流路径长度。
  18. 一种移动终端,其特征在于,包括如权利要求1~17任一项所述的多频天线。
PCT/CN2018/124026 2017-12-28 2018-12-26 一种多频天线及移动终端 WO2019129098A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/957,492 US11626662B2 (en) 2017-12-28 2018-12-26 Multi-band antenna and mobile terminal
EP18893526.6A EP3709441B1 (en) 2017-12-28 2018-12-26 Multi-frequency antenna and mobile terminal
CN202110937165.1A CN113823899B (zh) 2017-12-28 2018-12-26 一种多频天线及移动终端
CN201880039296.4A CN110741507B (zh) 2017-12-28 2018-12-26 一种多频天线及移动终端
CN202110921084.2A CN113809519B (zh) 2017-12-28 2018-12-26 一种多频天线及移动终端
US18/181,296 US20230216196A1 (en) 2017-12-28 2023-03-09 Multi-band antenna and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017119444 2017-12-28
CNPCT/CN2017/119444 2017-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/957,492 A-371-Of-International US11626662B2 (en) 2017-12-28 2018-12-26 Multi-band antenna and mobile terminal
US18/181,296 Continuation US20230216196A1 (en) 2017-12-28 2023-03-09 Multi-band antenna and mobile terminal

Publications (1)

Publication Number Publication Date
WO2019129098A1 true WO2019129098A1 (zh) 2019-07-04

Family

ID=67063146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124026 WO2019129098A1 (zh) 2017-12-28 2018-12-26 一种多频天线及移动终端

Country Status (4)

Country Link
US (2) US11626662B2 (zh)
EP (1) EP3709441B1 (zh)
CN (3) CN110741507B (zh)
WO (1) WO2019129098A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4167377A4 (en) * 2020-06-30 2023-11-22 Huawei Technologies Co., Ltd. ANTENNA AND MOBILE DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018423290B2 (en) * 2018-05-15 2021-12-16 Huawei Technologies Co., Ltd. Antenna system and terminal device
CN112864583B (zh) * 2019-11-28 2023-07-18 华为技术有限公司 天线装置及电子设备
CN112928469B (zh) * 2021-01-22 2023-12-26 Oppo广东移动通信有限公司 天线装置及电子设备
CN118487033A (zh) * 2023-02-10 2024-08-13 华为终端有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007786A1 (en) * 2009-03-30 2012-01-12 Nec Corporation Resonator antenna
CN103441327A (zh) * 2013-08-28 2013-12-11 电子科技大学 多陷波超宽带天线
CN103891043A (zh) * 2011-10-31 2014-06-25 索尼爱立信移动通讯有限公司 采用多频带陷波器的多输入多输出(mimo)天线
CN104882675A (zh) * 2015-05-05 2015-09-02 重庆大学 一种基于变容二极管的双陷波可调的超宽带天线
CN107210517A (zh) * 2015-01-13 2017-09-26 索尼公司 用于无线电子装置的具有多个陷波器的双频带倒f型天线

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109569A1 (ja) * 2004-05-12 2005-11-17 Yokowo Co., Ltd. マルチバンドアンテナ、回路基板および通信装置
JP5114045B2 (ja) * 2006-11-27 2013-01-09 日本電気株式会社 アンテナ装置及び携帯無線端末
JP4966125B2 (ja) * 2007-07-27 2012-07-04 株式会社東芝 アンテナ装置及び無線機
WO2011024355A1 (ja) * 2009-08-25 2011-03-03 パナソニック株式会社 アンテナ装置及び無線通信装置
GB0921811D0 (en) 2009-12-14 2010-01-27 Aerial Res Technology Ltd Notch antenna
CN103633451B (zh) 2012-08-27 2015-12-02 华为终端有限公司 双馈点天线系统及其馈点切换的方法
KR101659827B1 (ko) * 2012-12-20 2016-09-26 가부시키가이샤 무라타 세이사쿠쇼 멀티밴드용 안테나
WO2015096101A1 (zh) * 2013-12-26 2015-07-02 华为终端有限公司 移动终端
CN104218311B (zh) * 2014-08-22 2017-12-22 华为技术有限公司 一种微带天线及通信设备
KR102226173B1 (ko) 2014-09-02 2021-03-10 삼성전자주식회사 외부 금속 프레임을 이용한 안테나 및 이를 구비한 전자 장치
TWI530024B (zh) * 2014-11-28 2016-04-11 廣達電腦股份有限公司 多頻可調天線結構
CN105720365A (zh) * 2014-12-03 2016-06-29 深圳富泰宏精密工业有限公司 无线通信设备
CN204271247U (zh) * 2014-12-31 2015-04-15 惠州硕贝德无线科技股份有限公司 一种多寄生宽频段lte手机天线
WO2016106779A1 (zh) * 2015-01-04 2016-07-07 华为技术有限公司 手持设备
CN106159442A (zh) * 2015-03-26 2016-11-23 邱宏献 多支臂陷波天线
KR102364413B1 (ko) 2015-05-27 2022-02-17 삼성전자주식회사 안테나 장치를 포함하는 전자 장치
CN105024168A (zh) 2015-06-15 2015-11-04 华南理工大学 一种可重构双陷波超宽带天线
CN105826685B (zh) * 2015-11-06 2017-10-13 维沃移动通信有限公司 一种天线系统、终端及射频信号的控制方法
CN105633582B (zh) * 2015-12-25 2018-09-14 宇龙计算机通信科技(深圳)有限公司 一种移动通讯终端及其天线装置
CN108140929B (zh) * 2015-12-31 2020-01-21 华为技术有限公司 天线装置和终端
CN105977639A (zh) 2016-05-06 2016-09-28 华为技术有限公司 天线装置、基站以及通信系统
CN106252888A (zh) 2016-07-29 2016-12-21 宇龙计算机通信科技(深圳)有限公司 一种天线系统、终端和天线频段调整方法
EP3591759B1 (en) * 2017-03-20 2022-08-17 Huawei Technologies Co., Ltd. Antenna of mobile terminal and mobile terminal
CN107181045B (zh) 2017-06-19 2024-02-20 上海传英信息技术有限公司 一种移动终端的天线及具有该天线的移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007786A1 (en) * 2009-03-30 2012-01-12 Nec Corporation Resonator antenna
CN103891043A (zh) * 2011-10-31 2014-06-25 索尼爱立信移动通讯有限公司 采用多频带陷波器的多输入多输出(mimo)天线
CN103441327A (zh) * 2013-08-28 2013-12-11 电子科技大学 多陷波超宽带天线
CN107210517A (zh) * 2015-01-13 2017-09-26 索尼公司 用于无线电子装置的具有多个陷波器的双频带倒f型天线
CN104882675A (zh) * 2015-05-05 2015-09-02 重庆大学 一种基于变容二极管的双陷波可调的超宽带天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4167377A4 (en) * 2020-06-30 2023-11-22 Huawei Technologies Co., Ltd. ANTENNA AND MOBILE DEVICE

Also Published As

Publication number Publication date
CN113823899B (zh) 2023-02-03
US11626662B2 (en) 2023-04-11
CN113809519B (zh) 2023-08-22
EP3709441A1 (en) 2020-09-16
EP3709441A4 (en) 2020-12-09
EP3709441B1 (en) 2023-11-01
CN110741507B (zh) 2021-08-20
CN113809519A (zh) 2021-12-17
CN113823899A (zh) 2021-12-21
US20230216196A1 (en) 2023-07-06
US20210021034A1 (en) 2021-01-21
CN110741507A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2019129098A1 (zh) 一种多频天线及移动终端
WO2019090690A1 (zh) 一种移动终端的天线及移动终端
TWI556506B (zh) 行動裝置
TWI539673B (zh) 可調式槽孔天線
TW201123610A (en) Mobile communication device
TW201635642A (zh) 行動裝置
TWI539676B (zh) 通訊裝置
TW201409829A (zh) 行動裝置
CN109346831A (zh) 一种天线系统及终端
WO2018176279A1 (zh) 天线和终端设备
WO2017157004A1 (zh) 一种分集天线
WO2016065630A1 (zh) 一种无线移动设备
US10461431B2 (en) Electrically tunable miniature antenna
WO2017107137A1 (zh) 一种缝隙天线和终端
WO2016045436A1 (zh) 一种宽频带4g无线终端天线
WO2016183777A1 (zh) 天线装置和终端
TWI581508B (zh) Lte天線結構
Best The inverse relationship between quality factor and bandwidth in multiple resonant antennas
TW201537830A (zh) 可切換工作頻率之主動天線系統及其相關控制方法
TW201306379A (zh) 通訊電子裝置及其多頻槽孔天線
TWI612719B (zh) 具有天線的電子裝置
TWI717847B (zh) 通訊裝置
TW201717482A (zh) 天線結構
JP2004519158A (ja) 無線端末
TWI608813B (zh) 杯子和杯蓋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018893526

Country of ref document: EP

Effective date: 20200609

NENP Non-entry into the national phase

Ref country code: DE