KR101784635B1 - LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템 - Google Patents

LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템 Download PDF

Info

Publication number
KR101784635B1
KR101784635B1 KR1020160155508A KR20160155508A KR101784635B1 KR 101784635 B1 KR101784635 B1 KR 101784635B1 KR 1020160155508 A KR1020160155508 A KR 1020160155508A KR 20160155508 A KR20160155508 A KR 20160155508A KR 101784635 B1 KR101784635 B1 KR 101784635B1
Authority
KR
South Korea
Prior art keywords
vehicle
profile
type
length
information
Prior art date
Application number
KR1020160155508A
Other languages
English (en)
Inventor
권장우
변기훈
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020160155508A priority Critical patent/KR101784635B1/ko
Application granted granted Critical
Publication of KR101784635B1 publication Critical patent/KR101784635B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • G01S7/4806Road traffic laser detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템이 개시된다. LiDAR 센서를 활용한 다중차로 교통검지 방법은, LiDAR(Light Detection and Ranging) 센서를 이용하여 센싱된 차량관련 정보에 기초하여 차량의 길이, 차량의 높이 및 차량의 속력을 포함하는 차량관련 프로파일을 생성하는 단계, 기정의된 참고 프로파일에 기초하여 생성된 상기 차량관련 프로파일의 스케일(scale)을 조정하는 단계, 및 조정된 상기 차량관련 프로파일과 상기 참고 프로파일 간의 일치성 여부를 나타내는 확률값에 기초하여 차량의 종류를 결정하는 단계를 포함할 수 있다.

Description

LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템{METHOD AND SYSTEM FOR DETECTING MULTILINE VECHILE USING 2D LiDAR}
본 발명의 실시예들은 지능형 교통 시스템에 활용되는 차량검지시스템에 관한 것으로, 2D-LiDAR(Light Detection and Ranging)을 이용하여 획득한 차량관련 정보를 기반으로 다중차로의 차량을 검지 및 분류하는 기술에 관한 것이다.
현대에 들어 지능형 교통 체계는 수 많은 연구와 발전을 거듭하여 운전자가 편하고 안전한 주행을 할 수 있도록 많은 지표들을 지원하고 있다. 그 중 차종별 교통량 자료는 도로의 계획, 운영상태 평가, 도로의 유지관리 등 다양한 용도로 폭넓게 활용된다. 그 중요성에 대비하여 신뢰성 있는 통행량과 단일 차로에 가해진 하중을 계측할 필요가 있다.
국내외 차종분류 관련 연구는 AVC(Automatic Vehicle Classification) 장비를 활용한 연구가 지배적이다. AVC는 루프 센서, 피에조 센서 등과 같이 도로에 매설되는 매설용 센서를 이용하여 차종을 분류하는 장비로서, 축수, 축간거리, 차량길이, 오버행 등을 계측하고, 계측된 정보들을 이용하여 차종을 구분한다. 그리고, AVC는 교통정보를 수집, 교통신호제어 및 교통정보제공에 필요한 교통 변수를 얻을 수 있는 검지기로 검지목적에 적합하도록 설계되며, 다양한 설치가 가능하고 우수한 신뢰성으로 인해 전세계적으로 가장 널리 이용되고 있는 차량 검지기이다.
AVC의 기본 원리는 도로 상에 매설된 루프코일로 형성된 검지영역을 차량이 통과하거나, 검지영역에 차량이 정지해 있는 경우, 해당 차량(예컨대, 도체)으로 인해 발생하는 루프 인덕턴스의 변화율(즉, 전기적 변화)과 전기적 신호변화(즉, 펄스 변화)에 기초하여 차량의 유/무, 차량의 길이, 차량의 속력 등을 판별하여 차종을 구분하는 것이다.
그러나, AVC의 경우 도로에 매설되는 것을 기본으로 하므로, 매설용 센서는 도로파손에 의한 고장과 도로를 파쇄해 설치해야 하는 번거로움, 유지보수 비용의 부담 등이 존재한다. 또한, 차종분류에 사용되는 제원들이 유사하게 계측되는 경우, 차종 분류에 오류가 발생하게 된다. 한국공개특허 제10-2014-0055916호는 차종분류장치 및 그 제어방법에 관한 것으로서, 차량의 진입로에 설치된 복수의 피에조 센서와 노변을 따라 설정된 간격으로 설치된 다수개의 광축센서, 진입로 양측에 설치된 복수의 레이저 센서를 통해 차량의 축수, 전장, 전고 및 전폭을 측정하여 차종을 분류하는 기술을 개시하고 있다.
본 발명은 LiDAR 센서(예컨대, 2D-LiDAR 센서)를 이용하여 센싱된 차량관련 정보를 기반으로 도로 매설없이도 차종을 파악하는 기술에 관한 것이다.
또한, 본 발명은 도로의 계획, 운영상태 평가, 유지관리에 필요한 교통량정보를 추출하기 위해 2D-LiDAR 센서를 이용하여 센싱된 차량관련 정보를 바탕으로, 다중차로의 교통량을 파악하고, 관측자가 검출 및 분류정보를 쉽게 모니터링하는 다중차로 관리 기술에 관한 것이다.
본 LiDAR 센서를 활용한 다중차로 교통검지 방법은, LiDAR(Light Detection and Ranging) 센서를 이용하여 센싱된 차량관련 정보에 기초하여 차량의 길이, 차량의 높이 및 차량의 속력을 포함하는 차량관련 프로파일을 생성하는 단계, 기정의된 참고 프로파일에 기초하여 생성된 상기 차량관련 프로파일의 스케일(scale)을 조정하는 단계, 및 조정된 상기 차량관련 프로파일과 상기 참고 프로파일 간의 일치성 여부를 나타내는 확률값에 기초하여 차량의 종류를 결정하는 단계를 포함할 수 있다.
일측면에 따르면, 상기 차량의 종류를 결정하는 단계는, 상기 차량관련 프로파일을 N개의 구간으로 구분하는 단계, 구분된 N개의 구간 별 높이와 상기 차량의 길이에 기초하여 각 구간에 해당하는 부분면적을 계산하는 단계, 및 차종 별로 미리 정의된 구간 별 가중치에 기초하여 상기 일치성 여부를 나타내는 확률값을 계산하는 단계를 포함할 수 있다.
다른 측면에 따르면, 상기 확률값을 계산하는 단계는, 상기 차량관련 프로파일에서 지면으로부터 반사된 자외선, 습도 및 날씨 변화로 인해 발생된 잡음을 제거하는 단계를 포함할 수 있다.
또 다른 측면에 따르면, 상기 차량의 종류를 결정하는 단계는, 상기 차량관련 프로파일로부터 차량의 종류 결정을 위한 특징점들을 추출하는 단계, 및 추출된 특징점들을 대상으로, 상기 참고 프로파일, B-Spline 알고리즘에 기초하여 차량의 형상 외곡 및 차량의 전장을 보상하는 단계를 포함할 수 있다.
본 LiDAR 센서를 활용한 다중차로 교통검지 시스템은, LiDAR(Light Detection and Ranging) 센서에서 센싱된 차량관련 정보를 수신하는 정보 수신부, 상기 차량관련 정보에 기초하여 차량의 길이, 차량의 높이 및 차량의 속력을 포함하는 차량관련 프로파일을 생성하는 프로파일 생성부, 기정의된 참고 프로파일에 기초하여 생성된 상기 차량관련 프로파일의 스케일(scale)을 조정하는 스케일 조정부, 및 조정된 상기 차량관련 프로파일과 상기 참고 프로파일 간의 일치성 여부를 나타내는 확률값에 기초하여 차량의 종류를 결정하는 차종 결정부를 포함할 수 있다.
본원발명은, LiDAR 센서(예컨대, 2D-LiDAR 센서)를 이용하여 센싱된 차량관련 정보와 참고 프로파일을 이용하여 차종을 결정함으로써, 도로에 매설하는 번거로움 없이도 차종을 보다 정확히 파악할 수 있다.
또한, 본 발명은 도로의 계획, 운영상태 평가, 유지관리에 필요한 교통량정보를 추출하기 위해 2D-LiDAR 센서를 이용하여 센싱된 차량관련 정보를 바탕으로, 다중차로의 교통량을 파악하고, 관측자가 검출 및 분류정보를 쉽게 모니터링할 수 있다.
도 1은 본 발명의 일실시예에 있어서, LiDAR 센서를 이용하여 차량을 센싱하는 동작을 설명하기 위해 제공되는 도면이다.
도 2는 본 발명의 일실시예에 있어서, 다중차로 교통검지, 시스템의 네트워크 구성을 도시한 도면이다.
도 3은 본 발명의 일실시예에 있어서, 차량의 종류를 결정하는 방법을 도시한 흐름도이다.
도 4는 본 발명의 일실시예에 있어서, 다중차로 교통검지 시스템의 내부 구성을 도시한 블록도이다.
도 5는 본 발명의 일실시예에 있어서, 차량의 종류를 결정하는 제어흐름을 도시한 흐름도이다.
도 6은 본 발명의 일실시예에 있어서, 차종 결정을 위해 이용되는 의사결정트리를 도시한 도면이다.
도 7은 본 발명의 일실시예에 있어서, 차량관련 형상 정보를 검출하는 사용자 인터페이스를 나타내는 도면이다.
본 실시예들은 LiDAR(Light Detection and Ranging) 센서를 이용하여 차량의 종류를 결정하고, 결정된 차량의 종류를 기반으로 다중 차로의 교통량을 파악하는 기술에 관한 것이다. 특히, 본 실시예들은, LiDAR 센서를 이용하여 획득한 차량의 프로파일(예컨대, 차량의 속력, 높이 및 길이를 포함하는 차량의 형상정보)를 기반으로 차량의 단위구간의 부분면적을 산출하고, 차종 별로 상이한 부분면적의 가중치(weight)를 이용하여 차량의 종류를 결정하는 기술에 관한 것이다.
본 실시예들에서, 'LiDAR' 센서는 지면 또는 대기 중으로 레이저 빔을 조사하고, 지면으로부터 반사 또는 산란된 빛을 망원경으로 수집하여 분석함으로써, 차량관련 정보, 예컨대, 차량의 길이, 차량의 높이, 차량의 속도 등을 획득하기 위해 이용되는 센서를 나타낼 수 있다. 예컨대, 'LiDAR' 센서는 차량을 센싱하기 위해 여러 차선들로 이루어진 다중 차로의 양 사이드(side)에 설치될 수 있으며, 차량의 상공에서 지면으로 레이저 빔을 조사하여 지면 또는 차량으로부터 반사되는 레이저 짐을 수집하고, 수집된 레이저 빔을 기초로 차량의 높이, 길이 등의 정보를 생성하기 위한 차량 센싱을 수행할 수 있다.
도 1은 본 발명의 일실시예에 있어서, LiDAR 센서를 이용하여 차량을 센싱하는 동작을 설명하기 위해 제공되는 도면이다.
도 1을 참고하면, 하나의 LiDAR 센서(110)가 다중 도로의 양 사이드(side)에 설치된 역 U자형 프레임(frame) 구조물의 중앙 지점에 배치될 수 있다.
예컨대, 상행 4차선 도로의 양쪽에 설치된 역 U자형 프레임(frame) 구조물(120)의 상단 중앙 지점에 LiDAR 센서(110)가 배치될 수 있다. 이처럼, 구조물(120)의 상단에 LiDAR 센서(110)가 배치됨에 따라, LiDAR 센서(110)는 각 차선에 정차 또는 각 차선을 통과하는 차량의 상공에서 차선 별 지면 및 차량으로 레이저 빔을 조사할 수 있다. 그러면, 조사된 빔은 지면 또는 차량으로부터 반사 또는 산란될 수 있으며, LiDAR 센서(110)는 반사 또는 산란된 빔을 수집할 수 있다. 그리고, 다중차로 교통검시 시스템은 수집된 빔을 분석하여 각 차선 별 차량의 높이, 차량의 길이(즉, 차량 전장) 및 차량의 속도를 포함하는 차량관련 정보를 생성할 수 있다.
예를 들어, LiDAR 센서(110)는 차량의 발단시각과 종단시각을 센싱할 수 있으며, 발단시각 및 종단시각을 포함하는 차량관련 정보를 다중차로 교통검시 시스템으로 전송할 수 있다. 그러면, 다중차로 교통검지 시스템은 상기 발단시각 및 종단시각을 이용하여 차량의 속도를 계산할 수 있다. 여기서, LiDAR 센서(110)에서 센싱된 차량관련 정보는 2진 데이터 형태로서, 예컨대, 아스키(ASCII) 데이터 형태로 다중차로 교통검지 시스템으로 전송될 수 있다.
도 2는 본 발명의 일실시예에 있어서, 다중차로 교통검지, 시스템의 네트워크 구성을 도시한 도면이다.
도 2는 LiDAR 센서(210), 다중차로 교통검지 시스템(220) 및 차량 관제 시스템(230)을 포함할 수 있다. 여기서, 다중차로 교통검지 시스템(220) 및 차량 관제 시스템(230)은 퍼스널 컴퓨터(Personal computer) 등을 포함할 수 있다.
LiDAR 센서(210)는 도로 상에 설치되며, LiDAR 센서(210)는 도로 상의 각 차선 별 차량을 센싱하여 수집된 정보를 다중차로 교통검지 시스템(220)으로 전송할 수 있다. 이때, LiDAR 센서(210)는 유선 또는 무선으로 상기 수집된 정보를 다중차로 교통검지 시스템(220)으로 전송할 수 있다. 예컨대, LiDAR 센서(210)는 시리얼 통신(serial communication)을 이용하여 상기 수집된 정보를 다중차로 교통검지 시스템(220)으로 전송할 수 있다. 이외에, LiDAR 센서(210)는 도로 주변에 설치된 무선 액세스 포인트(Wireless Access Point), 예컨대, 와이파이(WiFi), 비콘(becone) 등을 이용하여 상기 수집된 정보를 전송할 수 있다. 이외에, 블루투스(bluetooth), 지그비(Zigbee) 등의 근거리 무선 통신을 이용하여 상기 수집된 정보를 전송할 수도 있다.
다중차로 교통검지 시스템(220)은 LiDAR 센서(210)로부터 수신된 차량관련 정보를 기반으로 분석 알고리즘을 이용하여 차량의 종류를 결정할 수 있다. 그리고, 다중차로 교통검지 시스템(220)은 결정된 차종 및 차선 별 차량의 개수를 카운트하며, 일정시간동안 카운트된 차량의 개수 및 차종 정보를 차량 관제 시스템(230)으로 전송할 수 있다.
차량 관제 시스템(230)은 해당 도로와 관련하여 수신된 차량의 개수 및 차종 정보를 기반으로 이전에 미리 수신된 정보들과 누적 저장할 수 있다. 즉, 도로의 식별자 정보와, 차량의 개수 및 차종 정보가 수신될 수 있으며, 도로 식별자 정보에 기초하여 기존에 미리 누적된 해당 도로에서의 차종 정보 및 차량 개수 정보를 상기 수신된 차종 정보 및 차량 개수 정보에 기초하여 업데이트할 수 있다. 그리고, 차량 관제 시스템(230)은 누적된 정보를 바탕으로 해당 도로에서의 교통량을 확인할 수 있다.
차량 관제 시스템(230)은 다중 차로 교통 검지 시스템(220)과는 별도로 위치하는 것으로서, 예컨대, 여러 지역의 여러 도로 상황을 총괄하는 교통 관제실에 배치된 PC에 해당할 수 있다. 이에 따라, 차량 관제 시스템(230)은 다중 차로 교통 검지 시스템(220)으로 무선 통신을 기반으로 상기 도로의 식별자 정보, 차량의 개수 및 차종 정보를 수신할 수 있다.
다중차로 교통검지 시스템(220)은 LiDAR 센서(210)를 이용하여 차량의 종류를 결정하기 위해서는 아래와 같은 세가지 제약 사항을 만족하는 처리를 수행할 수 있다.
1) 차량의 길이와 속도 결정
2) 프로파일 조정
3) 차량의 종류 분류(즉, 차종 결정)
1) 차량의 길이와 속도 결정
먼저, 차량의 속도는 LiDAR 센서(210)를 통해 센싱된 차량의 발단시각과 종단시각 간의 차인 검지시각차로서 계산될 수 있다.
그리고, 차량의 길이는 LiDAR 센서(210)를 통해 센싱된 차량의 외형관련 정보(예컨대, 차량 외형 프로파일)를 기반으로 결정될 수 있다. 예컨대, 차량의 외형관련 정보를 기반으로 분류 알고리즘을 통해 분석하여 근사적인 차종을 결정하고, 결정된 차종과 매칭하는 차량의 길이를 해당 차량의 길이로 결정할 수 있다. 계산된 차량의 속도, 차량의 길이, 그리고, LiDAR 센서(210)를 통해 센싱된 차량의 높이를 포함하는 해당 차량관련 프로파일이 생성될 수 있다. 이외에, 차량관련 프로파일에 해당하는 이미지로부터 차량의 외형을 나타내는 차량 형상 정보를 생성하고, 생성된 차량 형상 정보와 미리 저장된 차종별 형상 정보 간의 매칭정도를 비교함으로써, 해당 차량의 차종을 근사적으로 결정할 수도 있다.
2) 프로파일 조정
차종을 분류하기 위해, 상기 차량관련 프로파일과 미리 정의된 참고 프로파일 간의 대조 작업이 필요할 수 있다. 이때, 차량관련 프로파일과 상기 참고 프로파일 간의 스케일(scale)이 상이한 경우 대조가 불가능할 수 있으므로, 차량관련 프로파일의 스케일이 상기 참고 프로파일을 기반으로 조정될 수 있다. 여기서, 참고 프로파일은, 차종 별로 해당 차량의 길이, 높이, 속도 등을 기정의된 회수 이상 미리 계측하여 평준화한 데이터를 나타낼 수 있다.
일례로, LiDAR 센서로부터 수신된 정보를 기반으로 생성된 차량관련 프로파일과 미리 정의된 참고 프로파일 간의 비교 대조 작업 시 샘플링 레이트(sampling rate), 차량의 이동 속도 등에 따라 두 프로파일 간의 스케일, 예컨대, 두 프로파일 각각에 해당하는 이미지 간의 해상도(resolution) 등이 상이할 수 있다. 이에 따라, 참고 프로파일을 차량의 단위속력마다 측정해놓고 대조할 경우, 자원이 심하게 낭비되므로 차량이 검지영역을 통과한 후 차량의 속도와 관계없이 차량 길이를 균등 간격으로 구분하고, 균등 간격 내에서의 데이터 개수를 설정하여 차량관련 프로파일의 스케일을 조정할 수 있다.
3) 차량의 종류 분류(즉, 차종 결정)
차종에 따라 적재물의 높이와 적재함 부분의 형태가 상이할 수 있다. 이때, 적재물의 높이를 기반으로 차량의 형상 정보를 보상하기 위해, 차량을 총 N개의 구간으로 나누고, 차량 길이와 차량의 구간 별 높이를 이용하여 차량의 부분 면적을 산출할 수 있다. 그리고, 산출된 차량의 부분면적에 차종 별 각 구간의 중요도에 따라 상이한 가중치(weight)를 적용함으로써, 차종에 해당하는 참고 프로파일과의 일치성을 확률적으로 판단할 수 있다.
도 3은 본 발명의 일실시예에 있어서, 차량의 종류를 결정하는 방법을 도시한 흐름도이고, 도 4는 본 발명의 일실시예에 있어서, 다중차로 교통검지 시스템의 내부 구성을 도시한 블록도이다.
도 4에 따르면, 다중차로 교통검지 시스템(400)은 정보 수신부(410), 프로파일 생성부(420), 스케일 조정부(430) 및 차종 결정부(440)를 포함할 수 있다.
도 3의 각 단계들(310 내지 340 단계)은 도 4의 구성요소인 정보 수신부(410), 프로파일 생성부(420), 스케일 조정부(430) 및 차종 결정부(440)에 의해 수행될 수 있다.
310 단계에서, 정보 수신부(410)는 LiDAR 센서(401)로부터 센싱된 차량관련 정보를 수신할 수 있다. 예컨대, 정보 수신부(410)는 센싱된 발단시각과 종단시각 정보를 수신할 수 있으며, 이외에, 차량의 높이와 길이를 추정하기 위한 정보들을 수신할 수 있다.
320 단계에서, 프로파일 생성부(420)는 LiDAR 센서(410)로부터 수신된 차량관련 정보를 기반으로 차량의 속도, 높이 및 길이를 추정 또는 계산하고, 계산된 차량의 속도, 높이 및 길이를 포함하는 해당 차량관련 프로파일을 생성할 수 있다.
예를 들어, 프로파일 생성부(420)는 발단시각과 종단시각의 차와 차량의 길이를 이용하여 차량의 속도를 계산할 수 있다. 그리고, 프로파일 생성부(420)는 LiDAR 센서(401)에서 수집한 레이저 빔을 기반으로 차량의 전면부터 차량의 후면까지의 차량 전장에 해당하는 길이를 근사적인 차량의 길이로 계산할 수 있다. 그리고, 근사적인 차량의 길이를 기반으로 매칭하는 차종을 결정하고, 결정된 차종의 전장 길이를 상기 차량의 길이로 결정할 수 있다.
프로파일 생성부(420)는 지면으로부터 반사된 레이저 빔과 차량으로부터 반사된 레이저 빔 간의 차이(예컨대, 속도 차)에 기초하여 차량의 높이를 계산할 수 있다. 프로파일 생성부(420)는 차량의 높이, 길이 및 속도를 포함하는 차량관련 프로파일을 생성할 수 있다. 이때, 차량의 높이는 구간 별로 계산될 수 있으며, 차량관련 프로파일 역시 구간 별 차량의 높이 정보를 포함할 수 있다.
330 단계에서, 스케일 조정부(430)는 기정의된 참고 프로파일에 기초하여 차량관련 프로파일의 스케일(scale)을 조정할 수 있다.
예를 들어, LiDAR 센서(401)의 샘플링 레이트(sample rate)와 차량의 이동속도가 차량관련 프로파일의 스케일에 영향을 주는 변수에 해당할 수 있다. 이에 따라, 샘플링 레이트는 미리 정의된 임의의 상수로 설정할 수 있다. 스케일 조정부(430)는 차량관련 프로파일의 스케일을 조정하여 해상도를 맞추는 등의 처리를 수행할 수 있다.
340 단계에서, 차종 결정부(440)는 조정된 차량관련 프로파일과 참고 프로파일에 기초하여 두 프로파일 간의 일치성 여부를 나타내는 확률값을 계산하고, 계산된 확률값에 기초하여 해당 차량의 종류를 결정할 수 있다.
예를 들어, 차종 결정부(440)는 차량관련 프로파일에 포함된 차량의 길이에 기초하여 해당 차량이 소형차인지, 중형차인지, 대형차인지 여부를 분류할 수 있다. 여기서, 분류는 1차적으로 수행되는 근사적인 분류, 즉, 후보 참고 프로파일을 결정하기 위한 분류에 해당할 수 있다. 그리고, 차종 결정부(440)는 근사적으로 분류된 차종에 해당하는 참고 프로파일들을 이용하여 차량관련 프로파일과 대조하여 해당 차량의 종류를 최종적으로 결정할 수 있다. 그리고, 차종 결정부(440)는 차량의 높이에 기초하여 해당 차량이 대형차 중에서도 대형 승용차인지, 버스인지, 트럭인지 여부를 보다 세부적으로 분류할 수 있다. 이러한 2차적인 세부 분류를 위해 차량관련 프로파일을 N개의 구간으로 구분할 수 있다.
341 단계에서, 차종 결정부(440)는 차량관련 프로파일을 N개의 구간으로 구분할 수 있다. 예컨대, 차량이 검지영역을 통과함에 따라 생성된 차량관련 프로파일에 해당하는 이미지, 즉, 차량의 전면부부터 후면부까지의 차량 전체를 포함하는 이미지를 N개의 구간으로 구분할 수 있다. 이때, N개의 구간은 균등 간격으로 구분될 수 있다.
342 단계에서, 차종 결정부(440)는 N개의 구간 별로 차량의 길이와 차량의 구간 별 높이에 기초하여 차량의 구간 별 부분 면적을 계산할 수 있다.
예컨대, N개의 구간으로 구분된 경우, N개의 구간 별로 차량의 높이가 존재할 수 있다. 즉, N개의 차량의 높이 정보가 존재할 수 있다. 그러면, 차종 결정부(440)는 차량의 길이, N개의 차량의 높이 정보, N개의 구간 식별자 정보에 기초하여 N개의 구간 각각에 해당하는 부분면적을 계산할 수 있다. 즉, N개의 부분면적이 계산될 수 있다. 이때, N개의 구간이 균등간격으로 구분됨에 따라, 차량의 전체 길이를 N으로 나눈 값이 구간 별 차량의 길이에 해당할 수 있으며, 구간별 차량의 길이, 높이에 기초하여 각 구간 별 부분면적이 계산될 수 있다.
이때, 차종 별로 각 구간 별로 중요도가 상이하며, 각 구간 별 중요도에 따라 구간 별로 서로 다른 가중치가 미리 설정될 수 있다. 예를 들어, 차량이 승용차인지, SUV 차량인지, 버스인지, 트럭인지 여부에 따라 구간 별 가중치가 서로 상이할 수 있다. 예컨대, 버스의 경우, 차량의 전면부부터 후면부까지 차량의 높이가 일정하므로, N개의 구간 별로 동일한 가중치가 설정될 수 있으며, 트럭 및 용달차 등과 같이 적재물을 탐재하는 차량의 경우, 짐을 싣는 차량의 중간 부분부터 후면부에 해당하는 구간의 가중치는 차량의 전면부의 가중치보다 낮게 설정될 수 있다. 짐을 싣는 구간의 경우, 짐의 높낮이에 따라 차량의 높이가 변동되는 유동적인 값을 가지므로, 운전자가 탑승하는 전면부보다 가중치가 낮게 설정될 수 있다.
343 단계에서, 차종 결정부(440)는 해당 차량과 관련하여 구간 별로 계산된 부분면적에 구간 별 가중치를 적용하고, 가중치가 적용된 구간 별 부분면적과 참고 프로파일의 구간 별 부분면적 간의 일치성 여부를 비교할 수 있다. 예를 들어, 1차적으로 차량의 종류가 대형으로 결정된 경우, 차종 결정부(440)는 대형에 해당하는 참고 프로파일들 각각의 구간 별 부분면적과 상기 해당 차량관련 구간 별 부분면적에 기초하여 일치성 여부를 나타내는 확률값을 계산할 수 있다. 이때, 상기 가중치는 근사적인 차종에 해당하는 참고 프로파일의 각 구간별로 매칭된 가중치가 상기 해당 차량과 관련하여 구간 별로 계산된 부분면적에 곱해질 수 있다. 그리고, 일치성 여부는 확률값으로 계산될 수 있으며, 예컨대, 참고 프로파일 1과 해당 차량관련 프로파일이 95% 일치, 참고프로파일 2와 해당 차량관련 프로파일이 90% 일치 등과 같은 형태로 확률값이 계산될 수 있다.
이때, 차종 결정부(440)는 차량관련 프로파일에서 지면으로부터 반사된 자외선, 습도 및 날씨 변화로 인해 발생된 잡음을 제거하고, 잡음이 제거된 차량관련 프로파일과 참고 프로파일 간의 일치성 여부를 나타내는 확률값을 계산할 수 있다. 예컨대, 차종 결정부(440)는 각 차종 별 복수의 참고 프로파일들 중 상기 차량의 길이를 기반으로 결정된 적어도 둘 이상의 후보 참고 프로파일들을 대상으로 상기 차종관련 프로파일과의 일치성 여부를 나타내는 확률값을 계산할 수 있으며, 계산된 확률값이 가장 높은 참고 프로파일에 해당하는 차량의 종류를 해당 차량의 종류로 최종 결정할 수 있다.
도 5는 본 발명의 일실시예에 있어서, 차량의 종류를 결정하는 제어흐름을 도시한 흐름도이다.
도 5를 참고하면, 차종 결정부(440)는 두 개의 스레드(thread), 즉, 시리얼 스레드(serial thread)와 메인 스레드(main thread)를 이용하여 LiDAR 센서에서 센싱된 정보를 수신하고, 수신된 정보를 기반으로 분류 알고리즘을 이용하여 차종을 결정하는 후처리를 동시에 수행할 수 있다. 각 스레드는 정의된 시그널과 해당 시그널을 처리하는 시그널 핸들러를 이용하여 검지 및 분류 프로세스 순서에 따라 진행될 수 있다.
일례로, 차종 결정부(440)는 차량관련 프로파일에 해당하는 이미지로부터 차종 결정을 위한 특징점들을 검출할 수 있다. 그리고, 검출된 특징점들을 포함하는 차량 형상 정보와 참고 프로파일에 해당하는 형상 정보를 대조하여, 두 형상 정보 간의 매칭정도를 확률값으로 나타내고, 계산된 확률값에 기초하여 차량의 종류를 결정할 수 있다. 여기서, 참고 프로파일은 차량의 길이에 기초하여 1차적으로 결정된 후보 차종에 해당하는 프로파일을 나타낼 수 있다. 예컨대, 차량의 길이에 기초하여 해당 차량의 차종이 1차적으로 대형으로 결정된 경우, 대형에 해당하는 여러 차종 각각의 프로파일이 참고 프로파일에 해당할 수 있다. 이때, 차종 결정부(440)는 B-Spline 알고리즘을 이용하여 참고 프로파일을 기준으로, 상기 검출된 특징점들을 대상으로 차량 형상의 외곡과 차량의 전장(overall length of car)을 조정 또는 보상할 수 있다. 그리고, 도 6과 같이 차종 결정부(440)는 보상된 차량의 형상 정보를 의사결정트리 알고리즘과 학습법을 이용하여 참고 프로파일에 해당하는 참고 형상 정보와의 일치성 여부를 분석함으로써, 해당 차량의 종류를 결정할 수 있다. 이때, 차종 결정부(440)는 기정의된 특정 임계값이 될 때까지, 형상의 외곡과 전장을 보상하고, 보상된 차량의 형상정보와 참고 형상정보를 기반으로 의사결정나무 알고리즘과 학습법을 이용하여 일치성 여부를 분석하는 동작을 반복적으로 수행할 수 있다. 그리고, 특정 임계값에 도달하면, 가장 좋은 성능을 보인 모델을 저장 및 차량 관제 시스템(230)으로 전송할 수 있다.
도 7은 본 발명의 일실시예에 있어서, 차량관련 형상 정보를 검출하는 사용자 인터페이스를 나타내는 도면이다.
도 7을 참고하면, 차량 관제 시스템(230), 즉, 관측자는 로우 데이터(Raw data)와 차량형상(즉, 차량 윤곽)을 나타내는 그래프, 실시간 처리된 검지 및 분류 정보를 모니터링할 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (5)

  1. LiDAR(Light Detection and Ranging) 센서를 이용하여 센싱된 차량관련 정보에 기초하여 차량의 길이, 차량의 높이 및 차량의 속력을 포함하는 차량관련 프로파일을 생성하는 단계;
    기정의된 참고 프로파일에 기초하여 생성된 상기 차량관련 프로파일의 스케일(scale)을 조정하는 단계; 및
    조정된 상기 차량관련 프로파일과 상기 참고 프로파일 간의 일치성 여부를 나타내는 확률값에 기초하여 차량의 종류를 결정하는 단계
    를 포함하고,
    상기 차량의 종류를 결정하는 단계는,
    상기 차량관련 프로파일을 N개의 구간으로 구분하는 단계;
    구분된 N개의 구간 별 높이와 상기 차량의 길이에 기초하여 각 구간에 해당하는 부분면적을 계산하는 단계; 및
    차종 별로 미리 정의된 구간 별 가중치에 기초하여 상기 일치성 여부를 나타내는 확률값을 계산하는 단계
    를 포함하는 LiDAR 센서를 활용한 다중차로 교통검지 방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 확률값을 계산하는 단계는,
    상기 차량관련 프로파일에서 지면으로부터 반사된 자외선, 습도 및 날씨 변화로 인해 발생된 잡음을 제거하는 단계
    를 포함하는 LiDAR 센서를 활용한 다중차로 교통검지 방법.
  4. 제1항에 있어서,
    상기 차량관련 프로파일로부터 추출된 차량의 종류 결정을 위한 특징점들을 대상으로, 상기 참고 프로파일, B-Spline 알고리즘에 기초하여 차량의 형상 왜곡 및 차량의 전장이 보상되는 것
    을 특징으로 하는 LiDAR 센서를 활용한 다중차로 교통검지 방법.
  5. LiDAR(Light Detection and Ranging) 센서에서 센싱된 차량관련 정보를 수신하는 정보 수신부;
    상기 차량관련 정보에 기초하여 차량의 길이, 차량의 높이 및 차량의 속력을 포함하는 차량관련 프로파일을 생성하는 프로파일 생성부;
    기정의된 참고 프로파일에 기초하여 생성된 상기 차량관련 프로파일의 스케일(scale)을 조정하는 스케일 조정부; 및
    조정된 상기 차량관련 프로파일과 상기 참고 프로파일 간의 일치성 여부를 나타내는 확률값에 기초하여 차량의 종류를 결정하는 차종 결정부
    를 포함하고,
    상기 차종 결정부는,
    상기 차량관련 프로파일을 N개의 구간으로 구분하고, 구분된 N개의 구간 별 높이와 상기 차량의 길이에 기초하여 각 구간에 해당하는 부분면적을 계산하고, 차종 별로 미리 정의된 구간 별 가중치에 기초하여 상기 일치성 여부를 나타내는 확률값을 계산하는 것
    을 특징으로 하는 LiDAR 센서를 활용한 다중차로 교통검지 시스템.

KR1020160155508A 2016-11-22 2016-11-22 LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템 KR101784635B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160155508A KR101784635B1 (ko) 2016-11-22 2016-11-22 LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160155508A KR101784635B1 (ko) 2016-11-22 2016-11-22 LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템

Publications (1)

Publication Number Publication Date
KR101784635B1 true KR101784635B1 (ko) 2017-10-12

Family

ID=60140004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160155508A KR101784635B1 (ko) 2016-11-22 2016-11-22 LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템

Country Status (1)

Country Link
KR (1) KR101784635B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152826A (zh) * 2017-12-25 2018-06-12 深圳市杉川机器人有限公司 多线激光测距装置以及机器人
WO2020101071A1 (ko) * 2018-11-14 2020-05-22 휴먼플러스(주) 도로 장애물의 알림 및 차량의 추적이 가능한 라이다를 이용한 교통 감시 시스템
KR102168689B1 (ko) * 2020-06-03 2020-10-21 주식회사 윌아이텍 차량높이 감지시스템
CN111815949A (zh) * 2020-03-26 2020-10-23 同济大学 一种面向主干道往来车辆的支路车辆汇入预警系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197588A (ja) 2000-12-26 2002-07-12 Fujitsu Ltd 走行車両のタイヤ種別判別方法,車種判別方法及び車種判別装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197588A (ja) 2000-12-26 2002-07-12 Fujitsu Ltd 走行車両のタイヤ種別判別方法,車種判別方法及び車種判別装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152826A (zh) * 2017-12-25 2018-06-12 深圳市杉川机器人有限公司 多线激光测距装置以及机器人
WO2020101071A1 (ko) * 2018-11-14 2020-05-22 휴먼플러스(주) 도로 장애물의 알림 및 차량의 추적이 가능한 라이다를 이용한 교통 감시 시스템
KR20200055965A (ko) 2018-11-14 2020-05-22 휴먼플러스(주) 도로 장애물의 알림 및 차량의 추적이 가능한 라이다를 이용한 교통 감시 시스템
CN111815949A (zh) * 2020-03-26 2020-10-23 同济大学 一种面向主干道往来车辆的支路车辆汇入预警系统
KR102168689B1 (ko) * 2020-06-03 2020-10-21 주식회사 윌아이텍 차량높이 감지시스템

Similar Documents

Publication Publication Date Title
US9564048B2 (en) Origin destination estimation based on vehicle trajectory data
KR101784635B1 (ko) LiDAR 센서를 활용한 다중차로 교통검지 방법 및 시스템
US10032085B2 (en) Method and system to identify traffic lights by an autonomous vehicle
US11361556B2 (en) Deterioration diagnosis device, deterioration diagnosis system, deterioration diagnosis method, and storage medium for storing program
CN110942671B (zh) 车辆危险驾驶检测方法、装置以及存储介质
US6999886B2 (en) Vehicle speed estimation using inductive vehicle detection systems
US8417443B2 (en) Travel pattern information obtaining device, travel pattern information obtaining method, and travel pattern information obtaining program
CN109634282A (zh) 自动驾驶车辆、方法和装置
CN104903915B (zh) 用于监视车辆的周围环境的方法和设备以及用于实施紧急制动的方法
CN109080640A (zh) 用于在车辆内提供昏睡警报的方法
CN109839175B (zh) 一种桥梁活载优化识别系统
CN109410584B (zh) 一种路况检测方法及装置
EP4033460A1 (en) Data recording for adas testing and validation
KR102245580B1 (ko) Adas 데이터를 이용한 교통 밀도를 추정하는 관제 서버
CN114074667A (zh) 静止对象检测
CN115527364B (zh) 一种基于雷视数据融合的交通事故溯源方法及系统
JP2018055597A (ja) 車種判別装置および車種判別方法
CN116128360A (zh) 道路交通拥堵等级评估方法、装置、电子设备及存储介质
JP4357983B2 (ja) 遅れ時間推定装置、遅れ時間推定方法、遅れ時間推定システムおよび遅れ時間推定プログラム
CN109191850B (zh) 一种基于时间窗的停车线检测器和排队检测器的数据融合方法
KR102616571B1 (ko) 인공지능을 이용한 영상 분석 기반의 도로 교통정보 제공 방법 및 그를 위한 시스템
US20120253648A1 (en) Apparatus and method for generating traffic information
Brunauer et al. Deriving driver-centric travel information by mining delay patterns from single GPS trajectories
KR102477885B1 (ko) 자율주행 도로의 주행 안전도를 평가하는 안전도 분석 관리 서버
CN115798207A (zh) 基于LiDAR点云的信号交叉口追尾冲突识别方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant