WO2019127072A1 - 一种用于试验模态测试的全自动模态力锤及方法 - Google Patents
一种用于试验模态测试的全自动模态力锤及方法 Download PDFInfo
- Publication number
- WO2019127072A1 WO2019127072A1 PCT/CN2017/118856 CN2017118856W WO2019127072A1 WO 2019127072 A1 WO2019127072 A1 WO 2019127072A1 CN 2017118856 W CN2017118856 W CN 2017118856W WO 2019127072 A1 WO2019127072 A1 WO 2019127072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modal
- force
- trigger
- hammer
- force sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/08—Shock-testing
Definitions
- the invention relates to the technical field of vibration testing, in particular to a fully automatic modal hammer and method for testing modal test.
- the modal hammer is the key equipment in the test modal test process, and it is a vibration excitation device widely used in vibration testing.
- the modal force hammer can generate pulse excitation to the structural system, and the vibration response can be generated in the wider frequency band by exciting the measured structure, and then cooperate with the vibration sensor to obtain the frequency response function of the measured structural system, and then pass With a certain modal identification method, the modal parameters such as the natural frequency, damping ratio and mode shape of the structural system can be obtained.
- the large, medium and small model modal hammers shown in Figure 1 have been applied to various scientific research, engineering tests, laboratory teaching and other fields in China's aviation, aerospace and national defense.
- the traditional modal hammer is different in each stroke of the "force", it is difficult to control the amplitude and frequency of the excitation, and it is prone to "double-click” and other problems, resulting in the quality of the frequency response function obtained by the experimental modal test is not high, and thus affects the mode. Test accuracy of state parameters.
- the modal hammer is extremely demanding on the engineer's "experience” when it is used. The novice often needs a lot of tapping training to be able to perform the task of the experimental modal test, which undoubtedly increases the threshold of the test modal test. It also does not utilize the application and application of modal hammers in modal test applications.
- Figure 1 shows the connection diagram of each instrument when the spindle of the high-end CNC machine tool is set as the tool system in the test mode test.
- the modal force hammer is used to excite the machine tool spindle as the knife.
- the shank generates a pulse vibration response for the tool system, and the three-dimensional frequency response function of the system is obtained by the three-way acceleration sensor.
- the user needs repeated pulse excitation of different measuring point positions of different tools.
- the position of the hammer excitation during different tool modal tests requires a large number of measuring points to be struck, and each measuring point needs to be repeated several times. This method not only requires the operator's experience. It is very high, and it is also a great test for the operator's test perseverance and test level.
- the hammer In the traditional modal hammer use, the hammer is required to be stable when the user strikes, the drop point must be accurate, the double click cannot be doubled, the impact point is not allowed to slip on the test piece, and the user has difficulty in grasping these points. .
- the present invention provides a fully automatic modal force hammer and method for test modal test.
- the technical solution adopted by the present invention is:
- the invention relates to a fully automatic modal hammer for testing modal test, comprising: a casing, an inner core and a handle, wherein the inner core comprises an inner casing and a force measuring mechanism, a distance measuring mechanism and a tune mounted in the inner casing
- the inner mechanism is integrally embedded in the outer casing, and the handle is fixedly mounted on the outer side of the outer casing, and a wrench mechanism is installed between the handle and the adjusting mechanism, and the wrench mechanism is placed on the outer casing and the inner casing to be engaged with the adjusting mechanism.
- the force measuring mechanism comprises a force sensor, a force sensor connector and a force sensor weighting head, wherein the force sensor is mounted on the inner core end, and the force sensor is fixedly mounted on the collision body in the distance measuring mechanism through the force sensor connector;
- the sensor counterweight is mounted to the other end of the force sensor and exposed to the outside of the end of the housing.
- the distance measuring mechanism includes a thimble, a gear and a collision body, wherein a middle portion of the ejector pin is provided with a first rack, and a second rack is disposed inside the collision body, the thimble passes through the inside of the collision body, and the first rack and the second tooth
- the rods are meshed by gears; the front end of the thimble is graduated and exposed outside the end of the casing.
- the appearance of the collision body is a cylinder, the inside of the cylinder is a variable diameter hollow core, one end of the hollow core accommodates a force sensor and a force sensor connector, and the other end accommodates a collision body spring, and the middle part of the hollow core is used for a fixed force sensor connector.
- a small inner diameter of the wire passing through the force sensor the first variable diameter through hole is further disposed in the column, and the axial direction thereof is parallel to the axial direction of the variable diameter hollow core, and the inner wall of the first inner diameter of the first variable diameter through hole is provided
- the second rack the inner wall on both sides of the second rack is a gap for the shaft of the armature gear, and the thimble is inserted into the first reducer through hole.
- the adjusting mechanism comprises a gland spring, a middle column, a pressing rod, a card needle and a card spring.
- the middle column is installed in the inner casing, and one end of the middle column is elastically connected with the collision body through the collision body spring, and the other end is pressed.
- a cover spring and a gland; the pin and the pin spring are mounted in the pressing bar; and the corresponding inner casing is provided with a third rack in the moving range of the gland.
- the middle column is further provided with a second variable diameter through hole, and the thimble is simultaneously inserted into the second variable diameter through hole.
- the wrench mechanism comprises a trigger, a trigger link, a trigger hook and a trigger spring, wherein the trigger is rotatably connected to one end of the trigger hook by a trigger link, and the other end of the trigger hook is fixed on the handle by a trigger spring; the adjusting mechanism A fourth rack is arranged on one side of the middle column, and one end of the trigger hook is engaged with the fourth rack.
- the invention provides a test method for a fully automatic modal hammer for testing modal test according to claim 1, comprising the following steps:
- the pulse tapping force is adjusted by moving the pressure bar and replacing the weight head;
- step 2) adjust the force applied to:
- the gland According to the magnitude of the force applied, adjust the gland to the appropriate position, release the needle, and under the action of the restoring force of the card spring, the card pin is placed on the corresponding tooth position of the third rack to complete the adjustment of the tapping force. .
- step 3 adjust the distance between the thimble and the weight head:
- the fully automatic modal force hammer body provided by the invention has compact structure and simple operation, and adopts a special structure inside the modal force hammer, which can effectively avoid combo, and solves the problem that the traditional modal force hammer needs to be tapped by the user.
- the hammer should be stable, the drop point must be accurate, the double click is easy, and the impact point should not be slipped on the test piece.
- the user can easily grasp the operation points and other problems, simplify the operation, and improve the test mode test.
- the frequency response function quality which in turn improves the test accuracy of the modal parameters.
- the fully automatic modal hammer provided by the invention changes the double-click phenomenon which is easy to occur in the use of the traditional modal hammer, and the problem that the force of the hammer is inconsistent when hammering twice, and the modal force hammer is ingeniously passed through gears, springs, etc.
- the mechanical structure makes it easy to control the distance between the hammer head and the measured object and the pulse striking force during tapping, which makes the measurement data more precise and improves the test efficiency.
- 1 is a schematic view showing the connection of each instrument in the test mode test when the spindle of the high-grade CNC machine tool in the prior art is the tool holder;
- FIG. 2 is a schematic view showing the outline of a fully automatic modal force hammer according to the present invention
- Figure 3 is a cross-sectional view of the fully automatic modal hammer removing sensor connecting line of the present invention
- Figure 4 is a cross-sectional view of the fully automatic modal hammer of the present invention.
- FIG. 5 is a schematic structural view of a force measuring mechanism in a fully automatic modal hammer according to the present invention.
- FIG. 6 is a schematic view showing the structure of a collision body in a fully automatic modal hammer according to the present invention.
- Figure 7 is a cross-sectional view showing the mechanism of the fully automatic modal hammer wrench of the present invention.
- Figure 8 is a cross-sectional view of the fully automatic modal force adjustment mechanism of the present invention.
- Figure 9 is a cross-sectional view showing the structure of the inner core of the fully automatic modal hammer of the present invention.
- 1 is the outer casing
- 2 is the inner casing
- 3 is the collision body
- 4 is the force sensor connector
- 5 is the force sensor
- 6 is the force sensor counterweight head
- 7 is the thimble
- 8 is the collision body spring
- 9 is the gear
- 10 For the trigger link, 11 is the trigger, 12 is the trigger hook, 13 is the trigger spring
- 14 is the middle column
- 15 is the gland spring
- 16 is the card pin
- 17 is the card spring
- 18 is the pressure bar
- 19 is the pressure Cover
- 20 is the end cover
- 21 is the wire hole
- 22 is the collision body spring mounting hole
- 23 is the first rack
- 24 is the second rack
- 25 is the third rack
- 26 is the fourth rack
- 27 is wire.
- a fully automatic modal hammer for testing a modal test comprises: a casing 1, an inner core and a handle, wherein the inner core comprises an inner casing 2 and is mounted to the inner casing 2 In the force measuring mechanism, the distance measuring mechanism and the adjusting mechanism, the inner casing 2 is integrally embedded in the outer casing 1.
- the handle is fixedly mounted on the outer part of the outer casing 1.
- the wrench mechanism is installed between the handle and the adjusting mechanism, and the wrench mechanism is placed. The housing and the inner casing are engaged with the force adjustment mechanism.
- the outer casing 1 and the inner casing 2 are cylindrically disposed coaxially.
- the force measuring mechanism is configured to detect the magnitude of the modal force, including the force sensor 5, the force sensor connector 4, and the force sensor weighting head 6, wherein the force sensor 5 is mounted at the end of the inner casing 2, One end of the force sensor 5 is fixedly mounted on the collision body 3 in the distance measuring mechanism through the force sensor connector 4; the force sensor weighting head 6 is mounted on the other end of the force sensor 5, and is normally exposed outside the end of the casing 1, and the force sensor is equipped with The heavy head 6 can be replaced.
- the distance measuring mechanism is used for measuring the distance between the weight head and the measuring point, including the ejector pin 7, the gear 9 and the collision body 3, wherein the middle portion of the thimble 7 is provided with a first rack 23, and the inside of the collision body is provided with a second rack 24, the thimble 7 is passed through the inside of the collision body 3, and the first rack 23 and the second rack 24 are meshed by the gear 9; the front end of the thimble 7 is provided with a scale and is exposed outside the end of the casing 1, and can be read and measured. The distance between them.
- the thimble 7 is moved away from the measuring point by the gear 9.
- the collision body 3 has a cylindrical shape, the inside of the cylinder is a variable diameter hollow core, the air core end accommodates the force sensor 5 and the force sensor connector 4 , and the other end accommodates the collision body spring 8 , and the hollow core is central.
- the column is further provided with a first variable diameter through hole, the axial direction of which is parallel to the axial direction of the variable diameter hollow core, a second rack 24 is disposed on a portion of the inner wall of the first variable-diameter through-hole having a large inner diameter; the inner wall of the two sides of the second rack 24 is a slit for mounting the shaft of the gear 9, and the thimble 7 is inserted through the first reducer In the through hole.
- the force adjustment mechanism includes a gland spring 15, a center pillar 14, a pressure bar 18, a card pin 16, and a card spring 17, wherein the center pillar 14 is mounted in the inner casing 2, and one end of the center pillar 14 collides.
- the body spring 8 is elastically connected to the collision body 3, and the other end is connected to a pressure cover 19 by a gland spring 15; the card pin 16 and the card spring 17 are mounted in the pressure bar 18; and the corresponding inner casing is in the range of movement of the gland 19.
- a third rack 25 is provided on the second.
- the center pillar 14 is further provided with a second variable diameter through hole, and the thimble 7 is simultaneously inserted into the second variable diameter through hole.
- the pressing rod 18 and the pressing cover 19 compress the gland spring 15. After the compression, the card pin 16 can be locked on the third rack 25 of the inner casing 2 under the action of the pin spring 17, and different compression amounts correspond to different striking forces. Under the same compression amount, changing the different weight heads can also change the tapping force. When replacing the weight head, it is achieved by moving the front and rear positions of the pressure bar to adjust the pulse tapping force.
- the wrench mechanism is used for exciting force, including the trigger 11, the trigger link 10, the trigger hook 12 and the trigger spring 13, wherein the trigger 11 is rotatably connected to one end of the trigger hook 12 through the trigger link 10, and the trigger
- the other end of the hook 12 is fixed to the handle by a trigger spring 13; a fourth rack 26 is disposed on one side of the center pillar 14 of the force adjustment mechanism, and one end of the trigger hook 12 is engaged with the fourth rack 26.
- the trigger hook 12 can lock the center pillar 14 under the action of the trigger spring 13, preventing the center pillar 4 from moving under the force of the cap spring 15.
- the force sensor weight head 6 has the same specifications, but the material and weight can be adjusted as needed.
- the force sensor counterweight head 6, the force sensor 5, the force sensor connector 4, the collision body 3, the collision body spring 8, the center pillar 14, the gland spring 15, and the gland 19 are serially connected in series to form an inner core at the pair of measuring points.
- the inner core moves as a whole during the impact.
- the wire 27 of the force sensor 5 passes through the force sensor connector 4, the collision body 3, the center pillar 14 and the gland 19, and is finally led out at the end cap 20, and is connected to the data acquisition controller.
- the invention relates to a test method for a fully automatic modal hammer for testing modal test, comprising the following steps:
- a high-end numerical control machine tool is taken as an example.
- the modal force hammer is used to excite the spindle-tool-tool system of the machine tool to generate a pulse vibration response.
- the force sensor counterweight head 6 can be made of different materials and materials (such as rubber, nylon, aluminum). , steel, etc.) processed into a hemispherical shape, when measuring, according to the structure of the measured object and the required frequency band for measurement, select the weight head of different materials.
- the force sensor counterweight head 6 acts on the shank of the machine tool spindle.
- the trigger link 12 is driven by the trigger link 10 to release the center pillar 14 and return to the gland spring 15
- the inner core is quickly ejected, the force sensor counterweight 6 is struck on the object to be measured, and the force sensor 5 obtains the test data, which is uploaded to the data acquisition controller through the wire 27 for analysis and processing; while the inner core is quickly popped up,
- the thimble 7 moves in the opposite direction to the collision body under the meshing action of the gear 9 and is retracted into the inner casing; after the force sensor counterweight 6 completes the tapping, it quickly returns to the original position under the rebound force, and the collision body spring 8
- the middle pillar 14 is pushed and the gland spring 15 and the gland 19 are further moved backwards, the inner core is recovered by the collision body spring 8, and the trigger 11 is released, and the trigger hook 12 is again clamped on the center pillar 14
- the gland position is selected according to the magnitude of the force applied.
- the bottom end of the card pin 16 is pulled downward.
- the pin spring 17 is in a compressed state, the card pin 16 is separated from a certain tooth position of the third rack 25, and the gland 19 is adjusted according to the force applied.
- the needle 16 is released, and under the restoring force of the needle spring 17, the needle 16 is stuck again.
- an adjustment of the tapping force is completed to prepare for the next impact.
- the distance between the measuring point and the force sensor counterweight head 6 can be determined, that is, the gland 19 is released, and then the trigger 11 is pulled, the front end of the ejector pin 7 is pulled to the position where the scale is required, the trigger 11 is released, and then the lock is applied.
- the cover 19 locks the distance between the thimble and the force sensor counterweight 6.
- the release and lock gland 19 is achieved by the force adjustment mechanism pin 16.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种用于试验模态测试的全自动模态力锤,模态力锤内芯包括内壳(2)以及安装于内壳中的测力机构、测距机构和调力机构,内壳整体嵌设于外壳(1)中,手柄固定安装于外壳外部下方,手柄与调力机构之间安装有扳手机构,扳手机构穿置于外壳及内壳与调力机构卡接。以及一种用于试验模态测试的全自动模态力锤的测试方法,包括:根据实际情况与待测物体,调节施力大小、敲击点、顶针(7)与配重头之间的距离;调节脉冲敲击力;扣动扳机结构内芯弹出;松开扳机(11),内芯回收;通过计算机查看激励信号。上述全自动模态力锤操作简单,解决了模态力锤需要使用者敲击时执锤要稳、落点要准、容易双击、以及勿使冲击点在试件上滑移等过高要求,大大降低了使用模态力锤的难度,容易掌握操作要点,提高模态参数的测试精度和测试效率。
Description
本发明涉及一种振动测试技术领域,具体为一种用于试验模态测试的全自动模态力锤及方法。
模态力锤是试验模态测试过程中的关键设备,是人们在振动测试中广泛使用的一种振动激励设备。通过模态力锤可对结构系统产生脉冲激励,通过激发被测结构在较广的频段内产生振动响应,进而与测振传感器相互配合,便可获取被测结构系统的频响函数,再通过一定的模态辨识方法,就可以获得结构系统的固有频率、阻尼比和模态振型等模态参数。目前,如图1所示的大、中、小型号模态力锤已经应用于我国航空、航天、国防等各个科学研究、工程测试、实验室教学等领域。
然而,传统的模态力锤每次敲击“力道”不同,难以控制激励幅度和频率,且容易出现“双击”等问题,导致试验模态测试获得的频响函数质量不高,进而影响模态参数的测试精度。另外,模态力锤在使用时对工程师的“经验”要求极高,新手往往需要经过大量的敲击训练后,才能胜任实验模态测试的任务,这无疑增大了试验模态测试的门槛,也不利用模态力锤在模态测试应用领域的推广与应用。
以测试高档数控机床为例,图1给出了所搭建高档数控机床主轴为刀柄为刀具系统在试验模态测试时各个仪器的连接示意图,其中,模态力锤用于激发机床主轴为刀柄为刀具系统产生脉冲振动响应,进而通过三向加速度传感器可获得该系统的三维频响函数。在测试过程中,使用者需要对不同刀具的不同测点位置进行反复的脉冲激励。利用传统的模态力锤进行测试时,不同刀具模态测试时力锤激励的位置,需要敲击大量测点,且每个测点需要重复测试多次,该方法不仅对操作者的经验要求很高,同时也对操作者的测试毅力和测试水平都是极大的考验。
在传统的模态力锤使用中,需要使用者敲击时执锤要稳,落点要准,不能双击,勿使冲击点在试件上滑移等要求,而使用者很难掌握这些要点。
发明内容
针对现有模态力锤技术中的测试精度不足和测试效率低下的问题,本发明提供一种用于试验模态测试的全自动模态力锤及方法。
为解决上述技术问题,本发明采用的技术方案是:
本发明一种用于试验模态测试的全自动模态力锤,包括:外壳、内芯及手柄,其中,内芯包括内壳以及安装于内壳中的测力机构、测距机构和调力机构,内壳整体嵌设于外壳中,手柄固定安装于外壳外部下方,手柄与调力机构之间安装有扳手机构,扳手机构穿置于外壳及内壳与调力机构卡接。
所述测力机构包括力传感器、力传感器连接器以及力传感器配重头,其中力传感器安装 于内芯端部,力传感器一端通过力传感器连接器固定安装在测距机构中的碰撞体上;力传感器配重头安装于力传感器另一端部,暴露于外壳端部外。
所述测距机构包括顶针、齿轮以及碰撞体,其中,顶针中部设有第一齿条,碰撞体内部设有第二齿条,顶针由碰撞体内部穿过,第一齿条与第二齿条之间通过齿轮啮合;顶针前端设有刻度,并暴露在外壳端部外。
所述碰撞体外观为柱体,柱体内部为变径空芯,空芯一端容装力传感器和力传感器连接器,另一端容装碰撞体弹簧,空芯中部为用于固定力传感器连接器和通过力传感器的导线的小内径;柱体中还设有第一变径通孔,其轴向与变径空芯轴向平行,第一变径通孔中内径大的部分内壁上设有第二齿条;第二齿条两侧内壁为用于娄装齿轮的轴的豁口,顶针穿置于该第一变径通孔中。
所述调力机构包括压盖弹簧、中柱、压杆、卡针以及卡针弹簧,其中,中柱安装于内壳中,中柱一端通过碰撞体弹簧与碰撞体弹性连接,另一端通过压盖弹簧与一压盖;卡针与卡针弹簧安装在压杆中;在压盖移动范围内对应的内壳上设有第三齿条。
中柱还设有第二变径通孔,顶针同时穿置于第二变径通孔中。
所述扳手机构包括扳机、扳机连杆、扳机勾杆以及扳机弹簧,其中扳机通过扳机连杆转动连接于扳机勾杆的一端,扳机勾杆的另一端通过扳机弹簧固定在手柄上;调力机构的中柱一侧设有第四齿条,扳机勾杆的一端与第四齿条卡接。
本发明一种如权利要求1所述的用于试验模态测试的全自动模态力锤的测试方法,包括以下步骤:
1)将全自动模态力锤传感器导线与数据采集控制器相连接;
2)根据实际情况与待测物体,调节施力大小以及确定敲击点位置;
3)根据敲击距离需求,调节顶针与配重头之间的距离;
4)根据施力大小,通过移动压杆,更换配重头来调节脉冲敲击力;
5)将模态力锤拿到待测点,准备敲击;
6)扣动手柄部位的扳机结构,让内芯弹出,敲击后通过碰撞体前端力传感器得到脉冲敲击力的测试数据;
7)松开扳机,内芯在碰撞体弹簧力回复力作用下进行回收,同时中柱因为扳机结构而完成固定;
8)收回模态力锤,通过计算机查看激励信号,并准备下一次敲击。
步骤2)中,调节施力大小为:
将卡针底端向下拉动,卡针离开第三齿条,卡针弹簧为压缩状态;
根据施力大小,调节压盖到适当位置,松开卡针,在卡针弹簧的回复力作用下,卡针又卡置在第三齿条的相应齿位上,完成一次敲击力的调节。
步骤3)中,调节顶针与配重头之间的距离为:
松开压盖,再勾动扳机,拉动顶针前端到需要刻度位置;
松开板机,再锁紧压盖,锁定顶针与力传感器配重头之间的距离。
本发明具有以下有益效果及优点:
1.本发明给出的全自动模态力锤锤体结构紧凑,操作简单,模态力锤内部采用特殊结构,可有效避免连击,解决了传统的模态力锤需要使用者敲击时执锤要稳、落点要准、容易双击、以及勿使冲击点在试件上滑移等过高要求,使用者容易掌握操作要点等难题,简化了操作,提高了试验模态测试获得的频响函数质量,进而提高了模态参数的测试精度。
2.本发明提供的全自动模态力锤,改变了传统模态力锤使用中容易出现的双击现象,以及两次锤击时力道大小不一致的问题,模态力锤通过齿轮、弹簧等巧妙的机械结构,使得敲击时能够方便地控制锤头与所测物的距离以及脉冲敲击力的大小,使得测量数据更加精准,并且提高了测试效率。
图1为现有技术中高档数控机床主轴为刀柄为刀具系统在试验模态测试时各个仪器的连接示意图;
图2为本发明全自动模态力锤外形示意图;
图3为本发明全自动模态力锤去除传感器连接线的剖视图;
图4为本发明全自动模态力锤剖视图;
图5为本发明全自动模态力锤中测力机构结构示意图;
图6为本发明全自动模态力锤中碰撞体结构示意图;
图7为本发明全自动模态力锤扳手机构剖视图;
图8为本发明全自动模态力锤调力机构剖视图;
图9为本发明全自动模态力锤内芯结构剖视图。
其中,1为外壳,2为内壳,3为碰撞体,4为力传感器连接器,5为力传感器,6为力传感器配重头,7为顶针,8为碰撞体弹簧,9为齿轮,10为扳机连杆,11为扳机,12为扳机勾杆,13为扳机弹簧,14为中柱,15为压盖弹簧,16为卡针,17为卡针弹簧,18为压杆,19为压盖,20为端盖,21为导线孔,22为碰撞体弹簧安装孔,23为第一齿条,24为第二齿条,25为第三齿条,26为第四齿条,27为导线。
下面结合说明书附图对本发明作进一步阐述。
如图2~4所示,本发明一种用于试验模态测试的全自动模态力锤,包括:外壳1、内芯及手柄,其中,内芯包括内壳2以及安装于内壳2中的测力机构、测距机构和调力机构,内壳2整体嵌设于外壳1中,手柄固定安装于外壳1外部下方,手柄与调力机构之间安装有扳手机构,扳手机构穿置于外壳及内壳与调力机构卡接。
本实施例中,外壳1及内壳2为同轴套置的筒状。
如图5所示,测力机构用于检测模态力锺施力的大小,包括力传感器5、力传感器连接器4以及力传感器配重头6,其中力传感器5安装于内壳2端部,力传感器5一端通过力传 感器连接器4固定安装在测距机构中的碰撞体3上;力传感器配重头6安装于力传感器5另一端部,常态下暴露于外壳1端部以外,力传感器配重头6可以更换。
测距机构用于测量配重头与测量点的距离,包括顶针7、齿轮9以及碰撞体3,其中,顶针7中部设有第一齿条23,碰撞体内部设有第二齿条24,顶针7由碰撞体3内部穿过,第一齿条23与第二齿条24之间通过齿轮9啮合;顶针7前端设有刻度,并暴露在外壳1端部外,可以读出与测量点之间的距离。当力传感器配重头6去撞击测量点时,顶针7在齿轮9作用下远离测量点。
如图6所示,碰撞体3外观为柱体,柱体内部为变径空芯,空芯一端容装力传感器5和力传感器连接器4,另一端容装碰撞体弹簧8,空芯中部为用于固定力传感器连接器6和通过力传感器5的导线27的小内径即导线孔21;柱体中还设有第一变径通孔,其轴向与变径空芯轴向平行,第一变径通孔中内径大的部分内壁上设有第二齿条24;第二齿条24两侧内壁为用于安装齿轮9的轴的豁口,顶针7穿置于该第一变径通孔中。
如图7所示,调力机构包括压盖弹簧15、中柱14、压杆18、卡针16以及卡针弹簧17,其中,中柱14安装于内壳2中,中柱14一端通过碰撞体弹簧8与碰撞体3弹性连接,另一端通过压盖弹簧15与一压盖19连接;卡针16与卡针弹簧17安装在压杆18中;在压盖19移动范围内对应的内壳2上设有第三齿条25。中柱14还设有第二变径通孔,顶针7同时穿置于第二变径通孔中。
压杆18与压盖19压缩压盖弹簧15,压缩之后卡针16在卡针弹簧17作用下,可以锁定在内壳2的第三齿条25上,不同的压缩量对应不同的敲击力;相同压缩量下,更换不同的配重头也可改变敲击力。更换配重头时,通过移动压杆前、后位置来实现,以便调节脉冲敲击力。
如图8所示,扳手机构用于激发力,包括扳机11、扳机连杆10、扳机勾杆12以及扳机弹簧13,其中扳机11通过扳机连杆10转动连接于扳机勾杆12的一端,扳机勾杆12的另一端通过扳机弹簧13固定在手柄上;调力机构的中柱14一侧设有第四齿条26,扳机勾杆12的一端与第四齿条26卡接。通过扳动扳机11,由扳机连杆10带动扳机勾杆12,使中柱14释放。扳机勾杆12可以在扳机弹簧13作用下锁定中柱14,防止中柱4在压盖弹簧15力的作用下移动。调节顶针与配重头之间的距离时,松开压杆及扳机。
本实施例中,力传感器配重头6规格相同,但材质及重量可根据需要调整。力传感器配重头6、力传感器5、力传感器连接器4、碰撞体3、碰撞体弹簧8、中柱14、压盖弹簧15、压盖19依次串行连接,组成内芯,在对测量点进行撞击时内芯整体进行移动。力传感器5的导线27通过力传感器连接器4、碰撞体3、中柱14以及压盖19,最后在端盖20引出,连接至数据采集控制器。
本发明一种用于试验模态测试的全自动模态力锤的测试方法,包括以下步骤:
1)将全自动模态力锤传感器导线与数据采集控制器相连接;
2)根据实际情况与待测物体,调节施力大小以及确定敲击点;
3)松开压杆及扳机,根据敲击距离需求,调节顶针与配重头之间的距离;
4)根据施力大小,通过移动压杆,选择相应重量的配重头来调节脉冲敲击力;
5)将模态力锤拿到待测点准备敲击;
6)扣动手柄部位的扳机结构,让内芯弹出,敲击后通过碰撞体前端力传感器得到测试数据;
7)松开扳机,内芯在碰撞体弹簧力回复力作用下进行回收,同时中柱因为扳机结构而完成固定;
8)收回模态力锤,通过计算机查看激励信号。
本实施例以测试高档数控机床为例,模态力锤用于激发机床主轴-刀柄-刀具系统产生脉冲振动响应,力传感器配重头6可采用不同材质加材质(如橡胶、尼龙、铝材、钢材等)加工成半球状,测量时,根据所测物体结构以及测量所需频段,选择不同材质的配重头。
试验时力传感器配重头6作用在机床主轴的刀柄上,在扣动手柄部位的扳机11结构后,通过扳机连杆10带动扳机勾杆12,使中柱14释放,在压盖弹簧15回复力作用下,使内芯快速弹出,力传感器配重头6敲击在被测物体上,力传感器5得到测试数据,通过导线27上传至数据采集控制器进行分析处理;内芯快速弹出的同时,顶针7在齿轮9的啮合作用下向与碰撞体相反方向运动,回缩到内壳中;力传感器配重头6完成敲击后,在反弹力作用下快速回到原始位置,碰撞体弹簧8向后推动中柱14并进一步推动压盖弹簧15及压盖19整体向后移动,内芯在碰撞体弹簧8的作用下进行回收,松开扳机11,扳机勾杆12再次卡置在中柱14上第四齿条的某个齿位上,锁定中柱14不串动,完成一次敲击过程。此时,在齿轮9的啮合作用下顶针7从内壳2中伸出。
调力机构在调节敲击力时,根据施力大小选择压盖位置。操作时,先将卡针16底端向下拉动,此时卡针弹簧17为压缩状态,卡针16从第三齿条25的某个齿位上离开,再根据施力大小调节压盖19到适当位置(本实施例在外壳1上设有力的刻度线,为通过试验测得的数据参考值),松开卡针16,在卡针弹簧17的回复力作用下,卡针16又卡置在第三齿条25的相应齿位上,完成一次敲击力的调节,为下一次撞击做好准备。
通过调节顶针位置可以确定测量点与力传感器配重头6间的距离,即松开压盖19,再勾动扳机11,拉动顶针7前端到需要刻度位置,松开板机11,再锁紧压盖19即可锁定顶针与力传感器配重头6之间的距离。松开及锁紧压盖19通过调力机构卡针16实现。
应用本发明进行模态测试,对工程师的“经验”要求不高,新手也无需大量的敲击训练,均能胜任实验模态测试的任务,降低了试验模态测试的门槛,有利于模态力锤在模态测试应用领域的推广与应用,且获得的频响函数质量高。
Claims (10)
- 一种用于试验模态测试的全自动模态力锤,其特征在于包括:外壳、内芯及手柄,其中,内芯包括内壳以及安装于内壳中的测力机构、测距机构和调力机构,内壳整体嵌设于外壳中,手柄固定安装于外壳外部下方,手柄与调力机构之间安装有扳手机构,扳手机构穿置于外壳及内壳与调力机构卡接。
- 按权利要求1所述的用于试验模态测试的全自动模态力锤,其特征在于:所述测力机构包括力传感器、力传感器连接器以及力传感器配重头,其中力传感器安装于内芯端部,力传感器一端通过力传感器连接器固定安装在测距机构中的碰撞体上;力传感器配重头安装于力传感器另一端部,暴露于外壳端部外。
- 按权利要求1所述的用于试验模态测试的全自动模态力锤,其特征在于:所述测距机构包括顶针、齿轮以及碰撞体,其中,顶针中部设有第一齿条,碰撞体内部设有第二齿条,顶针由碰撞体内部穿过,第一齿条与第二齿条之间通过齿轮啮合;顶针前端设有刻度,并暴露在外壳端部外。
- 按权利要求3所述的用于试验模态测试的全自动模态力锤,其特征在于:所述碰撞体外观为柱体,柱体内部为变径空芯,空芯一端容装力传感器和力传感器连接器,另一端容装碰撞体弹簧,空芯中部为用于固定力传感器连接器和通过力传感器的导线的小内径;柱体中还设有第一变径通孔,其轴向与变径空芯轴向平行,第一变径通孔中内径大的部分内壁上设有第二齿条;第二齿条两侧内壁为用于娄装齿轮的轴的豁口,顶针穿置于该第一变径通孔中。
- 按权利要求1所述的用于试验模态测试的全自动模态力锤,其特征在于:所述调力机构包括压盖弹簧、中柱、压杆、卡针以及卡针弹簧,其中,中柱安装于内壳中,中柱一端通过碰撞体弹簧与碰撞体弹性连接,另一端通过压盖弹簧与一压盖;卡针与卡针弹簧安装在压杆中;在压盖移动范围内对应的内壳上设有第三齿条。
- 按权利要求5述的用于试验模态测试的全自动模态力锤,其特征在于:中柱还设有第二变径通孔,顶针同时穿置于第二变径通孔中。
- 按权利要求1述的用于试验模态测试的全自动模态力锤,其特征在于:所述扳手机构包括扳机、扳机连杆、扳机勾杆以及扳机弹簧,其中扳机通过扳机连杆转动连接于扳机勾杆的一端,扳机勾杆的另一端通过扳机弹簧固定在手柄上;调力机构的中柱一侧设有第四齿条,扳机勾杆的一端与第四齿条卡接。
- 一种如权利要求1所述的用于试验模态测试的全自动模态力锤的测试方法,其特征在于包括以下步骤:1)将全自动模态力锤传感器导线与数据采集控制器相连接;2)根据实际情况与待测物体,调节施力大小以及确定敲击点位置;3)根据敲击距离需求,调节顶针与配重头之间的距离;4)根据施力大小,通过移动压杆,更换配重头来调节脉冲敲击力;5)将模态力锤拿到待测点,准备敲击;6)扣动手柄部位的扳机结构,让内芯弹出,敲击后通过碰撞体前端力传感器得到脉冲敲击力的测试数据;7)松开扳机,内芯在碰撞体弹簧力回复力作用下进行回收,同时中柱因为扳机结构而完成固定;8)收回模态力锤,通过计算机查看激励信号,并准备下一次敲击。
- 按权利要求8所述的用于试验模态测试的全自动模态力锤的测试方法,其特征在于步骤2)中,调节施力大小为:将卡针底端向下拉动,卡针离开第三齿条,卡针弹簧为压缩状态;根据施力大小调节压盖到适当位置,松开卡针,在卡针弹簧的回复力作用下,卡针又卡置在第三齿条的相应齿位上,完成一次敲击力的调节。
- 按权利要求8所述的用于试验模态测试的全自动模态力锤的测试方法,其特征在于步骤3)中,调节顶针与配重头之间的距离为:松开压盖,再勾动扳机,拉动顶针前端到需要刻度位置;松开板机,再锁紧压盖,锁定顶针与力传感器配重头之间的距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019565530A JP6998070B2 (ja) | 2017-12-25 | 2017-12-27 | 実験モーダルテストに用いられるモーダルインパクトハンマー及びそのテスト方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711416246.7 | 2017-12-25 | ||
CN201711416246.7A CN108132130B (zh) | 2017-12-25 | 2017-12-25 | 一种用于试验模态测试的全自动模态力锤及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019127072A1 true WO2019127072A1 (zh) | 2019-07-04 |
Family
ID=62392585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/118856 WO2019127072A1 (zh) | 2017-12-25 | 2017-12-27 | 一种用于试验模态测试的全自动模态力锤及方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6998070B2 (zh) |
CN (1) | CN108132130B (zh) |
WO (1) | WO2019127072A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113686954A (zh) * | 2021-07-14 | 2021-11-23 | 中国水利水电科学研究院 | 一种用于锚杆应力波检测的激励小锤及其使用方法 |
CN116465587A (zh) * | 2023-03-29 | 2023-07-21 | 中国飞机强度研究所 | 一种用于引入小能量低速冲击损伤的试验系统 |
WO2023186208A1 (de) * | 2022-03-29 | 2023-10-05 | MTU Aero Engines AG | Zerspanungsmaschine und verfahren zum überwachen einer dynamischen steifigkeit einer zerspanungsmaschine |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108663181B (zh) * | 2018-06-29 | 2023-10-27 | 国网江苏省电力有限公司电力科学研究院 | 一种用于敞开式隔离开关的振动模态试验系统及方法 |
CN108844705A (zh) * | 2018-07-01 | 2018-11-20 | 北京工业大学 | 一种自动脉冲激励频响测试装置及方法 |
CN109060284B (zh) * | 2018-08-07 | 2020-07-10 | 广东工业大学 | 一种基于dic技术的试验模态分析方法 |
CN110595717B (zh) * | 2019-09-17 | 2024-07-30 | 贵州航天天马机电科技有限公司 | 一种无极调力通用冲击试验装置 |
KR102360705B1 (ko) * | 2020-04-24 | 2022-02-11 | 한국철도기술연구원 | 충격하중 타격장치, 이를 포함하는 구조물 안정성 평가 시스템 및 구조물 안정성 평가 방법 |
CN112024344B (zh) * | 2020-08-07 | 2021-12-07 | 北京电子工程总体研究所 | 一种触发式力锤装置及测量系统 |
KR102495301B1 (ko) * | 2021-06-28 | 2023-02-06 | 대구대학교 산학협력단 | 신호 에너지를 이용한 비파괴 강도 현장측정 장비 및 방법 |
KR102489786B1 (ko) * | 2021-12-29 | 2023-01-18 | (주)코네스코퍼레이션 | 회전 나사식 임팩트 해머 공구 |
CN116754171B (zh) * | 2023-08-21 | 2023-10-20 | 贵州省公路工程集团有限公司 | 一种隧道口防护系统的飞石模拟撞击测试装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470293A (en) * | 1983-01-24 | 1984-09-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Impacting device for testing insulation |
JPH10253492A (ja) * | 1997-03-10 | 1998-09-25 | Isuzu Motors Ltd | 自動衝撃加振装置 |
CN201043928Y (zh) * | 2007-03-30 | 2008-04-02 | 湖南科技大学 | 可调式激振枪 |
CN102879167A (zh) * | 2012-09-25 | 2013-01-16 | 山东大学 | 工作台式电子冲击力锤 |
CN103630611A (zh) * | 2013-11-30 | 2014-03-12 | 安徽省(水利部淮河水利委员会)水利科学研究院 | 冲击回波测试组合激振器 |
CN104155076A (zh) * | 2014-07-07 | 2014-11-19 | 中国矿业大学 | 一种工作台式自动力锤装置及方法 |
CN104913895A (zh) * | 2015-06-23 | 2015-09-16 | 哈尔滨工程大学 | 一种模态测试用可变波形自动冲击装置 |
CN105486478A (zh) * | 2015-12-08 | 2016-04-13 | 江南大学 | 电子力锤模块 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85106830A (zh) * | 1985-09-10 | 1987-03-11 | 陕西机械学院北京研究生部 | 脉冲激振器 |
JPH0538550U (ja) * | 1991-10-28 | 1993-05-25 | 三田工業株式会社 | 実験モーダル解析用加振装置 |
JPH10153099A (ja) * | 1996-11-26 | 1998-06-09 | Fuji Bussan Kk | 吹付コンクリートの強度測定方法及び装置 |
US7590495B2 (en) * | 2007-07-02 | 2009-09-15 | The United States Of America As Represented By The Secretary Of The Navy | Inverse method to calculate material properties using a non-resonant technique |
US8620604B2 (en) * | 2008-09-04 | 2013-12-31 | Oracle America, Inc. | Generating a composite vibration profile for a computer system |
CN103465227A (zh) * | 2012-06-07 | 2013-12-25 | 上海市航头学校 | 一种设有调节槽的齿条式起钉锤 |
CN103308263B (zh) * | 2013-05-16 | 2016-03-09 | 哈尔滨工程大学 | 大型结构件模态测试用激励装置 |
CN203853963U (zh) * | 2014-05-28 | 2014-10-01 | 中联重科股份有限公司渭南分公司 | 锤击装置 |
CN105351437B (zh) * | 2015-12-15 | 2017-06-30 | 东北大学 | 自动调节刚度和阻尼的智能隔振器系统及振动测试方法 |
CN107127720A (zh) * | 2016-02-29 | 2017-09-05 | 陈宇杰 | 多功能锤子 |
-
2017
- 2017-12-25 CN CN201711416246.7A patent/CN108132130B/zh active Active
- 2017-12-27 WO PCT/CN2017/118856 patent/WO2019127072A1/zh active Application Filing
- 2017-12-27 JP JP2019565530A patent/JP6998070B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4470293A (en) * | 1983-01-24 | 1984-09-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Impacting device for testing insulation |
JPH10253492A (ja) * | 1997-03-10 | 1998-09-25 | Isuzu Motors Ltd | 自動衝撃加振装置 |
CN201043928Y (zh) * | 2007-03-30 | 2008-04-02 | 湖南科技大学 | 可调式激振枪 |
CN102879167A (zh) * | 2012-09-25 | 2013-01-16 | 山东大学 | 工作台式电子冲击力锤 |
CN103630611A (zh) * | 2013-11-30 | 2014-03-12 | 安徽省(水利部淮河水利委员会)水利科学研究院 | 冲击回波测试组合激振器 |
CN104155076A (zh) * | 2014-07-07 | 2014-11-19 | 中国矿业大学 | 一种工作台式自动力锤装置及方法 |
CN104913895A (zh) * | 2015-06-23 | 2015-09-16 | 哈尔滨工程大学 | 一种模态测试用可变波形自动冲击装置 |
CN105486478A (zh) * | 2015-12-08 | 2016-04-13 | 江南大学 | 电子力锤模块 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113686954A (zh) * | 2021-07-14 | 2021-11-23 | 中国水利水电科学研究院 | 一种用于锚杆应力波检测的激励小锤及其使用方法 |
CN113686954B (zh) * | 2021-07-14 | 2022-11-22 | 中国水利水电科学研究院 | 一种用于锚杆应力波检测的激励小锤及其使用方法 |
WO2023186208A1 (de) * | 2022-03-29 | 2023-10-05 | MTU Aero Engines AG | Zerspanungsmaschine und verfahren zum überwachen einer dynamischen steifigkeit einer zerspanungsmaschine |
CN116465587A (zh) * | 2023-03-29 | 2023-07-21 | 中国飞机强度研究所 | 一种用于引入小能量低速冲击损伤的试验系统 |
CN116465587B (zh) * | 2023-03-29 | 2024-04-16 | 中国飞机强度研究所 | 一种用于引入小能量低速冲击损伤的试验系统 |
Also Published As
Publication number | Publication date |
---|---|
JP6998070B2 (ja) | 2022-01-18 |
CN108132130B (zh) | 2019-07-12 |
JP2020528136A (ja) | 2020-09-17 |
CN108132130A (zh) | 2018-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019127072A1 (zh) | 一种用于试验模态测试的全自动模态力锤及方法 | |
CN106525577A (zh) | 测试拉伸/剪切复合加载下材料动态力学性能的装置及方法 | |
CN107917847B (zh) | 一种岩体冲击倾向性测试枪及测试方法 | |
US4682490A (en) | Impact test instrument | |
DE10163656A1 (de) | Härtemessgerät mit einem Gehäuse und einem Eindringkörper, insbesondere Handgerät | |
JP6794936B2 (ja) | 衝撃試験の評価方法および衝撃試験機 | |
CN104089833A (zh) | 一种气动式模仿子(炮)弹射击的材料冲击试验装置 | |
CN201043928Y (zh) | 可调式激振枪 | |
CN106568546A (zh) | 一种电磁铁吸力测量系统 | |
CN108844705A (zh) | 一种自动脉冲激励频响测试装置及方法 | |
CN108025423A (zh) | 用于监测工具的装置和方法 | |
CA1050784A (en) | Method of and apparatus for testing the hardness of materials | |
CN108489718B (zh) | 一种可调力幅的弹射式激励装置 | |
CN85106830A (zh) | 脉冲激振器 | |
CN217542721U (zh) | 一种用于回弹仪检定的回弹力度测试装置 | |
CN215141784U (zh) | 适用于模态及振动传函试验的激励设备 | |
CN206593966U (zh) | 一种拉伸弹簧和压缩弹簧的衰减测试装置 | |
DE60117633T2 (de) | Verfahren und Vorrichtung zur Messung von mechanischen Spannungen | |
CN209992325U (zh) | 一种模态力锤装置 | |
CN210442077U (zh) | 一种冲击试验台 | |
CN208084232U (zh) | 带数显的预置扭矩扳手 | |
DE4402739C2 (de) | Impulsschrauber | |
DE2946264A1 (de) | Elektrodynamisches impulsanregeraet | |
US2520979A (en) | Specimen mounting for high-speed tensile testing | |
CN205538845U (zh) | 可调节式岩土试件超声波测试样品台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17936900 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019565530 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17936900 Country of ref document: EP Kind code of ref document: A1 |