WO2019128961A1 - 用于手术导航的配准系统及方法 - Google Patents

用于手术导航的配准系统及方法 Download PDF

Info

Publication number
WO2019128961A1
WO2019128961A1 PCT/CN2018/123369 CN2018123369W WO2019128961A1 WO 2019128961 A1 WO2019128961 A1 WO 2019128961A1 CN 2018123369 W CN2018123369 W CN 2018123369W WO 2019128961 A1 WO2019128961 A1 WO 2019128961A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
points
plane
fixed point
coordinate system
Prior art date
Application number
PCT/CN2018/123369
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
刘洋
上海霖晏医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘洋, 上海霖晏医疗科技有限公司 filed Critical 刘洋
Publication of WO2019128961A1 publication Critical patent/WO2019128961A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points

Definitions

  • the present invention claims the priority of the Chinese Patent Application entitled “Registration System and Method for Surgical Navigation” filed on Dec. 26, 2017, filed on Dec. 26, 2017, the entire contents of In the present invention.
  • the present invention relates to the field of medical device technologies, and in particular, to a registration system and method for surgical navigation.
  • the traditional method of determining the surgical site is that the doctor inserts the probe at the possible surgical site according to his own judgment, and then takes an X-ray film on the part where the probe is inserted, and then observes the position of the probe insertion and the actual operation according to the X-ray film.
  • the positional relationship of the parts is gradually determined by inserting the probe and performing fluoroscopy.
  • this positioning method not only causes the patient to have other wounds other than the surgical site, but also requires the patient to take X-rays many times, which may cause damage to the patient and the doctor's body.
  • the technical problem to be solved by the present invention is to overcome the defects in the prior art that the patient's body is damaged when the surgical site is determined and the registration accuracy is not high, and a registration system and method for surgical navigation is provided.
  • the invention provides a registration system for surgical navigation, comprising: a processor, a fixed positioning device and a mobile positioning device;
  • the fixed positioning device is configured to be fixed on the surgical object and acquire position information of the fixed point, and send the position information of the fixed point to the processor;
  • the processor is configured to select three feature points in the three-dimensional simulated image of the surgical object and collect position information of the three feature points;
  • the mobile positioning device is configured to select three positioning points corresponding to the three feature points on the surgical object, acquire position information of the three positioning points, and send position information of the three positioning points to The processor;
  • the processor is further configured to place the three-dimensional simulation image and the three positioning points in the same coordinate system, and calculate a first plane where the three feature points are located and a second plane where the three positioning points are located Planing, calculating a first normal of the first plane and a second normal of the second plane, moving the second normal such that the second normal coincides with the first normal,
  • the second plane is rotated with the second normal as a central axis such that the three positioning points in the second plane are fitted with the three feature points in the first plane, and recorded a moving angle of the second normal line and a rotation angle of the second plane centered on the second normal line, and placing the fixed point in the coordinate system and causing the fixed point along Moving the path and rotating the rotation angle with the second normal as a central axis to obtain a virtual mapping point of the fixed point in the three-dimensional simulation image, the virtual mapping point and the three-dimensional
  • the relative position of the simulated image is relative to the relative position of the fixed point and the surgical object .
  • the processor is further configured to:
  • the first coordinate system is configured to display a relative relationship between the fixed point and the three positioning points in a real environment
  • the second coordinate system is configured to display a relative relationship between the three-dimensional simulated image and the three feature points in a virtual environment
  • the optimal situation of fitting the three positioning points in the second plane to the three feature points in the first plane is: the three in the second plane
  • the sum of the distances between the anchor point and the corresponding feature point in the first plane takes a minimum value.
  • the fixed positioning device comprises: a positioning bracket and a first optical dynamic tracking device, wherein the positioning bracket is provided with a positioning ball that can be tracked by the first optical dynamic tracking device in real time;
  • the positioning bracket is configured to be fixed on the surgical object
  • the first optical dynamic tracking device is configured to position a fixed point of the positioning bracket by a positioning ball, and send location information of the fixed point to the processor through a communication connection.
  • the mobile positioning device comprises: a probe and a second optical dynamic tracking device, wherein the probe is provided with a positioning ball that can be tracked in real time by the second optical dynamic tracking device;
  • the probe is configured to select three positioning points corresponding to the three feature points on the surgical object
  • the second optical dynamic tracking device is configured to locate the three positioning points by using a positioning ball, and send location information of the three positioning points to the processor through a communication connection.
  • the present invention also provides a registration method for surgical navigation, implemented using a registration system as described above, the registration method comprising:
  • the processor selects three feature points in the three-dimensional simulation image of the surgical object and collects position information of the three feature points;
  • the mobile positioning device selects three positioning points corresponding to the three feature points on the surgical object, acquires position information of the three positioning points, and sends position information of the three positioning points to the processor. ;
  • the processor places the three-dimensional simulation image and the three positioning points in the same coordinate system, calculates a first plane where the three feature points are located, and a second plane where the three positioning points are located, and calculates a first normal line of the first plane and a second normal line of the second plane, moving the second normal line such that the second normal line coincides with the first normal line,
  • the two planes are rotated about the second normal axis such that the three positioning points in the second plane are fitted with the three feature points in the first plane, and the first a moving path of the two normals and a rotation angle of the second plane centered on the second normal line, and placing the fixed point in the coordinate system and causing the fixed point along the Moving the path and rotating the rotation angle with the second normal as a central axis to obtain a virtual mapping point of the fixed point in the three-dimensional simulated image, the virtual mapping point and the three-dimensional simulated image
  • the relative position is the same as the relative position of the fixed point and the surgical object.
  • the processor places the three-dimensional simulation image and the three positioning points in the same coordinate system, including:
  • the first coordinate system is configured to display a relative relationship between the fixed point and the three positioning points in a real environment
  • the second coordinate system is configured to display a relative relationship between the three-dimensional simulated image, the preset area, and the three feature points in a virtual environment;
  • Placing the fixed point in the coordinate system includes converting the fixed point to the second coordinate system according to the coordinate conversion relationship.
  • the optimal situation of fitting the three positioning points in the second plane to the three feature points in the first plane is: the three in the second plane
  • the sum of the distances between the anchor point and the corresponding feature point in the first plane takes a minimum value.
  • the fixed positioning device comprises: a positioning bracket and a first optical dynamic tracking device, wherein the positioning bracket is provided with a positioning ball that can be tracked by the first optical dynamic tracking device in real time;
  • Fixing the positioning device on the surgical object and acquiring position information of the fixed point, and transmitting the position information of the fixed point to the processor including:
  • the positioning bracket is fixed on the surgical object
  • the first optical dynamic tracking device positions a fixed point of the positioning bracket by a positioning ball, and transmits location information of the fixed point to the processor through a communication connection.
  • the mobile positioning device comprises: a probe and a second optical dynamic tracking device, wherein the probe is provided with a positioning ball that can be tracked in real time by the second optical dynamic tracking device:
  • the mobile positioning device acquires the location information of the three positioning points in the designated area of the surgical object and sends the location information of the three positioning points to the processor, including:
  • the probe acquires three positioning points in the designated area
  • the second optical dynamic tracking device locates the three positioning points by positioning a ball, and sends location information of the three positioning points to the processor through a communication connection.
  • the registration system and method of the present invention acquires a three-dimensional simulated image of a surgical object by using a scanning device, and maps the fixed point to the three-dimensional simulated image by using a fitting relationship between the positioning point and the feature point, thereby Realizing the registration of the surgical object and the 3D simulated image, providing the doctor with an intuitive surgical navigation image, improving the surgical accuracy and safety of the operation, shortening the operation time, greatly reducing the operation difficulty of the operation, and reducing the height of the doctor's experience.
  • Dependence and, it is worth mentioning that during surgery, there is no need to take X-rays to maximize the protection of doctors and patients.
  • FIG. 1 is a system block diagram of a registration system for surgical navigation according to Embodiment 1 of the present invention
  • FIG. 2 is a flow chart of a registration method for surgical navigation according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flow chart of a registration method for surgical navigation according to Embodiment 2 of the present invention.
  • a registration system for surgical navigation includes a processor 101, a fixed positioning device 102, and a mobile positioning device 103.
  • the fixed positioning device 102 and the mobile positioning device 103 are respectively connected to the processor 101 in communication.
  • the communication connection may be a wired communication connection or a wireless communication connection.
  • the wired communication connection usually connects the devices through a wired manner such as a data line and transmits data in a bidirectional or unidirectional manner.
  • the wireless communication connection is usually connected by wireless means such as Wi-Fi, 4G mobile communication network, Bluetooth, etc. Transfer data in both directions or unidirectionally.
  • the fixed positioning device 102 is configured to be fixed on the surgical object and acquire position information of the fixed point, and send the position information of the fixed point to the processor 101.
  • the surgical object may be a whole body of the patient or a partial body of the patient, and the specific condition needs to be determined according to the actual type of the operation.
  • the surgical object is a bone (such as a skull or a spine) of the patient; the fixed positioning device
  • the fixed site of the 102 is usually determined by the doctor according to the surgical needs, such as the site that needs to be operated or close to the site that requires surgery.
  • the fixed positioning device 102 specifically includes: a positioning bracket and a first optical dynamic tracking device.
  • the positioning bracket is provided with a positioning ball that can be tracked in real time by the first optical dynamic tracking device.
  • the doctor can fix the positioning bracket to the surgical object (to ensure that both the surgical object and the positioning bracket are located within an effective tracking range of the first optical dynamic tracking device),
  • the first optical dynamic tracking device positions the fixed point of the positioning bracket by the positioning ball, and transmits the position information of the fixed point to the processor 101 through a communication connection.
  • the processor 101 is configured to select three feature points in the three-dimensional simulation image of the surgical object and collect position information of the three feature points.
  • the three-dimensional analog image may be pre-stored in the processor, and may be scanned by the scanning device, such as a CT (Computed Tomography) device or other device having a scanning function, by scanning the surgical object;
  • the three-dimensional simulated image needs to be in proportion to the actual surgical object, and the doctor can clearly observe the specific shape of the surgical object through the three-dimensional simulated image, such as bones, muscles, important blood vessels, etc.; It is up to the doctor to decide, of course, in special cases (such as some specific programs in the processor 101), the processor 101 may also determine the range of the preset area.
  • the mobile positioning device 103 is configured to select three positioning points corresponding to the three feature points on the surgical object, acquire position information of the three positioning points, and send position information of the three positioning points. To the processor 101.
  • the mobile positioning device 103 specifically includes: a probe and a second optical dynamic tracking device.
  • the probe is provided with a positioning ball that can be tracked in real time by the second optical dynamic tracking device.
  • the doctor may click the probe on the surgical object 3 times to obtain 3 positioning points corresponding to the 3 feature points (required to ensure that both the surgical object and the probe are required
  • the order of selecting 3 positioning points should correspond to the order of selecting 3 feature points, that is, according to A-B-C when selecting feature points.
  • the positioning point should be selected according to A' corresponding to A - B' corresponding to B - C' corresponding to C, and the second optical dynamic tracking device passes the positioning The ball positions the selected positions of the probes, that is, the plurality of positioning points, and transmits the position information of the plurality of positioning points to the processor 101 through a communication connection.
  • the first optical dynamic tracking device and the second optical dynamic tracking device may be implemented by using an optical dynamic tracking device, and the optical positioning device and the probe are simultaneously tracked by the optical tracking device. Position information of the needle's positioning ball.
  • the first optical dynamic tracking device and the second optical dynamic tracking device may also adopt two unrelated ones.
  • the optical dynamic tracking device is used to track the positioning ball in this embodiment because the optical dynamic tracking device has the advantages of accurate positioning and fast tracking speed.
  • other principles of dynamic tracking device tracking may be used in the implementation of the present invention. Position the ball.
  • the processor 101 is further configured to place the three-dimensional simulation image and the three positioning points in the same coordinate system.
  • the same coordinate system may be a coordinate system in which the three-dimensional simulated image is located, or other coordinate system different from a coordinate system in which the three-dimensional simulated image is located.
  • the processor 101 is further configured to calculate a first plane where the three feature points are located and a second plane where the three anchor points are located, and calculate a first normal line and the second plane of the first plane a second normal line, the second normal line is moved such that the second normal line coincides with the first normal line, and the second plane is rotated about the second normal line to make
  • the three positioning points in the second plane are fitted with the three feature points in the first plane, and the moving path of the second normal line and the second plane are recorded by the first
  • the second normal is a rotation angle of the central axis, and the fixed point is placed in the coordinate system and the fixed point is moved along the moving path and rotated by the second normal axis Deriving a rotation angle to obtain a virtual mapping point of the fixed point in the three-dimensional simulated image, the relative position of the virtual mapping point and the three-dimensional simulated image being the same as the relative position of the fixed point and the surgical object .
  • the doctor can clearly know the location of the positioning bracket, and then determine the required surgical
  • Moving the second normal line such that the second normal line coincides with the first normal line may include moving a position of the second normal line and rotating a direction of the second normal line.
  • An optimal situation in which the three positioning points in the second plane are fitted to the three feature points in the first plane is: the three positioning points in the second plane
  • the sum of the distances of the corresponding feature points in the first plane takes a minimum value. That is, the distance between A and A' + the distance between B and B' + the distance between C and C' takes a minimum value.
  • the optical dynamic tracking device can obtain position information of a positioning ball on which a positioning bracket on which a positioning ball is mounted is fixed, and therefore, the optical dynamic tracking device indirectly obtains the operation by positioning a ball.
  • the three-dimensional simulated image of the surgical object and the simulated image of the probe have been stored in the processor, and the fitting matrix is obtained by the positioning registration system described above, so that the relative positions of the virtual mapping point and the three-dimensional simulated image are
  • the relative position of the fixed point and the surgical object is the same, that is, the relative positional relationship between the positioning bracket and the surgical object in the actual environment, and the three-dimensional simulated image of the surgical object and the positioning bracket in the virtual environment
  • the relative positional relationship of the simulated images is the same, thereby realizing the real-time registration of the surgical object with its three-dimensional simulated image.
  • the surgical object moves, it can be synchronized in the virtual environment.
  • the doctor uses the surgical instrument with the positioner for positioning, since the surgical instrument can be tracked and positioned by the optical dynamic tracking device, the relative posture of the surgical instrument and the surgical patient can be observed on the display interface.
  • the embodiment provides an intuitive surgical navigation image for the doctor in the operation navigation, improves the surgical precision and safety of the operation, shortens the operation time, greatly reduces the operation difficulty of the operation, and reduces the high dependence on the doctor experience, and It is worth mentioning that during the operation, there is no need to take X-ray film to maximize the protection and protect the health of the doctor's patients.
  • the registration method for the surgical navigation of the embodiment is implemented by using the registration system of the embodiment. As shown in FIG. 2, the registration method includes:
  • Step 201 The fixed positioning device is fixed on the surgical object and acquires position information of the fixed point, and sends the position information of the fixed point to the processor.
  • the positioning bracket is fixed on the surgical object; the first optical dynamic tracking device positions a fixed point of the positioning bracket by a positioning ball, and connects the position information of the fixed point through a communication connection. Sent to the processor.
  • Step 202 The processor selects three feature points in the three-dimensional simulation image of the surgical object and collects position information of the three feature points.
  • Step 203 The mobile positioning device selects three positioning points corresponding to the three feature points on the surgical object, acquires position information of the three positioning points, and sends the position information of the three positioning points to the Said processor. Specifically, the probe is selected on the surgical object multiple times to acquire three positioning points corresponding to the three feature points; the second optical dynamic tracking device pairs the probe by positioning a ball The selected locations are positioned by the three positioning points, and the location information of the three positioning points is sent to the processor through a communication connection.
  • Step 204 The processor places the three-dimensional simulated image and the three positioning points in the same coordinate system.
  • Step 205 The processor calculates a first plane where the three feature points are located and a second plane where the three anchor points are located.
  • Step 206 The processor calculates a first normal line of the first plane and a second normal line of the second plane.
  • the first normal line and the second normal line are normal vectors, having a direction, which can be determined by a calculation formula to select feature points as A, B, and C, and the selected positioning points are A' corresponding to A, corresponding to B' of B and C' corresponding to C are taken as an example:
  • the normal vector of the first plane ie, the first normal
  • Step 207 The processor moves the second normal line such that the second normal line coincides with the first normal line, and the second plane rotates with the second normal line as a central axis, so that The three positioning points in the second plane are fitted with the three feature points in the first plane, and the moving path of the second normal line and the second plane are recorded as described
  • the second normal is the angle of rotation of the central axis.
  • the moving the second normal line such that the second normal line coincides with the first normal line may include: moving a position of the second normal line and rotating a second normal line; the second plane
  • the optimal condition of fitting the three positioning points in the first plane to the three feature points in the first plane is: the three positioning points in the second plane and the first plane
  • the sum of the distances of the corresponding feature points takes a minimum value. That is, the distance between A and A' + the distance between B and B' + the distance between C and C' takes a minimum value.
  • Step 208 The processor places the fixed point in the coordinate system, and moves the fixed point along the moving path and rotates the rotation angle with the second normal as a central axis. Obtaining a virtual mapping point of the fixed point in the three-dimensional simulated image, and a relative position of the virtual mapping point and the three-dimensional simulated image is the same as a relative position of the fixed point and the surgical object.
  • Example 2
  • the registration system of the embodiment is substantially the same as the registration system of the first embodiment, except that in the registration system of the embodiment, the processor 101 specifically includes the three-dimensional simulation image and the The three positioning points are placed together in the coordinate system in which the three-dimensional simulated image is located.
  • the specific placement process is as follows:
  • the processor 101 first constructs a first coordinate system, where the first coordinate system is used to display a relative relationship between the fixed point and the three positioning points in a real environment;
  • the fixed point and the three positioning points are converted to the second coordinate system according to a coordinate conversion relationship between the first coordinate system and the second coordinate system.
  • the registration method of the embodiment is implemented by using the registration system of the embodiment. As shown in FIG. 3, the registration method includes:
  • Step 201 The fixed positioning device is fixed on the surgical object and acquires position information of the fixed point, and sends the position information of the fixed point to the processor.
  • Step 202 The processor selects three feature points in the three-dimensional simulation image of the surgical object and collects position information of the three feature points.
  • Step 203 The mobile positioning device selects three positioning points corresponding to the three feature points on the surgical object, acquires position information of the three positioning points, and sends the position information of the three positioning points to the Said processor.
  • Step 2041' the processor constructs a first coordinate system, and the first coordinate system is used to display a relative relationship between the fixed point and the three positioning points in a real environment.
  • Step 2042' the processor constructs a second coordinate system, and the second coordinate system is configured to display a relative relationship between the three-dimensional simulated image, the preset area, and the three feature points in a virtual environment.
  • Step 2043' the processor converts the three positioning points to the second coordinate system according to a coordinate conversion relationship between the first coordinate system and the second coordinate system.
  • Step 205 The processor calculates a first plane where the three feature points are located and a second plane where the three anchor points are located.
  • Step 206 The processor calculates a first normal line of the first plane and a second normal line of the second plane.
  • Step 207 The processor moves the second normal line such that the second normal line coincides with the first normal line, and the second plane rotates with the second normal line as a central axis. And fitting the three positioning points in the second plane to the three feature points in the first plane, and recording a moving path of the second normal line and the second plane The second normal line is the rotation angle of the central axis.
  • Step 208 ′ the processor converts the fixed point into the second coordinate system according to the coordinate conversion relationship, and moves the fixed point along the moving path and the second normal line is
  • the central axis rotates the rotation angle to obtain a virtual mapping point of the fixed point in the three-dimensional simulated image, the relative position of the virtual mapping point and the three-dimensional simulated image, and the fixed point and the surgical object
  • the relative position is the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于手术导航的配准系统及方法,其中系统包括:固定定位装置(102)用于固定于手术对象上并获取固定点的位置信息;处理器(101)用于在手术对象的三维模拟图像中采集3个特征点的位置信息;移动定位装置(103)用于在手术对象上获取3个定位点的位置信息;处理器(101)还用于计算3个特征点所在的第一平面和3个定位点所在的第二平面,使得3个定位点与3个特征点拟合,获得固定点在三维模拟图像中的虚拟映射点。该系统利用定位点与特征点之间的拟合关系,将固定点映射到三维模拟图像中,提高了配准精度且减少了配准时间。

Description

用于手术导航的配准系统及方法
本发明要求于2017年12月26日提交中国专利局、申请号为201711451941.7、申请名称为“用于手术导航的配准系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及医疗设备技术领域,尤其涉及一种用于手术导航的配准系统及方法。
背景技术
随着现代医疗技术的发展,各类手术的实施为提高治疗效果带来了很大的进步。但是,手术的实施往往都存在一定难度和风险,例如在骨科手术中,必须要准确地确定手术部位,否则容易造成手术失败。
传统确定手术部位的方法是医生根据自身判断在可能的手术部位处插入探针,然后对插入探针的部位拍摄X线光片,再根据X线光片,观察探针插入的位置与实际手术部位的位置关系,通过多次插入探针与进行X线透视,逐步找准手术部位。但是,这种定位方式会不仅对患者造成除手术部位以外的其他创口,而且还需要患者多次拍摄X线光片,对患者以及医生的身体都会造成损害。
还有一些确定手术部位的方法需要借助于手术部位的三维模拟图像和ICP(Iterative Closest Point,迭代最近点)算法。以骨科手术为例,首先需要将标定件固定在骨头上,拍摄骨头的三维模拟图像并在三维模拟图像上选取一片预设区域,然后在骨头的相应位置上用可定位的探针滑动,获取探针选取的点集的坐标,再利用ICP算法,将点集拟合到预设区域,并计算出相应的拟合矩阵,最后将标定件根据拟合矩阵拟合到三维模拟图像上。这种方法的缺点是,需要探针在骨头上进行滑动,由于在骨科手术中,骨头的表面会留有肌肉组织,因此不能保证探针是沿着骨头的表面进行滑动的,导致配准精度不高。
发明内容
本发明要解决的技术问题是为了克服现有技术中在确定手术部位时会损害患者身体且配准精度不高的缺陷,提供一种用于手术导航的配准系统及方法。
本发明是通过以下技术方案解决上述技术问题的:
本发明提供一种用于手术导航的配准系统,包括:处理器、固定定位装置和移动定位装置;
所述固定定位装置用于固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至所述处理器;
所述处理器用于在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息;
所述移动定位装置用于在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器;
所述处理器还用于将所述三维模拟图像和所述3个定位点放置于同一坐标系中,计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面,计算所述第一平面的第一法线和所述第二平面的第二法线,移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度,以及,将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。
较佳地,所述处理器还用于:
构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系;
构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像及所述3个特征点的相对关系;
根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述固定点和所述3个定位点转换至所述第二坐标系。
较佳地,所述第二平面内的所述3个定位点与所述第一平面内的所述3 个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应的特征点的距离之和取最小值。
较佳地,所述固定定位装置包括:定位支架和第一光学动态追踪设备,所述定位支架上设有可被所述第一光学动态追踪设备实时追踪的定位球;
所述定位支架用于固定于所述手术对象上;
所述第一光学动态追踪设备用于通过定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器。
较佳地,所述移动定位装置包括:探针和第二光学动态追踪设备,所述探针上设有可被所述第二光学动态追踪设备实时追踪的定位球;
所述探针用于在所述手术对象上对应于所述3个特征点选取3个定位点;
所述第二光学动态追踪设备用于通过定位球对所述3个定位点进行定位,并将所述3个定位点的位置信息通过通信连接发送至所述处理器。
本发明还提供一种用于手术导航的配准方法,利用如上所述的配准系统实现,所述配准方法包括:
固定定位装置固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至处理器;
所述处理器在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息;
移动定位装置在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器;
所述处理器将所述三维模拟图像和所述3个定位点放置于同一坐标系中,计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面,计算所述第一平面的第一法线和所述第二平面的第二法线,移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度,以及,将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以 获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。
较佳地,所述处理器将所述三维模拟图像和所述3个定位点放置于同一坐标系中,包括:
构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系;
构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像、所述预设区域及所述3个特征点的相对关系;
根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述3个定位点转换至所述第二坐标系;
将所述固定点放置于所述坐标系中,包括:根据所述坐标转换关系将所述固定点转换至所述第二坐标系。
较佳地,所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应的特征点的距离之和取最小值。
较佳地,所述固定定位装置包括:定位支架和第一光学动态追踪设备,所述定位支架上设有可被所述第一光学动态追踪设备实时追踪的定位球;
固定定位装置固定于所述手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至所述处理器,包括:
所述定位支架固定于所述手术对象上;
所述第一光学动态追踪设备通过定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器。
较佳地,所述移动定位装置包括:探针和第二光学动态追踪设备,所述探针上设有可被所述第二光学动态追踪设备实时追踪的定位球:
所述移动定位装置在所述手术对象的指定区域内获取3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器,包括:
所述探针在所述指定区域内获取3个定位点;
所述第二光学动态追踪设备通过定位球对所述3个定位点进行定位,并将所述3个定位点的位置信息通过通信连接发送至所述处理器。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的有益效果在于:本发明的配准系统及方法通过扫描装置获取手术对象的三维模拟图像,利用定位点与特征点之间的拟合关系,将固定点映射到三维模拟图像中,从而实现手术对象与三维模拟图像的配准,为医生提供了直观的手术导航图像,提高手术的手术精准度和安全性,缩短手术时间,大幅减少了手术的操作难度,降低了对医生经验的高度依赖性,并且,值得一提的是,在术中时,无需拍摄X线光片,最大限度的保护保护医生和患者的健康。
附图说明
图1为本发明实施例1的用于手术导航的配准系统的系统框图;
图2为本发明实施例1的用于手术导航的配准方法的流程图;
图3为本发明实施例2的用于手术导航的配准方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明的技术方案,但并不因此将本发明限制在以下实施例范围之中。
实施例1
一种用于手术导航的配准系统,如图1所示,包括:处理器101、固定定位装置102和移动定位装置103。其中,所述固定定位装置102和所述移动定位装置103分别与所述处理器101通信连接。所述通信连接可以为有线通信连接或者无线通信连接。有线通信连接通常为装置之间通过数据线等有线的方式连接并双向或单向地传输数据,无线通信连接通常为装置之间通过Wi-Fi、4G移动通信网络、蓝牙等无线的方式连接并双向或单向地传输数据。
所述固定定位装置102用于固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至所述处理器101。其中,所述手术对象可以为患者全身或者患者的局部身体,具体需根据手术的实际类型确定,例如在骨科手术中,手术对象为患者的骨骼(如头骨、脊骨);所述固定定位装置102的固定部位通常由医生根据手术需求自行确定,如可将其固定于需要手术的部位或者靠近需要手术的部位。
本实施例中,所述固定定位装置102具体包括:定位支架和第一光学动态 追踪设备。所述定位支架上设有可被所述第一光学动态追踪设备实时追踪的定位球。在手术过程中,医生可将所述定位支架固定于所述手术对象上(需保证所述手术对象和所述定位支架均位于所述第一光学动态追踪设备的有效追踪范围内),所述第一光学动态追踪设备通过所述定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器101。
所述处理器101用于在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息。其中,所述三维模拟图像可以预存于所述处理器中,具体可由扫描装置,如CT(电子计算机断层扫描)设备或是其它具有扫描功能的设备,通过对所述手术对象扫描而得;所述三维模拟图像需与实际的手术对象成一比一的比例,医生透过所述三维模拟图像可以清楚观察所述手术对象的具体形态,例如骨骼、肌肉、重要血管等;所述预设区域通常是由医生决定的,当然在特殊情况下(如处理器101中设有某些特定程序),所述处理器101也有可能自行决定预设区域的范围。
所述移动定位装置103用于在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器101。
本实施例中,所述移动定位装置103具体包括:探针和第二光学动态追踪设备。所述探针上设有可被所述第二光学动态追踪设备实时追踪的定位球。在手术过程中,医生可将所述探针在所述手术对象上点选3次以获取对应于所述3个特征点的3个定位点(需保证所述手术对象和所述探针均位于所述第二光学动态追踪设备的有效追踪范围内),点选3个定位点的顺序应对应于选取3个特征点的顺序,即在选取特征点时按照A——B——C的顺序选取,那么点选定位点时应按照对应于A的A’——对应于B的B’——对应于C的C’的顺序点选,所述第二光学动态追踪设备通过所述定位球对所述探针的点选位置即所述多个定位点进行定位,并将所述多个定位点的位置信息通过通信连接发送至所述处理器101。
为了减少设备数量和节省成本,所述第一光学动态追踪设备和所述第二光学动态追踪设备可以采用一个光学动态追踪设备实现,由该一个光学动态追踪 设备同时追踪定位支架的定位球和探针的定位球的位置信息。当然,若是受限于设备性能,一个光学动态追踪设备不能同时追踪两个定位球的位置信息,所述第一光学动态追踪设备和所述第二光学动态追踪设备亦可采用互不关联的两个设备。另外,本实施例之所以采用光学动态追踪设备追踪定位球,是因为光学动态追踪设备具有定位准确、追踪速度快的优点,当然在本发明的具体实施时还可采用其它原理的动态追踪设备追踪定位球。
所述处理器101还用于将所述三维模拟图像和所述3个定位点放置于同一坐标系中。所述同一坐标系可以为所述三维模拟图像所在的坐标系,或者不同于所述三维模拟图像所在的坐标系的其它坐标系。
所述处理器101还用于计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面,计算所述第一平面的第一法线和所述第二平面的第二法线,移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度,以及,将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。通过所述虚拟映射点,医生就可以清楚地知道定位支架的所在位置,进而确定需要的手术部位。
其中,第一法线和第二法线为法向量,具有方向,可以通过计算公式确定,还是以选取特征点为A、B和C,点选的定位点为对应于A的A’、对应于B的B’和对应于C的C’为例:第一平面的法向量(即第一法线)=向量AB×向量AC,即两个向量的叉积;第二平面的法向量(即第二法线)=向量A’B’×向量A’C’,即两个向量的叉积。
移动所述第二法线以使得所述第二法线与所述第一法线重合,可以包括:移动第二法线的位置以及旋转第二法线的方向。
所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应 的特征点的距离之和取最小值。即,A与A’的距离+B与B’的距离+C与C’的距离的结果取最小值。
概括的说,所述光学动态追踪设备可以获得定位球的位置信息,所述手术对象上固定有安装了定位球的定位支架,因此,所述光学动态追踪设备通过定位球而已间接获得所述手术对象的位置信息。所述手术对象的三维模拟图像和探针的模拟图像已经存储的在处理器中,通过上述的定位配准系统获得拟合矩阵,使得所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同,即实际环境中所述定位支架与所述手术对象的相对位置关系,和在虚拟环境中所述手术对象的三维模拟图像与所述定位支架的模拟图像的相对位置关系是相同的,从而实现手术对象与其三维模拟图像的实时配准。手术对象发生运动时,可以在虚拟环境中同步体现。医生在使用安装有定位器的手术器械进行定位时,由于该手术器械能够被光学动态追踪设备追踪定位,因此,在显示界面上可以观察到手术器械与手术患者的相对姿位。本实施例在手术导航中为医生提供了直观的手术导航图像,提高手术的手术精准度和安全性,缩短手术时间,大幅减少了手术的操作难度,降低了对医生经验的高度依赖性,并且,值得一提的是,在术中时,无需拍摄X线光片,最大限度的保护保护医生的患者的健康。
本实施例的一种用于手术导航的配准方法,利用本实施例的配准系统实现,如图2所示,所述配准方法包括:
步骤201、固定定位装置固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至处理器。具体地,包括所述定位支架固定于所述手术对象上;所述第一光学动态追踪设备通过定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器。
步骤202、所述处理器在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息。
步骤203、移动定位装置在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器。具体地,包括所述探针在所述手术对象上点选多次以获取对应于所述3个特征点的3个定位点;所述第二光学动态追踪设备通过定位球对 所述探针的点选位置即所述3个定位点进行定位,并将所述3个定位点的位置信息通过通信连接发送至所述处理器。
步骤204、所述处理器将所述三维模拟图像和所述3个定位点放置于同一坐标系中。
步骤205、所述处理器计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面。
步骤206、所述处理器计算所述第一平面的第一法线和所述第二平面的第二法线。其中,第一法线和第二法线为法向量,具有方向,可以通过计算公式确定,以选取特征点为A、B和C,点选的定位点为对应于A的A’、对应于B的B’和对应于C的C’为例:第一平面的法向量(即第一法线)=向量AB×向量AC,即两个向量的叉积;第二平面的法向量(即第二法线)=向量A’B’×向量A’C’,即两个向量的叉积。
步骤207、所述处理器移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度。其中,移动所述第二法线以使得所述第二法线与所述第一法线重合,可以包括:移动第二法线的位置以及旋转第二法线的方向;所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应的特征点的距离之和取最小值。即,A与A’的距离+B与B’的距离+C与C’的距离的结果取最小值。
步骤208、所述处理器将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。实施例2
本实施例的配准系统与实施例1中的配准系统基本相同,不同之处在与于,本实施例的配准系统中,所述处理器101具体将所述三维模拟图像和所述3个定位点共同放置于所述三维模拟图像所在的坐标系。具体放置的过程如下:
所述处理器101首先构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系;
然后,构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像、所述预设区域及所述3个特征点的相对关系;
最后,根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述固定点和所述3个定位点转换至所述第二坐标系。
本实施例的配准方法,利用本实施例的配准系统实现,如图3所示,所述配准方法包括:
步骤201、固定定位装置固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至处理器。
步骤202、所述处理器在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息。
步骤203、移动定位装置在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器。
步骤2041’、所述处理器构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系。
步骤2042’、所述处理器构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像、所述预设区域及所述3个特征点的相对关系。
步骤2043’、所述处理器根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述3个定位点转换至所述第二坐标系。
步骤205、所述处理器计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面。
步骤206、所述处理器计算所述第一平面的第一法线和所述第二平面的第二法线。
步骤207、所述处理器移动所述第二法线,以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度。
步骤208’、所述处理器根据所述坐标转换关系将所述固定点转换至所述第二坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于手术导航的配准系统,其特征在于,包括:处理器、固定定位装置和移动定位装置;
    所述固定定位装置用于固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至所述处理器;
    所述处理器用于在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息;
    所述移动定位装置用于在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器;
    所述处理器还用于将所述三维模拟图像和所述3个定位点放置于同一坐标系中,计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面,计算所述第一平面的第一法线和所述第二平面的第二法线,移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度,以及,将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。
  2. 如权利要求1所述的配准系统,其特征在于,所述处理器还用于:
    构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系;
    构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像及所述3个特征点的相对关系;
    根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述固定点和所述3个定位点转换至所述第二坐标系。
  3. 如权利要求1所述的配准系统,其特征在于,所述第二平面内的所述 3个定位点与所述第一平面内的所述3个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应的特征点的距离之和取最小值。
  4. 如权利要求1所述的配准系统,其特征在于,所述固定定位装置包括:定位支架和第一光学动态追踪设备,所述定位支架上设有可被所述第一光学动态追踪设备实时追踪的定位球;
    所述定位支架用于固定于所述手术对象上;
    所述第一光学动态追踪设备用于通过定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器。
  5. 如权利要求1所述的配准系统,其特征在于,所述移动定位装置包括:探针和第二光学动态追踪设备,所述探针上设有可被所述第二光学动态追踪设备实时追踪的定位球;
    所述探针用于在所述手术对象上对应于所述3个特征点选取3个定位点;
    所述第二光学动态追踪设备用于通过定位球对所述3个定位点进行定位,并将所述3个定位点的位置信息通过通信连接发送至所述处理器。
  6. 一种用于手术导航的配准方法,其特征在于,利用如权利要求1所述的配准系统实现,所述配准方法包括:
    固定定位装置固定于手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至处理器;
    所述处理器在所述手术对象的三维模拟图像中选取3个特征点并采集所述3个特征点的位置信息;
    移动定位装置在所述手术对象上对应于所述3个特征点选取3个定位点,获取所述3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器;
    所述处理器将所述三维模拟图像和所述3个定位点放置于同一坐标系中,计算所述3个特征点所在的第一平面和所述3个定位点所在的第二平面,计算所述第一平面的第一法线和所述第二平面的第二法线,移动所述第二法线以使得所述第二法线与所述第一法线重合,将所述第二平面以所述第二法线为中心轴旋转以使得所述第二平面内的所述3个定位点与所述第一平面内的所述3 个特征点拟合,并记录所述第二法线的移动路径和所述第二平面以所述第二法线为中心轴的旋转角度,以及,将所述固定点放置于所述坐标系中并使所述固定点沿着所述移动路径移动并以所述第二法线为中心轴旋转所述旋转角度,以获得所述固定点在所述三维模拟图像中的虚拟映射点,所述虚拟映射点和所述三维模拟图像的相对位置与所述固定点和所述手术对象的相对位置相同。
  7. 如权利要求6所述的配准方法,其特征在于,所述处理器将所述三维模拟图像和所述3个定位点放置于同一坐标系中,包括:
    构建第一坐标系,所述第一坐标系用于显示在现实环境中所述固定点和所述3个定位点之间的相对关系;
    构建第二坐标系,所述第二坐标系用于显示在虚拟环境中所述三维模拟图像、所述预设区域及所述3个特征点的相对关系;
    根据所述第一坐标系和所述第二坐标系的坐标转换关系,将所述3个定位点转换至所述第二坐标系;
    将所述固定点放置于所述坐标系中,包括:根据所述坐标转换关系将所述固定点转换至所述第二坐标系。
  8. 如权利要求6所述的配准方法,其特征在于,所述第二平面内的所述3个定位点与所述第一平面内的所述3个特征点拟合的最优情况为:所述第二平面内的所述3个定位点与所述第一平面内的对应的特征点的距离之和取最小值。
  9. 如权利要求6所述的配准方法,其特征在于,所述固定定位装置包括:定位支架和第一光学动态追踪设备,所述定位支架上设有可被所述第一光学动态追踪设备实时追踪的定位球;
    固定定位装置固定于所述手术对象上并获取固定点的位置信息,以及将所述固定点的位置信息发送至所述处理器,包括:
    所述定位支架固定于所述手术对象上;
    所述第一光学动态追踪设备通过定位球对所述定位支架的固定点进行定位,并将所述固定点的位置信息通过通信连接发送至所述处理器。
  10. 如权利要求6所述的配准方法,其特征在于,所述移动定位装置包括:探针和第二光学动态追踪设备,所述探针上设有可被所述第二光学动态追踪设 备实时追踪的定位球:
    所述移动定位装置在所述手术对象的指定区域内获取3个定位点的位置信息并将所述3个定位点的位置信息发送至所述处理器,包括:
    所述探针在所述指定区域内获取3个定位点;
    所述第二光学动态追踪设备通过定位球对所述3个定位点进行定位,并将所述3个定位点的位置信息通过通信连接发送至所述处理器。
PCT/CN2018/123369 2017-12-26 2018-12-25 用于手术导航的配准系统及方法 WO2019128961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711451941.7 2017-12-26
CN201711451941.7A CN108294825B (zh) 2017-12-26 2017-12-26 用于手术导航的配准系统及方法

Publications (1)

Publication Number Publication Date
WO2019128961A1 true WO2019128961A1 (zh) 2019-07-04

Family

ID=62867957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123369 WO2019128961A1 (zh) 2017-12-26 2018-12-25 用于手术导航的配准系统及方法

Country Status (2)

Country Link
CN (1) CN108294825B (zh)
WO (1) WO2019128961A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047572A1 (en) * 2020-09-04 2022-03-10 7D Surgical Ulc Systems and methods for facilitating visual assessment of registration accuracy
EP4062855A4 (en) * 2019-11-21 2023-03-08 Microport Navibot (Suzhou) Co., Ltd. OSTEOTOMY TESTING PROCEDURE, TESTING TOOL, READABLE STORAGE MEDIA AND ORTHOPEDIC SURGICAL SYSTEM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108294825B (zh) * 2017-12-26 2019-08-02 刘洋 用于手术导航的配准系统及方法
CN110021004A (zh) * 2018-08-23 2019-07-16 永康市缘匠贸易有限公司 玻璃成品轮廓识别机构
EP3973896A4 (en) * 2020-02-04 2023-07-12 Tianli Zhao PUNCTION NEEDLE POSITIONING SYSTEM AND METHOD
CN111700682B (zh) * 2020-06-30 2021-09-14 苏州大学 一种法线重合配准系统
CN113509263B (zh) * 2021-04-01 2024-06-14 上海复拓知达医疗科技有限公司 一种物体空间校准定位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073279A1 (en) * 2000-01-27 2004-04-15 Howmedica Leibinger, Inc. Surgery system
CN103402453A (zh) * 2011-03-03 2013-11-20 皇家飞利浦有限公司 用于导航系统的自动初始化和配准的系统和方法
CN104274194A (zh) * 2013-07-12 2015-01-14 西门子公司 介入式成像系统
US20170189125A1 (en) * 2015-12-31 2017-07-06 Stryker Corporation System And Methods For Performing Surgery On A Patient At A Target Site Defined By A Virtual Object
CN107072741A (zh) * 2014-11-06 2017-08-18 奥尔索夫特公司 计算机辅助的髋部手术中的器械导航
CN107440797A (zh) * 2017-08-21 2017-12-08 上海霖晏医疗科技有限公司 用于手术导航的注册配准系统及方法
CN108294825A (zh) * 2017-12-26 2018-07-20 刘洋 用于手术导航的配准系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073279A1 (en) * 2000-01-27 2004-04-15 Howmedica Leibinger, Inc. Surgery system
CN103402453A (zh) * 2011-03-03 2013-11-20 皇家飞利浦有限公司 用于导航系统的自动初始化和配准的系统和方法
CN104274194A (zh) * 2013-07-12 2015-01-14 西门子公司 介入式成像系统
CN107072741A (zh) * 2014-11-06 2017-08-18 奥尔索夫特公司 计算机辅助的髋部手术中的器械导航
US20170189125A1 (en) * 2015-12-31 2017-07-06 Stryker Corporation System And Methods For Performing Surgery On A Patient At A Target Site Defined By A Virtual Object
CN107440797A (zh) * 2017-08-21 2017-12-08 上海霖晏医疗科技有限公司 用于手术导航的注册配准系统及方法
CN108294825A (zh) * 2017-12-26 2018-07-20 刘洋 用于手术导航的配准系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4062855A4 (en) * 2019-11-21 2023-03-08 Microport Navibot (Suzhou) Co., Ltd. OSTEOTOMY TESTING PROCEDURE, TESTING TOOL, READABLE STORAGE MEDIA AND ORTHOPEDIC SURGICAL SYSTEM
US11653982B2 (en) 2019-11-21 2023-05-23 Suzhou MicroPort Orthobot Co., Ltd. Osteotomy calibration method, calibration tools and orthopedic surgery system
AU2020388156B2 (en) * 2019-11-21 2023-12-21 Microport Navibot (Suzhou) Co., Ltd. Osteotomy checking method, checking tool, readable storage medium and orthopedic surgery system
WO2022047572A1 (en) * 2020-09-04 2022-03-10 7D Surgical Ulc Systems and methods for facilitating visual assessment of registration accuracy

Also Published As

Publication number Publication date
CN108294825B (zh) 2019-08-02
CN108294825A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019128961A1 (zh) 用于手术导航的配准系统及方法
JP6334821B2 (ja) 医用イメージングのために患者をポジショニングするためのガイドシステム
JP5328137B2 (ja) 用具又は埋植物の表現を表示するユーザ・インタフェイス・システム
US10258413B2 (en) Human organ movement monitoring method, surgical navigation system and computer readable medium
US10881353B2 (en) Machine-guided imaging techniques
US8364245B2 (en) Coordinate system registration
CN107106241B (zh) 用于对外科器械进行导航的系统
US6259943B1 (en) Frameless to frame-based registration system
US20080119725A1 (en) Systems and Methods for Visual Verification of CT Registration and Feedback
JP5662638B2 (ja) 副鼻洞形成術ナビゲーションのためのフルオロスコープと計算機式断層写真法との位置揃えのシステム及び利用方法
JP5121401B2 (ja) 埋植物距離測定のシステム
US8131031B2 (en) Systems and methods for inferred patient annotation
CN108309450B (zh) 用于手术导航的定位配准系统及方法
US12011230B2 (en) Calibration method and device for dental implant navigation surgery, and tracking method and device for dental implant navigation surgery
TWI396523B (zh) 用以加速牙科診斷及手術規劃之系統及其方法
US20080119712A1 (en) Systems and Methods for Automated Image Registration
US20140031668A1 (en) Surgical and Medical Instrument Tracking Using a Depth-Sensing Device
CN107854177A (zh) 一种基于光学定位配准的超声与ct/mr图像融合手术导航系统及其方法
US20170245942A1 (en) System and Method For Precision Position Detection and Reproduction During Surgery
US10074199B2 (en) Systems and methods for tissue mapping
KR20190078853A (ko) 레이저 표적 투영장치 및 그 제어방법, 레이저 표적 투영장치를 포함하는 레이저 수술 유도 시스템
CN108969099B (zh) 一种校正方法、手术导航系统、电子设备及存储介质
Krempien et al. Projector-based augmented reality for intuitive intraoperative guidance in image-guided 3D interstitial brachytherapy
CA2963865C (en) Phantom to determine positional and angular navigation system error
JP2009500069A (ja) 脳病変の位置把握方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894229

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18894229

Country of ref document: EP

Kind code of ref document: A1