WO2018176279A1 - 天线和终端设备 - Google Patents

天线和终端设备 Download PDF

Info

Publication number
WO2018176279A1
WO2018176279A1 PCT/CN2017/078623 CN2017078623W WO2018176279A1 WO 2018176279 A1 WO2018176279 A1 WO 2018176279A1 CN 2017078623 W CN2017078623 W CN 2017078623W WO 2018176279 A1 WO2018176279 A1 WO 2018176279A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
inductive
resonant
radiating
switch
Prior art date
Application number
PCT/CN2017/078623
Other languages
English (en)
French (fr)
Inventor
周大为
李世超
谢万波
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019020119-0A priority Critical patent/BR112019020119A2/pt
Priority to KR1020197031499A priority patent/KR102302452B1/ko
Priority to PCT/CN2017/078623 priority patent/WO2018176279A1/zh
Priority to JP2019552895A priority patent/JP6950879B2/ja
Priority to AU2017406139A priority patent/AU2017406139B2/en
Priority to CN201780088787.3A priority patent/CN110462930B/zh
Priority to EP17903182.8A priority patent/EP3588675B1/en
Priority to US16/498,999 priority patent/US11316255B2/en
Publication of WO2018176279A1 publication Critical patent/WO2018176279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements

Definitions

  • the present application relates to communication technologies, and in particular, to an antenna and a terminal device.
  • terminal devices such as mobile phones and tablet computers usually have wireless communication functions such as cellular communication, wireless fidelity (WiFi), and Bluetooth.
  • WiFi wireless fidelity
  • Bluetooth Bluetooth
  • antennas are usually built inside the device.
  • a plastic outer casing, a metal outer casing, etc. may be included.
  • the terminal devices of metal casings are becoming more and more popular due to the advantages of metal casing, durability, and service life.
  • the shielding effect of the metal casing on the electromagnetic wave makes the antenna built in the terminal device unable to transmit and receive signals.
  • the slot antenna can be formed by slitting or slotting the edge attachment on the upper and lower sides of the metal casing.
  • the embodiment of the present application provides an antenna and a terminal device to reduce antenna performance degradation caused by the hand held terminal device and improve communication performance.
  • an embodiment of the present disclosure provides an antenna, including: a metal frame and at least one resonant structure; wherein the metal frame is provided with a slit, so that the first radiation unit and the second radiation unit are formed on the metal frame;
  • the first radiating unit includes at least one radiating arm, and each radiating arm is connected to a feeding point of the terminal device where the antenna is located;
  • the second radiating element includes at least one floating radiating arm, each resonant structure including a floating radiating arm and a resonant device; the one floating radiating arm is coupled to the resonant device, and the resonant device is further coupled to a ground point of the terminal device.
  • the antenna provided by the embodiment of the present invention can enable another low-frequency bandwidth radiator to work even if one of the low-frequency bandwidth radiators is held, thereby effectively improving the efficiency of the antenna in the low-frequency operating band when the terminal device is held.
  • the attenuation of antenna performance is reduced, and communication performance is improved.
  • the resonant device comprises: an inductive device; the one floating radiating arm is connected to the inductive device, and the inductive device is further connected to the grounding point.
  • the resonant device comprises: a capacitive device; the one floating radiating arm is connected to the capacitive device, and the capacitive device is further connected to the grounding point.
  • the resonant device includes: an inductive device and a capacitive device; the inductive device is coupled to the capacitive device, the inductive device is further coupled to the one of the floating radiating arms; the capacitive device is further coupled to the grounding point.
  • the inductive device is a tunable inductive device and/or the capacitive device is a tunable capacitive device.
  • Embodiments of the present application provide antennas of different structures by providing a plurality of different resonant structures, and at the same time, the resonant structure can be realized between different resonant frequencies by setting the inductive device and/or the capacitive device of the resonant device as devices with variable parameter values. The transformation, thereby increasing the radiation efficiency of the antenna at each resonant frequency.
  • the resonant device includes: a first inductive device, a second inductive device, a first switch, and a second switch; the first inductive device is coupled to the first switch, and the second inductive device is coupled to the second switch; The first inductive device and the second inductive device are also coupled to the one of the floating radiating arms; the first switch and the second switch are also coupled to the ground point.
  • the antenna provided by the embodiment of the present application can realize the switching of the resonant structure between different resonant frequencies by adjusting different states of the switch, thereby improving the radiation efficiency of the antenna at each resonant frequency.
  • the shortest radiating arm of the first radiating unit is further connected to the third inductive device and the fourth inductive device connected in parallel; the third inductive device is further connected to the grounding point of the terminal device through the third switching device, The fourth inductive device is also connected to the ground point of the terminal device through the fourth switching device.
  • the reduction of the antenna efficiency caused by the different frequency bands of the antenna switching in the low frequency working frequency band can be effectively reduced.
  • the third inductive device is further connected in parallel with the first capacitive device; the fourth inductive device further has the second capacitive device connected in parallel.
  • a difference between a capacitance value of the first capacitive device and an equivalent capacitance value when the third switch is in an off state is less than or equal to a preset value
  • the difference between the capacitance value of the second capacitive device and the equivalent capacitance value when the fourth switch is in the off state is less than or equal to a preset value.
  • the antenna of the embodiment of the present application can also implement filtering of clutter.
  • the slit is a PI type slit or a U-shaped slit.
  • the embodiment of the present application further provides a terminal device, including: a printed circuit board PCB and an antenna; the PCB includes: a radio frequency processing unit and a baseband processing unit; the antenna is any one of the antennas described above; Each of the first radiating elements of the antenna is connected to a feed point on the radio frequency processing unit; the radio frequency processing unit is coupled to the baseband processing unit;
  • the antenna is configured to transmit the received wireless signal to the radio frequency processing unit or transmit the transmission signal of the radio frequency processing unit;
  • the radio frequency processing unit is configured to process the radio signal received by the antenna and send the signal to the baseband processing unit, or process the signal sent by the baseband processing unit and send the signal through the antenna;
  • the baseband processing unit is configured to process a signal sent by the radio frequency processing unit.
  • the antenna may include: a metal frame and at least one resonant structure; the metal frame is provided with a slit, so that the first radiation unit and the second radiation unit are formed on the metal frame, the first A radiating element includes at least one radiating arm, each radiating arm being coupled to a feed point of a terminal device in which the antenna is located, the second radiating element including at least one floating radiating arm, each resonant structure including a floating radiating arm and a resonant device; A floating radiation arm is coupled to the ground point of the terminal device via a resonant device.
  • the resonant structure disposed in the antenna may be such that the low frequency bandwidth radiated by the resonant structure is included in the antenna except for the low frequency bandwidth included in the at least one radiating arm, so that even if one of the low frequency bandwidth radiators is held by the hand, It also has an additional low-frequency bandwidth radiator that can work to effectively improve the low-frequency bandwidth when holding the terminal device.
  • the lower antenna efficiency reduces the attenuation of the antenna performance and improves the communication performance.
  • FIG. 1 is a schematic structural diagram 1 of an antenna according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a PI-type slot in an antenna according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a U-shaped slot in an antenna according to an embodiment of the present disclosure
  • FIG. 5 is a comparison diagram of antenna efficiencies of an antenna and a conventional antenna in an embodiment of the present application.
  • FIG. 6 is a comparison diagram of antenna efficiency of an antenna and a conventional antenna under hand model test according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram 2 of an antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 3 of an antenna according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 4 of an antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 5 of an antenna according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 6 of an antenna according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 7 of an antenna according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 8 of an antenna according to an embodiment of the present disclosure.
  • FIG. 14 is a comparison diagram 1 of an antenna efficiency in each state of an antenna according to an embodiment of the present application.
  • FIG. 15 is a second comparison diagram of antenna efficiency in each state of an antenna according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram IX of an antenna according to an embodiment of the present disclosure.
  • FIG. 17 is a first comparison diagram of antenna efficiency of a switch in an antenna according to an embodiment of the present application.
  • FIG. 18 is a second comparison diagram of antenna efficiency of a switch in an antenna according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the antenna provided in the following embodiments of the present application can be applied to a terminal device provided with a metal frame.
  • the rear cover of the terminal device provided with the metal frame can be a non-metal back cover or a metal back cover.
  • the inner surface of the non-metal back cover may be covered with a metal layer to form a slit to form a radiation arm of the antenna or the like.
  • the terminal device may be an electronic device having a wireless communication function such as a mobile phone or a tablet computer.
  • the antenna provided in the embodiment of the present application is described below in conjunction with a plurality of examples.
  • FIG. 1 is a schematic structural diagram 1 of an antenna according to an embodiment of the present application.
  • the antenna may include a metal frame 101 and at least one resonating structure 102.
  • a slit is formed in the metal frame 101, and the slit forms a first radiating unit and a second radiating unit on the metal frame 101.
  • the first radiating element comprises at least one radiating arm 103, each radiating arm 103 being connected to a feed point 104 of the terminal device in which the antenna is located.
  • the second radiating element comprises at least one floating radiating arm 105, each resonant structure 102 comprising one of the at least one suspended radiating arm 105 and the resonant device 106; a floating radiating arm 105 connected to the resonant device 106, the resonant device 106 further Connect to the ground point of the terminal device.
  • the metal frame 101 may be a partial frame of the terminal device, such as a top frame or a bottom frame.
  • the number of slits on the metal frame 101 may be plural, such as two or four other numbers. In Fig. 1, four slits are taken as an example for description.
  • At least one of the slots may be connected outside the terminal device, and thus the plurality of slots are also present on the appearance surface.
  • the number of the slots on the metal frame 101 is multiple.
  • at least one of the slots may be connected to one of the slots, so that the number of slots on the appearance surface is more than A gap, but the actual number of antenna slots is smaller than the number.
  • Connecting at least one of the plurality of slits on the metal frame 101 can improve the antenna efficiency of the low frequency bandwidth through the resonant structure 102 on the basis of improving the appearance of the terminal device.
  • the slot may be a PI-type slot or a U-shaped slot.
  • FIG. 2 is a schematic structural diagram of a PI-type slot in an antenna according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a U-shaped slot in an antenna according to an embodiment of the present disclosure.
  • the PI-type slot on the metal frame 101 can be a PI-type slot formed on the metal back cover of the terminal device.
  • the U-shaped slot on the metal frame 101 can be used in the terminal device. U-shaped slits on the metal back cover.
  • the longer the radiating arm the smaller the radiating frequency of the radiating arm, and conversely, the shorter the radiating arm, the larger the radiating frequency of the radiating arm.
  • the first radiating element includes two radiating arms 103 as an example, wherein the longest radiating arm may be a low frequency bandwidth radiating arm, and the longest radiating arm may correspond to a radiating frequency of any of the low frequency bandwidths.
  • the low frequency bandwidth may be, for example, 698 MHz to 960 MHz, and the intermediate frequency bandwidth may be 1710 MHz to 2170 MHz, and the high frequency bandwidth may be 2300 MHz to 2690 MHz.
  • Each of the radiating arms 103 can be connected to the feed point 104 of the terminal device where the antenna is located through a lumped device of a preset resistance, so that the signal output from the feed point 104 can be transmitted to each of the radiating arms 103, and then radiated by the radiating arm 103.
  • the transmission of the wireless signal is realized, and at the same time, the signal received by each of the radiation arms 103 can be transmitted to the feed point 104 to realize the reception of the wireless signal.
  • the feed point 104 can be located on the radio frequency processing unit of the terminal device.
  • Each resonant structure 102 can also be referred to as a resonating element.
  • Each resonant structure 102 can correspond to a fixed frequency within a predetermined frequency band or to at least one variable frequency within a predetermined frequency band.
  • the specific resonant frequency of each resonant structure 102 can be determined by the length of the suspended radiating arm 105 within each resonant structure 102 and the resonant parameters of the resonant device 106, and the like.
  • the preset frequency band corresponding to each of the resonant structures 102 may be a low frequency bandwidth, and therefore, each of the resonant structures 102 may also be referred to as a low frequency resonant structure.
  • the grounding point of the terminal device may be any grounding point in any unit structure such as an RF processing unit or a baseband processing unit in the terminal device.
  • each of the resonant structures 102 can be electrically connected to the feed point 104, and each of the resonant structures 102 can excite the current on the substrate where the grounding point is located through the resonant device 106, and combine the suspension.
  • the radiating arm 105 allows the resonant structure 102 to effect transmission and reception of any frequency signal within the low frequency bandwidth.
  • the substrate may be a Printed Circuit Board (PCB).
  • the resonant structure 102 near the feed point 104 can be coupled to the feed point 104 by magnetic field. Electrical connection is achieved; of the at least one resonant structure 102, the resonant structure 102 remote from the feed point 104 can be electrically coupled to the feed point 104 by electric field coupling.
  • the antenna in FIG. 1 is illustrated by including a resonant structure 102.
  • the resonant structure 102 shown in FIG. 1 can be located near the feed point.
  • the floating radiating arm 105 of the one resonant structure 102 is the second radiating element.
  • the floating radiation arm 105 included in the resonant structure 102 may be any one of the at least one floating radiating arms 105; if the number of the resonant structures 102 is plural, the resonant structure 102 The number may be less than or equal to the number of the at least one floating radiation arm 105.
  • FIG. 4 is a comparison diagram of reflection coefficients of an antenna and a conventional antenna in an embodiment of the present application.
  • FIG. 5 is a comparison diagram of antenna efficiency of an antenna and a conventional antenna in an embodiment of the present application.
  • the curve 1 in FIG. 4 is a relationship between the reflection coefficient and the frequency of the antenna in the embodiment of the present application, that is, the resonant structure antenna;
  • the curve 2 in FIG. 4 is the reflection coefficient of the conventional antenna, that is, the antenna without the resonant structure. Curve with frequency.
  • the transmission coefficient of the antenna can be an input reflection coefficient, which can be expressed as S 11 shown in FIG.
  • the curve 1 in FIG. 5 is the relationship between the antenna efficiency and the frequency of the antenna in the embodiment of the present application; the curve 2 in FIG. 5 is the relationship between the antenna efficiency and the frequency of the conventional antenna.
  • the reflection coefficient of the antenna provided by the embodiment of the present application is smaller than the reflection coefficient of the conventional antenna, and it can be determined that the echo loss of the antenna of the embodiment of the present application is smaller than that of the conventional antenna in the low frequency bandwidth. loss.
  • the antenna efficiency of the antenna provided by the embodiment of the present application is greater than that of the conventional antenna. As shown in FIG. 4 and FIG. 5, the antenna of the embodiment of the present application effectively reduces the return loss of the antenna in the low frequency bandwidth by increasing the resonant structure 103 shown in FIG. 1, and improves the radiation efficiency of the antenna in the low frequency bandwidth.
  • the antenna of the embodiment of the present application includes a low-frequency bandwidth radiator formed by the resonant structure 103 in addition to the low-frequency bandwidth radiation included in the at least one radiating arm 104, so that even if one of the low-frequency bandwidth radiators is held by hand, Additional low frequency bandwidth radiators can operate to ensure antenna efficiency at low frequency bandwidths.
  • FIG. 6 is a comparison diagram of antenna efficiency under the hand model test of the antenna and the conventional antenna provided by the embodiment of the present application.
  • the curve 1 is the relationship between the antenna efficiency and the frequency of the antenna in the free space (FS) mode in the embodiment of the present application;
  • the curve 2 is the relationship between the antenna efficiency and the frequency of the conventional antenna in the FS mode;
  • Curve 3 is the relationship between the antenna efficiency and the frequency of the antenna in the Beside Head and Hand at Left (BHHL) mode in the embodiment of the present application;
  • the curve 4 is the antenna efficiency and frequency of the conventional antenna in the BHHL mode.
  • the curve 6 is the conventional antenna in the BHHR mode.
  • the antenna of the embodiment of the present application has an antenna efficiency in a low frequency bandwidth that is greater than that of a conventional antenna in an FS mode, a BHHL mode, or a BHHR mode. Therefore, the antenna of the embodiment of the present application can be used not only. Increasing the efficiency of the antenna in the FS mode can also improve the antenna efficiency in the low frequency bandwidth of the left and right hand modes.
  • the antenna provided by the embodiment of the present application may include: a metal frame and at least one resonant structure; the metal frame is provided with a slit, so that the first radiation unit and the second radiation unit are formed on the metal frame, and the first radiation unit includes at least one a radiating arm, each radiating arm is coupled to a feed point of the terminal device where the antenna is located, the second radiating element includes at least one floating radiating arm, each resonant structure including a floating radiating arm and a resonant device; the one floating radiating arm passes the resonance The device is connected to the ground point of the terminal device.
  • the resonant structure disposed in the antenna may be such that the low frequency bandwidth radiated by the resonant structure is included in the antenna except for the low frequency bandwidth included in the at least one radiating arm, so that even if one of the low frequency bandwidth radiators is held by the hand, Also has additional low-frequency bandwidth radiators that can work to effectively improve The antenna efficiency under low frequency bandwidth when holding the terminal device reduces the attenuation of the antenna performance and improves the communication performance.
  • FIG. 7 is a schematic structural diagram 2 of an antenna according to an embodiment of the present disclosure.
  • the resonant device 106 in each resonant structure may also be connected to the other end of the floating radiating arm 105 in each resonant structure.
  • FIG. 8 is a schematic structural diagram 3 of an antenna according to an embodiment of the present disclosure.
  • the one resonant structure 102 can also be located away from the feed point, such as the floating radiation arm 105 of the one resonant structure 102 being the second radiation.
  • FIG. 9 is a schematic structural diagram 4 of an antenna according to an embodiment of the present disclosure.
  • the antenna shown in FIG. 9 may include two resonant structures, each of which includes one of the two floating radiation arms 105 and the resonant device 106. .
  • Embodiments of the present application provide locations for a variety of different resonant structures, and antennas of a variety of different configurations are provided.
  • the embodiment of the present application further provides an antenna
  • FIG. 10 is a schematic structural diagram 5 of the antenna provided by the embodiment of the present application.
  • the resonant device 106 includes: an inductive device 1061; the one floating radiating arm 105 is connected to the inductive device 1061, and the inductive device 1061 is also connected to the grounding point.
  • the inductive device 1061 can be an inductive device with a preset fixed inductance value, or a variable inductance device with a preset range of inductance values.
  • FIG. 11 is a schematic structural diagram 6 of an antenna according to an embodiment of the present application.
  • the resonant device 106 includes: a capacitive device 1062; the one floating radiating arm 106 is connected to the capacitive device 1062, and the capacitive device 1062 is also connected to the grounding point.
  • the capacitor device 1062 may be a capacitor device with a predetermined fixed capacitance value, or may have a variable capacitance device with a preset capacitance value range.
  • FIG. 12 is a schematic structural diagram 7 of an antenna according to an embodiment of the present application.
  • the resonant device 106 includes: an inductive device 1061 and a capacitive device 1062; the inductive device 1061 is connected to the capacitive device 1062, and the inductive device 1061 is also connected to a floating radiating arm 105.
  • the capacitive device 1062 is also coupled to the ground point.
  • the inductive device 1061 shown in FIG. 12 may be a variable inductance device, and/or the capacitive device 1062 may be a variable capacitance device.
  • Embodiments of the present application provide antennas of different structures by providing a plurality of different resonant structures, and at the same time, the resonant structure can be realized between different resonant frequencies by setting the inductive device and/or the capacitive device of the resonant device as devices with variable parameter values.
  • the transformation ensures the radiation efficiency of the antenna at each resonant frequency.
  • FIG. 13 is a schematic structural diagram of an antenna provided by an embodiment of the present application.
  • the resonant device 106 includes a first inductive device 1063, a second inductive device 1064, a first switch 1065, and a second switch 1066.
  • the first inductive device 1063 is coupled to the first switch 1065
  • the second inductive device 1064 is coupled to the second switch 1066
  • the first inductive device 1063 and the second inductive device 1064 are also coupled to a floating radiating arm 105
  • the second switch 1066 is also coupled to the ground point.
  • first inductive device 1063 and the second inductive device 1064 can also be connected to the ground point;
  • a switch 1065 and a second switch 1066 are connected to a floating radiating arm 105.
  • FIG. 13 is only an example of a connection manner, and details are not described herein again.
  • the first switch 1065 and the second switch 1066 may be a radio frequency switch.
  • the antenna provided by the embodiment of the present application can realize the switching of the resonant structure between different resonant frequencies by adjusting different states of the switch, thereby ensuring the radiation efficiency of the antenna at each resonant frequency.
  • the floating radiation arm 105 in the resonant structure 102 is equivalent to an open circuit.
  • the inductance of the inductive device connected to the floating radiation arm 105 may be greater or preset by adjusting the state of the first switch 1065 and/or the second switch 1066. Inductance value.
  • the inductive device connected to the floating radiation arm 105 can be referred to as a large inductor L1, and its inductance value can be, for example, 36 nH.
  • the inductance of the inductive device connected to the floating radiation arm 105 can be made smaller than the preset inductance value by adjusting the state of the first switch 1065 and/or the second switch 1066.
  • the inductive device connected to the floating radiation arm 105 may be referred to as a small inductance L0, and its inductance value may be, for example, 6.8 nH.
  • a short resonant arm from the antenna feed point to the first radiating element is passed through the finger to the floating radiating arm 105, and then grounded through a small inductor to form a new resonant frequency of 3/4 wavelength.
  • the new resonant frequency can be tuned by a small inductance L0 below ground, which can be, for example, near the frequency of the intermediate frequency of 1710 MHz.
  • L0 below ground
  • the antenna provided by the embodiment of the present invention can effectively avoid the attenuation of the antenna efficiency caused by the finger touching the antenna gap in the middle and high frequency bandwidth, and the antenna efficiency can be improved by at least 7.5 dB compared with the conventional antenna, which effectively ensures the user's Communication quality.
  • FIG. 14 is a comparison of the antenna efficiency of the antenna in each state according to the embodiment of the present application.
  • FIG. 15 is a comparison diagram of the antenna efficiency of the antenna in each state according to the embodiment of the present application.
  • Curve 1 in Fig. 14 is a graph showing the relationship between the antenna efficiency and the frequency without switching the inductance value of the suspension radiating arm connection in the resonant structure to a small inductance, and the antenna antenna gap in the case of holding the antenna gap;
  • the inductance value of the suspension radiating arm connection is switched to a small inductance, and the relationship between the antenna efficiency and the frequency in the case of holding the antenna gap;
  • the curve 3 in FIG. 14 is that the inductance value of the suspension radiating arm connection in the resonant structure is not switched to a small value. Inductance, and the relationship between antenna efficiency and frequency in the case where the hand does not hold the antenna gap.
  • Curve 1 in Fig. 15 is a graph showing the relationship between the antenna efficiency and the frequency when the inductance value of the suspension radiating arm connection in the resonant structure is switched to the small inductance, and the antenna antenna is not suspended in the resonant structure in FIG.
  • the inductance value of the radiating arm connection is switched to a small inductance, and the relationship between the antenna efficiency and the frequency in the case of holding the antenna gap.
  • FIG. 16 is a schematic structural diagram 9 of an antenna according to an embodiment of the present application. As shown in FIG. 16, on the basis of the antenna shown above, among the antennas, the shortest radiating arm of the first radiating unit is further connected to the switching switch 107, and the switching switch 107 is also connected to the grounding point of the terminal device.
  • the switch 107 includes: a third inductive device 1071 and a fourth inductive device 1072 connected in parallel with each other; the third inductive device 1071 is also connected to the grounding point of the terminal device through the third switching device 1073, and the fourth inductive device 1072 also passes through The four switching device 1074 is connected to the ground point of the terminal device.
  • the switch 107 is disposed on the shortest radiating arm side, which can effectively reduce the decrease in antenna efficiency with increasing frequency in the low frequency bandwidth.
  • the third switching device 1073 and the fourth switching device 1074 included in the changeover switch 107 are two single-pole single-throw switches, and thus the switch in the switch 107 can be referred to as a double-pole double-throw switch.
  • the radiation frequency of the shortest radiating arm in the antenna can cover different ranges in the low frequency bandwidth (698 MHz-960 MHz), respectively.
  • the first frequency band (698MHz-787MHz) where 700MHz is located the second frequency band (814MHz-894MHz) where 800MHz is located, and the third frequency band (880MHz-960MHz) where 900MHz is located.
  • the first switch state of the three switch states is: the third switch device 1073 and the fourth switch device 1074 are both disconnected; the second switch state of the three switch states is: the third switch device 1073 and the fourth switch Any one of the devices 1074 is turned off; the third switch state of the three switch states is that the third switching device 1073 and the fourth switching device 1074 are both turned off.
  • the radiation frequency of the shortest radiating arm in the antenna can cover the first frequency band (698 MHz-787 MHz) of 700 MHz in the low frequency bandwidth (698 MHz-960 MHz); in the second switching state, the antenna The radiation frequency of the shortest radiating arm can cover the second frequency band (814MHz-894MHz) of 800MHz in the low frequency bandwidth (698MHz-960MHz); in the third switching state, the radiation frequency of the shortest radiating arm in the antenna can be covered.
  • the 900MHz in the low-bandwidth (698MHz-960MHz) is in the third band (880MHz-960MHz).
  • FIG. 17 is a comparison of the antenna efficiency of the switch in the antenna according to the embodiment of the present application.
  • FIG. 18 is a second comparison diagram of the antenna efficiency of the switch in the antenna according to the embodiment of the present application.
  • curve 1 is the relationship between the antenna efficiency and the frequency in the first switching state
  • the curve 2 is the relationship between the antenna efficiency and the frequency in the second switching state
  • Fig. 17 and Fig. Curve 3 in 18 is the relationship between antenna efficiency and frequency in the third switching state.
  • the first switching state is that the third switching device 1073 and the fourth switching device 1074 are both turned off
  • the second switching state is: any one of the third switching device 1073 and the fourth switching device 1074 is turned off
  • the third switching state is : The third switching device 1073 and the fourth switching device 1074 are both turned off.
  • the radiation frequency of the longest radiating arm in the antenna of the embodiment of the present application may cover the first frequency band in the low frequency bandwidth, and ensure the antenna efficiency in the first frequency band;
  • the radiation frequency of the longest radiating arm in the antenna of the embodiment of the present application may cover the second frequency band in the low frequency bandwidth to ensure the antenna efficiency in the second frequency band;
  • the third switch state the present application The radiation frequency of the longest radiating arm of the antenna of the embodiment can cover the third frequency band in the low frequency bandwidth, and the antenna efficiency in the third frequency band is ensured.
  • FIG. 19 is a schematic structural diagram 10 of an antenna according to an embodiment of the present application. As shown in FIG. 19, the third inductive device 1071 in the antenna as described above is also connected in parallel with the first capacitive device 1075; the fourth inductive device 1072 and the second capacitive device 1076 are also connected in parallel.
  • the third switching device 1073 and the fourth switching device 1074 have a parasitic capacitance inside respectively.
  • the parasitic capacitance can be equivalent to a small capacitance C Off , and the capacitance of the small capacitor can be, for example, 0.3 pF.
  • the parasitic capacitance in each switching device 1073 can form a resonant circuit with the inductive device connected to the switching device, when the inductance value of the inductive device is within a preset range. Internally, the resonant frequency of the resonant circuit covers a corresponding frequency band within the low frequency bandwidth.
  • the difference between the capacitance value of the first capacitive device 1075 and the equivalent capacitance value when the third switching device 1073 is in the off state is less than or equal to a preset value
  • the difference between the capacitance value of the second capacitive device 1076 and the equivalent capacitance value in the case where the fourth switching device is in the off state is less than or equal to a preset value.
  • the equivalent capacitance value of the third switching device 1073 in the off state may be the capacitance value of the parasitic capacitance in the third switching device 1073.
  • the fourth switching device 1074 is in the off state, the equivalent capacitance value can be the fourth switching device The capacitance value of the parasitic capacitance in 1074.
  • the capacitance value of the first capacitive device 1075 can be equal to or close to the capacitance value of the parasitic capacitance in the third switching device 1073, such as 0.3 pF, and the capacitance value of the second capacitive device 1076 can be equal to or close to the fourth.
  • the capacitance value of the parasitic capacitance in the switching device 1074 is, for example, 0.3 pF.
  • the first capacitive device 1075 is connected in parallel with the third inductive device 1071 in FIG. 19, and the second capacitive device 1076 is connected in parallel with the fourth inductive device 1072, and the capacitance value of the first capacitive device 1075 is disconnected from the third switching device 1073.
  • the difference between the lower equivalent capacitance values is less than or equal to a preset value, and the difference between the capacitance value of the second capacitive device 1076 and the equivalent capacitance value of the fourth switching device 1074 in the off state is less than or equal to a preset value.
  • the passband position of the resonant frequency is pulled low to achieve clutter filtering.
  • the switch When the switch is turned off, a resonant impedance is formed at the third inductive component 1071 and the first capacitive device 1075 or the fourth inductive device 1072 and the second capacitive device at the original clutter band, exhibiting a small capacitive and medium-high frequency bandwidth at a low frequency bandwidth
  • the large inductiveness has no effect on the frequency band, so that the Carrier Aggregation (CA) state has the same performance as the B4 band in the non-CA state Long Term Evolution (LTE).
  • the capacitance of the switch off state to the low frequency is smaller than that of the conventional filtering method, so that the low frequency bandwidth has a low response, which is advantageous for frequency tuning in the low frequency bandwidth.
  • the B4 frequency band includes: a 1710 MHz-1755 MHz transmission band, and a 2110 MHz-2155 MHz reception band.
  • the three states of the switch can make the return loss curve of B4 consistent.
  • the three states of the switch can also make the antenna efficiency of B4 consistent, and ensure the CA state and the non-CA state. The performance of B4 does not drop.
  • FIG. 20 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device may include: a PCB 2001 and an antenna 2002.
  • the PCB 2001 includes a radio frequency processing unit 2003 and a baseband processing unit 2004.
  • the antenna 2002 is the antenna described in any one of the above 1 to 19.
  • Each of the first radiating elements in the antenna 2002 is connected to a feed point on the radio frequency processing unit 2003.
  • the radio frequency processing unit 2003 is connected to the baseband processing unit 2004.
  • the antenna 2002 is configured to transmit the received wireless signal to the radio frequency processing unit 1803 or transmit the transmission signal of the radio frequency processing unit 1803.
  • the radio frequency processing unit 2003 is configured to process the radio signal received by the antenna 2002 and send it to the baseband processing unit 2004, or process the signal sent by the baseband processing unit 2004 and transmit it through the antenna 2002.
  • the baseband processing unit 2004 is configured to process the signal sent by the radio frequency processing unit 2003.
  • the resonant structure provided in the antenna included in the terminal device provided by the embodiment of the present application may be such that the low-frequency bandwidth radiated by the resonant structure is included in the antenna except for the low-frequency bandwidth included in the at least one radiating arm, which may Even if one of the low-frequency bandwidth radiators is held, another low-frequency bandwidth radiator can work, which effectively improves the antenna efficiency under low-frequency bandwidth when the terminal device is held, reduces the attenuation of the antenna performance, and improves the communication of the terminal device. performance.

Abstract

本申请实施例提供一种天线和终端设备。本申请的天线包括:金属边框及至少一个谐振结构;金属边框包括有第一辐射单元和第二辐射单元;第一辐射单元包括与馈点连接的辐射臂;第二辐射单元包括悬浮辐射臂,每个谐振结构包括悬浮辐射臂和谐振器件;悬浮辐射臂与通过谐振器件与接地点连接。本申请可提高低频带宽的天线效率。

Description

天线和终端设备 技术领域
本申请涉及通信技术,尤其涉及一种天线和终端设备。
背景技术
随着通信技术的发展,手机、平板电脑等终端设备通常都具有蜂窝通信、无线保真(WIreless-Fidelity,WiFi)、蓝牙(Bluetooth)等无线通信功能。
为满足人们对终端设备轻薄化的需求,天线通常内置在设备内部。而对于外壳的材质,可以包括塑料外壳、金属外壳等。随着人们对外观的需求,由于金属外壳的质感、耐用、使用寿命等优点,金属外壳的终端设备越来越受欢迎。然而,金属外壳对电磁波的屏蔽作用,使得终端设备内置的天线无法收发信号,为保证终端设备的正常通信,目前可通过在金属外壳上下部的边缘附件开缝或开槽,从而形成缝隙天线。
但由于缝隙天线的末端通常弯向金属外壳的长侧边,当人们手握终端设备时,易使得天线性能衰减,导致通信性能下降。
发明内容
本申请实施例提供一种天线和终端设备,以降低手握终端设备时造成的天线性能衰减,提高通信性能。
第一方面,本申请实施例提供一种天线,包括:金属边框及至少一个谐振结构;其中,该金属边框上开设有缝隙,使得金属边框上形成第一辐射单元和第二辐射单元;
第一辐射单元包括至少一个辐射臂,每个辐射臂与该天线所在终端设备的馈点连接;
第二辐射单元包括至少一个悬浮辐射臂,每个谐振结构包括一个悬浮辐射臂和谐振器件;该一个悬浮辐射臂与该谐振器件连接,该谐振器件还与该终端设备的接地点连接。
本申请实施例提供的该天线,可使得即便手握其中一个低频带宽辐射体,还具有另外的低频带宽辐射体可进行工作,有效提高了手握终端设备时低频工作频段下的天线效率,减小了天线性能的衰减,提高通信性能。
可选的,谐振器件包括:电感器件;该一个悬浮辐射臂与该电感器件连接,该电感器件还与该接地点连接。
可选的,谐振器件包括:电容器件;该一个悬浮辐射臂与该电容器件连接,该电容器件还与该接地点连接。
可选的,该谐振器件包括:电感器件和电容器件;该电感器件与该电容器件连接,该电感器件还与该一个悬浮辐射臂连接;该电容器件还与该接地点连接。
可选的,该电感器件为可调电感器件和/或该电容器件为可调电容器件。
本申请实施例通过提供多种不同的谐振结构提供不同结构的天线,同时,可通过将谐振器件的电感器件和/或电容器件设置为可变参数值的器件,实现谐振结构在不同谐振频率间的变换,从而提升天线在各谐振频率的辐射效率。
可选的,谐振器件包括:第一电感器件、第二电感器件、第一开关和第二开关;该第一电感器件与该第一开关连接,该第二电感器件与该第二开关连接;该第一电感器件和该第二电感器件还与该一个悬浮辐射臂连接;该第一开关和该第二开关还与该接地点连接。
本申请实施例提供的该天线可通过调节开关的不同状态,实现谐振结构在不同谐振频率间的切换,从而提升天线在各谐振频率的辐射效率。
可选的,该第一辐射单元中最短的辐射臂还连接相互并联的第三电感器件和第四电感器件;该第三电感器件还通过第三开关器件连接至该终端设备的接地点,该第四电感器件还通过第四开关器件连接至该终端设备的接地点。
本实施例提供的天线中,可有效降低低频工作频段内随着天线切换不同频段带来的天线效率的降幅。
可选的,该第三电感器件还与第一电容器件并联;该第四电感器件还该第二电容器件并联。
可选的,该第一电容器件的电容值与该第三开关为断开状态情况下的等效电容值的差值小于或等于预设值;
该第二电容器件的电容值与该第四开关为断开状态情况下的等效电容值的差值小于或等于预设值。
本申请实施例的天线,还可实现杂波的滤除。
可选的,缝隙为PI型缝隙或U型缝隙。
第二方面,本申请实施例还提供一种终端设备,包括:印制电路板PCB和天线;该PCB包括:射频处理单元和基带处理单元;该天线为上述任一所述的天线;其中,该天线中该第一辐射单元中的每个辐射臂与该射频处理单元上的馈点连接;该射频处理单元与该基带处理单元连接;
该天线,用于将接收到的无线信号传输给该射频处理单元,或者将该射频处理单元的发射信号发送出去;
该射频处理单元,用于对该天线接收到的无线信号进行处理后发送给该基带处理单元,或者,用于将该基带处理单元发送的信号进行处理后通过该天线发送出去;
该基带处理单元,用于对该射频处理单元发送的信号进行处理。
本申请实施例提供的天线和终端设备,其中,天线可包括:金属边框及至少一个谐振结构;该金属边框上开设有缝隙,使得金属边框上形成第一辐射单元和第二辐射单元,该第一辐射单元包括至少一个辐射臂,每个辐射臂与该天线所在终端设备的馈点连接,该第二辐射单元包括至少一个悬浮辐射臂,每个谐振结构包括一个悬浮辐射臂和谐振器件;该一个悬浮辐射臂通过谐振器件与该终端设备的接地点连接。该天线中设置的谐振结构可使得该天线中除至少一个辐射臂中所包括的低频带宽辐射体外,还包括谐振结构所形成的低频带宽辐射体,可使得即便手握其中一个低频带宽辐射体,还具有另外的低频带宽辐射体可进行工作,有效提高了手握终端设备时低频带宽 下的天线效率,减小了天线性能的衰减,提高通信性能。
附图说明
图1为本申请实施例提供的天线的结构示意图一;
图2为本申请实施例提供的天线中PI型缝隙的结构示意图;
图3为本申请实施例提供的天线中U型缝隙的结构示意图;
图4为本申请实施例中的天线与传统天线的反射系数对比图;
图5为本申请实施例中的天线与传统天线的天线效率对比图;
图6为本申请实施例提供的天线与传统天线的在手模测试下的天线效率对比图;
图7为本申请实施例提供的天线的结构示意图二;
图8为本申请实施例提供的天线的结构示意图三;
图9为本申请实施例提供的天线的结构示意图四;
图10为本申请实施例提供的天线的结构示意图五;
图11为本申请实施例提供的天线的结构示意图六;
图12为本申请实施例提供的天线的结构示意图七;
图13为本申请实施例提供的天线的结构示意图八;
图14为本申请实施例提供的天线在各状态下天线效率的对比图一;
图15为本申请实施例提供的天线在各状态下天线效率的对比图二;
图16为本申请实施例提供的天线的结构示意图九;
图17为本申请实施例提供的天线中切换开关在各开关状态下的天线效率对比图一;
图18为本申请实施例提供的天线中切换开关在各开关状态下的天线效率对比图二;
图19为本申请实施例提供的天线的结构示意图十;
图20为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
本申请下述各实施例提供的天线可适用于设置有金属边框的终端设备,该设置有金属边框的终端设备中后盖可以为非金属后盖,也可以为金属后盖。对于非金属后盖的终端设备,其非金属后盖的内表面可铺设有金属层以开设缝隙形成天线的辐射臂等。该终端设备可以为手机、平板电脑等具有无线通信功能的电子设备。如下结合多个实例对本申请实施例提供的天线进行说明。
图1为本申请实施例提供的天线的结构示意图一。如图1所示,天线可包括:金属边框101及至少一个谐振结构(resonating structure)102。金属边框101上开设有缝隙,缝隙使得金属边框101上形成第一辐射单元和第二辐射单元。
第一辐射单元包括至少一个辐射臂103,每个辐射臂103与天线所在终端设备的馈点104连接。
第二辐射单元包括至少一个悬浮辐射臂105,每个谐振结构102包括至少一个悬浮辐射臂中的一个悬浮辐射臂105和谐振器件106;一个悬浮辐射臂105与谐振器件106连接,谐振器件106还与终端设备的接地点连接。
具体地,该图1所示的天线中,金属边框101可以为终端设备的部分边框,如顶部边框或者底部边框。金属边框101上的缝隙个数可以为多个,如2个或者4个等其他个数。图1中以4个缝隙为例进行说明。
若金属边框101上的缝隙个数为多个,在该终端设备外部,可将其中的至少一个缝隙连接起来,如此,在外观面上还呈现为该多个缝隙。可选的,金属边框101上的缝隙个数为多个,在该终端设备内部,可将其中的至少一个缝隙如其中的一个缝隙连接起来,如此,在外观面上的缝隙个数为该多个缝隙,但实际的天线缝隙个数小于该多个。
将金属边框101上的多个缝隙中,至少一个缝隙连接起来,可在改善终端设备外观的基础上,通过该谐振结构102提高低频带宽的天线效率。
可选的,如上任一所述的天线中,该缝隙可为PI型缝隙或U型缝隙。
示例地,图2为本申请实施例提供的天线中PI型缝隙的结构示意图。图3为本申请实施例提供的天线中U型缝隙的结构示意图。
参见图2可知,该金属边框101上的PI型缝隙可以为在终端设备的金属后盖上开设的PI型缝隙,参见图3可知,该金属边框101上的U型缝隙可以为在终端设备的金属后盖上开设的U型缝隙。
如上所示的至少一个辐射臂103中,辐射臂越长,辐射臂对应的辐射频率越小,反之,辐射臂越短,辐射臂对应的辐射频率越大。
图1中以第一辐射单元包括两个辐射臂103为例,其中,最长的辐射臂可以为低频带宽的辐射臂,该最长的辐射臂对应的辐射频率可以为该低频带宽内的任一频率;最短的辐射臂可以为中频或高频辐射臂,该最短的辐射臂对应的辐射频率可以为中频带宽或高频带宽内的任一频率。其中,该低频带宽例如可以为698MHz-960MHz,该中频带宽可以为1710MHz-2170MHz,该高频带宽可以为2300MHz-2690MHz。
每个辐射臂103可通过预设阻值的集总器件与天线所在终端设备的馈点104连接,可使得馈点104所输出的信号传输至每个辐射臂103,继而通过辐射臂103进行辐射,实现无线信号的发送,同时,还可使得每个辐射臂103接收到的信号传输至馈点104,实现无线信号的接收。
其中,该馈点104可位于该终端设备的射频处理单元上。
每个谐振结构102还可称为一个谐振单元(resonating element)。每个谐振结构102可以对应预设频带内的一个固定频率,也可以对应该预设频带内的至少一个可变的频率。每个谐振结构102对应具体谐振频率可以由该每个谐振结构102内的悬浮辐射臂105的长度以及谐振器件106的谐振参数等确定的。
该每个谐振结构102对应的预设频带可以为低频带宽,因此,每个谐振结构102还可称为一个低频谐振结构。终端设备的接地点可以为该终端设备内射频处理单元或基带处理单元等任一单元结构中的任一接地点。
图1所示的天线中,每个谐振结构102均可与馈点104通过耦合实现电连接,每个谐振结构102可通过谐振器件106,将接地点所在的基板上的电流进行激励,结合悬浮辐射臂105,使得谐振结构102可实现低频带宽内任一频率信号的收发。其中,该基板可以为印制电路板(Printed Circuit Board,PCB)。
至少一个谐振结构102中,靠近馈点104的谐振结构102可通过磁场耦合与馈点104 实现电连接;至少一个谐振结构102中,远离馈点104的谐振结构102可通过电场耦合与馈点104实现电连接。图1中的天线以包括一个谐振结构102为例说明,该图1所示的一个谐振结构102可位于靠近馈点的位置,如该一个谐振结构102的悬浮辐射臂105为该第二辐射单元中距离该馈点104最近的一个悬浮辐射臂105。
若谐振结构102的个数为1,则该谐振结构102包括的悬浮辐射臂105可以为至少一个悬浮辐射臂105中的任一个;若谐振结构102的个数为多个,则该谐振结构102的个数可小于或等于该至少一个悬浮辐射臂105的个数。
图4为本申请实施例中的天线与传统天线的反射系数对比图。图5为本申请实施例中的天线与传统天线的天线效率对比图。图4中的曲线1为本申请实施例中的天线,即加谐振结构天线,的反射系数与频率的关系曲线;图4中的曲线2为传统天线,即未加谐振结构天线,的反射系数与频率的关系曲线。天线的发射系数可以为输入反射系数,可表示为图4中所示的S11。图5中的曲线1为本申请实施例中的天线的天线效率与频率的关系曲线;图5中的曲线2为传统天线的天线效率与频率的关系曲线。
参见图4可知,在低频带宽内,本申请实施例提供的天线的反射系数小于传统天线的反射系数,则可确定在低频带宽内本申请实施例的天线的回波损耗小于传统天线的回波损耗。参见图5可知,而在低频带宽内,本申请实施例提供的天线的天线效率大于传统天线的天线效率。结合上述图4和图5可知,本申请实施例的天线通过增加图1中所示的谐振结构103有效降低了低频带宽内天线的回波损耗,提高了低频带宽内天线的辐射效率。
本申请实施例的天线中,除至少一个辐射臂104中所包括的低频带宽辐射体外,还包括谐振结构103所形成的低频带宽辐射体,可使得即便手握其中一个低频带宽辐射体,还具有另外的低频带宽辐射体可进行工作,从而保证低频带宽下的天线效率。
图6为本申请实施例提供的天线与传统天线的在手模测试下的天线效率对比图。其中,曲线1为本申请实施例中的天线在自由空间(Free Space,FS)模式下的天线效率与频率的关系曲线;曲线2为传统天线在FS模式下的天线效率与频率的关系曲线;曲线3为本申请实施例中的天线在左手和头旁边(Beside Head and Hand at Left,BHHL)模式下的天线效率与频率的关系曲线;曲线4为传统天线在BHHL模式下的天线效率与频率的关系曲线;曲线5为本申请实施例中的天线在右手和头旁边(Beside Head and Hand at Right,BHHR)模式下的天线效率与频率的关系曲线;曲线6为传统天线在BHHR模式下的天线效率与频率的关系曲线。
参见图6可知,本申请实施例的天线无论是在FS模式、BHHL模式还是BHHR模式下,其在低频带宽内的天线效率均大于传统天线的天线效率,因而,本申请实施例的天线不仅可提高FS模式下的天线效率,还可提高左右手模下在低频带宽内的天线效率。
本申请实施例提供的天线,可包括:金属边框及至少一个谐振结构;该金属边框上开设有缝隙,使得金属边框上形成第一辐射单元和第二辐射单元,该第一辐射单元包括至少一个辐射臂,每个辐射臂与该天线所在终端设备的馈点连接,该第二辐射单元包括至少一个悬浮辐射臂,每个谐振结构包括一个悬浮辐射臂和谐振器件;该一个悬浮辐射臂通过谐振器件与该终端设备的接地点连接。该天线中设置的谐振结构可使得该天线中除至少一个辐射臂中所包括的低频带宽辐射体外,还包括谐振结构所形成的低频带宽辐射体,可使得即便手握其中一个低频带宽辐射体,还具有另外的低频带宽辐射体可进行工作,有效提高 了手握终端设备时低频带宽下的天线效率,减小了天线性能的衰减,提高通信性能。
可选的,在上述图1所示的天线的基础上,本申请实施例还可提供一种天线。图7为本申请实施例提供的天线的结构示意图二。如图7所示,上所示的天线中,每个谐振结构中的谐振器件106还可与每个谐振结构中的悬浮辐射臂105的另一端连接。
可选的,在上述图1所示的天线的基础上,本申请实施例还可提供一种天线。图8为本申请实施例提供的天线的结构示意图三。如图8所示,上所示的天线中,若包括一个谐振结构102,该一个谐振结构102还可位于远离馈点的位置,如该一个谐振结构102的悬浮辐射臂105为该第二辐射单元中距离该馈点104最远的一个悬浮辐射臂105。
可选的,在上述图1所示的天线的基础上,本申请实施例还可提供一种天线。图9为本申请实施例提供的天线的结构示意图四。如图9所示,上所示的天线中,若谐振结构102的个数为多个,则该谐振结构102的个数或等于该至少一个悬浮辐射臂105的个数。以两个悬浮辐射臂105为例,该图9所示的天线中可包括两个谐振结构,每个谐振结构102分别包括该两个悬浮辐射臂105中的一个悬浮辐射臂105和谐振器件106。
本申请实施例提供多种不同谐振结构所在的位置,提供了多种不同结构的天线。
可选的,本申请实施例还提供一种天线,图10为本申请实施例提供的天线的结构示意图五。可选的,如图10所示,上所示的天线中,谐振器件106包括:电感器件1061;该一个悬浮辐射臂105与电感器件1061连接,该电感器件1061还与该接地点连接。
其中,电感器件1061可以为预设固定电感值的电感器件,也可以具有预设电感值范围的可调电感器件。
图11为本申请实施例提供的天线的结构示意图六。可选的,如图11所示,上所示的天线中,谐振器件106包括:电容器件1062;该一个悬浮辐射臂106与电容器件1062连接,该电容器件1062还与该接地点连接。
其中,该电容器件1062可以为预设固定电容值的电容器件,也可以具有预设电容值范围的可变电容器件。
图12为本申请实施例提供的天线的结构示意图七。可选的,如图12所示,上所示的天线中,谐振器件106包括:电感器件1061和电容器件1062;电感器件1061与电容器件1062连接,电感器件1061还与一个悬浮辐射臂105连接;电容器件1062还与该接地点连接。
可选的,图12所示的电感器件1061可以为可调电感器件,和/或,电容器件1062可以可调电容器件。
本申请实施例通过提供多种不同的谐振结构提供不同结构的天线,同时,可通过将谐振器件的电感器件和/或电容器件设置为可变参数值的器件,实现谐振结构在不同谐振频率间的变换,从而保证天线在各谐振频率的辐射效率。
可选的,本申请实施例还提供一种天线,图13为本申请实施例提供的天线的结构示意图八。如图13所示,如上所示的天线中,谐振器件106包括:第一电感器件1063、第二电感器件1064、第一开关1065和第二开关1066。第一电感器件1063与第一开关1065连接,第二电感器件1064与第二开关1066连接;第一电感器件1063和第二电感器件1064还与一个悬浮辐射臂105连接;第一开关1065和第二开关1066还与该接地点连接。
需要说明的是,第一电感器件1063和第二电感器件1064也可与该接地点连接;而第 一开关1065和第二开关1066与一个悬浮辐射臂105连接,图13仅为一种实例的连接方式,在此不再赘述。
其中,第一开关1065和第二开关1066可以为射频开关(Radio Frequency Switch)。
本申请实施例提供的该天线可通过调节开关的不同状态,实现谐振结构在不同谐振频率间的切换,从而保证天线在各谐振频率的辐射效率。
如上图13所示的天线,若工作在低频带宽内,则谐振结构102中的悬浮辐射臂105便等效于开路。当天线工作在低频带宽内,而手指未接触到天线缝隙,可通过调节第一开关1065和/或第二开关1066的状态,使得与悬浮辐射臂105连接的电感器件的电感值大于或预设电感值。与悬浮辐射臂105连接的电感器件可称为大电感L1,其电感值例如可以为36nH。
当用户在使用手机中手指接触到到天线缝隙,可通过调节第一开关1065和/或第二开关1066的状态,使得与悬浮辐射臂105连接的电感器件的电感值小于预设电感值。此时,与悬浮辐射臂105连接的电感器件可称为小电感L0,其电感值例如可以为6.8nH。这时从天线馈点到第一辐射单元中较短的辐射臂,通过手指再到悬浮辐射臂105,继而通过小电感接地,形成一个3/4波长的新的谐振频率。该新的谐振频率可通过下地的小电感L0进行调谐,该新的谐振频率例如可以为中频1710MHz的频率附近。如此,本申请实施例提供的天线还可有效避免中高频带宽下手指接触天线缝隙造成的天线效率的衰减,其相比于传统天线,其天线效率至少可提高7.5dB,有效了保证了用户的通信质量。
例如,图14为本申请实施例提供的天线在各状态下天线效率的对比图一,图15为本申请实施例提供的天线在各状态下天线效率的对比图二。
图14中曲线1为未将谐振结构中悬浮辐射臂连接的电感值切换至小电感,而手握天线缝隙情况下,天线效率与频率的关系曲线;图14中的曲线2为将谐振结构中悬浮辐射臂连接的电感值切换至小电感,而手握天线缝隙情况下,天线效率与频率的关系曲线;图14中的曲线3为未将谐振结构中悬浮辐射臂连接的电感值切换至小电感,而手未握天线缝隙情况下,天线效率与频率的关系曲线。
图15中曲线1为将谐振结构中悬浮辐射臂连接的电感值切换至小电感,而手握天线缝隙情况下,天线效率与频率的关系曲线;图15中曲线2为未将谐振结构中悬浮辐射臂连接的电感值切换至小电感,而手握天线缝隙情况下,天线效率与频率的关系曲线。
参见图14和图15可知,将谐振结构中悬浮辐射臂连接的电感值切换至小电感,可有效提高手指接触天线缝隙情况下的天线效率。
可选的,本申请实施例还提供一种天线。图16为本申请实施例提供的天线的结构示意图九。如图16所示,在如上所示的天线的基础上,该天线中,第一辐射单元中最短的辐射臂还连接切换开关107,该切换开关107还与该终端设备的接地点连接。
该切换开关107包括:相互并联的第三电感器件1071和第四电感器件1072;第三电感器件1071还通过第三开关器件1073连接至该终端设备的接地点,第四电感器件1072还通过第四开关器件1074连接至该终端设备的接地点。
本实施例提供的天线中,将切换开关107设置在最短的辐射臂侧,可有效降低低频带宽内随着频率增高天线效率的降幅。该切换开关107中所包括的第三开关器件1073和第四开关器件1074两个单刀单掷开关,因而切换开关107中的开关可称为双刀双掷开关。 通过在第三开关器件1073和第四开关器件1074的三个开关状态间切换,可使得该天线中,该最短的辐射臂的辐射频率可分别覆盖低频带宽(698MHz-960MHz)内的不同范围,如700MHz所在第一频段(698MHz-787MHz)、800MHz所在第二频段(814MHz-894MHz)及900MHz所在第三频段(880MHz-960MHz)。其中,该三个开关状态中第一开关状态为:第三开关器件1073和第四开关器件1074均断开;该三个开关状态中第二开关状态为:第三开关器件1073和第四开关器件1074中任一断开;该三个开关状态中第三开关状态为:第三开关器件1073和第四开关器件1074均关闭。
在第一开关状态下,该天线中的最短的辐射臂的辐射频率可覆盖低频带宽(698MHz-960MHz)内的700MHz所在第一频段(698MHz-787MHz);在第二开关状态下,该天线中的最短的辐射臂的辐射频率可覆盖低频带宽(698MHz-960MHz)内的800MHz所在第二频段(814MHz-894MHz);在第三开关状态下,该天线中的最短的辐射臂的辐射频率可覆盖低频带宽(698MHz-960MHz)内的900MHz所在第三频段(880MHz-960MHz)。
例如,图17为本申请实施例提供的天线中切换开关在各开关状态下的天线效率对比图一。图18为本申请实施例提供的天线中切换开关在各开关状态下的天线效率对比图二。
图17和图18中曲线1为第一开关状态下,天线效率与频率的关系曲线;图17和图18中曲线2为第二开关状态下,天线效率与频率的关系曲线;图17和图18中曲线3为第三开关状态下,天线效率与频率的关系曲线。其中,第一开关状态为第三开关器件1073和第四开关器件1074均断开;第二开关状态为:第三开关器件1073和第四开关器件1074中任一断开;第三开关状态为:第三开关器件1073和第四开关器件1074均关闭。
参见图17和图18可知,在第一开关状态下,本申请实施例的天线中最长辐射臂的辐射频率可覆盖低频带宽内的第一频段,保证该第一频段内的天线效率;在第二开关状态下,本申请实施例的天线中最长的辐射臂的辐射频率可覆盖低频带宽内的第二频段,保证该第二频段内的天线效率;在第三开关状态下,本申请实施例的天线中最长的辐射臂的辐射频率可覆盖低频带宽内的第三频段,保证了该第三频段内的天线效率。
可选的,本申请实施例还提供一种天线。图19为本申请实施例提供的天线的结构示意图十。如图19所示,如上述所示的天线中第三电感器件1071还与第一电容器件1075并联;第四电感器件1072还第二电容器件1076并联。
第三开关器件1073和第四开关器件1074内部分别具有一个寄生电容,在断开情况下,可该寄生电容可等效于一个小电容COff,该小电容的电容值例如可以为0.3pF。
若第一开关器件1073和/或第二开关器件1074断开,则各开关器件1073内的寄生电容可与该开关器件连接的电感器件形成谐振电路,当该电感器件的电感值在预设范围内时,该谐振电路的谐振频率覆盖该低频带宽内的对应频段。
可选的,如上所示的第一电容器件1075的电容值与第三开关器件1073为断开状态情况下的等效电容值的差值小于或等于预设值;
第二电容器件1076的电容值与第四开关器件为断开状态情况下的等效电容值的差值小于或等于预设值。
第三开关器件1073为断开状态情况下的等效电容值可以第三开关器件1073内的寄生电容的电容值。第四开关器件1074为断开状态情况下的等效电容值可以第四开关器件 1074内的寄生电容的电容值。
在一种实例中,第一电容器件1075的电容值可等于或接近于第三开关器件1073内的寄生电容的电容值如0.3pF,第二电容器件1076的电容值可等于或接近于第四开关器件1074内的寄生电容的电容值如0.3pF。
为图19中第三电感器件1071并联第一电容器件1075,为第四电感器件1072并联第二电容器件1076,且,第一电容器件1075的电容值与第三开关器件1073在断开状态情况下的等效电容值的差值小于或等于预设值,第二电容器件1076的电容值与第四开关器件1074在断开状态情况下的等效电容值的差值小于或等于预设值,可使得第三电感器件1071与第三开关器件1073串联后所形成的谐振电路,以及第四电感器件10721与第四开关器件1074串联后所形成的谐振电路的谐振频率处出现一阻带,其谐振频率的通带位置被拉低,从而实现杂波的滤除。
当开关断开,在原杂波频带处第三电感器件1071和第一电容器件1075或第四电感器件1072和第二电容器件处形成谐振阻抗,呈现出低频带宽下的小容性和中高频带宽下的大感性,对该频带无影响,使得载波聚合(Carrier Aggregation,CA)态与非CA态的长期演进(Long Term Evolution,LTE)中的B4频段的性能相同。在开关断开状态对低频呈现的容性比传统的滤波方法中的电容要小,使得低频带宽偏低的响应较小,有利于低频带宽内的频率调谐。其中,该B4频段包括:1710MHz-1755MHz发射频段,和2110MHz-2155MHz接收频段。
同时,参见上述图17还可知,开关的三个状态可使得B4的回损曲线一致,参见上述图18还可知开关三个状态还可使得B4的天线效率一致,保证了CA态与非CA态的B4性能不下降。
本申请实施例还提供一种终端设备。图20为本申请实施例提供的一种终端设备的结构示意图。如图20所示,终端设备可包括:PCB 2001和天线2002。PCB 2001包括:射频处理单元2003和基带处理单元2004,。天线2002为上述如1至图19中任一所述的天线。其中,天线2002中该第一辐射单元中的每个辐射臂与射频处理单元2003上的馈点连接.射频处理单元2003与基带处理单元2004连接。
天线2002用于将接收到的无线信号传输给射频处理单元1803,或者将射频处理单元1803的发射信号发送出去。
射频处理单元2003,用于对天线2002接收到的无线信号进行处理后发送给基带处理单元2004,或者,用于将基带处理单元2004发送的信号进行处理后通过天线2002发送出去。
基带处理单元2004,用于对射频处理单元2003发送的信号进行处理。
本申请实施例提供的终端设备所包括的天线中设置的谐振结构可使得该天线中除至少一个辐射臂中所包括的低频带宽辐射体外,还包括谐振结构所形成的低频带宽辐射体,可使得即便手握其中一个低频带宽辐射体,还具有另外的低频带宽辐射体可进行工作,有效提高了手握终端设备时低频带宽下的天线效率,减小了天线性能的衰减,提高终端设备的通信性能。

Claims (11)

  1. 一种天线,其特征在于,包括:金属边框及至少一个谐振结构;所述金属边框上开设有缝隙,所述缝隙使得所述金属边框上形成第一辐射单元和第二辐射单元;
    所述第一辐射单元包括至少一个辐射臂,每个辐射臂与所述天线所在终端设备的馈点连接;
    所述第二辐射单元包括至少一个悬浮辐射臂,每个谐振结构包括一个悬浮辐射臂和谐振器件;所述一个悬浮辐射臂与所述谐振器件连接,所述谐振器件还与所述终端设备的接地点连接。
  2. 根据权利要求1所述的天线,其特征在于,所述谐振器件包括:电感器件;所述一个悬浮辐射臂与所述电感器件连接,所述电感器件还与所述接地点连接。
  3. 根据权利要求1所述的天线,其特征在于,所述谐振器件包括:电容器件;所述一个悬浮辐射臂与所述电容器件连接,所述电容器件还与所述接地点连接。
  4. 根据权利要求1所述的天线,其特征在于,所述谐振器件包括:电感器件和电容器件;所述电感器件与所述电容器件连接,所述电感器件还与所述一个悬浮辐射臂连接;所述电容器件还与所述接地点连接。
  5. 根据权利要求4所述的天线,其特征在于,
    所述电感器件为可调电感器件;或者,
    所述电容器件为可调电容器件;或者,
    所述电感器件为可调电感器件,且,所述电容器件为可调电容器件。
  6. 根据权利要求1所述的天线,其特征在于,所述谐振器件包括:第一电感器件、第二电感器件、第一开关和第二开关;所述第一电感器件与所述第一开关连接,所述第二电感器件与所述第二开关连接;所述第一电感器件和所述第二电感器件还与所述一个悬浮辐射臂连接;所述第一开关和所述第二开关还与所述接地点连接。
  7. 根据权利要求1所述的天线,其特征在于,所述第一辐射单元中最短的辐射臂还连接相互并联的第三电感器件和第四电感器件;所述第三电感器件还通过第三开关器件连接至所述终端设备的接地点,所述第四电感器件还通过第四开关器件连接至所述终端设备的接地点。
  8. 根据权利要求7所述的天线,其特征在于,所述第三电感器件还与第一电容器件并联;所述第四电感器件还所述第二电容器件并联。
  9. 根据权利要求8所述的天线,其特征在于,所述第一电容器件的电容值与所述第三开关为断开状态情况下的等效电容值的差值小于或等于预设值;
    所述第二电容器件的电容值与所述第四开关为断开状态情况下的等效电容值的差值小于或等于预设值。
  10. 根据权利要求1-9中任一项所述的天线,其特征在于,所述缝隙为PI型缝隙或U型缝隙。
  11. 一种终端设备,其特征在于,包括:印制电路板PCB和天线;所述PCB包括:射频处理单元和基带处理单元;所述天线为上述权利要求1-10中任一项所述的天线;其中,所述天线中所述第一辐射单元中的每个辐射臂与所述射频处理单元上的馈点连接;所 述射频处理单元与所述基带处理单元连接;
    所述天线,用于将接收到的无线信号传输给所述射频处理单元,或者将所述射频处理单元的发射信号发送出去;
    所述射频处理单元,用于对所述天线接收到的无线信号进行处理后发送给所述基带处理单元,或者,用于将所述基带处理单元发送的信号进行处理后通过所述天线发送出去;
    所述基带处理单元,用于对所述射频处理单元发送的信号进行处理。
PCT/CN2017/078623 2017-03-29 2017-03-29 天线和终端设备 WO2018176279A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112019020119-0A BR112019020119A2 (pt) 2017-03-29 2017-03-29 Antena e dispositivo terminal
KR1020197031499A KR102302452B1 (ko) 2017-03-29 2017-03-29 안테나 및 단말 기기
PCT/CN2017/078623 WO2018176279A1 (zh) 2017-03-29 2017-03-29 天线和终端设备
JP2019552895A JP6950879B2 (ja) 2017-03-29 2017-03-29 アンテナおよび端末デバイス
AU2017406139A AU2017406139B2 (en) 2017-03-29 2017-03-29 Antenna and terminal device
CN201780088787.3A CN110462930B (zh) 2017-03-29 2017-03-29 天线和终端设备
EP17903182.8A EP3588675B1 (en) 2017-03-29 2017-03-29 Antenna, and terminal apparatus
US16/498,999 US11316255B2 (en) 2017-03-29 2017-03-29 Antenna and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078623 WO2018176279A1 (zh) 2017-03-29 2017-03-29 天线和终端设备

Publications (1)

Publication Number Publication Date
WO2018176279A1 true WO2018176279A1 (zh) 2018-10-04

Family

ID=63673921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078623 WO2018176279A1 (zh) 2017-03-29 2017-03-29 天线和终端设备

Country Status (8)

Country Link
US (1) US11316255B2 (zh)
EP (1) EP3588675B1 (zh)
JP (1) JP6950879B2 (zh)
KR (1) KR102302452B1 (zh)
CN (1) CN110462930B (zh)
AU (1) AU2017406139B2 (zh)
BR (1) BR112019020119A2 (zh)
WO (1) WO2018176279A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644437A1 (fr) * 2018-10-22 2020-04-29 STMicroelectronics (Tours) SAS Antenne pour dispositif mobile de communication
CN112689033A (zh) * 2019-10-18 2021-04-20 华为技术有限公司 终端设备
CN112886224A (zh) * 2021-01-08 2021-06-01 维沃移动通信有限公司 天线结构及终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088152B (zh) * 2018-08-03 2020-11-20 瑞声科技(南京)有限公司 天线系统及移动终端
CN113555689B (zh) * 2020-04-24 2024-01-30 深圳市万普拉斯科技有限公司 通信装置及移动终端
KR102301421B1 (ko) * 2020-04-29 2021-09-14 주식회사 갤트로닉스 코리아 휴대용 통신 디바이스용 하이브리드 안테나
CN113708093B (zh) * 2020-05-22 2024-02-06 北京小米移动软件有限公司 天线结构和电子设备
CN111883930B (zh) * 2020-07-29 2022-10-18 Oppo广东移动通信有限公司 一种多频天线及移动终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633426A (zh) * 2013-12-06 2014-03-12 华为终端有限公司 天线结构和移动终端设备
CN104584322A (zh) * 2012-08-20 2015-04-29 诺基亚公司 天线装置及其制备方法
CN105305067A (zh) * 2015-10-29 2016-02-03 维沃移动通信有限公司 一种天线系统及移动终端
CN105789831A (zh) * 2016-04-11 2016-07-20 深圳市万普拉斯科技有限公司 移动终端及其天线结构
CN105789881A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 移动终端
US9413058B1 (en) * 2015-07-10 2016-08-09 Amazon Technologies, Inc. Loop-feeding wireless area network (WAN) antenna for metal back cover

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2898567A4 (en) 2012-09-24 2016-05-25 Qualcomm Inc TUNABLE ANTENNA MOUNT
US9331397B2 (en) * 2013-03-18 2016-05-03 Apple Inc. Tunable antenna with slot-based parasitic element
US20140375515A1 (en) 2013-06-20 2014-12-25 Blackberry Limited Frequency tunable antenna
US9577316B2 (en) * 2013-06-28 2017-02-21 Blackberry Limited Antenna with a combined bandpass/bandstop filter network
US9203463B2 (en) * 2013-12-13 2015-12-01 Google Technology Holdings LLC Mobile device with antenna and capacitance sensing system with slotted metal bezel
CN105024160B (zh) * 2014-04-30 2019-05-21 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
JP6310097B2 (ja) * 2014-12-24 2018-04-11 シャープ株式会社 無線機
WO2016125556A1 (ja) 2015-02-03 2016-08-11 シャープ株式会社 無線機
CN105140623B (zh) * 2015-07-23 2018-03-27 广东欧珀移动通信有限公司 天线系统及应用该天线系统的通信终端
US10490881B2 (en) * 2016-03-10 2019-11-26 Apple Inc. Tuning circuits for hybrid electronic device antennas
CN106374191B (zh) * 2016-10-19 2019-09-17 奇酷互联网络科技(深圳)有限公司 天线和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584322A (zh) * 2012-08-20 2015-04-29 诺基亚公司 天线装置及其制备方法
CN103633426A (zh) * 2013-12-06 2014-03-12 华为终端有限公司 天线结构和移动终端设备
CN105789881A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 移动终端
US9413058B1 (en) * 2015-07-10 2016-08-09 Amazon Technologies, Inc. Loop-feeding wireless area network (WAN) antenna for metal back cover
CN105305067A (zh) * 2015-10-29 2016-02-03 维沃移动通信有限公司 一种天线系统及移动终端
CN105789831A (zh) * 2016-04-11 2016-07-20 深圳市万普拉斯科技有限公司 移动终端及其天线结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588675A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644437A1 (fr) * 2018-10-22 2020-04-29 STMicroelectronics (Tours) SAS Antenne pour dispositif mobile de communication
CN112689033A (zh) * 2019-10-18 2021-04-20 华为技术有限公司 终端设备
CN112689033B (zh) * 2019-10-18 2022-07-22 荣耀终端有限公司 终端设备
CN112886224A (zh) * 2021-01-08 2021-06-01 维沃移动通信有限公司 天线结构及终端设备
CN112886224B (zh) * 2021-01-08 2023-08-22 维沃移动通信有限公司 天线结构及终端设备

Also Published As

Publication number Publication date
CN110462930A (zh) 2019-11-15
EP3588675A1 (en) 2020-01-01
US20200052377A1 (en) 2020-02-13
BR112019020119A2 (pt) 2020-05-12
US11316255B2 (en) 2022-04-26
KR102302452B1 (ko) 2021-09-14
JP6950879B2 (ja) 2021-10-13
JP2020512766A (ja) 2020-04-23
AU2017406139A1 (en) 2019-10-24
CN110462930B (zh) 2021-08-13
EP3588675B1 (en) 2023-04-19
KR20190130002A (ko) 2019-11-20
EP3588675A4 (en) 2020-02-26
AU2017406139B2 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2018176279A1 (zh) 天线和终端设备
AU2018423290B2 (en) Antenna system and terminal device
CN110741506B (zh) 一种移动终端的天线及移动终端
KR101285693B1 (ko) 슬롯화된 다중 대역 안테나
CN107528117B (zh) 一种终端
US20130234903A1 (en) Built-in antenna for electronic device
EP3767742B1 (en) Antenna device and mobile terminal
EP3678260B1 (en) Multiple-input multiple-output antenna device for terminal and method for realizing transmission of antenna signal
CN109216885B (zh) 移动装置
US20230344152A1 (en) Antenna assembly and electronic device
WO2015191286A1 (en) Multiband antenna apparatus and methods
CN114258612A (zh) 天线及电子设备
EP3709441B1 (en) Multi-frequency antenna and mobile terminal
KR20120003532A (ko) 이동통신 단말기
EP3261178B1 (en) Slot antenna
JP7243966B2 (ja) アンテナシステム及び端末デバイス
KR20020087139A (ko) 무선 단말기
WO2023273607A1 (zh) 天线模组及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
EP1858113A1 (en) Antenna device and portable radio communication device comprising such antenna device
RU2497246C2 (ru) Антенное устройство и использующее его мобильное устройство связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017903182

Country of ref document: EP

Effective date: 20190926

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020119

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017406139

Country of ref document: AU

Date of ref document: 20170329

Kind code of ref document: A

Ref document number: 20197031499

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019020119

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190926