WO2019128016A1 - 发电机转子锁定销的控制系统及方法 - Google Patents

发电机转子锁定销的控制系统及方法 Download PDF

Info

Publication number
WO2019128016A1
WO2019128016A1 PCT/CN2018/085412 CN2018085412W WO2019128016A1 WO 2019128016 A1 WO2019128016 A1 WO 2019128016A1 CN 2018085412 W CN2018085412 W CN 2018085412W WO 2019128016 A1 WO2019128016 A1 WO 2019128016A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
detecting
position signal
locking
Prior art date
Application number
PCT/CN2018/085412
Other languages
English (en)
French (fr)
Inventor
翟恩地
李红峰
李康
张新刚
李晔
Original Assignee
江苏金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金风科技有限公司 filed Critical 江苏金风科技有限公司
Priority to EP18893700.7A priority Critical patent/EP3561294B1/en
Priority to AU2018396260A priority patent/AU2018396260B2/en
Priority to US16/485,656 priority patent/US11326580B2/en
Publication of WO2019128016A1 publication Critical patent/WO2019128016A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/30Commissioning, e.g. inspection, testing or final adjustment before releasing for production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/31Locking rotor in position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/326Rotor angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of wind turbines, in particular to a control system and method for a generator rotor locking pin.
  • the genset hub is required to perform a rotational fit (ie, the cab work) to match the blade installation operation.
  • a locking pin is used between the existing turning system and the generator rotor to achieve locking between the two.
  • the locking pin is fixed on the generator fixed shaft, and the matching rotor hole is disposed on the generator rotor, that is, The locking pin is fixed and the locking hole is rotated.
  • the rotor of the generator can be rotated to the rotor locking hole and the locking pin are aligned.
  • the alignment accuracy of the rotor locking hole and the locking pin is a key indicator for quickly and reliably completing the subsequent operation. .
  • the alignment of the existing rotor locking pin is mainly completed according to the operator's observation. There is an inevitable deviation in the naked eye observation, and it is difficult to ensure that the locking pin and the locking hole are accurately centered, and the centering processing time cannot be effectively controlled.
  • the present invention provides a control method and device for a generator rotor hydraulic control system, which can dynamically correct accumulated error during the operation of the hydraulic control system, thereby greatly improving the cranking system. Operational accuracy and operational reliability.
  • the control system of the generator rotor locking pin provided by the invention comprises a fixedly disposed locking pin and a rotor with a locking hole; and further comprising:
  • a detecting reference member rotatable in synchronization with the rotor, wherein the detecting hole is opened, and the detecting hole is radially disposed corresponding to the locking hole;
  • An optical quantity detecting component fixedly disposed with respect to the rotor
  • the control unit outputs a first control command to the rotor driving unit to align the locking pin and the locking hole according to the position signal of the detecting hole acquired by the optical quantity detecting unit.
  • control unit further outputs a second control command to the lock pin driving unit to lock the rotor according to the position signal of the detecting hole acquired by the optical quantity detecting unit.
  • the position signal includes at least three position signals, which are sequentially acquired based on the rotation of the rotor; wherein
  • a first position signal a position signal obtained when the signal acquisition path of the detecting portion is opposite to a physical portion of the detection reference member on the upstream side of the detection hole;
  • a third position signal a position signal obtained when the signal acquisition path of the detecting portion is opposite to a physical portion of the detection reference member on the downstream side of the detection hole.
  • the control unit outputs a first control command for rotating the preset angle to the second direction to the rotor drive according to the first position signal, the second position signal and the third position signal obtained by the rotation of the rotor in the first direction.
  • a predetermined angle is a half of a rotation angle of the detecting portion of the optical quantity detecting member with respect to the rotor in the detecting hole.
  • the optical quantity detecting means is specifically an infrared sensor, an ultrasonic sensor or a laser sensor.
  • the detecting portion of the optical quantity detecting member is disposed opposite to the indexing circle of the detecting hole.
  • the detecting reference member is a rotor, and the optical quantity detecting member is fixedly disposed on a generator fixed shaft.
  • the locking hole and the detecting hole are each a plurality of circumferentially uniform, and the diameter of the indexing circle of the detecting hole is smaller than the diameter of the indexing circle of the locking hole.
  • the invention also provides a control method for a generator rotor locking pin, comprising the following steps:
  • the first control command is output to the rotor driving member to center the locking pin and the locking hole based on the position signal of the detecting hole acquired by the optical quantity detecting part.
  • the first control command is output to the rotor drive component and the second control command is output to the lock pin drive component to lock the rotor.
  • the position signal includes at least three position signals, which are sequentially acquired based on the rotation of the rotor; wherein
  • a first position signal a position signal obtained when the signal acquisition path of the detecting portion is opposite to a physical portion of the detection reference member on the upstream side of the detection hole;
  • a third position signal a position signal obtained when the signal acquisition path of the detecting portion is opposite to a physical portion of the detection reference member on the downstream side of the detection hole.
  • the control unit outputs a first control command for rotating the preset angle to the second direction to the rotor drive according to the first position signal, the second position signal and the third position signal obtained by the rotation of the rotor in the first direction.
  • a predetermined angle is a half of a rotation angle of the detecting portion of the optical quantity detecting member with respect to the rotor in the detecting hole.
  • the present invention proposes an automatic centering reference, and a detection hole is opened on the detection reference member that rotates synchronously with the rotor, and the rotation centering process is detected in real time by using a fixed optical quantity detecting component.
  • the detection hole is arranged in the radial direction corresponding to the locking hole. Therefore, by using the detection hole as the object to be inspected, the circumferential relative position relationship of the locking hole with respect to the locking pin can be accurately determined.
  • the first control command is output to the rotor drive component, and the locking pin and the locking hole are accurately centered as the rotor rotates. In addition, in addition to obtaining accurate alignment accuracy, this solution greatly improves the efficiency of alignment.
  • At least three position signals are sequentially acquired based on the rotation of the rotor, specifically, when the signal acquisition path of the detecting portion is opposite to the detecting hole, the upstream side of the detecting hole, and the detecting reference body on the downstream side of the detecting hole, respectively.
  • the acquired position signal this setting maximizes the efficiency of the alignment process.
  • the detecting reference member is a rotor, and the corresponding optical quantity detecting member is fixedly disposed on the generator fixed shaft, that is, the additional structural member is not needed, and the existing structural member can be used to implement the present application.
  • the core design concept on the basis of obtaining better alignment accuracy, the solution realization cost is controllable.
  • FIG. 1 is a schematic view showing the cooperation of structural components of a generator rotor lock pin control system according to a specific embodiment
  • FIG. 2 is a schematic view showing the working principle of the ultrasonic sensor in the specific embodiment
  • FIG. 3 is a schematic diagram showing the relationship between the locking and detecting structures in a specific embodiment
  • FIG. 4 is a flow chart of a control method of the generator rotor locking pin in the specific embodiment.
  • FIG. 1 is a schematic diagram of the structural components of the rotor lock pin control system of the generator according to the embodiment.
  • the control system mainly includes a lock pin 2, a rotor 1, an optical quantity detecting member 3, and a control member 4.
  • the number of the pinholes 11 can be other plural, and can be comprehensively set according to factors such as the parameters of the whole machine.
  • the centering line of the locking pin coincides with the locking hole is centered, wherein the locking pin 2 can be fixedly disposed on the generator shaft (not shown), and it can be determined that the locking pin 2 is fixed It is also provided on other fixed components of the generator, and can also meet the basic functional requirements of achieving the locking of the unit in alignment with the locking hole 11.
  • the solution further includes a detection reference member rotatable in synchronization with the rotor, and the detection reference member is provided with a detection hole 12, wherein the detection hole 12 is radially disposed corresponding to the locking hole 11, thereby establishing a control object and a detection reference A correspondence.
  • the present embodiment preferably employs the rotor 1 as a detection reference member.
  • the detection reference member may be a member that is provided independently of the rotor and that can rotate in synchronization with the rotor.
  • the detection holes 12 are also twelve, and are respectively disposed radially corresponding to the twelve locking holes 11.
  • “radial corresponding setting” herein means that the detecting hole has a corresponding relationship with the locking hole in the radial direction, and is not limited to the same radial direction through the center of rotation of the rotor as shown in the drawing. Since the rotor has sufficient rigidity, the relative positional relationship between the detecting hole and the locking hole does not change, and at the same time, the locking pin 2 and the optical quantity detecting member 3 are fixed; that is, the detecting hole is provided based on the present scheme. The relative position between the locking hole and the locking hole is the same as that of the locking hole during the rotation of the rotor. When the signal acquisition path of the optical quantity detecting section 3 is aligned with the detecting hole 12, the locking pin 2 and the locking hole 11 are centered.
  • the detecting portion of the optical quantity detecting unit 3 is disposed opposite to the indexing circle of the detecting hole 12, and is controlled by a typical geometric figure, which is more convenient and reliable.
  • the locking hole 11 and the detecting hole 12 are both uniformly distributed in the circumferential direction, and the diameter of the indexing circle of the detecting hole 12 is smaller than the diameter of the indexing circle of the locking hole 11, which is more favorable for the overall layout requirement.
  • the optical quantity detecting member 3 is fixedly disposed with respect to the rotor 1, and may be fixed to the electron-generating fixed shaft in correspondence with the locking pin 2, or may be provided on a member fixed to the rotor.
  • the optical quantity detecting component 3 performs measurement according to an optical principle, and has the characteristics of being undisturbed, high-speed transmission, and telemetry. In the detection process, when the signal acquisition path corresponds to the physical structure and the virtual body structure respectively, different signals can be fed back, for example, You can choose an infrared sensor, an ultrasonic sensor, or a laser sensor.
  • the figure shows the working principle of an ultrasonic sensor as an example.
  • the sensor cannot receive the emitted light, and there is no signal feedback at this time. If the signal acquisition path of the sensor is opposite to the physical structure above or below the detection hole 12, the sensor receives the light reflected from the surface, and a signal is fed back.
  • the control unit 4 outputs a first control command to the rotor driving unit 5 according to the position signal of the detecting hole acquired by the ultrasonic sensor (the optical quantity detecting unit 3), and the locking pin 2 and the locking hole 11 are accurate as the rotor 1 rotates. Right.
  • control unit 4 can also output a second control command to the lock pin drive unit 6 to lock the rotor 1 based on the position signal of the detection hole 12 acquired by the ultrasonic sensor (the optical quantity detecting unit 3). Thereby, the unit locking operation is completed.
  • the rotor driving component 5 and the locking pin driving component 6 are not the core invention points of the present application, and therefore will not be described herein.
  • the locking pin 2 can be provided in plurality, preferably both the locking hole and the detecting hole.
  • the locking pin is 2n radially symmetrically arranged; wherein N ⁇ n ⁇ 1. With this arrangement, even-numbered locking pins 2 are radially symmetrically arranged to be effectively loaded.
  • the present embodiment further provides a control method for a generator rotor locking pin. As shown in FIG. 4, the control method includes the following steps:
  • a half of the detection position in the detection hole 12 relative to the rotation angle L of the rotor 1 is a preset angle; the threshold value may be stored in the storage unit integrated in the control unit 4, or may be stored in the storage unit independent of the control unit 4. in.
  • the position signal of the detection hole 12 is acquired by the optical quantity detecting unit 3.
  • the first control command is output to the rotor driving unit 5 to center the locking pin 2 and the corresponding locking hole 11.
  • it may further include:
  • the feedback signal of the sensor is a feedback no signal, as shown in FIG. 3, that is, the signal acquisition path of the sensor is opposite to the detecting hole 12, and the locking pin 2 is at this time. Not accurately aligned with the detection hole 12.
  • the position signal includes at least three position signals, which are sequentially acquired based on the rotation of the rotor.
  • the first position signal is a position signal obtained when the signal acquisition path of the detecting portion is opposite to the solid portion of the detecting reference member (rotor 1) on the upstream side of the detecting hole; as shown in the left diagram of Fig. 2 .
  • the second position signal is a position signal obtained when the signal acquisition path of the detecting unit is opposite to the detecting hole; as shown in FIG. 2 .
  • the third position signal is a position signal obtained when the signal acquisition path of the detecting unit is opposite to the physical portion of the detection reference member on the downstream side of the detecting hole; as shown in the right figure of FIG. 2 .
  • the amount of signal processing directly affects the amount of processing processing by the system, which directly affects the processing efficiency problem.
  • the above three position signals are preferred, and the centering processing efficiency can be maximized on the basis of ensuring the alignment accuracy.
  • the control unit 4 outputs the second direction (clockwise or counterclockwise).
  • the first control command of the preset angle is rotated to the rotor driving member 5; the predetermined angle is half of the rotation angle L of the detecting portion of the optical quantity detecting portion 3 with respect to the rotor within the detecting hole 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种发电机转子锁定销的控制系统,包括固定设置的锁定销和开设有锁定孔的转子;还包括:可与转子同步转动的检测基准件,其上开设有检测孔,且所述检测孔与所述锁定孔径向对应设置;光学量检测部件,相对于所述转子固定设置;控制部件,根据所述光学量检测部件获取的所述检测孔的位置信号,输出第一控制指令至转子驱动部件。以检测孔作为待检对象,即可精确的确定锁定孔相对于锁定销的周向相对位置关系,以此输出第一控制指令至转子驱动部件,进而随着转子的转动使得锁定销与锁定孔准确对中。此外,除获得精确对中精度外,本方案大大提高了对中处理效率。在此基础上,本发明还提供一种发电机转子锁定销的控制方法。

Description

发电机转子锁定销的控制系统及方法
本申请要求于2017年12月28日提交中国专利局的申请号为201711462367.5、发明名称为“发电机转子锁定销的控制系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及风力发电机技术领域,具体涉及一种发电机转子锁定销的控制系统及方法。
背景技术
随着风力发电机组大型化的发展,安装机组的叶片难度越来越大,叶片单独安装的方式逐渐成为趋势。在叶片单独安装过程中,需要发电机组轮毂进行转动配合(也就是盘车工作),以配合叶片的安装操作。
众所周知,在单叶片吊装过程中,需要同时对发电机转子进行锁定。通常,现有盘车系统与发电机转子之间利用锁定销来实现两者之间的锁定,锁定销固定在发电机定轴上,在发电机转子上设置有相适配的锁定孔,即锁定销是固定的,锁定孔是转动的。当需要对发电机转子进行锁定时,发电机转子可转动至其上的转子锁定孔与锁定销对中,显然,转子锁定孔和锁定销对中精度是快速可靠地完成后续操作的关键性指标。
目前,现有转子锁定销的对中主要依据操作者观察来完成,肉眼观察存在不可避免的偏差,难以保证锁定销与锁定孔准确对中,对中处理时间无法得以有效控制。
有鉴于此,亟待针对现有盘车系统进行优化设计,以有效解决盘车系统锁定销对中精度无法精确控制的问题,以确保叶片安装等后续操作快速可靠地进行。
发明内容
为解决上述技术问题,本发明提供一种发电机转子液控盘车系统的控制方法及装置,该方法和装置能够在液控盘车系统工作过程中动态修正累 积误差,从而能够大大提升盘车系统的作业精度及操作可靠性。
本发明提供的发电机转子锁定销的控制系统,包括固定设置的锁定销和开设有锁定孔的转子;还包括:
可与转子同步转动的检测基准件,其上开设有检测孔,且所述检测孔与所述锁定孔径向对应设置;
光学量检测部件,相对于所述转子固定设置;
控制部件,根据所述光学量检测部件获取的所述检测孔的位置信号,输出第一控制指令至转子驱动部件以对中所述锁定销和所述锁定孔。
优选地,所述控制部件还根据所述光学量检测部件获取的所述检测孔的位置信号,输出第二控制指令至锁定销驱动部件以锁定所述转子。
优选地,所述位置信号包括至少三个位置信号,基于所述转子的转动依次获取;其中,
第一位置信号,所述检测部的信号获取路径与所述检测孔上游侧的所述检测基准件的实体部相对时获取的位置信号;
第二位置信号,所述检测部的信号获取路径与所述检测孔相对时获取的位置信号;
第三位置信号,所述检测部的信号获取路径与所述检测孔下游侧的所述检测基准件的实体部相对时获取的位置信号。
优选地,根据所述转子沿第一方向转动获取的第一位置信号、第二位置信号和第三位置信号,所述控制部件输出向第二方向转动预设角度的第一控制指令至转子驱动部件;所述预设角度为所述光学量检测部件的检测部在所述检测孔内相对于所述转子的转动角度的一半。
优选地,所述光学量检测部件具体为红外传感器、超声波传感器或者激光传感器。
优选地,所述光学量检测部件的检测部与所述检测孔的分度圆正对设置。
优选地,所述检测基准件为转子,所述光学量检测部件固定设置在发电机定轴上。
优选地,所述锁定孔和所述检测孔均为周向均布的多个,所述检测孔的分度圆直径小于所述锁定孔的分度圆直径。
本发明还提供一种发电机转子锁定销的控制方法,包括以下步骤:
确定检测孔内的检测位置相对于转子的转动角度的一半为预设角度;
基于光学量检测部件获取的所述检测孔的位置信号,输出第一控制指令至转子驱动部件以对中所述锁定销和所述锁定孔。
优选地,输出所述第一控制指令至转子驱动部件后输出第二控制指令至锁定销驱动部件以锁定所述转子。
优选地,所述位置信号包括至少三个位置信号,基于所述转子的转动依次获取;其中,
第一位置信号,所述检测部的信号获取路径与所述检测孔上游侧的所述检测基准件的实体部相对时获取的位置信号;
第二位置信号,所述检测部的信号获取路径与所述检测孔相对时获取的位置信号;
第三位置信号,所述检测部的信号获取路径与所述检测孔下游侧的所述检测基准件的实体部相对时获取的位置信号。
优选地,根据所述转子沿第一方向转动获取的第一位置信号、第二位置信号和第三位置信号,所述控制部件输出向第二方向转动预设角度的第一控制指令至转子驱动部件;所述预设角度为所述光学量检测部件的检测部在所述检测孔内相对于所述转子的转动角度的一半。
与现有技术相比,本发明针对性的提出了自动对中基准,在与转子同步转动的检测基准件上开设有检测孔,并利用固定设置的光学量检测部件,实时检测转动对中过程中的检测孔位置信号;本方案中,检测孔与锁定孔径向对应设置,因此,以检测孔作为待检对象,即可精确的确定锁定孔相对于锁定销的周向相对位置关系,以此输出第一控制指令至转子驱动部件,进而随着转子的转动使得锁定销与锁定孔准确对中。此外,除获得精确对中精度外,本方案大大提高了对中处理效率。
在本发明的优选方案中,基于转子的转动依次获取至少三个位置信号,具体为检测部的信号获取路径分别与检测孔、检测孔上游侧和检测孔下游侧的检测基准件实体部相对时获取的位置信号;如此设置,可最大限度的提高对中处理效率。
在本发明的另一优选方案中,检测基准件为转子,与其相应的光学量 检测部件固定设置在发电机定轴上,也即无需额外增设构件,利用现有结构件即可实现本申请的核心设计构思,在获得较佳对中精度的基础上,方案实现成本可控。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为具体实施方式所述发电机转子锁定销控制系统的结构件配合示意图;
图2为具体实施方式中超声波传感器的工作原理示意图;
图3为具体实施方式中所述锁定与检测结构的关系示意图;
图4为具体实施方式中所述发电机转子锁定销的控制方法流程图。
图1-图4中:
转子1、锁定孔11、检测孔12、锁定销2、光学量检测部件3、控制部件4、转子驱动部件5、锁定销驱动部件6。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1,图1为本实施方式所述发电机转子锁定销控制系统的结构件配合示意图。图中所示,该控制系统主要包括锁定销2、转子1、光学量检测部件3和控制部件4。
其中,转子1上周上开设有十二个均布的锁定孔11,与该锁定孔11适配设置有锁定销2。应当理解,销定孔11的数量可以采用其他复数个,具体可以根据整机参数等因素进行综合设定。实际工作过程,锁定销与锁定孔的中心线重合即为对中,其中,锁定销2可以固定设置在发电机定轴 (图中未示出)上,可以确定的是,该锁定销2固定设置在发电机其他固定构件上,同样能够满足与锁定孔11对中实现机组锁止的基本功能需要。
本方案还包括可与转子同步转动的检测基准件,该检测基准件上开设有检测孔12,这里,检测孔12与锁定孔11径向对应设置,由此建立待控对象与检测基准的一一对应关系。为了控制额外构件的增加,本方案优选采用转子1作为检测基准件,当然,该检测基准件可以为独立于转子设置的、可与转子同步转动的构件。
如图1所示,检测孔12同样为十二个,分别与十二个锁定孔11径向对应设置。需要说明的是,这里的“径向对应设置”是指检测孔与锁定孔在径向上具有对应关系,而非局限于图中所示的通过转子回转中心的同一径向。由于转子具有足够的刚性,检测孔和锁定孔之间的相对位置关系不变,与此同时,锁定销2与光学量检测部件3都是固定的;也就是说,基于本方案所设检测孔与锁定孔之间的相对位置,转子转动过程中检测孔与锁定孔转动幅度一致。当光学量检测部件3的信号获取路径与检测孔12对中时,锁定销2与锁定孔11是对中的。
作为优选,光学量检测部件3的检测部与检测孔12的分度圆正对设置,以典型几何图形为控制依据,更加方便可靠实现方案。另外,锁定孔11和检测孔12均为周向均布的多个,检测孔12的分度圆直径小于锁定孔11的分度圆直径,更利于总体布局要求。
其中,光学量检测部件3相对于转子1固定设置,可以与锁定销2一致固定在发电子定轴上,也可以设置在相对于转子固定的构件上。该光学量检测部件3依据光学原理进行测量,具有不受干扰、高速传输以及可遥测等特点;检测过程中,其信号获取路径分别对应实体结构和虚体结构时,可反馈不同信号,例如,可以选择红外传感器、超声波传感器或者激光传感器等。
具体如图2所示,该图示出了以超声波传感器为例的工作原理。当传感器的信号获取路径与检测孔12相对时,传感器无法接收到发射回来的光,此时反馈无信号。如果传感器的信号获取路径与检测孔12上方或下方的实体结构相对时,传感器就会接收到表面反射回来的光,此时反馈有信号。
其中,控制部件4根据前述超声传感器(光学量检测部件3)获取的检测孔的位置信号,输出第一控制指令至转子驱动部件5,随着转子1的转动使得锁定销2与锁定孔11准确对中。
进一步地,控制部件4还可以根据超声传感器(光学量检测部件3)获取的检测孔12位置信号,输出第二控制指令至锁定销驱动部件6以锁定转子1。由此,完成机组锁止操作。应当理解,转子驱动部件5及锁定销驱动部件6非本申请的核心发明点所在,故本文不再赘述。
众所周知,转子1外形尺寸及自重均较大,锁定销2的插入过程不排除存在微小转动惯量,为了获得更加稳定的锁止动作,锁定销2可以设置为多个,优选锁定孔和检测孔均为2N个,锁定销为径向对称设置的2n个;其中,N≥n≥1。如此设置,偶数个锁定销2径向对称设置可以有效均载。
除前述控制系统外,本实施方式还提供一种发电机转子锁定销的控制方法,结合图4所示,该控制方法包括以下步骤:
S1、确定预设角度。
具体以检测孔12内的检测位置相对于转子1的转动角度L的一半为预设角度;该阈值可以储存在控制部件4集成的存储单元中,也可以储存在独立于控制部件4的存储单元中。
S2、利用光学量检测部件3获取检测孔12的位置信号。
S3、基于光学量检测部件3获取的检测孔12的位置信号,输出第一控制指令至转子驱动部件5以对中锁定销2和相应的锁定孔11。
为了进一步提高该控制方案的自动化程度及处理效率,还可以进一步包括:
S4、输出第一控制指令至转子驱动部件5后输出第二控制指令至锁定销驱动部件6,以锁定转子1。
通常,转子转动的某一时刻,传感器(光学量检测部件3)反馈信号为反馈无信号,结合图3所示,也就是说,传感器的信号获取路径与检测孔12相对,此时锁定销2与检测孔12并未精准对中。为了进一步提高控制精度,结合图2所示,作为优选,所述位置信号包括至少三个位置信号,基于所述转子的转动依次获取。
其中,第一位置信号为所述检测部的信号获取路径与所述检测孔上游 侧的检测基准件(转子1)的实体部相对时所获取的位置信号;如图2左图所示。
其中,第二位置信号为所述检测部的信号获取路径与所述检测孔相对时获取的位置信号;如图2中图所示。
其中,第三位置信号为所述检测部的信号获取路径与所述检测孔下游侧的所述检测基准件的实体部相对时获取的位置信号;如图2右图所示。
信号处理量直接影响到系统处理运算量,进而直接影响到处理效率问题,优选上述三个位置信号,在确保对中精度的基础上,可最大限度的提高对中处理效率。具体地,根据转子1沿第一方向(逆时针或顺时针)转动获取的第一位置信号、第二位置信号和第三位置信号,控制部件4输出向第二方向(顺时针或逆时针)转动预设角度的第一控制指令至转子驱动部件5;该预设角度为光学量检测部件3的检测部在检测孔12内相对于所述转子的转动角度L的一半。
需要说明的是,本实施方式提供的上述实施例,并非局限于图1所示具有十二个锁定孔、两个锁定销和一个光学量检测部件的描述基础,应当理解,只要核心构思与本方案一致均在本申请请求保护的范围内。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 发电机转子锁定销的控制系统,包括:
    固定设置的锁定销;和
    开设有锁定孔的转子;其特征在于,还包括:
    可与转子同步转动的检测基准件,其上开设有检测孔,且所述检测孔与所述锁定孔径向对应设置;
    光学量检测部件,相对于所述转子固定设置;
    控制部件,根据所述光学量检测部件获取的所述检测孔的位置信号,输出第一控制指令至转子驱动部件以对中所述锁定销和所述锁定孔。
  2. 如权利要求1所述的发电机转子锁定销的控制系统,其特征在于,所述控制部件,还根据所述光学量检测部件获取的所述检测孔的位置信号,输出第二控制指令至锁定销驱动部件以锁定所述转子。
  3. 如权利要求1或2所述的发电机转子锁定销的控制系统,其特征在于,所述位置信号包括至少三个位置信号,基于所述转子的转动依次获取;其中,
    第一位置信号,所述检测部的信号获取路径与所述检测孔上游侧的所述检测基准件的实体部相对时获取的位置信号;
    第二位置信号,所述检测部的信号获取路径与所述检测孔相对时获取的位置信号;
    第三位置信号,所述检测部的信号获取路径与所述检测孔下游侧的所述检测基准件的实体部相对时获取的位置信号。
  4. 如权利要求3所述的发电机转子锁定销的控制系统,其特征在于,根据所述转子沿第一方向转动获取的第一位置信号、第二位置信号和第三位置信号,所述控制部件输出向第二方向转动预设角度的第一控制指令至转子驱动部件;所述预设角度为所述光学量检测部件的检测部在所述检测孔内相对于所述转子的转动角度的一半。
  5. 如权利要求1所述的发电机转子锁定销的控制系统,其特征在于,所述光学量检测部件具体为红外传感器、超声波传感器或者激光传感器。
  6. 如权利要求5所述的发电机转子锁定销的控制系统,其特征在于,所述光学量检测部件的检测部与所述检测孔的分度圆正对设置。
  7. 如权利要求1所述的发电机转子锁定销的控制系统,其特征在于,所述检测基准件为转子,所述光学量检测部件固定设置在发电机定轴上。
  8. 如权利要求7所述的发电机转子锁定销的控制系统,其特征在于,所述锁定孔和所述检测孔均为周向均布的多个,所述检测孔的分度圆直径小于所述锁定孔的分度圆直径。
  9. 发电机转子锁定销的控制方法,其特征在于,包括以下步骤:
    确定检测孔内的检测位置相对于转子的转动角度为预设角度;
    基于光学量检测部件获取的所述检测孔的位置信号,输出第一控制指令至转子驱动部件以对中所述锁定销和所述锁定孔。
  10. 如权利要求9所述的发电机转子锁定销的控制方法,其特征在于,输出所述第一控制指令至转子驱动部件后输出第二控制指令至锁定销驱动部件以锁定所述转子。
  11. 如权利要求9或10所述的发电机转子锁定销的控制方法,其特征在于,所述位置信号包括至少三个位置信号,基于所述转子的转动依次获取;其中,
    第一位置信号,所述检测部的信号获取路径与所述检测孔上游侧的所述检测基准件的实体部相对时获取的位置信号;
    第二位置信号,所述检测部的信号获取路径与所述检测孔相对时获取的位置信号;
    第三位置信号,所述检测部的信号获取路径与所述检测孔下游侧的所述检测基准件的实体部相对时获取的位置信号。
  12. 如权利要求11所述的发电机转子锁定销的控制方法,其特征在于,根据所述转子沿第一方向转动获取的第一位置信号、第二位置信号和第三位置信号,所述控制部件输出向第二方向转动预设角度的第一控制指令至转子驱动部件;所述预设角度为所述光学量检测部件的检测部在所述检测孔内相对于所述转子的转动角度的一半。
PCT/CN2018/085412 2017-12-28 2018-05-03 发电机转子锁定销的控制系统及方法 WO2019128016A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18893700.7A EP3561294B1 (en) 2017-12-28 2018-05-03 System and method for controlling generator rotor locking pin
AU2018396260A AU2018396260B2 (en) 2017-12-28 2018-05-03 System and method for controlling generator rotor locking pin
US16/485,656 US11326580B2 (en) 2017-12-28 2018-05-03 System and method for controlling generator rotor locking pin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711462367.5A CN109973318B (zh) 2017-12-28 2017-12-28 发电机转子锁定销的控制系统及方法
CN201711462367.5 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019128016A1 true WO2019128016A1 (zh) 2019-07-04

Family

ID=67063010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085412 WO2019128016A1 (zh) 2017-12-28 2018-05-03 发电机转子锁定销的控制系统及方法

Country Status (5)

Country Link
US (1) US11326580B2 (zh)
EP (1) EP3561294B1 (zh)
CN (1) CN109973318B (zh)
AU (1) AU2018396260B2 (zh)
WO (1) WO2019128016A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768100B1 (en) * 2000-10-27 2004-07-27 Gsi Lumonics Corporation Continuous position calibration for servo controlled rotary system
WO2013032112A1 (ko) * 2011-08-30 2013-03-07 대우조선해양 주식회사 풍력 발전기의 로터 잠금 시스템 및 방법
CN205330887U (zh) * 2016-01-25 2016-06-22 上海华仪风能电气有限公司 一种风力发电机风轮自动锁定装置
CN206000679U (zh) * 2016-08-25 2017-03-08 青岛华创风能有限公司 直驱发电机组风轮位置定位系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058746A1 (de) * 2007-06-18 2008-12-24 Hanning & Kahl Gmbh & Co. Kg Arretierungsvorrichtung für eine Windturbine
ES2410104T3 (es) * 2010-01-11 2013-07-01 Alstom Wind Sl Dispositivo de bloqueo de un accionamiento auxiliar de un aerogenerador
CN102226445B (zh) * 2011-05-12 2015-02-11 江苏金风科技有限公司 一种风机叶轮锁定装置及风力发电机组
WO2013042279A1 (ja) * 2011-09-22 2013-03-28 三菱重工業株式会社 再生エネルギー型発電装置及びそのロータ固定方法
CN202370759U (zh) * 2011-11-22 2012-08-08 三一电气有限责任公司 一种盘车驱动调整装置及风力发电机
CN202451374U (zh) * 2012-02-15 2012-09-26 三一电气有限责任公司 一种盘车装置及风机
CN202991361U (zh) * 2012-12-14 2013-06-12 北车风电有限公司 新型风力发电机组液压锁销对中装置
JP6000375B2 (ja) * 2012-12-19 2016-09-28 三菱重工業株式会社 風力発電装置及びそのロータヘッド回転ロック方法
CN103410683B (zh) * 2013-08-22 2015-11-11 南车株洲电力机车研究所有限公司 一种大功率风电机组的高低速轴盘车装置及其使用方法
CN103644082B (zh) * 2013-11-14 2016-11-09 上海华仪风能电气有限公司 兆瓦级风力发电机风轮锁定装置
DE102014208468A1 (de) * 2014-05-06 2015-11-12 Wobben Properties Gmbh Azimutverstellung einer Windenergieanlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768100B1 (en) * 2000-10-27 2004-07-27 Gsi Lumonics Corporation Continuous position calibration for servo controlled rotary system
WO2013032112A1 (ko) * 2011-08-30 2013-03-07 대우조선해양 주식회사 풍력 발전기의 로터 잠금 시스템 및 방법
CN205330887U (zh) * 2016-01-25 2016-06-22 上海华仪风能电气有限公司 一种风力发电机风轮自动锁定装置
CN206000679U (zh) * 2016-08-25 2017-03-08 青岛华创风能有限公司 直驱发电机组风轮位置定位系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561294A4

Also Published As

Publication number Publication date
EP3561294A1 (en) 2019-10-30
AU2018396260A1 (en) 2019-08-08
EP3561294B1 (en) 2022-07-27
US11326580B2 (en) 2022-05-10
US20190360466A1 (en) 2019-11-28
CN109973318A (zh) 2019-07-05
EP3561294A4 (en) 2020-01-15
CN109973318B (zh) 2020-04-10
AU2018396260B2 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US20080157705A1 (en) Magnetic Absolute Encoder
EP2489988A2 (en) Servo motor manufacturing method, servo motor manufacturing apparatus, servo motor, and encoder
CN110691907B (zh) 与风轮机转子角感测系统有关的改进
KR20090122135A (ko) 광속 주사장치, 레이저 가공장치, 시험방법 및 레이저 가공방법
US9638169B2 (en) Method for setting a pitch reference point for a wind turbine blade on a rotor
CN102226445A (zh) 一种风机叶轮锁定装置及风力发电机组
CN104849056A (zh) 发动机测试的对中检具与对中方法
CN103352800B (zh) 一种风电机组的独立变桨方法与独立变桨控制装置
WO2019128016A1 (zh) 发电机转子锁定销的控制系统及方法
CN105598534A (zh) 一种蜗轮副传动精度临床检测装置及检测方法
JP2010085385A (ja) 回転円板の偏心測定方法、ロータリーエンコーダ及び回転体制御装置
CN202517310U (zh) 一种偏心回转体加工用夹具
KR102224333B1 (ko) Cnc공작기계 스핀들주축의 런아웃 검사장치 및 검사방법
US20150123403A1 (en) Wind power turbine for generating electric energy
EP4011763A1 (en) Method and system for testing a sensor of a propeller blade angle position feedback system
CN108120846B (zh) 旋转感测装置及旋转感测方法
CN206514813U (zh) 一种涡轮增压器转子自动检测与加工装置
US9926786B2 (en) Method for joining at least two rotor elements of a turbomachine
SE524366C2 (sv) Metod och anordning för inriktning av komponenter
CN114629411A (zh) 一种用于缝纫机伺服电机的开机零位搜寻方法
NL2026745B1 (en) Method for centering bolt groups of offshore wind turbine based on visual tracking
EP2713139B1 (en) External form measuring apparatus
CN105499628B (zh) 一种钻模板辐射线销孔的加工方法
CN111347284A (zh) 一种车床轮毂加工中在线动平衡检调装置及检调方法
JP3204906U (ja) 角度計測用工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018893700

Country of ref document: EP

Effective date: 20190723

ENP Entry into the national phase

Ref document number: 2018396260

Country of ref document: AU

Date of ref document: 20180503

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE