CN102185659B - 具有光轴自校准的量子通信atp精跟踪系统及校准方法 - Google Patents

具有光轴自校准的量子通信atp精跟踪系统及校准方法 Download PDF

Info

Publication number
CN102185659B
CN102185659B CN201110071279.9A CN201110071279A CN102185659B CN 102185659 B CN102185659 B CN 102185659B CN 201110071279 A CN201110071279 A CN 201110071279A CN 102185659 B CN102185659 B CN 102185659B
Authority
CN
China
Prior art keywords
optical
light
quantum
self
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110071279.9A
Other languages
English (en)
Other versions
CN102185659A (zh
Inventor
贾建军
钱锋
王建宇
张亮
强佳
吴金才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Guoke Hangxing Quantum Technology Co., Ltd
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201110071279.9A priority Critical patent/CN102185659B/zh
Publication of CN102185659A publication Critical patent/CN102185659A/zh
Application granted granted Critical
Publication of CN102185659B publication Critical patent/CN102185659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明公开一种具有光轴自校准的量子通信ATP精跟踪系统及校准方法,用以纠正因发射振动、在轨失重、热梯度等原因引起的量子光发射光轴中心与精跟踪相机视场中心不一致。它采用由角锥棱镜、快速指向镜、CMOS相机、量子发射模块以及分色片等组成的精跟踪系统,利用光纤合束器在量子发射模块中引入一路其他波长的强光作为自校准光。仪器工作之前在轨择机将自校准光引入相机成像,计算光斑质心位置,作为跟踪外部目标时的视轴中心。依此建立的星间或星地光链路,可使ATP系统在捕获并精确跟踪到接收端目标的同时,准确将量子信号沿光链路发送到接收端,保证顺利实现空间尺度量子通信。

Description

具有光轴自校准的量子通信ATP精跟踪系统及校准方法
技术领域:
本发明涉及一种光学系统中光轴自校准系统及方法,具体涉及一种具有光轴自校准的空间量子通信ATP精跟踪系统及校准方法。
背景技术:
在星地或者星间量子通信中,由于通信距离远、光束窄以及存在外界干扰(如大气影响、卫星振动等),必须采用捕获(Acquisition),跟踪(Tracking)和瞄准(Pointing)系统来建立维持光通信链路。该系统简称ATP系统。ATP系统中,通信链路的一方发出一束较宽的信标光进行扫描,另一方搜索该信标光。信标光进入该探测器视场并且被正确探测到,这个过程称为捕获;ATP系统将信标光捕获后,双方根据探测器提供的视轴偏差,控制跟踪机构,使其视轴跟随入射光的视轴变化,称为跟踪;在跟踪的基础上,双方的视轴正确地指向对方视轴,称为瞄准。双方视轴可靠瞄准后,发射端发射时间同步光使双方建立时间同步,此时光通信链路已经建立,可以打开光束很窄的信号激光进行通信。通常量子通信系统采用的量子通信激光的发散角非常小(20μrad左右),对量子通信的ATP系统提出了很高的要求(一般要小于20μrad)。因此,量子通信捕获跟瞄系统的光学校准精度必须非常高(一般需要小于1μrad)。
空间量子通信中用于通信的量子激光与用于捕获跟瞄的信标光以及发射接收两端为维持时间同步设立的时间同步光都不是同一波长的激光。为进行量子级别的通信,量子通信激光是一束在发射初期就经过了衰减的、发散角很小且光强很弱的不可见光。因此为保证正常通信,在捕获跟瞄过程中由信标光建立的通信链路视场轴中心必须与量子发射模块光轴中心保持高精度一致。而在ATP系统中,通信链路视场轴中心与ATP精跟踪相机的跟踪中心等价。
所以量子通信ATP系统一般在整机产品安装光校之后,会保证它的精跟踪相机的视场中心与量子发射模块光轴中心达到高度一致。但是由于设备运输、发射振动、在轨失重、热梯度等因素会造成系统光路的细微变化,这种变化将造成前述两个光路中心之间的偏差,为ATP系统引入额外的跟踪精度误差。当光轴之间的误差达到几微弧度甚至更高时,ATP系统的精度将难以满足星地量子通信的要求。
目前已有的量子通信ATP系统一般只在两个光轴中心出现严重误差后重新进行人工校准,或者采用发射端自身时间同步光光束在精跟踪相机上成像用以调整跟踪中心的方法进行自校准。但是由于量子通信的特点,量子激光与时间同步光本身就是两路分立不同的光路,无法用ATP系统发射端自身时间同步光光路完全代替量子光光路去检测并自校准。所以还没有真正有效地办法使星载设备能够在工作状态时实现自动校准光路。
发明内容:
本发明的目的在于针对星间或星地量子通信ATP系统,提供一种正确有效的方法使量子通信系统在发射到太空轨道后在轨工作时,设备能够全自动地对ATP系统内部量子发射模块视轴中心与精跟踪相机视场中心进行精确校准。本方法同样适用于地面端量子通信ATP系统视轴的现场自动校准。
本发明的方法是采用光纤合束工艺在量子发射模块中引入一路与量子激光波长不同的可见光强光,光束从激光器出来之后就将两束光耦合进一根光纤之中,这保证了这两束光的光路在初始端就已完全同轴。利用这束强光在精跟踪相机上成像,测量该光束在精跟踪CMOS相机上所成的光斑质心位置,计算其与相机自身视轴中心偏差。根据据计算结果自动调整重定位相机的自身视轴中心位置,从而成功自校准量子通信ATP系统的视轴中心。其中上面提到的光纤合束工艺是一种将多路光纤耦合成一路光纤的技术,它使得在不同光纤中传播的光束能够耦合进入一路光纤里同轴传播。只要将两路光分别引入光纤合束器中,在另一端两路光就会耦合在同一根光纤里传输出来。
使用本发明方法,量子通信系统可以在正式进入量子通信之前,择机调整接收望远镜指向拒绝接收地面端发射过来的任何光信号,同时开启自校准强光进行系统内部的光轴检测并自校准,校准后关闭自校准光,调整接收望远镜指向建立通信连路,进入正常的量子通信。
可以实现本发明方法的量子通信ATP精跟踪系统结构如图1所示,包括:量子激光器1,波长在可见光波段的自校准强光激光器2,光纤合束器3,非球面准直镜5,带通滤光片6,角锥棱镜7,分色片8,双峰滤光片9,精跟踪相机10,非球面会聚镜11,精跟踪快速指向镜12,接收望远镜13,其中量子激光器1、自校准强光激光器2、光纤合束器3三部件被合称为量子发射模块4。
所述的量子激光器1是波长在红外800至900nm波段激光器,发射发散角20至40μrad;所述的自校准强光激光器2为波长在可见光波段的激光器,能量毫瓦量级;所述的光纤合束器3为二合一合束器;所述的非球面准直镜5是焦距为11mm非球面准直镜,所述的非球面会聚镜11是焦距为11mm非球面透镜;所述的带通滤光片6对自校准强光激光器2的光波段透明,对量子激光器1光波段衰减;所述的分色片8反射自校准光,透过量子光;所述的双峰滤光片9透过自校准光和对方通信终端信标光;所述的精跟踪相机10采用面阵CMOS探测器,帧频1~2KHz;所述的精跟踪快速指向镜12为采用压电陶瓷驱动的快速指向镜;所述的接收望远镜13是透射式或反射式望远镜系统。
量子光经过的光路:在该系统中量子激光器发射量子光,通过光纤合束器3耦合进入输出光纤,通过非球面准直镜5将光纤中的量子光转换成平行光,射向带通滤光片6;带通滤光片将量子光衰减至适于量子通信的能量级别,射向分色片8;量子光大部分透过分色片再射向精跟踪快速指向镜12,进一步通过望远镜13发射出去。
自校准光经过的光路:自校准强光激光器2发射自校准光,通过光纤合束器3耦合进入输出光纤,通过非球面准直镜5将光纤中的自校准光转换成平行光,射向带通滤光片6;带通滤光片不衰减自校准光,射向分色片8;自校准光大部分由分色片反射至角锥棱镜7;角锥棱镜将自校准光按原入射光路反射回去;反射回来的自校准光有一小部分会透过分色片,通过双峰滤光片9以及非球面会聚镜(11)最后进入精跟踪相机。
实现自校准方法的具体步骤:
1.在进行量子通信之前调整接收望远镜13指向,使其不接收地面端发射过来的光信号,并打开作为自校准光的强光激光器2。由合束器3将量子激光器1与强光激光器2产生的光束耦合进一根光纤里,同轴传播;
2.带通滤光片6对量子光的衰减较大,将其衰减到适合量子通信的光强状态,而不对自校准光进行衰减;
3.分色片8,透过量子光,而对自校准光波段的光主要起反射作用,但有小部分自校准光能够透过。角锥棱镜7将由分色片8反射过来的自校准光沿原光路反射回去,有一小部分自校准光会透过分色片8,射向精跟踪相机10;
4.双峰滤光片9,透过自校准光并过滤其中可能含有的少量量子光,通过会聚镜11,将光斑投射在精跟踪相机10上;
5.计算精跟踪相机10上光斑的质心位置15,并记录。如图2所示,将此位置作为校正后的精跟踪相机的视场中心,替代校正前相机视场轴中心14;
6.关闭强光激光器2,调整接收望远镜13指向,将目标端的信标光引入ATP系统,驱动快速指向镜12将接收到的信标光调整指向新的相机视场轴中心15,以此完成自校准建立新的通信链路,可进入正常的量子通信。
本发明有如下有益效果:
通过在量子光路中耦合进自校准光,重新计算相机视轴中心,能够使设备在轨工作期间自动校准由信标光建立的通信链路视轴中心和量子发射模块光轴中心,使它们保持高度一致。保证了ATP系统的精度,非常适用于空间尺度的量子通信。
附图说明:
图1是应用本发明方法的量子通信ATP精跟踪系统结构图。
图中:1.量子激光器;    2.自校准强光激光器;  3.光纤合束器;
      4.量子发射模块;  5.非球面准直镜;      6.带通滤光片;
      7.角锥棱镜;      8.分色片;            9.双峰滤光片;
      10.精跟踪相机;   11.非球面会聚镜;     12.精跟踪快速指向镜;
      13.接收望远镜。
图2是精跟踪相机视场轴中心调整示意图;
图中:14.校正前CMOS相机视场中心;
      15.自校准光斑质心位置(校准后相机新的视场中心)。
具体实施方式:
整个可用于自校准的精跟踪系统机构与部件组成如图1所示。在该实例系统中,精跟踪CMOS相机的探测精度优于0.4μrad,而量子通信ATP系统的光学自校准精度主要由其精跟踪相机的视场中心校准精度所决定,所以该系统能够实现的自校准精度约为0.4μrad。结合图1来进一步阐述应用本发明能够自主校准的ATP精跟踪系统实施方式:
1.在进行量子光通信之前调整接收望远镜13指向,使其不接收地面端发射过来的光信号,减少在自校准过程中外部光的干扰。同时打开作为自校准光的强光激光器2(为可见光波段,能量毫瓦量级),由合束器3(大恒光电公司生产的合束器)将量子激光器1(红外波段)与强光激光器2产生的光束耦合进一根光纤里,同轴传播;
2.由非球面准直镜5(THORLABS公司生产的F220FC非球面准直镜)将由光纤传播而来的光束转换成平行光束,透过带通滤光片6,该滤光片对量子光的衰减较大,将其衰减到适合量子通信的光强状态,而不对自校准光进行衰减;
3.光束穿过分色片8(量子光主要透过,自校准光主要反射),透过量子光,而对自校准光波段的光主要起反射作用,但有小部分自校准光能够透过;
4.角锥棱镜7(大恒光电公司生产的GCL-030503角锥棱镜)将由分色片8反射过来的大部分自校准光沿原光路反射回去,有一小部分自校准光会透过分色片8,射向精跟踪相机10;
5.光束穿过双峰滤光片9(透过自校准光和对方通信终端信标光),透过自校准光波段的光并过滤其中可能含有的少量量子光,通过非球面会聚镜(11)(THOR LABS公司生产的F220FC非球面准直镜反向使用),将光斑投射在面阵CMOS相机的精跟踪相机10上;
6.计算相机上光斑的质心位置15,并记录。如图2所示,将此位置作为校正后的精跟踪相机的视场中心,替代校正前相机视场中心14;
7.关闭强光激光器2,调整接收望远镜13指向,将目标端(地面端)的信标光引入ATP系统。根据已测得的视场轴中心数据,控制由压电陶瓷(德国PI公司生产的S-330压电陶瓷)驱动的快速指向镜12将接收到的信标光光束调整指向新的相机视场轴中心15,以此完成自校准,建立新的通信链路,进入正常的量子通信。

Claims (2)

1.一种具有光轴自校准的量子通信ATP精跟踪系统,它包括:量子激光器(1)、自校准强光激光器(2)、光纤合束器(3)、非球面准直镜(5)、带通滤光片(6)、角锥棱镜(7)、分色片(8)、双峰滤光片(9)、精跟踪相机(10)、非球面会聚镜(11)、精跟踪快速指向镜(12)和接收望远镜(13),其特征在于:
所述的量子激光器(1)是波长在红外800至900nm波段激光器,发射发散角20至40μrad;所述的自校准强光激光器(2)为波长在可见光波段的激光器,能量毫瓦量级;所述的光纤合束器(3)为二合一合束器;所述的非球面准直镜(5)是焦距为11mm非球面准直镜,所述的非球面会聚镜(11)是焦距为11mm非球面透镜;所述的带通滤光片(6)对自校准强光激光器(2)的光波段透明,对量子激光器(1)光波段衰减;所述的分色片(8)反射自校准光,透过量子光;所述的双峰滤光片(9)透过自校准光和对方通信终端信标光;所述的精跟踪相机(10)采用面阵CMOS探测器,帧频1~2KHz;所述的精跟踪快速指向镜(12)为采用压电陶瓷驱动的快速指向镜;所述的接收望远镜(13)是透射式或反射式望远镜系统;
系统中量子激光器(1)发出的量子光通过光纤合束器(3)耦合进入输出光纤,通过非球面准直镜(5)将光纤中的量子光转换成平行光,射向带通滤光片(6);带通滤光片将量子光衰减至适于量子通信的能量级别,射向分色片(8);量子光大部分透过分色片再射向精跟踪快速指向镜(12),进一步发射至接收望远镜(13)由它发射出去;
系统中自校准强光激光器(2)发出的自校准光通过光纤合束器(3)耦合进入输出光纤,通过非球面准直镜(5)将光纤中的自校准光转换成平行光,射向带通滤光片(6);透过带通滤光片(6)后射向分色片(8),自校准光大部分由分色片反射至角锥棱镜(7);角锥棱镜将自校准光按原入射光路反射回去;反射回来的自校准光有一小部分会透过分色片,通过双峰滤光片(9)以及非球面会聚镜(11)最后进入精跟踪相机。
2.一种基于权利要求1所述系统的光轴自动校准方法,其特征在于包括以下步骤:
1).在进行量子通信之前调整接收望远镜(13)指向,使其不接收地面端发射过来的光信号,并打开作为自校准光的自校准强光激光器(2),由光纤合束器(3)将量子激光器(1)与自校准强光激光器(2)产生的光束耦合进一根光纤里,同轴传播;
2).带通滤光片(6)将量子光衰减到适合量子通信的光强状态,对自校准光不作衰减;
3).分色片(8)透过量子光,而对自校准光波段的光主要起反射作用,但有小部分自校准光能够透过,角锥棱镜(7)将由分色片(8)反射过来的自校准光沿原光路反射回去,有一小部分自校准光会透过分色片(8),射向精跟踪相机(10);
4).双峰滤光片(9)透过自校准光并过滤其中可能含有的少量量子光,通过非球面会聚镜(11)将自校准光的光斑投射在精跟踪相机(10)上;
5).计算精跟踪相机(10)上光斑的质心位置(15),将此位置作为校正后的精跟踪相机的视场中心,替代校正前相机视场中心(14);
6).关闭自校准强光激光器(2),调整接收望远镜(13)指向,将目标端的信标光引入ATP系统,驱动精跟踪快速指向镜(12)将接收到的信标光调整指向新的相机视场中心(15),以此完成自校准,建立新的通信链路,进入正常的量子通信。
CN201110071279.9A 2011-03-23 2011-03-23 具有光轴自校准的量子通信atp精跟踪系统及校准方法 Active CN102185659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110071279.9A CN102185659B (zh) 2011-03-23 2011-03-23 具有光轴自校准的量子通信atp精跟踪系统及校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110071279.9A CN102185659B (zh) 2011-03-23 2011-03-23 具有光轴自校准的量子通信atp精跟踪系统及校准方法

Publications (2)

Publication Number Publication Date
CN102185659A CN102185659A (zh) 2011-09-14
CN102185659B true CN102185659B (zh) 2014-04-09

Family

ID=44571734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110071279.9A Active CN102185659B (zh) 2011-03-23 2011-03-23 具有光轴自校准的量子通信atp精跟踪系统及校准方法

Country Status (1)

Country Link
CN (1) CN102185659B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112659A1 (fr) * 2020-07-20 2022-01-21 Airbus Defence And Space Sas Terminal de communication optique par signaux laser

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393189A (zh) * 2011-12-12 2012-03-28 北方光电集团有限公司 电子经纬仪望远镜的一种激光指向机构
CN103024307B (zh) * 2012-11-30 2015-07-29 中国科学院上海技术物理研究所 一种星载激光通信atp系统光斑探测相机及探测方法
CN103297150B (zh) * 2013-04-25 2015-12-09 中国科学院光电技术研究所 一种量子通信精跟踪系统
CN104320182B (zh) * 2014-09-30 2017-04-12 中国电子科技集团公司第四十一研究所 一种空间光通信系统收发轴一致性的校准装置及方法
CN105628339B (zh) * 2015-12-18 2018-03-16 哈尔滨工业大学 基于偏转镜的卫星光通信接收光场中心视场快速标定方法及装置
CN105929382B (zh) * 2016-04-15 2018-10-19 中国科学院上海技术物理研究所 一种主动光电系统的收发同轴辅助光校装置及方法
CN206283504U (zh) * 2016-04-15 2017-06-27 中国科学院上海技术物理研究所 一种光斑质心提取精度的测量装置
CN106374998B (zh) * 2016-10-13 2019-01-25 中国科学院上海技术物理研究所 一种跟瞄系统对信标光斑位移灵敏度的测量装置及方法
CN106441141B (zh) * 2016-12-05 2023-03-17 南京科远智慧科技集团股份有限公司 一种燃烧检测系统及其燃烧检测方法
CN106679594A (zh) * 2016-12-28 2017-05-17 中国科学院长春光学精密机械与物理研究所 一种激光发射轴和光学视轴的平行度检测装置
CN108152826A (zh) * 2017-12-25 2018-06-12 深圳市杉川机器人有限公司 多线激光测距装置以及机器人
CN108663758B (zh) * 2018-04-10 2019-07-23 中国科学院上海技术物理研究所 一种自由空间激光耦合至单模光纤的装置及方法
CN109150302B (zh) * 2018-08-20 2021-02-12 中国科学院上海技术物理研究所 一种光通信系统的光轴自校准装置及方法
CN109787686B (zh) * 2018-12-18 2020-06-16 中国科学院西安光学精密机械研究所 一种卫星光通信终端在轨标定及收发同轴度校正装置及方法
CN109450532B (zh) * 2018-12-27 2024-04-05 中国电子科技集团公司第三十四研究所 带指向矫正的无线光通信跟踪系统及指向矫正方法
CN110794385B (zh) * 2019-10-18 2021-07-13 北京空间机电研究所 一种激光器零重力指向的评估方法及系统
CN111010231B (zh) * 2019-12-23 2022-05-03 网络通信与安全紫金山实验室 一种自由空间光通信方法和系统
CN111970110B (zh) * 2020-08-17 2024-05-17 中国科学技术大学 量子密钥分发系统
CN112212839B (zh) * 2020-09-23 2022-04-19 武汉恒新动力科技有限公司 一种远距离高精度对中装置及大范围扫描系统
CN112564822B (zh) * 2020-11-18 2022-07-22 西安理工大学 一种空间激光通信终端的在轨自校准装置及其校准方法
CN112711143A (zh) * 2020-12-26 2021-04-27 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种连续调焦的高能激光发射跟踪瞄准系统
CN113933939B (zh) * 2021-09-28 2022-08-02 上海遥目科技有限公司 激光通信耦合装置及基于该装置的光轴校正方法
CN114189284B (zh) * 2022-02-16 2022-05-24 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645741A (zh) * 2009-09-04 2010-02-10 中国科学院上海技术物理研究所 量子通信系统跟踪相机视轴现场自校准方法
CN202059415U (zh) * 2011-03-23 2011-11-30 中国科学院上海技术物理研究所 具有光轴自校准的空间量子通信atp精跟踪系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645741A (zh) * 2009-09-04 2010-02-10 中国科学院上海技术物理研究所 量子通信系统跟踪相机视轴现场自校准方法
CN202059415U (zh) * 2011-03-23 2011-11-30 中国科学院上海技术物理研究所 具有光轴自校准的空间量子通信atp精跟踪系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于CMOS的量子通信精跟踪系统设计及检验;张亮等;《中国激光》;20110228(第02期);第0205008-1页-第0205008-5页 *
张亮等.基于CMOS的量子通信精跟踪系统设计及检验.《中国激光》.2011,(第02期),
林均仰等.高带宽量子通信信标跟踪技术研究.《光通信技术》.2010,(第07期),
高带宽量子通信信标跟踪技术研究;林均仰等;《光通信技术》;20100731(第07期);第57-59页 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112659A1 (fr) * 2020-07-20 2022-01-21 Airbus Defence And Space Sas Terminal de communication optique par signaux laser
WO2022018343A1 (fr) * 2020-07-20 2022-01-27 Airbus Defence And Space Sas Terminal de communication optique par signaux laser

Also Published As

Publication number Publication date
CN102185659A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
CN102185659B (zh) 具有光轴自校准的量子通信atp精跟踪系统及校准方法
CN202059415U (zh) 具有光轴自校准的空间量子通信atp精跟踪系统
US8421003B2 (en) Optical transceiver built-in test (BIT)
CN108333692B (zh) 一种空间光至光纤耦合系统
CN106443643B (zh) 一种用于高精度主被动探测系统的光轴监测方法及装置
US7064817B1 (en) Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN101645741B (zh) 量子通信系统跟踪相机视轴现场自校准方法
CN112636827B (zh) 一种空间光通信终端接收同轴度在线校准装置及校准方法
CN102096071B (zh) 采用中继光放大的合作目标激光测距方法及装置
CN103311790A (zh) 一种激光束双向收发的自适应光纤耦合或准直器控制系统
CN103297150A (zh) 一种量子通信精跟踪系统
US8588617B2 (en) Optical transceiver assembly with transmission-direction control
CN110207932B (zh) 一种高速风洞纹影仪焦斑监测减震方法及系统
CN112325802B (zh) 基于共路差分和自校零的二维小角度激光测量方法与装置
CN104539349A (zh) 多功能空间激光通信地面测试系统及静态参数测试方法
CN210221057U (zh) 测距仪光学系统及望远镜测距仪
CN109631948B (zh) 一种用于全站仪校准的光纤传递装置及方法
KR102254132B1 (ko) 김발 성능 시험 장치 및 방법
RU2617459C1 (ru) Многоканальная оптико-локационная система
Bliss et al. Laser chain alignment with low-power local light sources
US11675145B2 (en) Injection of a beam of radiation into an optical fibre
CN110146257B (zh) 一种快速测量空间激光载荷光轴变化的装置及方法
CN204989470U (zh) 一种测距系统
CN110336932A (zh) 一种具有实时校轴功能的激光/电视共光路系统及使用和校轴方法
CN204789996U (zh) 一种测距系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210115

Address after: Room 1205-b6, 968, 128 Memorial Road, Baoshan District, Shanghai 200441

Patentee after: Shanghai Guoke Hangxing Quantum Technology Co., Ltd

Address before: 200083 No. 500, Yutian Road, Shanghai

Patentee before: Shanghai Institute of Technical Physics, Chinese Academy of Sciences

TR01 Transfer of patent right