WO2019128207A1 - 主动悬架系统、减振器以及减振部件 - Google Patents

主动悬架系统、减振器以及减振部件 Download PDF

Info

Publication number
WO2019128207A1
WO2019128207A1 PCT/CN2018/096859 CN2018096859W WO2019128207A1 WO 2019128207 A1 WO2019128207 A1 WO 2019128207A1 CN 2018096859 W CN2018096859 W CN 2018096859W WO 2019128207 A1 WO2019128207 A1 WO 2019128207A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylinder
hydraulic motor
vibration damping
way
Prior art date
Application number
PCT/CN2018/096859
Other languages
English (en)
French (fr)
Inventor
任少云
邓志君
董铸荣
Original Assignee
深圳职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳职业技术学院 filed Critical 深圳职业技术学院
Priority to US16/959,140 priority Critical patent/US11752823B2/en
Publication of WO2019128207A1 publication Critical patent/WO2019128207A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3242Constructional features of cylinders of cylinder ends, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/38Covers for protection or appearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/43Filling or drainage arrangements, e.g. for supply of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/416Fluid actuator using a pump, e.g. in the line connecting the lower chamber to the upper chamber of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/419Gears
    • B60G2204/4191Planetary or epicyclic gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/41Dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0023Purpose; Design features protective
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications

Definitions

  • the invention relates to an active suspension system, a damper and a vibration damping component.
  • the active suspension generally means that the spring stiffness characteristic (elastic force) and the damping component damping characteristic parameter (damping force) can be adjusted and changed.
  • the active suspension has been widely used in high-end passenger cars and commercial vehicle suspensions due to its good passenger comfort, wheel attachment performance and dynamic load changes caused by vehicle handling.
  • Active suspensions include hydraulic (pneumatic) transmission energy storage damping suspension, electromagnetic induction energy storage suspension, mechanical transmission + rotary motor electromagnetic suspension and linear motor electromagnetic suspension.
  • the existing active suspension damping components design mainly have the following problems:
  • the hydraulic (pneumatic) transmission energy storage suspension suspension has the advantage of stable hydraulic (pneumatic) transmission, but there is a high-pressure accumulator in the structure, which requires high precision for the oil circuit sealing technology and control valve, and increases the accumulator and oil. Additional weights such as (gas) roads and fuel tanks (gas storage tanks) have high manufacturing costs and are not practical for most ordinary passenger vehicles.
  • the principle of the coil-sensing energy storage suspension is to use the change of the gap between the iron core coil (EM) and the permanent magnet (PM) to generate a time-varying magnetic flux, thereby generating an alternating induced electromotive force, which can realize charging of the vehicle battery through the rectifier circuit, and simultaneously
  • the battery electric energy is used to energize the iron core coil through the control circuit to generate an electromagnetic field, and interact with the magnetic field of the permanent magnet to generate electromagnetic force, which can be equivalent to the traditional active suspension damping force control, and realize the vehicle damping function. Due to the different working conditions of the vehicle, the gap that realizes the electromagnetic conversion will change drastically, and even the instantaneous gap will be zero, and collision between the sensing components will occur.
  • the actual structure can only be increased by the gap method, and it is also necessary to increase the coil winding to increase the size of the structure. This structure is difficult to achieve electromagnetic force damping energy consumption control, and vibration energy recovery also has circuit problems, and the efficiency is relatively low.
  • Gear rack mechanical transmission combined with rotary motor energy recovery damping parts and ball screw mechanical transmission + rotating electric machine energy recovery damping parts have been widely studied at home and abroad. Both types convert the stretching and compression movement between the body and the ground into a rotary motion through a mechanical mechanism drive (gear rack or ball screw) and connect the rotary motor.
  • the biggest advantage of this method is that the armature magnetic field and the excitation magnetic field avoid the actual movement of the sprung mass (body) and the unsprung mass (axle and wheel).
  • the magnetic field gap realized by the mechanical transmission indirect motion is stable and controllable, and the electromagnetic field can be realized. Force control produces equivalent damping force damping, while also achieving vibration energy recovery. When the road conditions of the vehicle are very bad, the two suspensions transmit vibration through the rack rack or the ball screw.
  • linear motor electromagnetic active suspension is considered to be the best solution for future vehicle active suspension design.
  • the suspension uses the mover and stator of the linear motor to connect the body and the wheel respectively, trying to directly use the electromagnetic force of the motor to be equivalent to the damping force of the traditional hydraulic damping component to achieve vibration reduction. And vibration energy can recover double targets.
  • the research literature shows that due to structural limitations, the magnetic energy density is not high, and the numerical range of electromagnetic force is limited. It can not cover the numerical requirements of the required damping force of the actual suspension, and the structural design space limitation, structural stress distribution and various work There are defects in the stability of the temperature field of the structure, and it is difficult to install and it is easy to fail.
  • the invention provides an active suspension system, a damper and a vibration damping component for solving the above technical problems, and has the advantages of simple and compact structure, stable and reliable performance, durability, and fully capable of satisfying active control of damping force and vibration energy recovery of vehicle suspension. Shock absorber.
  • the present invention provides a vibration damping member including: a hydraulic cylinder and a hydraulic motor; the hydraulic cylinder includes a relatively independent oil storage cylinder and a working cylinder, and the working cylinder is provided with a first piston member and passes through the The first piston member is divided into an extension chamber and a contraction chamber, and the extension chamber communicates with the oil storage cylinder through a first one-way oil discharge pipe, and the contraction chamber communicates with the oil storage cylinder through a second one-way oil discharge pipe.
  • An oil outlet hole is disposed on the storage cylinder, and an input end of the hydraulic motor is connected to the oil outlet hole, and an output end of the hydraulic motor is respectively connected to the extension cavity through a first one-way oil return pipe and passes through the second a one-way oil return pipe is connected to the contraction chamber, and the hydraulic motor can be driven to rotate in one direction by the first piston member reciprocating in the working cylinder
  • the top end of the oil storage cylinder is sealed by an oil passage coupling;
  • the oil passage coupling member is provided with three or more blind holes toward one side of the oil storage cylinder, at least one blind hole serves as the oil outlet hole, and the other two More than one blind hole is used as the oil return hole; two blind holes are also formed in the oil passage coupling member, one blind hole serves as an output hole and the other blind hole serves as an input hole; inside the oil passage coupling member, The oil outlet is in communication with the output hole, the oil return hole communicates with one of the oil return holes and the input hole; wherein the hydraulic motor is installed in the oil passage coupling An input end of the hydraulic motor is connected to an output hole of the oil passage coupling member, and an output end of the hydraulic motor is connected to an input hole of the oil passage coupling member, the oil passage is away from a side of the oil storage cylinder A part of the oil return holes of the coupling member communicate with the expansion chamber through a corresponding number of first one-way oil return pipes, and another portion of the oil return holes
  • the hydraulic ram includes a cylinder in which a second piston member is disposed and the cylinder is divided into the sump and the cylinder by the second piston member.
  • first piston member and the second piston member each include two pistons and a buffer member coupled between the two pistons.
  • a piston disposed adjacent to the first piston member is reciprocable relative to the cylinder, and a piston disposed away from the first piston member is reciprocable relative to the cylinder
  • the motion may or may not reciprocate relative to the cylinder.
  • first one-way oil outlet pipe, the second one-way oil discharge pipe, the first one-way oil return pipe and the second one-way oil return pipe are all disposed outside the cylinder body.
  • an outer casing for protecting the first one-way oil outlet pipe, the second one-way oil discharge pipe, the first one-way oil return pipe, and the second one-way oil return pipe is disposed outside the cylinder body a first mounting seat and a second mounting seat are disposed on the outer wall of the outer casing along a length direction of the outer casing, and a spring is sleeved on the outer wall of the outer casing and the two ends thereof respectively abut the a first mount and the second mount.
  • the present invention provides a vibration damper comprising the vibration damping member according to any of the above embodiments, further comprising: a rotary electric machine coupled with a hydraulic motor of the vibration damping member, the rotation The electric machine can be driven by the hydraulic motor to achieve energy recovery, or the rotary electric machine can be controlled and controlled to operate the hydraulic motor to achieve active control of the damping force.
  • the damper further includes a planetary row and a planetary row housing, the planetary row includes an inner ring gear, a planet carrier equipped with planetary gears, and a sun gear; the planet carrier is mounted in the inner ring gear and The planetary gear is meshed with the inner ring gear, and the sun gear is meshed with the planetary gear; the outer ring of the inner ring gear is fixedly coupled to the inner wall of the outer casing of the planetary row, and an end face of the outer casing of the planetary row a mounting flange fixedly disposed on the rotating electric machine is fixedly connected, and another end surface is fixedly connected to a coupling flange fixed on an output shaft side of the hydraulic motor, and an output shaft of the hydraulic motor and the carrier The shaft is fixedly coupled, and the rotor of the rotating electrical machine is coaxially fixedly coupled to the sun gear.
  • the present invention provides an active suspension, comprising the damper according to any of the above embodiments, further comprising: a motor controller, a power source, an ECU, and a sensor component;
  • the rotating electric machine in the damper is electrically connected to the motor controller, and the sensor element and the motor controller are respectively electrically connected to the ECU.
  • the active suspension system, the damper and the vibration damping component of the present invention have the following beneficial effects:
  • the hydraulic motor that is driven by the one-way flow of the oil and the one-way flowing oil outputted by the hydraulic cylinder can drive the hydraulic motor to perform one-way rotation, and based on this, the hydraulic motor can be unidirectional.
  • the rotation speed is controlled, which can fully satisfy the active control and energy recovery of the vehicle suspension damping force, and the structure is simple and compact, the performance is stable and reliable, and the service life is long.
  • Fig. 1 is a schematic view showing the assembled structure of the damper of the present invention.
  • FIG. 2 is a structural schematic view of the damper of FIG. 1 without a coupling flange, a casing and a spring.
  • Fig. 3 is a schematic view showing the internal structure of the damper shown in Fig. 1.
  • Figure 4 is a schematic view showing the structure of the oil passage coupling shown in Figure 1.
  • Fig. 5 is a schematic view showing the connection structure of each hole of the oil passage coupling member shown in Fig. 4.
  • Figure 6 is a circuit diagram of the active suspension system of the present invention.
  • the present invention provides a damper that includes a vibration damping component.
  • the vibration damping member includes a hydraulic cylinder 1 and a hydraulic motor 2.
  • the hydraulic cylinder 1 includes a relatively independent oil storage cylinder 12 and a working cylinder 13.
  • a first piston member 14 reciprocable within the working cylinder 13 is disposed in the working cylinder 13, and the working cylinder 13 is physically separated into two spaces, that is, the extending chamber 131 and the contracting chamber 132 by the first piston member 14.
  • the space in which the first piston member 14 is contracted into the cylinder 13 is the contraction chamber 132.
  • the other space is the extension chamber 131.
  • the extension chamber 131 and the oil storage cylinder 12 communicate with each other through one or more first one-way oil discharge pipes 15, and the contraction chamber 132 and the oil storage cylinder 12 are also connected by one or more second one-way oil discharge pipes 16.
  • the first one-way oil discharge pipe 15 and the second one-way oil discharge pipe 16 allow only the oil flowing inside the expansion chamber 131 and the contraction chamber 132 to flow into the oil storage cylinder 12 in one direction.
  • the first one-way oil outlet pipe 15 and the second one-way oil discharge pipe 16 generally adopt a conventional pipe 101 and a check valve 102 is added to the pipe 101 to realize one-way circulation of oil.
  • the one-way valve 102 employs a mechanical one-way valve, thus eliminating the need for complicated electrical controls.
  • the oil storage cylinder 12 is provided with an oil outlet hole 31.
  • the hydraulic motor 2 can be mounted on the top end of the oil storage cylinder 12, wherein the input end of the hydraulic motor 2 is connected to the oil outlet hole 31, and the output end of the hydraulic motor 2 passes through more than one first one-way oil return pipe 17 and the extension cavity 131, respectively. Communicating, communicating with the constriction chamber 132 through more than one second one-way oil return pipe 18.
  • the first one-way oil return pipe 17 and the second one-way oil return pipe 18 generally adopt a conventional pipe 101 and a check valve 102 is added to the pipe 101 to realize one-way circulation of oil.
  • the one-way valve 102 employs a mechanical one-way valve, thus eliminating the need for complicated electrical controls.
  • first one-way oil pipe 15, the second one-way oil pipe 16, the first one-way oil return pipe 17, and the second one-way oil return pipe. 18 should be disposed in the storage cylinder 12 and the outside of the working cylinder 13 for ease of processing and installation.
  • the damper also includes a rotary electric machine 4.
  • the rotary electric machine 4 can usually be a permanent magnet synchronous motor.
  • the rotary electric machine 4 cooperates with the hydraulic motor 2.
  • the rotary electric machine 4 can be driven by the hydraulic motor 2 to achieve energy recovery, or the rotary electric machine 4 can control and control the hydraulic motor 2 to operate to achieve active control of the damping force.
  • the rotary electric machine 4 and the hydraulic motor 2 can be coupled by a planetary row 51.
  • the planetary row 51 can be a Simpson-type single planetary row or a Lavina double planetary row.
  • the planetary row 51 includes an inner ring gear 511, a planet carrier (not shown), and a sun gear (not shown).
  • the planet carrier is provided with a certain number of planet gears 512.
  • the planet carrier is mounted in the ring gear 511 and meshed with the ring gear 511 via the planetary gears 512, and the sun gear meshes with the planet gears 512. Further, the outer wall of the ring gear 511 is fixedly connected to the inner wall of the planetary row housing 52.
  • One end surface of the planetary row housing 52 is fixedly connected with the mounting flange fixed by the rotary electric machine 4, and the other end surface is connected with the output shaft side of the hydraulic motor 2.
  • the fixed coupling flange 21 is fixedly connected, the output shaft of the hydraulic motor 2 is fixedly connected with the shaft of the carrier, and the rotor of the rotary motor 4 is coaxially fixedly connected with the sun gear.
  • the coupling flange 21 provided on the hydraulic motor 2 is also used to integrally mount the damper on the vehicle body.
  • the output shaft speed of the hydraulic motor 2 is doubled.
  • the relative magnetic fields of the stator and the rotor in the rotary motor 4 are increased, and the induced electromotive force value is increased. , provides effective conditions for energy recovery.
  • the motor controller 81 actively supplies the electric energy to the rotating electric machine 4, and the electromagnetic torque generated by the magnetic field of the rotating electric machine 4 is amplified by the planetary row 51 by a certain multiple, and then the rotational speed of the output shaft of the hydraulic motor 2 is controlled, that is, it can be indirectly controlled in the working cylinder 13 (ie, the extension chamber 131, the contraction chamber 132) and the oil pressure in the reservoir 12 are equivalent to the control of the change in the damping force of the hydraulic damper in the active suspension.
  • the oil passage coupling 3 is provided with three or more blind holes toward one side of the oil storage cylinder 12, at least one blind hole serving as the oil outlet hole 31, and two or more blind holes serving as the oil return hole 32.
  • the oil passage coupling member 3 is provided with two blind holes on one side of the oil storage cylinder 12, one blind hole serves as the output hole 33 and the other blind hole serves as the input hole 34.
  • the oil outlet hole 31 communicates with the output hole 33
  • the oil return hole 32 communicates with each other
  • one of the oil return holes 32 communicates with the input hole 34.
  • the output hole 33 and the input hole 34 may be integrated in the connector 30 provided on the oil passage coupling 3 to facilitate a convenient sealing connection with the input end and the output end of the hydraulic motor 2.
  • the hydraulic motor 2 is disposed on a side of the oil passage coupling 3 away from the oil storage cylinder 12, and the input end of the hydraulic motor 2 is connected to the output hole 33 of the oil passage coupling 3, and the output end of the hydraulic motor 2 and the oil passage coupling 3
  • the input holes 34 are connected, and a part of the oil return holes 32 of the oil passage coupling member 3 communicate with the extension chamber 131 through a corresponding number of first one-way oil return pipes 17, respectively, and the other portion of the oil return holes 32 respectively pass a corresponding number of second one-way units.
  • the oil return pipe 18 is in communication with the contraction chamber 132.
  • the hydraulic ram 1 includes a cylinder block 11.
  • the cylinder block 11 can generally employ a cylindrical cylinder block 11.
  • a second piston member 19 is disposed in the cylinder block 11, and the cylinder block 11 is physically separated into two spaces, that is, the oil storage cylinder 12 and the working cylinder 13 by the second piston member 19, and the oil storage cylinder 12 and the working cylinder 13 are used in the same manner.
  • a cylinder 11 is formed in a straight line, and its structure is simpler.
  • the oil storage cylinder 12 and the working cylinder 13 can also be formed by two non-linearly arranged and independent cylinder blocks 11.
  • the first piston member 14 includes two pistons 141, 142 and a cushioning member 143 coupled between the two pistons 141, 142.
  • the cushioning member 143 is preferably a solid rubber ring.
  • the first piston member 14 adopts the above structure, and the cylinder pressure formed by the first piston member 14 smoothly senses the actual suspension wheel and the body vibration, thereby avoiding the rough characteristics directly observed by the mechanical mechanism in the existing suspension research, thereby avoiding the
  • the oil chamber (specifically, the extension chamber 131 and the contraction chamber 132) has problems of vacuum and oil replenishment.
  • the second piston member 19 can also include two pistons 191, 192 and a cushioning member 193 coupled between the two pistons 191, 192.
  • the cushioning member 193 is preferably a solid rubber ring.
  • the second piston member 19 adopts the above structure, and also helps to avoid vacuum and oil replenishment problems in the oil chamber.
  • the piston 191 disposed adjacent to the first piston member 14 can reciprocate relative to the cylinder block 11, and the piston 192 disposed away from the first piston member 14 can reciprocate relative to the cylinder block 11 or Reciprocating relative to the cylinder block 11.
  • the piston 191 disposed adjacent to the first piston member 14 and reciprocable relative to the cylinder block 11 helps to avoid vacuum and oil replenishment problems in the oil chamber; the other piston 192 can assist in reciprocating motion relative to the cylinder block 11. Buffer damping is provided, and the other piston 192 contributes to the recovery of energy when fixed relative to the cylinder block 11, and can be specifically set as needed.
  • a housing 6 is further disposed on the outer side of the cylinder block 11. Specifically, the housing 6 can be fixed to the coupling flange 21 described above.
  • the housing 6 protects the first one-way oil outlet pipe 15, the second one-way oil discharge pipe 16, the first one-way oil return pipe 17, and the second one-way oil return pipe 18, and the casing
  • the outer wall of the body 6 is further disposed with a first mounting seat 61 and a second mounting seat 62 along the longitudinal direction thereof.
  • the spring 7 is sleeved on the outer wall of the housing 6 and the two ends of the spring 7 are respectively abutted to the first mounting seat 61. Between the second mount 62 and the second mount 62.
  • the present invention also provides a vibration damping member according to any of the above embodiments, which will not be described herein.
  • the present invention also provides an active suspension system.
  • the active suspension includes the damper according to any of the above embodiments, and further includes: a motor controller 81, a power source 82, an ECU 83, and a certain number of sensors. Element 84.
  • the rotating motor 4 and the power source 82 of the damper are electrically connected to the motor controller 81, respectively, and the ECU 83 is electrically connected to the motor controller 81 and the sensor element 84, respectively.
  • the damper is mounted between the body of the vehicle and the wheel.
  • the motor controller 81 Induction of the position, speed and acceleration of the vehicle body, the wheel by the sensor element 84 when the vehicle is traveling on an uneven road surface, and different control strategies of the rotating electric machine 4 by the motor controller 81 (combination with vehicle comfort, power (driving) And braking) and maneuverability considerations, the motor controller 81 accurately controls the electromagnetic force (moment) in the rotating electrical machine 4, thereby realizing the ideal active suspension joint control function of the vehicle front and rear.
  • the active suspension of the invention not only adapts to the vibration reduction and feed control of the automobile suspension, but also can be extended to the vibration reduction and energy recovery in the fields of industrial and civil products, such as vibration reduction of the bridge, vibration reduction of the building, fitness equipment Vibration reduction and other aspects.
  • the active suspension system, the damper and the vibration damping component of the present invention have the following beneficial effects:
  • the hydraulic motor 2 that is driven by the unidirectional flow of oil output from the hydraulic cylinder 1 is provided, and the hydraulic motor 2 can be driven to perform one-way rotation.
  • the one-way rotational speed of the motor 2 is controlled, and the vehicle suspension damping force active control and vibration energy recovery can be fully satisfied, and the structure is simple and compact, the performance is stable and reliable, and the service life is long.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种减振部件,包括液压油缸(1)和液压马达(2);液压油缸(1)包括相对独立的储油缸(12)和工作缸(13),工作缸(13)内设第一活塞件(14)并通过第一活塞件(14)分隔成伸张腔(131)和收缩腔(132),伸张腔(131)通过第一单向出油管(15)与储油缸(12)连通,收缩腔(132)通过第二单向出油管(16)与储油缸(12)连通,储油缸(12)上设置有出油孔(31),液压马达(2)的输入端与出油孔(31)连接,液压马达(2)的输出端分别通过第一单向回油管(17)与伸张腔(131)连通、通过第二单向回油管(18)与收缩腔(132)连通。

Description

主动悬架系统、减振器以及减振部件 技术领域
本发明涉及一种主动悬架系统、减振器以及减振部件。
背景技术
主动悬架一般指弹簧刚度特性(弹性力)和减振部件阻尼特性参数(阻尼力)都可以调整改变。主动悬架由于能很好兼顾乘客舒适性、车轮附着性能和操控车辆引起动负载变化,已经广泛应用在高端乘用车和商用车悬架上。已有主动悬架包括液压(气压)传动储能减振悬架、电磁感应储能悬架、机械传动+旋转电机电磁悬架和直线电机电磁悬架等。现有主动悬架减振部件设计主要存在以下问题:
液压(气压)传动储能减振悬架有液压(气压)传动稳定的优点,但在结构中存在高压蓄能器,对油路密封技术和控制阀精度要求高,增加了蓄能器、油(气)路和油箱(储气罐)等附加重量,制造成本高,对多数普通乘用车实用性不强。
线圈感应储能悬架原理是利用铁芯线圈(EM)与永磁体(PM)之间间隙的变化产生磁通量的时变,从而产生交变感应电动势,可实现通过整流电路对车载蓄电池充电,同时利用蓄电池电能通过控制电路对铁芯线圈通电产生电磁场,并与永磁体磁场相互作用产生电磁力,可等效传统主动悬架阻尼力控制,实现车辆行驶减振功能。由于车辆行驶路面工况不同,实现电磁转换的间隙会出现剧烈变化,甚至瞬间间隙为零,发生感应部件间碰撞。实际结构只能通过加大间隙方法,同时也需要增加线圈绕组,加大结构尺寸。该结构难以实现电磁力减振耗能控制,同时振动能量回收也存在电路问题,效率比较低。
齿轮齿条机械传动结合旋转电机能量回收减振部件和滚珠丝杆机械传动+旋转电机能量回收减振部件得到国内外广泛研究。两种型式都是将车身与地面间伸张与压缩运动通过机械机构传动(齿轮齿条或滚珠丝杆)转换为旋转运动,并连接旋转电机。该方法最大优点是电枢磁场和励磁磁场避开了簧载质量(车身)和非簧载质量(车桥和车轮)实际运动,通过机械传动间接运动实现的磁场间隙稳定可控,能实现电磁力控制从而产生等效阻尼力减振,同时也能实现振动能量回收。当车辆行驶路面条件非常恶劣时,这两种悬架通过齿轮齿条或滚珠丝杆传递振动,存在固有的齿隙非线性运动特性,机械强度不足,因机械摩擦引起的馈能效率低,惯性质量大以及承受长期振动冲击的可靠性和耐久性较差等问题,容易机械失效,影响使用寿命,可靠性存在不足,有研究指出:相比滚珠丝杆方式,齿轮齿条机械传动结合旋转电机能量回收效能、减振部件结构缺陷更明显。
技术问题
目前,随着电力电子控制技术和永磁材料研究进步,直线电机电磁主动悬架被认为是未来车辆主动悬架设计最佳方案。直线电机能量回收减振部件也有大量研究和应用,该悬架利用直线电机的动子和定子分别联接车身和车轮,试图用电机电磁力直接等效为传统液压减振部件阻尼力,达到减振和振动能量可回收双目标。研究文献表明:该悬架由于结构限制,存在磁能密度不高,电磁力产生数值范围受限,不能覆盖实际悬架所需阻尼力数值要求范围,同时结构设计空间限制、结构应力分布和各工况结构温度场的稳定性等方面都存在缺陷,安装难度较大,也较容易失效。
技术解决方案
本发明为解决上述技术问题提供一种主动悬架系统、减振器以及减振部件,结构简单紧凑、性能稳定可靠、经久耐用,且完全能够满足车辆悬架阻尼力主动控制和振动能量回收的减振器。
为解决上述技术问题,本发明提供一种减振部件,包括:液压油缸和液压马达;所述液压油缸包括相对独立的储油缸和工作缸,所述工作缸内设第一活塞件并通过所述第一活塞件分隔成伸张腔和收缩腔,所述伸张腔通过第一单向出油管与所述储油缸连通,所述收缩腔通过第二单向出油管与所述储油缸连通,所述储油缸上设置有出油孔,所述液压马达的输入端与所述出油孔连接,所述液压马达的输出端分别通过第一单向回油管与所述伸张腔连通、通过第二单向回油管与所述收缩腔连通,进而可通过所述第一活塞件在所述工作缸内往复运动驱动所述液压马达单向转动
进一步地,所述储油缸顶端由油路联接件密封;所述油路联接件朝向所述储油缸的一面设置有三个以上的盲孔,其中至少一个盲孔作为所述出油孔,另外两个以上的盲孔作为回油孔;所述油路联接件上还开设有两个盲孔,其中一个盲孔作为输出孔、另一个盲孔作为输入孔;在所述油路联接件内部,所述出油孔与所述输出孔连通,所述回油孔之间连通且其中一个所述回油孔与所述输入孔连通;其中,所述液压马达装设于所述油路联接件远离所述储油缸的一面,所述液压马达的输入端与所述油路联接件的输出孔连接,所述液压马达的输出端与所述油路联接件的输入孔连接,所述油路联接件的一部分回油孔分别通过相应数量的第一单向回油管与所述伸张腔连通、另一部分回油孔分别通过相应数量的第二单向回油管与所述收缩腔连通。
进一步地,所述液压油缸包括缸体,所述缸体内设第二活塞件并通过所述第二活塞件将所述缸体分隔成所述储油缸和所述工作缸。
进一步地,所述第一活塞件和所述第二活塞件均包括两个活塞和联结于两个活塞之间的缓冲件。
进一步地,所述第二活塞件中,邻近所述第一活塞件设置的活塞可相对于所述缸体往复运动,而远离所述第一活塞件设置的活塞可相对于所述缸体往复运动或者不可相对于所述缸体往复运动。
进一步地,所述第一单向出油管、所述第二单向出油管、所述第一单向回油管以及所述第二单向回油管均设置于所述缸体的外侧。
进一步地,所述缸体外侧装设有用于保护所述第一单向出油管、所述第二单向出油管、所述第一单向回油管以及所述第二单向回油管的外壳,沿着所述外壳的长度方向在所述外壳的外壁上间隔设置有第一安装座和第二安装座,一弹簧套接于所述外壳的外壁上且其两端分别抵接于所述第一安装座和所述第二安装座。
为解决上述技术问题,本发明提供一种减振器,包括如上述任一项实施例所述的减振部件,还包括:与所述减振部件中液压马达配合的旋转电机,所述旋转电机可受所述液压马达的驱动以实现能量回收,或者,所述旋转电机可受控并控制所述液压马达工作以实现对阻尼力的主动控制。
进一步地,所述减振器还包括行星排和行星排外壳,所述行星排包括内齿圈、装设有行星齿轮的行星架以及太阳齿轮;所述行星架装设于内齿圈内并通过所述行星齿轮与所述内齿圈啮合传动,所述太阳齿轮与所述行星齿轮啮合传动;所述内齿圈外壁固定连接于所述行星排外壳内壁,所述行星排外壳一端面与所述旋转电机所固设的安装法兰盘固定连接、另一端面与所述液压马达的输出轴侧所固设的联接法兰盘固定连接,所述液压马达的输出轴与所述行星架的轴固定连接,所述旋转电机的转子与所述太阳齿轮同轴固定连接。
为解决上述技术问题,本发明提供一种主动悬架,其特征在于,包括如上述任一项实施例所述的减振器,还包括:电机控制器、电源、ECU以及传感器元件;所述减振器中旋转电机、所述电源分别与所述电机控制器电连接,所述传感器元件以及所述电机控制器分别与所述ECU电连接。
有益效果
本发明的主动悬架系统、减振器以及减振部件,具有如下有益效果:
通过设置油液单向流动的液压油缸,并设置由该液压油缸输出的单向流动的油液进行驱动的液压马达,能够驱动液压马达进行单向转动,基于此还可以对液压马达的单向转动速度进行控制,进而完全能够满足车辆悬架阻尼力主动控制和能量回收,且其结构简单紧凑、性能稳定可靠、使用寿命长。
附图说明
图1是本发明减振器的组装结构示意图。
图2是图1所示减振器未设置联接法兰盘、外壳及弹簧的结构示意图。
图3是图1所示减振器的内部结构示意图。
图4是图1所示油路联接件的结构示意图。
图5是图4所示油路联接件的各孔连接结构示意图。
图6是本发明主动悬架系统的电路结构图。
本发明的最佳实施方式
下面结合附图和实施方式对本发明进行详细说明。
结合图1至图3进行参阅,本发明提供一种减振器,该减振器包括减振部件。减振部件包括液压油缸1和液压马达2。
其中,如图3所示,液压油缸1包括相对独立的储油缸12和工作缸13。在工作缸13内设置有可在工作缸13内往复运动的第一活塞件14,由该第一活塞件14将该工作缸13物理地分隔成了两个空间即伸张腔131和收缩腔132,该第一活塞件14受力向工作缸13内收缩的一方的空间即为收缩腔132,相反的,另一方的空间即为伸张腔131。
其中,伸张腔131与储油缸12之间通过一个以上的第一单向出油管15连通,收缩腔132与储油缸12之间也通过一个以上的第二单向出油管16连通。该第一单向出油管15和第二单向出油管16仅允许伸张腔131和收缩腔132内部的油液单方向的流入储油缸12内。其中,该第一单向出油管15和第二单向出油管16通常采用常规的管道101并在管道101上加装单向阀102实现油液的单向流通。较佳的,单向阀102采用机械式单向阀,因而不需要复杂的电气控制。
进一步地,储油缸12上设置有出油孔31。液压马达2举例可以装设于储油缸12顶端,其中,液压马达2的输入端与出油孔31连接,液压马达2的输出端分别通过一个以上的第一单向回油管17与伸张腔131连通、通过一个以上的第二单向回油管18与收缩腔132连通。其中,该第一单向回油管17和第二单向回油管18通常采用常规的管道101并在管道101上加装单向阀102实现油液的单向流通。较佳的,该单向阀102采用也机械式单向阀,因而不需要复杂的电气控制。
通过上述结构设置,第一活塞件14在工作缸13内往复运动时油液的流动方向相同为单一方向,进而将粗暴不规则往复运动变成液压马达2的单向转动,避免了现有悬架研究中运动在速度和加速度层面存在零速-正(加)速-零速-负(加)速-零速不等幅不规则往复循环,也避免了等效惯性负载变化无限大等缺陷,避免理论研究和仿真计算中存在运动不稳定、数值解析不确定等难题,为振动能量的合理回收提供了良好的基础。
为了不影响第一活塞件14的往复运动,本领域技术人员应当理解上述的第一单向出油管15、第二单向出油管16、第一单向回油管17以及第二单向回油管18应当设置于储油缸12及工作缸13的外部的加工安装便利性。
该减振器还包括旋转电机4。旋转电机4通常可以采用永磁同步电机。该旋转电机4与液压马达2配合工作。其中,旋转电机4可受液压马达2的驱动以实现能量回收,或者,旋转电机4可受控并控制液压马达2工作以实现对阻尼力的主动控制。
在一较佳实施例中,旋转电机4与液压马达2之间可以通过行星排51传动配合,该行星排51可以是辛普森式单行星排或者拉维娜式双行星排等。该行星排51包括内齿圈511、行星架(图未示)以及太阳齿轮(图未示),行星架内装设有一定数量的行星齿轮512。行星架装设于内齿圈511内并通过行星齿轮512与内齿圈511啮合传动,太阳齿轮与行星齿轮512啮合传动。进一步地,内齿圈511外壁固定连接于行星排外壳52内壁,该行星排外壳52一端面与旋转电机4所固设的安装法兰盘固定连接、另一端面与液压马达2的输出轴侧所固设的联接法兰盘21固定连接,液压马达2的输出轴与行星架的轴固定连接,旋转电机4的转子与太阳齿轮同轴固定连接。另外,液压马达2上设置的联接法兰盘21还用于将减振器整体安装于车辆车身上。
通过利用结构紧凑的行星排51的运动特性,实现了液压马达2输出轴转速的成倍提高,当能量回收工况时,旋转电机4中定子、转子两磁场相对速度增加,提高了感应电动势数值,为能量回收提供了有效条件。而通过电机控制器81主动提供给旋转电机4电能,旋转电机4磁场产生的电磁力矩通过行星排51放大一定倍数后,控制液压马达2输出轴的转速,也即间接地能控制在工作缸13(即伸张腔131、收缩腔132)和储油缸12中的油压,等同于实现控制主动悬架中液压减振器阻尼力的变化。
在一较佳实施例中,结合图4和图5进行参阅,储油缸12顶端由油路联接件3密封。该油路联接件3朝向储油缸12的一面设置有三个以上的盲孔,其中至少一个盲孔作为上述的出油孔31,另外两个以上的盲孔作为回油孔32。而油路联接件3远离储油缸12的一面开设有两个盲孔,其中一个盲孔作为输出孔33、另一个盲孔作为输入孔34。且在油路联接件3内部,出油孔31与输出孔33连通,回油孔32之间连通且其中一个回油孔32与输入孔34连通,该多个回油孔32之间举例可以以串联的形式连通。另外,可以将输出孔33和输入孔34集成在设置于油路联接件3上设置的插接件30中,以方便与液压马达2的输入端和输出端方便地密封连接。
其中,液压马达2装设于油路联接件3远离储油缸12的一面,液压马达2的输入端与油路联接件3的输出孔33连接,液压马达2的输出端与油路联接件3的输入孔34连接,油路联接件3的一部分回油孔32分别通过相应数量的第一单向回油管17与伸张腔131连通、另一部分回油孔32分别通过相应数量的第二单向回油管18与收缩腔132连通。
通过上述油路联接件3尤其是各功能孔位置的设置,能够简化管网的安装和排布,使得结构整体简洁。
在一较佳实施例中,液压油缸1包括缸体11。缸体11通常可采用圆筒状的缸体11。缸体11内设置有第二活塞件19,通过该第二活塞件19将缸体11物理的分隔成了两个空间即储油缸12和工作缸13,将储油缸12和工作缸13采用同一个缸体11且直线排列地制成,其结构更为简单。当然,储油缸12和工作缸13也可以采用两个非直线排列且相互独立的缸体11分别而成。
在一较佳实施例中,第一活塞件14包括两个活塞141、142和联结于两个活塞141、142之间的缓冲件143。该缓冲件143优选为实心的橡胶圈。第一活塞件14采用上述结构,通过第一活塞件14所形成的油缸压力平稳感知实际悬架车轮与车身振动,避免了现有悬架研究中采用机械机构直接感知的粗暴特性,进而避免了油腔(具体即伸张腔131、收缩腔132)出现真空和补油问题。
在另一较佳实施例中,第二活塞件19也可以包括两个活塞191、192和联结于两个活塞191、192之间的缓冲件193。该缓冲件193优选为实心的橡胶圈。第二活塞件19采用上述结构,同样有助于避免油腔出现真空和补油问题。
进一步地,第二活塞件19中,邻近第一活塞件14设置的活塞191可相对于缸体11往复运动,而远离第一活塞件14设置的活塞192可相对于缸体11往复运动或者不可相对于缸体11往复运动。其中,邻近第一活塞件14设置的可相对于缸体11往复运动的活塞191有助于避免油腔出现真空和补油问题;另一活塞192可相对于缸体11往复运动时有助于缓冲减振,而该另一活塞192相对于缸体11固定时有助于对能量的回收,具体可以根据需要进行设置。
在一具体实施例中,缸体11外侧还装设有壳体6,具体的,该壳体6可以固设于上述的联接法兰盘21上。该壳体6将第一单向出油管15、第二单向出油管16、第一单向回油管17以及第二单向回油管18罩设于其内起到保护作用,并且,该壳体6外壁沿着其长度方向还间隔设置有第一安装座61和第二安装座62,弹簧7套接于壳体6外壁上且弹簧7的两端分别抵接限位于第一安装座61和第二安装座62之间。
本发明还提供一种如上述任一实施例所述的减振部件,此处不在一一赘述。
另外,本发明还提供一种主动悬架系统。如图6所示,并结合图1至图3参阅,该主动悬架包括如上述任一实施例所述的减振器,还包括:电机控制器81、电源82、ECU83以及一定数量的传感器元件84。其中,减振器中旋转电机4、电源82分别和电机控制器81电连接,ECU83分别与电机控制器81和传感器元件84电连接。使用时,减振器安装于车辆的车身与车轮之间。
在车辆行驶于不平路面时,通过传感器元件84对车身、车轮的位置、速度及加速度的感应,并通过电机控制器81对旋转电机4的不同控制策略(需结合车辆舒适性、动力性(驱动和制动)和操控性考虑),实现电机控制器81对旋转电机4中电磁力(矩)精确控制,进而真正实现车辆前后左右理想的主动悬架联合控制功能。
本发明主动悬架不仅适应于汽车悬架减振和馈能控制上,也可以扩展到工业和民用产品等领域的减振和能量回收,如桥梁的减振、建筑物的减振,健身器材的减振等方面。
本发明的主动悬架系统、减振器以及减振部件,具有如下有益效果:
通过设置油液单向流动的液压油缸1,并设置由该液压油缸1输出的单向流动的油液进行驱动的液压马达2,能够驱动液压马达2进行单向转动,基于此还可以对液压马达2的单向转动转速进行控制,进而完全能够满足车辆悬架阻尼力主动控制和振动能量回收,且其结构简单紧凑、性能稳定可靠、使用寿命长。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种减振部件,其特征在于,包括:
    液压油缸和液压马达;
    所述液压油缸包括相对独立的储油缸和工作缸,所述工作缸内设第一活塞件并通过所述第一活塞件分隔成伸张腔和收缩腔,所述伸张腔通过第一单向出油管与所述储油缸连通,所述收缩腔通过第二单向出油管与所述储油缸连通,所述储油缸上设置有出油孔,所述液压马达的输入端与所述出油孔连接,所述液压马达的输出端分别通过第一单向回油管与所述伸张腔连通、通过第二单向回油管与所述收缩腔连通,进而可通过所述第一活塞件在所述工作缸内往复运动驱动所述液压马达单向转动。
  2. 根据权利要求1所述的减振部件,其特征在于:
    所述储油缸顶端由油路联接件密封;
    所述油路联接件朝向所述储油缸的一面设置有三个以上的盲孔,其中至少一个盲孔作为所述出油孔,另外两个以上的盲孔作为回油孔;
    所述油路联接件远离所述储油缸的一面开设有两个盲孔,其中一个盲孔作为输出孔、另一个盲孔作为输入孔;
    在所述油路联接件内部,所述出油孔与所述输出孔连通,所述回油孔之间连通且其中一个所述回油孔与所述输入孔连通;
    其中,所述液压马达装设于所述油路联接件远离所述储油缸的一面,所述液压马达的输入端与所述油路联接件的输出孔连接,所述液压马达的输出端与所述油路联接件的输入孔连接,所述油路联接件的一部分回油孔分别通过相应数量的第一单向回油管与所述伸张腔连通、另一部分回油孔分别通过相应数量的第二单向回油管与所述收缩腔连通。
  3. 根据权利要求1所述的减振部件,其特征在于:
    所述液压油缸包括缸体,所述缸体内设第二活塞件并通过所述第二活塞件将所述缸体分隔成所述储油缸和所述工作缸。
  4. 根据权利要求3所述的减振部件,其特征在于:
    所述第一活塞件和所述第二活塞件均包括两个活塞和联结于两个活塞之间的缓冲件。
  5. 根据权利要求4所述的减振部件,其特征在于:
    所述第二活塞件中,邻近所述第一活塞件设置的活塞可相对于所述缸体往复运动,而远离所述第一活塞件设置的活塞可相对于所述缸体往复运动或者不可相对于所述缸体往复运动。
  6. 根据权利要求3所述的减振部件,其特征在于:
    所述第一单向出油管、所述第二单向出油管、所述第一单向回油管以及所述第二单向回油管均设置于所述缸体的外侧。
  7. 根据权利要求6所述的减振部件,其特征在于:
    所述缸体外侧装设有用于保护所述第一单向出油管、所述第二单向出油管、所述第一单向回油管以及所述第二单向回油管的外壳,沿着所述外壳的长度方向在所述外壳的外壁上间隔设置有第一安装座和第二安装座,一弹簧套接于所述外壳的外壁上且其两端分别抵接于所述第一安装座和所述第二安装座。
  8. 根据权利要求3所述的减振部件,其特征在于:
    所述缓冲件是实心的橡胶圈。
  9. 根据权利要求3所述的减振部件,其特征在于:
    所述缸体为圆筒状。
  10. 根据权利要求3所述的减振部件,其特征在于:
    所述储油缸和所述工作缸采用同一个缸体且直线排列地制成。
  11. 根据权利要求1所述的减振部件,其特征在于:
    所述储油缸和工作缸采用两个非直线排列且相互独立的缸体分别制成。
  12. 一种减振器,其特征在于,包括如权利要求1~11任一项所述的减振部件,还包括:
    与所述减振部件中液压马达配合的旋转电机,所述旋转电机可受所述液压马达的驱动以实现能量回收,或者,所述旋转电机可受控并控制所述液压马达工作以实现对阻尼力的主动控制。
  13. 根据权利要求12所述的减振器,其特征在于:
    所述减振器还包括行星排和行星排外壳,所述行星排包括内齿圈、装设有行星齿轮的行星架以及太阳齿轮;
    所述行星架装设于内齿圈内并通过所述行星齿轮与所述内齿圈啮合传动,所述太阳齿轮与所述行星齿轮啮合传动;
    所述内齿圈外壁固定连接于所述行星排外壳内壁,所述行星排外壳一端面与所述旋转电机所固设的安装法兰盘固定连接、另一端面与所述液压马达的输出轴侧所固设的联接法兰盘固定连接,所述液压马达的输出轴与所述行星架的轴固定连接,所述旋转电机的转子与所述太阳齿轮同轴固定连接。
  14. 一种主动悬架,其特征在于,包括如权利要求12或13所述的减振器,还包括:电机控制器、电源、ECU以及传感器元件;
    所述减振器中旋转电机、所述电源分别与所述电机控制器电连接,所述电机控制器及所述传感器元件分别与所述ECU电连接。
PCT/CN2018/096859 2017-12-29 2018-07-24 主动悬架系统、减振器以及减振部件 WO2019128207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,140 US11752823B2 (en) 2017-12-29 2018-07-24 Active suspension system, vibration damper and vibration damping component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711467870.XA CN107939893B (zh) 2017-12-29 2017-12-29 主动悬架系统、减振器以及减振部件
CN201711467870.X 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128207A1 true WO2019128207A1 (zh) 2019-07-04

Family

ID=61937928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096859 WO2019128207A1 (zh) 2017-12-29 2018-07-24 主动悬架系统、减振器以及减振部件

Country Status (3)

Country Link
US (1) US11752823B2 (zh)
CN (1) CN107939893B (zh)
WO (1) WO2019128207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525075A (zh) * 2021-08-25 2021-10-22 黑龙江工程学院 一种车辆悬架振动能量回收装置及其回收方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939893B (zh) 2017-12-29 2024-03-15 深圳职业技术学院 主动悬架系统、减振器以及减振部件
CN108859646A (zh) * 2018-05-29 2018-11-23 中国北方车辆研究所 一种并联直线往复式弹性元件的旋转式机电悬架装置
CN110219926B (zh) * 2019-07-05 2024-07-05 沈思成 一种自动振动启闭装置及安装有该自动振动启闭装置的自行车前叉
CN115143232B (zh) * 2022-04-07 2023-12-22 金龙 一种振动能量回收装置及其回收方法
CN218440385U (zh) * 2022-09-30 2023-02-03 纳恩博(常州)科技有限公司 代步车及其避震器
CN115929579B (zh) * 2023-01-04 2023-07-04 北京威浮科技有限责任公司 新能源汽车减摇发电机构及具有其的发电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008471A (ja) * 2006-06-30 2008-01-17 Hitachi Ltd 減衰力調整式油圧緩衝器
CN201953557U (zh) * 2011-03-14 2011-08-31 王庭裕 一种应用于汽车的能量回收装置
TW201408879A (zh) * 2012-08-31 2014-03-01 Chung Shan Inst Of Science 振動能回收裝置
CN104265823A (zh) * 2014-08-07 2015-01-07 宁波鸿裕工业有限公司 带底座发电的减振器
CN205479087U (zh) * 2016-01-06 2016-08-17 比亚迪股份有限公司 减振器及具有其的车辆
CN107939893A (zh) * 2017-12-29 2018-04-20 深圳职业技术学院 主动悬架系统、减振器以及减振部件

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1100585A (fr) * 1966-04-05 1955-09-21 Rech S Pour L Applic Ind Des B Suspension pour véhicule ou autres applications
US3816028A (en) * 1972-10-25 1974-06-11 Graco Inc Pumps and painting installations
DE2721890C3 (de) * 1977-05-14 1980-06-12 Metallschlauch-Fabrik Pforzheim (Vorm. Hch. Witzenmann) Gmbh, 7530 Pforzheim Hydraulische Stoßbremse fur Rohrleitungssysteme
SE447926B (sv) * 1985-05-13 1986-12-22 Jan R Schnittger Hydraulisk stotdempare der dempformagan paverkas av ett styrorgan
DE3803888A1 (de) * 1988-02-09 1989-08-17 Boge Ag Regelbarer schwingungsdaempfer
US5016908A (en) * 1989-03-13 1991-05-21 Monroe Auto Equipment Company Method and apparatus for controlling shock absorbers
US4943083A (en) * 1989-03-13 1990-07-24 Monroe Auto Equipment Company Signal conditioning circuit assembly
US5150916A (en) * 1991-08-15 1992-09-29 General Motors Corporation Motor vehicle suspension with damper having rotatable member overrun detection
JPH09264364A (ja) * 1996-01-25 1997-10-07 Tokico Ltd 油圧緩衝器
JP4055023B2 (ja) * 1997-09-24 2008-03-05 株式会社日立製作所 減衰力調整式油圧緩衝器
DE102005048949B3 (de) * 2005-10-13 2006-12-14 Zf Friedrichshafen Ag Schwingungsdämpfer mit verstellbarer Dämpfkraft
SE531618C2 (sv) * 2006-02-23 2009-06-09 Oehlins Racing Ab Elektrisk styrd trycksatt dämpare
US20100006362A1 (en) * 2008-07-14 2010-01-14 Armstrong Larry D Vehicle Suspension Kinetic Energy Recovery System
CN101639055A (zh) * 2009-07-09 2010-02-03 岳晋卿 一种车辆动能回收系统
WO2011053596A2 (en) * 2009-10-26 2011-05-05 Ares Transportation Technologies Electric drive system for passive vehicle
CN201568513U (zh) * 2009-12-31 2010-09-01 李文权 弹簧盘自锁式减震器
CN101749353B (zh) * 2010-01-27 2011-10-19 武汉理工大学 液电馈能式减振器
EP4289640A3 (en) * 2010-06-16 2024-02-28 ClearMotion, Inc. Integrated energy generating damper
US9673682B2 (en) * 2010-07-26 2017-06-06 Charles E. Hughey Hybrid vertical energy storage system
DE102010032750B4 (de) * 2010-07-29 2015-09-24 Innomotix Gmbh Pneumatikantrieb
JP5789131B2 (ja) * 2011-05-31 2015-10-07 日立オートモティブシステムズ株式会社 緩衝器およびサスペンション装置
US8966889B2 (en) * 2011-11-01 2015-03-03 Tenneco Automotive Operating Company Inc. Energy harvesting passive and active suspension
CN202451682U (zh) * 2012-03-08 2012-09-26 王云龙 液压振动能量回收减振器
US9062737B2 (en) * 2012-06-04 2015-06-23 Mclaren Automotive Limited Shock absorber with four chambers
JP6012366B2 (ja) * 2012-09-25 2016-10-25 株式会社ショーワ 自動二輪車の車高調整装置
CN103009956A (zh) * 2012-12-31 2013-04-03 江苏大学 一种带有振动能量回收的蓄能悬架装置
US9481221B2 (en) * 2013-01-08 2016-11-01 Tenneco Automotive Operating Company Inc. Passive and active suspension with optimization of energy usage
US9676244B2 (en) * 2013-03-15 2017-06-13 ClearMotion, Inc. Integrated active suspension smart valve
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9174508B2 (en) * 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
CN103470672A (zh) * 2013-09-24 2013-12-25 长春孔辉汽车科技有限公司 泵式馈能主动减振系统
KR101971549B1 (ko) * 2014-06-11 2019-04-23 주식회사 만도 차량용 액티브 서스펜션 장치
CN104343878B (zh) * 2014-09-30 2016-04-06 重庆工商大学 一种振动能量的控制系统与方法
KR102239011B1 (ko) * 2014-10-31 2021-04-13 현대모비스 주식회사 전기 발전 장치
JP6463948B2 (ja) * 2014-11-07 2019-02-06 Kyb株式会社 サスペンション装置
CN104976266A (zh) * 2015-06-15 2015-10-14 万向钱潮股份有限公司 一种液电馈能式半主动控制减振器系统
EP3208119A1 (de) * 2016-02-18 2017-08-23 Haldex Brake Products Aktiebolag Mechanisch betätigte niveauregelventileinrichtung
JP6762416B2 (ja) * 2017-03-13 2020-09-30 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器
DE102017111157B3 (de) * 2017-05-22 2018-06-21 Kendrion (Villingen) Gmbh Regelbarer Schwingungsdämpfer
US10358010B2 (en) * 2017-06-05 2019-07-23 Tenneco Automotive Operating Company Inc. Interlinked active suspension
IT201800007584A1 (it) * 2018-07-27 2020-01-27 Sistemi Sospensioni Spa Ammortizzatore idraulico a smorzamento variabile, particolarmente per sospensione di veicolo.
DE102018133388B4 (de) * 2018-12-21 2022-03-03 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe und Verfahren zur Montage eines Planetengetriebes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008471A (ja) * 2006-06-30 2008-01-17 Hitachi Ltd 減衰力調整式油圧緩衝器
CN201953557U (zh) * 2011-03-14 2011-08-31 王庭裕 一种应用于汽车的能量回收装置
TW201408879A (zh) * 2012-08-31 2014-03-01 Chung Shan Inst Of Science 振動能回收裝置
CN104265823A (zh) * 2014-08-07 2015-01-07 宁波鸿裕工业有限公司 带底座发电的减振器
CN205479087U (zh) * 2016-01-06 2016-08-17 比亚迪股份有限公司 减振器及具有其的车辆
CN107939893A (zh) * 2017-12-29 2018-04-20 深圳职业技术学院 主动悬架系统、减振器以及减振部件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525075A (zh) * 2021-08-25 2021-10-22 黑龙江工程学院 一种车辆悬架振动能量回收装置及其回收方法
CN113525075B (zh) * 2021-08-25 2023-05-23 黑龙江工程学院 一种车辆悬架振动能量回收装置及其回收方法

Also Published As

Publication number Publication date
US20200331315A1 (en) 2020-10-22
US11752823B2 (en) 2023-09-12
CN107939893A (zh) 2018-04-20
CN107939893B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US11752823B2 (en) Active suspension system, vibration damper and vibration damping component
KR102166434B1 (ko) 수요 공급식 에너지를 갖는 액티브 현가장치
CN102619921B (zh) 一种惯容器与阻尼并联的减振器装置
CN101929520A (zh) 一种液电馈能式减振器
CN106183686B (zh) 一种油气主动互联馈能悬架
CN103847454B (zh) 一种车辆悬架用电磁阻尼减振装置
CN104389753B (zh) 振动能量回收装置
CN103009956A (zh) 一种带有振动能量回收的蓄能悬架装置
CN110978929A (zh) 一种复合式馈能型车辆半主动悬架作动器及其控制方法
CN104976266A (zh) 一种液电馈能式半主动控制减振器系统
CN110005747B (zh) 一种集成式电磁减振器
CN110067828A (zh) 一种准零刚度隔振系统和车辆
WO2020057322A1 (zh) 基于行星齿轮式增强型电动机的电磁减震器
CN111572331B (zh) 一种电动轮磁流变扭转减振器
Wang et al. Modelling and validation of a regenerative shock absorber system
CN105539060B (zh) 一种液压互联式悬架
CN110329026B (zh) 一种主动馈能式双臂姿态独立调节悬架
CN208010833U (zh) 主动悬架系统、减振器、减振部件及液压油缸
Fang et al. Energy dissipation and recovery of vehicle shock absorbers
CN108468625B (zh) 一种悬架振动能量驱动制动系统
CN109532363B (zh) 一种集成式纵臂式独立悬架系统
CN204253297U (zh) 振动能量回收装置
CN110962520A (zh) 一种惯质系数多级可调的惯容装置及其控制方法
CN105782320A (zh) 活塞馈能组件及能量回收减振器
CN214564445U (zh) 有效降低簧下质量的车体电磁减震器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893575

Country of ref document: EP

Kind code of ref document: A1