WO2019128047A1 - 风力发电机组的控制方法、装置及系统 - Google Patents

风力发电机组的控制方法、装置及系统 Download PDF

Info

Publication number
WO2019128047A1
WO2019128047A1 PCT/CN2018/087321 CN2018087321W WO2019128047A1 WO 2019128047 A1 WO2019128047 A1 WO 2019128047A1 CN 2018087321 W CN2018087321 W CN 2018087321W WO 2019128047 A1 WO2019128047 A1 WO 2019128047A1
Authority
WO
WIPO (PCT)
Prior art keywords
strategy
typhoon
wind
wind turbine
yaw
Prior art date
Application number
PCT/CN2018/087321
Other languages
English (en)
French (fr)
Inventor
邓刚
尹进峰
李会勋
赵祥
吴先友
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to US16/338,611 priority Critical patent/US11149713B2/en
Priority to AU2018334591A priority patent/AU2018334591B2/en
Publication of WO2019128047A1 publication Critical patent/WO2019128047A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • F03D7/0208Orientating out of wind
    • F03D7/0212Orientating out of wind the rotating axis remaining horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/322Control parameters, e.g. input parameters the detection or prediction of a wind gust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of wind power generation technologies, and in particular, to a method, device and system for controlling a wind power generator set.
  • Embodiments of the present disclosure provide a method, apparatus, and system for controlling a wind turbine to improve the safety of a wind turbine under typhoon conditions while reducing the workload of maintenance personnel during a typhoon.
  • an embodiment of the present disclosure provides a method for controlling a wind power generator, comprising: acquiring a current working condition of a power supply system, a yaw system, and a communication system of a wind turbine when receiving a typhoon warning signal; The preset relationship between the working status of the unit power system, the yaw system and the communication system and the control strategy determines the target control strategy corresponding to the current working condition; wherein the control strategy includes: controlling the active pair of the yaw system against the typhoon wind direction The wind strategy, the controlled passive leeward strategy that controls the yaw system against the typhoon wind direction, and the passive leeward strategy that regulates the yaw system against the typhoon wind direction; the target control strategy is used to control the wind turbine.
  • an embodiment of the present disclosure provides a control device for a wind power generator, comprising: an acquisition module, configured to acquire a power supply system, a yaw system, and a communication system of a wind turbine generator set when receiving a typhoon warning signal The current working condition; the processing module is configured to determine a target control strategy corresponding to the current working condition according to a preset correspondence between the working state of the unit power system, the yaw system, and the communication system, and the control strategy; wherein, the control strategy includes: controlling The yaw system is facing the active wind strategy of the typhoon wind direction, the controlled passive leeward strategy controlling the yaw system against the typhoon wind direction, and the passive leeward strategy adjusting the yaw system against the typhoon wind direction; the control module is used to utilize the target control strategy Control the wind turbine.
  • an embodiment of the present disclosure provides a control system for a wind power generator, the control system of the wind power generator comprising the wind turbine control device and the typhoon monitoring system provided by the second aspect of the embodiments of the present disclosure, the wind power The control unit of the generator set is communicatively coupled to the typhoon monitoring system.
  • the control strategy includes: controlling the active wind strategy of the yaw system against the typhoon wind direction Control the passive leeward strategy of the yaw system against the typhoon wind direction and the passive leeward strategy of adjusting the yaw system against the typhoon wind direction, and use the target control strategy to control the wind turbine.
  • control scheme of the wind power generator is based on the current working condition of the wind turbine according to the preset power supply system, yaw system and communication system of the wind turbine when receiving the typhoon warning signal.
  • Corresponding relationship between work status and control strategy determining the target control strategy corresponding to the current working condition, so as to be able to select the target control strategy most suitable for the current working condition of the wind turbine, and improve the safety of the wind turbine under typhoon conditions. Controlling wind turbines with a target control strategy can also reduce the workload of maintenance personnel during typhoons.
  • FIG. 1 is a schematic flow chart of a control method of a wind power generator set according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flow chart of generating a typhoon warning signal based on weather information by a typhoon monitoring system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of determining a target control policy, in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic flow chart of a specific flow of a control method of a wind power generator set according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a control device of a wind power generator set according to an embodiment of the present disclosure.
  • the method, device and system for controlling a wind power generator provided by an embodiment of the present disclosure, according to the current working condition of the wind turbine according to the preset unit power supply system, the yaw system and the communication system, when receiving the typhoon warning signal Corresponding relationship between work status and control strategy, determining the target control strategy corresponding to the current working condition, so as to be able to select the target control strategy most suitable for the current working condition of the wind turbine, and improve the safety of the wind turbine under typhoon conditions. Controlling wind turbines with a target control strategy can also reduce the workload of maintenance personnel during typhoons.
  • FIG. 1 shows a schematic flow chart of a control method of a wind power generator set according to an embodiment of the present disclosure.
  • a method for controlling a wind power generator provided by an embodiment of the present disclosure includes:
  • the typhoon warning signal is generated by the typhoon monitoring system based on meteorological information. Specifically, the typhoon monitoring system monitors the typhoon intensity at the location of the typhoon path through the wind turbine according to meteorological information, and/or monitors that the location of the wind turbine is in the typhoon or typhoon core area. The typhoon monitoring system generates a typhoon warning signal and sends a typhoon warning signal to the wind turbine.
  • the meteorological information may include, but is not limited to, a typhoon path and a typhoon intensity; the preset intensity threshold may be set according to an empirical value, for example, the preset intensity threshold is 10 levels.
  • the step of generating a typhoon warning signal according to meteorological information by the typhoon monitoring system may include:
  • the typhoon monitoring system acquires the location of the wind turbine.
  • the location of the wind turbine can be obtained through a positioning module in the wind turbine.
  • the typhoon monitoring system acquires meteorological information, which may include, but is not limited to, a typhoon path and a typhoon intensity.
  • meteorological information may include, but is not limited to, a typhoon path and a typhoon intensity.
  • the specific implementation may be obtained from the meteorological bureau or the network, and the embodiment of the present disclosure does not limit this.
  • step 203 the typhoon monitoring system determines whether the condition for generating the typhoon warning signal is met according to the location of the wind turbine and the meteorological information.
  • the condition for generating the typhoon warning signal is determined; If it is determined that the typhoon path passes through the location of the wind turbine, and the typhoon intensity is less than or equal to the preset intensity threshold, and/or the wind turbine is located in the typhoon peripheral region, it is determined that the condition for generating the typhoon warning signal is not met.
  • the preset intensity threshold may be set according to an empirical value. For example, the preset intensity threshold is 10 levels.
  • Step 204 When it is determined in step 203 that the condition for generating the typhoon warning signal is met, a typhoon warning signal is generated, and the generated typhoon warning signal is sent to the wind turbine.
  • step 202 is continued to obtain weather information for typhoon monitoring.
  • the current working condition of the power supply system, the yaw system and the communication system of the wind turbine generator set can be obtained by the self-test of the wind turbine generator set, or can be obtained by the unit power supply system.
  • the yaw system and the communication system are respectively obtained by sending a test command, which is not limited by the embodiment of the present disclosure.
  • the correspondence between the working conditions of the unit power system, the yaw system and the communication system and the control strategy is facilitated according to the preset unit power system, yaw system and communication system.
  • the abnormality of the power supply system of the unit may include, but is not limited to, the following situations: (1) power failure of the power grid due to typhoon; (2) overcurrent protection action of the power supply circuit; and (3) damage of the power supply transformer.
  • the abnormal state of the communication system may include, but is not limited to, the following situations: (1) the communication between the fan and the central monitoring is interrupted due to the damage of the submarine cable fiber; (2) the communication switch has a network abnormality and cannot communicate with the central monitoring.
  • the yaw system anomaly may include, but is not limited to, the following conditions: (1) yaw drive motor failure; (2) yaw control loop failure; (3) yaw brake system failure.
  • S102 Determine a target control strategy corresponding to a current working condition according to a preset correspondence between a working state of the unit power system, a yaw system, and a communication system, wherein the control strategy includes: controlling the yaw system to face the typhoon wind direction The active wind strategy, the controlled passive leeward strategy that controls the yaw system against the typhoon wind direction, and the passive leeward strategy that regulates the yaw system against the typhoon wind direction.
  • the target control strategy corresponding to the current working condition is determined, including: if the unit power system, the yaw system and the communication If the current working condition of the system is normal, the active wind strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are normal, and the current working condition of the yaw system is abnormal, the selection is controlled.
  • the passive leeward strategy is used as the target control strategy; if the current working conditions of the unit power system and the communication system are abnormal, the passive leeward strategy is selected as the target control strategy.
  • the embodiment of the present disclosure may also input the current working status or the current working status identifier of the unit power system, the yaw system, and the communication system into the policy selection system (corresponding to the processing module in FIG. 5). Determine the target control strategy corresponding to the current working condition.
  • the strategy selection system presets the correspondence between the working status of the unit power system, the yaw system and the communication system and the control strategy, and the strategy selection system receives the current working status or current work of the input unit power system, yaw system and communication system.
  • the target control strategy corresponding to the current working status is determined according to the preset correspondence between the working status of the unit power system, the yaw system, and the communication system and the control strategy.
  • the policy selection system determines the target control policy corresponding to the current working condition, including:
  • step 301 the current working condition is input, that is, the current working status or current working status identifier of the unit power system, the yaw system, and the communication system in the wind turbine is input.
  • Step 302 Determine a target control strategy corresponding to the current working condition according to a preset correspondence between the working status of the unit power system, the yaw system, and the communication system and the control strategy.
  • the active wind strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are normal, and If the current working condition of the yaw system is abnormal, the controlled passive leeward strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are abnormal, the passive leeward strategy is selected as the target control strategy.
  • step 303 the selection of the system may be subsequently selected according to the policy, (the control module in FIG. 5) controls the wind turbine to perform the selected target control strategy.
  • control strategy included in the preset correspondence relationship refers to pre-stored control of the wind turbine set under various typhoon conditions to control the components of the wind turbine set to withstand relatively small loads.
  • the strategy can be set by the crew based on experience.
  • the embodiment of the present disclosure can combine the time when the typhoon reaches the position of the wind power generation unit when controlling the wind power generation unit by using the target control strategy determined in S102.
  • the duration between the current time and the current time to stop the wind power generation before the typhoon reaches the location of the wind turbine, and before that, the wind power generation can continue to be utilized for wind power generation.
  • the wind turbine generator is controlled by using a target control strategy, comprising: receiving a duration between a predicted typhoon reaching a position of the wind turbine and a current time; determining the duration is less than the first threshold, and the target control strategy is When the wind strategy is active, the wind power generation is stopped, and the wind turbine is controlled by the active wind strategy; when the determined duration is less than the second threshold and the target control strategy is the controlled passive leeward strategy, the wind power generation is stopped, and the controlled passive power is utilized.
  • the leeward strategy controls the wind turbine; when the determined duration is less than the second threshold and the target control strategy is a passive leeward strategy, the wind power generation is stopped, and the passive leeward strategy is used to control the wind turbine.
  • the first threshold is smaller than the second threshold, and the first threshold and the second threshold are both set according to an empirical value. For example, the first threshold is 5 minutes and the second threshold is 120 minutes.
  • the time between the predicted typhoon reaching the location of the wind turbine and the current time may be periodically received.
  • the receiving period may be set to be reduced. Small calculation amount; when the typhoon is close to the location of the wind turbine, in order to stop the wind power generation in time and execute the target control strategy, a smaller receiving period can be set.
  • a control command is sent to the yaw system of the wind turbine according to the change of the wind direction, and the yaw system is instructed to yaw to the typhoon according to the indication of the control instruction. wind direction.
  • the yaw brake pressure is released or the yaw click brake is released, and the yaw system of the wind turbine is yawed to the typhoon wind direction.
  • the typhoon when controlling the wind turbine with a controlled passive leeward strategy, indicating that the yaw system of the wind turbine is yawed to the typhoon wind direction before the typhoon reaches the location of the wind turbine, and When the typhoon passes through the location of the wind turbine, it sends a control command to the yaw system of the wind turbine to instruct the yaw system to loosen the yaw motor brake and adjust the yaw brake pressure according to the control command.
  • the embodiment of the present disclosure utilizes the target control strategy for the wind turbine Before the control, the torsion cable margin of the yaw system in the wind turbine can also be obtained.
  • the preset margin threshold may be set according to an empirical value, for example, the preset margin threshold is 360 degrees.
  • embodiments of the present disclosure may also detect whether the wind turbine is faulty after the typhoon passes the location of the wind turbine, for example, for each subsystem of the wind turbine (blade, mechanical component, pitch, defense) Thunder, communication, etc.) conduct self-test and determine whether there is a fault in the wind turbine according to the self-test condition. If a wind turbine fault (mechanical fault, blade fault, or electrical component fault) is detected, an alarm message may be displayed to prompt the wind turbine maintenance personnel to perform the repair.
  • a wind turbine fault mechanical fault, blade fault, or electrical component fault
  • a specific process of a method for controlling a wind power generator includes:
  • Step 401 Receive a typhoon warning signal, that is, receive a typhoon warning signal sent by the typhoon monitoring system.
  • the typhoon monitoring system monitors the typhoon based on meteorological information and generates a typhoon warning signal.
  • Step 402 the wind turbine self-test. Specifically, the current working condition of the power supply system, the yaw system and the communication system of the wind turbine is determined by the self-inspection of the wind turbine.
  • Step 403 Determine a target control strategy corresponding to the current working condition according to a preset correspondence between the working status of the unit power system, the yaw system, and the communication system and the control strategy.
  • the active wind strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are normal, and If the current working condition of the yaw system is abnormal, the controlled passive leeward strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are abnormal, the passive leeward strategy is selected as the target control strategy.
  • Step 404 Determine, according to the self-test result, whether the twisted cable margin is less than a preset margin threshold. If step 405 is performed, otherwise, different branches may be selected according to different target control strategies. Specifically, if the target control policy is the active wind policy, step 406 is performed to execute the active wind strategy; if the target control policy is the controlled passive leeward strategy, step 413 is executed to perform the controlled passive leeward strategy; if the target control strategy is passive In the leeward strategy, step 419 is performed to perform a passive leeward strategy.
  • the preset margin threshold may be set according to an empirical value, for example, the preset margin threshold is 360 degrees.
  • Step 405 Perform a cable unwinding operation when determining that the twisted cable margin is less than a preset margin threshold according to the self-test result.
  • Step 406 Determine, according to the self-test result, that the twisted cable margin is greater than a preset margin threshold, and the target control strategy is an active windward strategy, and then receive a predicted duration between the time when the typhoon reaches the position of the wind turbine and the current time. And determining whether the duration is less than the first threshold, and if yes, performing step 407; otherwise, performing step 404.
  • the first threshold may be set according to an empirical value, for example, the first threshold is 5 minutes.
  • Step 407 When the duration between the time when the typhoon reaches the location of the wind turbine and the current time is less than the first threshold, the active wind strategy is executed to stop the wind power generation of the wind turbine.
  • Step 408 When the typhoon passes the position of the wind turbine, according to the change of the wind direction, send a control command to the yaw system of the wind power generator, instructing the yaw system to yaw to the typhoon wind direction according to the indication of the control instruction.
  • step 409 it is determined whether the typhoon has passed the location of the wind turbine, and if so, step 410 is performed; otherwise, step 408 is performed to continue the yaw wind.
  • Step 410 Perform a self-test of the wind turbine when the typhoon has passed the position of the wind turbine, and determine whether the wind turbine has a fault according to the self-test result. If yes, go to step 411; otherwise, go to step 412.
  • Step 411 When it is determined whether there is a fault in the wind turbine set according to the self-test result, the fault alarm prompt information is displayed, and manual maintenance is performed.
  • step 412 after the manual repair of the wind turbine, or according to the self-test result, it is determined that the wind turbine does not have a fault, the wind turbine enters a standby state.
  • Step 413 Determine, according to the self-test result, that the twisted cable margin is greater than a preset margin threshold, and the target control strategy is a controlled passive leeward strategy, and then receive a predicted typhoon between the time when the wind turbine is located and the current time The duration is determined, and it is determined whether the duration is less than the second threshold. If yes, step 414 is performed; otherwise, step 404 is performed.
  • the second threshold may be set according to an empirical value, for example, the second threshold is 120 minutes.
  • Step 414 When it is determined that the duration between the moment when the typhoon reaches the location of the wind turbine and the current time is less than the second threshold, the controlled passive leeward strategy is executed to stop the wind power generation of the wind turbine.
  • Step 415 indicating that the yaw system of the wind turbine is yawed to the typhoon wind direction before the typhoon reaches the location of the wind turbine.
  • Step 416 When the typhoon passes through the location of the wind turbine, send a control command to the yaw system of the wind turbine to instruct the yaw system to loosen the yaw motor brake and adjust the yaw brake pressure according to the control command.
  • step 417 it is determined whether the typhoon has passed the position of the wind turbine. If yes, step 418 is performed. Otherwise, step 416 is performed to continue to instruct the yaw system to loosen the yaw motor brake and adjust the yaw brake pressure according to the control command.
  • step 418 when it is determined that the typhoon has passed the position of the wind turbine, the fault existing in the wind turbine is manually repaired. After the manual repair of the wind turbine, step 412 is performed, and the wind turbine enters the standby state.
  • Step 419 Determine, according to the self-test result, that the twisted cable margin is greater than a preset margin threshold, and the target control strategy is a passive leeward strategy, and then receive a predicted duration between the time when the typhoon reaches the location of the wind turbine and the current time. And determining whether the duration is less than the second threshold, and if yes, executing step 420; otherwise, performing step 404.
  • the second threshold may be set according to an empirical value, for example, the second threshold is 120 minutes.
  • Step 420 When determining that the duration between the time when the typhoon reaches the location of the wind turbine and the current time is less than the second threshold, performing a passive leeward strategy to stop wind power generation of the wind turbine.
  • Step 421 instructing to yaw the yaw system of the wind turbine to face the typhoon wind direction.
  • step 422 the yaw brake pressure is released or the yaw click brake is released.
  • step 423 the typhoon is awaiting the location of the wind turbine.
  • step 424 when it is determined that the typhoon has passed the location of the wind turbine, the fault existing in the wind turbine is manually repaired. After the manual repair of the wind turbine, step 412 is performed, and the wind turbine enters the standby state.
  • the current working condition is determined according to the preset correspondence between the working state of the unit power system, the yaw system and the communication system and the control strategy.
  • Corresponding target control strategy which can select the target control strategy that is most suitable for the current working condition of the wind turbine, improve the safety of the wind turbine under typhoon conditions, and control the wind turbine by using the target control strategy. Reduce the workload of maintenance personnel during typhoons.
  • an embodiment of the present disclosure also provides a control device for a wind power generator set.
  • a control device for a wind power generator provided by an embodiment of the present disclosure includes:
  • the obtaining module 501 is configured to acquire a current working condition of the unit power system, the yaw system, and the communication system in the wind power generator when the typhoon warning signal is received.
  • the processing module 502 is configured to determine, according to a preset correspondence between a working state of the unit power system, the yaw system, and the communication system, a target control strategy corresponding to the current working condition, where the control strategy includes: controlling the yaw system Active wind strategy for typhoon wind direction, controlled passive leeward strategy for controlling yaw system against typhoon wind direction, and passive leeward strategy for adjusting yaw system against typhoon wind direction.
  • the control module 503 is configured to control the wind turbine by using a target control strategy.
  • control device further includes: a receiving module 504, configured to receive a typhoon warning signal generated by the typhoon monitoring system for the typhoon monitoring according to the meteorological information.
  • the processing module 502 is specifically configured to: if the current working conditions of the unit power system, the yaw system, and the communication system are normal, select an active wind strategy as the target control strategy; if the unit power system and communication If the current working condition of the system is normal and the current working condition of the yaw system is abnormal, then the controlled passive leeward strategy is selected as the target control strategy; if the current working conditions of the unit power system and the communication system are abnormal, then passive The leeward strategy is used as the target control strategy.
  • control module 503 when the control strategy is an active wind strategy, is specifically configured to: send a control instruction to the yaw system of the wind power generator, and instruct the yaw system to yaw to the typhoon wind direction according to the indication of the control instruction.
  • control module 503 When the control strategy is a passive leeward strategy, the control module 503 is specifically configured to: yaw the yaw system of the wind turbine to the typhoon wind direction; when the control strategy is a controlled passive leeward strategy, the control module 503 is specifically configured to: Instructing to yaw the yaw system of the wind turbine to the typhoon wind direction, and send a control command to the yaw system of the wind turbine when the typhoon passes the position of the wind turbine, indicating that the yaw system looses the yaw according to the control command Motor brakes and adjust yaw brake pressure.
  • control module 503 is specifically configured to: receive a duration between a time when the predicted typhoon reaches the location where the wind turbine is located, and a current time; the determined duration is less than the first threshold, and the target control strategy is an active wind In the strategy, the wind power generation is stopped, and the wind turbine is controlled by the active wind strategy; when the determined duration is less than the second threshold and the target control strategy is the controlled passive leeward strategy, the wind power generation is stopped, and the controlled passive leeward strategy is utilized.
  • the wind turbine is controlled; when the determined duration is less than the second threshold, and the target control strategy is a passive leeward strategy, the wind power generation is stopped, and the wind turbine is controlled by the passive leeward strategy; wherein the first threshold is less than the second threshold.
  • control module 503 is specifically configured to: obtain a twisted cable margin of the yaw system in the wind power generator; if it is determined that the twisted cable margin is less than a preset margin threshold, control the yaw system to unwind the cable, and The wind turbine is controlled by a target control strategy.
  • control device of the wind turbine is disposed in the main controller of the wind turbine.
  • embodiments of the present disclosure provide a control system for a wind power generator set
  • the control system of the wind power generator set includes the wind turbine generator control device and the typhoon monitoring system provided by the embodiments of the present disclosure, and the wind turbine control device and the Typhoon monitoring system communication connection.
  • the typhoon monitoring system is a SCADA (Supervisory Control And Data Acquisition) system.
  • SCADA Supervisory Control And Data Acquisition
  • the control system of the wind power generator receives the typhoon warning signal sent by the typhoon monitoring system, according to the current working condition of the wind turbine, according to the preset unit power system, yaw system and communication system.
  • Corresponding relationship between the working condition and the control strategy determining the target control strategy corresponding to the current working condition, so as to be able to select the target control strategy most suitable for the current working condition of the wind turbine, and improve the safety of the wind turbine under typhoon conditions,
  • using the target control strategy to control the wind turbine can also reduce the workload of maintenance personnel during the typhoon.
  • the functional blocks shown in the block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof.
  • hardware When implemented in hardware, it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, plug-ins, function cards, and the like.
  • ASIC application specific integrated circuit
  • elements of embodiments of the present disclosure are programs or code segments that are used to perform the required tasks.
  • the program or code segments can be stored in a machine readable medium or transmitted over a transmission medium or communication link through a data signal carried in the carrier.
  • a "machine-readable medium” can include any medium that can store or transfer information.
  • machine readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • the code segments can be downloaded via a computer network such as the Internet, an intranet, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组的控制方法、装置及系统,用以提高风力发电机组在台风工况下的安全性,同时降低台风期间维护人员的工作量。所述风力发电机组的控制方法,包括:在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况(S101);根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定所述当前工作状况对应的目标控制策略;其中,所述控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略(S102);利用所述目标控制策略对所述风力发电机组进行控制(S103)。

Description

风力发电机组的控制方法、装置及系统 技术领域
本公开涉及风力发电技术领域,尤其涉及一种风力发电机组的控制方法、装置及系统。
背景技术
近年来,海上或者沿海地区安装的风力发电机组越来越多,而海上和沿海地区均属于台风高发区域,因此,在海上或者沿海地区,台风会给风力发电机组的安全性带来很大挑战。鉴于此,各个风力发电机组厂家在设计海上或者沿海地区使用的风力发电机组时,都会考虑风力发电机组如何应对台风工况。目前,有些厂家通过加强风力发电机组各个零部件的结构强度,来增强风力发电机组抗台风的能力。但是,通过加强风力发电机组各个零部件的结构强度的设计方案,不但会增风力发电机组的投资成本,而且也不能保证风力发电机组能够抵抗各种强度的台风工况。此外,有些厂家通过人工控制被动偏航或者人工控制主动偏航等控制方案进行降载,以提高风力发电机组在台风工况下的生存能力。但这就需要在台风到达风力发电机组所在位置之前进行人工干预,而这必将会损失一定发电量,同时增加维护工作量,并且也无法应对台风工况下的所有情况。
发明内容
本公开的实施例提供了一种风力发电机组的控制方法、装置及系统,用以提高风力发电机组在台风工况下的安全性,同时降低台风期间维护人员的工作量。
第一方面,本公开的实施例提供一种风力发电机组的控制方法,包括:在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况;根据预设的机组电源系统、偏航系统及 通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略;其中,控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略;利用目标控制策略对风力发电机组进行控制。
第二方面,本公开的实施例提供一种风力发电机组的控制装置,包括:获取模块,用于在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况;处理模块,用于根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略;其中,控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略;控制模块,用于利用目标控制策略对风力发电机组进行控制。
第三方面,本公开的实施例提供了一种风力发电机组的控制系统,风力发电机组的控制系统包括本公开的实施例的第二方面提供的风力发电机组的控制装置及台风监测系统,风力发电机组的控制装置与台风监测系统通信连接。
根据本公开的实施例中的风力发电机组的控制方法、装置及系统,在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略;其中,控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略,并利用目标控制策略对风力发电机组进行控制。
由上可知,本公开的实施例提供的风力发电机组的控制方案,在接收到台风预警信号时,根据风力发电机组的当前工作状况,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略,从而能够选择出最适合风力发电机组 当前工作状况的目标控制策略,提高风力发电机组在台风工况下的安全性,同时利用目标控制策略对风力发电机组进行控制,也可以降低台风期间维护人员的工作量。
附图说明
从下面结合附图对本公开的具体实施方式的描述中可以更好地理解本公开其中,相同或相似的附图标记表示相同或相似的特征。
图1是根据本公开的实施例的风力发电机组的控制方法的示意流程图;
图2是根据本公开的实施例供的台风监测系统根据气象信息生成台风预警信号的示意流程图;
图3是根据本公开的实施例的确定目标控制策略的示意流程图;
图4是根据本公开的实施例的风力发电机组的控制方法的具体流程的示意流程图;
图5是根据本公开的实施例的风力发电机组的控制装置的结构示意图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本公开的全面理解。但是,对于本领域技术人员来说很明显的是,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开的更好的理解。本公开决不限于下面所提出的任何具体配置和算法,而是在不脱离本公开的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本公开造成不必要的模糊。
本公开的实施例提供的风力发电机组的控制方法、装置及系统,在接收到台风预警信号时,根据风力发电机组的当前工作状况,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确 定当前工作状况对应的目标控制策略,从而能够选择出最适合风力发电机组当前工作状况的目标控制策略,提高风力发电机组在台风工况下的安全性,同时利用目标控制策略对风力发电机组进行控制,也可以降低台风期间维护人员的工作量。
下面结合图1-图5对本公开的实施例提供的风力发电机组的控制方法、装置及系统进行详细说明。
图1示出了根据本公开的实施例的风力发电机组的控制方法的示意流程图。如图1所示,本公开的实施例提供的风力发电机组的控制方法,包括:
S101,在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况。
其中,台风预警信号是台风监测系统根据气象信息对台风监测生成的。具体来说,台风监测系统在根据气象信息,监测到台风路径经过风力发电机组所在位置的台风强度大于预设强度阈值,和/或监测到风力发电机组所在位置处于台风眼或者台风核心区域时,台风监测系统生成台风预警信号,并将台风预警信号发送至风力发电机组。其中,气象信息,可以包括但不限于:台风路径和台风强度;预设强度阈值可以根据经验值设定,举例来说,预设强度阈值为10级。
具体实施时,如图2所示,台风监测系统根据气象信息生成台风预警信号的步骤,可以包括:
步骤201,台风监测系统获取风力发电机组所在位置。具体实施时,风力发电机组所在位置可以通过风力发电机组中的定位模块进行获取。
步骤202,台风监测系统获取气象信息,气象信息可以包括但不限于:台风路径和台风强度。具体实施时,可以从气象局获取,也可以通过网络获取,本公开的实施例对此不做限定。
步骤203,台风监测系统根据风力发电机组所在位置和气象信息,判断是否符合生成台风预警信号的条件。
具体来说,若确定台风路径经过风力发电机组所在位置且台风强度大于预设强度阈值,和/或风力发电机组所在位置处于台风眼或者台风核心区 域,则判定符合生成台风预警信号的条件;若确定台风路径经过风力发电机组所在位置,且台风强度小于或等于预设强度阈值,和/或风力发电机组所在位置处于台风外围区域,则判定不符合生成台风预警信号的条件。其中,预设强度阈值可以根据经验值设定,例如,预设强度阈值为10级。
步骤204,在步骤203中判定符合生成台风预警信号的条件时,生成台风预警信号,并将生成的台风预警信号发送至风力发电机组。
当然,需要说明的是,在步骤203中判定不符合生成台风预警信号的条件时,继续执行步骤202获取气象信息,以进行台风监测。
具体实施时,在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况,可以通过风力发电机组的自检进行获取,也可以通过向机组电源系统、偏航系统及通讯系统分别发送测试指令的方式获取,本公开的实施例对此不做限定。
具体实施时,在获取风力发电机组中机组电源系统、偏航系统及通讯系统的工作状况之后,为方便根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略,可以使用状态标识位的方式记录各个系统的工作状况。例如,使用标识“1”代表系统工作正常,使用标识“0”代表系统工作异常。具体地,机组电源系统异常的情况可以包括但不限于以下几种情况:(1)因台风引起的电网掉电;(2)供电回路过流保护动作;(3)供电变压器损坏。通讯系统异常状态可以包括但不限于以下几种情况:(1)因海缆光纤损坏,风机与中央监控的通讯中断;(2)通讯交换机出现网络异常,无法与中央监控通讯。偏航系统异常可以包括但不限于以下几种情况:(1)偏航驱动电机故障;(2)偏航控制回路出现故障;(3)偏航制动系统出现故障。
S102,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略;其中,控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略。
具体实施时,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略,包括:若机组电源系统、偏航系统及通讯系统的当前工作状况均为正常,则选择主动对风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为正常,且偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
在一个实施方式中,本公开的实施例也可以将机组电源系统、偏航系统及通讯系统的当前工作状况或当前工作状况标识,输入到策略选择系统(对应图5中的处理模块)中,以确定当前工作状况对应的目标控制策略。
策略选择系统中预设机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,策略选择系统接收到输入的机组电源系统、偏航系统及通讯系统的当前工作状况或当前工作状况标识之后,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略。具体来说,如图3所示,策略选择系统确定当前工作状况对应的目标控制策略的步骤,包括:
步骤301,输入当前工作状况,也即输入风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况或者当前工作状况标识。
步骤302,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略。
具体来说,若机组电源系统、偏航系统及通讯系统的当前工作状况均为正常,则选择主动对风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为正常,且偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
步骤303,后续可以根据策略选择系统的选择,(由图5中的控制模块)控制风力发电机组执行选择的目标控制策略。
本公开的实施例中,预设的对应关系中包括的控制策略,是指预先存 储的在各种台风工况下对风力发电机组进行控制,以使风力发电机组各个部件承受较小载荷的控制策略,可以由机组人员根据经验设定。
S103,利用目标控制策略对风力发电机组进行控制。
在一个实施方式中,为了利用台风增加风力发电机组的发电量,本公开的实施例在利用S102中确定的目标控制策略对风力发电机组进行控制时,可以结合台风到达风力发电机组所在位置的时刻与当前时刻之间的时长,以在台风到达风力发电机组所在位置之前停止风力发电,而在此之前可以继续利用风力发电机组进行风力发电。
具体实施时,利用目标控制策略对风力发电机组进行控制,包括:接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长;在确定时长小于第一阈值,且目标控制策略为主动对风策略时,停止风力发电,利用主动对风策略对风力发电机组进行控制;在确定时长小于第二阈值,且目标控制策略为受控被动背风策略时,停止风力发电,利用受控被动背风策略对风力发电机组进行控制;在确定时长小于第二阈值,且目标控制策略为被动背风策略时,停止风力发电,利用被动背风策略对风力发电机组进行控制。
其中,第一阈值小于第二阈值,且第一阈值和第二阈值均可以根据经验值设定,例如,第一阈值为5分钟,第二阈值为120分钟。
具体实施时,可以周期性接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长,在台风距离风力发电机组所在位置较远时,可以设定较大的接收周期,以减小计算量;而在台风距离风力发电机组所在位置较近时,为了及时停止风力发电,执行目标控制策略,可以设定较小的接收周期。
在一个实施方式中,利用主动对风策略对风力发电机组进行控制时,根据风向变化,向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令的指示偏航至正对台风风向。
在一个实施方式中,利用被动背风策略对风力发电机组进行控制时,指示泄放偏航制动器压力或松开偏航点击刹车,并将风力发电机组的偏航系统偏航至背对台风风向。
在一个实施方式中,在利用受控被动背风策略对风力发电机组进行控制时,指示在台风到达风力发电机组所在位置之前,将风力发电机组的偏航系统偏航至背对台风风向,并在台风经过风力发电机组所在位置时,向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令松动偏航电机刹车和调节偏航制动器压力。
在一个实施方式中,为了保证在台风期间控制风力发电机组的偏航系统进行偏航时,风力发电机组有足够的扭缆裕度,本公开的实施例在利用目标控制策略对风力发电机组进行控制之前,还可以获取风力发电机组中偏航系统的扭缆裕度,在确定风力发电机组的扭缆裕度小于预设裕度阈值时,先暂停风力发电机组的工作并进行解缆操作,在执行解缆操作之后,利用目标控制策略对风力发电机组进行控制。其中,预设裕度阈值可以根据经验值设定,例如,预设裕度阈值为360度。
在一个实施方式中,在台风经过风力发电机组所在位置之后,本公开的实施例还可以检测风力发电机组是否故障,例如,对风力发电机组的各个子系统(叶片、机械部件、变桨、防雷、通讯等)进行自检,根据自检情况,确定风力发电机组是否存在故障。若检测到风力发电机组存在故障(机械故障、叶片故障、或者电气部件故障),则可以显示报警提示信息,以提示风力发电机组维修人员进行维修。
下面结合图4对根据本公开的实施例的风力发电机组的控制方法的具体流程进行详细说明。如图4所示,本公开的实施例提供的风力发电机组的控制方法的具体流程,包括:
步骤401,接收台风预警信号,也即接收台风监测系统发送的台风预警信号。其中,台风监测系统根据气象信息对台风监测,生成台风预警信号。
步骤402,风力发电机组自检。具体为通过风力发电机组的自检,确定风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况。
步骤403,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略。
具体实施时,若机组电源系统、偏航系统及通讯系统的当前工作状况 均为正常,则选择主动对风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为正常,且偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
步骤404,根据自检结果判断扭缆裕度是否小于预设裕度阈值,若是执行步骤405,否则,可以根据目标控制策略的不同选择不同的分支执行。具体来说,若目标控制策略为主动对风策略,执行步骤406执行主动对风策略;若目标控制策略为受控被动背风策略,执行步骤413执行受控被动背风策略;若目标控制策略为被动背风策略,执行步骤419执行被动背风策略。其中,预设裕度阈值可以根据经验值设定,例如,预设裕度阈值为360度。
步骤405,根据自检结果确定扭缆裕度小于预设裕度阈值时,执行解缆操作。
步骤406,根据自检结果确定扭缆裕度大于预设裕度阈值,且目标控制策略为主动对风策略时,则接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长,并判断该时长是否小于第一阈值,若是,则执行步骤407,否则,执行步骤404。其中,第一阈值可以根据经验值设定,例如,第一阈值为5分钟。
步骤407,在台风到达风力发电机组所在位置的时刻与当前时刻之间的时长小于第一阈值时,执行主动对风策略,停止风力发电机组的风力发电。
步骤408,在台风经过风力发电机组所在位置时,根据风向变化,向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令的指示偏航至正对台风风向。
步骤409,判断台风是否已经过风力发电机组所在位置,若是,执行步骤410,否则,执行步骤408继续偏航对风。
步骤410,在确定台风已经过风力发电机组所在位置时,进行风力发电机组的自检,并根据自检结果判断风力发电机组是否存在故障,若是,执行步骤411,否则,执行步骤412。
步骤411,根据自检结果确定风力发电机组是否存在故障时,显示故障报警提示信息,并进行人工检修。
步骤412,在对风力发电机组进行人工检修之后,或者根据自检结果确定风力发电机组不存在故障时,风力发电机组进入待机状态。
步骤413,根据自检结果确定扭缆裕度大于预设裕度阈值,且目标控制策略为受控被动背风策略时,则接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长,并判断该时长是否小于第二阈值,若是,则执行步骤414,否则,执行步骤404。其中,第二阈值可以根据经验值设定,例如,第二阈值为120分钟。
步骤414,在确定台风到达风力发电机组所在位置的时刻与当前时刻之间的时长小于第二阈值时,执行受控被动背风策略,停止风力发电机组的风力发电。
步骤415,指示在台风到达风力发电机组所在位置之前,将风力发电机组的偏航系统偏航至背对台风风向。
步骤416,在台风经过风力发电机组所在位置时,向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令松动偏航电机刹车和调节偏航制动器压力。
步骤417,判断台风是否已经过风力发电机组所在位置,若是,执行步骤418,否则,执行步骤416继续指示偏航系统根据控制指令松动偏航电机刹车和调节偏航制动器压力。
步骤418,在确定台风已经过风力发电机组所在位置时,对风力发电机组中存在的故障进行人工检修,在对风力发电机组进行人工检修之后,执行步骤412,风力发电机组进入待机状态。
步骤419,根据自检结果确定扭缆裕度大于预设裕度阈值,且目标控制策略为被动背风策略时,则接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长,并判断该时长是否小于第二阈值,若是,则执行步骤420,否则,执行步骤404。其中,第二阈值可以根据经验值设定,例如,第二阈值为120分钟。
步骤420,在确定台风到达风力发电机组所在位置的时刻与当前时刻 之间的时长小于第二阈值时,执行被动背风策略,停止风力发电机组的风力发电。
步骤421,指示将风力发电机组的偏航系统偏航至背对台风风向。
步骤422,指示泄放偏航制动器压力或松开偏航点击刹车。
步骤423,等待台风经过风力发电机组所在位置。
步骤424,在确定台风已经过风力发电机组所在位置时,对风力发电机组中存在的故障进行人工检修,在对风力发电机组进行人工检修之后,执行步骤412,风力发电机组进入待机状态。
上述实施例中,在接收到台风预警信号时,根据风力发电机组的当前工作状况,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略,从而能够选择出最适合风力发电机组当前工作状况的目标控制策略,提高风力发电机组在台风工况下的安全性,同时利用目标控制策略对风力发电机组进行控制,也可以降低台风期间维护人员的工作量。
基于同样的发明构思,本公开的实施例还提供了一种风力发电机组的控制装置。如图5所示,本公开的实施例提供的风力发电机组的控制装置,包括:
获取模块501,用于在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况。
处理模块502,用于根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略;其中,控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略。
控制模块503,用于利用目标控制策略对风力发电机组进行控制。
在一个实施方式中,控制装置,还包括:接收模块504,用于接收台风监测系统根据气象信息对台风监测生成的台风预警信号。
在一个实施方式中,处理模块502,具体用于:若机组电源系统、偏航系统及通讯系统的当前工作状况均为正常,则选择主动对风策略作为目 标控制策略;若机组电源系统和通讯系统的当前工作状况均为正常,且偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;若机组电源系统和通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
在一个实施方式中,控制策略为主动对风策略时,控制模块503具体用于:向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令的指示偏航至正对台风风向;控制策略为被动背风策略时,控制模块503具体用于:指示将风力发电机组的偏航系统偏航至背对台风风向;控制策略为受控被动背风策略时,控制模块503具体用于:指示将风力发电机组的偏航系统偏航至背对台风风向,并在台风经过风力发电机组所在位置时,向风力发电机组的偏航系统发送控制指令,指示偏航系统根据控制指令松动偏航电机刹车和调节偏航制动器压力。
在一个实施方式中,控制模块503,具体用于:接收预测的台风到达风力发电机组所在位置的时刻与当前时刻之间的时长;在确定时长小于第一阈值,且目标控制策略为主动对风策略时,停止风力发电,利用主动对风策略对风力发电机组进行控制;在确定时长小于第二阈值,且目标控制策略为受控被动背风策略时,停止风力发电,利用受控被动背风策略对风力发电机组进行控制;在确定时长小于第二阈值,且目标控制策略为被动背风策略时,停止风力发电,利用被动背风策略对风力发电机组进行控制;其中,第一阈值小于第二阈值。
在一个实施方式中,控制模块503,具体用于:获取风力发电机组中偏航系统的扭缆裕度;若确定扭缆裕度小于预设裕度阈值,则控制偏航系统解缆,并利用目标控制策略对风力发电机组进行控制。
在一个实施方式中,风力发电机组的控制装置设置在风力发电机组的主控制器中。
另外,本公开的实施例提供了一种风力发电机组的控制系统,风力发电机组的控制系统包括本公开的实施例提供的风力发电机组的控制装置及台风监测系统,风力发电机组的控制装置与台风监测系统通信连接。
在一个实施方式中,台风监测系统为SCADA(Supervisory Control  And Data Acquisition,数据采集与监视控制)系统。
本公开的实施例提供的风力发电机组的控制系统,在接收到台风监测系统发送的台风预警信号时,根据风力发电机组的当前工作状况,根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定当前工作状况对应的目标控制策略,从而能够选择出最适合风力发电机组当前工作状况的目标控制策略,提高风力发电机组在台风工况下的安全性,同时利用目标控制策略对风力发电机组进行控制,也可以降低台风期间维护人员的工作量。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于装置实施例而言,相关之处可以参见方法实施例的说明部分。本公开的实施例并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本公开的实施例的精神之后作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
需要明确,本公开的实施例并不局限于上文所描述并在图中示出的特定配置和处理。并且为了简明起见,这里省略对已知方法技术的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本公开的实施例的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本公开的实施例的精神之后作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本公开的实施例的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬 盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (18)

  1. 一种风力发电机组的控制方法,包括:
    在接收到台风预警信号时,获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况;
    根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定所述当前工作状况对应的目标控制策略;其中,所述控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略;
    利用所述目标控制策略对所述风力发电机组进行控制。
  2. 根据权利要求1所述的控制方法,其中所述获取风力发电机组中机组电源系统、偏航系统及通讯系统的当前工作状况之前,所述方法还包括:
    接收台风监测系统根据气象信息对台风监测生成的台风预警信号。
  3. 根据权利要求1所述的控制方法,其中所述根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定所述当前工作状况对应的目标控制策略,包括:
    若所述机组电源系统、所述偏航系统及所述通讯系统的当前工作状况均为正常,则选择主动对风策略作为目标控制策略;
    若所述机组电源系统和所述通讯系统的当前工作状况均为正常,且所述偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;
    若所述机组电源系统和所述通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
  4. 根据权利要求3所述的控制方法,其中所述利用所述主动对风策略对所述风力发电机组进行控制,包括:
    向所述风力发电机组的偏航系统发送控制指令,指示所述偏航系统根据所述控制指令的指示偏航至正对台风风向。
  5. 根据权利要求3所述的控制方法,其中所述利用所述被动背风策略 对所述风力发电机组进行控制,包括:指示将所述风力发电机组的偏航系统偏航至背对台风风向。
  6. 根据权利要求3所述的控制方法,其中所述利用所述受控被动背风策略对所述风力发电机组进行控制,包括:
    指示将所述风力发电机组的偏航系统偏航至背对台风风向,并在台风经过所述风力发电机组所在位置时,向所述风力发电机组的偏航系统发送控制指令,指示所述偏航系统根据所述控制指令松动偏航电机刹车和调节偏航制动器压力。
  7. 根据权利要求1所述的控制方法,其中所述利用所述目标控制策略对所述风力发电机组进行控制,包括:
    接收预测的台风到达所述风力发电机组所在位置的时刻与当前时刻之间的时长;
    在确定所述时长小于第一阈值,且所述目标控制策略为主动对风策略时,停止风力发电,利用所述主动对风策略对所述风力发电机组进行控制;
    在确定所述时长小于第二阈值,且所述目标控制策略为受控被动背风策略时,停止风力发电,利用所述受控被动背风策略对所述风力发电机组进行控制;
    在确定所述时长小于所述第二阈值,且所述目标控制策略为被动背风策略时,停止风力发电,利用所述被动背风策略对所述风力发电机组进行控制;
    其中,所述第一阈值小于所述第二阈值。
  8. 根据权利要求1-7中任一项所述的控制方法,其中所述利用所述目标控制策略对所述风力发电机组进行控制,包括:
    获取所述风力发电机组中偏航系统的扭缆裕度;
    若确定所述扭缆裕度小于预设裕度阈值,则控制所述偏航系统解缆,并利用所述目标控制策略对所述风力发电机组进行控制。
  9. 一种风力发电机组的控制装置,包括:
    获取模块,用于在接收到台风预警信号时,获取风力发电机组中机组 电源系统、偏航系统及通讯系统的当前工作状况;
    处理模块,用于根据预设的机组电源系统、偏航系统及通讯系统的工作状况与控制策略的对应关系,确定所述当前工作状况对应的目标控制策略;其中,所述控制策略包括:控制偏航系统正对台风风向的主动对风策略、控制偏航系统背对台风风向的受控被动背风策略及调节偏航系统背对台风风向的被动背风策略;
    控制模块,用于利用所述目标控制策略对所述风力发电机组进行控制。
  10. 根据权利要求9所述的控制装置,其中所述控制装置,还包括:
    接收模块,用于接收台风监测系统根据气象信息对台风监测生成的台风预警信号。
  11. 根据权利要求9所述的控制装置,其中所述处理模块,具体用于:
    若所述机组电源系统、所述偏航系统及所述通讯系统的当前工作状况均为正常,则选择主动对风策略作为目标控制策略;
    若所述机组电源系统和所述通讯系统的当前工作状况均为正常,且所述偏航系统的当前工作状况为异常,则选择受控被动背风策略作为目标控制策略;
    若所述机组电源系统和所述通讯系统的当前工作状况均为异常,则选择被动背风策略作为目标控制策略。
  12. 根据权利要求11所述的控制装置,其中
    所述控制策略为主动对风策略时,所述控制模块具体用于:向所述风力发电机组的偏航系统发送控制指令,指示所述偏航系统根据所述控制指令的指示偏航至正对台风风向;
    所述控制策略为被动背风策略时,所述控制模块具体用于:指示将所述风力发电机组的偏航系统偏航至背对台风风向;
    所述控制策略为受控被动背风策略时,所述控制模块具体用于:指示将所述风力发电机组的偏航系统偏航至背对台风风向,并在台风经过所述风力发电机组所在位置时,向所述风力发电机组的偏航系统发送控制指令,指示所述偏航系统根据所述控制指令松动偏航电机刹车和调节偏航制 动器压力。
  13. 根据权利要求12所述的控制装置,其中所述控制模块,具体用于:
    接收预测的台风到达所述风力发电机组所在位置的时刻与当前时刻之间的时长;
    在确定所述时长小于第一阈值,且所述目标控制策略为主动对风策略时,停止风力发电,利用所述主动对风策略对所述风力发电机组进行控制;
    在确定所述时长小于第二阈值,且所述目标控制策略为受控被动背风策略时,停止风力发电,利用所述受控被动背风策略对所述风力发电机组进行控制;
    在确定所述时长小于所述第二阈值,且所述目标控制策略为被动背风策略时,停止风力发电,利用所述被动背风策略对所述风力发电机组进行控制;
    其中,所述第一阈值小于所述第二阈值。
  14. 根据权利要求9-13中任一项所述的控制装置,其中所述控制模块,具体用于:
    获取所述风力发电机组中偏航系统的扭缆裕度;
    若确定所述扭缆裕度小于预设裕度阈值,则控制所述偏航系统解缆,并利用所述目标控制策略对所述风力发电机组进行控制。
  15. 根据权利要14所述的控制装置,其中所述控制装置设置在风力发电机组的主控制器中。
  16. 一种风力发电机组的控制系统,包括如权利要求9-15中任一项所述的风力发电机组的控制装置及台风监测系统,所述控制装置与所述台风监测系统通信连接。
  17. 根据权利要16所述的控制系统,其中所述台风监测系统为SCADA系统。
  18. 一种计算机可读存储介质,包括指令,所述指令在由处理器执行时,使得所述处理器执行如权利要求1-8中任一项所述的风力发电机组的 控制方法。
PCT/CN2018/087321 2017-12-29 2018-05-17 风力发电机组的控制方法、装置及系统 WO2019128047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/338,611 US11149713B2 (en) 2017-12-29 2018-05-17 Control method, device and system for a wind turbine
AU2018334591A AU2018334591B2 (en) 2017-12-29 2018-05-17 Control method, device and system for a wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711483516.6 2017-12-29
CN201711483516.6A CN109989883B (zh) 2017-12-29 2017-12-29 风力发电机组的控制方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019128047A1 true WO2019128047A1 (zh) 2019-07-04

Family

ID=67064995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087321 WO2019128047A1 (zh) 2017-12-29 2018-05-17 风力发电机组的控制方法、装置及系统

Country Status (3)

Country Link
US (1) US11149713B2 (zh)
CN (1) CN109989883B (zh)
WO (1) WO2019128047A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778456B (zh) * 2019-12-11 2021-07-02 湘电风能有限公司 风力发电机组偏航制动系统及其控制方法
EP4067649A1 (en) 2021-03-31 2022-10-05 Siemens Gamesa Renewable Energy A/S Operating a wind turbine in a severe weather condition
CN113175413B (zh) * 2021-04-16 2022-07-15 扬州大学 一种超大型风力机的控制方法
CN113379183A (zh) * 2021-04-28 2021-09-10 华能(浙江)能源开发有限公司玉环分公司 一种台风预警条件下控制发电机组的方法和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363404A (zh) * 2008-09-12 2009-02-11 三一电气有限责任公司 风电机组防台风运行控制方法、装置及使用该装置的机组
US20120046917A1 (en) * 2010-08-23 2012-02-23 Hsin-Fa Fang Wind energy forecasting method with extreme wind speed prediction function
CN103321840A (zh) * 2013-06-09 2013-09-25 广东明阳风电产业集团有限公司 一种风力发电场抗台风控制方法
CN204024911U (zh) * 2014-07-11 2014-12-17 天津瑞能电气有限公司 一种海上型风力发电机组安全保护装置
CN105891546A (zh) * 2016-01-26 2016-08-24 沈阳工业大学 基于大数据的风电机组偏航系统中风向标故障诊断的方法
CN106593767A (zh) * 2016-12-20 2017-04-26 北京金风科创风电设备有限公司 风力发电机偏航控制方法、恶劣风况应急控制方法及系统
CN106677983A (zh) * 2016-12-29 2017-05-17 科诺伟业风能设备(北京)有限公司 一种风力发电机组抗台风的偏航控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571334A1 (en) 2004-03-04 2005-09-07 Gamesa Eolica, S.A. (Sociedad Unipersonal) Wind turbine yawing system and yawing process
EP1890034B1 (en) 2005-05-31 2016-08-17 Hitachi, Ltd. Horizontal axis windmill
JP4690829B2 (ja) 2005-08-30 2011-06-01 富士重工業株式会社 水平軸風車
US9020650B2 (en) * 2007-02-13 2015-04-28 General Electric Company Utility grid, controller, and method for controlling the power generation in a utility grid
JP4914294B2 (ja) 2007-06-05 2012-04-11 富士重工業株式会社 水平軸風車
WO2010071339A2 (ko) * 2008-12-16 2010-06-24 Rho Young Gyu 풍력발전용 가변발전장치
DE102009030886A1 (de) * 2009-06-29 2010-12-30 Robert Bosch Gmbh Windenergieanlage mit einer Vielzahl von Windenergievorrichtungen und Verfahren zur Steuerung der Windenergieanlage
TWI498477B (zh) * 2012-04-10 2015-09-01 Delta Electronics Inc 風力發電系統
DE102013223592A1 (de) 2013-11-19 2015-05-21 Wobben Properties Gmbh Verfahren und Windenergieanlage zur Blitzwarnung
KR101637699B1 (ko) * 2014-10-20 2016-07-07 두산중공업 주식회사 풍력 발전기 속도 제어 시스템 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363404A (zh) * 2008-09-12 2009-02-11 三一电气有限责任公司 风电机组防台风运行控制方法、装置及使用该装置的机组
US20120046917A1 (en) * 2010-08-23 2012-02-23 Hsin-Fa Fang Wind energy forecasting method with extreme wind speed prediction function
CN103321840A (zh) * 2013-06-09 2013-09-25 广东明阳风电产业集团有限公司 一种风力发电场抗台风控制方法
CN204024911U (zh) * 2014-07-11 2014-12-17 天津瑞能电气有限公司 一种海上型风力发电机组安全保护装置
CN105891546A (zh) * 2016-01-26 2016-08-24 沈阳工业大学 基于大数据的风电机组偏航系统中风向标故障诊断的方法
CN106593767A (zh) * 2016-12-20 2017-04-26 北京金风科创风电设备有限公司 风力发电机偏航控制方法、恶劣风况应急控制方法及系统
CN106677983A (zh) * 2016-12-29 2017-05-17 科诺伟业风能设备(北京)有限公司 一种风力发电机组抗台风的偏航控制方法

Also Published As

Publication number Publication date
CN109989883B (zh) 2020-07-17
CN109989883A (zh) 2019-07-09
US11149713B2 (en) 2021-10-19
AU2018334591A1 (en) 2019-07-18
US20200332766A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019128047A1 (zh) 风力发电机组的控制方法、装置及系统
CN108626070B (zh) 风力发电机组的制动控制方法和系统
JP5117677B2 (ja) ウィンドファームならびにその制御方法
US10823142B2 (en) Method and system for controlling wind turbine shutdown
US11365716B2 (en) Control method and device for avoiding run-away and wind turbine
US8109723B2 (en) Device and method for controlling wind turbine
JP2012132447A (ja) 蒸気タービンの超過速度を防止する方法及びシステム
JP6827992B2 (ja) 風力発電装置及びその制御方法並びに制御プログラム
CN107630785B (zh) 一种多种工况下的风电机组保护控制系统
CN105156272A (zh) 一种风力发电机组喘流风况控制方法
US10677218B2 (en) Control of a wind turbine during recovery after a grid fault
WO2022166144A1 (zh) 偏航控制方法、装置、电子设备和存储介质
US7235996B2 (en) Functionality test method
KR20150019463A (ko) 풍력발전 단지 제어 장치 및 시스템
EP2851558B1 (en) Method of controlling a wind turbine
US20220010773A1 (en) Method for stabilising a rotor of a wind turbine
KR101682561B1 (ko) 풍력발전단지 저전압 보상 제어 방법 및 시스템
CN112186747B (zh) 应对电网稳控系统功能缺陷的断面有功控制方法和装置
CN114110550B (zh) 一种锅炉温度预测方法及系统
CN113638839B (zh) 风电机组停机保护功能自检方法及风力发电机组
CN115653831A (zh) 一种风力发电机组应急偏航控制系统和方法
CN117267048A (zh) 一种风电机组智能化应急偏航保护方法
CN112302864A (zh) 变压器信号处理装置、方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018334591

Country of ref document: AU

Date of ref document: 20180517

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894945

Country of ref document: EP

Kind code of ref document: A1