WO2019127855A1 - 换热组件和换热设备 - Google Patents

换热组件和换热设备 Download PDF

Info

Publication number
WO2019127855A1
WO2019127855A1 PCT/CN2018/075741 CN2018075741W WO2019127855A1 WO 2019127855 A1 WO2019127855 A1 WO 2019127855A1 CN 2018075741 W CN2018075741 W CN 2018075741W WO 2019127855 A1 WO2019127855 A1 WO 2019127855A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat exchange
fan
tuyere
heat
Prior art date
Application number
PCT/CN2018/075741
Other languages
English (en)
French (fr)
Inventor
董明珠
谭建明
夏光辉
梁博
王现林
赖孝成
廖俊杰
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/640,693 priority Critical patent/US11280348B2/en
Priority to EP18897833.2A priority patent/EP3657112B1/en
Publication of WO2019127855A1 publication Critical patent/WO2019127855A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0358Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by bent plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the present invention relates to the field of heat exchange technology, and in particular to a heat exchange component and a heat exchange device.
  • the main object of the present invention is to provide a heat exchange assembly and a heat exchange device to solve the problem of an increase in the inlet air resistance caused by improper layout of the heat exchanger-fan between the prior art.
  • a heat exchange assembly includes: a heat exchanger; a fan, the heat exchanger is spaced apart from the fan and located in a wind direction or an air direction of the fan, and the fan has The tuyere, and the shortest distance H between the tuyere of the fan facing the heat exchanger and the heat exchanger and the impeller diameter D of the fan should satisfy
  • the projection of the tuyere of the fan on the heat exchanger is located within the edge of the heat exchanger.
  • the projected area S0 of the heat exchanger in a reference plane parallel to the tuyere is larger than the projected area SP of the tuyere of the fan in the reference plane.
  • the air outlet area S1 of the heat exchanger is larger than the air inlet area S2 of the tuyere of the fan.
  • outlet area S1 and the inlet area S2 of the tuyere of the fan are satisfied.
  • the heat exchanger is a curved plate-like structure in which a curved plate-like structure or a plurality of plate-like segments are sequentially connected.
  • the heat exchanger is a bent plate-like structure in which a plurality of plate-like segments are sequentially connected, and the plate segment facing the tuyere is inclined with respect to the tuyere.
  • the heat exchanger encloses a heat exchange area, and the tuyere of the fan is located in the heat exchange area.
  • the heat exchanger is a flat structure, and the heat exchanger is disposed in parallel or inclined with respect to the tuyere.
  • the heat exchanger is at least one of a V-shaped heat exchanger, a W-shaped heat exchanger, and a wave-shaped heat exchanger.
  • thermoelectric apparatus comprising the heat exchange assembly described above.
  • the heat exchange device is an air conditioner.
  • the heat exchange component comprises a heat exchanger and a fan, and the heat exchanger is spaced apart from the fan and located in the wind direction or the wind direction of the fan, the fan has a tuyere, and the fan faces the tuyere of the heat exchanger and The shortest distance H between the heat exchangers and the impeller diameter D of the fan should be satisfied.
  • the fan When the heat exchange component is working, the fan is started. Under the action of the negative pressure, the wind is blown by the fan to the heat exchanger or first through the heat exchanger for heat treatment. After the heat treatment, the wind flows through the fan of the fan. Blow out later.
  • the air inlet resistance increases with the increase of the distance between the heat exchanger and the fan, it will gradually stabilize and then gradually stabilize. Therefore, the shortest distance H between the heat exchanger and the tuyere of the fan and the impeller diameter D of the fan should meet the requirements.
  • the air inlet resistance is small and tends to be stable, the aerodynamic efficiency and the noise increase of the whole machine are effectively avoided due to the increase of the air inlet resistance.
  • Figure 1 is a schematic view showing the structure of a heat exchange assembly of a first embodiment of the present invention
  • FIG. 2 is a schematic view showing the air outlet area S1 of the heat exchanger of Figure 1;
  • Figure 3 shows a top view of the heat exchange assembly of Figure 1;
  • Figure 4 is a front elevational view of the heat exchange assembly of Figure 1;
  • Figure 5 is a graph showing the relationship between the air inlet resistance, the impeller diameter, and the shortest distance between the heat exchanger and the tuyere of the fan of the heat exchange assembly of Figure 1;
  • Figure 6 is a schematic view showing the structure of a heat exchange unit of a second embodiment of the present invention.
  • Figure 7 is a view showing the structure of a heat exchange unit of a third embodiment of the present invention.
  • Fig. 8 is a view showing the structure of a heat exchanging assembly of a fourth embodiment of the present invention.
  • orientation words such as “up, down, top, and bottom” are generally used in the directions shown in the drawings, or the components themselves are vertical, without being otherwise described. In the vertical or gravity direction; likewise, for convenience of understanding and description, “inside and outside” refer to the inside and outside of the contour of each component, but the above orientation words are not intended to limit the invention.
  • the present invention provides a heat exchange component and a replacement Thermal equipment.
  • the heat exchange device has the following heat exchange components.
  • the heat exchange device is an air conditioner.
  • the heat exchange assembly includes a heat exchanger 10 and a blower 20 .
  • the heat exchanger 10 is spaced apart from the blower 20 and located in the wind direction or the wind direction of the blower 20 , and the blower 20 has a tuyere 21 .
  • the shortest distance H between the tuyere 21 of the fan 20 toward the heat exchanger 10 and the heat exchanger 10 and the impeller diameter D of the fan 20 should satisfy
  • the fan 20 when the heat exchange component is in operation, the fan 20 is started, and under the action of the negative pressure, the wind is blown by the blower 20 to the heat exchanger 10, or firstly subjected to heat exchange treatment through the heat exchanger 10, after the heat exchange treatment The wind is blown out by the tuyere 21 of the blower 20 through the blower 20. Since the air inlet resistance ⁇ P(Pa) increases with the increase in the distance between the heat exchanger 10 and the fan 20, it tends to be gradually stabilized, and thus the shortest distance H between the heat exchanger 10 and the tuyere 21 of the blower 20 is The impeller diameter D of the fan 20 should be satisfied. When the air inlet resistance is small and tends to be stable, the aerodynamic efficiency and the noise increase of the whole machine are effectively avoided due to the increase of the air inlet resistance.
  • the air inlet of the fan 20 faces the heat exchanger 10
  • the wind first flows through the heat exchanger 10 and then flows into the fan, and the tuyere 21 is the air inlet.
  • the air outlet of the fan 20 faces the heat exchanger 10
  • the wind is first blown through the fan 20 to the heat exchanger 10, and at this time, the air outlet 21 is an air outlet.
  • the air outlet 21 is an air inlet as an example.
  • the projection of the tuyere 21 of the fan 20 in the present invention on the heat exchanger 10 is located within the edge of the heat exchanger 10. In this way, it is ensured that all the wind entering the fan 20 from the tuyere 21 passes through the heat exchange of the heat exchanger 10, thereby ensuring the heat exchange efficiency of the heat exchange component.
  • the fan 20 is a cross flow fan or a centrifugal fan.
  • the heat exchanger 10 is a bent plate-like structure formed by sequentially connecting a plurality of plate-like segments, and the air outlet area S1 of the heat exchanger 10 is larger than The air inlet area S2 of the tuyere 21 of the fan 20.
  • outlet area S1 of the heat exchanger 10 refers to the total area of the wind flowing through the heat exchanger 10.
  • S1 refers to the entire surface area of the air outlet side of the heat exchanger 10.
  • the heat exchanger 10 is sequentially connected by three plate-like segments to form a U-shaped heat exchanger.
  • the plate section located in the middle is disposed to the tuyere 21 of the fan 20.
  • the air outlet area S1 of the outlet portion 12 and the air inlet area S2 of the tuyere 21 of the fan 20 are satisfied.
  • the ratio of S1/S2 should be reasonably controlled. Avoid the value of S1/S2 being too small or too large. When the value of S1/S2 is too small, the size of the heat exchanger 10 cannot meet the heat exchange requirement; when the value of S1/S2 is too large, a large air inlet will be generated. Resistance ⁇ P.
  • the projected area S0 of the heat exchanger 10 in the reference plane 30 parallel to the tuyere 21 is greater than the projected area SP of the tuyeres 21 of the fan 20 in the reference plane 30.
  • the area of the heat exchanger 10 can be made large enough to ensure that all the wind entering the fan 20 from the tuyere 21 passes through the heat exchange of the heat exchanger 10, thereby ensuring the heat exchange efficiency of the heat exchange component.
  • the heat exchanger 10 encloses a heat exchange region 11, and the tuyere 21 of the blower 20 is located in the heat exchange region 11. Since the tuyere 21 is located in the heat exchange region 11, the wind that has been exchanged by the heat exchanger 10 can smoothly enter the fan 20, thereby ensuring the heat exchange efficiency of the heat exchange component.
  • the air inlet resistance ⁇ P of the heat exchange assembly is also With the change, the specific change relationship is: the air inlet resistance ⁇ P(Pa) increases with the increase of the distance between the heat exchanger 10 and the fan 20, and then gradually becomes stable after being greatly attenuated.
  • the ratio of the shortest distance H between the heat exchanger 10 and the tuyere 21 of the blower 20 and the impeller diameter D of the blower 20 is the same as the intake air resistance ⁇ P except that the ratio of S1/S2 affects the intake air resistance ⁇ P. Larger impact.
  • the difference from the first embodiment is that the structure of the heat exchanger 10 is different.
  • the heat exchanger 10 is of a curved plate-like structure.
  • the heat exchanger 10 can enclose the heat exchange region 11.
  • the tuyere 21 of the fan 20 is located in the heat exchange region 11.
  • the tuyere 21 may not be in the heat exchange region 11.
  • the projected area S0 of the heat exchanger 10 within the reference plane 30 is unchanged, and the projected area SP of the tuyeres 21 of the fan 20 within the reference plane 30 is also consistent with that of Fig. 1.
  • the heat exchanger 10 in this embodiment has a larger heat exchange area and a better heat exchange effect per unit area.
  • the difference from the first embodiment is that the structure of the heat exchanger 10 is different.
  • the heat exchanger 10 is a flat plate structure, and the heat exchanger 10 is disposed in parallel with respect to the tuyere 21.
  • the heat exchanger 10 cannot enclose the heat exchange region 11, and is merely disposed on the air inlet side of the blower 20.
  • the inlet area and the outlet area of the heat exchanger 10 are equal.
  • S1 is still used to indicate the air outlet area of the heat exchanger 10.
  • the projected area S0 of the heat exchanger 10 within the reference plane 30 is unchanged, and the projected area SP of the tuyeres 21 of the fan 20 within the reference plane 30 is also consistent with that of Fig. 1.
  • the structure of the heat exchanger 10 in this embodiment is simpler than that of the heat exchanger 10 in the first embodiment.
  • the difference from the third embodiment is that the structure of the heat exchanger 10 is different.
  • the heat exchanger 10 is a flat structure, and the heat exchanger 10 is disposed obliquely with respect to the tuyere 21.
  • the heat exchanger 10 cannot enclose the heat exchange region 11, and is merely disposed on the air inlet side of the blower 20.
  • the inlet area and the outlet area of the heat exchanger 10 are equal.
  • S1 is still used to indicate the air outlet area of the heat exchanger 10.
  • the projected area S0 of the heat exchanger 10 within the reference plane 30 is less than the inlet area of the heat exchanger 10 itself.
  • the projected area SP of the tuyeres 21 of the fan 20 in the reference plane 30 is also consistent with that of FIG. .
  • the structure of the heat exchanger 10 in this embodiment is simpler than that of the heat exchanger 10 in the first embodiment.
  • the difference from the first embodiment is that the plate-like section toward the tuyere 21 is inclined with respect to the tuyere 21.
  • the specific setting form can be referred to the description in FIG. 8.
  • the heat exchanger 10 in this embodiment has a larger heat exchange area and a better heat exchange effect per unit area.
  • heat exchanger 10 in addition to the heat exchanger 10 shown in the drawings, various shapes of heat exchangers such as a V-shaped heat exchanger, a W-shaped heat exchanger, and a wave-shaped heat exchanger are also applicable to the above layout form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种换热组件和换热设备。换热组件包括:换热器(10);风机(20),换热器(10)与风机(20)间隔设置并位于风机(20)的来风方向或出风方向上,风机(20)具有风口(21),且风机(20)朝向换热器(10)的风口(21)与换热器(10)之间的最短距离H与风机(20)的叶轮直径D应满足 2H/D>1.05。其解决了现有技术中的换热器与风机之间的间距布局不当引起的进风阻力增加的问题。

Description

换热组件和换热设备 技术领域
本发明涉及换热技术领域,具体而言,涉及一种换热组件和换热设备。
背景技术
现有技术中的换热器与风机配合布置间距往往未考虑其间距布置所带来的阻力影响,由于间距布置不当引起的进风阻力增加,对整机气动效率、风量与噪音等方面均会带来不利影响,因此有必要对其间距布局进行优化。
由此可知,现有技术中的换热器与风机之间存在间距布局不当引起的进风阻力增加导致整机气动效率降低与噪音升高的问题。
发明内容
本发明的主要目的在于提供一种换热组件和换热设备,以解决现有技术中的换热器-风机之间的间距布局不当引起的进风阻力增加的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种换热组件,包括:换热器;风机,换热器与风机间隔设置并位于风机的来风方向或出风方向上,风机具有风口,且风机朝向换热器的风口与换热器之间的最短距离H与风机的叶轮直径D应满足
Figure PCTCN2018075741-appb-000001
进一步地,风机的风口在换热器上的投影位于换热器的边缘之内。
进一步地,换热器在平行于风口的参考平面内的投影面积S0大于风机的风口在参考平面内的投影面积SP。
进一步地,换热器的出风面积S1大于风机的风口的进风面积S2。
进一步地,出风面积S1与风机的风口的进风面积S2满足
Figure PCTCN2018075741-appb-000002
进一步地,换热器是弧形板状结构或多个板状段顺次连接而成的折弯形板状结构。
进一步地,换热器是多个板状段顺次连接而成的折弯形板状结构,且朝向风口的板段相对于风口倾斜设置。
进一步地,换热器围成换热区域,风机的风口位于换热区域内。
进一步地,换热器是平板状结构,且换热器相对于风口平行设置或倾斜设置。
进一步地,换热器是V形换热器、W形换热器、波浪形换热器中的至少一种。
根据本发明的另一方面,提供了一种换热设备,包括上述的换热组件。
进一步地,换热设备是空调器。
应用本发明的技术方案,换热组件包括换热器和风机,换热器与风机间隔设置并位于风机的来风方向或出风方向上,风机具有风口,且风机朝向换热器的风口与换热器之间的最短距离H与风机的叶轮直径D应满足
Figure PCTCN2018075741-appb-000003
当换热组件工作时,风机启动,在负压的作用下,风由风机吹向换热器或首先经过换热器进行换热处理,经过换热处理后的风由风机的风口流经风机后吹出。由于进风阻力随换热器与风机间距增加呈现先大幅衰减后逐渐趋于稳定的变化趋势,因而当换热器与风机的风口之间的最短距离H与风机的叶轮直径D应满足
Figure PCTCN2018075741-appb-000004
时,可以保证进风阻力较小且趋于稳定,进而有效地避免了因进风阻力增加导致整机气动效率降低与噪音升高。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明的第一个实施例的换热组件的结构示意图;
图2示出了图1中的换热器的出风面积S1的示意图;
图3示出了图1中的换热组件的俯视图;
图4示出了图1中的换热组件的正视投影图;
图5示出了图1中的换热组件的进风阻力、叶轮直径、换热器与风机的风口之间的最短距离之间的关系;
图6示出了本发明的第二个实施例的换热组件的结构示意图;
图7示出了本发明的第三个实施例的换热组件的结构示意图;以及
图8示出了本发明的第四个实施例的换热组件的结构示意图。
其中,上述附图包括以下附图标记:
10、换热器;11、换热区域;20、风机;21、风口;30、参考平面。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中的换热器10与风机20之间的间距布局不当引起的进风阻力增加导致整机气动效率降低与噪音升高的问题,本发明提供了一种换热组件和换热设备。其中换热设备具有下述的换热组件。
优选地,换热设备是空调器。
如图1至图8所示,换热组件包括换热器10和风机20,换热器10与风机20间隔设置并位于风机20的来风方向或出风方向上,风机20具有风口21,且风机20朝向换热器10的风口21与换热器10之间的最短距离H与风机20的叶轮直径D应满足
Figure PCTCN2018075741-appb-000005
具体地,当换热组件工作时,风机20启动,在负压的作用下,风由风机20吹向换热器10,或首先经过换热器10进行换热处理,经过换热处理后的风由风机20的风口21流经风机20后吹出。由于进风阻力ΔP(Pa)随换热器10与风机20间距增加呈现先大幅衰减后逐渐趋于稳定的变化趋势,因而当换热器10与风机20的风口21之间的最短距离H与风机20的叶轮直径D应满足
Figure PCTCN2018075741-appb-000006
时,可以保证进风阻力较小且趋于稳定,进而有效地避免了因进风阻力增加导致整机气动效率降低与噪音升高。
需要说明的是,当风机20的进风口朝向换热器10时,此时,风先经过换热器10再流入风机,此时风口21是进风口。而当风机20的出风口朝向换热器10时,此时,风先经过风机20再吹向换热器10,此时风口21是出风口。
下面将以风口21是进风口为例,进行阐述。
为了保证换热组件的换热效果和整机的启动效率。本发明中的风机20的风口21在换热器10上的投影位于换热器10的边缘之内。这样,可以保证由风口21进入风机20内的风全部都经过换热器10的换热,从而保证换热组件的换热效率。
可选地,风机20是贯流风机或离心风机。
下面将根据换热器10的具体结构不同,分为四个实施例进行说明。
实施例一
如图1至图5所示,在本实施例中,换热器10是由多个板状段顺次连接而成的折弯形板状结构,且换热器10的出风面积S1大于风机20的风口21的进风面积S2。
需要说明的是,换热器10的出风面积S1是指风流经换热器10吹出的整体面积,在图2中,S1指的是换热器10的出风侧的整个表面积。
具体的,换热器10由三个板状段顺次连接而成以形成U形换热器。且位于中间的板段正对风机20的风口21设置。当然,在其他的实施例中,也可以考虑将中间的板段倾斜于风口21设置,例如实施例五。
可选地,出口部12的出风面积S1与风机20的风口21的进风面积S2满足
Figure PCTCN2018075741-appb-000007
需要说明的是,应合理控制S1/S2的比值。避免S1/S2的值过小或过大,当S1/S2的值过小时,换热器10的尺寸无法满足换热需求;当S1/S2的值过大时,会产生较大的进风阻力ΔP。
如图1所示,换热器10在平行于风口21的参考平面30内的投影面积S0大于风机20的风口21在参考平面30内的投影面积SP。通过上述的设置,可以使得换热器10的面积足够大,有利于保证由风口21进入风机20内的风全部都经过换热器10的换热,从而保证换热组件的换热效率。
具体的,在图1至图4中,由于换热器10的朝向风口21的部分平行于风口21设置,因而该部分、参考平面30以及风口21所在的平面都是相互平行的。这样,就使得上述的投影面积就是对应结构的结构面积。
如图1至图3所示,换热器10围成换热区域11,风机20的风口21位于换热区域11内。由于风口21位于换热区域11内,因而经换热器10换热后的风能够顺利进入风机20内,从而保证换热组件的换热效率。
如图5所示,在该实施例中,随着换热器10与风机20的风口21之间的最短距离H与风机20的叶轮直径D比值的变化,换热组件的进风阻力ΔP也随之变化,且具体的变化关系是:进风阻力ΔP(Pa)随换热器10与风机20间距增加呈现先大幅衰减后逐渐趋于稳定的变化趋势。
由此可知,除了S1/S2的比值会影响进风阻力ΔP以外,换热器10与风机20的风口21之间的最短距离H与风机20的叶轮直径D的比值同样对进风阻力ΔP具有较大的影响。
实施例二
与实施例一的区别在于,换热器10的结构不同。
在该实施例中,如图6所示,换热器10是弧形板状结构的。
同样的,换热器10可以围成换热区域11。风机20的风口21位于换热区域11内。当然,风口21也可以不在换热区域11内。
与图1的实施例相比,换热器10在参考平面30内的投影面积S0不变,风机20的风口21在参考平面30内的投影面积SP也与图1中保持一致。
相比于实施例一中的换热器10,该实施例中的换热器10的换热面积更大,单位面积内的换热效果更好。
实施例三
与实施例一的区别在于,换热器10的结构不同。
在该实施例中,如图7所示,换热器10是平板状结构,且换热器10相对于风口21平行设置。
在该实施例中,换热器10无法围成换热区域11,仅是单纯的设置在风机20的进风侧。
这样,在该实施例中,换热器10的进风面积与出风面积是相等的。为了保证和其他实施例中的一致性,在图7中,仍然沿用了S1,以表示换热器10的出风面积。
与图1的实施例相比,换热器10在参考平面30内的投影面积S0不变,风机20的风口21在参考平面30内的投影面积SP也与图1中保持一致。
相比于实施例一中的换热器10,该实施例中的换热器10的结构更加简单。
实施例四
与实施例三的区别在于,换热器10的结构不同。
在该实施例中,如图8所示,换热器10是平板状结构,且换热器10相对于风口21倾斜设置。
在该实施例中,换热器10无法围成换热区域11,仅是单纯的设置在风机20的进风侧。
这样,在该实施例中,换热器10的进风面积与出风面积是相等的。为了保证和其他实施例中的一致性,在图8中,仍然沿用了S1,以表示换热器10的出风面积。
与图1的实施例相比,换热器10在参考平面30内的投影面积S0小于换热器10本身的进风面积。而风机20的风口21在参考平面30内的投影面积SP也与图1中保持一致。。
相比于实施例一中的换热器10,该实施例中的换热器10的结构更加简单。
实施例五
与实施例一的区别在于,朝向风口21的板状段相对于风口21是倾斜设置的。其具体的设置形式可以参考图8中的描述。
相比于实施例一中的换热器10,该实施例中的换热器10的换热面积更大,单位面积内的换热效果更好。
当然,除了图示中的换热器10以外,V形换热器、W形换热器、波浪形换热器等各类不同形状的换热器同样适用以上的布局形式。
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种换热组件,其特征在于,包括:
    换热器(10);
    风机(20),所述换热器(10)与所述风机(20)间隔设置并位于所述风机(20)的来风方向或出风方向上,所述风机(20)具有风口(21),且所述风机(20)朝向所述换热器(10)的风口(21)与所述换热器(10)之间的最短距离H与所述风机(20)的叶轮直径D应满足
    Figure PCTCN2018075741-appb-100001
  2. 根据权利要求1所述的换热组件,其特征在于,所述风机(20)的风口(21)在所述换热器(10)上的投影位于所述换热器(10)的边缘之内。
  3. 根据权利要求1所述的换热组件,其特征在于,所述换热器(10)在平行于所述风口(21)的参考平面(30)内的投影面积S0大于所述风机(20)的风口(21)在所述参考平面(30)内的投影面积SP。
  4. 根据权利要求1所述的换热组件,其特征在于,所述换热器(10)的出风面积S1大于所述风机(20)的风口(21)的进风面积S2。
  5. 根据权利要求4所述的换热组件,其特征在于,所述出风面积S1与所述风机(20)的风口(21)的进风面积S2满足
    Figure PCTCN2018075741-appb-100002
  6. 根据权利要求1至5中任一项所述的换热组件,其特征在于,所述换热器(10)是弧形板状结构或多个板状段顺次连接而成的折弯形板状结构。
  7. 根据权利要求6所述的换热组件,其特征在于,所述换热器(10)是多个板状段顺次连接而成的折弯形板状结构,且朝向所述风口(21)的所述板段相对于所述风口(21)倾斜设置。
  8. 根据权利要求6所述的换热组件,其特征在于,所述换热器(10)围成换热区域(11),所述风机(20)的风口(21)位于所述换热区域(11)内。
  9. 根据权利要求1至5中任一项所述的换热组件,其特征在于,所述换热器(10)是平板状结构,且所述换热器(10)相对于所述风口(21)平行设置或倾斜设置。
  10. 根据权利要求1至5中任一项所述的换热组件,其特征在于,所述换热器(10)是V形换热器、W形换热器、波浪形换热器中的至少一种。
  11. 一种换热设备,其特征在于,包括权利要求1至10中任一项所述的换热组件。
  12. 根据权利要求11所述的换热设备,其特征在于,所述换热设备是空调器。
PCT/CN2018/075741 2017-12-27 2018-02-08 换热组件和换热设备 WO2019127855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/640,693 US11280348B2 (en) 2017-12-27 2018-02-08 Heat exchange assembly and heat exchange device
EP18897833.2A EP3657112B1 (en) 2017-12-27 2018-02-08 Heat exchange assembly and heat exchange device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711468487.6 2017-12-27
CN201711468487.6A CN108168334B (zh) 2017-12-27 2017-12-27 换热组件和换热设备

Publications (1)

Publication Number Publication Date
WO2019127855A1 true WO2019127855A1 (zh) 2019-07-04

Family

ID=62519784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075741 WO2019127855A1 (zh) 2017-12-27 2018-02-08 换热组件和换热设备

Country Status (4)

Country Link
US (1) US11280348B2 (zh)
EP (1) EP3657112B1 (zh)
CN (1) CN108168334B (zh)
WO (1) WO2019127855A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230107266A1 (en) * 2021-10-04 2023-04-06 Air Power Systems Co., Llc Heat Exchanger With Curved Core Area And Intended For Use With An Agricultural Pumper Truck

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203024288U (zh) * 2012-12-06 2013-06-26 Tcl空调器(中山)有限公司 一种空调室外机结构
JP2014009636A (ja) * 2012-06-29 2014-01-20 Isuzu Motors Ltd ファンシュラウド構造
CN103574775A (zh) * 2012-08-03 2014-02-12 三星电子株式会社 空调的室内单元
CN104456761A (zh) * 2014-12-24 2015-03-25 海信科龙电器股份有限公司 一种空调室外机及空调
JP2016031059A (ja) * 2014-07-30 2016-03-07 ダイキン工業株式会社 シロッコファン
CN205918647U (zh) * 2016-08-26 2017-02-01 江西省电力设计院 减少风机吸风口阻力的导流装置
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767045B2 (ja) * 1988-10-31 1998-06-18 臼井国際産業 株式会社 ラジエータ用シュラウド
JPH0814249B2 (ja) * 1990-07-27 1996-02-14 株式会社小松製作所 ラジエータファンの騒音防止装置
US6050773A (en) * 1997-06-23 2000-04-18 Carrier Corporation Flow stabilizer for transverse fan
JP2000234766A (ja) * 1999-02-12 2000-08-29 Hitachi Ltd 空気調和機
JP3806883B2 (ja) * 2004-09-28 2006-08-09 ダイキン工業株式会社 空気調和装置
CN203349410U (zh) * 2013-06-20 2013-12-18 孔祥真 直热式空调机组
CN104697074A (zh) * 2013-12-06 2015-06-10 广东美的暖通设备有限公司 空调室外机和具有其的空调器
CN203907778U (zh) * 2014-05-27 2014-10-29 广东美的制冷设备有限公司 空调风管机的室内机
WO2016067408A1 (ja) * 2014-10-30 2016-05-06 三菱電機株式会社 空気調和機
US10514046B2 (en) * 2015-10-09 2019-12-24 Carrier Corporation Air management system for the outdoor unit of a residential air conditioner or heat pump
JP6843721B2 (ja) * 2017-09-27 2021-03-17 ダイキン工業株式会社 空気調和機
CN208012414U (zh) * 2017-12-27 2018-10-26 珠海格力电器股份有限公司 换热组件和换热设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009636A (ja) * 2012-06-29 2014-01-20 Isuzu Motors Ltd ファンシュラウド構造
CN103574775A (zh) * 2012-08-03 2014-02-12 三星电子株式会社 空调的室内单元
CN203024288U (zh) * 2012-12-06 2013-06-26 Tcl空调器(中山)有限公司 一种空调室外机结构
JP2016031059A (ja) * 2014-07-30 2016-03-07 ダイキン工業株式会社 シロッコファン
CN104456761A (zh) * 2014-12-24 2015-03-25 海信科龙电器股份有限公司 一种空调室外机及空调
CN205918647U (zh) * 2016-08-26 2017-02-01 江西省电力设计院 减少风机吸风口阻力的导流装置
CN107036166A (zh) * 2017-04-18 2017-08-11 青岛海尔空调器有限总公司 空调室内机

Also Published As

Publication number Publication date
CN108168334B (zh) 2019-10-22
EP3657112A1 (en) 2020-05-27
EP3657112B1 (en) 2023-09-13
US11280348B2 (en) 2022-03-22
EP3657112A4 (en) 2020-11-18
CN108168334A (zh) 2018-06-15
US20200355197A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US9995504B2 (en) Air conditioner having air outlet louver with varying curvature
US9995303B2 (en) Air conditioner
US9829004B2 (en) Turbo fan and air conditioner
US10436496B2 (en) Indoor unit for air-conditioning apparatus
JP2007292053A (ja) 多翼ファン
JP4678327B2 (ja) 空気調和機
US9759220B2 (en) Cross flow fan and indoor unit of air-conditioning apparatus
JP6304441B1 (ja) クロスフロー型の送風機及びそれを備えた空気調和装置の室内ユニット
JP2017040389A5 (zh)
JP2006336935A (ja) 冷凍空調機の室外ユニット
WO2019127855A1 (zh) 换热组件和换热设备
WO2010004628A1 (ja) シロッコファン及びそれを用いた空気調和装置
WO2016041289A1 (zh) 空调室外机
JP2015124986A (ja) 空調室内機
JP2006153332A (ja) 空気調和機の室外機
JP2015124985A (ja) 空調室内機
US20210285660A1 (en) Air-Outlet Duct Structure, Air-Outlet Panel and Patio Type Air Conditioner Indoor Unit
EP3130860B1 (en) Air conditioner
CN106523434A (zh) 一种离心风扇蜗壳及室内机
CN208012414U (zh) 换热组件和换热设备
JP2007170757A (ja) 空気調和機の室内機
CN107940585A (zh) 风道底板结构、风道装置及空调室内机
JP2016017695A (ja) フィンチューブ熱交換器
WO2019196469A1 (zh) 空调器
WO2023139924A1 (ja) 空気調和機の室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018897833

Country of ref document: EP

Effective date: 20200220

NENP Non-entry into the national phase

Ref country code: DE