WO2019127977A1 - 多线激光测距装置以及机器人 - Google Patents

多线激光测距装置以及机器人 Download PDF

Info

Publication number
WO2019127977A1
WO2019127977A1 PCT/CN2018/082559 CN2018082559W WO2019127977A1 WO 2019127977 A1 WO2019127977 A1 WO 2019127977A1 CN 2018082559 W CN2018082559 W CN 2018082559W WO 2019127977 A1 WO2019127977 A1 WO 2019127977A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
line laser
control module
ranging device
Prior art date
Application number
PCT/CN2018/082559
Other languages
English (en)
French (fr)
Inventor
杨勇
宫海涛
余谦
Original Assignee
深圳市杉川机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杉川机器人有限公司 filed Critical 深圳市杉川机器人有限公司
Publication of WO2019127977A1 publication Critical patent/WO2019127977A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of laser ranging, and in particular to a multi-line laser ranging device and a robot.
  • Multi-line laser radar technology is mainly used in auto-driving and autonomous mobile robots. Its main function is to scan and obtain environmental information, compared with single-line laser radar. Multi-line laser radar technology can perceive discrete 3D information, and the angle is more abundant, including 4 lines, 16 lines, 32 lines, 64 lines, and so on. Multi-line laser radars are based on the TOF (Time of Flight) principle. The cost is relatively high and the production process is relatively complicated. Therefore, the existing laser ranging devices are mainly single lines.
  • an embodiment of the present application provides a multi-line laser ranging device, including a control module and a plurality of laser transceiver modules connected to the control module, each of the laser transceiver modules including a pair of transmitting modules And a receiving module, each of the transmitting modules configured to, when measuring the distance of the first object having the first medium, simultaneously emit the first light having the first wavelength to the first object at respective preset emission angles;
  • the receiving module is configured to receive the first reflected light formed by the reflection of the first light emitted by the mutually matching transmitting module through the first object;
  • the control module is configured to receive the first reflected light according to each receiving module Calculating a first distance from the first object to the multi-line laser ranging device; wherein a predetermined emission angle of the transmitting module included in each laser transceiver module is different.
  • each of the transmitting modules is further configured to transmit to the second object at a respective preset emission angle when measuring the distance of the second object having the second medium. a second light of two wavelengths; each receiving module is further configured to receive a second reflected light formed by the second light emitted by the mutually matching transmitting module after being reflected by the second object; the control module is further configured to be configured according to The second reflected light obtained by each receiving module is divided to obtain a second distance from the second object to the multi-line laser ranging device.
  • each of the receiving modules includes: a light filtering unit configured to filter out a third light having the first wavelength of the first reflected light, and filter out the second Having a fourth light having the second wavelength in the reflected light;
  • the light sensing unit is coupled to the control module, configured to receive the third light, convert it into a first electrical signal, and convert the first electrical Transmitting a signal to the control module, and receiving the fourth light, converting it into a second electrical signal, and transmitting the second electrical signal to the control module;
  • the control module being configured to be configured according to the An electrical signal is calculated to obtain the first distance, and the second distance is calculated based on the second electrical signal.
  • control module is configured to calculate, according to the position information of the third light carried in the first electrical signal, the first object and the first line of the multi-line laser ranging device. distance.
  • control module when the first distance is multiple, is further configured to perform different detection functions according to the plurality of the first distances, according to different The detection function performs a corresponding operation, wherein a first distance corresponds to a detection function.
  • the optical filter unit is a dual filter switch, comprising: a first filter configured to filter out the third light; and a second filter configured to filter out The fourth light ray; a filter switching structure is connected to the control module, and the first filter and the second filter are both disposed in the filter switching structure, and the control module Configuring to switch the current filter to the first filter when measuring the distance of the first object, and to control the distance when measuring the distance of the second object A filter switching structure switches the current filter to the second filter.
  • the optical filter unit is a bimodal filter
  • the spectral characteristic curve of the bimodal filter has a first peak of the first wavelength
  • the dual peak filter The sheet is configured to filter out the third light
  • the spectral characteristic has a second peak of the second wavelength
  • the dual peak filter configured to filter out the fourth light.
  • the light sensing unit is an image sensor.
  • the transmitting module is a tunable laser, and is connected to the control module, and an output spectral coverage of the tunable laser includes the first wavelength and the second wavelength.
  • the control module is configured to control the tunable laser to emit the first light and the second light.
  • the multi-line laser ranging device further includes: a receiving lens configured to converge the first reflected light to enable the receiving module to receive the first reflection after convergence And concentrating the second reflected light to cause the receiving module to receive the second reflected light after convergence.
  • the multi-line laser ranging device further includes: an emitting lens configured to converge the first light to illuminate the first light after the convergence to the first object a surface, and concentrating the second light to illuminate the second light after convergence onto a surface of the second object.
  • the multi-line laser ranging device further includes: a display module connected to the control module and configured to display the measurement result of the multi-line laser ranging device.
  • the number of the laser transceiver modules is two.
  • one of the laser transceiver modules is configured to construct a map, and the other of the laser transceiver modules is configured to evade obstacles.
  • the embodiment of the present invention provides a robot, comprising: a robot body, wherein the multi-line laser ranging device according to any one of the above embodiments is disposed on the robot body, and the robot body is configured according to the The measurement results of the multi-line laser ranging device perform corresponding actions.
  • An embodiment of the present application provides a multi-line laser ranging device and a robot, including a control module and a plurality of laser transceiver modules connected to the control module, each of the laser transceiver modules including a pair of transmitting modules and receiving a module, wherein, for each of the laser transceiver modules, the first light having the first wavelength may be transmitted to the first object according to a preset emission angle, and each receiving module may receive the first emitted by the matching transmitting module a first reflected light formed by the light being reflected by the first object; the control module configured to calculate the first object to the multi-line laser ranging device according to the first reflected light obtained by each receiving module The first distance passes the launch problem.
  • the control module can be configured to implement different detection functions according to the plurality of first distances.
  • FIG. 1 is a schematic structural view of a multi-line laser ranging device according to a first embodiment of the present application
  • FIG. 2 is a schematic diagram of an embodiment of a multi-line laser ranging device according to a first embodiment of the present application
  • Figure 3 is a circuit diagram of Figure 2;
  • FIG. 4 is a schematic diagram of a spectral characteristic curve of a first filter provided by the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of a spectral characteristic curve of a second filter provided by the first embodiment of the present application.
  • FIG. 6 is a schematic diagram of a spectral characteristic curve of a dual peak filter provided by the first embodiment of the present application.
  • Icon 10-multi-line laser ranging device; 100-control module; 200-laser transceiver module; 210-transmit module; 211-emitter lens; 220-receive module; 221-light filter unit; 222-light sensor unit; - receiving lens; 300 - display module.
  • the orientation or positional relationship of the indications is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship that is conventionally placed when the invention product is used, for the convenience of describing the present application and simplifying the description, rather than indicating or implying
  • the device or component referred to must have a particular orientation, is constructed and operated in a particular orientation, and thus is not to be construed as limiting the application.
  • the terms “first”, “second”, “third”, and the like are used merely to distinguish a description, and are not to be construed as indicating or implying a relative importance.
  • horizontal simply means that its direction is more horizontal than “vertical”, and does not mean that the structure must be completely horizontal, but may be slightly inclined.
  • the embodiment provides a multi-line laser ranging device 10 including a control module 100 and a plurality of laser transceiver modules 200 connected to the control module 100 .
  • Each of the laser transceiver modules 200 includes a transmitting module 210 and a receiving module 220 that are paired with each other.
  • each of the receiving modules 220 in each of the laser transceiver modules 200 is connected to the control module 100.
  • the model of the control module 100 may be the chip LPC54628.
  • the model of the laser transceiver module 200 may be DLISTM2K. It should be noted that, in the present application, the type of the control module is not limited to LPC54628, and may be other models capable of realizing the above functions. Similarly, the model of the laser transceiver module 200 is not limited to DLISTM2K, and may be other models capable of achieving the above functions. This is not specifically limited in the present application.
  • the functions of the transmitting module 210, the receiving module 220 and the control module 100 are described as follows:
  • Each of the transmitting modules 210 is configured to, when measuring the distance of the first object having the first medium, simultaneously emit the first light having the first wavelength to the first object at a respective preset emission angle;
  • Each receiving module 220 is configured to receive a first reflected light formed by the first light emitted by the matching matching transmitting module after being reflected by the first object;
  • the control module 100 is configured to calculate, according to the first reflected light obtained by each receiving module, a first distance from the first object to the multi-line laser ranging device; wherein each laser transceiver module 200 The preset transmission angles of the included transmission modules are different.
  • the transmitting module 210 emits a laser beam to the object to be tested (where the object to be tested is the first object described above or the second object described in the following embodiments) ( For example, the first light having the first wavelength described above, the laser beam emitted by the transmitting module 210 is reflected by the surface of the object to be tested to form a reflected light (ie, the first light described above is reflected by the first object). The first reflected light formed afterwards).
  • the receiving module 220 paired with the transmitting module 210 is configured to receive the reflected light.
  • the object to be tested shown in FIG. 1 refers to the first object described above or the second object described in the following embodiments. If the object to be tested is a plurality of objects, the object to be tested may also be the Nth object, which is not specifically limited in this embodiment.
  • the control module 100 calculates the distance between the object to be tested and the multi-line laser ranging device according to the relationship between the transmitted signal and the received signal.
  • Control module 200 is also configured to control normal operation between transmit module 210 and receive module 220.
  • control module is respectively connected to the paired transmitting module 210 and the receiving module 220.
  • control module 200 can be configured according to the first light (ie, the transmitted signal) and the first reflected light.
  • the relationship between (ie, received signals) is calculated to obtain the distance between the object to be tested and the multi-line laser ranging device.
  • the number of the laser transceiver modules is multiple, and each of the laser transceiver modules includes a transmitting module 210 and a receiving module 220 that are paired with each other. That is to say, the plurality of laser transceiver modules comprise a plurality of mutually coupled transmitter modules 210 and receiver modules 220. And the preset transmission angles of the transmission modules included in each of the laser transceiver modules 200 are different.
  • each of the transmitting modules 210 may simultaneously emit a first light having a first wavelength to the first object at a respective preset emission angle when measuring a distance of the first object having the first medium. . It is worth noting that each of the transmitting modules 210 is configured with different laser emission angles. When the laser emission angle is stored in the processor inside the transmitting module 210, the transmitting module 210 will always use the laser emitting angle. As a preset emission angle of each of the transmitting modules 210, the laser beam is emitted by each of the transmitting modules 210 according to the preset emission angle.
  • the transmitting module 210 is generally a laser.
  • the multi-line laser ranging device further includes: an emitting lens 211 configured to converge the first light to illuminate the first light after the convergence to the surface of the first object, And concentrating the second light to cause the second light after convergence to illuminate the surface of the second object.
  • an emitting lens 211 is disposed between the transmitting module 210 and the object to be tested, and the emitting lens 211 converges on the first light, and the directionality of the light after convergence is good, which helps to improve multi-line laser measurement. Laser ranging accuracy from the device.
  • each receiving module 220 can receive the first reflected light formed by the first light emitted by the mutually matching transmitting module 210 after being reflected by the first object.
  • the receiving end of the existing laser range finder generally can only receive and process light having a specific wavelength in the reflected light, and the specific wavelength refers to the wavelength of the laser light emitted by the transmitting end, and the specific wavelength of the light refers to the emission.
  • the light emitted by the end is reflected by the object to be tested.
  • the reflected light includes light having other wavelengths, such as light from the external environment. Therefore, in the prior art, it is common to set a filter at the receiving end to match the specific wavelength.
  • the film filters out interference from other wavelengths of light in the reflected light.
  • the receiving module 220 of the multi-line laser ranging device 10 provided by the embodiment of the present application can receive and process at least a light having a first wavelength in the first reflected light, which is called a third light, wherein the first reflected light is The reflected light produced by the first light having the first wavelength.
  • the receiving module 220 of the multi-line laser ranging device 10 provided by the embodiment of the present application is further capable of receiving and processing light having a second wavelength in the second reflected light, which is called four rays, wherein the second reflected light is The reflected light produced by the second light of two wavelengths.
  • each receiving module 220 includes: a light filtering unit 221 and a light sensing unit 222, where:
  • the light filtering unit 221 is configured to filter out a third light having the first wavelength of the first reflected light, and filter out a fourth light having the second wavelength of the second reflected light;
  • the light sensing unit 222 is connected to the control module 100 for receiving the third light, converting it into a first electrical signal, and transmitting the first electrical signal to the control module. And receiving the fourth light, converting it into a second electrical signal, and transmitting the second electrical signal to the control module;
  • the control module 100 is configured to calculate the first distance according to the first electrical signal, and calculate the second distance according to the second electrical signal.
  • the multi-line laser ranging device 10 can perform ranging using a laser triangulation method.
  • Each of the receiving modules 220 of the multi-line laser ranging device 10 may include a light filtering unit 221 and a light sensing unit 222 connected to the control module 100.
  • the light filtering unit 221 is disposed between the light sensing unit 222 and the object to be tested, and the light filtering unit 221 can filter the first reflected light and obtain a third light, wherein the third light is the first reflection. Light with a first wavelength in the light.
  • the light sensing unit 222 mainly functions as a photoelectric conversion, converts the third light into a first electrical signal and sends it to the control module 100, where the first electrical signal includes position information of the third light, and the control module 100 Calculating a first distance between the first object and the multi-line laser ranging device 10, that is, calculating a first distance between the first object and the multi-line laser ranging device 10, that is, calculating the first position of the object to be tested and the multi-line laser ranging device 10 distance.
  • control module when the first distance is multiple, is further configured to perform different detection functions according to the plurality of the first distances, to perform corresponding according to different detection functions.
  • the control module 100 can acquire the first distance corresponding to the number of the laser transceiver modules 200 during one ranging process, that is, The first distance. At this time, the control module 100 can be used to implement different detection functions according to a plurality of first distances, and perform corresponding operations.
  • the number of the laser transceiver modules 200 is two as shown in FIG. 1.
  • the two laser transceiver modules 200 are taken as an example to describe the configuration of the control module 100 when the first distance is multiple. According to a plurality of first distances, respectively, different detection functions are performed to perform corresponding operations according to different detection functions.
  • the control module 100 can construct a map according to a first distance obtained by one of the laser transceiver modules 200, and the control module 100 can also according to another laser.
  • the first distance obtained by the transceiver module 200 is used to evade obstacles.
  • the number of the laser transceiver modules 200 is not limited to two, and may be greater than two. This embodiment is not specifically limited.
  • FIG. 2 and FIG. 3 show three cases of the laser transceiver module 200 in the embodiment of the present application.
  • each of the transmitting modules 210 is further configured to, when measuring the distance of the second object having the second medium, simultaneously transmit to the second object at a respective preset emission angle. a second ray of two wavelengths; each receiving module 220 is further configured to receive a second reflected ray formed by the second ray emitted by the mutually matching transmitting module and reflected by the second object; the control module 100 is further used And obtaining a second distance from the second object to the multi-line laser ranging device according to the second reflected light obtained by each receiving module.
  • control module 200 is further configured to control the lasers of different wavelengths to be measured when the objects of different media are measured between the transmitting module 210 and the receiving module 220.
  • Each of the transmitting modules 210 may emit a first light having a first wavelength to the first object when measuring a distance of the first object having the first medium; each of the transmitting modules 210 may also measure the second having the second medium When the distance of the object is, a second light having a second wavelength is emitted to the second object.
  • the laser in the embodiment of the present application can generate at least a laser beam having two wavelengths, that is, a first light having a first wavelength and a second light having a second wavelength.
  • the first light and the second light are generally near-infrared or infrared light, and the wavelength thereof is preset.
  • the first wavelength is 650 nm
  • the second wavelength is 850 nm. It can be understood that the above wavelength values are only for the convenience of illustrating the example, and the actual values of the first wavelength and the second wavelength are not taken. Values constitute any limit.
  • the transmitting module 210 is a tunable laser connected to the control module 100, and the output spectral coverage of the tunable laser includes the first wavelength and the second wavelength.
  • the control module 100 is configured to control the tunable laser to emit the first light and the second light.
  • the laser used by each of the transmitting modules 210 may be a tunable laser, and the tunable laser refers to a laser that can continuously change the wavelength of the output laser beam within a certain range.
  • a tunable laser having a spectral coverage of 650 nm and 850 nm may be selected.
  • the transmitting module 210 can also use a multi-wavelength laser, which can output a preset laser beam of various wavelengths, and select a multi-wavelength laser with an output wavelength of 650 nm and 850 nm.
  • each of the transmitting modules 210 may be constructed using a common single-wavelength laser combination, for example, using two single-wavelength lasers having output laser wavelengths of 650 nm and 850 nm, respectively, and the control module 100 controls that only one of the lasers is active at a time.
  • the state outputs a laser beam of a corresponding wavelength.
  • the first object having the first medium generally refers to an object having a medium suitable for ranging using a laser of a first wavelength, and is not specific to a specific one.
  • a second object having a second medium generally refers to an object having a medium suitable for ranging using a laser of a second wavelength, and does not specifically refer to a specific object. It is possible to determine in advance by other experimental means which medium is suitable for ranging using a laser of a first wavelength, classifying it as a first medium; and determining which medium is suitable for ranging using a laser of a second wavelength, classifying it For the second medium.
  • the medium to be formed is judged. If the object to be tested belongs to the first medium, the object to be tested is the first object. At this time, the laser of the first wavelength is used for measurement, and the measurement is used.
  • the laser having the first wavelength is called the first light, and the first light is emitted to the surface of the first object; if the object to be tested belongs to the second medium, the object to be tested is the second object, and at this time, the second wavelength is used.
  • the laser is measured, and the laser having the second wavelength used for the measurement is referred to as a second light, and the second light is emitted to the surface of the second object.
  • the object to be tested shown in FIG. 1 may be the first object or the second object.
  • the method for measuring the distance of the object to be tested is the same when the object to be tested is the first object and the object to be tested is the second object. The application will not be specifically introduced.
  • the manner of dividing the medium can be more complicated, for example, it can also include a third medium suitable for ranging using a laser of a third wavelength, suitable for using a fourth wavelength.
  • the laser performs the fourth medium of ranging, and so on.
  • the laser of each transmitting module 210 should also be capable of correspondingly outputting a laser having a third wavelength and a laser beam having a fourth wavelength.
  • each receiving module 220 can receive a first reflected light formed by the first light emitted by the mutually matching transmitting module 210 after being reflected by the first object, and a second formed by receiving the second light reflected by the second object. Two reflected light.
  • the receiving module 220 of the multi-line laser ranging device 10 provided by the embodiment of the present application can receive and process at least a light having a first wavelength in the first reflected light, that is, a reflected light generated by the first light having the first wavelength.
  • the third light is called, and the light having the second wavelength in the second reflected light, that is, the reflected light generated by the first light having the first wavelength, is called four rays.
  • the multi-line laser ranging device 10 can perform ranging using a laser triangulation method.
  • Each of the receiving modules 220 can include a light filtering unit 221 and a light sensing unit 222 connected to the control module 100.
  • the light filtering unit 221 is disposed between the light sensing unit 222 and the object to be tested, and can filter and obtain the first reflected light.
  • the light sensing unit 222 mainly functions as a photoelectric conversion, converts the third light into a first electrical signal and sends it to the control module 100, and converts the fourth light into a second electrical signal and sends it to the control module 100, in the first electrical signal.
  • the position information of the third light is included in the second electrical signal, and the control module 100 calculates and obtains the position information according to the position information (ie, the position information of the third light and the position information of the fourth light).
  • ranging can also be performed using other methods than the laser triangulation, in which case the above-mentioned light sensing unit 222 may be replaced with other corresponding functional units.
  • the optical filter unit 221 is a dual filter switch, and the dual filter switch includes:
  • the control module is configured to measure the Controlling the filter switching structure to switch the current filter to the first filter when measuring the distance of the first object, and controlling the filter switching structure when measuring the distance of the second object The current filter is switched to the second filter.
  • the light filtering unit 221 can be a dual filter switch, such as an IR-CUT dual filter switch.
  • the dual filter switch includes a first filter, a second filter, and a filter switching structure.
  • FIG. 4 is a schematic diagram showing the spectral characteristic curve of the first filter provided by the first embodiment of the present application.
  • the horizontal axis of the spectral characteristic curve is the wavelength
  • the vertical axis is the transmittance, the first filter.
  • the spectral characteristic curve has a transmittance peak at 650 nm, that is, the third light having the first wavelength can be transmitted to the maximum extent, and the light of other wavelengths in the first reflected light is filtered out.
  • FIG. 5 is a schematic diagram showing the spectral characteristic curve of the second filter provided by the first embodiment of the present application.
  • the spectral characteristic curve of the second filter has a transmittance peak at 850 nm, that is, The fourth light having the second wavelength is transmitted to the maximum extent, and the light of other wavelengths in the second reflected light is filtered out.
  • the first filter and the second filter are both disposed on the filter switching structure, and the filter switching structure is connected to the control module 100.
  • the control module 100 controls the filter switching structure. Switch the current filter to the first filter.
  • the control module 100 controls the filter switching structure to switch the current filter to the second filter.
  • the filter switching structure may For the motor-driven structure or the electromagnetically driven structure, the control structure is mature. In short.
  • the dual filter switch enables the optical filter unit 221 to transmit two kinds of light having a first wavelength and a second wavelength, thereby realizing that the receiving module 220 of the multi-line laser ranging device 10 can receive and process two different wavelengths. The function of the light.
  • the light sensing unit 222 is generally an image sensor including, but not limited to, a CCD sensor, a CMOS sensor, and a PSD sensor.
  • the third light and the fourth light are imaged on the image sensor to obtain an imaging result.
  • the image sensor converts the imaging result into a first electrical signal and a second electrical signal, and transmits the first electrical signal and the second electrical signal to the control module 100.
  • the control module 100 can calculate the distance from the object to be detected to the multi-line laser ranging device 10 according to the position of the imaging spot in the image, combined with the triangular positional relationship between the transmitting module 210, the receiving module 220, and the object to be tested.
  • the sensitization range of the image sensor should include 650nm and 850nm. Most of the current image sensors have a wide sensitization range to meet this requirement.
  • the multi-line laser ranging device 10 further includes: a receiving lens 230 configured to converge the first reflected light to enable the receiving module to receive the first after convergence Reflecting the light, and concentrating the second reflected light to cause the receiving module to receive the second reflected light after convergence.
  • a light receiving unit 221 is disposed between the light filtering unit 221 and the object to be tested (eg, the first object and the second object), and the receiving lens 230 may be opposite to the first reflected light and the second reflected light.
  • the convergence is performed, and the directionality of the light after convergence is good. After passing through the light filtering unit 221, the spot image formed on the light sensing unit 222 is also relatively clear.
  • the control module 100 is respectively connected to the transmitting module 210 and the receiving module 220, and the main function is to calculate the distance between the object to be tested and the multi-line laser ranging device.
  • the other functions include at least: first, the control transmitting module 210 generates lasers of different wavelengths to measure when measuring objects of different media; and secondly, controls the dual filtering corresponding to the wavelength of the laser beam emitted by the transmitting module 210.
  • the slice switch performs filter switching.
  • the control module 100 can be, but is not limited to, a microcontroller chip. It can be understood that the control module 100 is based on the information in the first electrical signal and the second electrical signal, and it is also possible to calculate other position-related parameters or motion-related parameters of the object to be tested.
  • the multi-line laser ranging device 10 may further include a display module 300 connected to the control module 100.
  • the display module 300 may display the measurement result of the multi-line laser ranging device 10.
  • the display module 300 may be, but not limited to, a liquid crystal. Display. It can be understood that the display module 300 can also display other information than the distance measurement result; for example, the amplitude of the first electrical signal, the amplitude of the second electrical signal, whether the medium of the object to be tested is the first medium or the second medium, etc. Wait.
  • the light filtering unit 221 of the laser ranging device 10 provided in this embodiment may be a dual-peak filter.
  • the spectral characteristic curve of the bimodal filter has a first peak of the first wavelength, the bimodal filter is used to filter out the third ray, and the spectral characteristic curve has the second a second peak of the wavelength, the dual peak filter for filtering out the fourth light.
  • Figure 6 shows a schematic diagram of the spectral characteristics of a dual peak filter.
  • the dual peak filter is a single filter, but its spectral characteristic curve is significantly different from that of a general filter (e.g., the first filter and the second filter).
  • the spectral characteristic curve of the dual-peak filter used in this embodiment has a transmittance peak (ie, the first peak) at 650 nm and 850 nm, respectively, that is, the maximum wavelength can be simultaneously transmitted through the first wavelength.
  • the third light The spectral characteristic curve of the bimodal filter also has a second peak of the second wavelength, at which time the bimodal filter is configured to filter the fourth ray having the second wavelength while filtering out the ray components of the other wavelengths.
  • the dual filter switch in the first embodiment distinguishes light of different wavelengths from the perspective of time, and the dual-peak filter in this embodiment distinguishes light of different wavelengths from the perspective of frequency.
  • the dual-peak filter can be used, but is not limited to the dual-peak filter of the model number FU-650850LGP-Y6.8, which is not specifically limited in this application.
  • the multi-line laser ranging device 10 includes a control module 100 and a plurality of laser transceiver modules 200 connected to the control module 100.
  • Each of the laser transceiver modules 200 includes a mutual The paired transmitting module 210 and the receiving module 220, wherein, for each laser transceiver module 200, a first light having a first wavelength may be transmitted to the first object according to a preset emission angle, and each receiving module may receive The first reflected light formed by the first light emitted by the mutually matching transmitting module is reflected by the first object; the control module 100 is configured to calculate the first reflected light according to each receiving module 220.
  • a first distance from an object to the multi-line laser ranging device 10 passes the emission problem.
  • the control module 100 can be configured to implement different detection functions according to the plurality of first distances.
  • the robot provided by the embodiment of the present application includes a robot body and a multi-line laser ranging device 10 disposed on the robot body, and the multi-line laser ranging device 10 can provide the multi-line laser ranging provided by any of the first embodiments.
  • Device 10. The robot performs a corresponding action based on the measurement result of the multi-line laser ranging device 10, for example, planning a motion route of the robot according to the distance of the front object, drawing a map, and the like.
  • the existing multi-line laser ranging devices are all implemented based on the TOF principle. Therefore, the existing multi-line laser ranging device has high cost and relatively complicated production process, and thus the existing laser The distance measuring device is mainly based on a single line.
  • the multi-line laser ranging device is not based on the TOF principle, and multi-line detection can be realized by a simple structure.
  • the multi-line laser ranging device of the present application has a simple structure, low cost, and can realize different detecting functions.
  • each block of the flowchart or block diagram can represent a module, a program segment, or a portion of code that includes one or more of the Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may also occur in a different order than those illustrated in the drawings.
  • each block of the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or function. Or it can be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application may be integrated to form a separate part, or each module may exist separately, or two or more modules may be integrated to form a separate part.
  • the control module in the multi-line laser ranging device can respectively implement the unused detection function according to the plurality of first distances, thereby enabling multi-line laser measurement.
  • Multi-line detection is achieved by a simple structure from the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多线激光测距装置(10)以及机器人,包括控制模块(100)以及与所述控制模块连接的多个激光收发模块(200);每个所述激光收发模块包括相互配对的发射模块(210)和接收模块(220),其中每个激光收发模块均按照预设发射角度向第一物体发射具有第一波长的第一光线,每个接收模块接收所匹配的发射模块发射的第一光线经第一物体反射后形成的第一反射光线;控制模块配置成根据每个接收模块得到的第一反射光线,分别计算获得所述第一物体到所述多线激光测距装置的第一距离,控制模块可以根据多个第一距离,分别配置实现不同探测功能。所述多线激光测距装置和机器人可以通过简单的结构实现多线探测。

Description

多线激光测距装置以及机器人
相关申请的交叉引用
本申请要求于2017年12月25日提交中国专利局的申请号为2017114260493、名称为“多线激光测距装置以及机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光测距领域,具体而言,涉及一种多线激光测距装置以及机器人。
背景技术
多线激光雷达技术主要应用于汽车自动驾驶以及自主移动机器人,其作用主要是扫描获取环境信息,相对于单线激光雷达来讲。多线激光雷达技术能感知离散的3D信息,角度更加丰富,主要包含4线、16线、32线、64线等。多线激光雷达都是基于TOF(Time of Flight,飞行时间)原理实现的,成本相对较高,生产工艺相对复杂,因此,现有的激光测距装置主要以单线为主。
发明内容
本申请的目的在于提供一种多线激光测距装置以及机器人,其能够以简单的结构实现多线探测。
本申请的实施例是这样实现的:
第一方面,本申请实施例提供一种多线激光测距装置,其包括控制模块以及与所述控制模块连接的多个激光收发模块,每个所述激光收发模块均包括相互配对的发射模块和接收模块,每个发射模块,配置成在测量具有第一介质的第一物体的距离时,同时以各自的预设发射角度向所述第一物体发射具有第一波长的第一光线;每个接收模块,配置成接收相互匹配的发射模块发射的第一光线经第一物体的反射后所形成的第一反射光线;所述控制模块,配置成根据每个接收模块得到的第一反射光线,分计算获得所述第一物体到所述多线激光测距装置的第一距离;其中,每个激光收发模块所包括的发送模块的预设发射角度不同。
在本申请较佳的实施例中,上述每个发射模块,还配置成在测量具有第二介质的第二物体的距离时,同时以各自的预设发射角度向所述第二物体发射具有第二波长的第二光线;每个接收模块,还配置成接收相互匹配的发射模块发射的第二光线经第二物体的反射后所形成的第二反射光线;所述控制模块,还配置成根据每个接收模块得到的第二反射光线,分计算获得所述第二物体到所述多线激光测距装置的第二距离。
在本申请较佳的实施例中,上述每个接收模块包括:光过滤单元,配置成过滤出所述 第一反射光线中具有所述第一波长的第三光线,以及过滤出所述第二反射光线中具有所述第二波长的第四光线;光感应单元,与所述控制模块连接,配置成接收所述第三光线,将其转化为第一电信号,并将所述第一电信号发送至所述控制模块,以及接收所述第四光线,将其转化为第二电信号,并将所述第二电信号发送至所述控制模块;所述控制模块配置成根据所述第一电信号,计算获得所述第一距离,以及根据所述第二电信号,计算获得所述第二距离。
在本申请较佳的实施例中,所述控制模块配置成根据所述第一电信号中携带的第三光线的位置信息,计算得到第一物体与所述多线激光测距装置的第一距离。
在本申请较佳的实施例中,当所述第一距离为多个时,所述控制模块还配置成根据多个所述第一距离,分别配置成执行不同的探测功能,以根据不同的探测功能执行相应的操作,其中,一个第一距离对应一种探测功能。
在本申请较佳的实施例中,上述光过滤单元为双滤光片切换器,包括:第一滤光片,配置成过滤出所述第三光线;第二滤光片,配置成过滤出所述第四光线;滤光片切换结构,与所述控制模块连接,所述第一滤光片以及所述第二滤光片均设置在所述滤光片切换结构中,所述控制模块配置成在测量所述第一物体的距离时,控制所述滤光片切换结构将当前滤光片切换为所述第一滤光片,在测量所述第二物体的距离时,控制所述滤光片切换结构将所述当前滤光片切换为所述第二滤光片。
在本申请较佳的实施例中,所述光过滤单元为双峰值滤光片,所述双峰值滤光片的光谱特性曲线具有所述第一波长的第一峰值,所述双峰值滤光片配置成过滤出所述第三光线,以及所述光谱特性曲线具有所述第二波长的第二峰值,所述双峰值滤光片配置成过滤出所述第四光线。
在本申请较佳的实施例中,所述光感应单元为图像传感器。
在本申请较佳的实施例中,所述发射模块为可调谐激光器,与所述控制模块连接,所述可调谐激光器的输出光谱覆盖范围包括所述第一波长以及所述第二波长,所述控制模块配置成控制所述可调谐激光器发射所述第一光线以及所述第二光线。
在本申请较佳的实施例中,所述多线激光测距装置还包括:接收透镜,配置成会聚所述第一反射光线,以使所述接收模块接收到会聚后的所述第一反射光线,以及会聚所述第二反射光线,以使所述接收模块接收到会聚后的所述第二反射光线。
在本申请较佳的实施例中,所述多线激光测距装置还包括:发射透镜,配置成会聚所述第一光线,以使会聚后的所述第一光线照射到所述第一物体的表面,以及会聚所述第二光线,以使会聚后的所述第二光线照射到所述第二物体的表面。
在本申请较佳的实施例中,所述多线激光测距装置还包括:显示模块,与所述控制模 块连接,配置成显示所述多线激光测距装置的测量结果。
在本申请较佳的实施例中,所述激光收发模块的数量为两个。
在本申请较佳的实施例中,一个所述激光收发模块配置成构建地图,另一个所述激光收发模块配置成规避障碍物。
第二方面,本申请实施例提供一种机器人,包括:机器人本体,上述实施方式中任一所述的多线激光测距装置,设置在所述机器人本体上,所述机器人本体配置成根据所述多线激光测距装置的测量结果执行相应的动作。
本申请实施例提供了一种多线激光测距装置以及机器人,包括控制模块以及与所述控制模块连接的多个激光收发模块,每个所述激光收发模块均包括相互配对的发射模块和接收模块,其中,针对每个激光收发模块,均可以按照预设发射角度向所述第一物体发射具有第一波长的第一光线,每个接收模块,可以接收相互匹配的发射模块发射的第一光线经第一物体的反射后所形成的第一反射光线;控制模块,配置成根据每个接收模块得到的第一反射光线,分计算获得所述第一物体到所述多线激光测距装置的第一距离通过发射问题。控制模块可以根据多个第一距离,分别配置成实现不同的探测功能。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请第一实施例提供的一种多线激光测距装置的结构示意图;
图2是本申请第一实施例提供的一种多线激光测距装置的一种实施方式的示意图;
图3是图2的电路示意图;
图4是本申请第一实施例提供的第一滤光片的光谱特性曲线的示意图;
图5是本申请第一实施例提供的第二滤光片的光谱特性曲线的示意图;
图6是本申请第一实施例提供的双峰值滤光片的光谱特性曲线的示意图。
图标:10-多线激光测距装置;100-控制模块;200-激光收发模块;210-发射模块;211-发射透镜;220-接收模块;221-光过滤单元;222-光感应单元;230-接收透镜;300-显示模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行可选定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
第一实施例
请参照图1,本实施例提供一种多线激光测距装置10,包括控制模块100以及与所述控制模块100连接的多个激光收发模块200。每个所述激光收发模块200均包括相互配对的发射模块210和接收模块220。其中,如图1所示,每个所述激光收发模块200中的每个所述接收模块220均与所述控制模块100连接。
其中,所述控制模块100的型号可以是芯片LPC54628。所述激光收发模块200的型号可以是DLISTM2K。需要说明的是,在本申请中,控制模块的型并不限定是LPC54628,还可以是其他能够实现上述功能的型号。同理,激光收发模块200的型号并不限定是DLISTM2K,还可以是其他能够实现上述功能的型号。对比本申请中不做具体限定。
在本申请中,发射模块210,接收模块220和控制模块100的功能描述如下:
每个发射模块210,用于在测量具有第一介质的第一物体的距离时,同时以各自的预设发射角度向所述第一物体发射具有第一波长的第一光线;
每个接收模块220,用于接收相互匹配的发射模块发射的第一光线经第一物体的反射后所形成的第一反射光线;
所述控制模块100,用于根据每个接收模块得到的第一反射光线,分计算获得所述第一物体到所述多线激光测距装置的第一距离;其中,每个激光收发模块200所包括的发送模块的预设发射角度不同。
可选的,在本申请中,首先,发射模块210向待测物(其中,待测物即为上述所描述的第一物体或者下述实施例中所描述的第二物体)发射激光束(例如,上述所描述的具有第一波长的第一光线),发射模块210所发射的激光束经待测物表面反射后形成反射光线(即,上述所描述的第一光线经第一物体的反射后所形成的第一反射光线)。与发射模块210相配对的接收模块220用来接收该反射光线。
需要说明的是,图1中所示的待测物是指上述所描述的第一物体或者下述实施例中所描述的第二物体。如果待测物是多个,那么该待测物还可以是第N物体,对此,本实施例中不做具体限定。
控制模块100根据发射信号与接收信号之间的关系,计算获得待测物与多线激光测距装置之间的距离。控制模块200还配置成控制发射模块210与接收模块220之间的正常工作。
可选的,如图1所示,控制模块分别与相互配对的发射模块210和接收模块220相连接,此时,控制模块200就能够根据第一光线(即,发射信号)和第一反射光线(即,接收信号)之间的关系,通过计算来获得待测物与多线激光测距装置之间的距离。
需要说明的是,在本实施例中,激光收发模块的数量为多个,每个激光收发模块包括相互配对的发射模块210和接收模块220。也就是说,多个激光收发模块就包括多个相互配对的发射模块210和接收模块220。且每个激光收发模块200所包括的发送模块的预设发射角度不同。
在本实施例中,每个发射模块210,可以在测量具有第一介质的第一物体的距离时,同时以各自的预设发射角度向所述第一物体发射具有第一波长的第一光线。值得指出的是, 每个发射模块210在设计时,分别配置了不同的激光发射角度,一旦激光发射角度被存储在发射模块210内部的处理器中,该发射模块210将一直以该激光发射角度作为每个发射模块210的预设发射角度,以使每个发射模块210的按照该预设发射角度发射激光束。
需要说明的是,在本实施例中,发射模块210一般为激光器。
在本实施例中,所述多线激光测距装置还包括:发射透镜211,配置成会聚所述第一光线,以使会聚后的所述第一光线照射到所述第一物体的表面,以及会聚所述第二光线,以使会聚后的所述第二光线照射到所述第二物体的表面。
如图1所示,发射模块210与待测物之间设置有发射透镜211,发射透镜211对第一光线起会聚作用,经过会聚后的光线方向性较好,有助于提高多线激光测距装置的激光测距精度。
通过上述描述可知,在本实施例中,每个接收模块220,可以接收相互匹配的发射模块210发射的第一光线经第一物体的反射后所形成的第一反射光线。
现有的激光测距仪的接收端一般只能接收并处理反射光线中具有特定波长的光线,所述特定波长是指发射端所发射的激光的波长,所述特定波长的光线是指由发射端所发射的激光经待测物反射所形成的光线。反射光线除了包括该特定波长的光线外,还包括具有其他波长的光线,例如外部环境的光线,因此在现有技术中,一般的做法是在接收端设置一个与该特定波长相匹配的滤光片,滤除反射光线中其他波长的光线的干扰。
而本申请实施例提供的多线激光测距装置10的接收模块220至少能够接收并处理第一反射光线中具有第一波长的光线,称之为第三光线,其中,第一反射光线是由具有第一波长的第一光线所产生的反射光线。本申请实施例提供的多线激光测距装置10的接收模块220还能够接收并处理第二反射光线中具有第二波长的光线,称之为四光线,其中,第二反射光线是由具有第二波长的第二光线所产生的反射光线。
在本申请的另一个实施例中,每个接收模块220包括:光过滤单元221和光感应单元222,其中:
光过滤单元221,用于过滤出所述第一反射光线中具有所述第一波长的第三光线,以及过滤出所述第二反射光线中具有所述第二波长的第四光线;
如图1所示,光感应单元222与所述控制模块100连接,用于接收所述第三光线,将其转化为第一电信号,并将所述第一电信号发送至所述控制模块,以及接收所述第四光线,将其转化为第二电信号,并将所述第二电信号发送至所述控制模块;
所述控制模块100用于根据所述第一电信号,计算获得所述第一距离,以及根据所述第二电信号,计算获得所述第二距离。
具体而言,本申请实施例提供的多线激光测距装置10可以采用激光三角法进行测距。多线激光测距装置10中的每个接收模块220可以包括:光过滤单元221,以及与控制模块100连接的光感应单元222。如图1所示,光过滤单元221设置于光感应单元222与待测物之间,光过滤单元221可以对第一反射光线进行过滤并获得第三光线,其中,第三光线为第一反射光线中具有第一波长的光线。在本实施例中,光感应单元222主要起光电转换作用,将第三光线转换为第一电信号并发送至控制模块100,第一电信号包含有第三光线的位置信息,控制模块100根据第一电信号中携带的第三光线的位置信息,计算得到第一物体与多线激光测距装置10的第一距离,即,计算获得待测物与多线激光测距装置10的第一距离。
在本实施例中,当所述第一距离为多个时,所述控制模块还配置成根据多个所述第一距离,分别用于执行不同的探测功能,以根据不同的探测功能执行相应的操作,其中,一个第一距离对应一种探测功能。
由于本申请的多线激光测距装置10包括多个激光收发模块200,因此,控制模块100在一次的测距过程中,可以获取到与激光收发模块200数目对应的第一距离,也即多个第一距离。此时,控制模块100可以根据多个第一距离,分别用于实现不同的探测功能,做出相应的操作。
在一个可选的实施例中,如图1所示激光收发模块200的数量为两个,下面将以两个激光收发模块200为例来介绍当第一距离为多个时,控制模块100配置成根据多个第一距离,分别用于执行不同的探测功能,以根据不同的探测功能执行相应的操作。
当整个多线激光测距装置10包括两个激光收发模块200时,控制模块100可以根据其中的一个激光收发模块200得到的第一距离来构建地图,控制模块100还可以根据另一个所述激光收发模块200得到的第一距离来规避障碍物。
当然,在本实施例中,激光收发模块200的数量并不仅仅局限于两个,还可以大于两个。对比本实施例不做具体限定。
其中,请参看图2以及图3,图2以及图3示出了本申请实施例中激光收发模块200为3个的情况。
如图3所示,当激光收发模块200的型号为DLISTM2K;控制模块100的型号为芯片LPC54628时,三个型号为DLISTM2K的激光收发模块200分别与一个型号为LPC54628的控制模块100相连接。
在本申请的另一个实施例中,每个发射模块210,还用于在测量具有第二介质的第二物体的距离时,同时以各自的预设发射角度向所述第二物体发射具有第二波长的第二光线;每个接收模块220,还用于接收相互匹配的发射模块发射的第二光线经第二物体的反射后 所形成的第二反射光线;所述控制模块100,还用于根据每个接收模块得到的第二反射光线,分计算获得所述第二物体到所述多线激光测距装置的第二距离。
此外,于本申请实施例中,控制模块200还配置成控制发射模块210与接收模块220之间在测量不同介质的物体时,产生不同波长的激光进行测量。
每个发射模块210可以在测量具有第一介质的第一物体的距离时,向第一物体发射具有第一波长的第一光线;每个发射模块210还可以在测量具有第二介质的第二物体的距离时,向第二物体发射具有第二波长的第二光线。
此时,本申请实施例中的激光器至少能产生具有两种波长的激光束,即具有第一波长的第一光线,以及具有第二波长的第二光线。第一光线和第二光线一般为近红外或红外光线,其波长是预先设定好的。在本申请实施例的阐述中,取第一波长为650nm,第二波长为850nm,可以理解,上述波长取值仅仅是为了阐述方便所举的示例,不对第一波长以及第二波长的实际取值构成任何限制。
在本申请另一个可选的实施例中,发射模块210为可调谐激光器,与所述控制模块100连接,所述可调谐激光器的输出光谱覆盖范围包括所述第一波长以及所述第二波长,所述控制模块100用于控制所述可调谐激光器发射所述第一光线以及所述第二光线。
可选地,在本申请中,每个发射模块210采用的激光器可以为可调谐激光器,可调谐激光器是指在一定范围内可以连续改变输出的激光束波长的激光器。在本申请实施例中,可以选择光谱覆盖范围包括650nm以及850nm在内的可调谐激光器即可。发射模块210还可以采用多波长激光器,多波长激光器可以输出预设的多种波长的激光束,选择输出波长包括650nm和850nm在内的多波长激光器即可。又或者,每个发射模块210还可以采用普通的单一波长激光器组合构成,例如使用两个输出激光波长分别为650nm和850nm的单一波长激光器,控制模块100控制在某一时刻只有其中一个激光器处于工作状态并输出对应波长的激光束。
需要说明的是,在本申请上述实施例中,具有第一介质的第一物体,泛指具有适于使用第一波长的激光进行测距的介质所构成的物体,并不是特指某种特定物体;同样地,具有第二介质的第二物体,泛指具有适于使用第二波长的激光进行测距的介质所构成的物体,并不是特指某种特定物体。可以事先通过其他实验手段确定哪些介质适于使用第一波长的激光进行测距,将其归类为第一介质;以及确定哪些介质适于使用第二波长的激光进行测距,将其归类为第二介质。
在对待测物进行测距之前,先判断其构成的介质,如果待测物属于第一介质,则待测物为第一物体,此时,使用第一波长的激光进行测量,并将测量所用的具有第一波长的激光称为第一光线,第一光线被发射到第一物体的表面;如果待测物属于第二介质,则待测 物为第二物体,此时,使用第二波长的激光进行测量,并将测量所用的具有第二波长的激光称为第二光线,第二光线被发射到第二物体的表面。图1所示的待测物可能为第一物体,也可能为第二物体,待测物为第一物体时和待测物为第二物体时对待测物距离的测量方法是一致的,本申请不做具体介绍。
可以理解,由于实际物体的介质种类非常繁多,对介质划分的方式也可以更复杂,例如还可以包括,适于使用第三波长的激光进行测距的第三介质,适于使用第四波长的激光进行测距的第四介质,等等。此时,每个发射模块210的激光器也应该能够相应输出具有第三波长的激光以及具有第四波长的激光束。
对应的,发射模块210与待测物之间的发射透镜211对第一光线以及第二光线起会聚作用都起会聚作用。每个接收模块220,可以接收相互匹配的发射模块210发射的第一光线经第一物体的反射后所形成的第一反射光线,以及接收第二光线经第二物体的反射后所形成的第二反射光线。本申请实施例提供的多线激光测距装置10的接收模块220至少能够接收并处理第一反射光线中具有第一波长的光线,即由具有第一波长的第一光线所产生的反射光线,称之为第三光线,以及第二反射光线中具有第二波长的光线,即由具有第一波长的第一光线所产生的反射光线,称之为四光线。
具体而言,本申请实施例提供的多线激光测距装置10可以采用激光三角法进行测距。每个接收模块220可以包括光过滤单元221以及与控制模块100连接的光感应单元222,光过滤单元221设置于光感应单元222与待测物之间,可以对第一反射光线进行过滤并获得第三光线,以及对第二反射光线进行过滤并获得第四光线。光感应单元222主要起光电转换作用,将第三光线转换为第一电信号并发送至控制模块100,以及将第四光线转换为第二电信号并发送至控制模块100,第一电信号中包含有第三光线的位置信息,第二电信号中包含有第四光线的位置信息,控制模块100根据这些位置信息(即,第三光线的位置信息和第四光线的位置信息),计算获得待测物与多线激光测距装置10之间的第一距离。
可以理解,在本申请的其他实施例中,还可以使用激光三角法以外的其他方法进行测距,此时上述光感应单元222可能被替换为其他相应的功能单元。
在本申请的另一个实施例中,光过滤单元221为双滤光片切换器,双滤光片切换器包括:
第一滤光片,用于过滤出所述第三光线;
第二滤光片,用于过滤出所述第四光线;
滤光片切换结构,与所述控制模块连接,所述第一滤光片以及所述第二滤光片均设置在所述滤光片切换结构中,所述控制模块用于在测量所述第一物体的距离时,控制所述滤 光片切换结构将当前滤光片切换为所述第一滤光片,在测量所述第二物体的距离时,控制所述滤光片切换结构将所述当前滤光片切换为所述第二滤光片。
在本实施例中,光过滤单元221可以为双滤光片切换器,例如IR-CUT双滤光片切换器。双滤光片切换器包括,第一滤光片、第二滤光片以及滤光片切换结构。
图4示出了本申请第一实施例提供的第一滤光片的光谱特性曲线的示意图,参照图4,光谱特性曲线的横轴为波长,纵轴为透光率,第一滤光片的光谱特性曲线在650nm处存在一透光率峰值,即可以在最大程度上透过具有第一波长的第三光线,并过滤掉第一反射光线中其他波长的光线。
图5示出了本申请第一实施例提供的第二滤光片的光谱特性曲线的示意图,参照图5,第二滤光片的光谱特性曲线在850nm处存在一透光率峰值,即可以在最大程度上透过具有第二波长的第四光线,并过滤掉第二反射光线中其他波长的光线。
第一滤光片以及第二滤光片均设置在滤光片切换结构上,滤光片切换结构与控制模块100连接,在测量第一物体的距离时,控制模块100控制滤光片切换结构将当前滤光片切换为第一滤光片。在测量第二物体的距离时,控制模块100控制滤光片切换结构将当前滤光片切换为第二滤光片,对于IR-CUT双滤光片切换器而言,滤光器切换结构可以为电机驱动式结构或者电磁驱动式结构,都是技术已经成熟的控制结构。总之。双滤光片切换器使得光过滤单元221能够透过具有第一波长以及具有第二波长的两种光线,从而实现了多线激光测距装置10的接收模块220能够接收并处理两种不同波长的光线的功能。
在基于激光三角法的多线激光测距装置10中,光感应单元222一般为图像传感器,包括但不限于CCD传感器,CMOS传感器,PSD传感器。第三光线以及第四光线在图像传感器上成像,得到成像结果。图像传感器将成像结果转化为第一电信号以及第二电信号,并将第一电信号以及第二电信号发送至控制模块100。控制模块100根据成像光斑在图像中的位置,结合发射模块210、接收模块220以及待测物之间的三角位置关系,即可计算获得待测物到多线激光测距装置10的距离。具体而言,就是第一物体到多线激光测距装置10的第一距离,以及第二物体到多线激光测距装置10的第二距离。图像传感器的感光范围应包括650nm以及850nm在内,目前的大多数的图像传感器都具有较宽的感光范围,可以满足此要求。
在本申请另一个实施例中,所述多线激光测距装置10还包括:接收透镜230,配置成会聚所述第一反射光线,以使所述接收模块接收到会聚后的所述第一反射光线,以及会聚所述第二反射光线,以使所述接收模块接收到会聚后的所述第二反射光线。
继续参照图1,可选的,光过滤单元221与待测物(例如,第一物体和第二物体)之间设置有接收透镜230,接收透镜230可以对第一反射光线以及第二反射光线起会聚作用, 经过会聚后的光线方向性较好,经过光过滤单元221以后,在光感应单元222上成像的光斑也比较清晰。
控制模块100分别与发射模块210以及接收模块220连接,主要功能是计算获得待测物与多线激光测距装置之间的距离。其他功能至少还包括:第一,控制发射模块210在测量不同介质的物体时,产生不同波长的激光进行测量;第二,针对发射模块210所发射的激光束的波长,相应地控制双滤光片切换器进行滤光片切换。控制模块100可以为,但不限于单片机芯片。可以理解,控制模块100基于第一电信号以及第二电信号中的信息,还有可能计算出待测物的其他位置相关参数或者运动相关参数。
可选的,多线激光测距装置10还可以包括与控制模块100连接的显示模块300,显示模块300可以显示多线激光测距装置10的测量结果,显示模块300可以是,但不限于液晶显示屏。可以理解,显示模块300还可以显示除距离测量结果以外的其他信息;例如,第一电信号的幅值,第二电信号的幅值,待测物体的介质是第一介质还是第二介质等等。
作为一种实施方式,本实施例提供的激光测距装置10的光过滤单元221可以为双峰值滤光片。所述双峰值滤光片的光谱特性曲线具有所述第一波长的第一峰值,所述双峰值滤光片用于过滤出所述第三光线,以及所述光谱特性曲线具有所述第二波长的第二峰值,所述双峰值滤光片用于过滤出所述第四光线。
图6示出了双峰值滤光片的光谱特性曲线的示意图。参照图6,双峰值滤光片为单个滤光片,但其光谱特性曲线与一般的滤光片(例如第一滤光片以及第二滤光片)相比,存在明显的不同。本实施例中采用的双峰值滤光片的光谱特性曲线在650nm和850nm处分别存在一透光率峰值(即,上述第一峰值),即可以同时在最大程度上透过具有第一波长的第三光线。双峰值滤光片的光谱特性曲线还具有第二波长的第二峰值,此时,双峰值滤光片被配置成过滤具有第二波长的第四光线,而过滤掉其他波长的光线成分。第一实施例中的双滤光片切换器是从时间的角度来区分不同波长的光线,而本实施例中的双峰值滤光片则是从频率的角度来区分不同波长的光线。双峰值滤光片可以采用,但不限于产品型号为FU-650850LGP-Y6.8的双峰值滤光片,本申请不做具体限定。
通过上述描述可知,本申请实施例提供的多线激光测距装置10,包括控制模块100以及与所述控制模块100连接的多个激光收发模块200,每个所述激光收发模块200均包括相互配对的发射模块210和接收模块220,其中,针对每个激光收发模块200,均可以按照预设发射角度向所述第一物体发射具有第一波长的第一光线,每个接收模块,可以接收相互匹配的发射模块发射的第一光线经第一物体的反射后所形成的第一反射光线;控制模块100,配置成根据每个接收模块220得到的第一反射光线,分计算获得所述第一物体到所述 多线激光测距装置10的第一距离通过发射问题。控制模块100可以根据多个第一距离,分别配置成实现不同的探测功能。
第二实施例
本申请实施例提供的机器人包括机器人本体以及设置在机器人本体上的多线激光测距装置10,多线激光测距装置10可以为第一实施例中任一实施方式提供的多线激光测距装置10。该机器人基于多线激光测距装置10的测量结果执行相应的动作,例如根据前方物体的距离规划机器人的运动路线以及绘制地图等。
通过背景技术的描述可知,现有的多线激光测距装置都是基于TOF原理实现的,因而,现有的多线激光测距装置成本较高,生产工艺相对复杂,因而,现有的激光测距装置主要以单线为主。在本申请中,该多线激光测距装置不以TOF原理为基础,通过简单的结构就能够实现多线探测。通过上述介绍可知,本申请中的多线激光测距装置结构简单,成本低,而且能够实现不同的探测功能。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可,同一个实施例中相同相似的部分也可互相参见。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
工业实用性
在本申请实施例提供的多线激光测距装置以及机器人中,可以通过多线激光测距装置中的控制模块来根据多个第一距离来分别实现不用的探测功能,从而使得多线激光测距装置通过简单的结构实现多线探测。

Claims (15)

  1. 一种多线激光测距装置,其特征在于,包括:控制模块以及与所述控制模块连接的多个激光收发模块,每个所述激光收发模块均包括相互配对的发射模块和接收模块,
    每个发射模块,配置成在测量具有第一介质的第一物体的距离时,同时以各自的预设发射角度向所述第一物体发射具有第一波长的第一光线;
    每个接收模块,配置成接收相互匹配的发射模块发射的第一光线经第一物体的反射后所形成的第一反射光线;
    所述控制模块,配置成根据每个接收模块得到的第一反射光线,分计算获得所述第一物体到所述多线激光测距装置的第一距离;
    其中,每个激光收发模块所包括的发送模块的预设发射角度不同。
  2. 根据权利要求1所述的多线激光测距装置,其特征在于,
    每个发射模块,还配置成在测量具有第二介质的第二物体的距离时,同时以各自的预设发射角度向所述第二物体发射具有第二波长的第二光线;
    每个接收模块,还配置成接收相互匹配的发射模块发射的第二光线经第二物体的反射后所形成的第二反射光线;
    所述控制模块,还配置成根据每个接收模块得到的第二反射光线,分计算获得所述第二物体到所述多线激光测距装置的第二距离。
  3. 根据权利要求2所述的多线激光测距装置,其特征在于,每个接收模块包括:
    光过滤单元,配置成过滤出所述第一反射光线中具有所述第一波长的第三光线,以及过滤出所述第二反射光线中具有所述第二波长的第四光线;
    光感应单元,与所述控制模块连接,配置成接收所述第三光线,将其转化为第一电信号,并将所述第一电信号发送至所述控制模块,以及接收所述第四光线,将其转化为第二电信号,并将所述第二电信号发送至所述控制模块;
    所述控制模块配置成根据所述第一电信号,计算获得所述第一距离,以及根据所述第二电信号,计算获得所述第二距离。
  4. 根据权利要求3所述的多线激光测距装置,其特征在于,所述控制模块配置成根据所述第一电信号中携带的第三光线的位置信息,计算得到第一物体与所述多线激光测距装置的第一距离。
  5. 根据权利要求1至4中任一项所述的多线激光测距装置,其特征在于,当所述第一距离为多个时,所述控制模块还配置成根据多个所述第一距离,分别配置成执行不同的探测功能,以根据不同的探测功能执行相应的操作,其中,一个第一距离对应一种探测功能。
  6. 根据权利要求3或4所述的多线激光测距装置,其特征在于,所述光过滤单元为双滤光片切换器,包括:
    第一滤光片,配置成过滤出所述第三光线;
    第二滤光片,配置成过滤出所述第四光线;
    滤光片切换结构,与所述控制模块连接,所述第一滤光片以及所述第二滤光片均设置在所述滤光片切换结构中,所述控制模块配置成在测量所述第一物体的距离时,控制所述滤光片切换结构将当前滤光片切换为所述第一滤光片,在测量所述第二物体的距离时,控制所述滤光片切换结构将所述当前滤光片切换为所述第二滤光片。
  7. 根据权利要求3或4所述的多线激光测距装置,其特征在于,所述光过滤单元为双峰值滤光片,所述双峰值滤光片的光谱特性曲线具有所述第一波长的第一峰值,所述双峰值滤光片配置成过滤出所述第三光线,以及所述光谱特性曲线具有所述第二波长的第二峰值,所述双峰值滤光片配置成过滤出所述第四光线。
  8. 根据权利要求3-7中任一权项所述的多线激光测距装置,其特征在于,所述光感应单元为图像传感器。
  9. 根据权利要求1-7中任一权项所述的多线激光测距装置,其特征在于,所述发射模块为可调谐激光器,与所述控制模块连接,所述可调谐激光器的输出光谱覆盖范围包括所述第一波长以及所述第二波长,所述控制模块配置成控制所述可调谐激光器发射所述第一光线以及所述第二光线。
  10. 根据权利要求9所述的多线激光测距装置,其特征在于,所述多线激光测距装置还包括:接收透镜,配置成会聚所述第一反射光线,以使所述接收模块接收到会聚后的所述第一反射光线,以及会聚所述第二反射光线,以使所述接收模块接收到会聚后的所述第二反射光线。
  11. 根据权利要求10所述的多线激光测距装置,其特征在于,所述多线激光测距装置还包括:发射透镜,配置成会聚所述第一光线,以使会聚后的所述第一光线照射到所述第一物体的表面,以及会聚所述第二光线,以使会聚后的所述第二光线照射到所述第二物体的表面。
  12. 根据权利要求11所述的多线激光测距装置,其特征在于,所述多线激光测距装置还包括:显示模块,与所述控制模块连接,配置成显示所述多线激光测距装置的测量结果。
  13. 根据权利要求1至12中任一项所述的多线激光测距装置,其特征在于,所述激光收发模块的数量为两个。
  14. 根据权利要求13所述的多线激光测距装置,其特征在于,所述控制模块配置成根据一个所述激光收发模块得到的第一距离配置成构建地图,配置成根据另一个所述激光收 发模块得到的第一距离规避障碍物。
  15. 一种机器人,其特征在于,包括:机器人本体;如权利要求1-15中任一权所述的多线激光测距装置,设置在所述机器人本体上,所述机器人本体配置成根据所述多线激光测距装置的测量结果执行相应的动作。
PCT/CN2018/082559 2017-12-25 2018-04-10 多线激光测距装置以及机器人 WO2019127977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711426049.3A CN108152826A (zh) 2017-12-25 2017-12-25 多线激光测距装置以及机器人
CN201711426049.3 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019127977A1 true WO2019127977A1 (zh) 2019-07-04

Family

ID=62462610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082559 WO2019127977A1 (zh) 2017-12-25 2018-04-10 多线激光测距装置以及机器人

Country Status (2)

Country Link
CN (1) CN108152826A (zh)
WO (1) WO2019127977A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597090B (zh) * 2018-12-13 2023-10-03 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法
WO2021184866A1 (zh) * 2020-03-16 2021-09-23 宁波飞芯电子科技有限公司 一种飞行时间距离测量装置及飞行时间距离测量方法
TWI739622B (zh) * 2020-10-05 2021-09-11 國立虎尾科技大學 多光點雷射測距儀以及利用多光點雷射測距儀判斷反射光束種類及中心點位置之方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075423A1 (en) * 2010-09-29 2012-03-29 Massachusetts Institute Of Technology Methods and Apparatus for Transient Light Imaging
CN103278808A (zh) * 2013-05-28 2013-09-04 中国科学院合肥物质科学研究院 一种多线扫描式激光雷达装置
US20160047901A1 (en) * 2012-12-25 2016-02-18 Quanergy Systems, Inc. Robust lidar sensor for broad weather, shock and vibration conditions
CN106291575A (zh) * 2016-10-25 2017-01-04 深圳市镭神智能系统有限公司 一种多线激光雷达测距系统及方法
JP2017009524A (ja) * 2015-06-25 2017-01-12 シャープ株式会社 レーザ距離測定モジュール及びレーザ距離測定装置
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN107367737A (zh) * 2016-05-13 2017-11-21 北醒(北京)光子科技有限公司 一种多线旋转扫描探测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526621B (zh) * 2009-02-16 2011-08-10 北京航空航天大学 快速多光谱遥感偏振成像仪
CN101776751B (zh) * 2010-01-21 2012-05-23 北京理工大学 一种激光雷达回波光信号滤波选通系统
CN102004308B (zh) * 2010-09-09 2013-04-03 北京航空航天大学 卡塞格林望远镜多光谱成像方法和装置
CN102185659B (zh) * 2011-03-23 2014-04-09 中国科学院上海技术物理研究所 具有光轴自校准的量子通信atp精跟踪系统及校准方法
CN102353650A (zh) * 2011-07-06 2012-02-15 南京信息工程大学 基于激光雷达技术的液体爆炸物探测方法与系统
CN202512346U (zh) * 2012-01-14 2012-10-31 珠海安士佳电子有限公司 双光学滤光片切换装置
CN103576134B (zh) * 2013-11-26 2015-10-07 北京航空航天大学 一种基于同轴双通道数据采集的全波形激光雷达系统
CN104407488A (zh) * 2014-12-19 2015-03-11 咸洋 一种激光辅助车辆信息摄取装置及摄取方法
CN204536584U (zh) * 2015-04-15 2015-08-05 北京京仪博电光学技术有限责任公司 一种四峰值滤光片
KR101784635B1 (ko) * 2016-11-22 2017-10-12 인하대학교 산학협력단 LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템
CN106772315A (zh) * 2016-12-29 2017-05-31 武汉高思光电科技有限公司 多光束扫描装置及多光束扫描方法
CN206461219U (zh) * 2017-02-17 2017-09-01 北京工业大学 一种用于多线激光雷达的激光分束装置
CN107053219B (zh) * 2017-06-16 2019-07-09 齐鲁工业大学 一种基于激光扫描仪与强反光标志的移动机器人定位方法
CN206773185U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于电机顶置的多线激光雷达

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075423A1 (en) * 2010-09-29 2012-03-29 Massachusetts Institute Of Technology Methods and Apparatus for Transient Light Imaging
US20160047901A1 (en) * 2012-12-25 2016-02-18 Quanergy Systems, Inc. Robust lidar sensor for broad weather, shock and vibration conditions
CN103278808A (zh) * 2013-05-28 2013-09-04 中国科学院合肥物质科学研究院 一种多线扫描式激光雷达装置
JP2017009524A (ja) * 2015-06-25 2017-01-12 シャープ株式会社 レーザ距離測定モジュール及びレーザ距離測定装置
CN107367737A (zh) * 2016-05-13 2017-11-21 北醒(北京)光子科技有限公司 一种多线旋转扫描探测方法
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN106291575A (zh) * 2016-10-25 2017-01-04 深圳市镭神智能系统有限公司 一种多线激光雷达测距系统及方法

Also Published As

Publication number Publication date
CN108152826A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
US20230288563A1 (en) Determining positional information of an object in space
CA3017735C (en) Integrated illumination and detection for lidar based 3-d imaging
EP1884803A1 (en) Beacon to measure distance, positioning system using the same, and method of measuring distance
CN107817483A (zh) 障碍物信息的获取方法及激光雷达系统
WO2019127977A1 (zh) 多线激光测距装置以及机器人
CN105807285B (zh) 多区域测距方法、测距装置及终端
CN108761427B (zh) 分布式激光雷达及自动驾驶系统
KR102209500B1 (ko) 라이다 장치
US12032063B2 (en) Application specific integrated circuits for lidar sensor and multi-type sensor systems
CN113495260A (zh) 用于调频连续波(fmcw)雷达系统的色散补偿
KR102527887B1 (ko) 라이다 센서용 광학계
KR102595870B1 (ko) 초소형 라이다 센서
KR102684547B1 (ko) 초소형 라이다 센서
KR20230063363A (ko) 장거리, 고해상도 lidar을 위한 장치 및 방법들
CN205720669U (zh) 多区域测距装置及终端
CN212471510U (zh) 移动机器人
CN206348459U (zh) 基于多传感器融合的三维视觉传感装置
KR20210056577A (ko) 자율 이동 로봇의 장애물 감지 장치
JPH0926318A (ja) 測距装置
CN111913165A (zh) 探测系统及其探测方法
KR102302424B1 (ko) 오브젝트 인식을 위한 센서 장치
KR101441203B1 (ko) 운전자 보조 시스템 및 운전자 보조 시스템의 제어 방법
US20230113450A1 (en) Solid state pulse steering in lidar systems
US20230161040A1 (en) Electromagnetic wave detection apparatus and range finder
US11614526B1 (en) Virtual windows for LIDAR safety systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893528

Country of ref document: EP

Kind code of ref document: A1