WO2019129061A1 - 一种镜头模组和镜头模组的控制方法 - Google Patents

一种镜头模组和镜头模组的控制方法 Download PDF

Info

Publication number
WO2019129061A1
WO2019129061A1 PCT/CN2018/123915 CN2018123915W WO2019129061A1 WO 2019129061 A1 WO2019129061 A1 WO 2019129061A1 CN 2018123915 W CN2018123915 W CN 2018123915W WO 2019129061 A1 WO2019129061 A1 WO 2019129061A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
planar
module
image
Prior art date
Application number
PCT/CN2018/123915
Other languages
English (en)
French (fr)
Inventor
王庆平
宋小刚
陈国生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019129061A1 publication Critical patent/WO2019129061A1/zh
Priority to US16/912,063 priority Critical patent/US11340421B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0084Driving means for the movement of one or more optical element using other types of actuators

Definitions

  • the present application relates to the field of imaging, and more particularly to a lens module and a method of controlling a lens module.
  • Autofocus is one of the basic functions of the camera. Since the distance between the subject and the imaging lens is uncertain, if the relative positions of the imaging lens and the image chip are not adjusted to optically image the subjects at different distances, some images obtained by the shooting may be blurred, and therefore, Adjust the distance between the lens and the image chip according to the distance between the subject and the imaging lens to improve the sharpness of the image.
  • a method of autofocus is currently known, which can move the entire imaging lens group in the direction of the optical axis by the motor to change the object distance and the image distance to achieve the focusing effect and ensure the sharpness of the imaging.
  • the imaging lens is complicated in structure or heavy in weight, pushing the entire lens in a relatively short period of time is relatively difficult, and the autofocus effect is not significant. Therefore, the use of this method in the camera has certain limitations.
  • the present application provides a lens module and a method of controlling the lens module to improve image clarity.
  • a lens module in a first aspect, includes: an imaging lens, a first control module, a first processing module, a liquid lens, and an image chip, wherein
  • the liquid lens is located between the imaging lens and an image chip, the liquid lens is for refracting an imaging beam from the imaging lens, and the refracted imaging beam is incident on the image chip, the liquid
  • the lens includes a light transmissive first planar lens and a light transmissive second planar lens that are parallel to each other, and the first planar lens and the second planar lens are filled with a light transmissive liquid object, the first plane
  • the lens and the second planar lens are perpendicular to an optical axis of the imaging lens, and an imaging beam from the imaging lens is incident from the first planar lens into the liquid lens, and the imaging beam is refracted by the liquid lens Shooting from the second planar lens, the first planar lens, the second planar lens and the liquid object have a refractive index greater than 1;
  • the first control module is configured to adjust a distance between the first planar lens and the second planar lens
  • the image chip generates a digital image according to an imaging beam refracted by the liquid lens
  • the first processing module adjusts a distance between the first planar lens and the second planar lens by the first control module according to the sharpness of the digital image, thereby adjusting the generated by the image chip The sharpness of the image.
  • the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant, the signal light
  • the effective optical path can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image, thereby achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application adopts a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • the lens module further includes:
  • a light transmissive first rotating planar lens disposed between the imaging lens and the image chip for transmitting an imaging beam refracted by the liquid lens or an imaging beam refracted by the liquid lens;
  • a second control module configured to adjust an angle of rotation of the first rotating planar lens about the first direction, thereby adjusting an imaging beam refracted by the liquid lens or an imaging beam that is not refracted by the liquid lens An angle at which the first rotating planar lens is deflected, the first direction being perpendicular to an optical axis of the imaging lens;
  • the first processing module is further configured to detect an angle of rotation of the lens module about the second direction, and adjust, by the second control module, according to the angle of rotation around the first direction An angle of rotation of the first rotating planar lens about the first direction to compensate for jitter caused by an angle of rotation of the lens module about the first direction, the second direction being perpendicular to the first direction, And the second direction is perpendicular to the optical axis.
  • the first processing module may determine a first rotation angle according to the angle of rotation around the second direction, where the first rotation angle is the first rotation plane lens rotation relative to the last detection time.
  • the angle of the first direction adjustment, the last detection time is the time when the rotation angle of the lens module is detected last time.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction, the drift of the image position during the exposure process can be avoided, and the image is stabilized, thereby achieving optical image stabilization.
  • the effect ensures the clarity of the image. Compared with the prior art, it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • the lens module further includes:
  • a light transmissive second rotating planar lens disposed between the imaging lens and the image chip for transmitting an imaging beam refracted by the liquid lens or an imaging beam refracted by the liquid lens;
  • a third control module configured to adjust an angle of rotation of the second rotating planar lens about the second direction, thereby adjusting an imaging beam refracted by the liquid lens or an imaging beam that is not refracted by the liquid lens An angle at which the second rotating planar lens is deflected;
  • the first processing module is further configured to detect an angle of rotation of the lens module about the first direction, and adjust the position by the third control module according to the angle of rotation around the first direction An angle of rotation of the second rotating planar lens about the second direction to compensate for jitter caused by an angle of rotation of the lens module about the first direction.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction
  • rotating the second rotating plane lens in the second direction to compensate the rotation of the lens module in the second direction
  • the first processing module is further configured to detect an angle of rotation of the lens module about the first direction and/or rotate about the second direction And an angle for adjusting the first planar lens and the first control module by the first control module according to an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction The distance between the second planar lenses, thereby adjusting the sharpness of the image generated by the image chip.
  • the signal light originally incident horizontally is bent by the rotation of the rotating lens, so that the effective optical path of the signal light changes, which may cause the image distance to change. It may cause a small drift of the optimal imaging surface.
  • the relative distance between the first planar lens and the second planar lens in the liquid lens can be adjusted to compensate for the drift of the imaging surface, thereby making the optical image stabilization effect. Better, it helps to improve image quality.
  • the first processing module is further configured to perform image processing on the digital image, the image processing including at least: a denoising process, an enhancement process, and a blurring process.
  • the obtained digital image is made clearer by image processing, that is, the image quality is further improved.
  • a lens module including: an imaging lens, a light transmissive first rotating plane lens, an image chip, a first processing module, and a second control module, wherein
  • the first rotating planar lens is located between the imaging lens and the image chip for transmitting an imaging beam from the imaging lens and imaging the imaging beam through the first rotating planar lens To the image chip;
  • the image chip is configured to generate a digital image according to an imaging beam emitted through the first rotating planar lens
  • the second control module is configured to adjust an angle of rotation of the first rotating planar lens about the first direction, thereby adjusting an angle at which the imaging light beam from the imaging lens is deflected when passing through the first rotating planar lens
  • the first direction is perpendicular to an optical axis of the imaging lens
  • the first processing module is configured to detect an angle of rotation of the lens module about the first direction, and pass the second control module according to an angle of rotation of the lens module around the first direction Adjusting an angle of rotation of the first rotating planar lens about the first direction to compensate for jitter caused by an angle of rotation of the lens module about the first direction.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction, the drift of the image position during the exposure process can be avoided, and the image is stabilized, thereby achieving optical image stabilization.
  • the effect ensures the clarity of the image. Compared with the prior art, it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • the lens module further includes:
  • a light transmissive second rotating planar lens between the imaging lens and the image chip for transmitting an imaging beam emitted through the first rotating planar lens or an imaging beam from the imaging lens
  • a third control module configured to adjust an angle of rotation of the second rotating planar lens about the second direction, so as to adjust an imaging beam emitted through the first rotating plane lens or an imaging beam from the imaging lens to pass through An angle at which the second rotating planar lens is deflected, the second direction is perpendicular to the first direction, and the second direction is perpendicular to an optical axis of the imaging lens;
  • the first processing module is further configured to detect an angle of rotation of the lens module about the second direction, and adjust the position by the third control module according to the angle of rotation around the second direction An angle of rotation of the second rotating planar lens about the second direction to compensate for jitter caused by an angle of rotation of the lens module about the second direction.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction
  • rotating the second rotating plane lens in the second direction to compensate the rotation of the lens module in the second direction
  • the lens module further includes:
  • the lens module further includes:
  • the liquid lens includes a first planar lens that is transparent to each other and a second planar lens that is transparent to light, and the first planar lens and the second planar lens are filled with a light-transmissive liquid object,
  • the first planar lens and the second planar lens are perpendicular to an optical axis of the imaging lens, an imaging beam from the imaging lens or an imaging beam emitted through the first rotating planar lens from the first a planar lens is incident on the liquid lens, and an imaging beam refracted by the liquid lens is emitted from the second planar lens, and a refractive index of the first planar lens, the second planar lens, and the liquid object is greater than 1;
  • the first control module is configured to adjust a distance between the first planar lens and the second planar lens
  • the first processing module is further configured to adjust a distance between the first planar lens and the second planar lens by the first control module according to a sharpness of the digital image, thereby adjusting the image The sharpness of the image generated by the chip.
  • the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant, the signal light
  • the effective optical path can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image, thereby achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application adopts a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • the first processing module is further configured to rotate according to the detected angle of the lens module in a first direction and/or to rotate in a second direction
  • the angle between the first planar lens and the second planar lens is adjusted by the first control module to adjust the sharpness of the image generated by the image chip.
  • the signal light originally incident horizontally is bent by the rotation of the rotating lens, so that the effective optical path of the signal light changes, which may cause the image distance to change. It may cause a small drift of the optimal imaging surface.
  • the relative distance between the first planar lens and the second planar lens in the liquid lens can be adjusted to compensate for the drift of the imaging surface, thereby making the optical image stabilization effect. Better, it helps to improve image quality.
  • a third aspect provides a terminal device, wherein the terminal device is configured with the lens module in any one of the first aspect to the second aspect and the first aspect to the second aspect.
  • the fourth aspect provides a lens module control method, which is applied to a lens module, where the lens module includes: an imaging lens, a liquid lens, an image chip, a first processing module, and a first control module, where The liquid lens is located between the imaging lens and the image chip for refracting an imaging beam from the imaging lens and directing the refracted imaging beam to the image chip, the liquid lens including each other a first light transmissive first planar lens and a light transmissive second planar lens, and the first planar lens and the second planar lens are filled with a light transmissive liquid object, the first planar lens and the The second planar lens is perpendicular to an optical axis of the imaging lens, and an imaging beam from the imaging lens is incident from the first planar lens into the liquid lens, and an imaging beam refracted by the liquid lens is from the a second planar lens is emitted, the first planar lens, the second planar lens and the liquid object have a refractive index greater than 1;
  • the method includes:
  • the image chip generates a digital image according to an imaging beam refracted by the liquid lens
  • the first processing module adjusts a distance between the first planar lens and the second planar lens by the first control module according to the sharpness of the digital image, thereby adjusting an image generated by the image chip The clarity.
  • the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant, the signal light
  • the effective optical path can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image, thereby achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application adopts a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • the lens module further includes:
  • first rotating planar lens and a second control module, wherein the first rotating planar lens is located between the imaging lens and the image chip for causing an imaging beam refracted by the liquid lens or An imaging beam that is not refracted by the liquid lens is transmitted;
  • the method further includes:
  • the first processing module detects an angle of rotation of the lens module about the first direction
  • the jitter caused by the angle of rotation in the direction, the first direction being perpendicular to the optical axis of the imaging lens.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction, the drift of the image position during the exposure process can be avoided, and the image is stabilized, thereby achieving optical image stabilization.
  • the effect ensures the clarity of the image. Compared with the prior art, it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • the lens module further includes: a second rotating planar lens and a third control module, wherein the second rotating planar lens is located in the imaging lens Between the image chips, the imaging beam refracted by the liquid lens or the imaging beam not refracted by the liquid lens is transmitted;
  • the method further includes:
  • the first processing module detects an angle of rotation of the lens module about the second direction
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction
  • rotating the second rotating plane lens in the second direction to compensate the rotation of the lens module in the second direction
  • the method further includes:
  • the first processing module detects an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction;
  • the first processing module adjusts the first planar lens and the first control module according to an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction
  • the distance between the second planar lenses is adjusted to adjust the sharpness of the image generated by the image chip.
  • the signal light originally incident horizontally is bent by the rotation of the rotating lens, so that the effective optical path of the signal light changes, which may cause the image distance to change. It may cause a small drift of the optimal imaging surface.
  • the relative distance between the first planar lens and the second planar lens in the liquid lens can be adjusted to compensate for the drift of the imaging surface, thereby making the optical image stabilization effect. Better, it helps to improve image quality.
  • the method further includes:
  • the first processing module performs image processing on the digital image, and the image processing includes at least: a denoising process, an enhancement process, and a blurring process.
  • the obtained digital image is made clearer by image processing, that is, the image quality is further improved.
  • a fifth aspect provides a method for controlling a lens module, which is applied to a lens module, the lens module includes: an imaging lens, a light transmissive first rotating plane lens, an image chip, and a second control module, wherein The first rotating planar lens is located between the imaging lens and the image chip for transmitting an imaging beam from the imaging lens and directing an imaging beam transmitted through the first rotating planar lens to the An image chip, and refracting the imaging beam and transmitting to the image chip;
  • the method includes:
  • the image chip generates a digital image according to an imaging beam emitted through the first rotating planar lens
  • the first processing module detects an angle of rotation of the lens module about the first direction
  • the lens module further includes:
  • the second rotary planar lens is located between the imaging lens and the image chip for outputting through the first rotary planar lens An imaging beam or an imaging beam from the imaging lens is transmitted;
  • the method further includes:
  • the first processing module detects an angle of rotation of the lens module about the second direction
  • the jitter caused by the angle of rotation in the direction, the second direction being perpendicular to the first direction, and the second direction being perpendicular to the optical axis of the imaging lens.
  • the first rotating plane lens to rotate in the first direction to compensate the rotation of the lens module in the first direction
  • rotating the second rotating plane lens in the second direction to compensate the rotation of the lens module in the second direction
  • the lens module further includes: a liquid lens and a first control module, wherein the liquid lens is located between the imaging lens and the image chip And refracting an imaging beam refracted from the imaging lens or emitted through the first rotating plane lens and emitting the image beam to the image chip, the liquid lens comprising a first light transmissive parallel to each other a planar lens and a light transmissive second planar lens, and the first planar lens and the second planar lens are filled with a light transmissive liquid object, the first planar lens and the second planar lens being perpendicular to An optical axis of the imaging lens, an imaging beam from the imaging lens or an imaging beam emitted through the first rotating planar lens is incident from the first planar lens into the liquid lens, and is refracted by the liquid lens a subsequent imaging beam is emitted from the second planar lens, the first planar lens, the second planar lens and the liquid object having a refractive index greater than 1;
  • the method further includes:
  • the first processing module adjusts a distance between the first planar lens and the second planar lens by the first control module according to the sharpness of the digital image, thereby adjusting an image generated by the image chip The clarity.
  • the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant, the signal light
  • the effective optical path can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image, thereby achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application adopts a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • the method further includes:
  • the first processing module detects an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction;
  • the first processing module adjusts the first planar lens and the first control module according to an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction
  • the distance between the second planar lenses is adjusted to adjust the sharpness of the image generated by the image chip.
  • the signal light originally incident horizontally is bent by the rotation of the rotating lens, so that the effective optical path of the signal light changes, which may cause the image distance to change. It may cause a small drift of the optimal imaging surface.
  • the relative distance between the first planar lens and the second planar lens in the liquid lens can be adjusted to compensate for the drift of the imaging surface, thereby making the optical image stabilization effect. Better, it helps to improve image quality.
  • the method further includes:
  • the first processing module performs image processing on the digital image, and the image processing includes at least: a denoising process, an enhancement process, and a blurring process.
  • the obtained digital image is made clearer by image processing, that is, the image quality is further improved.
  • a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction) that, when executed, causes the computer to perform the fourth aspect to the above The method of any of the five possible aspects and the fourth aspect to the fifth aspect.
  • a computer readable storage medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causing the computer to perform the fourth aspect described above
  • a computer program which may also be referred to as a code, or an instruction
  • a chip system comprising a processor and a memory, the memory for storing a computer program, the processor for calling and running the computer program from a memory, the computer program A method for implementing the fourth aspect to the fifth aspect and any one of the fourth aspect to the fifth aspect.
  • FIG. 1 is a schematic diagram of a possible lens module in the prior art
  • FIG. 2 is a schematic diagram 1 of a lens module according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a liquid lens provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of photographing a distant view and a close view by using a lens module provided by an embodiment of the present application;
  • FIG. 5 is a second schematic diagram of a lens module according to an embodiment of the present application.
  • FIG. 6 and FIG. 7 are schematic diagrams showing optical anti-shake of a lens module according to an embodiment of the present application.
  • FIG. 8 is a third schematic diagram of a lens module according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of optical lens stabilization implemented by a lens module according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a lens module according to another embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a lens module according to another embodiment of the present application.
  • FIG. 12 is a third schematic diagram of a lens module according to another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for controlling a lens module according to an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for controlling a lens module according to another embodiment of the present application.
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • FIG. 1 is a schematic diagram of one possible lens module 10 in the prior art.
  • the lens module 10 includes an imaging lens 11 , a voice coil motor 12 , an image chip (or image sensor) 13 , and an image processor 14 .
  • the imaging lens 11 may be composed of one or more lenses, and the combined imaging lens 11 may have a function of converging light similar to a convex lens.
  • the imaging lens 11 may include only a convex lens, or may be a combination of a convex lens and a concave lens, or may be a combination of a convex lens, a concave lens, and a plane lens.
  • the specific form and number of lenses in the imaging lens 11 are not limited herein.
  • One side of the imaging lens 11 may be a target to be photographed, and the other side of the imaging lens 11 may be an image chip 13.
  • the image chip 13 may be a photosensitive element such as a charge-coupled device (CCD).
  • CCD charge-coupled device
  • the image chip 13 can be opposed to the imaging lens 11 and can generate a digital image based on the received imaging beam.
  • the image chip 13 can be communicatively coupled to the image processor 14 to transmit digital images to the image processor 14.
  • the image processor 14 can be communicatively coupled to the voice coil motor 12, and the image processor 14 can send an instruction to the voice coil motor 12 to detect the imaging lens 11 through the voice coil motor 12 when detecting that the sharpness of a certain frame image is low. Moves longitudinally in the direction of the optical axis to achieve autofocus and improve image clarity.
  • the image processor 14 can be connected to the imaging lens 11 configured with the gyroscope, and can send an instruction to the voice coil motor 12 to detect the imaging lens 11 or the image through the voice coil motor 12 when the lens module 10 is detected to be shaken.
  • the chip 13 is laterally moved in a plane perpendicular to the optical axis direction (i.e., the plane in which the imaging lens 11 or the image chip 13 itself is located), thereby realizing anti-shake to eliminate interference of image stabilization on the image and improve image sharpness.
  • focusing can be understood as achieving a change in the object distance and the image distance to achieve a conjugate relationship, so that the imaging is clear. This can be achieved by moving the lens group through the voice coil motor inside the phone. In other words, during autofocus, the focal length of the imaging lens can be changed, and autofocus is achieved only by changing the object distance and image distance.
  • the optical image stabilization technology is to transmit a signal to the image chip to calculate the amount of displacement to be compensated when the gyroscope in the lens module detects a slight movement, and then compensate the lens group according to the calculated displacement amount. Overcome image blur caused by camera shake.
  • Exposure refers to when the camera shutter is opened, the light enters the camera's body through the lens, and the photosensitive element is sensitive until the shutter is closed. This process is called exposure. In other words, the process of exposure is also the process of imaging.
  • the exposure time can be determined by the light at the time of shooting, the aperture size, and the preset sensitivity. Among them, the aperture is used to control the amount of light that passes through the imaging lens and enters the photosensitive surface of the body. The aperture is large, the amount of light entering is large, and the shutter is closed quickly, that is, the exposure time is short; vice versa.
  • the present application provides a lens module capable of realizing auto focus and ensuring image sharpness without moving the entire imaging lens to achieve auto focus, so that it can be widely applied to mobile terminals.
  • FIG. 2 is a first schematic diagram of a lens module according to an embodiment of the present application.
  • the lens module 20 includes an imaging lens 21 , a liquid lens 22 , an image chip 23 , a first processing module 24 , and a first control module 25 .
  • the imaging lens 21 may be the same as the imaging lens of the prior art, for example, may be constituted by a convex lens, or may be a combination of a convex lens and a concave lens, a plane mirror or the like.
  • the imaging lens 21 has a function of collecting light.
  • FIG. 3 shows an example of a schematic structural view of a liquid lens provided by an embodiment of the present application.
  • the liquid lens 22 can include a first planar lens 221 and a second transparent lens 222 that are transparent to each other, and the first planar lens 221 and the second planar lens 222 can be perpendicular to the imaging.
  • a light-transmissive liquid object 223 is filled between the first planar lens 221 and the second planar lens 222.
  • the liquid object 223 can include a liquid and some gelatinous filler between the liquid and the solid.
  • the liquid object 223 can be mercury.
  • first planar lens 221 and the second planar lens 222 are relatively movable in the optical axis direction of the imaging lens 21.
  • the thickness of the liquid object 223 filled between the first planar lens 221 and the second planar lens 222 is adjustable.
  • the liquid object 223 is sealed in the liquid lens 22.
  • the liquid lens 22 can be provided with a certain margin of storage space to facilitate When it is necessary to reduce the relative distance between the first planar lens 221 and the second planar lens 223, the liquid is discharged to the storage space, and the liquid is replenished from the storage space when it is necessary to increase the thickness between the first planar lens 221 and the second planar lens 223.
  • the relative distance between the first planar lens and the second planar lens may be simply referred to as the thickness of the liquid lens for convenience of explanation.
  • the imaging lens 21 may be located between the object to be photographed and the liquid lens 22, or the target may be located at the front end of the imaging lens, and the liquid lens 22 may be located at the rear end of the imaging lens 21, and The imaging lens 21 is opposed to each other.
  • the liquid lens 22 can be located between the imaging lens 21 and the image chip 23, and the liquid lens 22 can be opposed to the imaging lens 21.
  • the liquid lens 22 can be used to inject an imaging beam from the imaging lens 21 from the first planar lens 221 into the liquid lens 22, and the imaging beam refracted by the liquid lens 22 is emitted from the second planar lens 222.
  • the image chip 23 can be used to generate a digital image from the imaged beam refracted by the liquid lens 22.
  • the refractive indices of the first planar lens 221, the second planar lens 222, and the liquid object 223 in the liquid lens 22 are all greater than 1.
  • the refractive indices of the first planar lens 221, the second planar lens 222, and the liquid object 223 are both greater than 1 and less than 3.
  • the refractive indices of the first planar lens 221, the second planar lens 222, and the liquid object 223 recited herein are only one possible range of values and should not be construed as limiting the application.
  • the refractive indices of the first planar lens 221, the second planar lens 222, and the liquid object 223 may be greater than the refractive index of the environment in which the lens module is located (eg, air).
  • the materials of the first planar lens 221, the second planar lens 222, and the liquid object 223 are all satisfied: the refractive index is greater than the refractive index of the environment in which the lens module is located.
  • the refractive indices of the first planar lens 221, the second planar lens 222, and the liquid object 223 may be the same or different, which is not limited in the present application.
  • the image chip 23 includes an inductive coupling element (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD inductive coupling element
  • CMOS complementary metal oxide semiconductor
  • the distance between the imaging lens 21 and the image chip 23 may be referred to as mechanical back focus.
  • the liquid lens 22 is located within the range of the mechanical back focus of the lens module.
  • the image chip 23 can be located at the rear end of the liquid lens 22, and the image chip 23 can be communicatively coupled to the first processing module 24.
  • the image chip 23 can be used to receive an imaging beam from the liquid lens 22. After the image chip 23 generates a digital image from the received imaging beam, the digital image can be sent to the first processing module 24.
  • the first processing module 24 can be configured to adjust the distance between the first planar lens 221 and the second planar lens 222 by the first control module 25 according to the sharpness of the digital image, thereby adjusting the sharpness of the image generated by the image chip 23.
  • the first control module 25 can be used to adjust the distance between the first planar lens 221 and the second planar lens 222.
  • the first control module 25 can include a motor for driving at least one of the first planar lens 221 and the second planar lens 222 in the liquid lens 22 to move in the optical axis direction, thereby achieving adjustment.
  • the distance between the first planar lens 221 and the second planar lens 222 adjusted by the first processing module 24 by the first control module 25 may be, for example, the first planar lens 221 and the second relative to the previous frame image capturing time.
  • the relative amount of change in the distance of the planar lens 222 may be, for example, the first planar lens 221 and the second relative to the previous frame image capturing time.
  • the first control module 25 can be communicatively coupled to the first processing module 24.
  • the first processing module 24 determines that the distance between the first planar lens 221 and the second planar lens 222 (ie, the thickness of the liquid lens 22) needs to be adjusted
  • the first control module 25 can be determined according to the distance to be adjusted. Output current or output voltage.
  • the first control module 25 drives at least one of the first planar lens 221 and the second planar lens 222 in the liquid lens 22 to move in the optical axis direction by changing the output current or output of the first control module 25. Voltage is achieved.
  • the amount of displacement of the planar lens (for example, the first planar lens 221 or the second planar lens 222) in the optical axis direction may be linear with the output current or the output voltage of the first control module 25. For example, if the output voltage is constant, the output current is changed to drive the planar lens to move, or the output current is constant, and the output voltage is changed to drive the planar lens to move.
  • the first processing module 24 may determine an output current or an output voltage of the first control module 25 according to the distance to be adjusted, and send an instruction to the first control module 25 to notify the output current or the output voltage of the first control module 25 by using an instruction.
  • the current or output voltage is output by the first control module 25 to drive a change in the distance between the first planar lens and the second planar lens in the liquid lens.
  • the above-mentioned method for determining the output current or output voltage of the first control module according to the distance to be adjusted is a possible implementation manner of driving the planar lens by the motor, and the specific implementation process may be the same as the prior art, and This method is merely illustrative and should not be construed as limiting the application.
  • the specific method of moving the first planar lens and/or the second planar lens in the liquid lens by the motor can be similar to the specific method of moving the lens in the optical axis direction by the voice coil motor in the prior art, and is omitted here for avoiding redundancy. A detailed description of this specific method.
  • the first processing module 24 can determine whether the digital image is clear according to information of the received digital image, such as contrast. For example, whether the digital image is clear can be determined by comparing the relationship between the information of the digital image and a preset threshold value. In the case where the sharpness of the digital image is low, the thickness value that the liquid lens needs to be adjusted can be calculated by using the focusing algorithm.
  • the first processing module 24 can send the information of the digital image to the focus algorithm library, and the focus algorithm library can first try to increase (or decrease) the thickness of the liquid lens first, for example, first increase 1 micron, and thus the first control module 25 drives the first planar lens and/or the second planar lens in the liquid lens to move to increase the thickness of the liquid lens by 1 micron.
  • the image chip 23 can receive the imaging beam emitted by the liquid lens after adjusting the thickness of the liquid object, generate a new one-frame digital image, and send the newly generated information of the digital image of the frame to the first processing module 24,
  • the first processing module 24 can send the newly generated information of the digital image of the frame to the focus algorithm library, and the focus algorithm library can compare the newly generated information of the digital image of the frame with the information of the digital image of the previous frame. Determine whether to further increase the thickness of the liquid object in the liquid lens, or whether it needs to be adjusted in the opposite direction.
  • the thickness of the liquid lens can be adjusted in the opposite direction, for example, by reducing (or increasing) 2 micrometers, thereby driving the first of the liquid lenses.
  • the planar lens and/or the second planar lens are moved to reduce the thickness of the liquid lens.
  • the image chip 23 can receive the imaging beam emitted by the liquid lens after adjusting the thickness of the liquid object, generate a new one-frame digital image, and send the newly generated information of the digital image of the frame to the first processing module 24,
  • the first processing module 24 can send the newly generated information of the digital image of the frame to the focus algorithm library, and the focus algorithm library can cyclically execute the above process.
  • the image may undergo a blur-clear-fuzzy change process. This change can be reflected by the information of the image. For example, the contrast of the image may undergo a low-high-low change process, and the liquid lens thickness at which the contrast reaches a maximum is determined as the final usable thickness.
  • the information of the above image may include the value of a pixel point in the image, and the value of the pixel point may be, for example, a red green blue (RGB) value or a YUV value (where Y represents brightness (luminance or luma) ), U and V are represented by chrominance or chroma, etc.
  • the information of the image may also include parameters such as contrast, gray value, etc. for characterizing whether the image is clear. It should be understood that the specific content of the information of the above-listed images is merely exemplary, and should not be construed as limiting the present application. The specific content of the information of the image is not limited in the present application.
  • the first processing module 24 may be based on various possibilities such as the contrast or phase of a certain point or points in the image.
  • the image information determines the distance that the first planar lens and the second planar lens need to be adjusted.
  • the first processing module 24 can implement autofocus in accordance with the sharpness of the digital image, wherein the evaluation of the sharpness of the image can be achieved by a sharpness evaluation function in the prior art.
  • a sharpness evaluation function commonly used definition evaluation functions are: frequency domain function, the better the focus, the more high frequency parts, the more details, the clearer the image; the gradation function: the better the focus, and the surrounding gray scale The larger the difference, the clearer the edge, the clearer the image; the information entropy function: the better the focus, the larger the information entropy of the image, the larger the information, the clearer the image; the statistical function: the better the focus, the histogram The better the diversity, the clearer the image.
  • the functions of the focus algorithm library enumerated above may be performed on hardware, such as hardware for performing the functions of the first processing module 24, or may be performed by driver software. Not limited. It should also be understood that the focusing algorithm may refer to the prior art, and a detailed description of the specific content thereof is omitted herein for the sake of brevity.
  • FIG. 4 is a schematic diagram of photographing a distant view and a close shot by the lens module provided by the embodiment of the present application.
  • setting a liquid lens in the lens module causes a change in image distance. Since the lens of the liquid lens is a flat lens, it does not have the effect of converging or diverging the signal light, but when the liquid lens is placed at the rear end of the imaging lens, since the signal light concentrated by the imaging lens enters the liquid lens, the interface Refraction may occur at the surface, and the refractive index of the signal light in the liquid lens is larger than that in the air.
  • the signal light After the signal light enters the liquid lens, the signal light converges in the liquid lens at a smaller angle than the air and the refractive index of the liquid lens It is larger than the refractive index of air, so that the signal light converges at a desired optical path change, so that it can match different image distances.
  • optical path may include an effective optical path of the air (e.g., referred to as L 1) and the liquid lens in the effective optical path (e.g., referred to as L 2).
  • L L 1 + L 2 .
  • L 1 D 1 / ⁇ 1
  • L 2 D 2 / ⁇ 2
  • D 2 is the thickness of the liquid lens
  • D 1 DD 2 .
  • ⁇ 1 is the refractive index of the signal light in the environment in which the lens module is placed
  • the distance D between the imaging lens and the image chip is fixed when the distance between the imaging lens and the object to be photographed is an arbitrary value.
  • a liquid lens is disposed between the imaging lens and the image chip.
  • D When the foreground is photographed, if the thickness of the liquid lens is not changed, D needs to be small; when shooting a close-up, if the liquid lens is not changed, Thickness, then D needs to become larger.
  • D when shooting a distant view, if you do not change D, you can use a larger liquid lens thickness (as shown in Figure 4); when shooting close-ups, if you do not change D, you can use a smaller liquid lens thickness (such as Figure 4).
  • changing the thickness of the liquid lens between the imaging lens and the image chip that is, changing the optical path required for the signal light to converge at a point, may specifically include the effective optical path of the signal light in the air and the effective in the liquid lens. Optical path.
  • the embodiment of the present application adjusts the thickness of the liquid object in the liquid lens so that the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant.
  • the effective optical path of the signal light can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image and achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application uses a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • FIG. 5 is a second schematic diagram of a lens module 20 according to an embodiment of the present application.
  • the lens module 20 further includes: a first rotating planar lens 31 and a second control module 35 .
  • the first rotating planar lens 31 may be located between the imaging lens 21 and the image chip 23, that is, the first rotating planar lens 31 may be located within a range of the mechanical back focus of the lens module 20.
  • the first rotating planar lens 31 can be used to transmit an imaging beam refracted by the liquid lens 22 or an imaging beam that is not refracted by the liquid lens 22.
  • the first rotating planar lens 31 can be located between the liquid lens 22 and the image chip 23, or between the imaging lens 21 and the liquid lens 22.
  • the received imaging beam is an imaging beam that is refracted by the liquid lens 22; when the first rotating plane lens is located at the imaging lens 21 and the liquid lens 22 In between, the received imaging beam is an imaging beam that is not refracted by the liquid lens 22.
  • the first rotating planar lens 31 is rotatable about the first direction.
  • the first direction is perpendicular to the optical axis of the imaging lens.
  • the first rotating planar lens 31 may be a planar lens disposed between the imaging lens 21 and the image chip 23 and rotatable in the first direction, or may be disposed between the imaging lens 21 and the image chip 23 . Any of a set of mutually parallel planar lenses that rotate about a first direction. The present application is not limited to the specific number of planar lenses that can be rotated about the first direction.
  • the jitter of the lens module 20 may be caused by the rotation of the lens module 20 in the first direction.
  • the first processing module 24 may also be used to detect the angle of rotation of the lens module 20 about the first direction.
  • the lens module 20 may be configured with a gyroscope (or an angular velocity sensor), for example, a gyroscope is disposed in the imaging lens 21.
  • the gyroscope can be used to detect whether the imaging lens 21 is deflected in the first direction.
  • the first processing module 24 is communicably coupled to the imaging lens 21, and when the gyroscope detects that the imaging lens 21 is deflected about the first direction, the detected deflection angle can be notified to the first processing module 24.
  • the first processing module 24 can be communicatively coupled to the second control module 35, and the second control module 35 can be communicatively coupled to the first rotating planar lens 31.
  • the first processing module 24 is further configured to determine an angle to be adjusted by the first rotating planar lens 31 according to an angle of rotation of the lens module 20 about the first direction.
  • the second rotating plane lens 31 is rotated by the second control module 35 to rotate around the first direction, thereby compensating for the jitter caused by the angle of the lens module 20 rotating around the first direction.
  • the second control module 35 can be used to adjust the angle of rotation of the first rotating planar lens 31 about the first direction, thereby adjusting the imaging beam refracted by the liquid lens 22 or the imaging beam refracted by the liquid lens 22 to pass through the first The angle of refraction when the planar lens 31 is rotated.
  • the angle to be adjusted by the first rotating planar lens 31 may be referred to as a first rotation angle.
  • the first rotation angle may be, for example, a relative change amount of the angle of the first rotary plane lens 31 with respect to the last detection timing, or an angle adjusted with respect to the position where the first rotary plane lens 31 is located with respect to the last detection timing.
  • the first processing module 24 can determine the output current or the output voltage of the second control module 35 according to the angle to be adjusted.
  • the second control module 35 driving the first rotating planar lens 31 to rotate around the first direction can be realized by changing the output current or the output voltage of the second control module 35.
  • the angle of the planar lens (for example, the first rotating planar lens 31) rotating around the first direction may be linear with the output current or the output voltage of the second control module 35, for example, the output voltage is not Change, change the output current to drive the plane lens to rotate, or the output current does not change, change the output voltage to drive the plane lens to rotate.
  • the first processing module 24 may determine an output current or an output voltage of the second control module 35 according to an angle to be adjusted, and send an instruction to the second control module 35 to notify the output current or the output voltage of the second control module 35 by using an instruction.
  • the first rotating planar lens is driven to rotate about the first direction by the second control module 35 outputting a current or an output voltage.
  • the above-mentioned method for determining the output current or the output voltage of the second control module according to the angle to be adjusted is a possible implementation manner of driving the planar lens by the motor, and the specific implementation process may be the same as the prior art, and This method is merely illustrative and should not be construed as limiting the application.
  • the specific method of driving the first rotating plane lens to rotate around the first direction by the motor can be similar to the specific method of moving the lens in the optical axis direction by the voice coil motor in the prior art. To avoid redundancy, the specific method is omitted here. Detailed description.
  • the lens module 20 may cause the captured image to be blurred. Specifically, if the imaging lens 21 is shaken at a certain time during the exposure time of one frame of image, the same image point position in the obtained digital image may be shifted, and an image with blurred image may be presented.
  • the lens module 20 compensates for the image point position drift caused by the shaking of the lens module 20 by rotating the first planar rotating lens 31, thereby realizing optical image stabilization.
  • FIG. 6 and FIG. 7 are schematic diagrams showing optical anti-shake by the lens module provided by the embodiment of the present application. It should be noted that, in the schematic diagrams shown in FIGS. 6 and 7, the X-axis direction may be the first direction, and the Z-axis direction may be the optical axis direction. Then, the Y-axis direction is perpendicular to the first direction, and the Y-axis direction is perpendicular to the optical axis direction.
  • the position at which the imaging beam converges onto the image chip when the lens module is not shaken and rotated in the first direction, respectively, is shown in FIG. Specifically, it is assumed that the target is a triangle, and the solid triangle in the figure is a position where the lens module 20 is concentrated on the image chip by the imaging lens 21 when the lens module 20 is not shaken.
  • the dotted triangle in the figure is the lens module 20 in the first direction.
  • the same image point position in the image of the frame captured by the module 20 is shifted downward (or drifted), which may eventually result in a low definition of the converted digital image.
  • FIG. 6 the illustration of the position where the lens module is shaken and the jitter is not concentrated on the image chip is shown in FIG. 6 for convenience of understanding, but this does not mean that the lens module is generated within the exposure time of one frame of image. Multiple optical images.
  • FIG. 7 is a schematic diagram showing the optical path of the lens module without shaking and rotating in the first direction.
  • the lens module 20 rotates in the first direction, it can be compensated by rotating the first rotating plane lens in the first direction, so that the original downwardly offset image point position is upwardly offset to ensure image stability.
  • the lens module 20 is rotated clockwise by a small angle in the first direction, the incident angle of the same beam of light when entering the imaging lens 20 is smaller than when the imaging lens 20 is not shaken.
  • the signal light is refracted by the imaging lens 20, the direction of the emission is more downward than when the imaging lens 20 is not shaken, thereby causing the same object point to be concentrated on the image chip by the imaging lens 21. Offset downward.
  • the gyroscope detects that the imaging lens 21 is deflected in the first direction at a certain time (for example, as a detection time), and the deflection angle of the imaging lens 21 can be sent to the first processing module 24, the first The processing module 24 can determine an angle (ie, a first rotation angle) that the first rotating plane lens 31 needs to be adjusted according to the deflection angle, and the first rotation angle can be used to compensate for an image shift caused by the rotation of the imaging lens 21 in the first direction. And determining an output current or an output voltage of the second control module 35 according to the first rotation angle. Therefore, it can be understood that the first rotation angle may be an angle that the first rotation plane lens needs to rotate with respect to the last detection time, and the rotation of the first rotation angle may be completed within the response time.
  • the first rotation angle can be determined by an existing optical image stabilization algorithm.
  • the gyro detects that the rotation angle of the lens module in the first direction is ⁇
  • the offset of the image point can be calculated according to the optical principle as f ⁇ tan ⁇ , where f is imaging The focal length of the lens.
  • the compensation value of the second rotating planar lens in the first direction is required.
  • the compensation value can be achieved by rotating the first rotating planar lens about the first direction, and the specific angle can be determined according to the compensation value, the thickness and refractive index of the first rotating planar lens, and the offset caused by the unit angle.
  • the first rotating plane may be determined in advance according to the thickness, the refractive index, and the like of the first rotating planar lens.
  • the compensation value can be achieved by the plurality of rotating planar lenses (eg, n, n>1, n is an integer) to rotate the corners of the plane lens to share.
  • the rotation angle ⁇ of the planar lens corresponding to the above compensation value is the angle of the i-th (i in [1, n] traversal) planar lens rotation of the n planar lenses is ⁇ i , respectively, the n
  • the above examples are only for ease of understanding, and should not be limited to the present application.
  • the angles of rotation of the planar lenses may be the same or different, which is not limited in the present application.
  • the n planar lenses listed above may also be part of the lenses of the set of rotating planar lenses, that is, at least part of the planar lenses of the set of rotating lenses may be rotated to achieve optical in the first direction. Anti-shake.
  • optical image stabilization algorithm library listed above may be performed by hardware, for example, by hardware for implementing the corresponding function, or by the driver software, which is not limited in this application. . It should also be understood that the optical image stabilization algorithm may refer to the prior art, and a detailed description of the specific content is omitted herein for the sake of brevity.
  • first control module and the second control module enumerated above may be performed by the same hardware, for example, the functions corresponding to the first control module and the second control module may be implemented by the same motor, The functions corresponding to the first control module and the second control module can be respectively implemented by different motors, which is not limited in this application.
  • the process of optical anti-shake for the first rotating planar lens is described in detail in the figure for the sake of easy understanding, and the first direction of the X-axis direction is taken as an example.
  • the first direction may be any one of planes perpendicular to the optical axis direction.
  • the first direction may be the Y-axis direction shown in the drawing.
  • the embodiment of the present application compensates for the rotation of the lens module in the first direction by controlling the rotation of the first rotating plane lens in the first direction, thereby avoiding the drift of the image position during the exposure process and keeping the image stable.
  • the optical anti-shake effect is achieved to ensure the sharpness of the image. Compared with the prior art, it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • FIG. 8 is a third schematic diagram of a lens module 20 according to an embodiment of the present application.
  • the lens module 20 further includes: a second rotating planar lens 32 and a third control module 36 .
  • the second rotary planar lens 32 may be located between the imaging lens 21 and the image chip 23 for transmitting an imaging beam refracted by the liquid lens 22 or an imaging beam refracted by the liquid lens 22.
  • the second rotating planar lens 32 can be located between the liquid lens 22 and the image chip 23, or between the imaging lens 21 and the liquid lens 22. More specifically, the second rotary planar lens 32 may be located at the front end or the rear end of the first rotary planar lens 31.
  • the first rotating planar lens 31 and the second rotating planar lens 32 may both be located between the liquid lens 22 and the image chip 23, and the first rotating planar lens 31 may be located at the front end or the rear end of the second rotating planar lens 32;
  • the first rotating planar lens 31 and the second rotating planar lens 32 may be located between the imaging lens 21 and the liquid lens 22, and the first rotating planar lens 31 may be located at the front end or the rear end of the second rotating planar lens 32;
  • the first rotating planar lens 31 may be located between the imaging lens 21 and the liquid lens 22, and the second rotating planar lens 32 may be located between the liquid lens 22 and the image chip 23; or, the second rotating planar lens 32 may be Located between the imaging lens 21 and the liquid lens 22, the first rotary planar lens 31 can be located between the liquid lens 22 and the image chip 23.
  • the front and rear positional relationship of the first rotary planar lens 31, the second rotary planar lens 32, and the liquid lens 22 is not particularly limited.
  • the second rotating planar lens 31 can rotate around the second direction.
  • the second direction is perpendicular to the first direction, and the second direction is perpendicular to the optical axis of the imaging lens.
  • the second rotating planar lens 32 may be a planar lens disposed between the imaging lens 21 and the image chip 23 and rotatable in the second direction, or may be disposed between the imaging lens 21 and the image chip 23. Any of a set of mutually parallel planar lenses that rotate about a second direction. The present application is not limited to the specific number of planar lenses that can be rotated about the second direction.
  • the shake of the lens module 20 may be caused by rotation about a first direction and rotation about a second direction. Therefore, the first processing module 24 can be used to detect the angle at which the lens module 20 rotates in the second direction, in addition to detecting the angle at which the lens module 20 rotates in the first direction.
  • the gyroscope disposed in the imaging lens can be used to detect whether the imaging lens 21 is deflected about the second direction, and notify the first processing module 24 of the detected deflection angle when detecting that the imaging lens is deflected about the second direction. .
  • the first processing module 24 can be communicatively coupled to the third control module 36, and the third control module 36 can be communicatively coupled to the second rotating planar lens 32.
  • the first processing module 24 is further configured to determine an angle to be adjusted by the second rotating planar lens 32 according to an angle of rotation of the lens module 20 about the second direction.
  • the third rotating planar lens 32 is rotated by the third control module 36 to rotate around the second direction, thereby compensating for the jitter caused by the angle of the lens module 20 rotating around the second direction.
  • the second control module 36 can be used to adjust the angle of rotation of the second rotating planar lens 32 about the second direction, thereby adjusting the imaging beam refracted by the liquid lens 22 or the imaging beam refracted by the liquid lens 22 through the second The angle of refraction when the planar lens 32 is rotated.
  • the angle to be adjusted by the second rotary planar lens 32 may be referred to as a first rotation angle.
  • the second rotation angle may be, for example, a relative change amount of the angle of the second rotary planar lens 32 with respect to the last detection timing, or an angle adjusted with respect to the position of the second rotary planar lens 32 with respect to the last detection timing.
  • the first processing module 24 can determine the output current or the output voltage of the third control module 36 according to the angle to be adjusted.
  • FIG. 9 is another schematic diagram of achieving optical image stabilization by the lens module provided by the embodiment of the present application.
  • the X-axis direction may be the first direction
  • the Y-axis direction may be the second direction
  • the Z-axis direction may be the optical axis direction.
  • the X-axis, the Y-axis, and the Z-axis are perpendicular to each other.
  • FIG. 9 shows positions where the imaging beams converge onto the image chip when the lens module is not shaken and the jitter is caused by the rotation in the first direction and the second direction, respectively.
  • the triangle in the figure is a schematic view of the position where the lens module 20 is concentrated on the image chip when the lens module 20 is not shaken.
  • the dotted triangle in the figure is the lens module 20 in the first direction and
  • the second direction is an indication of a position where the imaging lens 21 is concentrated on the image chip when rotating.
  • the position where the imaging beam 20 is rotated on the image chip 23 by the rotation of the lens module 20 in the first direction is offset in the second direction, and the imaging beam caused by the rotation of the lens module 20 in the second direction is concentrated on the image chip 23 .
  • the position is offset in the first direction, which may eventually result in a low definition of the converted digital image.
  • the first processing module 24 determines the compensation value corresponding to the rotation angle around the first direction and the second rotation according to the rotation angle of the lens module 20 about the first direction and the rotation angle about the second direction. a compensation value corresponding to the rotation angle of the direction, and determining an output current or an output voltage of the second control module 35 according to the compensation value corresponding to the rotation angle around the first direction, and determining the third control according to the compensation value corresponding to the rotation angle around the second direction The output current or output voltage of module 36.
  • the first processing module determines a corresponding compensation value according to the turning angle around the second direction, and determines a specific process of the output current or the output voltage of the third control module according to the compensation value, and the first processing module according to the first The specific angle of the rotation angle of the direction determines the corresponding compensation value, and the output current or the output voltage of the second control module is determined according to the compensation value.
  • the specific angle of the rotation angle of the direction determines the corresponding compensation value
  • the output current or the output voltage of the second control module is determined according to the compensation value.
  • the jitter caused by the rotation in the second direction may be compensated by the rotation of a planar lens (ie, the second rotary planar lens) in the second direction, or may be through a set of parallels including the second rotary planar lens.
  • the rotation of the rotating planar lens is compensated for in the second direction.
  • the angle of rotation of each plane lens in the second direction can be satisfied.
  • is the rotation angle of the planar lens determined by the compensation value corresponding to the angle of rotation about the second direction
  • m (m>1, m is an integer) is the number of planar lenses rotated in the set of rotating lenses
  • ⁇ j The angle at which the jth (j is traversed by [1, m]) planar lenses in the m planar lenses.
  • the m planar lenses listed above may be all or part of the lenses of the set of rotating lenses.
  • the third control module and the first control module and the second control module listed above may be executed by the same hardware, for example, by using the same motor to implement the first control module, the second control module, and the second
  • the functions corresponding to the three control modules can also be performed by different hardware.
  • the functions corresponding to the first control module, the second control module, and the third control module can be respectively implemented by different motors, or The function of the motor corresponding to the first control module is implemented, and the functions corresponding to the second control module and the third control module are implemented by another motor, which is not limited in this application.
  • the figure is only for convenience of understanding, taking the X-axis direction as the first direction and the Y-axis direction as the second direction as an example.
  • the specific direction of the first direction and the second direction is not
  • the first direction may be any one of planes perpendicular to the optical axis direction, and the second direction may be determined based on the first direction and the optical axis direction.
  • the first direction may be the Y-axis direction shown in the drawing
  • the second direction may be the X-axis direction shown in the drawing.
  • the embodiment of the present application compensates for the rotation of the lens module in the first direction by using the first rotating plane lens to rotate in the first direction, and compensates the lens module for the second direction by rotating the second rotating plane lens in the second direction.
  • the rotation of the direction avoids the drift of the image position in different directions which may occur during the exposure process, and maintains the stability of the image, thereby achieving the effect of optical image stabilization, further ensuring the sharpness of the image.
  • it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • the first processing module 24 is further configured to detect an angle of rotation of the lens module 20 about the first direction and/or an angle of rotation about the second direction, and is used for rotating according to the lens module 20 in the first direction. And/or an angle of rotation about the second direction, the distance between the first planar lens and the second planar lens is adjusted by the first control module 25 to adjust the sharpness of the image generated by the image chip.
  • the signal light originally incident parallel to the optical axis becomes the optical axis due to the rotation of the rotating lens during the rotation of the lens module 20 and the rotating lens (including the first rotating planar lens 31 or the second rotating planar lens 32) Non-parallel
  • the signal light is bent by the rotation of the rotating lens, and the effective optical path of the signal light changes, which may cause the image distance to change, which may cause a small drift of the optimal imaging surface.
  • the position where the image chip 23 is located is deviated, resulting in a low definition of the optical image received on the image chip 23. At this time, simply rotating the rotating lens group to achieve optical image stabilization may not optimize the quality of the generated image.
  • the thickness of the liquid lens 22 is adaptively adjusted in accordance with the jitter generated by the lens module 20, that is, by adjusting the effective optical path to adjust the image distance so that the optimal imaging surface remains at the position of the image chip 23, it is advantageous.
  • the imaging beam is enabled to produce a sharp image on the image chip 23.
  • the first processing module 24 can be connected to the imaging lens 21 configured with the gyroscope, and the first processing module 24 can detect the lens module 20 in the first direction according to the gyroscope and/or The two-direction rotational angle determines the value that needs to be adjusted before the liquid lens 22 is rotated relative to the lens module 20.
  • the amount of change in the thickness of the liquid lens 22 adjusted for the optical image stabilization phase can be recorded as the second relative displacement.
  • the first processing module 24 can send the rotation angle of the lens module 20 about the first direction and/or the second direction to the optical image stabilization algorithm library, and the optical image stabilization algorithm library can be wound according to the lens module 20 a rotation angle of the first direction and/or the second direction, a focal length of the imaging lens 21, and each of the planar lenses in the lens module 20 (including, for example, the first planar lens 221, the second planar lens 222, and the first rotary planar lens 31)
  • the thickness of the one or more planar lenses of the second rotating planar lens 32 is calculated as a value to be adjusted for the distance between the first planar lens and the second planar lens in the liquid lens 22.
  • the second relative displacement value adjusted by the liquid lens can be determined by the optical image stabilization algorithm described above.
  • the second relative displacement value may be determined based on a light propagation formula, according to an angle of rotation of the lens module, a focal length of the imaging lens, and a thickness of each of the planar lenses listed above.
  • the first control module can control one or two movements of the first planar lens and the second planar lens in the liquid lens.
  • the first control module can control the first plane.
  • the lens moves along the optical axis.
  • the first control module controls the second planar lens to move in the optical axis direction.
  • optical image stabilization algorithms may be performed separately on hardware, for example, an image processing device disposed in the lens module, or a camera or terminal device configured with the lens module.
  • the function of the optical image stabilization algorithm library can also be performed by the driver software, which is not limited in this application.
  • the optical image stabilization algorithm may refer to the prior art, and a detailed description of the specific content is omitted herein for the sake of brevity.
  • the first processing module 24 is further configured to perform image processing on the digital image converted by the image chip 23.
  • the image processing may include: denoising processing, enhancement processing, and blurring processing.
  • the image processing function may be implemented by hardware for image processing, for example, a processor disposed in a lens module, specifically, an image processing system configured in a camera or a terminal device, or an image processing function. It can also be executed by the driver software, which is not limited in this application.
  • the first processing module may be configured by a processor disposed in the lens module (for example, specifically configured in a camera or a terminal device).
  • the image processing system can realize its corresponding function, and can also implement different functions by a plurality of processing units arranged in the lens module.
  • the specific form or number of the first processing module is not particularly limited in the present application.
  • the lens module provided by an embodiment of the present application is described in detail above with reference to FIG. 2 to FIG.
  • a lens module according to another embodiment of the present application will be described in detail with reference to FIG. 10 to FIG.
  • FIG. 10 is a first schematic diagram of a lens module 50 according to another embodiment of the present application.
  • the lens module 50 includes an imaging lens 51, a light transmissive first rotating planar lens 52, a first processing module 54, a second control module 56, and an image chip 58.
  • the first rotating planar lens 52 may be located between the imaging lens 51 and the image chip 58. That is, the first rotating planar lens 52 can be located within the range of the mechanical back focus of the lens module 50.
  • the first rotating planar lens 52 can be used to transmit an imaging beam from the imaging lens 51 and direct an imaging beam transmitted through the first rotating planar lens 52 to the image chip.
  • the image chip 58 can be used to generate a digital image from the imaging beam transmitted through the first rotating planar lens 51.
  • the first rotating planar lens 52 is rotatable about the first direction.
  • the first direction is perpendicular to the optical axis of the imaging lens.
  • first rotating planar lens 52 may be a planar lens disposed between the imaging lens 51 and the image chip 58 and rotatable in the first direction, or may be disposed between the imaging lens 51 and the image chip 58. Any of a set of mutually parallel planar lenses that rotate about a first direction. The present application is not limited to the specific number of planar lenses that can be rotated about the first direction.
  • the jitter of the lens module 50 may be caused by the rotation of the lens module 50 in the first direction.
  • the first processing module 54 may also be used to detect the angle of rotation of the lens module 50 about the first direction.
  • the specific method for the first processing module 54 to detect the angle of rotation of the lens module 50 about the first direction has been described in detail above, and is not described herein again for the sake of brevity.
  • the second control module 56 can be communicatively coupled to the first processing module 54 and the second control module 56 can be communicatively coupled to the first rotating planar lens 52.
  • the first processing module 54 can adjust the angle of rotation of the first rotating planar lens 51 about the first direction by the second control module 56 according to the detected angle of rotation of the lens module 50 about the first direction to adjust the angle from the imaging lens.
  • the first processing module 54 adjusts the rotation of the first rotating planar lens 52 around the first direction to achieve optical anti-shake by the second control module 56 according to the angle of rotation of the lens module 50 about the first direction.
  • the specific processing of the first processing module 24 according to the angle of rotation of the lens module 20 about the first direction is adjusted by the second control module 35 to adjust the rotation of the first rotary plane lens 31 in the first direction to achieve optical image stabilization. This process has been described in detail in conjunction with FIGS. 5-7, and will not be described again for brevity.
  • the embodiment of the present application compensates for the rotation of the lens module in the first direction by controlling the rotation of the first rotating plane lens in the first direction, thereby avoiding the drift of the image position during the exposure process and keeping the image stable.
  • the optical anti-shake effect is achieved to ensure the sharpness of the image. Compared with the prior art, it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • FIG. 11 is a second schematic diagram of a lens module 50 according to another embodiment of the present application. As shown in FIG. 11 , the lens module 50 further includes a second rotating planar lens 53 and a third control module 57 .
  • the second rotary planar lens 53 may be located between the imaging lens 51 and the image chip 58 for transmitting an imaging beam emitted through the first rotary plane lens or an imaging beam from the imaging lens.
  • the second rotary planar lens 53 can be located between the imaging lens 51 and the first rotary planar lens 52, or between the first rotary planar lens 52 and the image chip 58.
  • the imaging beam incident on the second rotary planar lens 53 is from the imaging lens 51; when the second rotary planar lens 53 is in the first rotation
  • the imaging beam incident on the second plane of rotation 53 is the imaging beam that is transmitted through the first plane of rotation lens 52. That is, the second rotary planar lens 53 may be located at the front end or the rear end of the first rotary planar lens 52.
  • the front-rear positional relationship of the first rotary planar lens 52 and the second rotary planar lens 53 is not particularly limited.
  • the second rotating planar lens 53 can rotate around the second direction.
  • the second direction may be perpendicular to the first direction, and the second direction may be perpendicular to the optical axis of the imaging lens.
  • the second rotating planar lens 53 may be a planar lens disposed between the imaging lens 51 and the image chip 58 and rotatable in the second direction, or may be disposed between the imaging lens 51 and the image chip 58. Any of a set of mutually parallel planar lenses that rotate about a second direction. The present application is not limited to the specific number of planar lenses that can be rotated about the second direction.
  • the shake of the lens module 50 may be caused by rotation about a first direction and rotation about a second direction. Therefore, the first processing module 54 can be used to detect the angle at which the lens module 50 rotates in the second direction, in addition to detecting the angle at which the lens module 50 rotates in the first direction.
  • the specific method for the first processing module 54 to detect the angle of rotation of the lens module 50 about the second direction has been described in detail above, and is not described herein again for the sake of brevity.
  • the second control module 56 and the third control module 57 can be communicatively coupled to the first processing module 54, and the second control module 56 can be communicatively coupled to the first rotating planar lens 52.
  • the third control module 57 It can be communicatively coupled to the second rotary planar lens 53.
  • the first processing module 54 can adjust the angle of rotation of the first rotating planar lens 51 about the first direction by the second control module 56 according to the detected angle of rotation of the lens module 50 about the first direction to adjust the angle from the imaging lens.
  • the angle of rotation in the two directions is adjusted by the third control module 57 to adjust the angle of rotation of the second rotary plane lens 52 about the second direction to adjust the imaging beam from the imaging lens or through the first rotary plane lens to pass through the first rotation plane.
  • the angle is deflected to compensate for the jitter caused by the angle of rotation of the lens module 50 about the second direction.
  • the first processing module 54 adjusts the rotation of the second rotating planar lens 53 around the second direction by the third control module 57 according to the angle of rotation of the lens module 50 about the second direction to achieve optical anti-shake.
  • the specific processing of the first processing module 24 according to the angle of rotation of the lens module 20 about the first direction is adjusted by the second control module 35 to adjust the rotation of the first rotary plane lens 31 in the first direction to achieve optical image stabilization. This process has been described in detail in conjunction with FIGS. 5-7, and will not be described again for brevity.
  • the embodiment of the present application compensates for the rotation of the lens module in the first direction by using the first rotating plane lens to rotate in the first direction, and compensates the lens module for the second direction by rotating the second rotating plane lens in the second direction.
  • the rotation of the direction avoids the drift of the image position in different directions which may occur during the exposure process, and maintains the stability of the image, thereby achieving the effect of optical image stabilization, further ensuring the sharpness of the image.
  • it is no longer necessary to push the entire imaging lens to achieve optical image stabilization, and therefore, it is more widely used in the configuration of the terminal device without being limited by the complicated or heavy-weight imaging lens. In the camera.
  • FIG. 12 is a third schematic diagram of a lens module 50 according to another embodiment of the present application.
  • the lens module 50 further includes: a liquid lens 61 and a first control module 63 .
  • the liquid lens 61 can be located between the imaging lens 51 and the image chip 58 and can be used to refract the imaging beam from the imaging lens 21 or the imaging beam emitted through the first rotating plane lens 52 and emit the image to the image. Chip 58.
  • the liquid lens 61 may be located at the rear end of the imaging lens 51, refracting the imaging beam from the imaging lens 51 and then projecting to the first rotating planar lens 52 or the second rotating planar lens 53; or, the liquid lens 61 is also The imaging beam emitted through the first rotating planar lens 52 or the second rotating planar lens 53 may be refracted to the image chip 58 at the front end of the image chip 58.
  • the liquid lens 61 can also be located between the first rotating plane 52 and the second rotating planar lens 53.
  • the imaging beam emitted by a rotating planar lens 52 is refracted and then incident on the second rotating planar lens 53, or the imaging beam emitted through the second rotating planar lens 53 is refracted and then incident on the first rotating planar lens 52.
  • the positional relationship between the front and rear positions of the first rotating plane lens 52, the second rotating plane lens 53 and the liquid lens 61 is not particularly limited as long as it is located in the mechanical back focus of the lens module, and should fall within the requirements of the present application. Within the scope.
  • the liquid lens 61 may include a first planar lens that is transparent to each other and a second planar lens that is transparent to light, and the first planar lens and the second planar lens are filled with a light-transmitting liquid. object.
  • the first planar lens and the second planar lens are perpendicular to the optical axis of the imaging lens, and the imaging beam from the imaging lens or the imaging beam emitted through the first rotating planar lens or the imaging beam emitted through the second rotating planar lens may be from A planar lens is incident on the liquid lens, and the imaging beam refracted by the liquid lens is emitted from the second planar lens.
  • the first planar lens, the second planar lens and the liquid object have a refractive index greater than 1
  • the image chip 58 can be communicatively coupled to the first processing module 54, the first processing module 54 can be communicatively coupled to the first control module 63, and the first control module 62 can be coupled to the liquid lens 61.
  • the image chip 58 can generate a digital image according to the received imaging beam and send the digital image to the first processing module 54.
  • the first processing module 54 can determine whether the thickness of the liquid lens needs to be adjusted according to the sharpness of the digital image. And, if adjustment is needed, the distance between the first planar lens and the second planar lens is adjusted by the first control module 62 to adjust the sharpness of the image generated by the image chip 58.
  • the embodiment of the present application adjusts the thickness of the liquid object in the liquid lens so that the lens module can adjust the thickness of the liquid lens for the subject at different distances from the imaging lens, so that the physical distance between the imaging lens and the image chip is constant.
  • the effective optical path of the signal light can be changed with the thickness of the liquid lens to match the image distance corresponding to different object distances, thereby obtaining a clear image and achieving the effect of autofocus.
  • it is no longer necessary to push the entire imaging lens to achieve autofocus, and therefore, it can be more widely applied to the camera configured by the terminal device without being limited by the complicated or heavy-weight imaging lens. in.
  • the liquid lens provided by the present application adopts a flat lens, it does not affect the aperture size of the lens, and can be applied to a lens module of any optical aperture.
  • first processing module, the second processing module, and the third processing module listed above may be the same processing module, for example, a processor that can be configured in the lens module to implement its corresponding function, or
  • the modules that are independent of each other are not limited in this application; the first control module, the second control module, and the third control module may be the same control module, for example, the corresponding functions may be implemented by a driving motor disposed in the lens module.
  • the specific form or number of each module of the present application is not particularly limited.
  • the first processing module 54 is further configured to detect an angle of rotation of the lens module 50 about the first direction and/or an angle of rotation about the second direction, and is used for rotating according to the first direction of the lens module 50. And/or an angle of rotation about the second direction, the distance between the first planar lens and the second planar lens is adjusted by the first control module 63 to adjust the sharpness of the image generated by the image chip.
  • the signal light originally incident parallel to the optical axis becomes the optical axis due to the rotation of the rotating lens during the rotation of the lens module 20 and the rotating lens (including the first rotating planar lens 31 or the second rotating planar lens 32) Non-parallel
  • the signal light is bent by the rotation of the rotating lens, and the effective optical path of the signal light changes, which may cause the image distance to change, which may cause a small drift of the optimal imaging surface.
  • the position where the image chip 23 is located is deviated, resulting in a low definition of the optical image received on the image chip 23. At this time, simply rotating the rotating lens group to achieve optical image stabilization may not optimize the quality of the generated image.
  • the thickness of the liquid lens 22 is adaptively adjusted in accordance with the jitter generated by the lens module 20, that is, by adjusting the effective optical path to adjust the image distance so that the optimal imaging surface remains at the position of the image chip 23, it is advantageous.
  • the imaging beam is enabled to produce a sharp image on the image chip 23.
  • the specific method of adjusting the thickness of the liquid lens during optical image stabilization to improve image quality has been described in detail above.
  • the specific method of adjusting the thickness of the liquid lens may be the same as the specific method described above, and a detailed description of the specific method is omitted here for the sake of brevity.
  • the first processing module 54 is further configured to perform image processing on the digital image converted by the image chip 58.
  • the image processing may include: denoising processing, enhancement processing, and blurring processing.
  • the image processing function may be implemented by hardware for image processing, for example, a processor disposed in a lens module, specifically, an image processing system configured in a camera or a terminal device, or an image processing function. It can also be executed by the driver software, which is not limited in this application.
  • first control module, the second control module and the third control module enumerated above may be executed by the same hardware, for example, by the same motor, with the first control module, the second control module and the third control module.
  • Corresponding functions can also be performed by different hardware.
  • the functions corresponding to the first control module, the second control module and the third control module can be respectively implemented by different motors, or can be realized by a motor.
  • the function corresponding to the second control module and the third control module is implemented by another motor, which is not limited in this application.
  • the lens module provided by the embodiment of the present application is described in detail above with reference to FIG. 2 to FIG. 12 .
  • the components are schematically illustrated (including, for example, a liquid lens, a first rotating plane).
  • the relative position of the lens and the second rotating plane lens in the imaging lens and the image chip but this should not constitute any limitation to the present application.
  • the present application relates to the front and rear positional relationship of the liquid lens and the first rotating plane lens, and the liquid lens and the first The positional relationship between the front and rear of the rotating flat lens and the second rotary flat lens is not limited.
  • the lens module provided by another embodiment of the present application is described in detail above with reference to FIG. 10 to FIG. 12 .
  • the present application also provides a terminal device in which the lens module described above is configured.
  • the terminal device is configured with a gyroscope, wherein the foregoing may be used to detect a rotation angle and a direction of the imaging lens, so that the second processing module and the third processing module determine the first rotation angle and the second according to the detected rotation angle. Rotation angle.
  • the terminal device is configured with an image processing system including an image processor and an image chip.
  • the image processor can be used to implement the functions of the first processing module.
  • the application also provides a method for controlling a lens module.
  • the control method of the lens module provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 13 is a schematic flowchart of a method 1000 for controlling a lens module according to an embodiment of the present application.
  • the method 1000 can be applied to the lens module 20 described above.
  • the lens module 20 includes an imaging lens, a liquid lens, an image chip, a first processing module and a first control module, wherein the liquid lens is located between the imaging lens and the image chip for refracting the imaging beam from the imaging lens. The refracted imaging beam is directed to the image chip.
  • the liquid lens comprises a light transmissive first planar lens and a light transmissive second planar lens parallel to each other, and the first planar lens and the second planar lens are filled with a transparent liquid object, the first planar lens and the second The planar lens is perpendicular to the optical axis of the imaging lens, and the imaging beam from the imaging lens is incident from the first planar lens into the liquid lens, and the imaging beam refracted by the liquid lens is emitted from the second planar lens, the first The planar lens, the second planar lens, and the liquid object have a refractive index greater than one.
  • control method 1000 can include:
  • Step 1100 the image chip generates a digital image according to the imaging beam refracted by the liquid lens
  • Step 1200 The first processing module adjusts the distance between the first planar lens and the second planar lens by the first control module according to the sharpness of the digital image, thereby adjusting the sharpness of the image generated by the image chip.
  • the lens module further includes: a first rotating planar lens and a second control module, wherein the first rotating planar lens is located between the imaging lens and the image chip, and is configured to be refracted by the liquid lens The imaging beam or the imaging beam that is not refracted by the liquid lens passes through.
  • the method 1000 also includes:
  • the first processing module detects an angle of rotation of the lens module about the first direction
  • the first processing module adjusts an angle of rotation of the first rotating plane lens around the first direction by the second control module according to an angle of rotation of the lens module around the first direction to adjust the imaging beam refracted by the liquid lens or not
  • the angle at which the imaged beam refracted by the liquid lens deflects when passing through the first rotating planar lens, thereby compensating for the jitter caused by the angle of rotation of the lens module about the first direction, the first direction being perpendicular to the optical axis of the imaging lens.
  • the lens module further includes: a second rotating plane lens and a third control module, wherein the second rotating plane lens is located between the imaging lens and the image chip, and is used to make the imaging beam refracted by the liquid lens or An imaging beam that is not refracted by the liquid lens is transmitted;
  • the method 1000 also includes:
  • the first processing module detects an angle of rotation of the lens module about the second direction
  • the first processing module adjusts an angle of rotation of the second rotating plane lens around the second direction by the third control module according to an angle of rotation around the second direction to adjust the imaged beam refracted by the liquid lens or is not refracted by the liquid lens
  • the method 1000 further includes:
  • the first processing module detects an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction;
  • the first processing module adjusts an image by adjusting a distance between the first planar lens and the second planar lens by the first control module according to an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction The sharpness of the image generated by the chip.
  • the method 1000 further includes:
  • the first processing module performs image processing on the digital image, and the image processing includes at least: a denoising process, an enhancement process, and a blurring process.
  • FIG. 14 is a schematic flowchart of a method 2000 for controlling a lens module according to another embodiment of the present application.
  • the method 2000 can be applied to the lens module 50 described above.
  • the lens module 50 includes: an imaging lens, a light transmissive first rotating plane lens, an image chip and a second control module, wherein the first rotating plane lens is located between the imaging lens and the image chip for making the image from the imaging lens
  • the imaging beam is transmitted, and the imaging beam transmitted through the first rotating plane lens is incident on the image chip, and the imaging beam is refracted and emitted to the image chip.
  • the method 2000 can include:
  • Step 2100 the image chip generates a digital image according to the imaging beam emitted through the first rotating plane lens
  • Step 2200 the first processing module detects an angle of rotation of the lens module around the first direction
  • Step 2300 the first processing module adjusts an angle of rotation of the first rotating plane lens around the first direction by the second control module according to an angle of rotation of the lens module around the first direction, Adjusting an angle at which the imaging beam from the imaging lens deflects when passing through the first rotating planar lens, thereby compensating for jitter caused by an angle of rotation of the lens module about the first direction, One direction is perpendicular to the optical axis of the imaging lens.
  • the lens module further includes: a second rotating planar lens that transmits light and a third control module, wherein the second rotating planar lens is located between the imaging lens and the image chip for transmitting through the first rotating plane The imaging beam emitted by the lens or the imaging beam from the imaging lens is transmitted.
  • the method 2000 further includes:
  • the first processing module detects an angle of rotation of the lens module about the second direction
  • the first processing module adjusts an angle of rotation of the second rotating plane lens around the second direction by the third control module according to the angle of rotation of the lens module in the second direction to adjust the imaging beam emitted through the first rotating plane lens. Or an angle at which the imaging beam from the imaging lens deflects when passing through the second rotating planar lens, thereby compensating for the jitter caused by the angle of rotation of the lens module about the second direction, the second direction being perpendicular to the first direction, and the second The direction is perpendicular to the optical axis of the imaging lens.
  • the lens module further includes: a liquid lens and a first control module, wherein the liquid lens is located between the imaging lens and the image chip, and is used for refracting or transmitting the imaging beam from the imaging lens through the first rotating plane lens
  • the emitted imaging beam is refracted and emitted to the image chip.
  • the liquid lens comprises a first planar lens that is transparent to each other and a second planar lens that is transparent to light, and the first planar lens and the second planar lens are filled with light.
  • the liquid object, the first planar lens and the second planar lens are perpendicular to the optical axis of the imaging lens, and the imaging beam from the imaging lens or the imaging beam emitted through the first rotating planar lens is incident from the first planar lens into the liquid lens.
  • the imaged beam refracted by the liquid lens is emitted from the second planar lens, and the refractive indices of the first planar lens, the second planar lens, and the liquid object are greater than one.
  • the method 2000 further includes:
  • the first processing module adjusts the distance between the first planar lens and the second planar lens by the first control module according to the sharpness of the digital image, thereby adjusting the sharpness of the image generated by the image chip.
  • the method 2000 further includes: the first processing module detects an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction;
  • the first processing module adjusts an image by adjusting a distance between the first planar lens and the second planar lens by the first control module according to an angle of rotation of the lens module about the first direction and/or an angle of rotation about the second direction The sharpness of the image generated by the chip.
  • the method 2000 further includes:
  • the first processing module performs image processing on the digital image, and the image processing includes at least: a denoising process, an enhancement process, and a blurring process.
  • the vertical direction is the first direction and the horizontal direction is the second direction.
  • this application should not be applied. Form any limit.
  • the specific direction corresponding to the first direction and the second direction is not particularly limited as long as the first direction is perpendicular to the second direction, and the plane formed by the first direction and the second direction is perpendicular to the optical axis, and should fall within Within the scope of the claimed invention.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本申请提供了一种镜头模组和镜头模组的控制方法,以实现自动对焦,提高图像清晰度。该镜头模组包括:成像镜头、第一控制模块、第一处理模块、液态镜片和图像芯片。液态镜片用于将来自成像镜头的成像光束折射,并将折射后的成像光束射至图像芯片,包括相互平行的透光的第一平面镜片和透光的第二平面镜片;第一控制模块用于调整第一平面镜片和第二平面镜片之间的距离;图像芯片用于根据经液态镜片折射后的成像光束生成数字图像;第一处理模块,用于根据数字图像的清晰度,通过第一控制模块调整第一平面镜片和第二平面镜片之间的距离,从而调整图像芯片所生成图像的清晰度。

Description

一种镜头模组和镜头模组的控制方法
本申请要求于2017年12月27日提交中国专利局、申请号为201711439999.X、申请名称为“一种镜头模组和镜头模组的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及成像领域,并且更具体地,涉及一种镜头模组和镜头模组的控制方法。
背景技术
自动对焦是相机的基本功能之一。由于拍摄物与成像镜头的距离是不确定的,如果不调整成像镜头和图像芯片的相对位置来对不同距离的拍摄物进行光学成像,可能会导致拍摄得到的一些图像是模糊的,因此,需要根据拍摄物与成像镜头间的距离来调整镜头与图像芯片的距离,以提高图像的清晰度。
目前已知一种自动对焦的方法,可通过马达推动整个成像镜头组在光轴方向移动以改变物距和像距,来达到对焦的效果,保证成像的清晰度。然而,如果成像镜头结构复杂或重量也较重,在较短时间内推动整个镜头相对而言就会比较困难,自动对焦效果也并不显著。因此,这种方法在相机中的使用具有一定的局限性。
发明内容
本申请提供一种镜头模组和控制镜头模组的方法,以提高图像清晰度。
第一方面,提供了一种镜头模组,所述镜头模组包括:成像镜头、第一控制模块、第一处理模块、液体镜片和图像芯片,其中,
所述液态镜片,位于所述成像镜头与图像芯片之间,所述液态镜片用于将来自所述成像镜头的成像光束折射,并将折射后的成像光束射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
所述第一控制模块,用于调整所述第一平面镜片和所述第二平面镜片之间的距离;
所述图像芯片,根据经所述液态镜片折射后的成像光束生成数字图像;
所述第一处理模块,根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
因此,通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距 离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,由此可达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
结合第一方面,在第一方面的某些实现方式中,所述镜头模组还包括:
透光的第一旋转平面镜片,位于所述成像镜头和所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束透过;
第二控制模块,用于调整所述第一旋转平面镜片环绕第一方向转动的角度,从而调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第一旋转平面镜片时偏折的角度,所述第一方向垂直于所述成像镜头的光轴;
所述第一处理模块,还用于检测所述镜头模组环绕所述第二方向上转动的角度,根据所述环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第二方向垂直于所述第一方向,且所述第二方向垂直于所述光轴。
其中,所述第一处理模块可根据所述环绕所述第二方向上转动的角度,确定第一旋转角度,所述第一旋转角度为相对于上一检测时刻所述第一旋转平面镜片绕所述第一方向调整的角度,所述上一检测时刻为最近一次检测所述镜头模组的转动角度的时刻。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可以避免像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
结合第一方面,在第一方面的某些实现方式中,所述镜头模组还包括:
透光的第二旋转平面镜片,位于所述成像镜头和所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束透过;
第三控制模块,用于调整所述第二旋转平面镜片环绕第二方向转动的角度,从而调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第二旋转平面镜片时偏折的角度;
所述第一处理模块,还用于检测所述镜头模组环绕所述第一方向上转动的角度,根据所述环绕所述第一方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,可以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。
结合第一方面,在第一方面的某些实现方式中,所述第一处理模块还用于检测所述镜 头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度,并用于根据所述镜头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组以及旋转镜片组转动的过程中,原先水平入射的信号光因旋转镜片的转动而发生了弯折,使得信号光的有效光程发生变化,可能导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,此时可通过调整液态镜片中第一平面镜片和第二平面镜片间的相对距离,以补偿成像面发生的漂移,从而使得光学防抖的效果更好,有利于提高图像质量。
结合第一方面,在第一方面的某些实现方式中,所述第一处理模块还用于对数字图像进行图像处理,所述图像处理至少包括:去噪处理、增强处理和虚化处理。
因此,通过图像处理使得得到的数字图像更加清晰,即进一步提高了图像质量。
第二方面,提供了一种镜头模组,包括:成像镜头、透光的第一旋转平面镜片、图像芯片、第一处理模块和第二控制模块,其中,
所述第一旋转平面镜片,位于所述成像镜头与所述图像芯片之间,用于使得来自所述成像镜头的成像光束透过,并将透过所述第一旋转平面镜片的成像光束射至所述图像芯片;
所述图像芯片,用于根据透过所述第一旋转平面镜片射出的成像光束生成数字图像;
所述第二控制模块,用于调整所述第一旋转平面镜片环绕第一方向转动的角度,从而调整来自所述成像镜头的成像光束在透过所述第一旋转平面镜片时偏折的角度,所述第一方向垂直于所述成像镜头的光轴;
所述第一处理模块,用于检测所述镜头模组环绕所述第一方向上转动的角度,根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可以避免像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
结合第二方面,在第二方面的某些实现方式中,所述镜头模组还包括:
透光的第二旋转平面镜片,位于所述成像镜头与所述图像芯片之间,用于使得透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束透过;
第三控制模块,用于调整所述第二旋转平面镜片环绕第二方向转动的角度,从而调整透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束在透过所述第二旋转平面镜片时偏折的角度,所述第二方向垂直于所述第一方向,且所述第二方向垂直于所述成像镜头的光轴;
所述第一处理模块,还用于检测所述镜头模组环绕所述第二方向上转动的角度,根据所述环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片 环绕所述第二方向转动的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,可以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。
结合第二方面,在第二方面的某些实现方式中,所述镜头模组还包括:
所述镜头模组还包括:
液态镜片,位于所述成像镜头和所述图像芯片之间,用于将来自所述成像镜头的成像光束折射或者透过所述第一旋转平面镜片射出的成像光束折射,并发射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束或透过所述第一旋转平面镜片射出的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
所述第一控制模块,用于调整所述第一平面镜片和所述第二平面镜片之间的距离;
所述第一处理模块,还用于根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
因此,通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,由此可达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
结合第二方面,在第二方面的某些实现方式中,所述第一处理模块还用于根据检测到的所述镜头模组绕第一方向转动的角度和/或绕第二方向转动的角度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组以及旋转镜片组转动的过程中,原先水平入射的信号光因旋转镜片的转动而发生了弯折,使得信号光的有效光程发生变化,可能导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,此时可通过调整液态镜片中第一平面镜片和第二平面镜片间的相对距离,以补偿成像面发生的漂移,从而使得光学防抖的效果更好,有利于提高图像质量。
第三方面,提供了一种终端设备,所述终端设备配置有上述第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的镜头模组。
第四方面,提供了一种镜头模组的控制方法,应用于镜头模组中,所述镜头模组包括: 成像镜头、液态镜片、图像芯片、第一处理模块和第一控制模块,其中,所述液态镜片位于所述成像镜头和所述图像芯片之间,用于将来自所述成像镜头的成像光束折射,并将折射后的成像光束射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
所述方法包括:
所述图像芯片根据经所述液态镜片折射后的成像光束生成数字图像;
所述第一处理模块根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
因此,通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,由此可达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
结合第四方面,在第四方面的某些实现方式中,所述镜头模组还包括:
透光的第一旋转平面镜片和第二控制模块,其中,所述第一旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束透过;
所述方法还包括:
所述第一处理模块检测所述镜头模组环绕所述第一方向上转动的角度;
所述第一处理模块根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,以调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第一旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第一方向垂直于所述成像镜头的光轴。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可以避免像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
结合第四方面,在第四方面的某些实现方式中,所述镜头模组还包括:第二旋转平面镜片和第三控制模块,其中,所述第二旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束透过;
所述方法还包括:
所述第一处理模块检测所述镜头模组环绕所述第二方向上转动的角度;
所述第一处理模块根据所述环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,以调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第二旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动,所述第二方向垂直于所述成像镜头的光轴,且所述第二方向垂直于所述第一方向。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,可以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述第一处理模块检测所述镜头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度;
所述第一处理模块根据所述镜头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组以及旋转镜片组转动的过程中,原先水平入射的信号光因旋转镜片的转动而发生了弯折,使得信号光的有效光程发生变化,可能导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,此时可通过调整液态镜片中第一平面镜片和第二平面镜片间的相对距离,以补偿成像面发生的漂移,从而使得光学防抖的效果更好,有利于提高图像质量。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述第一处理模块对所述数字图像进行图像处理,所述图像处理至少包括:去噪处理、增强处理和虚化处理。
因此,通过图像处理使得得到的数字图像更加清晰,即进一步提高了图像质量。
第五方面,提供了一种控制镜头模组的方法,应用于镜头模组中,所述镜头模组包括:成像镜头、透光的第一旋转平面镜片、图像芯片和第二控制模块,其中,所述第一旋转平面镜片位于所述成像镜头与图像芯片之间,用于使来自所述成像镜头的成像光束透过,并将透过所述第一旋转平面镜片的成像光束射至所述图像芯片,并将所述成像光束折射后发射至所述图像芯片;
所述方法包括:
所述图像芯片根据透过所述第一旋转平面镜片射出的成像光束生成数字图像;
所述第一处理模块检测所述镜头模组环绕所述第一方向上转动的角度;
所述第一处理模块根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,以调整来自所述成像镜头的成像光束在透过所述第一旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第一方向垂直于所述成像镜头的光轴。因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可以避免 像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
结合第五方面,在第五方面的某些实现方式中,所述镜头模组还包括:
透光的第二旋转平面镜片和第三控制模块,其中,所述第二旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束透过;
所述方法还包括:
所述第一处理模块检测所述镜头模组环绕所述第二方向上转动的角度;
所述第一处理模块根据所述镜头模组环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,以调整透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束在透过所述第二旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动,所述第二方向垂直于所述第一方向,且所述第二方向垂直于所述成像镜头的光轴。
因此,通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,可以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。
结合第五方面,在第五方面的某些实现方式中,所述镜头模组还包括:液态镜片和第一控制模块,其中,所述液态镜片位于所述成像镜头与所述图像芯片之间,用于将来自所述成像镜头的成像光束折射或者透过所述第一旋转平面镜片射出的成像光束折射,并发射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束或透过所述第一旋转平面镜片射出的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
所述方法还包括:
所述第一处理模块根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
因此,通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,由此可达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:
所述第一处理模块检测所述镜头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度;
所述第一处理模块根据所述镜头模组绕所述第一方向转动的角度和/或绕所述第二方向转动的角度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组以及旋转镜片组转动的过程中,原先水平入射的信号光因旋转镜片的转动而发生了弯折,使得信号光的有效光程发生变化,可能导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,此时可通过调整液态镜片中第一平面镜片和第二平面镜片间的相对距离,以补偿成像面发生的漂移,从而使得光学防抖的效果更好,有利于提高图像质量。
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:
所述第一处理模块对所述数字图像进行图像处理,所述图像处理至少包括:去噪处理、增强处理和虚化处理。
因此,通过图像处理使得得到的数字图像更加清晰,即进一步提高了图像质量。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第四方面至第五方面以及第四方面至第五方面任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第四方面至第五方面以及第四方面至第五方面任一种可能实现方式中的方法。
第八方面,提供了一种芯片系统,所述芯片系统包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于从存储器中调用并运行所述计算机程序,所述计算机程序用于实现上述第四方面至第五方面以及第四方面至第五方面中任一种可能实现方式中的方法。
附图说明
图1是当前技术中一种可能的镜头模组的示意图;
图2是本申请一实施例提供的镜头模组的示意图一;
图3是本申请实施例提供的液态镜片的结构示意图;
图4是通过本申请实施例提供的镜头模组分别对远景和近景进行拍摄的示意图;
图5是本申请一实施例提供的镜头模组的示意图二;
图6和图7是本申请一实施例提供的镜头模组实现光学防抖的示意图;
图8是本申请一实施例提供的镜头模组的示意图三;
图9是本申请一实施例提供的镜头模组实现光学防抖的另一示意图;
图10是本申请另一实施例提供的镜头模组的示意图一;
图11是本申请另一实施例提供的镜头模组的示意图二;
图12是本申请另一实施例提供的镜头模组的示意图三;
图13是本申请一实施例提供的镜头模组的控制方法的示意性流程图;
图14是本申请另一实施例提供的镜头模组的控制方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
为便于理解,首先结合图1简单介绍当前技术中光学成像的具体过程。图1是当前技术中一种可能的镜头模组10的示意图。如图1所示,该镜头模组10包括:成像镜头11、音圈马达12、图像芯片(或者称,图像传感器)13以及图像处理器14。其中,成像镜头11可以由一个或多个镜头组合而成,组合后的成像镜头11可具有类似于凸透镜的汇聚光线的作用。例如,成像镜头11可以仅包括凸透镜,也可以是由凸透镜和凹透镜组合而成,或者,由凸透镜、凹透镜以及平面镜组合而成,本申请对于成像镜头11中镜片的具体形式和数量不做限定。成像镜头11的一侧可以为被拍摄的目标物,成像镜头11的另一侧可以为图像芯片13。图像芯片13可以为感光元件,例如,电感耦合元件(charge-coupled device,CCD)。图像芯片13可与成像镜头11相对,可根据接收到的成像光束生成数字图像。图像芯片13可与图像处理器14通信连接,将数字图像发送给图像处理器14。图像处理器14可与音圈马达12通信连接,图像处理器14可以在检测到某一帧图像的清晰度较低时,向音圈马达12发送指令,以通过音圈马达12推动成像镜头11在光轴方向纵向移动,从而实现自动对焦,提高图像清晰度。另外,图像处理器14可与配置有陀螺仪的成像镜头11连接,可以在检测到镜头模组10发生抖动时,向音圈马达12发送指令,以通过音圈马达12带动成像镜头11或图像芯片13在垂直光轴方向的平面(即,成像镜头11或图像芯片13本身所处的平面)内横向移动,从而实现防抖,以消弭抖动对图像稳定的干扰,提高图像清晰度。
为便于理解本申请,下面首先简单介绍本申请中涉及的几个概念。
一、自动对焦:
对于成像镜头的相对位置关系固定的镜头模组来说,例如,配置于手机中的镜头模组,对焦可以理解为实现物距和像距的变化,达到共轭关系,使得成像清晰。这可以通过手机里面的音圈马达驱动这个镜头组移动来实现。换句话说,自动对焦的过程中,成像镜头的焦距可以不变,仅通过改变物距和像距来实现自动对焦。
二、光学防抖:
光学防抖技术是在镜头模组内的陀螺仪侦测到微小的移动时,将信号传至图像芯片以计算需要补偿的位移量,然后通过推动镜头组根据计算得到的位移量加以补偿,来克服因相机的抖动产生的图像模糊。
三、曝光:
曝光就是指拍照时,相机快门打开后,光线通过镜头进入到相机的机身内,对感光元件进行感光,直到快门关闭,这一过程叫曝光。换句话说,曝光的过程也就是成像的过程。曝光时间可以由拍摄时的光线、光圈大小以及预设的感光度所决定。其中,光圈用于控制光线透过成像镜头,进入机身内感光面的光量。光圈大,进入的光量多,快门就关闭得快,即,曝光时间就短;反之亦然。
基于上文中的描述可以看到,当成像镜头的结构较复杂或重量较重的时候,在较短的曝光时间内通过音圈马达来推动成像镜头移动来实现自动对焦或光学防抖就比较困难,这使得上述方法的使用受到较大的局限。
有鉴于此,本申请提供一种镜头模组,能够实现自动对焦,保证图像清晰度,同时不需要移动整个成像镜头来实现自动对焦,从而可以广泛地应用于移动终端中。
图2是本申请一实施例提供的镜头模组的示意图一。如图2所示,该镜头模组20包括:成像镜头21、液态镜片22、图像芯片23、第一处理模块24以及第一控制模块25。
其中,成像镜头21可以与现有技术中的成像镜头相同,例如,可以由凸透镜构成,或者由凸透镜与凹透镜、平面镜等组合而成。成像镜头21具有汇聚光线的作用。
液态镜片22的具体结构可参考图3。图3示出了本申请实施例提供的液态镜片的结构示意图的一例。如图3所示,该液态镜片22可包括相互平行的透光的第一平面镜片221和透光的第二平面镜片222,且该第一平面镜片221和第二平面镜片222可垂直于成像镜头21的光轴。第一平面镜片221和第二平面镜片222之间填充有透光的液态物体223。该液态物体223可以包括液体以及一些呈胶质状的介于液体和固体之间的填充物。作为示例而非限定,该液态物体223可以为水银。
并且,该第一平面镜片221和第二平面镜片222在成像镜头21的光轴方向可相对移动。换句话说,填充于第一平面镜片221和第二平面镜片222之间的液态物体223的厚度可调。并且,该液态物体223被密封在该液态镜片22中,为了便于调整第一平面镜片221和第二平面镜片223之间的厚度,该液态镜片22可以设置有一定余量的存储空间,以便于在需要减小第一平面镜片221和第二平面镜片223间相对距离的时候向存储空间排出液体,在需要增加第一平面镜片221和第二平面镜片223间厚度的时候从存储空间补给液体。
在以下示出的实施例中,为方便说明,可将第一平面镜片与第二平面镜片之间的相对距离简称为液态镜片的厚度。
在本申请实施例中,成像镜头21可以位于被拍摄的目标物与液态镜片22之间,或者说,目标物可位于成像镜头的前端,液态镜片22可位于成像镜头21的后端,并与成像镜头21相对。液态镜片22可位于成像镜头21与图像芯片23之间,液态镜片22可与成像镜头21相对。
该液态镜片22可用于将来自成像镜头21的成像光束从第一平面镜片221射入到液态镜片22,经该液态镜片22折射后的成像光束从第二平面镜片222射出。该图像芯片23可用于根据经液态镜片22折射后的成像光束生成数字图像。
其中,液态镜片22中的第一平面镜片221、第二平面镜片222和液态物体223的折射率均大于1。可选地,第一平面镜片221、第二平面镜片222和液态物体223的折射率均大于1且小于3。
应理解,这里所列举的第一平面镜片221、第二平面镜片222和液态物体223的折射 率仅为一种可能的取值范围,而不应对本申请构成任何限定。事实上,第一平面镜片221、第二平面镜片222和液态物体223的折射率可以大于该镜头模组所处环境(例如,空气)的折射率。换句话说,第一平面镜片221、第二平面镜片222和液态物体223的材质均满足:折射率大于该镜头模组所处环境的折射率。并且,第一平面镜片221、第二平面镜片222和液态物体223的折射率可以两两相同或不同,本申请对此不做限定。
可选地,图像芯片23包括:电感耦合元件(CCD)或者互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)。
需要说明的是,成像镜头21与图像芯片23之间的距离可称为机械后焦,换句话说,该液态镜片22位于该镜头模组的机械后焦的范围内。图像芯片23可位于液态镜片22的后端,且该图像芯片23可与第一处理模块24通信连接。该图像芯片23可用于接收来自液态镜片22的成像光束。图像芯片23在根据接收到的成像光束生成数字图像后,可以将该数字图像发送至第一处理模块24。
该第一处理模块24可用于根据数字图像的清晰度,通过第一控制模块25调节第一平面镜片221和第二平面镜片222的距离,从而调整图像芯片23所生成图像的清晰度。
该第一控制模块25可用于调整第一平面镜片221和第二平面镜片222之间的距离。可选地,该第一控制模块25可包括马达,该马达用于驱动液态镜片22中的第一平面镜片221和第二平面镜片222中的至少一个在光轴方向上移动,从而达到调整第一平面镜片221和第二平面镜片222之间距离的目的。
这里,该第一处理模块24通过第一控制模块25所调节的第一平面镜片221和第二平面镜片222的距离,例如可以是相对于上一帧图像拍摄时刻第一平面镜片221和第二平面镜片222的距离的相对变化量。
其中,第一控制模块25可以与第一处理模块24通信连接。当第一处理模块24确定需要对第一平面镜片221和第二平面镜片222的距离(也就是,液态镜片22的厚度)进行调节时,可以根据需调节的距离,确定第一控制模块25的输出电流或输出电压。
需要说明的是,第一控制模块25驱动液态镜片22中的第一平面镜片221和第二平面镜片222中的至少一个在光轴方向上移动可通过改变第一控制模块25的输出电流或输出电压来实现。在一种可能的实现方式中,平面镜片(例如,第一平面镜片221或第二平面镜片222)在光轴方向上的位移量可以与第一控制模块25的输出电流或输出电压呈线性关系,比如,输出电压不变,改变输出电流来驱动平面镜片发生移动,或者,输出电流不变,改变输出电压来驱动平面镜片发生移动。第一处理模块24可根据需调节的距离确定第一控制模块25的输出电流或输出电压,并向第一控制模块25发送指令,通过指令通知第一控制模块25的输出电流或输出电压,以通过第一控制模块25输出电流或输出电压来驱动液态镜片中第一平面镜片和第二平面镜片中的距离发生变化。
应理解,上述列举的根据需调节的距离确定第一控制模块的输出电流或输出电压的方法是通过马达驱动平面镜片移动的一种可能的实现方式,具体实现过程可以与现有技术相同,并且,该方法仅为示例性说明,而不应对本申请构成任何限定。通过马达驱动液态镜片中第一平面镜片和/或第二平面镜片移动的具体方法可以与现有技术中通过音圈马达驱动镜头在光轴方向上移动的具体方法相似,为了避免赘述,这里省略对该具体方法的详细说明。
具体地,该第一处理模块24可以根据接收到的数字图像的信息,例如,对比度等,确定该数字图像是否清晰。例如,可以通过比较数字图像的信息与预先设定的门限值间的关系确定该数字图像是否清晰。在数字图像的清晰度较低的情况下,可以通过使用对焦算法,计算出液态镜片需要调整的厚度值。在一种可能的设计中,第一处理模块24可以将该数字图像的信息送到对焦算法库,对焦算法库可首先尝试先增大(或减小)液态镜片的厚度,例如,先增大1微米,进而第一控制模块25驱动该液态镜片中的第一平面镜片和/或第二平面镜片移动,以使液态镜片的厚度增加1微米。接着,图像芯片23可接收到经由调整液态物体厚度后的液态镜片发射过来的成像光束,生成新的一帧数字图像,将新生成的这一帧数字图像的信息送到第一处理模块24,第一处理模块24可将新生成的这一帧数字图像的信息送到对焦算法库中,对焦算法库可将新生成的这一帧数字图像的信息与上一帧数字图像的信息进行对比,确定是否进一步增大液态镜片中液态物体的厚度,或者,是否需要反方向调整。例如,若新生成的数字图像的对比度较上一帧数字图像的对比度高,可进一步确定是否满足预先设定的对比度的门限值,若满足,则不需要再调整;若不满足,可进一步尝试增大液态镜片的厚度,例如,增大0.5微米,然后循环执行上述过程。相反,若新生成的数字图像的对比度较上一帧数字图像的对比度低,可反方向调整液态镜片的厚度,例如,减小(或增大)2微米,进而驱动该液态镜片中的第一平面镜片和/或第二平面镜片移动,以使液态镜片的厚度减小。接着,图像芯片23可接收到经由调整液态物体厚度后的液态镜片发射过来的成像光束,生成新的一帧数字图像,将新生成的这一帧数字图像的信息送到第一处理模块24,第一处理模块24可将新生成的这一帧数字图像的信息送到对焦算法库中,对焦算法库可循环执行上述过程。经过多次循环,图像可能经历模糊-清晰-模糊的变化过程。此变化过程可通过图像的信息体现,例如,该图像的对比度可能经历低-高-低的变化过程,进而将对比度达到最大值时的液态镜片厚度确定为最终可使用的厚度。
需要说明的是,上述图像的信息可以包括图像中像素点的值,像素点的值可以由例如红蓝绿(red green blue,RGB)值或者YUV值(其中,Y表示明亮度(luminance或luma),U和V表示色度(chrominance或chroma))等来表征。图像的信息还可以包括对比度、灰度值等用于表征图像是否清晰的参数。应理解,以上列举的图像的信息的具体内容仅为示例性说明,而不应对本申请构成任何限定,本申请对于图像的信息的具体内容不做限定。
应理解,上述确定液态镜片中第一平面镜片和第二平面镜片需要调整的距离的过程中,第一处理模块24可根据图像中某一个点或多个点的对比度或者相位等多种可能的图像信息确定第一平面镜片和第二平面镜片需调整的距离。上述列举的方法仅为一种可能的实现方式,而不应对本申请构成任何限定。
还应理解,第一处理模块24可根据数字图像的清晰度来实现自动对焦,其中,图像的清晰度的评价可通过现有技术中的清晰度评价函数来实现。作为示例而非限定,常用的清晰度评价函数有:频域函数,对焦越好、高频部分越多,细节越多,图像越清晰;灰度函数:对焦越好,和周围相邻灰度点差值越大,边缘越清晰,图像越清晰;信息熵函数:对焦越好,图像包含的信息熵越大,包含信息量更大,图像越清晰;统计学函数:对焦越好,直方图多样性越好,图像越清晰。
还需要说明的是,上文中所列举的对焦算法库的功能可以是在硬件上执行,例如用于 执行第一处理模块24的功能的硬件,也可以是通过驱动程序软件执行,本申请对此不做限定。还应理解,对焦算法可以参考现有技术,为了简洁,这里省略对其具体内容的详细说明。
图4示出了通过本申请实施例提供的镜头模组分别对远景和近景进行拍摄的示意图。首先,由图4可以看到,在同一目标物进行拍摄时,在镜头模组中设置液态镜片会造成像距的变化。由于液态镜片的镜片为平面镜片,对信号光不具有汇聚或发散的作用,但是当将液态镜片置于成像镜头的后端时,由于经成像镜头汇聚后的信号光进入液态镜片时,在界面处可能发生折射,而信号光在液态镜片中的折射率较在空气中的折射率大,信号光在进入液态镜片之后,信号光在液态镜片中比空气中汇聚角度小且液态镜片的折射率大于空气的折射率,使得信号光汇聚在一点所需的光程变化,从而可以匹配不同的像距。
具体来说,若在成像镜头与图像芯片之间设置有液态镜片,成像镜头与图像芯片间的距离(即,机械后焦为D,D>0),信号光由成像镜头至图像芯片的有效光程(例如,记作L)可包括空气中的有效光程(例如,记作L 1)和液态镜片中的有效光程(例如,记作L 2)。则L=L 1+L 2。其中,L 1=D 11,L 2=D 22,其中,D 2是液态镜片的厚度,D 1=D-D 2。γ 1是信号光在镜头模组所处环境中的折射率,γ 2是信号光在液态镜片中的折射率。若镜头模组所处的环境为空气,则γ 1=1,γ 2>1。也就是说,L=D 1+D 22。可以看到,在物距和机械后焦D一定的情况下,未设置有液态镜片的镜头模组中的信号光的有效光程大于设置有液态镜片的镜头模组中的信号光的有效光程,且随着液态镜片厚度的增大,有效光程会减小。因此,通过减小信号光在成像镜头和图像芯片之间的有效光程,可以匹配更小的像距;增大信号光在成像镜头和图像芯片之间的有效光程,可以匹配更大的像距。
假设本申请实施例提供的镜头模组中,成像镜头与图像芯片之间的距离D在成像镜头与被拍摄的目标物的距离为任意值的情况下都固定不变。
本领域的技术人员可以理解,若该镜头模组中未设置液态镜片,当拍摄远景时,D需要变小;当拍摄近景时,D需要变大。在本申请实施例中,在成像镜头和图像芯片之间配置有液态镜片,当拍摄远景时,若不改变液态镜片的厚度,则D需要变小;当拍摄近景时,若不改变液态镜片的厚度,则D需要变大。相反,在拍摄远景时,若不改变D,则可以使用较大的液态镜片厚度(如图4所示);当拍摄近景时,若不改变D,则可以使用较小的液态镜片厚度(如图4所示)。可以理解,在成像镜头与图像芯片之间改变液态镜片的厚度,即,改变信号光汇聚在一点所需的光程,具体可包括信号光在空气中的有效光程与在液态镜片中的有效光程。
应理解,上文仅为便于理解,结合附图,以凸透镜成像为例说明了通过调整液态镜片的厚度达到自动对焦效果的过程,但这不应对本申请构成任何限定。本申请对于成像镜头所包含的具体镜头和数量均不做限定。
因此,本申请实施例通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用 的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
图5是本申请一实施例提供的镜头模组20的示意图二。可选地,如图5所示,该镜头模组20还包括:透光的第一旋转平面镜片31和第二控制模块35。
具体地,该第一旋转平面镜片31可以位于成像镜头21与图像芯片23之间,即,第一旋转平面镜片31可位于该镜头模组20的机械后焦的范围内。该第一旋转平面镜片31可用于使得经过液态镜片22折射后的成像光束或未经过液态镜片22折射的成像光束透过。换句话说,该第一旋转平面镜片31可位于液态镜片22与图像芯片23之间,也可位于成像镜头21与液态镜片22之间。当第一旋转平面镜片31位于液态镜片22与图像芯片23之间时,接收到的成像光束是经液态镜片22折射后射出的成像光束;当第一旋转平面镜片位于成像镜头21与液态镜片22之间时,接收到的成像光束是未经过液态镜片22折射的成像光束。并且,该第一旋转平面镜片31可以环绕第一方向转动。这里,第一方向垂直于成像镜头的光轴。
应理解,第一旋转平面镜片31可以为配置于成像镜头21与图像芯片23之间的一个可环绕第一方向转动的平面镜片,也可以为配置于成像镜头21与图像芯片23之间的可环绕第一方向转动的一组相互平行的平面镜片中的任意一个。本申请对于可环绕第一方向转动的平面镜片的具体数量不做限定。
该镜头模组20的抖动可能由该镜头模组20环绕第一方向的转动造成,第一处理模块24还可用于检测该镜头模组20环绕第一方向转动的角度。在一种可能的设计中,该镜头模组20可以配置有陀螺仪(或者称,角速度传感器),例如,在成像镜头21中配置有陀螺仪。该陀螺仪可用于检测成像镜头21是否绕第一方向发生偏转。该第一处理模块24可与成像镜头21通信连接,当陀螺仪检测到成像镜头21绕第一方向发生偏转时,可将检测到的偏转角度通知第一处理模块24。
该第一处理模块24可与第二控制模块35通信连接,第二控制模块35可与第一旋转平面镜片31通信连接。
该第一处理模块24还可用于根据该镜头模组20环绕第一方向转动的角度,确定第一旋转平面镜片31需调整的角度。并通过第二控制模块35调整第一旋转平面镜片31环绕第一方向转动,从而补偿该镜头模组20环绕第一方向转动的角度造成的抖动。该第二控制模块35可用于调整第一旋转平面镜片31环绕第一方向转动的角度,从而调整经液态镜片22折射后的成像光束或未经液态镜片22折射后的成像光束在透过第一旋转平面镜片31时折射的角度。
其中,为便于区分和说明,可将该第一旋转平面镜片31需调整的角度记作第一旋转角度。该第一旋转角度例如可以是相对于上一检测时刻该第一旋转平面镜片31的角度的相对变化量,或者说,相对于上一检测时刻第一旋转平面镜片31所处位置调整的角度。第一处理模块24可根据需调整的角度,确定第二控制模块35的输出电流或输出电压。
需要说明的是,第二控制模块35驱动第一旋转平面镜片31环绕第一方向转动可通过改变第二控制模块35的输出电流或输出电压来实现。在一种可能的实现方式中,平面镜片(例如,第一旋转平面镜片31)环绕第一方向转动的角度可以与第二控制模块35的输出电流或输出电压呈线性关系,比如,输出电压不变,改变输出电流来驱动平面镜片发生转动,或者,输出电流不变,改变输出电压来驱动平面镜片发生转动。第一处理模块24 可根据需调节的角度确定第二控制模块35的输出电流或输出电压,并向第二控制模块35发送指令,通过指令通知第二控制模块35的输出电流或输出电压,以通过第二控制模块35输出电流或输出电压来驱动第一旋转平面镜片环绕第一方向转动。
应理解,上述列举的根据需调节的角度确定第二控制模块的输出电流或输出电压的方法是通过马达驱动平面镜片转动的一种可能的实现方式,具体实现过程可以与现有技术相同,并且,该方法仅为示例性说明,而不应对本申请构成任何限定。通过马达驱动第一旋转平面镜片环绕第一方向转动的具体方法可以与现有技术中通过音圈马达驱动镜头在光轴方向上移动的具体方法相似,为了避免赘述,这里省略对该具体方法的详细说明。
在拍摄过程中,若镜头模组20发生抖动,就有可能造成拍摄的图像模糊。具体来说,在一帧图像的曝光时间内,若某一时刻成像镜头21发生抖动,就会造成所得到的数字图像中同一像点位置漂移的情况,也就可能呈现出画面模糊的图像。
为了保证图像清晰度,本申请所提供的镜头模组20通过旋转第一平面旋转镜片31来补偿因镜头模组20抖动而带来的像点位置漂移,从而实现光学防抖。
图6和图7示出了通过本申请实施例提供的镜头模组实现光学防抖的示意图。需要说明的是,在图6和图7示出的示意图中,X轴方向可以为第一方向,Z轴方向可以为光轴方向。则,Y轴方向垂直于第一方向,且Y轴方向垂直于光轴方向。
图6中示出了分别在镜头模组未发生抖动和绕第一方向转动而造成的抖动时成像光束汇聚到图像芯片上的位置。具体地,假设目标物为三角形,图中实线三角形为镜头模组20未发生抖动时通过成像镜头21汇聚到图像芯片上的位置的示意,图中虚线三角形为镜头模组20绕第一方向发生转动时通过成像镜头21汇聚到图像芯片上的位置的示意。可以看到,若镜头模组20绕第一方向转动,便有可能使同一物点经成像镜头21汇聚到图像芯片上的位置在Y轴方向上发生偏移,如图中所示,因镜头模组20抖动拍摄得到的这一帧图像中相同的像点位置发生了向下的偏移(或者说,漂移),最终可能造成转换得到的数字图像清晰度不高。
应理解,图6中仅为便于理解示出了镜头模组发生抖动和未发生抖动的汇聚到图像芯片上的位置的示意,但这并不代表镜头模组在一帧图像的曝光时间内生成了多个光学图像。
图7中示出了镜头模组未发生抖动和绕第一方向转动时的光路示意图。当镜头模组20绕第一方向发生转动时,可以通过第一旋转平面镜片绕第一方向旋转来补偿,使得原来向下偏离的像点位置向上偏移,以保证图像稳定。具体地,当镜头模组20绕第一方向顺时针旋转了一个较小的角度,因此,同一束信号光在进入成像镜头20的时候,相比于成像镜头20未发生抖动的时候入射角变大,信号光在经过成像镜头20的折射后,出射的方向较成像镜头20未发生抖动的时候比,更加向下偏离,从而导致同一物点经成像镜头21汇聚到图像芯片上的像点位置向下偏移。此时,可以通过第一旋转平面镜片绕第一方向逆时针方向旋转来补偿,以使得原来向下偏离的信号光向上偏移,从而使得原来向下偏离的像点位置也向上偏移,从而可以达到保证图像稳定的效果。
具体地,陀螺仪在某一时刻(例如,记作检测时刻)检测到成像镜头21绕第一方向发生了偏转,可将该成像镜头21的偏转角度发送到第一处理模块24,该第一处理模块24可根据该偏转角度确定第一旋转平面镜片31需调整的角度(即,第一旋转角度),该第 一旋转角度可用于补偿成像镜头21绕第一方向转动带来的图像偏移,并可进一步根据该第一旋转角度确定第二控制模块35的输出电流或输出电压。因此可以理解,该第一旋转角度可以是相对于上一检测时刻第一旋转平面镜片需转动的角度,并且,该第一旋转角度的转动可在响应时间内完成。
其中,第一旋转角度可通过现有的光学防抖算法来确定。在一种可能的实现方式中,假设陀螺仪检测到镜头模组在第一方向的转角为γ,则可根据光学原理,计算得到像点的偏移量为f·tanγ,其中,f为成像镜头的焦距。由此可知需要第二旋转平面镜片在第一方向的补偿值。该补偿值可以通过第一旋转平面镜片绕第一方向旋转实现,具体角度可根据补偿值、第一旋转平面镜片的厚度和折射率以及单位角度带来的偏移量来确定。
例如,假设该镜头模组仅通过一个旋转平面镜片(即,第一旋转平面镜片)来实现光学防抖,则可预先根据该第一旋转平面镜片的厚度、折射率等确定该第一旋转平面镜片绕第一方向旋转单位角度(例如,1°)带来的图像在第一方向的偏移量,然后根据补偿值进一步确定需要该第一旋转平面镜片绕第一方向旋转的角度,即,第一旋转角度。
又例如,假设该镜头模组可通过包括第一旋转平面镜片在内的一组旋转平面镜片来实现光学防抖,则上述补偿值可通过这一组旋转平面镜片所包括的多个(例如,n个,n>1,n为整数)旋转平面镜片的转角来分担。假设与上述补偿值所对应的平面镜片的旋转角度α,该n个平面镜片中第i(i在[1,n]遍历取值)个平面镜片旋转的角度分别为α i,则该n个平面镜片中的各平面镜片所旋转的角度需满足
Figure PCTCN2018123915-appb-000001
例如,n=2,α=15°,则α 1=α 2=7.44°。应理解,上述举例仅为便于理解而示出,不应对本申请构成任何限定,例如,各平面镜片所旋转的角度可以相同或不同,本申请对此不做限定。还应理解,上述列举的n个平面镜片也可以为这一组旋转平面镜片中的部分镜片,也就是说,该一组旋转镜片中的至少部分平面镜片旋转即可实现第一方向上的光学防抖。
应理解,上文中为便于理解,示出了一种用于确定第一旋转角度的具体实现方式,但这不应对本申请构成任何限定,用于确定第一旋转角度的实现方式可通过现有技术中通用的光学防抖算法来确定,为了简洁,这里省略对该具体方法的详细说明。
需要说明的是,上文中所列举的光学防抖算法库的功能可以通过硬件执行,例如,可通过用于实现相应功能的硬件执行,也可以通过驱动程序软件执行,本申请对此不做限定。还应理解,光学防抖算法可以参考现有技术,为了简洁,这里省略对该具体内容的详细说明。
还需要说明的是,上文中所列举的第一控制模块和第二控制模块可以通过同一硬件执行,例如,可通过同一马达来实现与第一控制模块和第二控制模块相对应的功能,也可以通过不同的硬件执行,例如,可通过不同的马达分别实现与第一控制模块和第二控制模块相对应的功能,本申请对此不做限定。
还应理解,图中仅为便于理解,以X轴方向为第一方向为例对第一旋转平面镜片实现光学防抖的过程进行了详细说明,本申请对于第一方向并未做限定,该第一方向可以为与光轴方向垂直的平面的任意一个方向。例如,该第一方向可以为图中所示的Y轴方向。
因此,本申请实施例通过控制第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可避免像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像 镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
图8是本申请一实施例提供的镜头模组20的示意图三。可选地,如图8所示,该镜头模组20还包括:透光的第二旋转平面镜片32和第三控制模块36。
具体地,该第二旋转平面镜片32可位于成像镜头21和图像芯片23之间,用于使得经液态镜片22折射后的成像光束或未经液态镜片22折射的成像光束透过。换句话说,该第二旋转平面镜片32可位于液态镜片22与图像芯片23之间,也可位于成像镜头21与液态镜片22之间。更具体地,该第二旋转平面镜片32可位于第一旋转平面镜片31的前端或后端。例如,该第一旋转平面镜片31和第二旋转平面镜片32均可位于液态镜片22与图像芯片23之间,且第一旋转平面镜片31可位于第二旋转平面镜片32的前端或后端;或者,该第一旋转平面镜片31和第二旋转平面镜片32均可位于成像镜头21与液态镜片22之间,且第一旋转平面镜片31可位于第二旋转平面镜片32的前端或后端;或者,该第一旋转平面镜片31可位于成像镜头21与液态镜片22之间,该第二旋转平面镜片32可位于液态镜片22与图像芯片23之间;或者,该第二旋转平面镜片32可位于成像镜头21与液态镜片22之间,该第一旋转平面镜片31可位于液态镜片22与图像芯片23之间。应理解,本申请对于第一旋转平面镜片31、第二旋转平面镜片32和液态镜片22的前后位置关系不做特别限定。
在本申请实施例中,该第二旋转平面镜片31可以环绕第二方向转动。这里,第二方向垂直于第一方向,且该第二方向垂直于成像镜头的光轴。
应理解,第二旋转平面镜片32可以为配置于成像镜头21与图像芯片23之间的一个可环绕第二方向转动的平面镜片,也可以为配置于成像镜头21与图像芯片23之间的可环绕第二方向转动的一组相互平行的平面镜片中的任意一个。本申请对于可环绕第二方向转动的平面镜片的具体数量不做限定。
该镜头模组20的抖动可能由环绕第一方向的转动和绕第二方向的转动造成。因此,该第一处理模块24除了可用于检测镜头模组20环绕第一方向转动的角度之外,还可用于检测镜头模组20环绕第二方向转动的角度。例如,配置于成像镜头中的陀螺仪可用于检测成像镜头21是否绕第二方向发生偏转,并在检测到成像镜头绕第二方向发生偏转时,将检测到的偏转角度通知第一处理模块24。
该第一处理模块24可与第三控制模块36通信连接,第三控制模块36可与第二旋转平面镜片32通信连接。
该第一处理模块24还可用于根据该镜头模组20环绕第二方向转动的角度,确定第二旋转平面镜片32需调整的角度。并通过第三控制模块36调整第二旋转平面镜片32环绕第二方向转动,从而补偿该镜头模组20环绕第二方向转动的角度造成的抖动。该第二控制模块36可用于调整第二旋转平面镜片32环绕第二方向转动的角度,从而调整经液态镜片22折射后的成像光束或未经液态镜片22折射后的成像光束在透过第二旋转平面镜片32时折射的角度。
其中,为便于区分和说明,可将该第二旋转平面镜片32需调整的角度记作第一旋转角度。该第二旋转角度例如可以是相对于上一检测时刻该第二旋转平面镜片32的角度的相对变化量,或者说,相对于上一检测时刻第二旋转平面镜片32所处位置调整的角度。 第一处理模块24可根据需调整的角度,确定第三控制模块36的输出电流或输出电压。
应理解,第一处理模块24根据需调整的角度,确定第三控制模块36的输出电流或输出电压的具体过程可以与上文中确定第二控制模块35的输出电流或输出电压的具体过程相同,为了简洁,这里不再赘述。
图9示出了通过本申请实施例提供的镜头模组实现光学防抖的另一示意图。需要说明的是,在图9示出的示意图中,X轴方向可以为第一方向,Y轴方向可以为第二方向,Z轴方向可以为光轴方向。X轴、Y轴和Z轴两两垂直。
图9中示出了分别在镜头模组未发生抖动和在绕第一方向和第二方向都分别有转动而造成的抖动时成像光束汇聚到图像芯片上的位置。具体地,假设目标物为三角形,图中实现三角形为镜头模组20未发生抖动时通过成像镜头21汇聚到图像芯片上的位置的示意,图中虚线三角形为镜头模组20绕第一方向和第二方向都分别发生转动时通过成像镜头21汇聚到图像芯片上的位置的示意。其中,镜头模组20绕第一方向转动造成的成像光束汇聚到图像芯片23上的位置在第二方向上偏移,镜头模组20绕第二方向转动造成的成像光束汇聚到图像芯片23上的位置在第一方向上偏移,最终可能造成转换得到的数字图像清晰度不高。
应理解,图9中仅为便于理解示出了镜头模组发生抖动和未发生抖动的汇聚到图像芯片上的位置的示意,但这并不代表镜头模组在一帧图像的曝光时间内生成了多个光学图像。
本申请实施例中通过第一处理模块24分别根据镜头模组20绕第一方向的转动角度和绕第二方向的转动角度,确定与绕第一方向的转角对应的补偿值和与绕第二方向的转角对应的补偿值,并根据与绕第一方向的转角对应的补偿值确定第二控制模块35的输出电流或输出电压,根据与绕第二方向的转角对应的补偿值确定第三控制模块36的输出电流或输出电压。
应理解,第一处理模块根据绕第二方向的转到角度确定对应的补偿值,并根据补偿值确定第三控制模块的输出电流或输出电压的具体过程,与第一处理模块根据绕第一方向的转动角度确定对应的补偿值,并根据补偿值确定第二控制模块的输出电流或输出电压的具体过程相同,为了简洁,这里不再赘述。
并且,绕第二方向转动带来的抖动可以通过一个平面镜片(即,第二旋转平面镜片)绕第二方向的转动来补偿,也可以通过包括第二旋转平面镜片在内的一组平行的旋转平面镜片绕第二方向的转动来补偿。在通过一组旋转平面镜片的转动补偿时,各平面镜片绕第二方向需转动的角度可满足
Figure PCTCN2018123915-appb-000002
其中,β为由绕第二方向转动的角度对应的补偿值所确定的平面镜片的旋转角度,m(m>1,m为整数)为这一组旋转镜片中旋转的平面镜片数量,β j为该m个平面镜片中第j(j在[1,m]遍历取值)个平面镜片旋转的角度。其中,上述列举的m个平面镜片可以为这一组旋转镜片中的全部或部分镜片。
需要说明的是,第三控制模块和上文中所列举的第一控制模块、第二控制模块可以通过同一硬件执行,例如,可通过同一马达来实现与第一控制模块、第二控制模块以及第三控制模块相对应的功能,也可以通过不同的硬件执行,例如,可通过不同的马达分别实现与第一控制模块、第二控制模块以及第三控制模块相对应的功能,或者,可通过一个马达实现与第一控制模块相对应的功能,通过另一个马达实现与第二控制模块和第三控制模块 相对应的功能,本申请对此不做限定。
还应理解,图中仅为便于理解,以X轴方向为第一方向、Y轴方向为第二方向为例进行了详细说明,本申请对于第一方向和第二方向的具体方向并未做限定,该第一方向可以为与光轴方向垂直的平面的任意一个方向,第二方向可基于第一方向和光轴方向确定。例如,该第一方向可以为图中所示的Y轴方向,第二方向可以为图中所示的X轴方向。
因此,本申请实施例通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
应理解,上文中结合附图详细说明了本申请实施例提供的镜头模组,图中光路图仅为便于理解而示意,不应对本申请构成任何限定。
可选地,该第一处理模块24还用于检测镜头模组20绕第一方向转动的角度和/或绕第二方向转动的角度,并用于根据镜头模组20绕第一方向转动的角度和/或绕第二方向转动的角度,通过第一控制模块25调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组20以及旋转镜片(包括第一旋转平面镜片31或第二旋转平面镜片32)转动的过程中,原先平行于光轴入射的信号光由于旋转镜片的转动而变得与光轴不平行,信号光因旋转镜片的转动而发生了弯折,信号光的有效光程发生变化,这可能会导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,而偏离了图像芯片23所在的位置,从而导致在图像芯片23上接收到的光学图像清晰度不高。此时若单纯地转动旋转镜片组来实现光学防抖,可能并不能使得所生成的图像质量达到最佳。但若配合镜头模组20所发生的抖动适应性地调整液态镜片22的厚度,也就是通过改变有效光程来调整像距,使最佳成像面仍保持在图像芯片23的位置,则有利于使得成像光束能够在图像芯片23上生成清晰的图像。
在该镜头模组20中,第一处理模块24可与配置有陀螺仪的成像镜头21连接,第一处理模块24可根据陀螺仪检测到的该镜头模组20绕第一方向和/或第二方向的转动角度确定液态镜片22相对于镜头模组20转动前需要调整的值。这里,为便于区分,可将用于光学防抖阶段所调整的液态镜片22厚度的改变量记作第二相对位移。具体地,该第一处理模块24可以将该镜头模组20绕第一方向和/或第二方向的转动角度发送到光学防抖算法库,光学防抖算法库可根据镜头模组20绕第一方向和/或第二方向的转动角度、该成像镜头21的焦距以及该镜头模组20中的各平面镜片(例如包括第一平面镜片221、第二平面镜片222以及第一旋转平面镜片31和第二旋转平面镜片32的一个或多个平面镜片)的厚度计算该液态镜片22中的第一平面镜片和第二平面镜片之间的距离需调整的值。
以图6中示出的光学图像为例,当镜头模组20绕第一方向上转动造成了抖动,即图像在第二方向上发生偏移,此时除了控制第二旋转平面镜片绕第一方向旋转来补偿该抖动之外,还可以调节液态镜片的厚度,例如使第一平面镜片与第二平面镜片间的相对距离减小,以减小信号光在成像镜头至图像芯片之间的有效光程,从而使成像光束正好能够在图 像芯片上生成清晰的图像。其中,液态镜片所调整的第二相对位移值可通过上述光学防抖算法来确定。在本实施例中,该第二相对位移值可以基于光的传播公式,根据镜头模组转动的角度、成像镜头的焦距以及上述列举的各平面镜片的厚度确定。
在具体实现过程中,第一控制模块可控制液态镜片中的第一平面镜片和第二平面镜片中的一个或两个移动,例如,在自动对焦阶段,该第一控制模块可控制第一平面镜片沿光轴方向移动,在光学防抖阶段,该第一控制模块可控制第二平面镜片沿光轴方向移动。但应理解,这里所列举的具体实现过程仅为一种可能的实现方式,而不应对本申请构成任何限定。
还应理解,上文中所列举的光学防抖算法的功能可以是分别在硬件上执行,例如,配置于该镜头模组中的图像处理装置,或者,配置有该镜头模组的相机或终端设备中的图像处理系统等,该光学防抖算法库的功能也可以通过驱动程序软件执行,本申请对此不做限定。还应理解,光学防抖算法可以参考现有技术,为了简洁,这里省略对该具体内容的详细说明。
可选地,第一处理模块24还可用于对图像芯片23转换得到的数字图像进行图像处理。作为示例而非限定,该图像处理可包括:去噪处理、增强处理和虚化处理。
应理解,图像处理的具体方式可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
还应理解,图像处理功能可通过用于图像处理的硬件来实现,例如,配置于镜头模组中的处理器,具体可以为配置于相机或者终端设备中的图像处理系统,或者,图像处理功能也可通过驱动程序软件来执行,本申请对此不作限定。
还应理解,在上文中结合图2和图9示出的镜头模组中,第一处理模块可以由配置于镜头模组中的处理器(例如,具体可以为配置于相机或终端设备中的图像处理系统)来实现其相应功能,也可以由配置于镜头模组中的多个处理单元来实现不同的功能。本申请对于第一处理模块的具体形态或数量并未特别限定。
以上,结合图2至图9详细说明了本申请一实施例提供的镜头模组。以下,结合图10至图12详细说明本申请另一实施例提供的镜头模组。
图10是本申请另一实施例提供的镜头模组50的示意图一。如图10所示,该镜头模组50包括:成像镜头51、透光的第一旋转平面镜片52、第一处理模块54、第二控制模块56和图像芯片58。
其中,第一旋转平面镜片52可位于成像镜头51和图像芯片58之间。即,第一旋转平面镜片52可位于该镜头模组50的机械后焦的范围内。该第一旋转平面镜片52可用于使得来自成像镜头51的成像光束透过,并将透过第一旋转平面镜片52的成像光束射至所述图像芯片。图像芯片58可用于根据透过第一旋转平面镜片51的成像光束生成数字图像。
在本申请实施例中,第一旋转平面镜片52可以环绕第一方向转动。这里,第一方向垂直于成像镜头的光轴。
应理解,第一旋转平面镜片52可以为配置于成像镜头51与图像芯片58之间的一个可环绕第一方向转动的平面镜片,也可以为配置于成像镜头51与图像芯片58之间的可环绕第一方向转动的一组相互平行的平面镜片中的任意一个。本申请对于可环绕第一方向转动的平面镜片的具体数量不做限定。
该镜头模组50的抖动可能由该镜头模组50环绕第一方向的转动造成,第一处理模块54还可用于检测该镜头模组50环绕第一方向转动的角度。第一处理模块54检测镜头模组50环绕第一方向转动的角度的具体方法在上文中已经详细说明,为了简洁,这里不再赘述。
在本申请实施例中,第二控制模块56可以第一处理模块54通信连接,第二控制模块56可与第一旋转平面镜片52通信连接。该第一处理模块54可根据检测到的镜头模组50环绕第一方向转动的角度,通过第二控制模块56调整第一旋转平面镜片51环绕第一方向转动的角度,以调整来自成像镜头的成像光束在透过第一旋转平面时偏折的角度,从而补偿镜头模组50环绕第一方向转动的角度造成的抖动。
应理解,第一处理模块54根据镜头模组50环绕第一方向转动的角度通过第二控制模块56调整第一旋转平面镜片52环绕第一方向转动以实现光学防抖的具体过程,与上文中所描述的第一处理模块24根据镜头模组20环绕第一方向转动的角度通过第二控制模块35调整第一旋转平面镜片31环绕第一方向转动以实现光学防抖的具体过程相同,上文中已经结合图5至图7对此过程做了详细说明,为了简洁,这里不再赘述。
因此,本申请实施例通过控制第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,可避免像点位置在曝光过程中可能发生的漂移,保持图像的稳定,从而达到光学防抖的效果,保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
图11是本申请另一实施例提供的镜头模组50的示意图二。如图11所示,该镜头模组50还包括:透光的第二旋转平面镜片53和第三控制模块57。
具体地,该第二旋转平面镜片53可位于成像镜头51与图像芯片58之间,用于使得透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束透过。换句话说,该第二旋转平面镜片53可位于成像镜头51与第一旋转平面镜片52之间,也可位于第一旋转平面镜片52与图像芯片58之间。当第二旋转平面镜片53位于成像镜头51与第一旋转平面镜片52之间时,射入到第二旋转平面镜片53的成像光束来自成像镜头51;当第二旋转平面镜片53位于第一旋转平面镜片52与图像芯片58之间时,射入到第二旋转平面53的成像光束是透过第一旋转平面镜片52射出的成像光束。也就是说,第二旋转平面镜片53可位于第一旋转平面镜片52的前端或后端,本申请对于第一旋转平面镜片52和第二旋转平面镜片53的前后位置关系不做特别限定。
在本申请实施例中,第二旋转平面镜片53可以环绕第二方向转动。这里,第二方向可垂直于第一方向,且第二方向可垂直于成像镜头的光轴。
应理解,第二旋转平面镜片53可以为配置于成像镜头51与图像芯片58之间的一个可环绕第二方向转动的平面镜片,也可以为配置于成像镜头51与图像芯片58之间的可环绕第二方向转动的一组相互平行的平面镜片中的任意一个。本申请对于可环绕第二方向转动的平面镜片的具体数量不做限定。
该镜头模组50的抖动可能由环绕第一方向的转动和绕第二方向的转动造成。因此,该第一处理模块54除了可用于检测镜头模组50环绕第一方向转动的角度之外,还可用于检测镜头模组50环绕第二方向转动的角度。第一处理模块54检测镜头模组50环绕第二 方向转动的角度的具体方法在上文中已经详细说明,为了简洁,这里不再赘述。
在本申请实施例中,第二控制模块56和第三控制模块57均可与第一处理模块54通信连接,第二控制模块56可与第一旋转平面镜片52通信连接,第三控制模块57可与第二旋转平面镜片53通信连接。该第一处理模块54可根据检测到的镜头模组50环绕第一方向转动的角度,通过第二控制模块56调整第一旋转平面镜片51环绕第一方向转动的角度,以调整来自成像镜头的成像光束在透过第一旋转平面时偏折的角度,从而补偿镜头模组50环绕第一方向转动的角度造成的抖动;同时,第一处理模块54可根据检测到的镜头模组50环绕第二方向转动的角度,通过第三控制模块57调整第二旋转平面镜片52环绕第二方向转动的角度,以调整来自成像镜头或透过第一旋转平面镜片的成像光束在透过第一旋转平面时偏折的角度,从而补偿镜头模组50环绕第二方向上转动的角度造成的抖动。
应理解,第一处理模块54根据镜头模组50环绕第二方向转动的角度通过第三控制模块57调整第二旋转平面镜片53环绕第二方向转动以实现光学防抖的具体过程,与上文中所描述的第一处理模块24根据镜头模组20环绕第一方向转动的角度通过第二控制模块35调整第一旋转平面镜片31环绕第一方向转动以实现光学防抖的具体过程相同,上文中已经结合图5至图7对此过程做了详细说明,为了简洁,这里不再赘述。
因此,本申请实施例通过使用第一旋转平面镜片绕第一方向转动来补偿镜头模组绕第一方向的转动,并通过第二旋转平面镜片绕第二方向转动来补偿镜头模组绕第二方向的转动,以避免像点位置在曝光过程中可能发生的不同方向上的漂移,保持图像的稳定,从而达到光学防抖的效果,进一步保证了图像的清晰度。相比于现有技术而言,不再需要推动整个成像镜头来实现光学防抖,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。
图12是本申请另一实施例提供的镜头模组50的示意图三。可选地,如图12所示,该镜头模组50还包括:液态镜片61和第一控制模块63。
其中,该液态镜片61可位于成像镜头51与图像芯片58之间,可用于将来自成像镜头21的成像光束折射或者透过第一旋转平面镜片52射出的成像光束折射,并发射至所述图像芯片58。换句话说,该液态镜片61可位于成像镜头51的后端,将来自成像镜头51的成像光束折射后射至第一旋转平面镜片52或第二旋转平面镜片53;或者,该液态镜片61也可以位于图像芯片58的前端,将透过第一旋转平面镜片52或第二旋转平面镜片53射出的成像光束折射后射至图像芯片58。在该镜头模组50包括第一旋转平面镜片52和第二旋转平面镜片53的情况下,该液态镜片61还可以位于第一旋转平面52与第二旋转平面镜片53之间,将透过第一旋转平面镜片52射出的成像光束折射后射至第二旋转平面镜片53,或者,将通过第二旋转平面镜片53射出的成像光束折射后射至第一旋转平面镜片52。本申请对于第一旋转平面镜片52、第二旋转平面镜片53和液态镜片61的前后位置关系不做特别限定,只要位于该镜头模组的机械后焦内,均应落入本申请要求保护的范围内。
在本申请实施例中,该液态镜片61可包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且第一平面镜片和第二平面镜片之间填充有透光的液态物体。第一平面镜片和第二平面镜片垂直于成像镜头的光轴,来自成像镜头的成像光束或透过第一旋转平面镜片射出的成像光束或透过第二旋转平面镜片射出的成像光束可从第一平面镜片射入液 态镜片,经液态镜片折射后的成像光束从第二平面镜片射出。其中,第一平面镜片、第二平面镜片和液态物体的折射率大于1
图像芯片58可与第一处理模块54通信连接,第一处理模块54可与第一控制模块63通信连接,第一控制模块62可与液态镜片61连接。其中,图像芯片58可根据接收到的成像光束生成数字图像,并将该数字图像发送至第一处理模块54,该第一处理模块54可根据数字图像的清晰度确定是否需要调整液态镜片的厚度,并在需要调整的情况下,通过第一控制模块62调整第一平面镜片和第二平面镜片之间的距离,从而调整图像芯片58所生成图像的清晰度。
应理解,上文中已经结合图2至图4详细说明了液态镜片以及通过液态镜片实现自动对焦的具体方法。在本申请实施例中,液态镜片实现自动对焦的具体方法与上文中描述的具体方法相同,为了简洁,这里省略对该具体方法的详细说明。
因此,本申请实施例通过调节液态镜片中液态物体的厚度使得镜头模组能够针对与成像镜头不同距离的拍摄物调整液态镜片的厚度,以使得在成像镜头与图像芯片间物理距离一定的情况下,信号光的有效光程可随液态镜片的厚度发生变化,以匹配与不同物距对应的像距,从而得到清晰的图像,达到自动对焦的效果。相比于现有技术而言,不再需要推动整个成像镜头来实现自动对焦,因此,不受结构复杂或重量较重的成像镜头的限制,可以更为广泛地应用于终端设备所配置的相机中。并且,由于本申请所提供的液态镜片采用的是平直镜片,对镜头的光圈大小不会造成影响,可以适用于任意光学口径的镜头模组。
还应理解,上文中所列举的第一处理模块、第二处理模块和第三处理模块可以为同一处理模块,例如,可以配置于镜头模组中的处理器来实现其相应功能,也可以为相互独立的模块,本申请对此不做限定;第一控制模块、第二控制模块以及第三控制模块可以为同一控制模块,例如,可由配置于镜头模组中的驱动马达来实现其相应功能。本申请对于各模块的具体形态或数量并未特别限定。
可选地,该第一处理模块54还用于检测镜头模组50绕第一方向转动的角度和/或绕第二方向转动的角度,并用于根据镜头模组50绕第一方向转动的角度和/或绕第二方向转动的角度,通过第一控制模块63调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
由于在镜头模组20以及旋转镜片(包括第一旋转平面镜片31或第二旋转平面镜片32)转动的过程中,原先平行于光轴入射的信号光由于旋转镜片的转动而变得与光轴不平行,信号光因旋转镜片的转动而发生了弯折,信号光的有效光程发生变化,这可能会导致像距发生变化,由此可能会造成最佳成像面发生小幅度的漂移,而偏离了图像芯片23所在的位置,从而导致在图像芯片23上接收到的光学图像清晰度不高。此时若单纯地转动旋转镜片组来实现光学防抖,可能并不能使得所生成的图像质量达到最佳。但若配合镜头模组20所发生的抖动适应性地调整液态镜片22的厚度,也就是通过改变有效光程来调整像距,使最佳成像面仍保持在图像芯片23的位置,则有利于使得成像光束能够在图像芯片23上生成清晰的图像。
应理解,上文中已经详细说明了光学防抖过程中调整液态镜片的厚度以提高图像质量的具体方法。在本实施例中,调整液态镜片的厚度的具体方法可与上文中描述的具体方法相同,为了简洁,这里省略对该具体方法的详细说明。
可选地,第一处理模块54还可用于对图像芯片58转换得到的数字图像进行图像处理。作为示例而非限定,该图像处理可包括:去噪处理、增强处理和虚化处理。
应理解,图像处理的具体方式可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
还应理解,图像处理功能可通过用于图像处理的硬件来实现,例如,配置于镜头模组中的处理器,具体可以为配置于相机或者终端设备中的图像处理系统,或者,图像处理功能也可通过驱动程序软件来执行,本申请对此不作限定。
还应理解,上述列举的第一控制模块、第二控制模块和第三控制模块可以通过同一硬件执行,例如,可通过同一马达来实现与第一控制模块、第二控制模块和第三控制模块相对应的功能,也可以通过不同的硬件执行,例如,可通过不同的马达分别实现与第一控制模块、第二控制模块以及第三控制模块相对应的功能,或者,可通过一个马达实现与第一控制模块相对应的功能,通过另一个马达实现与第二控制模块和第三控制模块相对应的功能,本申请对此不做限定。
还应理解,上文中结合图2至图12详细说明了本申请实施例提供的镜头模组,图中仅为便于理解,示意性地示出了各组件(例如包括液态镜片、第一旋转平面镜片以及第二旋转平面镜片)在成像镜头与图像芯片中的相对位置,但这不应对本申请构成任何限定,本申请对于液态镜片和第一旋转平面镜片的前后位置关系以及液态镜片和第一旋转平面镜片、第二旋转平面镜片的前后位置关系并不限定。
以上,结合图10至图12详细说明了本申请另一实施例提供的镜头模组。
本申请还提供了一种终端设备,该终端设备中配置有上文中所描述的镜头模组。
可选地,该终端设备中配置有陀螺仪,上述可用于检测成像镜头的转动角度和方向,以便上述第二处理模块和第三处理模块根据检测到的转动角度确定第一旋转角度和第二旋转角度。
可选地,该终端设备配置有图像处理系统,该图像处理系统包括图像处理器和图像芯片。其中,该图像处理器可用于实现上述第一处理模块的功能。
本申请还提供了一种镜头模组的控制方法。下面将结合附图详细说明本申请实施例提供的镜头模组的控制方法。
图13是本申请一实施例提供的镜头模组的控制方法1000的示意性流程图。该方法1000可应用于上文所述的镜头模组20中。该镜头模组20包括:成像镜头、液态镜片、图像芯片、第一处理模块和第一控制模块,其中,液态镜片位于成像镜头和图像芯片之间,用于将来自成像镜头的成像光束折射,并将折射后的成像光束射至图像芯片。该液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且第一平面镜片和第二平面镜片之间填充有透光的液态物体,第一平面镜片和第二平面镜片垂直于该成像镜头的光轴,来自该成像镜头的成像光束从该第一平面镜片射入该液态镜片,经该液态镜片折射后的成像光束从该第二平面镜片射出,该第一平面镜片、该第二平面镜片和该液态物体的折射率大于1。
如图13所示,该控制方法1000可包括:
步骤1100,图像芯片根据经液态镜片折射后的成像光束生成数字图像;
步骤1200,第一处理模块根据数字图像的清晰度,通过第一控制模块调整第一平面 镜片和第二平面镜片之间的距离,从而调整图像芯片所生成图像的清晰度。
可选地,该镜头模组还包括:透光的第一旋转平面镜片和第二控制模块,其中,第一旋转平面镜片位于成像镜头与图像芯片之间,用于使得经液态镜片折射后的成像光束或者未经液态镜片折射的成像光束透过。
该方法1000还包括:
第一处理模块检测镜头模组环绕第一方向上转动的角度;
该第一处理模块根据镜头模组环绕第一方向上转动的角度,通过第二控制模块调整第一旋转平面镜片环绕第一方向转动的角度,以调整经液态镜片折射后的成像光束或者未经液态镜片折射后的成像光束在透过第一旋转平面镜片时偏折的角度,从而补偿镜头模组环绕第一方向上转动的角度造成的抖动,第一方向垂直于成像镜头的光轴。
可选地,该镜头模组还包括:第二旋转平面镜片和第三控制模块,其中,第二旋转平面镜片位于成像镜头与图像芯片之间,用于使得经液态镜片折射后的成像光束或者未经液态镜片折射的成像光束透过;
该方法1000还包括:
该第一处理模块检测镜头模组环绕第二方向上转动的角度;
该第一处理模块根据环绕第二方向上转动的角度,通过第三控制模块调整第二旋转平面镜片环绕第二方向转动的角度,以调整经液态镜片折射后的成像光束或者未经液态镜片折射后的成像光束在透过第二旋转平面镜片时偏折的角度,从而补偿镜头模组环绕第二方向上转动的角度造成的抖动,第二方向垂直于成像镜头的光轴,且第二方向垂直于第一方向。
可选地,该方法1000还包括:
该第一处理模块检测镜头模组绕第一方向转动的角度和/或绕第二方向转动的角度;
该第一处理模块根据镜头模组绕第一方向转动的角度和/或绕第二方向转动的角度,通过第一控制模块调整第一平面镜片和第二平面镜片之间的距离,从而调整图像芯片所生成图像的清晰度。
可选地,该方法1000还包括:
该第一处理模块对该数字图像进行图像处理,该图像处理至少包括:去噪处理、增强处理和虚化处理。
应理解,上文中已经结合附图2至9详细说明了各模块或单元的具体功能以及所执行的步骤,为了避免赘述,这里省略对各步骤的详细说明。
图14是本申请另一实施例提供的镜头模组的控制方法2000的示意性流程图。该方法2000可应用于上文所述的镜头模组50中。该镜头模组50包括:成像镜头、透光的第一旋转平面镜片、图像芯片和第二控制模块,其中,第一旋转平面镜片位于成像镜头与图像芯片之间,用于使来自成像镜头的成像光束透过,并将透过第一旋转平面镜片的成像光束射至图像芯片,并将成像光束折射后发射至图像芯片。
如图14所示,该方法2000可包括:
步骤2100,图像芯片根据透过所述第一旋转平面镜片射出的成像光束生成数字图像;
步骤2200,第一处理模块检测所述镜头模组环绕所述第一方向上转动的角度;
步骤2300,该第一处理模块根据所述镜头模组环绕所述第一方向上转动的角度,通 过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,以调整来自所述成像镜头的成像光束在透过所述第一旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第一方向垂直于所述成像镜头的光轴。
可选地,该镜头模组还包括:透光的第二旋转平面镜片和第三控制模块,其中,第二旋转平面镜片位于成像镜头与图像芯片之间,用于使得透过第一旋转平面镜片射出的成像光束或来自成像镜头的成像光束透过。
该方法2000还包括:
第一处理模块检测镜头模组环绕第二方向上转动的角度;
该第一处理模块根据镜头模组环绕第二方向上转动的角度,通过第三控制模块调整第二旋转平面镜片环绕第二方向转动的角度,以调整透过第一旋转平面镜片射出的成像光束或来自成像镜头的成像光束在透过第二旋转平面镜片时偏折的角度,从而补偿镜头模组环绕第二方向上转动的角度造成的抖动,第二方向垂直于第一方向,且第二方向垂直于成像镜头的光轴。
可选地,该镜头模组还包括:液态镜片和第一控制模块,其中,液态镜片位于成像镜头与图像芯片之间,用于将来自成像镜头的成像光束折射或者透过第一旋转平面镜片射出的成像光束折射,并发射至图像芯片,液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且第一平面镜片和第二平面镜片之间填充有透光的液态物体,第一平面镜片和第二平面镜片垂直于成像镜头的光轴,来自成像镜头的成像光束或透过第一旋转平面镜片射出的成像光束从第一平面镜片射入液态镜片,经液态镜片折射后的成像光束从第二平面镜片射出,第一平面镜片、第二平面镜片和液态物体的折射率大于1。
该方法2000还包括:
该第一处理模块根据数字图像的清晰度,通过第一控制模块调整第一平面镜片和第二平面镜片之间的距离,从而调整图像芯片所生成图像的清晰度。可选地,该方法2000还包括:该第一处理模块检测镜头模组绕第一方向转动的角度和/或绕第二方向转动的角度;
该第一处理模块根据镜头模组绕第一方向转动的角度和/或绕第二方向转动的角度,通过第一控制模块调整第一平面镜片和第二平面镜片之间的距离,从而调整图像芯片所生成图像的清晰度。
可选地,该方法2000还包括:
该第一处理模块对该数字图像进行图像处理,该图像处理至少包括:去噪处理、增强处理和虚化处理。
应理解,上文中已经结合附图10至12详细说明了该镜头模组中各模块或单元的具体功能以及所执行的步骤,为了避免赘述,这里省略对方法2000中各步骤的详细说明。
还应理解,在本申请所示出的实施例以及附图中,仅为便于理解,以竖直方向为第一方向、水平方向为第二方向为例进行了说明,但这不应对本申请构成任何限定。本申请对于第一方向和第二方向分别对应的具体方向并未特别限定,只要第一方向与第二方向垂直,且第一方向与第二方向构成的平面与光轴垂直,均应落入本申请要求保护的范围内。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过 程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种镜头模组,其特征在于,所述镜头模组包括成像镜头、第一控制模块、第一处理模块、液态镜片和图像芯片,其中,
    所述液态镜片,位于所述成像镜头与所述图像芯片之间,所述液态镜片用于将来自所述成像镜头的成像光束折射,并将折射后的成像光束射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
    所述第一控制模块,用于调整所述第一平面镜片和所述第二平面镜片之间的距离;
    所述图像芯片,用于根据经所述液态镜片折射后的成像光束生成数字图像;
    所述第一处理模块,用于根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
  2. 根据权利要求1所述的镜头模组,其特征在于,所述镜头模组还包括:
    透光的第一旋转平面镜片,位于所述成像镜头和所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束透过;
    第二控制模块,用于调整所述第一旋转平面镜片环绕第一方向转动的角度,从而调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束在透过所述第一旋转平面镜片时偏折的角度,所述第一方向垂直于所述成像镜头的光轴;
    所述第一处理模块,还用于检测所述镜头模组环绕所述第一方向上转动的角度,根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动。
  3. 根据权利要求2所述的镜头模组,其特征在于,所述镜头模组还包括:
    透光的第二旋转平面镜片,位于所述成像镜头和所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束透过;
    第三控制模块,用于调整所述第二旋转平面镜片环绕第二方向转动的角度,从而调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第二旋转平面镜片时偏折的角度,所述第二方向垂直于所述成像镜头的光轴,且所述第二方向垂直于所述第一方向;
    所述第一处理模块,还用于检测所述镜头模组环绕所述第二方向上转动的角度,根据所述环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动。
  4. 一种镜头模组,其特征在于,包括:成像镜头、透光的第一旋转平面镜片、图像 芯片、第一处理模块和第二控制模块,其中,
    所述第一旋转平面镜片,位于所述成像镜头与所述图像芯片之间,用于使得来自所述成像镜头的成像光束透过,并将透过所述第一旋转平面镜片的成像光束射至所述图像芯片;
    所述图像芯片,用于根据透过所述第一旋转平面镜片射出的成像光束生成数字图像;
    所述第二控制模块,用于调整所述第一旋转平面镜片环绕第一方向转动的角度,从而调整来自所述成像镜头的成像光束在透过所述第一旋转平面镜片时偏折的角度,所述第一方向垂直于所述成像镜头的光轴;
    所述第一处理模块,用于检测所述镜头模组环绕所述第一方向上转动的角度,根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动。
  5. 根据权利要求4所述的镜头模组,其特征在于,所述镜头模组还包括:
    透光的第二旋转平面镜片,位于所述成像镜头与所述图像芯片之间,用于使得透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束透过;
    第三控制模块,用于调整所述第二旋转平面镜片环绕第二方向转动的角度,从而调整透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束在透过所述第二旋转平面镜片时偏折的角度,所述第二方向垂直于所述第一方向,且所述第二方向垂直于所述成像镜头的光轴;
    所述第一处理模块,还用于检测所述镜头模组环绕所述第二方向上转动的角度,根据所述环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动。
  6. 根据权利要求4或5所述的镜头模组,其特征在于,所述镜头模组还包括:
    液态镜片,位于所述成像镜头和所述图像芯片之间,用于将来自所述成像镜头的成像光束折射或者透过所述第一旋转平面镜片射出的成像光束折射,并发射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束或透过所述第一旋转平面镜片射出的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
    所述第一控制模块,用于调整所述第一平面镜片和所述第二平面镜片之间的距离;
    所述第一处理模块,还用于根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
  7. 一种终端设备,其特征在于,包括如权利要求1至6中任一项所述的镜头模组。
  8. 一种镜头模组的控制方法,其特征在于,应用于镜头模组中,所述镜头模组包括:成像镜头、液态镜片、图像芯片、第一处理模块和第一控制模块,其中,所述液态镜片位 于所述成像镜头和所述图像芯片之间,用于将来自所述成像镜头的成像光束折射,并将折射后的成像光束射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
    所述方法包括:
    所述图像芯片根据经所述液态镜片折射后的成像光束生成数字图像;
    所述第一处理模块根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
  9. 根据权利要求8所述的方法,其特征在于,所述镜头模组还包括:透光的第一旋转平面镜片和第二控制模块,其中,所述第一旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束透过;
    所述方法还包括:
    所述第一处理模块检测所述镜头模组环绕所述第一方向上转动的角度;
    所述第一处理模块根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,以调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第一旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第一方向垂直于所述成像镜头的光轴。
  10. 根据权利要求9所述的方法,其特征在于,所述镜头模组还包括:第二旋转平面镜片和第三控制模块,其中,所述第二旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得经所述液态镜片折射后的成像光束或者未经所述液态镜片折射的成像光束透过;
    所述方法还包括:
    所述第一处理模块检测所述镜头模组环绕所述第二方向上转动的角度;
    所述第一处理模块根据所述环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,以调整经所述液态镜片折射后的成像光束或者未经所述液态镜片折射后的成像光束在透过所述第二旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动,所述第二方向垂直于所述成像镜头的光轴,且所述第二方向垂直于所述第一方向。
  11. 一种镜头模组的控制方法,其特征在于,应用于镜头模组中,所述镜头模组包括:成像镜头、透光的第一旋转平面镜片、图像芯片和第二控制模块,其中,所述第一旋转平面镜片位于所述成像镜头与图像芯片之间,用于使来自所述成像镜头的成像光束透过,并将透过所述第一旋转平面镜片的成像光束射至所述图像芯片,并将所述成像光束折射后发射至所述图像芯片;
    所述方法包括:
    所述图像芯片根据透过所述第一旋转平面镜片射出的成像光束生成数字图像;
    所述第一处理模块检测所述镜头模组环绕所述第一方向上转动的角度;
    所述第一处理模块根据所述镜头模组环绕所述第一方向上转动的角度,通过所述第二控制模块调整所述第一旋转平面镜片环绕所述第一方向转动的角度,以调整来自所述成像镜头的成像光束在透过所述第一旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第一方向上转动的角度造成的抖动,所述第一方向垂直于所述成像镜头的光轴。
  12. 根据权利要求11所述的方法,其特征在于,所述镜头模组还包括:透光的第二旋转平面镜片和第三控制模块,其中,所述第二旋转平面镜片位于所述成像镜头与所述图像芯片之间,用于使得透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束透过;
    所述方法还包括:
    所述第一处理模块检测所述镜头模组环绕所述第二方向上转动的角度;
    所述第一处理模块根据所述镜头模组环绕所述第二方向上转动的角度,通过所述第三控制模块调整所述第二旋转平面镜片环绕所述第二方向转动的角度,以调整透过所述第一旋转平面镜片射出的成像光束或来自所述成像镜头的成像光束在透过所述第二旋转平面镜片时偏折的角度,从而补偿所述镜头模组环绕所述第二方向上转动的角度造成的抖动,所述第二方向垂直于所述第一方向,且所述第二方向垂直于所述成像镜头的光轴。
  13. 根据权利要求11或12所述的方法,其特征在于,所述镜头模组还包括:液态镜片和第一控制模块,其中,所述液态镜片位于所述成像镜头与所述图像芯片之间,用于将来自所述成像镜头的成像光束折射或者透过所述第一旋转平面镜片射出的成像光束折射,并发射至所述图像芯片,所述液态镜片包括相互平行的透光的第一平面镜片和透光的第二平面镜片,且所述第一平面镜片和所述第二平面镜片之间填充有透光的液态物体,所述第一平面镜片和所述第二平面镜片垂直于所述成像镜头的光轴,来自所述成像镜头的成像光束或透过所述第一旋转平面镜片射出的成像光束从所述第一平面镜片射入所述液态镜片,经所述液态镜片折射后的成像光束从所述第二平面镜片射出,所述第一平面镜片、所述第二平面镜片和所述液态物体的折射率大于1;
    所述方法还包括:
    所述第一处理模块根据所述数字图像的清晰度,通过所述第一控制模块调整所述第一平面镜片和所述第二平面镜片之间的距离,从而调整所述图像芯片所生成图像的清晰度。
  14. 一种镜头模组,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述镜头模组执行如权利要求8至13中任一项所述的方法。
PCT/CN2018/123915 2017-12-27 2018-12-26 一种镜头模组和镜头模组的控制方法 WO2019129061A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/912,063 US11340421B2 (en) 2017-12-27 2020-06-25 Lens module and lens module control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711439999.XA CN109975898A (zh) 2017-12-27 2017-12-27 一种镜头模组和镜头模组的控制方法
CN201711439999.X 2017-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/912,063 Continuation US11340421B2 (en) 2017-12-27 2020-06-25 Lens module and lens module control method

Publications (1)

Publication Number Publication Date
WO2019129061A1 true WO2019129061A1 (zh) 2019-07-04

Family

ID=67066618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123915 WO2019129061A1 (zh) 2017-12-27 2018-12-26 一种镜头模组和镜头模组的控制方法

Country Status (3)

Country Link
US (1) US11340421B2 (zh)
CN (1) CN109975898A (zh)
WO (1) WO2019129061A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290320B (zh) * 2019-06-27 2021-01-22 Oppo广东移动通信有限公司 视频预览图生成方法和装置、电子设备、计算机可读存储介质
CN110661955B (zh) * 2019-10-14 2021-04-23 Oppo广东移动通信有限公司 摄像头模组的控制方法
CN113128270B (zh) * 2019-12-30 2024-02-20 杭州海康威视数字技术股份有限公司 虹膜识别装置、方法和设备
CN114554074A (zh) * 2020-11-25 2022-05-27 宁波舜宇光电信息有限公司 用于光学致动器的驱动结构及相应的摄像模组
JP2022095433A (ja) * 2020-12-16 2022-06-28 キヤノン株式会社 光学機器および生成方法
US20220311918A1 (en) * 2021-03-26 2022-09-29 Optotune Consumer Ag Imaging optical system
CN115484358A (zh) * 2021-05-31 2022-12-16 北京小米移动软件有限公司 致动器、摄像头模组和电子设备
CN115473984A (zh) * 2021-06-11 2022-12-13 宁波舜宇光电信息有限公司 补偿式滤光组件和摄像模组
CN117119303A (zh) * 2023-04-07 2023-11-24 荣耀终端有限公司 一种摄像头模组的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201965249U (zh) * 2011-03-25 2011-09-07 杜锡军 一种可调式透镜
CN102792192A (zh) * 2010-02-03 2012-11-21 通快激光与系统工程有限公司 自适应透镜
CN106413523A (zh) * 2014-01-20 2017-02-15 埃西勒国际通用光学公司 视觉补偿系统和双目型验光装置
CN107241545A (zh) * 2016-03-29 2017-10-10 齐发光电股份有限公司 对焦方法及对焦装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223413A (ja) * 1988-03-02 1989-09-06 Canon Inc 像安定化光学系
JPH0210309A (ja) * 1988-06-29 1990-01-16 Canon Inc 偏向光学系
JPH06121221A (ja) * 1992-10-09 1994-04-28 Mitsubishi Electric Corp 撮像装置
JP3247213B2 (ja) * 1993-07-22 2002-01-15 キヤノン株式会社 可変頂角プリズムの組立て方法
JPH0795464A (ja) * 1993-09-22 1995-04-07 Canon Inc 防振装置付カメラ
CN1318766A (zh) * 2001-06-15 2001-10-24 清华大学 二维激光光束指向器
CN100555055C (zh) * 2004-12-24 2009-10-28 鸿富锦精密工业(深圳)有限公司 自动对焦装置
US7627236B2 (en) * 2006-02-22 2009-12-01 Nokia Corporation Hydraulic optical focusing-stabilizer
EP2493366A4 (en) * 2009-10-30 2013-07-03 Carestream Health Inc INTRAORAL CAMERA WITH LIQUID LENS
CN102591008B (zh) * 2012-02-14 2014-05-14 无锡微奥科技有限公司 一种电热式微镜的开环控制系统及其控制方法
CN104967263B (zh) * 2015-05-26 2016-11-16 深圳市欧亚自动化机械有限公司 一种摆动电机线圈绕制装置及绕制线圈的方法
CN206714881U (zh) * 2017-06-08 2017-12-08 北京三盟恒业光电科技有限公司 一种医用显微治疗系统
JP7260538B2 (ja) * 2017-10-26 2023-04-18 マジック リープ, インコーポレイテッド 拡張現実ディスプレイのための広帯域適応レンズアセンブリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792192A (zh) * 2010-02-03 2012-11-21 通快激光与系统工程有限公司 自适应透镜
CN201965249U (zh) * 2011-03-25 2011-09-07 杜锡军 一种可调式透镜
CN106413523A (zh) * 2014-01-20 2017-02-15 埃西勒国际通用光学公司 视觉补偿系统和双目型验光装置
CN107241545A (zh) * 2016-03-29 2017-10-10 齐发光电股份有限公司 对焦方法及对焦装置

Also Published As

Publication number Publication date
CN109975898A (zh) 2019-07-05
US20200326499A1 (en) 2020-10-15
US11340421B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2019129061A1 (zh) 一种镜头模组和镜头模组的控制方法
CN111147741B (zh) 基于对焦处理的防抖方法和装置、电子设备、存储介质
KR102306283B1 (ko) 이미지 처리 방법 및 장치
CN111901503B (zh) 一种摄像模组、终端设备、成像方法及成像装置
WO2017120771A1 (zh) 一种深度信息获取方法、装置及图像采集设备
KR101880635B1 (ko) 촬상장치 및 촬상방법
CN109951638B (zh) 摄像头防抖系统、方法、电子设备和计算机可读存储介质
CN110462507B (zh) 抖动校正装置、可换镜头及摄像装置
US8427570B2 (en) Focus position control apparatus and camera
US11682107B2 (en) Depth of field adjustment in images based on time of flight depth maps
US11796893B2 (en) Compact camera module and terminal device
WO2018191070A2 (en) Optical flow and sensor input based background subtraction in video content
WO2021017683A1 (zh) 一种光学防抖装置及控制方法
CN112866553B (zh) 对焦方法和装置、电子设备、计算机可读存储介质
US11037277B2 (en) Image processing apparatus, imaging apparatus, lens apparatus, and image processing method
WO2018076529A1 (zh) 场景深度计算方法、装置及终端
CN107534722B (zh) 一种终端设备和拍照的方法
US11743585B2 (en) Electronic apparatus including camera and control method thereof
KR20200014204A (ko) 제어장치, 촬상장치, 및 기억매체
US20150294442A1 (en) Camera system and imaging method
WO2021093528A1 (zh) 对焦方法和装置、电子设备、计算机可读存储介质
KR20100085728A (ko) 촬영장치 및 이를 이용한 초점 검출 방법
JP2008028591A (ja) 撮像装置における画像処理方法と撮像装置
JP2020095071A (ja) 交換レンズおよび撮像装置
JP2020095070A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896518

Country of ref document: EP

Kind code of ref document: A1