WO2021184866A1 - 一种飞行时间距离测量装置及飞行时间距离测量方法 - Google Patents

一种飞行时间距离测量装置及飞行时间距离测量方法 Download PDF

Info

Publication number
WO2021184866A1
WO2021184866A1 PCT/CN2020/137576 CN2020137576W WO2021184866A1 WO 2021184866 A1 WO2021184866 A1 WO 2021184866A1 CN 2020137576 W CN2020137576 W CN 2020137576W WO 2021184866 A1 WO2021184866 A1 WO 2021184866A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
receiving
area
time
Prior art date
Application number
PCT/CN2020/137576
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010179897.4A external-priority patent/CN113484869A/zh
Priority claimed from CN202011040936.9A external-priority patent/CN114325749A/zh
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/911,516 priority Critical patent/US20230107567A1/en
Publication of WO2021184866A1 publication Critical patent/WO2021184866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present disclosure relates to the technical field of time-of-flight distance measurement, in particular to a time-of-flight distance measurement device and method.
  • time-of-flight (TOF) technology As a method of measuring the distance from an object in a scene, time-of-flight (TOF) technology was developed.
  • TOF technology can be applied to various fields, such as the automotive industry, human-machine interface, games, and robotics.
  • the working principle of TOF technology is to illuminate a scene with modulated light emitted by a light source and observe the reflected light reflected by objects in the scene. By measuring the phase difference between the emitted light and the reflected light, the distance to the object is calculated.
  • multipath interference may affect the accuracy of the measured distance.
  • multipath interference When the emitted light propagates along multiple paths with different path lengths, multipath interference will be generated, and then it will be sensed by a single optical receiver as integrated light. Although the phases of light along different path lengths are different from each other, the traditional distance measuring device calculates the distance based on the mixed phase of the integrated light. Therefore, the calculated distance can include the error value caused by multipath interference.
  • the prior art proposes a technology for detecting multipath errors based on the exposure of the light receiver.
  • a light emitter emits light that illuminates a given area.
  • the area is divided into a plurality of sub-areas, and the controller is configured to control the light emitter to change the amount of light emitted by each sub-area, thereby emitting different light emission patterns at different times.
  • the controller calculates the amount of exposure received at the light receiver of each sub-area, and detects the multipath error based on the calculated amount of exposure. Specifically, the controller calculates the exposure amount at the light receiver in the first emission mode at the first timing, and then the controller calculates the exposure amount at the light receiver in the second emission mode at the second timing. Based on the difference between the exposure amount calculated in the first timing sequence and the exposure amount calculated in the second timing sequence, the controller determines whether a multipath error occurs.
  • the exposure amount must be calculated in two different light emission modes (that is, at the first timing and the second timing). Therefore, according to the prior art method, the time delay is inevitably generated due to the sequential calculation of the exposure amount. Due to the time delay, the detection accuracy of multipath errors may decrease. For example, in the case where multipath interference occurs during the first timing but the multipath interference has been resolved before the second timing, the controller may not be able to correctly detect the multipath error, which may affect the calculated and object The accuracy of the distance between each other.
  • the purpose of the present disclosure is to provide a time-of-flight distance measuring device and a measuring method in view of the above-mentioned shortcomings in the prior art, so as to solve the existing technical problems such as poor accuracy of measuring distance.
  • an embodiment of the present disclosure provides a time-of-flight distance measurement device, including: a light emitting module, a processing module, and a light receiving module.
  • the light emitting module includes at least two emitting areas
  • the light receiving module includes At least two receiving areas corresponding to the light emitting module;
  • the processing module can generate a first instruction to electrically connect all the transmitting units so that they can output the transmitted light at the same time. All the receiving units of the light receiving module correspond to the transmitting units one-to-one, and the processing module is in accordance with Calculating the data of the light receiving module to obtain the detection target distance data;
  • the processing module may also generate an instruction different from the first instruction to cause the light emitting module to output the emitted light once or more than once, the light receiving module obtains the reflected light information of the target area once or more, and the light receiving module The result of at least one of the obtained reflected light information of the target area does not include the multipath reflected light information, and the processing module calculates and obtains target distance data that does not include at least part of the multipath reflected light information.
  • the first instruction is related to the distance of the detected object in the field of view, the reflectivity of the detected object in the field of view, or historical detection distance information, and so on.
  • the processing module further includes a control module configured to control the receiving area corresponding to the emitting area to receive reflected light.
  • the at least two transmitting areas and the at least two receiving areas correspond one-to-one.
  • control module controls one or more of the emission areas to emit light sources to the designated area.
  • control module controls the receiving area in the receiving area corresponding to the one or more emitting areas that emit light sources to the designated area to receive the reflected light.
  • the receiving area includes an area for receiving reflected light from the object to be measured and/or an area for receiving multipath reflected light.
  • control module is electrically connected to the emission module, and controls the emission area to emit the light source to a designated area.
  • control module is electrically connected to the receiving module, and controls the receiving area that does not have a corresponding relationship with the transmitting area to receive multipath light.
  • control module is electrically connected to the receiving module, and controls the receiving area that does not have a corresponding relationship with the transmitting area to not receive the reflected light.
  • the processing module further includes an information acquisition unit that does not include at least part of the multipath reflected light information output by the receiving module in at least a part of the time period.
  • the light emitting module outputs the emitted light more than once
  • the light receiving module obtains the reflected light information of the target area more than once
  • the processing module is based on the light receiving
  • the reflected light information of the target area obtained by the module more than once is synthesized to obtain all the information of the detected field of view.
  • an embodiment of the present disclosure provides a time-of-flight distance measurement method, including: a light emitting module, a processing module, and a light receiving module.
  • the light emitting module includes at least two emitting areas
  • the light receiving module includes At least two receiving areas corresponding to the light emitting module;
  • the processing module can generate a first instruction to electrically connect all the transmitting units so that they can output the transmitted light at the same time. All the receiving units of the light receiving module correspond to the transmitting units one-to-one, and the processing module is in accordance with Calculating the data of the light receiving module to obtain the detection target distance data;
  • the processing module may also generate an instruction different from the first instruction to cause the light emitting module to output the emitted light once or more than once, the light receiving module obtains the reflected light information of the target area once or more, and the light receiving module The result of at least one of the obtained reflected light information of the target area does not include the multipath reflected light information, and the processing module calculates and obtains target distance data that does not include at least part of the multipath reflected light information.
  • the first instruction is related to the distance of the detected object in the field of view, the reflectivity of the detected object in the field of view, or historical detection distance information, and so on.
  • the processing module further includes a control module configured to control the receiving area corresponding to the emitting area to receive reflected light.
  • the at least two transmitting areas and the at least two receiving areas correspond one-to-one.
  • control module controls one or more of the emitting areas to emit light sources to the designated area, and the control module controls the one or more of the receiving areas to emit light sources to the designated area.
  • the receiving area corresponding to the emitting area of the light source receives the reflected light.
  • the receiving area includes an area for receiving reflected light from the object to be measured and/or an area for receiving multipath reflected light.
  • control module is electrically connected to the receiving module, and controls the receiving area that does not have a corresponding relationship with the transmitting area to receive multipath light.
  • the embodiments of the present disclosure provide a time-of-flight distance measuring device and a measuring method.
  • the time-of-flight distance measuring device includes a light emitting module, a processing module, and a light receiving module.
  • the light emitting module includes at least two emitting areas.
  • the light receiving module includes at least two receiving areas corresponding to the light emitting module;
  • the processing module can generate a first instruction to electrically connect all the transmitting units so that they can output the transmitted light at the same time. All the receiving units of the light receiving module correspond to the transmitting units one-to-one, and the processing module is in accordance with Calculating the data of the light receiving module to obtain the detection target distance data;
  • the processing module may also generate an instruction different from the first instruction to cause the light emitting module to output the emitted light once or more than once, the light receiving module obtains the reflected light information of the target area once or more, and the light receiving module The result of at least one of the obtained reflected light information of the target area does not include the multipath reflected light information, and the processing module calculates and obtains target distance data that does not include at least part of the multipath reflected light information.
  • FIG. 1 is a schematic diagram of a functional module of a conventional TOF ranging provided by an embodiment of the present disclosure
  • FIG. 2 is a second schematic diagram of a functional module of an existing TOF ranging provided by an embodiment of the present disclosure
  • FIG. 3 is a scene diagram including multi-paths for time-of-flight distance measurement provided by the prior art
  • FIG. 5 is a schematic diagram of a conjugate relationship between a focal plane and an imaging plane in the prior art provided by an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of a partition provided by the embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram divided into 4 areas provided by the embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of the cause of a multipath problem according to this embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a transmission waveform of a prior art provided by this embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of echoes in a multi-path scenario provided by this embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of echo comparison provided by the embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a detection method provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of functional modules of a detection device provided by an embodiment of the disclosure.
  • the detection device includes: a light emitting module 110, a processing module 120, and a light receiving module 130.
  • the light emitting module 110 includes multiple transmitting units
  • the light receiving module 130 includes multiple receiving units corresponding to the light transmitting module 110. .
  • the processing module 120 is configured to generate a first instruction or an instruction different from the first instruction.
  • the first instruction can be used to cause all the transmitting units to output emission light at the same time, and all the receiving units of the light receiving module 130
  • the processing module calculates and obtains the detection target distance data according to the data of the receiving module.
  • the processing module 120 is electrically connected to a part of the transmitting unit, so that the The light emitting module 110 outputs the emitted light once or more than once, the light receiving module 130 obtains the reflected light information of the target area once or more, and the processing module 120 obtains the data of the receiving area once or more.
  • the result of at least one of the reflected light information of the target area obtained by the module 130 does not include the multipath reflected light information, and the processing module 120 calculates and obtains target distance data that does not include at least part of the multipath reflected light information.
  • the processing module 120 generates a second instruction
  • the processing module 120 is electrically connected to some of the light emitting units according to the second instruction
  • the light transmitting module 110 outputs the emitted light once
  • the light receiving module 130 also outputs the emitted light once.
  • the processing module 120 obtains the primary data and calculates the distance of the output target. In this mode, the detected object is relatively close. At this time, only a small number of transmitting units are required to output and transmit at one time.
  • the processing module 120 realizes low-power distance measurement, and can also output the emitted light through some areas, which can reduce or eliminate multipath interference (because the corresponding receiving area can only work partially, it can be reduced or eliminated.
  • the processing module 120 generates a third instruction, and the processing module 120 is electrically connected to some of the light emitting units according to the third instruction, and the light emitting module 110 outputs no less than twice
  • the light receiving module 130 also obtains the reflection information of the target area twice or more times, and the processing module 120 obtains the data not less than twice to calculate the output distance of the target object.
  • the receiving area Correspondingly, the return light information is received no less than twice, so that the interference phenomenon caused by the deflection of the return light signal under multipath interference can be eliminated.
  • the light emitting module 110 can be electrically connected to the processing module 120, and is configured to sequentially output emitted light from at least two emitting areas according to the emission sequence command generated by the processing module 120; the light receiving module 130 can be electrically connected to the processing module 120, It is configured to enable at least two receiving areas to receive at least two reflected lights of the emitted light reflected by the detection target 150 according to the emission sequence instruction generated by the processing module 120.
  • the first instruction generated by the processing module or an instruction different from the first instruction can refer to the distance information of the detection target.
  • the distance information can be historical detection distance information, which is similar to Adaptive pre-detection of the ranging process, that is, the detection device can electrically connect the processing module 120 and the light emitting module 110 according to the first instruction or an instruction different from the first instruction, and the light emitting module 110
  • the processing module 120 obtains the data received by the light receiving device, calculates and obtains the historical detection distance information, or directly according to a preset function table or similar empirical data method, first according to Start the detection device in a predetermined way, and then adaptively adjust the instructions of the detection system during the actual detection process.
  • the detection device includes: a light emitting module 110, a processing module 120, and a light receiving module 130.
  • the light emitting module 110 includes at least two emitting areas
  • the light receiving module 130 includes at least one corresponding to the light emitting module 110. Two receiving areas.
  • the processing module 120 is configured to generate a transmission sequence command, which can be used to instruct the transmission sequence of at least two transmission regions in the optical transmission module 110, and can include a transmission sequence such as sequential transmission and random transmission.
  • the light emitting module 110 can be electrically connected to the processing module 120, and is configured to sequentially output emitted light from at least two emitting areas according to the emission sequence command generated by the processing module 120; the light receiving module 130 can be electrically connected to the processing module 120, It is configured to make at least two receiving areas receive at least two reflected lights of the emitted light reflected by the detection target 150 according to the emission sequence instruction generated by the processing module 120, and work according to the aforementioned third instruction here.
  • the above-mentioned light emitting module 110 may include a light source and emitting optical elements.
  • the light source includes but is not limited to semiconductor lasers and solid-state lasers, and may also include other types of lasers.
  • a semiconductor laser is used as the light source, a vertical cavity surface emitting laser VCSEL may be used. (Vertical-cavity surface-emitting laser) or edge-emitting semiconductor laser EEL (edge-emitting laser), here is only an exemplary description and is not specifically limited.
  • the waveform of the light output by the light source 110 is also not limited, and may be a square wave , Triangle wave or sine wave, etc., can also be LED or other light sources that can be pulsed.
  • Transmitting optical components include, but are not limited to, lenses, lens groups, Fresnel lenses, zone plates, and mirrors.
  • the emitted light output by the light source can be emitted to the detection target 150 via the emitting optical element.
  • the light emitting module 110 includes at least two emitting regions, which means that the light source is divided into regions to output the emitted light; the light receiving module 130 may include receiving Arrays and receiving optical elements.
  • the receiving arrays include but are not limited to photodiode arrays, avalanche photodiode arrays, and single-photon avalanche photodiode arrays, etc., which can be implemented by units with photoelectric conversion functions such as photo-diodes (PD).
  • PD photo-diodes
  • the light receiving module 130 includes at least two receiving areas, which means that the receiving array is divided into areas to receive the reflected light reflected by the detection target 150.
  • the at least two receiving areas may be The reflected light establishes a one-to-one correspondence with the at least two emission regions.
  • the area of the detection target 150 can be divided, wherein a transmission area may form a mapping relationship with an area on the detection target 150 and correspond to a reception area.
  • the number of emitting areas may be the same as the number of receiving areas, that is, one emitting area corresponds to one receiving area, and the receiving area is configured to receive the reflected light of the emitted light reflected by the detection target 150.
  • the light emitting module 110 is realized.
  • the zoned emission of the optical receiver module 130 and the zoned reception of the optical receiving module 130 concentrate the energy that originally occupies the entire field of view on a smaller field of view, realizes the concentration of energy, and improves the power density.
  • the receiving area corresponds to the emission
  • the return optical information breaks this corresponding relationship due to multipath interference, it can be realized that the multipath interference is not received, thereby achieving the effect of reducing or eliminating the multipath interference.
  • the processing module 120 is configured to sequentially obtain the data of the at least two receiving areas according to the transmission sequence instruction, and calculate and obtain the detection target distance data including the information of the reflected light at least twice.
  • the light emitting module 110 causes at least two emitting areas to sequentially output emitted light according to the emission sequence command generated by the processing module 120
  • the light receiving module 130 causes at least two emission sequences to be generated according to the emission sequence command generated by the processing module 120.
  • Each receiving area receives at least two reflections of the emitted light reflected by the detection target 150. Therefore, when receiving, the processing module 120 can sequentially obtain the data of the at least two receiving areas according to the emission sequence instruction, and perform the data according to the emission sequence instruction.
  • the data of at least two receiving areas are spliced to synthesize a complete distance map, so that the detection target distance data containing at least two reflected light information can be calculated, and the detection distance for the detection target is output, which ensures that the detection Under the premise of distance, the accuracy of detection is guaranteed, and the effect caused by the interference of multipath problems will not be affected.
  • the light emitting module 110 causes a certain emitting area to output the emitted light according to the emission sequence instruction generated by the processing module 120, and the light receiving module 130 is generated according to the processing module 120
  • the transmission sequence command enables a certain receiving area to receive the reflected light reflected by the emitted light by the detection target 150. Therefore, when receiving, the processing module 120 can obtain the data of a certain receiving area in order according to the transmission sequence command, and according to the transmission sequence command Calculate the data of the receiving area to complete the distance map, so that the detection target distance data of the reflected light information can be calculated, and the detection distance for the detection target is output, so that the detection is guaranteed under the premise of ensuring the detection distance.
  • the accuracy also ensures that the detection energy can be reduced under the instruction without affecting the detection accuracy, and the purpose of short-distance detection with adaptive adjustment of the detection system is realized, and the returned interference signal can also be weakened.
  • the time-of-flight distance measuring device can confirm the execution of the first instruction or an instruction different from the first instruction based on the information in the scene. For example, for objects with high reflectivity scenes in the field of view, there is a relatively high probability of high reflectivity objects at this time. For the reflection of the detection light source, when the laser light of the light source is reflected by a high-reflectivity object, there will be a problem of multi-path interference, which will be explained in detail later.
  • the distance between the first command and the detected object in the field of view, the field of view It is related to the reflectivity of the detected object or historical detection distance information, etc., according to the specific conditions in the field of view, it can adaptively generate control instructions, so as to obtain adaptation to the scene in the field of view, and the influence of multipath light can also be adaptively reduced Or solve.
  • FIG. 2 is a schematic diagram of a functional module for distance measurement in an existing ITOF provided by an embodiment of the disclosure.
  • the detection device includes: a light emitting module 110, a control module 121, a light receiving module 130 and an information acquisition unit 122.
  • the processing module may include an information acquisition unit 122 and a control module 121.
  • the control module 121 controls the light emitting module 110 to emit different times of emitted light, and the light receiving module 130 emits light at the time when the light emitting module 110 controls the module 121 when the phase difference delay with the emitted light is 0° and 180°, respectively.
  • the four values of, 90° and 270° respectively obtain the light reflected by the detection target 150 corresponding to different phase delays.
  • the reflected light forms incident light in the light receiving module 130, which is then photoelectrically converted by the receiving module 130.
  • the 0° and 180° two-phase schemes are used to obtain the information of the detected object.
  • the five-phase difference delay scheme is not specifically limited in the present invention.
  • the acquired target information may be image information of the target, distance information, contour information, etc. of the target, and the present invention is not specifically limited.
  • the multi-tap structure can have an independent tap for each phase, four phase taps and a pixel unit.
  • Phase connection can be direct connection or transfer connection through an intermediate medium), or two phases can share a tap, for example, 0° and 90° share a tap, 180° and 270° share a tap, so the design can not only To achieve the purpose of reliable transmission of information, it can further ensure the optimization of pixel size design and layout structure.
  • Multi-tap connection on a pixel achieves the effect of efficiently obtaining target information (such as distance, depth, contour or image, etc.) .
  • the light emitting module 110 emits emitted light
  • the light receiving module 130 is controlled by the control module 121 to obtain the light reflected by the detection target 150 at a predetermined delay phase, for example, four different delay phases, from the emitted light, and return
  • the reflected light forms incident light in the light receiving module 130.
  • the solution does not make special requirements for the light source.
  • the light emitted by the light source is the same light each time there is no phase difference, which avoids the need for the light-emitting state parameters of the light source device during use.
  • the error caused by adjustment, and the implementation of the equipment is also very simple, which ensures the reliability of the entire detection equipment system.
  • the realization of the phase delay is implemented in the optical receiving module and the control module, which can be implemented in the optical receiving module.
  • the integrated control module ensures the simplicity and efficiency of the system structure.
  • the use of a multi-phase delay receiving scheme in the optical receiving module also avoids the need to emit light for each phase at the transmitting end. For example, in the four-phase scheme, we can Obtain the target information with two phase delays of 0° and 180° in one transmission, which enables the entire ranging system to achieve efficient ranging targets.
  • the light emitted by the light emitting module 110 and reflected by the detection target 150 is converted into photogenerated electrons (or photogenerated charges) in the photoelectric conversion module of the light receiving module.
  • the first circuit or the second circuit mentioned here includes the charge or electron transfer channel inside the pixel
  • the first circuit or the second circuit also includes the first physical circuit part and the second physical circuit part outside the pixel
  • the physical scheme inside the pixel such as using charge storage Units: capacitors, etc.
  • digital operations for example, a structure that integrates a sensor and arithmetic unit into an integrated chip
  • the present invention does not limit specific implementation schemes.
  • the control module 121 controls the light emitting module 110 to emit the emitted light, and after it is reflected by the detection target 150, the control module 121 controls the light receiving module 130 to receive with two phase delays
  • the two phase delays of 0° and 180° in the above four phases are received, and the photoelectric conversion module in the light receiving module 130 converts the delayed phase light signal into photo-generated electrons in the pixel, and the tap of the first circuit receives
  • the first modulation signal transfers the photogenerated electrons converted from the 0° phase of the pixel in the photoelectric conversion module to form an electrical signal.
  • each phase delay corresponds to a tap.
  • 0° and 90° share a floating diffusion node (FD)
  • 180° and 270° share a floating diffusion node (FD).
  • the specific operation is Using a floating diffusion node does not mean sharing a fixed floating diffusion node. Two floating diffusion nodes that share a phase delay can be interchanged.
  • the electrical signals corresponding to the 0° and 180° phase delays can be obtained in one light source emission, and in the next control of the controller, the 90° and 270° phase delays of the four phases
  • the photoelectric conversion module in the light receiving module 130 converts the delayed phase light signal into photogenerated electrons in the pixel, and the tap of the first circuit receives the first modulation signal, and transfers the 90° phase in the pixel to the photoelectric conversion module.
  • the converted photo-generated electrons are transferred to form an electrical signal. This electrical signal is output by the first circuit.
  • the tap of the second circuit receives the second modulation signal, which transfers the 270° phase of the pixel in the photo-generated electrons converted by the photoelectric conversion module to form Electric signal, this electric signal is output by the second circuit, in this mode the information corresponding to 90° and 270° is obtained at one time.
  • the control module 121 can also control the light emitting module 110 to output the emitted light, and control at least two phase delays of 0° and 180° of the four phases for reception.
  • the photoelectric conversion module in the light receiving module 130 delays the phase light signal Converted into photo-generated electrons in the pixel, the tap of the first circuit receives the first modulation signal, and transfers the 180° phase in the pixel in the photo-generated electrons converted by the photoelectric conversion module to form an electrical signal, which is generated by the first circuit Output, the tap of the second circuit receives the second modulation signal, and transfers the photo-generated electrons in the pixel with the 0° delay phase in the photoelectric conversion module to form an electrical signal.
  • This electrical signal is output by the second circuit.
  • Each circuit obtains the effect of receiving at least one electrical signal corresponding to the control signal in the same phase.
  • at least two electrical signals obtained by the two circuits can be calculated to obtain target information, for example, for images or
  • the distance information can be calculated as follows using the signals obtained by the two circuits:
  • the 90° and 270° delayed phase results are obtained through similar schemes, and can be corrected by calculations similar to Equation 1, and the corrected results can be used in the final target information acquisition.
  • the corrected results can be used in the detection of the detection device.
  • the process result can also be directly used in the specific expression of the final image or distance calculation.
  • the present invention does not limit the specific implementation.
  • f(0°) refers to the final information result corresponding to the 0° phase that needs to be corrected.
  • f(0°_1) refers to the information result corresponding to the 0° phase obtained by the first circuit
  • f(0°_2) refers to the information result corresponding to the 0° phase obtained by the second circuit
  • m, n, l, h can be [-1, 1] The correction coefficient of the value in the interval.
  • the phase delay of the receiving phases of 0° and 180° has a phase difference of 180°;
  • the modulation signals corresponding to the two delayed receiving phases in the first circuit and the second circuit are reciprocal signals, that is to say In the first period of time, when the 0° phase delay receives the electrical signal output through the first circuit or the second circuit, the corresponding 180° delay reception on the pixel does not output the electrical signal through any of the above two circuits.
  • the opposite operation is performed in the other time period.
  • the same operation is performed for the phase difference of 180° and the phase delay of 90° and the receiving phase of 270°. In this way, the circuit modulation signal corresponding to the phase difference of 180° is obtained.
  • the reciprocal signal scheme achieves the effect of obtaining signal reliability and efficient operation of the system when multi-phase sharing taps or floating diffusion (FD) or other circuit elements is achieved.
  • the phase information with a phase difference of 90° has the first time interval when obtaining phase information.
  • This time interval is an autonomous adjustment time interval within the system, which can be designed according to the reset sequence to ensure the reliability of the output of different phase signals.
  • the signal performs the pairing Represents the calculation of the depth of the distance to the object.
  • Two different circuits can output electrical information of different phases, such as the accumulated charge signal. In the process of obtaining the distance, it can be calculated based on 4 sets of integrated charges.
  • the phase difference ⁇ of the optical signal back and forth between the laser imaging radar and the target. Taking sinusoidal modulated light as an example, the phase difference ⁇ between the echo signal corresponding to the modulated light and the transmitted signal is:
  • Q0°, Q90°, Q180° and Q270° are the electrical signals converted by the receiving circuit corresponding to different phase delays. Combining the relationship between distance and phase difference, the final distance result can be obtained:
  • c is the speed of light and f is the laser frequency emitted by the light source 110.
  • f is the laser frequency emitted by the light source 110.
  • the case where the light emitted by the light source 110 is a square wave can be divided into different cases.
  • the final distance information is obtained according to the following calculation method:
  • Fig. 3 is a scene diagram of a time-of-flight distance measurement including multiple paths provided by the prior art.
  • Figure 3 illustrates the multipath phenomenon.
  • 3 shows a standard TOF detection system 9, which includes a lighting unit 8 configured to illuminate a scene 24 in multiple directions, a TOF sensor 6 configured to detect the reflection of the emitted light, and a TOF sensor 6 configured to process The processing device 7 of the obtained data.
  • the pixels (not shown) of the TOF sensor 6 measure the direct path 25 from the lighting unit 8 to the scene 24 and back to the pixels from the scene 24.
  • secondary reflections 26 or higher order reflections can also be captured on the same pixel and destroy the delay perceived by the first direct reflection 25.
  • the light captured by the sensor 6 can originate from both the direct path 25 and the secondary reflection 26, and the measured depth map 27 (representing the depth associated with each point of the scene) is therefore wrong.
  • FIG. 4 is a schematic diagram of the influence of multipath in the prior art on measurement accuracy provided by an embodiment of the disclosure.
  • the waveform (1) is the light source waveform emitted by the transmitter (A), the transmitter (A) emits the light source waveform (1) to the object B, and the object B reflects the received light.
  • the receiving end (C) shows the principle shown in Fig. 3 and can obtain the distance of the object B to be measured based on the waveform reflected by the object B to be measured. The principle is the same as that shown in Fig. 3 and will not be repeated.
  • the light source waveform (1) emitted by the transmitter (A) will be received by the object D near the object B to be measured, and then reflected to the object B to be measured, and reach the receiving end after the second reflection of the object to be measured.
  • the multi-path secondary reflected light is shown in waveform (3) in Figure 4.
  • the echo signal received by the receiving end (C) is the common effect of waveform (2) and waveform (3).
  • FIG. 5 is a schematic diagram of a conjugate relationship between a focal plane and an imaging plane in the prior art provided by an embodiment of the disclosure.
  • the light source 401 is divided into four sub-regions A, B, C, and D for emission, and the emitted light from each sub-region is projected onto the detection surface 402.
  • the light projected on the detection surface 402 undergoes diffuse reflection, and the light entering the field of view of the lens 403 is received by the receiving lens 403, thereby forming an image on the receiving end 404.
  • the imaging range of each sub-region A, B, C, and D on the receiving end 404 corresponds to the target range of A, B, C, and D on the sub-region of the detection surface 402, respectively.
  • all target points on the detector subarea A will enter the field of view of the receiving lens and be imaged on the receiving end.
  • Each target point corresponds to an imaging point on the receiving terminal area A.
  • the light scattered by each target point is only as shown in Figure 5. Only the light within the solid angle range of ⁇ can enter the receiving lens.
  • FIG. 6 is a schematic diagram of a partition provided by the embodiments of the present disclosure.
  • the multipath shown in Figure 4 will affect the accuracy of the distance measurement, and the impact of the multipath should be eliminated in the actual detection process.
  • the transmitting terminal 501 and the receiving terminal 505 will be modulated for divisional transmission and reception.
  • the transmitter is divided into N areas, which are marked as areas 1, 2, 3...N.
  • the receiving end is also divided into N areas, respectively marked as areas 1, 2, 3...N.
  • the N areas of the transmitting end and the N areas of the receiving end are optically conjugated, that is, one-to-one correspondence.
  • the area 1 of the transmitting terminal 501 emits light, regardless of the influence of multipath, the reflected light of the object under test will be received in the receiving area 1 corresponding to the receiving area 503 after the reflection of the object under test 502.
  • the reflected light received by the area is considered to be the effect of multipath.
  • the multipath light can be identified in the reflected light received by the receiving end 503, and then the multipath light can be eliminated, and then the distance of the object to be measured can be obtained according to the ranging principle shown in FIG. 2.
  • the receiving area that does not correspond to the transmitting area may not be turned on, and does not receive multipath reflected light.
  • the processing module further includes an information acquisition unit, which is based on the receiving module at least partially The output of the time period does not include at least part of the multipath reflected light information, when the instruction is different from the first instruction, the light emitting module outputs the emitted light more than once, and the light receiving module obtains the target area reflected light information more than once
  • the processing module synthesizes all the information of the detected field of view according to the reflected light information of the target area obtained by the light receiving module more than once, so that the information after reducing or eliminating multipath interference in the detected field of view can be obtained.
  • the M areas each time emit the modulated waveforms, and try to make the M regions not adjacent to each other.
  • the M areas start to emit the modulated light signal, they are only turned on by the area corresponding to the M areas on the receiving end to receive the reflected light generated by the target. Obtain the reflected light received by these M areas, and then obtain the distance of the object to be measured according to the distance measurement principle shown in Fig. 1 or Fig. 2.
  • the influence of multipath can be eliminated. It can significantly reduce the multipath effect produced in the ITOF ranging process and improve the ranging accuracy.
  • FIG. 7 is a schematic diagram of four regions provided by the embodiments of the present disclosure.
  • the transmitter 601 and the receiver 603 are divided into four parts, the transmission and reception are divided, and only one area is opened at a time.
  • the transmitting end opens the area A, and the light source of the area A reaches the corresponding area A of the receiving end 603 after being reflected by the object 602.
  • only the receiving area A is opened.
  • the receiving areas B, C, and D can also be opened, but the reflected light received by the receiving areas B, C, and D is considered to be multipath light.
  • the area divided by the object to be measured 602 is only for illustrative purposes, and there is no one-to-one correspondence with the transmitting area and the receiving area. This embodiment is not limited here.
  • FIG. 8 is a schematic diagram of the cause of a multipath problem provided by this embodiment.
  • the transmitting end (A) emits a light source to the object B to be measured, and after being reflected by the object B to reach the receiving end (C), there is a multi-path object D and a multi-path object E near the object to be measured.
  • path 1 the transmitting end (A) emits the light source to the object B to be measured, and the object B reflects the emitted light to the receiving end (C);
  • Transmitter (A) emits light source to multipath object D.
  • Multipath object reflects light to object B.
  • the object under test reflects multipath light twice to receive end (C);
  • Path 3 Transmitter (A) emits The light source reaches the object B to be measured, the reflected light from the object B to be measured reaches the multi-path object E, the secondary reflected light of the multi-path object E reaches the object B to be measured, and the object B reflects the light again to reach the receiving end (C), of course
  • the multipath influence in the range acquisition system can be preset in the detection device, for example, obtained in a fixed function, tabular form, or adaptive acquisition of object characteristics in the field of view, etc., to obtain the correlation of the detected object in the field of view.
  • the connected multipath affects the judgment result, and the information is used to control different areas and light sources, so as to adaptively obtain the effect of reducing or eliminating multipath interference to obtain more accurate detection results.
  • FIG. 9 is a schematic diagram of a transmission waveform in the prior art provided by this embodiment.
  • FIG. 10 is a schematic diagram of echoes in a multipath scenario provided by this embodiment.
  • the echo signal shown in FIG. 10 is obtained in the multipath scenario shown in FIG. 8.
  • the reflectivity of the reflective object B, the multi-path object D, and the multi-path object E are all 30%.
  • the echo signals of the three paths are shown in Figure 10.
  • Figure 10 it can be seen that the echo signal of path 3 has been weakened after multiple reflections, and has little effect on the accuracy of ranging.
  • FIG. 11 is a schematic diagram of echo comparison provided by this embodiment.
  • the path 2 shown in Figure 8 does not exist, and only remains
  • the echo signal 101 is the echo signal received when the partition is not used for transmission
  • the echo signal 102 is the echo signal received when the partition is transmitted. It can be seen that when the divisional transmission is adopted, the waveform of the echo signal is closer to the real waveform, and the ranging result will be more accurate.
  • FIG. 12 is a schematic flowchart of a detection method provided by an embodiment of the disclosure. This method can be applied to the aforementioned detection device. The basic principles and technical effects of the method are the same as the aforementioned corresponding sensor embodiments. For a brief description, the parts not mentioned in this embodiment can refer to the corresponding content in the sensor embodiment. . As shown in Figure 12, the detection method includes:
  • the control module controls one or more emitting areas in the emitting module to emit light sources to a designated area.
  • the control module controls one or more receiving areas in the receiving module to receive light reflected by the object to be measured.
  • S103 Obtain the distance of the object to be measured according to the reflected light received by the receiving area.
  • the multiple transmitting areas and the multiple receiving areas have a one-to-one correspondence.
  • control module controls the receiving area in the receiving area corresponding to the one or more emitting areas that emit light sources to the designated area to receive the reflected light.
  • the receiving area includes an area for receiving reflected light from the object to be measured and/or an area for receiving multipath reflected light.
  • control module is electrically connected to the emission module, and controls the emission area to emit the light source to a designated area.
  • control module is electrically connected to the receiving module, and controls the receiving area that does not have a corresponding relationship with the transmitting area to receive multipath light.
  • control module is electrically connected to the receiving module, and controls the receiving area that does not have a corresponding relationship with the transmitting area to not receive the reflected light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种飞行时间距离测量装置及方法,包含光发射模块(110)、处理模块(120)以及光接收模块(130),光发射模块(110)包括至少两个发射区域,光接收模块(130)包括与光发射模块(110)对应的至少两个接收区域;处理模块(120)可产生第一指令电性连接全部发射单元,使其同时输出发射光,光接收模块(130)的全部接收单元与发射单元一一对应,处理模块(120)依照光接收模块(130)的数据计算获得探测目标距离数据;处理模块(120)还可产生不同于第一指令的指令,使光发射模块(110)一次或者一次以上输出发射光,光接收模块(130)一次或者一次以上获得目标区域反射光信息,光接收模块(130)获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,处理模块(120)计算获得至少不包含部分多路径反射光信息的目标距离数据,从而获得适应视场场景的探测结果,并根据不同指令可以获得多路径减弱或消除后的距离数据。

Description

一种飞行时间距离测量装置及飞行时间距离测量方法
相关申请的交叉引用
本公开要求于2020年09月28日提交中国专利局的申请号为202011040936.9、名称为“一种飞行时间距离测量装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开要求于2020年03月16日提交中国专利局的申请号为202010179897.4、名称为“探测装置及方法”的中国专利申请的优先权,其部分内容通过引用结合在本公开中。
技术领域
本公开涉及飞行时间距离测量技术领域,特别涉及飞行时间距离测量装置及方法。
背景技术
作为一种在场景中测量与物体相距的距离的方法,飞行时间(TOF)技术被开发出来。这种TOF技术可以应用于各种领域,如汽车工业、人机界面、游戏以及机器人等。一般来说,TOF技术的工作原理是用光源发出的已调制光照射场景,并观察场景中物体反射的反射光。通过测量发射光和反射光之间的相位差,计算出与物体相距的距离。
在使用这种传统的TOF技术的距离测量装置中,多路径干扰可能影响所测距离的精度。当发射光沿着具有不同路径长度的多条路径传播时,多路径干扰就会产生,然后作为集成光被单个光接收器所感测。虽然沿不同路径长度的光的相位是互不相同的,但传统的距离测量装置是根据集成光的混合相位来计算距离的。因此,计算的距离可以包括由多路径干扰引起的误差值。
现有技术提出了一种基于光接收器的曝光量检测多路径误差的技术。在现有技术中,光发射器发射照亮给定区域的光。该区域被划分为多个子区域,并且控制器被配置为控制光发射器以改变每个子区域的发射光量,从而在不同的时间发射不同的光发射模式。控制器计算每个子区域的光接收器处接收的曝光量,并根据所计算的曝光量检测多路径误差。具体地,控制器在第一时序计算在第一发射模式下光接收器处的曝光量,然后控制器在第二时序计算在第二发射模式下光接收器处的曝光量。基于在第一时序计算的曝光量与在第二时序计算的曝光量之间的差异,控制器确定是否发生多路径误差。
然而,根据现有技术为了检测多路径误差,必须在两种不同的光发射模式(即在第一时序和第二时序)计算曝光量。因此,根据专现有技术的方法,由于曝光量的按顺序计算而不可避免地产生时间延迟。由于时间延迟,多路径误差的检测精度可能会下降。例如,在第一时序期间发生多路径干扰但在第二时序之前该多路径干扰已被解决的情况下,控制器可能无法正确地检测多路径误差,这可能会影响到所计算到的与物体相距的距离的精度,另外由于在探测过程中需要适应探测场景的不同切换不同的探测模式,由此完成对于不同场景的适应性设计,并且在探测过程中对于获取到的距离数据精确性保证也时需要进行保证性设计,设计一种能够适应场景需求并且能够较小甚至消除多路径的方案是一种亟待解决的问题。
发明内容
本公开的目的在于,针对上述现有技术中的不足,提供一种飞行时间距离测量装置及测量方法,以解决现有的测量距离精确性较差等的技术问题。
为实现上述目的,本公开实施例采用的技术方案如下:
第一方面,本公开实施例提供了一种飞行时间距离测量装置,包括:光发射模块、处 理模块以及光接收模块,所述光发射模块包括至少两个发射区域,所述光接收模块包括与所述光发射模块对应的至少两个接收区域;
所述处理模块可产生第一指令电性连接全部所述发射单元,使其同时输出发射光,所述光接收模块的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述光接收模块的数据计算获得探测目标距离数据;
所述处理模块还可产生不同于第一指令的指令,使所述光发射模块一次或者一次以上输出发射光,所述光接收模块一次或者一次以上获得目标区域反射光信息,所述光接收模块获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块计算获得至少不包含部分多路径反射光信息的目标距离数据。
可选地,所述第一指令与视场内被探测物的距离、视场内被探测物的反射率或者历史探测距离信息等等相关。
可选地,所述处理模块还包含控制模块,所述控制模块配置成控制与所述发射区域对应的所述接收区域接收反射光。
可选地,所述至少两个发射区域与所述至少两个接收区域一一对应。
可选地,所述控制模块控制所述发射区域中的一个或多个向所述指定区域发射光源。
可选地,所述控制模块控制所述接收区域中与所述一个或多个向所述指定区域发射光源的发射区域对应的接收区域接收反射光。
可选地,所述发射区域与所述对应的接收区域存在共轭关系。
可选地,所述接收区域包含接收待测物体反射光的区域和/或接收多路径反射光的区域。
可选地,所述控制模块与所述发射模块电性连接,其控制所述发射区域向指定区域发射光源。
可选地,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域接收多路径光。
可选地,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域不接收反射光。
可选地,所述处理模块还包含信息获取单元,所述信息获取单元依据所述接收模块在至少部分时间段输出的不包含至少部分多路径反射光信息。
可选地,在不同于第一指令的指令时所述光发射模块输出多于一次的发射光,所述光接收模块多于一次获得目标区域反射光信息,所述处理模块依据所述光接收模块多于一次获得的目标区域反射光信息合成获得被探测视场的全部信息。
第二方面,本公开实施例提供了一种飞行时间距离测量方法,包括:光发射模块、处理模块以及光接收模块,所述光发射模块包括至少两个发射区域,所述光接收模块包括与所述光发射模块对应的至少两个接收区域;
所述处理模块可产生第一指令电性连接全部所述发射单元,使其同时输出发射光,所述光接收模块的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述光接收模块的数据计算获得探测目标距离数据;
所述处理模块还可产生不同于第一指令的指令,使所述光发射模块一次或者一次以上输出发射光,所述光接收模块一次或者一次以上获得目标区域反射光信息,所述光接收模块获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块计算获得至少不包含部分多路径反射光信息的目标距离数据。
可选地,所述第一指令与视场内被探测物的距离、视场内被探测物的反射率或者历史探测距离信息等等相关。
可选地,所述处理模块还包含控制模块,所述控制模块配置成控制与所述发射区域对应的所述接收区域接收反射光。
可选地,所述至少两个发射区域与所述至少两个接收区域一一对应。
可选地,所述控制模块控制所述发射区域中的一个或多个向所述指定区域发射光源, 所述控制模块控制所述接收区域中与所述一个或多个向所述指定区域发射光源的发射区域对应的接收区域接收反射光。
可选地,所述接收区域包含接收待测物体反射光的区域和/或接收多路径反射光的区域。
可选地,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域接收多路径光。
本公开的有益效果是:
本公开实施例提供的一种飞行时间距离测量装置及测量方法,该飞行时间距离测量装置包括:光发射模块、处理模块以及光接收模块,所述光发射模块包括至少两个发射区域,所述光接收模块包括与所述光发射模块对应的至少两个接收区域;
所述处理模块可产生第一指令电性连接全部所述发射单元,使其同时输出发射光,所述光接收模块的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述光接收模块的数据计算获得探测目标距离数据;
所述处理模块还可产生不同于第一指令的指令,使所述光发射模块一次或者一次以上输出发射光,所述光接收模块一次或者一次以上获得目标区域反射光信息,所述光接收模块获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块计算获得至少不包含部分多路径反射光信息的目标距离数据,通过本公开的飞行时间距离测量装置,可以实现在特定场景下对于多径影响减弱或者消除的效果,并且能够适应复杂的探测场景,实现精确探测的效果,保证整个装置的智能化效果。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的一种现有TOF测距的功能模块示意图之一;
图2为本公开实施例提供的一种现有TOF测距的功能模块示意图之二;
图3为现有技术提供的一种飞行时间距离测量的包含多路径的场景图;
图4为本公开实施例提供的一种现有技术多路径对测量精度影响的示意图;
图5为本公开实施例提供的一种现有技术的焦平面和成像平面的共轭关系示意图;
图6为本公开实施列提供的一种分区示意图;
图7为本公开实施列提供的一种分为4个区域的示意图;
图8为本公开本实施例提供的一种多路径问题产生原因示意图;
图9为本公开本实施例提供的一种现有技术的发射波形的示意图;
图10为本公开本实施列提供的一种多路径场景下的回波示意图;
图11为本公开本实施列提供的一种回波比较示意图;
图12为本公开实施例提供的一种探测方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个 附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
图1为本公开实施例提供的一种探测装置的功能模块示意图。如图1所示,该探测装置包括:光发射模块110、处理模块120以及光接收模块130,光发射模块110包括多个发射单元,光接收模块130包括与光发射模块110对应多个接收单元。
其中,处理模块120,配置成产生第一指令或者不同于第一指令的指令,第一指令可以用于使全部所述发射单元同时输出发射光,所述光接收模块130的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述接收模块的数据计算获得探测目标距离数据,不同于第一指令的仅使处理模块120电性连接部分所述发射单元,使所述光发射模块110一次或者一次以上输出发射光,所述光接收模块130一次或者一次以上获得目标区域反射光信息,所述处理模块120获得一次或一次以上所述接收区域的数据,所述光接收模块130获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块120计算获得至少不包含部分多路径反射光信息的目标距离数据。例如所述处理模块120产生第二指令,所述处理模块120按照第二指令与部分所述光发射单元电性连接,所述光发射模块110一次输出发射光,所述光接收模块130也一次获得目标区域的反射信息,所述处理模块120获得该一次数据,计算输出目标物的距离,在此种模式下,被探测的物体距离比较近,此时只需要较少的发射单元一次输出发射光,实现了低功率的距离测量,也可以通过部分区域输出发射光,可以实现对于多径干扰的减弱或者消除的效果(由于对应的接收区域也可以仅仅部分工作,因此可以获得减弱或者消除多径光的效果),另外所述处理模块120产生第三指令,所述处理模块120按照第三指令与部分所述光发射单元电性连接,所述光发射模块110不少于两次输出发射光,所述光接收模块130也两次或者多次获得目标区域的反射信息,所述处理模块120获得该不少于两次数据,计算输出目标物的距离,在此种模式下,接收区域也对应地接收不少于两次的返回光信息,如此实现了可以消除多径干扰下由于返回光信号的偏折引发的干扰现象。
光发射模块110,可与处理模块120电性连接,配置成根据处理模块120产生的发射序列指令使至少两个发射区域顺序输出发射光;光接收模块130,可与处理模块120电性连接,配置成根据处理模块120产生的发射序列指令,使至少两个接收区域接收发射光经探测目标150反射的至少两次反射光。
在该探测系统工作过程中,所述处理模块产生的第一指令或者不同于第一指令的指令,可以参照探测目标的距离信息,该距离信息可以为历史探测距离信息,历史距离信息获得类似于测距过程的自适应预探测,即所述探测装置可以按照第一指令或者不同于第一指令的指令电性连接所述处理模块120和所述光发射模块110,通过所述光发射模块110一次或者一次以上输出发射光,所述处理模块120获得所述光接收装置接收的数据,计算获得所述历史探测距离信息,也可以直接按照预设函数表格或者类似的经验数据的方法,先按照预定的方式启动探测装置,然后在实际探测过程中自适应调整探测系统的指令。
同时如图1所示,该探测装置包括:光发射模块110、处理模块120以及光接收模块130,光发射模块110包括至少两个发射区域,光接收模块130包括与光发射模块110对应的至少两个接收区域。
其中,处理模块120,配置成产生发射序列指令,发射序列指令可以用于指示光发射模块110中至少两个发射区域的发射顺序,可以包括顺序发射、随机发射等发射顺序。
光发射模块110,可与处理模块120电性连接,配置成根据处理模块120产生的发射序列指令使至少两个发射区域顺序输出发射光;光接收模块130,可与处理模块120电性连接,配置成根据处理模块120产生的发射序列指令,使至少两个接收区域接收发射光经探测目标150反射的至少两次反射光,此处按照之前提及的第三指令工作。
其中,上述光发射模块110可以包括光源和发射光学元件,光源包括但不仅限于半导体激光器以及固体激光器,也可包括其他类型的激光器,当采用半导体激光器作为光源时,可以采用垂直腔面发射激光器VCSEL(Vertical-cavity surface-emitting laser)或者 边发射半导体激光器EEL(edge-emitting laser),此处仅为示例性说明并不作具体限定,光源110输出的光的波形也不进行限定,可以为方波、三角波或者正弦波等,也可以是LED或者其他可以脉冲调制的光源。发射光学元件包括但不仅限于透镜、透镜组、菲涅尔透镜、波带片以及反射镜等。光源输出的发射光经发射光学元件可以发射至探测目标150,而本公开实施例中光发射模块110包括至少两个发射区域指的是将光源分区域输出发射光;光接收模块130可以包括接收阵列和接收光学元件,接收阵列包括但不仅限于光电二极管阵列、雪崩光电二极管阵列以及单光子雪崩光电二极管阵列等,可以由具有光电转化功能的单元例如光电二极管(Photo-Diode,PD)实现,可以具体为感光耦合元件(Charge-coupled Device,CCD),互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS),此处也不具体限定其类型,也即探测目标150反射的反射光经接收光学元件可以通过接收阵列接收,而本公开实施例中光接收模块130包括至少两个接收区域指的是将接收阵列分区域接收经探测目标150反射的反射光,所述的至少两个接收区域可以按照反射光与所述至少两个发射区域建立一一对应关系。
根据发射区域的划分,可以对探测目标150的区域进行划分,其中,一发射区域可以与探测目标150上的一个区域形成映射关系,并且与一接收区域对应。可选地,发射区域的数量可以与接收区域的数量相同,也即一发射区域对应一接收区域,该接收区域配置成接收发射光经探测目标150反射的反射光,如此,实现光发射模块110的分区发射以及光接收模块130的分区接收,将原本占据全部视场角的能量集中在更小的视场角上,实现能量的集中,提高了功率密度,另外由于接受区域的是对应于发射区的,当由于多径干扰而使得返回光信息打破了这种对应关系,由此可以实现多径干扰不被接收,由此实现了多径干扰减弱或消除的效果。
处理模块120,配置成根据发射序列指令顺序获得至少两个接收区域的数据,并计算获得包含至少两次反射光信息的探测目标距离数据。
其中,由于光发射模块110是根据所述处理模块120产生的发射序列指令使至少两个发射区域顺序输出发射光,光接收模块130是根据所述处理模块120产生的发射序列指令,使至少两个接收区域接收发射光经探测目标150反射的至少两次反射光,因此,处理模块120在接收时,可以根据发射序列指令顺序获得至少两个接收区域的数据,并依据该发射序列指令对该至少两个接收区域的数据进行拼接,以合成一张完整的距离图,从而可以计算获得包含至少两次反射光信息的探测目标距离数据,输出针对该探测目标的探测距离,实现了在保证探测距离的前提下保证了探测的准确性,不至于受到多径问题干扰而导致的效果。
当系统在之前叙述的第二指令工作时,光发射模块110是根据所述处理模块120产生的发射序列指令使某一发射区域输出发射光,光接收模块130是根据所述处理模块120产生的发射序列指令,使某一接收区域接收发射光经探测目标150反射的反射光,因此,处理模块120在接收时,可以根据发射序列指令顺序获得某一接收区域的数据,并依据该发射序列指令对该接收区域的数据进行计算,以完成距离图,从而可以计算获得一次反射光信息的探测目标距离数据,输出针对该探测目标的探测距离,实现了在保证探测距离的前提下保证了探测的准确性,也保证了在该指令下探测能量可被调小,同时不影响探测精度,实现了探测系统的自适应调整的短距离探测的目的,同时返回的干扰信号也可被减弱的效果。
飞行时间距离测量装置可以依据场景内的信息来确认执行第一指令或者不同于第一指令的指令,例如对于视场内存在高反射率场景的物体,此时高反射率的物体存在比较大概率对于探测光源的反射,当光源的激光被高反射率物体反射时,会存在多路径干扰问题,在后续会进行详细的说明,所述第一指令与视场内被探测物的距离、视场内被探测物的反射率或者历史探测距离信息等等相关,按照视场内具体情况可以自适应地产生控制指令,从而获得对于视场内场景的适应,多径光影响也可以适应性地减弱或者解决。
图2为本公开实施例提供的一种在现有ITOF测距的功能模块示意图。如图2所示,该探测装置包括:光发射模块110、控制模块121、光接收模块130以及信息获取单元122,与图1类似,处理模块可以包含信息获取单元122和控制模块121。
控制模块121控制所述光发射模块110出不同次数的发射光,光接收模块130在与光发射模块110发射光时刻控制模块121在与所述发射光相位差延时分别为0°、180°、90°和270°四个值时分别获得不同相位延时对应的经探测目标150反射回的光,所述反射回的光在光接收模块130形成入射光,进而经过接收模块130光电转化生成不同的信息,在某些情况下也使用0°和180°两相位方案实现被探测物的信息获取,也有文献公开了0°、120°和240°三相位获得目标信息,甚至有文献也公开了五相位差延时方案,本发明并不具体限定,获取的目标信息可以为目标的图像信息也可以为目标的距离信息、轮廓信息等,本发明也不具体限定。以下为了说明具体技术问题以四相位的飞行时间获取距离的方案为例进行存在问题和解决方案的具体阐述,多抽头结构可以为每个相位具有独立的一个抽头,四个相位抽头和一个像素单元相连接(可以为直接连接或者为通过中间介质转接连接),也可以为两个相位共用一个抽头,例如0°和90°共用一个抽头,180°和270°共用一个抽头,这样设计不仅能够实现可靠性传输信息的目的,还进一步能够保证像元尺寸设计和布局结构的最优化,多抽头连接在一个像元上实现了高效获得目标信息(例如距离、深度、轮廓或图像等)的效果。
在前述基础上,光发射模块110发出发射光,光接收模块130通过控制模块121控制,在与所述发射光具有预定延迟相位例如四个不同的延迟相位下获得探测目标150反射的光,返回的反射光在光接收模块130形成入射光,方案对于光源并不做特殊要求,每次光源发射的光为相同的光不存在相位差异,避免了由于光源设备在使用过程中由于发光状态参数需要调整而引起的误差,并且设备的实现也非常简单,保证了整个探测设备系统的可靠性,本方案中对于相位延时的实现在光接收模块和控制模块内进行实现,可以在光接收模块中集成控制模块保证了系统结构的简便和高效性,另外在光接收模块采用多相位延迟接收方案也避免了需要在发射端对于每一个相位都需要发出发射光,例如对于四相位方案中我们可以在一次发射中获得0°和180°两个相位延迟的目标物信息,这使得整个测距系统能够实现高效测距的目标。光发射模块110发射的经过探测目标150反射的光,在光接收模块的光电转化模块内转化为光生电子(或者光生电荷),光生电子经过抽头的调制,在器件内部按照第一电路或者第二电路的部分转移电荷(此处所提到的第一电路或者第二电路包含像元内部的电荷或者电子转移通道),经过像元内的第一电子转移通道或者第二电子转移通道被分别传输到不同的外部实体电路部分(第一电路或者第二电路也包含了像元外部的第一实体电路部分和第二实体电路部分),之后经过在像元内部的物理方案运算(例如使用电荷存储单元:电容等)或者数字运算(例如将传感器和运算单元集成为一体芯片的结构),或者在后续的ADC或者其他的电路部进行物理运算或者数字运算,本发明并不限定具体的实现方案。
以四相位两抽头结构为例进行说明,其中0°和90°共用一个抽头,180°和270°共用一个抽头为例(但是具体的操作中共用一个抽头并不意味着共用一个固定的抽头,两个相位延时共用的抽头可以进行互换),控制模块121控制光发射模块110发出发射光,其经过探测目标150反射之后,控制模块121控制光接收模块130以两个相位延时进行接收,例如上述四相位中的0°和180°两个相位延时进行接收,光接收模块130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的0°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的180°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出。也可以每个相位延时对应一个抽头,在第一电路中0°和90°共用一个浮动扩散节点(FD),而180°和270°共用一个浮动扩散节点(FD),但是具体的操作中共用一个浮动扩散节点并不意味着共用一个固定 的浮动扩散节点,两个相位延时共用的浮动扩散节点可以进行互换。在这一实施例中0°和180°相位延时对应的电信号可以在一次光源发射中被获得,而在下一次控制器的控制中,四相位中的90°和270°两个相位延时进行接收,光接收模块130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的90°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的270°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出,在这一模式下90°和270°对应的信息被一次性获得。最后控制模块121还可以控制光发射模块110输出发射光,并至少控制四相位中的0°和180°两个相位延时进行接收,光接收模块130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的180°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的0°延迟相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出,至此实现了两个电路分别获得至少一个相同相位接收控制信号对应的电信号的效果,在进行最终的目标信息运算过程中可以对于两个电路获得的至少两个电信号进行运算以获得目标信息,例如对于图像或者距离信息可以利用两个电路获得的信号进行如下运算:
f(0°)=mf(0°_1)+nf(0°_2);
f(180°)=lf(180°_1)+hf(180°_2);     (1)
90°和270°延迟相位结果通过类似的方案获得,并且可以进行类似于式1的运算进行修正,并将该修正结果用于最终的目标信息获得中,该修正结果可以为探测装置探测中的过程结果,也可以直接用在最终图像或者距离运算的具体表达式中,本发明并不限定具体实现方式,式中,f(0°)指需要被修正的0°相位对应的最终信息结果,f(0°_1)指第一电路获得的0°相位对应的信息结果,f(0°_2)指第二电路获得的0°相位对应的信息结果,其中m,n,l,h可以为[-1,1]区间内取值的修正系数。
以上实施例中相位延时为0°和180°的接收相位,其相位差为180°;两个延时接收相位在第一电路和第二电路对应的调制信号为互逆信号,也就是说在第一时间段0°相位延时接收通过第一电路或者第二电路输出电信号时,该像元上对应的180°延时接收不通过上述两个电路的任何电路输出电信号,而在另一时间段正好执行相反的操作,对于相位差为180°的相位延时为90°和270°的接收相位也进行相同操作,如此获得了相位差为180°接收相位对应的电路调制信号为互逆信号的方案,实现了多相位共用抽头或者浮动扩散(FD)或者其他电路元件时信号可靠性获取和系统高效工作的效果,相位差为90°的相位信息获取时具有第一时间间隔,该时间间隔为系统内部的自主调整时间间隔,可依据复位时序来配合设计,保证了不同相位信号结果输出的可靠性。
当根据到物体的距离将电荷分配给第一抽头和第二抽头时,通过使用全部的八个检测(对于每一个相位信号均通过两个电路获得相位延时对应的电信号),信号执行对表示到所述物体的所述距离的深度进行计算的运算,通过两个不同电路可以输出不同相位的电信息,例如累积的电荷量信号,在距离获取过程中可以利用可根据4组积分电荷计算光信号在激光成像雷达与目标之间往返的相位差φ以正弦调制光为例,调制光所对应的回波信号与发射信号之间的相位差φ为:
φ=arctan[(Q90°-Q270°)/(Q0°-Q180°)]     (2)
上式2中Q0°、Q90°、Q180°以及Q270°分别为不同相位延时对应的接收部电路转化出来的电信号,结合距离与相位差之间的关系,可以获得最终的距离结果:
d=(c/2)*[1/(2πf)]*φ          (3)
上式3中c为光速,f为光源110发射的激光频率,对于光源110发射光为方波的情况可以分为不同情况,按照如下的计算方法获得最终的距离信息:
当Q0°>Q180°且Q90°>Q270°时,
Figure PCTCN2020137576-appb-000001
当Q0°<Q180°且Q90°>Q270°时,
Figure PCTCN2020137576-appb-000002
当Q0°<Q180°且Q90°<Q270°时,
Figure PCTCN2020137576-appb-000003
当Q0°>Q180°且Q90°<Q270°时,
Figure PCTCN2020137576-appb-000004
图3为现有技术提供的一种飞行时间距离测量的包含多路径的场景图。图3来解说多径现象。图3示出了标准TOF探测系统9,其包括配置成在多个方向上照亮场景24的照明单元8、配置成检测所发射的光的反射的TOF传感器6以及配置成处理由TOF传感器6所获得的数据的处理装置7。
TOF传感器6的像素(未示出)测量从照明单元8到场景24以及从场景24返回像素的直接路径25。但是,二次反射26或更高阶的反射也可以在相同的像素上被捕捉到并且破坏第一直接反射25所感知到的延迟。传感器6所捕获的光可以源自直接路径25和二次反射26二者,所测得的深度图27(表示与场景的每一点相关联的深度)由此是错误的。
图4为本公开实施例提供的一种现有技术多路径对测量精度影响的示意图。如图4所示,其中波形(1)为发射端(A)发射出的光源波形,发射端(A)发射光源波形(1)到待测物体B,待测物体B反射接收到的光到接收端(C)如图3所示的原理根据待测物体B反射回来的波形就可以得到待测物体B的距离,其原理和图3所示原理一样就不再赘述。但是在多路径的场景中发射端(A)发射的光源波形(1)会被待测物体B附近的物体D接收然后再反射到待测物体B,经待测物体二次反射后到达接收端C。多路径的二次反射光如图4中的波形(3)所示。最后接收端(C)接收到的回波信号是波形(2)和波形(3)的共同效果。
此时由于多路径光(3)的运动路径中多了一次反射,且光程相较之前增加了一段距离,导致在接收到的信号端产生了一段强度较弱,且时序相对靠后的回波信号。在通过积分的方法进行测试的时候,会对于不同的积分通积分得到的电荷量产生一定的干扰,从而对于实际测距结果产生干扰,影响距离测量的精度。
图5为本公开实施例提供的一种现有技术的焦平面和成像平面的共轭关系示意图。如图5所示,光源401分成四个子区A、B、C、D发射,每个子区发射光投射至探测面402上。投射至探测面402上的光经过漫反射,由接收镜头403接收进入镜头403视场内的光,从而在接收端404上成像。其中,接收端404上每个子区A、B、C、D的成像范围分别对应探测面402子区上A、B、C、D的目标范围。例如,探测器子区A上所有目标点都会进入接收镜头视场后成像在接收端上,每个目标点对应接收端子区A上的一个成像点,每个目标点散射的光只有如图5所示Ω立体角范围内的光才能进入接收镜头。
图6为本公开实施列提供的一种分区示意图。如图4所示的多路径会对距离测量的精度产生影响,在实际的探测过程中要消除多路径的影响。如图6所示将将发射端501和接收端505进行分区发射和接收的调制。如图6所示将发射端分为N个区域,分别标记为区域1,2,3…N。于此同时,将接收端也分为N个区域,分别标记为区域1,2,3…N。根据 如图5所示焦平面成像的原理,发射端的这N个区域和接收端的这N个区域为光学的共轭关系,即一一对应。当发射端501的1区域发光时,在不考虑多路径的影响下,经过待测物502的反射后会在接收区域503对应的接收区域1收到待测物体反射光,在其他不对应的区域收到的反射光就认为是多路径的影响。这样就可以在接收端503收到的反射光中识别出多路径光,进而消除多路径光,然后根据图2所示的测距原理得到待测物体的距离。当然在实际测距过程中和发射区域不对应的接收区域也可以不开启,不接收多路径反射光,所述处理模块还包含信息获取单元,所述信息获取单元依据所述接收模块在至少部分时间段输出的不包含至少部分多路径反射光信息,在不同于第一指令的指令时所述光发射模块输出多于一次的发射光,所述光接收模块多于一次获得目标区域反射光信息,所述处理模块依据所述光接收模块多于一次获得的目标区域反射光信息合成获得被探测视场的全部信息,如此可以获得被探测视场内减弱或者消除多径干扰后的信息。
可选地,在实际的距离测量过程中每次仅有M个区域同时发射经过调制之后的波形,而且尽量使这M个区域彼此不相互相邻。这M个区域开始发射调制好的光信号的时候,仅由接收端上这M个区域所对应的区域开启,接收目标产生的反射光。得到这M个区域接收到的反射光,然后根据图1或图2所示的测距原理得到待测物体的距离。就可以消除多路径的影响。可以显著降低在ITOF测距过程中产生的多路径效果,提高测距精度。
图7为本公开实施列提供的一种分为4个区域的示意图。如图7所示将发射端601和接收端603分成四个部分,分区发射和接收,一次只打开一个区域。如图7所示发射端打开了区域A,区域A的光源经过待测物602反射后达到对应的接收端603的区域A。在本实施例中只打开了接收区域A,当然接收区域B,C,D也可以打开,但是接收区域B,C,D接收到的反射光认为是多路径光。需要说明的是待测物体602划分的区域只是为了示意说明,并不存在和发射区域以及接收区域的一一对应关系。本实施例在此并不作限制。
图8为本实施例提供的一种多路径问题产生原因示意图。如图8所示所示发射端(A)发射光源到待测物B,经过待测物B反射后到达接收端(C),在待测物体附近有多路径物体D以及多路径物体E。如图8所示的多路径场景中共有3条可能的路径,分别为路径1:发射端(A)发射光源到待测物体B,待测物体B反射发射光到达接收端(C);路径2:发射端(A)发射光源到多路径物体D多路径物体反射光到待测物体B,待测物体二次反射多路径光到达接收端(C);路径3:发射端(A)发射光源到待测物体B,待测物体B反射发射光到达多路径物体E,多路径物体E二次反射光到达待测物体B,待测物体B再次反射光到到达接收端(C),当然在实际的使用中,距离获取系统中多径影响可以预置于探测装置中,例如按照固定函数、表格形式或者自适应获取视场内物体特征等等方式获得,获得视场内被探测物相关联的多路径影响判断结果,通过该信息对于不同的区域和光源进行控制,从而适应性地获得减弱或者消除多径干扰获得更精确探测结果的效果。
图9为本实施例提供的一种现有技术的发射波形的示意图。
图10为本实施列提供的一种多路径场景下的回波示意图。图10所示的回波信号是在图8所示的多路径场景得到的。在图8所示的多路径场景下假设反射物体B、多路径物体D以及多路径物体E的反射率都为30%。三条路径的回波信号如图10所示。如图10所示可以看出路径3的回波信号因为经过了多次反射强度已经很弱,对测距的精度影响不大。
图11为本实施列提供的一种回波比较示意图。当采取如图6所示的分区发射的情形下,可以得到由于多路径物体D无法直接接收到从发射端(A)发射的光源,则如图8所示的路径2不存在,仅仅留下了路径1和路径3,如图10所示回波信号101是没有采取分区发射时收到的回波信号,回波信号102是采取分区发射时收到的回波信号。可以看出,当采用了分区发射之后,回波信号的波形回更接近于真实波形,测距结果也会更准确。
当然实际使用过程中,不限于ITOF影响的减弱效应,也可以为DTOF测量系统,当多径干扰存在时,探测器阵列中的雪崩二极管的触发概率将被提升,因此会出现不同于实际测距结果的对应的峰值的第二高峰信息,如此在DTOF测量中需要更复杂的处理获得最准确 的测量结果,采用本方案也可以获得更小的多径干扰如此减小了后处理电路的复杂度,此处不再详细赘述。
图12为本公开实施例提供的一种探测方法的流程示意图。该方法可以应用于前述的探测装置,该方法基本原理及产生的技术效果与前述对应的传感器实施例相同,为简要描述,本实施例中未提及部分,可参考传感器实施例中的相应内容。如图12所示,该探测方法包括:
S101、控制模块控制发射模块中的一个或多个发射区域向指定区域发射光源。
S102、控制模块控制接收模块中的一个或多个接收区域接收待测物体反射的光。
S103、根据接收区域接收到的反射光得到待测物体的距离。
可选地,所述多个发射区域与所述多个接收区域一一对应。
可选地,所述控制模块控制所述接收区域中与所述一个或多个向所述指定区域发射光源的发射区域对应的接收区域接收反射光。
可选地,所述发射区域与所述对应的接收区域存在共轭关系。
可选地,所述接收区域包含接收待测物体反射光的区域和/或接收多路径反射光的区域。
可选地,所述控制模块与所述发射模块电性连接,其控制所述发射区域向指定区域发射光源。
可选地,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域接收多路径光。
可选地,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域不接收反射光。
上述方法应用于前述实施例提供的探测装置,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换和/或改进等,均应包含在本公开的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换和/或改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种飞行时间距离测量装置,其特征在于,包含:光发射模块、处理模块以及光接收模块,所述光发射模块包括至少两个发射区域,所述光接收模块包括与所述光发射模块对应的至少两个接收区域;
    所述处理模块能产生第一指令电性连接全部所述发射单元,使其同时输出发射光,所述光接收模块的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述光接收模块的数据计算获得探测目标距离数据;
    所述处理模块还能产生不同于第一指令的指令,使所述光发射模块一次或者一次以上输出发射光,所述光接收模块一次或者一次以上获得目标区域反射光信息,所述光接收模块获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块计算获得至少不包含部分多路径反射光信息的目标距离数据。
  2. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述第一指令与视场内被探测物的距离、视场内被探测物的反射率或者历史探测距离信息等等相关。
  3. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述处理模块还包含控制模块,所述控制模块配置成控制与所述发射区域对应的所述接收区域接收反射光。
  4. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述至少两个发射区域与所述至少两个接收区域一一对应。
  5. 根据权利要求3所述的飞行时间距离测量装置,其特征在于,所述控制模块控制所述发射区域中的一个或多个向指定区域发射光源。
  6. 根据权利要求5所述的飞行时间距离测量装置,其特征在于,所述控制模块控制所述接收区域中与所述一个或多个向所述指定区域发射光源的发射区域对应的接收区域接收反射光。
  7. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述发射区域与所述对应的接收区域存在共轭关系。
  8. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述接收区域包含接收待测物体反射光的区域和/或接收多路径反射光的区域。
  9. 根据权利要求3所述的飞行时间距离测量装置,其特征在于,所述控制模块与所述发射模块电性连接,其控制所述发射区域向指定区域发射光源。
  10. 根据权利要求3所述的飞行时间距离测量装置,其特征在于,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域接收多路径光。
  11. 根据权利要求3所述的飞行时间距离测量装置,其特征在于,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域不接收反射光。
  12. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,所述处理模块还包含信息获取单元,所述信息获取单元依据所述接收模块在至少部分时间段输出的不包含至少部分多路径反射光信息。
  13. 根据权利要求1所述的飞行时间距离测量装置,其特征在于,在不同于第一指令的指令时所述光发射模块输出多于一次的发射光,所述光接收模块多于一次获得目标区域反射光信息,所述处理模块依据所述光接收模块多于一次获得的目标区域反射光信息合成获得被探测视场的全部信息。
  14. 一种飞行时间距离测量方法,其特征在于,包含:光发射模块、处理模块以及光接收模块,所述光发射模块包括至少两个发射区域,所述光接收模块包括与所述光发射模块对应的至少两个接收区域;
    所述处理模块能产生第一指令电性连接全部所述发射单元,使其同时输出发射光,所述光接收模块的全部所述接收单元与所述发射单元一一对应,所述处理模块依照所述光接收模块的数据计算获得探测目标距离数据;
    所述处理模块还能产生不同于第一指令的指令,使所述光发射模块一次或者一次以上 输出发射光,所述光接收模块一次或者一次以上获得目标区域反射光信息,所述光接收模块获得的目标区域反射光信息中至少一次的结果不包含多路径反射光信息,所述处理模块计算获得至少不包含部分多路径反射光信息的目标距离数据。
  15. 根据权利要求14所述的飞行时间距离测量方法,其特征在于,所述第一指令与视场内被探测物的距离、视场内被探测物的反射率或者历史探测距离信息等等相关。
  16. 根据权利要求14所述的飞行时间距离测量方法,其特征在于,所述处理模块还包含控制模块,所述控制模块配置成控制与所述发射区域对应的所述接收区域接收反射光。
  17. 根据权利要求14所述的飞行时间距离测量方法,其特征在于,所述至少两个发射区域与所述至少两个接收区域一一对应。
  18. 根据权利要求16所述的飞行时间距离测量方法,其特征在于,所述控制模块控制所述发射区域中的一个或多个向指定区域发射光源,所述控制模块控制所述接收区域中与所述一个或多个向所述指定区域发射光源的发射区域对应的接收区域接收反射光。
  19. 根据权利要求14所述的飞行时间距离测量方法,其特征在于,所述接收区域包含接收待测物体反射光的区域和/或接收多路径反射光的区域。
  20. 根据权利要求16所述的飞行时间距离测量方法,其特征在于,所述控制模块与所述接收模块电性连接,其控制与所述发射区域不存在对应关系的所述接收区域接收多路径光。
PCT/CN2020/137576 2020-03-16 2020-12-18 一种飞行时间距离测量装置及飞行时间距离测量方法 WO2021184866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/911,516 US20230107567A1 (en) 2020-03-16 2020-12-18 Device and method for measuring distance by time of flight

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010179897.4 2020-03-16
CN202010179897.4A CN113484869A (zh) 2020-03-16 2020-03-16 探测装置及方法
CN202011040936.9A CN114325749A (zh) 2020-09-28 2020-09-28 一种飞行时间距离测量装置及方法
CN202011040936.9 2020-09-28

Publications (1)

Publication Number Publication Date
WO2021184866A1 true WO2021184866A1 (zh) 2021-09-23

Family

ID=77771879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137576 WO2021184866A1 (zh) 2020-03-16 2020-12-18 一种飞行时间距离测量装置及飞行时间距离测量方法

Country Status (2)

Country Link
US (1) US20230107567A1 (zh)
WO (1) WO2021184866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008949A (zh) * 2021-10-22 2023-04-25 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051488A (zh) * 2013-03-15 2015-11-11 法罗技术股份有限公司 通过受引导的探测来在3d扫描仪中诊断多路径干扰并且消除多路径干扰
CN105717512A (zh) * 2016-01-29 2016-06-29 北京万集科技股份有限公司 激光测距装置及方法
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN108132464A (zh) * 2017-11-07 2018-06-08 北醒(北京)光子科技有限公司 一种固态面阵激光雷达探测方法
CN108152826A (zh) * 2017-12-25 2018-06-12 深圳市杉川机器人有限公司 多线激光测距装置以及机器人
CN109597090A (zh) * 2018-12-13 2019-04-09 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法
US20190219696A1 (en) * 2018-01-15 2019-07-18 Microsoft Technology Licensing, Llc Time of flight camera
CN110221309A (zh) * 2019-04-30 2019-09-10 深圳市光鉴科技有限公司 基于异步ToF离散点云的3D成像装置及电子设备
CN110244279A (zh) * 2019-06-20 2019-09-17 深圳市镭神智能系统有限公司 光线接收模块和激光雷达

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051488A (zh) * 2013-03-15 2015-11-11 法罗技术股份有限公司 通过受引导的探测来在3d扫描仪中诊断多路径干扰并且消除多路径干扰
CN105717512A (zh) * 2016-01-29 2016-06-29 北京万集科技股份有限公司 激光测距装置及方法
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN108132464A (zh) * 2017-11-07 2018-06-08 北醒(北京)光子科技有限公司 一种固态面阵激光雷达探测方法
CN108152826A (zh) * 2017-12-25 2018-06-12 深圳市杉川机器人有限公司 多线激光测距装置以及机器人
US20190219696A1 (en) * 2018-01-15 2019-07-18 Microsoft Technology Licensing, Llc Time of flight camera
CN109597090A (zh) * 2018-12-13 2019-04-09 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法
CN110221309A (zh) * 2019-04-30 2019-09-10 深圳市光鉴科技有限公司 基于异步ToF离散点云的3D成像装置及电子设备
CN110244279A (zh) * 2019-06-20 2019-09-17 深圳市镭神智能系统有限公司 光线接收模块和激光雷达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008949A (zh) * 2021-10-22 2023-04-25 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质
CN116008949B (zh) * 2021-10-22 2024-02-27 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
US20230107567A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN110609293B (zh) 一种基于飞行时间的距离探测系统和方法
US10795001B2 (en) Imaging system with synchronized scan and sensing
CN110554401B (zh) 混合lidar接收器和lidar方法
US10324171B2 (en) Light detection and ranging sensor
US20210003680A1 (en) Time-of-flight depth mapping with parallax compensation
US11408983B2 (en) Lidar 2D receiver array architecture
JP5679549B2 (ja) 距離測定方法、距離測定システム及び距離センサー
EP3391076A1 (en) Light detection and ranging sensor
US20090072170A1 (en) Spatial Information Detection System
WO2022017366A1 (zh) 一种深度成像方法及深度成像系统
WO2019200833A1 (zh) 一种测距方法、装置、测距传感器以及传感阵列
KR20100128797A (ko) 거리 센서, 3차원 이미지 센서 및 그 거리 산출 방법
CN112130161A (zh) 1d扫描lidar中的发送器和接收器的校准
WO2021184866A1 (zh) 一种飞行时间距离测量装置及飞行时间距离测量方法
US20210103034A1 (en) Dynamic beam splitter for direct time of flight distance measurements
KR20210031710A (ko) 전자 디바이스 및 방법
CN112698309A (zh) 一种tof距离探测中多路径抑制方法
WO2022161043A1 (zh) 一种获取距离信息的探测方法及探测系统
WO2020237765A1 (zh) 激光雷达的接收机装置及激光雷达
CN112859049A (zh) 一种tof距离探测中多路径抑制方法及测距系统
CN114325749A (zh) 一种飞行时间距离测量装置及方法
US20230204735A1 (en) Detection apparatus and method
CN112946678A (zh) 一种探测装置
US20230007979A1 (en) Lidar with photon-resolving detector
US11681028B2 (en) Close-range measurement of time of flight using parallax shift

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925827

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20925827

Country of ref document: EP

Kind code of ref document: A1