WO2019125052A1 - 에어로겔 복합물 및 그의 제조 방법 - Google Patents

에어로겔 복합물 및 그의 제조 방법 Download PDF

Info

Publication number
WO2019125052A1
WO2019125052A1 PCT/KR2018/016477 KR2018016477W WO2019125052A1 WO 2019125052 A1 WO2019125052 A1 WO 2019125052A1 KR 2018016477 W KR2018016477 W KR 2018016477W WO 2019125052 A1 WO2019125052 A1 WO 2019125052A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
present
composite according
benzene
doping element
Prior art date
Application number
PCT/KR2018/016477
Other languages
English (en)
French (fr)
Inventor
이정호
시바지 신데삼바지
김동형
유진영
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180165619A external-priority patent/KR102198564B1/ko
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2019125052A1 publication Critical patent/WO2019125052A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an airgel composite and a method of manufacturing the same, and more particularly, to a porous airgel composite doped with a doping element, a method of manufacturing the same, and a metal-air battery using the same.
  • a material having a two-dimensional atomic crystal structure such as graphene including a benzene ring, has attracted worldwide attention as a dream material because of its excellent electrical and thermal properties.
  • Korean Patent Laid-Open No. 10-2016-0032862 discloses a process for producing nitrogen-doped graphene and a process for producing nitrogen-doped graphene produced therefrom.
  • the conventional technique of doping nitrogen with graphene is a method of doping graphene or oxide graphene with a doping element by using a chemical vapor deposition (CVD) method or a plasma CVD method,
  • CVD chemical vapor deposition
  • plasma CVD plasma CVD
  • graphene doped with nitrogen is relatively unstable in its structure, so that the bond between carbon and carbon in the nitrogen-doped region can be broken, thereby making it difficult to control the band gap of graphene.
  • the doping element is doped in the benzene ring structure while keeping the bond between the carbon and the carbon in the region where the doping element is doped in the benzene ring structure, and the bonding angle between the carbon and the doping element becomes Carbon atoms are different from the bonding angle between carbon atoms, the structure of the hexagonal system of the benzene ring structure is deformed to form a bandgap or a bandgap opening, It is necessary to develop a technology capable of electrical control in a device using a compound having a heteroatom.
  • the present invention provides an airgel composite and a method of manufacturing the same.
  • Another object of the present invention is to provide a doping element in a compound having a two-dimensional atomic crystal structure including a benzene ring structure containing carbon and nitrogen elements.
  • Another object of the present invention is to maintain the bond between the carbon and the carbon in the region where the doping element is doped in the benzene ring structure of the compound having the two-dimensional atomic crystal structure.
  • Another object of the present invention is to provide a method for producing a compound having a two-dimensional atomic crystal structure, wherein a benzene ring structure of a compound having a two-dimensional atomic crystal structure is doped with a doping element, Each department is different.
  • Another object of the present invention is to provide a doping element for a compound having a two-dimensional atomic crystal structure including a benzene ring structure to form a bandgap or a bandgap opening have.
  • Another object of the present invention is to electrically control a device using a compound having a two-dimensional atomic crystal structure including a benzene ring structure.
  • Another object of the present invention is to provide a metal-air battery using an airgel composite.
  • Another object of the present invention is to provide a metal-air battery having excellent oxidation and reduction reactions.
  • Another object of the present invention is to provide a metal-air battery having excellent discharge and charging characteristics.
  • Another object of the present invention is to provide a process for producing an N-oxide of an airgel complex by the volume ratio of an organic solvent, deionized water, and alcohol in a solvent, (N is any one of 0 to 3) network structure of the airgel composite.
  • Another object of the present invention is to provide a method for producing an aerogel composite in which the direction of growth of hydrated gel is changed by the volume ratio of organic solvent, deionized water and alcohol in a solvent to form an N-dimensional network structure I have to.
  • Another object of the present invention is to provide a method for producing an aerogel composite, which comprises varying the rate at which an N-dimensional network structure grows, depending on the type of acidity control source and the amount of the acidity control source.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a method for manufacturing an airgel composite.
  • the method of making the aerogel complex comprises the steps of preparing a source solution comprising benzene and an amine, heat treating the source solution to produce a first compound wherein the benzene is aminated, A dopant including a compound, benzene, and a doping element is mixed and heat-treated to prepare a hydrate gel doped with the doping element of the dopant into a second compound in which benzene is polymerized with the first compound and the additive And lyophilizing and heat-treating the hydrated gel to prepare a porous airgel composite doped with the doping element in the second compound.
  • the step of preparing the first compound may include the step of adding an acidic solution to the source solution in a cooling atmosphere, followed by heat treatment.
  • the doping element constitutes at least a part of the benzene ring of the second compound, and the benzene ring containing the doping element maintains an in-plane structure, 2 < / RTI > compound.
  • the second compound is composed of C and N, and the doping element may include at least one of P and S.
  • the first compound may be hexaaminobenzene.
  • the step of preparing the hydrated gel may include adding a cross-linking agent and an oxidizing agent to the first compound, the additive, and the dopant.
  • the present invention provides a porous airgel composite.
  • the porous airgel composite may comprise a compound in which aminated benzene and benzene are polymerized, doped with a doping element.
  • the porous airgel composite has a structure of XC 2 N (X: doping element), and the doping element may be an element having a relatively large size compared to the elements constituting the compound.
  • the doping element may include at least one of P and S.
  • the angle of bonding between carbon elements adjacent to the doping element can be controlled.
  • the coupling energy between the compound and the doping element is changed according to the angle of bonding between the doping element and the carbon elements adjacent to the doping element, and the band structure of the compound including the doping element is It can be deformed.
  • the present invention provides a metal-air battery.
  • the metal-air battery may include an anode including a porous airgel composite according to an embodiment of the present invention, a cathode spaced apart from the anode, and an electrolyte between the anode and the cathode.
  • the present invention provides a method for producing an airgel composite.
  • the method for producing an aerogel composite comprises the steps of: heat treating a source solution containing benzene and an amine to produce a first compound in which benzene is aminated; and adding the first compound, benzene Preparing a hydrated gel to which the sulfur element of the acidity control source is bound to a second compound in which the first compound and benzene of the additive are polymerized; And lyophilizing and heat-treating the hydrated gel to produce an aerogel complex of the N-dimensional (N is 0 to 3) network structure in which the sulfur element of the acidity control source is bound to the second compound can do.
  • the N-dimension of the airgel complex 0 < / RTI > to 3) network structure.
  • the direction of growth of the hydrated gel varies depending on the volume ratio of the organic solvent, the deionized water, and the alcohol in the solvent to form the N-dimensional network structure, And the amount to which the N-dimensional network structure is grown, depending on the amount added.
  • the organic solvent includes at least one selected from the group consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine or N, N-dimethylformamide, and the acidity control source is thiourea , ammonium peroxydisulfate, or sulfuric acid.
  • the solvent comprises ammonium peroxydisulfate and sulfuric acid added to at least one of the group consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine, And may include a three-dimensional network structure.
  • the solvent includes at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the deionized water having the same volume ratio, and thiourea and sulfuric acid
  • the airgel composite may comprise a two-dimensional network structure.
  • the solvent includes at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine, and the volume ratio of N, N-dimethylformamide is the same, and ammonium peroxydisulfate
  • the airgel composite may comprise a one-dimensional network structure.
  • the solvent includes at least one selected from the group consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the alcohol having the same volume ratio, and thiourea and sulfuric acid ,
  • the aerogel complex may comprise a zero dimensional network structure.
  • the present invention provides an airgel composite of an N-dimensional (N is any of 0 to 3) network structure.
  • the aerogel composite of the N-dimensional network structure may comprise a compound in which aminated benzene and benzene are polymerized, combined with a sulfur element.
  • a method for preparing a benzene-amine compound by preparing a source solution containing benzene and an amine, heat-treating the source solution to prepare a first compound in which benzene is aminated, And a dopant including a doping element are mixed and heat-treated to prepare a hydrated gel doped with the doping element of the dopant in a second compound in which the first compound and benzene of the additive are polymerized, and the hydrated gel is lyophilized And heat-treated to prepare a porous airgel composite in which the doping element is doped in the second compound.
  • the doping element is doped in the benzene ring structure, and the bonding angle between the carbon and the doping element is different from the bonding angle between the existing carbon and carbon, so that the structure of the hexagonal system having the benzene ring structure is deformed
  • An airgel composite capable of forming a bandgap, or bandgap opening, excellent in oxidation and reduction reactions, and a metal-air battery having excellent discharge and charging characteristics can be manufactured using the same.
  • a process for producing a benzene compound comprising the steps of: heat treating a source solution containing benzene and an amine to prepare a first compound in which benzene is aminated; adding the first compound, Preparing a hydrated gel to which the sulfur element of the acidity control source is bound to a second compound in which the first compound and the benzene of the additive are polymerized, by mixing an acidity regulating source containing a sulfur element, Lyophilizing and heat-treating the second compound to produce an aerogel complex of the N-dimensional network structure (N is 0 to 3) in which the sulfur element of the acidity control source is bonded to the second compound
  • N is 0 to 3
  • FIG. 1 is a flowchart illustrating a method of manufacturing an aerogel composite according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a method of manufacturing an airgel composite according to an embodiment of the present invention.
  • FIG. 3 is a photograph of hexaaminobenzene according to an embodiment of the present invention.
  • EI-MS electron ionization mass spectrum
  • FIG. 5 is a structural view for explaining a reaction mechanism in the production of an airgel composite according to an embodiment of the present invention.
  • FIG. 6 is a photograph of an aerogel composite according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an airgel composite according to a modification of the present invention.
  • FIG. 11 is a SEM photograph of an airgel composite according to Modification 3 of the present invention.
  • Example 13 is a cross-sectional sine tunneling microscopy (STM) photograph of the aerogel composite according to Example 1 of the present invention and a landscape profile in the horizontal direction.
  • STM sine tunneling microscopy
  • Example 14 is a longitudinal elevation profile of the aerogel composite cross section according to Example 1 of the present invention.
  • HAADF-STEM high-angle annular dark field imaging-scanning transmission electron microscopy
  • FIG. 16 is an X-ray diffraction (XRD) pattern of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • XRD X-ray diffraction
  • thermogravimetric (TG) curve of chloroanilic acid is a thermogravimetric (TG) curve of chloroanilic acid.
  • FIG. 19 is a N 2 adsorption-desorption isotherm of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • FIG. 19 is a N 2 adsorption-desorption isotherm of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • FIG. 20 is a hole distribution diagram of an aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • Fig. 20 is a hole distribution diagram of an aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • FIG. 21 is a graph showing Fourier transform infrared spectra of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • FIG. 21 is a graph showing Fourier transform infrared spectra of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • Example 22 is a C 1s high-resolution XPS spectrum of the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2. Fig.
  • Example 26 is a S 2p high resolution XPS spectrum of an aerogel composite according to Example 1 of the present invention.
  • FIG. 27 is a graph showing quantitative distribution of nitrogen residue characteristics relative to the relative ratio of total nitrogen content in the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • FIG. 27 is a graph showing quantitative distribution of nitrogen residue characteristics relative to the relative ratio of total nitrogen content in the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • Example 28 is a photograph of a three-electrode electrochemical cell fabricated using an airgel composite according to Example 1 of the present invention.
  • FIG. 29 is a cyclic voltage-current graph of a three-electrode electrochemical cell manufactured using an airgel composite according to Comparative Example 1.
  • FIG. 29 is a cyclic voltage-current graph of a three-electrode electrochemical cell manufactured using an airgel composite according to Comparative Example 1.
  • Example 30 is a cyclic voltage-current graph of a three-electrode electrochemical cell fabricated using an airgel composite according to Example 2 of the present invention.
  • Example 31 is a cyclic voltage-current graph of a three-electrode electrochemical cell fabricated using an airgel composite according to Example 1 of the present invention.
  • 32 is a cyclic voltage-current graph of a three-electrode electrochemical cell fabricated using a commercialized Pt / C composite.
  • FIG. 33 shows the results of the oxygen reduction reaction (ORR) of the aerogel composite according to Example 1, Example 2, and Comparative Example 1, the composite according to Comparative Example 2, and the compatibilized Pt / C composite at a rotation speed of 1600 rpm ) Polarization curve.
  • Example 34 is an ORR polarization curve of an aerogel composite according to Example 1 of the present invention at various rotational speeds.
  • LSV linear sweep voltammetry
  • EIS electrochemical impedance
  • Example 37 is an equivalent circuit diagram of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention, and a battery made of a composite according to Comparative Example 2;
  • RRDE rotating ring-disk electrode
  • Example 39 is a graph showing the peroxide ratio and electron mobility as a potential function of ORR for various masses of an aerogel composite according to Example 1 of the present invention.
  • Fig. 40 shows the oxygen evolution reaction (OER) of the airgel composite according to Example 1, Example 2 and Comparative Example 1 of the present invention, the composite according to Comparative Example 2, and the compatibilized RuO 2 composite at a rotation speed of 1600 rpm; Fig.
  • FIG. 42 is a graph showing the ORR stability analysis of the current (current-time) reaction of the aerogel composite and the compatibilized Pt / C composite according to Example 1 of the present invention over time in a 0.1 M KOH electrolyte saturated with O 2 .
  • Example 43 is an ORR stability analysis graph of an aerogel composite and a compatibilized Pt / C composite according to Example 1 of the present invention with a 2 M methanol injection.
  • Example 44 is an ORR stability analysis graph of an aerogel composite and a compatibilized Pt / C composite according to Example 1 of the present invention, with introduction of CO into the electrolyte.
  • Example 46 is an OER chronoamperometric response for an airgel composite and a compatibilized Pt / C composite according to Example 1 of the present invention in a 0.1 M KOH electrolyte saturated with O 2 .
  • FIG. 47 is a schematic view of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention.
  • Example 48 shows the ORR of the aerogel composite according to Example 1, Example 2, and Comparative Example 1, the composite according to Comparative Example 2, the compatibilized Pt / C composite, and the compatibilized RuO 2 composite at 1600 rpm and OER polarization distribution diagram.
  • Example 49 is a graph of discharge polarization and power density of an aerogel composite and a compatibilized Pt / C + RuO 2 composite according to Example 1, Example 2, and Comparative Example 1 of the present invention.
  • Example 50 is a discharge curve of a metal-air battery using an airgel composite according to Example 1 of the present invention at various current densities.
  • Example 51 is a graph showing the specific capacity of a metal-air battery using an airgel composite according to Example 1 of the present invention at 5 and 25 mA / cm 2 current density.
  • Example 52 is a discharge and charge polarization distribution diagram of a metal-air battery using a metal-air battery and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention.
  • Example 53 is a discharge and charge voltage profile of a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 10 mA / cm 2 .
  • Example 54 is a one-time charge-discharge and 375 charge-discharge voltage profile of a metal-air cell using an airgel composite according to Example 1 of the present invention at a current density of 10 mA / cm 2 .
  • Example 56 is an SEM photograph of an aerogel composite according to Example 1 of the present invention measured after using a 375 charge / discharge cycle for 750 hours as a positive electrode of a metal-air battery.
  • 57 is a photograph showing components of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention.
  • FIG. 58 is a photograph of an open circuit of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention.
  • FIG. 59 is a graph showing the relationship between the voltage of one open circuit of a metal-air battery using an airgel composite according to the first embodiment of the present invention and the open circuit of two metal-air cells using an airgel composite according to the first embodiment of the present invention connected in series Fig.
  • FIG. 60 is an impedance Nyquist distribution for a metal-air cell using a metal-air cell and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention at a potential of 1.0 V.
  • FIG. 60 is an impedance Nyquist distribution for a metal-air cell using a metal-air cell and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention at a potential of 1.0 V.
  • 61 is a discharge voltage and power density distribution diagram of a metal-air battery using a metal-air battery and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention.
  • Example 62 is a graph showing the measurement of the specific capacity of a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 5 mA / cm 2 and 50 mA / cm 2 , 1 is a schematic view of a metal-air battery using an airgel composite according to the present invention.
  • Example 63 is a graph of discharge and polarization of a metal-air cell using a metal-air cell and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention.
  • Fig. 64 is a long-term constant current discharge and charge voltage profile of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention at a current density of 25 mA / cm < 2 >
  • 65 is a long-term constant current discharge and charge voltage profile of a metal-air cell using an airgel composite according to Example 1 of the present invention, when one cycle is 2 hours at a current density of 25 mA / cm 2 .
  • 66 is a long-term constant current discharge and charge voltage profile of a metal-air cell using an airgel composite according to Example 1 of the present invention, when one cycle is 2 hours at a current density of 25 mA / cm 2 .
  • 67 is a graph showing the results of charge / discharge of 460 hours for 1 cycle at 30 mA and current density of 25 mA / cm < 2 > 2 is a long-term constant current discharge and charge voltage profile of a metal-air battery using an airgel composite according to Example 1 of the present invention.
  • 68 is a long-term constant current discharge and charge voltage profile of a metal-air cell using a compatibilized Pt / C composite.
  • 69 is a photograph in which a green LED included in a circuit in which two metal-air cells using an airgel composite according to Embodiment 1 of the present invention are connected in series is turned on / off.
  • FIG. 70 is a photograph of a red LED included in a circuit in which two metal-air cells using an airgel composite according to Embodiment 1 of the present invention are connected in series, on / off.
  • 71 is a SEM photograph of a surface of a zinc electrode used as a cathode of the metal-air battery after continuously discharging and charging the metal-air battery using the airgel composite according to Example 1 of the present invention.
  • 73 is a long-term constant current discharge and charge voltage profile when a metal-air cell using an airgel composite according to Embodiment 1 of the present invention is bent at a current density of 10 mA / cm 2 .
  • FIG. 74 is an impedance Nyquist distribution when the metal-air battery using the aerogel composite according to Embodiment 1 of the present invention is bent at various bending angles at a potential of 1.0 V.
  • FIG. 74 is an impedance Nyquist distribution when the metal-air battery using the aerogel composite according to Embodiment 1 of the present invention is bent at various bending angles at a potential of 1.0 V.
  • 75 is a discharge graph showing a voltage varying according to the number of bends for a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 15 mA / cm 2 .
  • 76 is a discharge graph showing a voltage varying at various bending angles for a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 15 mA / cm 2 .
  • Example 77 is an initial charge / discharge capacity profile of a metal (lithium) -air cell using an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention at a current density of 50 mA / g.
  • Example 78 is an initial charge / discharge capacity profile of a metal (lithium) -air cell using an airgel composite according to Example 1 of the present invention at various current densities.
  • Example 79 is the initial charge / discharge capacity profile of a metal (lithium) -air battery using an airgel composite according to Example 1 of the present invention at various cycles.
  • Example 80 is a cycling capacity profile of a metal (lithium) -air battery using an aerogel composite according to Example 1 of the present invention.
  • first, second, third, etc. in the various embodiments of the present disclosure are used to describe various components, these components should not be limited by these terms. These terms have only been used to distinguish one component from another. Thus, what is referred to as a first component in any one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and exemplified herein also includes its complementary embodiment. Also, in this specification, 'and / or' are used to mean at least any one of the front and rear components.
  • FIG. 1 is a flow chart for explaining a method of manufacturing an airgel composite according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a method of manufacturing an airgel composite according to an embodiment of the present invention.
  • FIG. 3 is a photograph of hexaaminobenzene according to an embodiment of the present invention
  • FIG. 4 is an EI-MS (electron ionization mass spectrum) of hexaaminobenzene according to an embodiment of the present invention.
  • FIG. 5 is a structural view for explaining a reaction mechanism in the production of an airgel composite according to an embodiment of the present invention
  • FIG. 6 is a photograph of an airgel composite according to an embodiment of the present invention.
  • a source solution 110 containing benzene and an amine may be prepared (S110).
  • the source solution 110 may comprise a molecule comprising a benzene ring and a molecule comprising an amino group.
  • the source solution 110 may be a solution containing chloroanilic acid and ethylenediamine.
  • the source solution 110 may include at least one of benzene, tetrahydroxy-1,4-quinone hydrate, tetrachloro-1,4-benzoquinone, and chloranilic acid disodium salt dehydrate, and diethylenetriamine, 1 , 3-diaminopropane, and a solution containing at least one of ethylenetriamine and dihydrochloride.
  • the first compound 120 in which benzene is aminated can be prepared by heat-treating the source solution 110 (S120).
  • an acidic solution may be added to the source solution 110.
  • the acidic solution may be sulfuric acid.
  • the acidic solution may include at least one of sodium bromide, nitric acid, sodium borohydride, and ethylenediamine.
  • the acidic solution can act as a catalyst in the course of amination of the molecules comprising the benzene ring.
  • the acid solution may be added to the source solution 110 in a cooling atmosphere.
  • the acid solution is added to the source solution 110 in the cooling atmosphere, while the source solution 110 serves as a catalyst during the amination of the benzene ring-containing molecule (chloroanilic acid) it is possible to prevent boiling.
  • the source solution 110 to which the acidic solution is added may be heat-treated.
  • the heat treatment may be performed at 80 DEG C for 12 hours.
  • the heat treatment may be a process in which molecules including the benzene ring are substantially completely aminated.
  • the source solution 110 can be made of the first compound 120 in solid phase form.
  • the first compound in solid phase form prepared by the heat treatment may be a black powder.
  • the black powder may be hexaaminobenzene.
  • the hexaaminobenzene may be composed of three molecules including the benzene ring.
  • the hexaaminobenzene be composed of three composite molecules including the benzene ring and may include an electron ionization mass having a peak value at 166,9 mz -1.
  • the first compound 120, the additive including benzene, and the dopant including the doping element are mixed and heat-treated so that the benzene of the first compound 120 and the additive is polymerized
  • the hydrated gel 140 doped with the doping element of the dopant may be prepared in the second compound 130 (S130).
  • the first compound 120 and the additive may be dispersed in a solvent.
  • the solvent may be 1-methyl-2-pyrrolidinone.
  • the solvent may include at least one of n-methylpyrrolidine and 2-methylpyrrolidine.
  • the doping element of the dopant may be mixed with the first compound 120 and the additive dispersed in the solvent.
  • the dopant may be L-cysteine.
  • the dopant may include at least one of L-methionine, thiourea, and thioacetamide or sodium sulfide.
  • the doping element of the dopant may include S or P.
  • the second compound 130 in which the first compound 120 and the additive benzene are polymerized may be a compound including a benzene ring containing C and N.
  • the second compound (130) may include a benzene ring containing C 2 N.
  • the doping element may be mixed with the first compound 120 and the additive dispersed in the solvent at room temperature.
  • the doping element may be an element having a relatively larger size than the element constituting the second compound 130.
  • the doping element when the doping element is doped to the benzene ring of the second compound as the doping element is relatively larger in size than the element constituting the second compound 130, 2 < / RTI > compound can be modified.
  • the concentration of the doping element and the concentration of the C element adjacent to the doping element in the benzene ring containing the doping element can be controlled.
  • the structure of the second compound may be out-of-phase as the P or S is relatively larger than C, of-plane structure.
  • the structure of the second compound can be maintained in an in-plane structure, instead of increasing the bond length of P or S bound to C of the second compound, compared to the bond length of N.
  • the C-position of the second compound is a point at which two benzene rings are bonded. Therefore, the fact that the doping element is substituted at the C position, which is the point at which the two benzene rings are bonded, requires a relatively larger energy than the doping element is substituted at the N-position. Therefore, the doping element tends to be doped to the N-position of the second compound rather than the C-position of the second compound.
  • the doping element When the doping element is substituted with the benzene ring of the second compound, depending on the type of the doping element and the position where the doping element is substituted on the second compound, the doping element and the doping element And the band structure of the second compound including the doping element is deformed to eventually change the oxygen evolution (OER) of the second compound including the doping element, reaction and oxygen reduction reaction (ORR) performance.
  • OER oxygen evolution
  • ORR oxygen reduction reaction
  • a cross-linking agent may be added to the first compound 120, the additive, and the dopant dispersed in the solvent.
  • the crosslinking agent may be L-alanine.
  • the communicating agent may include at least one of beta-alanine, L-serine, and ammonia.
  • the crosslinking agent may form a three-dimensional network during the cross-linking of the first compound 120 with the second compound 130 in which the benzene of the additive is polymerized, and the doping element of the dopant .
  • an oxidizing agent may be added to the first compound 120, the additive, and the dopant dispersed in the solvent.
  • the oxidizing agent may include ammonium peroxydisulfate and sulfuric acid.
  • the oxidizing agent may include at least one of ammonium phosphate and ammonia, and may include at least one of sodium bromide, nitric acid, sodium borohydride, and ethylenediamine.
  • the oxidizing agent can act as a catalyst in the process of amination of the molecule containing the benzene ring.
  • the first compound 120, the additive, the dopant, the cross-linking agent, and the solvent to which the oxidizing agent is added are heat-treated so that the first compound 120 and the benzene of the additive are polymerized
  • the hydrated gel 140 doped with the doping element of the dopant may be prepared in the second compound 130.
  • the second compound 130 may be a polymer obtained by polymerizing a plurality of complexes formed of three molecules including the benzene ring.
  • the hexaaminobenzene may be a plurality of polymerized polymers.
  • the heat treatment may be performed at 120 < 0 > C for 8 hours.
  • the second compound 130 doped with the doping element may be cooled to room temperature and made into a hydrogel 140 after the heat treatment.
  • the hydrogel 140 may be freeze-dried and heat-treated to produce the porous airgel composite 150 doped with the doping element in the second compound (S140).
  • the hydrogel 140 may be washed with a solution containing an alkyl group prior to lyophilization.
  • the heat treatment may be performed at 200 < 0 > C for 30 minutes.
  • the heat treatment may be performed in an inert gas atmosphere.
  • the inert gas may include N 2 or Ar.
  • the aerogel composite 150 produced after the heat treatment may be a hexaaminobenzene polymer containing the doping element.
  • the airgel complex 150 may be SC 2 N.
  • the airgel complex 150 may be PC 2 N.
  • the doping of the polymer with the hexaaminobenzene polymer in a plural number may be a process in which the doping element is doped at the position where the doping element is substituted in the polymer containing the benzene ring .
  • the band structure of the aerogel composite 150 may be deformed and eventually the ORR / OER performance of the aerogel composite 150 may be influenced.
  • the structure of the SC 2 N said S doping element is the as C is doped into the structure of the 2 N fast electron transfer is possible, the activation of the oxidation and reduction reactions of the SC 2 N a .
  • the ORR / OER can be increased as the bandgap of the doped element-doped aerogel composite 150 exhibits properties similar to those of a metal having a density exceeding the Fermi level.
  • the coupling length between the C element and the S-doped element is increased, resulting in the formation of SC 2 N in the intermediate state of ORR and OER such as OH * , O * , and OOH * A phenomenon that relaxes the structural stress can be provided.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an airgel composite according to a modification of the present invention.
  • the first compound 120 in which benzene is aminated can be prepared by heat-treating the source solution 110 containing benzene and amine (S210).
  • the source solution 110 may comprise a molecule comprising a benzene ring and a molecule comprising an amino group.
  • the source solution 110 may be a solution containing chloroanilic acid and ethylenediamine.
  • the source solution 110 may include at least one of benzene, tetrahydroxy-1,4-quinone hydrate, tetrachloro-1,4-benzoquinone, and chloranilic acid disodium salt dehydrate, and diethylenetriamine, 1 , 3-diaminopropane, and a solution containing at least one of ethylenetriamine and dihydrochloride.
  • the acid solution may be added to the source solution 110 as described above in step S120.
  • the acidic solution may be sulfuric acid.
  • the acidic solution may include at least one of sodium bromide, nitric acid, sodium borohydride, and ethylenediamine.
  • the acidic solution can act as a catalyst in the course of amination of the molecules comprising the benzene ring.
  • the acid solution may be added to the source solution 110 in a cooling atmosphere.
  • the acid solution is added to the source solution 110 in the cooling atmosphere, while the source solution 110 serves as a catalyst during the amination of the benzene ring-containing molecule (chloroanilic acid) it is possible to prevent boiling.
  • the source solution 110 to which the acidic solution is added may be heat-treated.
  • the heat treatment may be performed at 80 DEG C for 12 hours.
  • the heat treatment may be a process in which molecules including the benzene ring are substantially completely aminated.
  • the source solution 110 can be made of the first compound 120 in solid phase form.
  • the first compound in solid phase form prepared by the heat treatment may be a black powder.
  • the black powder may be hexaaminobenzene.
  • the hexaaminobenzene may be composed of three molecules including the benzene ring.
  • the hexaaminobenzene be composed of three composite molecules including the benzene ring and may include an electron ionization mass having a peak value at 166,9 mz -1.
  • the first compound 120, the additive including benzene, and the acidity regulating source including a sulfur element are mixed in the solvent, and the second compound 130 (130) in which the first compound 120 and the additive benzene are polymerized ), A hydrated gel to which the sulfur element of the acidity control source is bound can be prepared (S220).
  • the second compound 130 in which the first compound 120 and the additive benzene are polymerized may be a compound including a benzene ring containing C and N.
  • the second compound (130) may include a benzene ring containing C 2 N.
  • mixing of the source with the first compound 120 and the additive dispersed in the solvent may be carried out at room temperature.
  • the volume ratio of the organic solvent, deionized water, and alcohol in the solvent, and the type and amount of the acidity control source to be added, N is any of 0 to 3) network structure can be controlled.
  • the volume ratio of the organic solvent, the deionized water, and the alcohol in the solvent changes the growth direction of the hydrated gel to form the N-dimensional network structure, Depending on the amount, the rate at which the N-dimensional network structure grows may vary.
  • the organic solvent may include at least one selected from the group consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine or N, N-dimethylformamide.
  • the acidity control source may include at least one of thiourea, ammonium peroxydisulfate, and sulfuric acid.
  • the solvent may include ammonium peroxydisulfate and sulfuric acid added to at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine.
  • the airgel composite may comprise a three dimensional network structure.
  • the first compound 120, the additive, and the solvent to which the acidity control source is added are heat-treated to form a second compound (120) and a benzene- 130) may be prepared by combining the sulfur element of the acidity control source with a hydrated gel of a three-dimensional network structure.
  • the heat treatment may be performed at 120 < 0 > C for 8 hours.
  • the second compound 130 doped with the doping element may be cooled to room temperature after the heat treatment and be made into a hydrated gel having a three-dimensional network structure.
  • the hydrated gel is lyophilized and heat-treated to prepare an aerogel composite having a three-dimensional network structure in which the sulfur element of the acidity control source is bonded to the second compound (130).
  • the solvent comprises at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the deionized water having the same volume ratio, and thiourea and sulfuric acid May be added.
  • the airgel composite may comprise a two-dimensional network structure.
  • the first compound 120, the additive, and the solvent to which the acidity control source is added are heat-treated to form a second compound (120) and a benzene- 130) can be prepared from a hydrated gel of a two-dimensional network structure in which the sulfur element of the acidity control source is bonded.
  • the heat treatment may be performed at 80 DEG C for 12 hours.
  • the second compound 130 doped with the doping element may be cooled to a room temperature after the heat treatment to produce a hydrated gel having a two-dimensional network structure.
  • the solvent includes at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the volume ratio of N, N-dimethylformamide is the same, and ammonium peroxydisulfate May be added.
  • the aerogel complex may comprise a one-dimensional network structure.
  • the first compound 120, the additive, and the solvent to which the acidity control source is added are heat-treated to form a second compound (120) and a benzene- 130) can be produced in a one-dimensional network structure in which the sulfur element of the acidity control source is bonded.
  • the heat treatment may be performed at 150 ° C for 24 hours.
  • the second compound 130 doped with the doping element may be cooled to room temperature after the heat treatment to produce a hydrated gel having a one-dimensional network structure.
  • the aerogel composite may comprise a zero dimensional network structure.
  • the first compound 120, the additive, and the solvent to which the acidity control source is added are heat-treated to form a second compound (120) and a benzene- 130) can be manufactured with a 0-dimensional network structure hydrated gel to which the sulfur element of the acidity control source is bound.
  • the heat treatment may be performed at 180 < 0 > C for 6 hours.
  • the second compound 130 doped with the doping element may be cooled to a room temperature after the heat treatment and be made into a hydrated gel having a zero dimensional network structure.
  • the hydrated gel is lyophilized and heat treated to produce an aerogel composite of a zero-dimensional network structure in which the sulfur element of the acidity control source is bonded to the second compound 130.
  • the second compound 130 may be a polymer obtained by polymerizing a plurality of complexes formed by three molecules including the benzene ring.
  • the hexaaminobenzene may be a plurality of polymerized polymers.
  • the volume ratio of the organic solvent, the deionized water, and the alcohol in the solvent changes the direction in which the hydrogel grows to form the N-dimensional network structure
  • the speed at which the N-dimensional network structure is grown may be varied depending on the type and the amount of the acidity adjusting source.
  • the acidity control source may be an oxidizing agent comprising ammonium peroxydisulfate, or a reducing agent comprising thiourea and sulfuric acid.
  • the amount of the acidity control source increases, the N-dimensional network structure can grow rapidly. In other words, the N-dimensional network structure can be grown while the first compound 120 is being produced. Thus, the random aerogel composite can be produced.
  • the amount of the acidity control source decreases, the N-dimensional network structure can grow slowly. In other words, the N-dimensional network structure can be grown after the first compound 120 is produced.
  • the uniform airgel composite can be produced.
  • the hydrated gel is lyophilized and heat-treated to produce an aerogel composite having an N-dimensional network structure (N is 0 to 3) in which the sulfur element of the acidity control source is bound to the second compound (S230 ).
  • the hydrogel may be washed with a solution containing an alkyl group before lyophilization.
  • the heat treatment may be performed at 200 < 0 > C for 30 minutes.
  • the heat treatment may be performed in an inert gas atmosphere.
  • the inert gas may include N 2 or Ar.
  • the airgel composite produced after the heat treatment may be a hexaaminobenzene polymer containing the sulfur element.
  • the aerogel complex of the N-dimensional network structure may be produced. Specifically,.
  • the solvent comprises ammonium peroxydisulfate and sulfuric acid added to at least one of the group consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine and 2-methylpyrrolidine, the aerogel complex of the three- .
  • the solvent contains at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine and 2-methylpyrrolidine and the deionized water having the same volume ratio, and thiourea and sulfuric acid are added ,
  • the aerogel composite of the two-dimensional network structure can be manufactured.
  • the solvent includes at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the same volume ratio of N, N-dimethylformamide, and the addition of ammonium peroxydisulfate ,
  • the airgel composite of the one-dimensional network structure can be manufactured.
  • the solvent contains at least one of the groups consisting of 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, and 2-methylpyrrolidine and the alcohol having the same volume ratio, and thiourea and sulfuric acid are added.
  • a method for preparing a benzene compound comprising preparing a source solution comprising benzene and an amine, heat treating the source solution to produce a first compound wherein the benzene is aminated, Preparing a hydrate gel doped with the doping element of the dopant in a second compound in which the first compound and the additive of benzene are polymerized by mixing a dopant containing an additive and a doping element, And lyophilizing and heat-treating the gel to prepare a porous airgel composite doped with the doping element in the second compound.
  • a compound in which aminated benzene and benzene are polymerized can prepare a porous airgel composite doped with a doping element.
  • a process for producing a benzene compound comprising the steps of: heat treating a source solution containing benzene and an amine to prepare a first compound in which benzene is aminated; adding the first compound, Preparing a hydrated gel to which the sulfur element of the acidity control source is bound to a second compound in which the first compound and the benzene of the additive are polymerized, by mixing an acidity regulating source containing a sulfur element, Lyophilizing and heat-treating the second compound to produce an aerogel complex of the N-dimensional network structure (N is 0 to 3) in which the sulfur element of the acidity control source is bonded to the second compound
  • N is 0 to 3
  • an airgel composite of an N-dimensional network structure in which a compound obtained by polymerizing aminated benzene and benzene is combined with a sulfur element can be provided.
  • a source solution containing 5 g of chloroanilic acid and 5 g of ethylenediamine as a source solution containing benzene and amine was prepared.
  • the stirred solution was heated to room temperature and then heat-treated at 80 DEG C for 12 hours to prepare a solid material.
  • the solid matter was filtered in a vacuum atmosphere, washed with ethanol and the like, and then lyophilized for 24 hours to prepare hexaaminobenzene of a mixed color of brown and black.
  • hexaaminobenzene and chloroanilic acid were dispersed in 1-methyl-2-pyrrolidinone (1: 1.2 wt%) solvent.
  • L-alanine and L-cystein were added to the solvent in which hexaaminobenzene and chloroanilic acid were dispersed, a few drops of ammonium peroxydisulfate and sulfuric acid were added, and the solution was slowly stirred at room temperature to prepare a mixed solution.
  • the mixed solution was heat-treated at 120 ° C for 8 hours and then cooled to room temperature to prepare a hydrogel.
  • the hydrated gel was washed with methanol or the like and lyophilized for 20 hours to prepare an airgel.
  • the airgel from 2 °C / min and a nitrogen gas atmosphere at an elevated temperature environment of 150 sccm, and heat treated for 30 minutes at a temperature of 200 °C, was prepared in the airgel composite (SC 2 NA) according to the first embodiment.
  • Example 1 the mixed solution according to Example 2 in which L-cysteine was not added, that is, L-phosphoserine was added instead of L-cysteine, was added to the solvent in which hexaaminobenzene and chloroanilic acid were dispersed in Example 1 Respectively. Thereafter, an aerogel composite (PC 2 NA) according to Example 2 was prepared in the same manner as in Example 1.
  • Example 1 the mixed solution according to Comparative Example 1 was prepared in which the hexaaminobenzene and the chloroanilic acid were dispersed in the solvent but L-cysteine was not added. Thereafter, an aerogel composite (C 2 NA) according to Comparative Example 1 was prepared in the same manner as in Example 1.
  • Dicyandiamide was added to ethanol to prepare a mixed solution.
  • the mixed solution was stirred for 30 minutes and then condensed with a rotary evaporator to prepare a powder.
  • the powder was grinded to prepare a fine powder, and the fine powder was polymerized at 600 ° C for 4 hours in a nitrogen gas atmosphere to prepare a composite (C 3 N 4 ) according to Comparative Example 2 .
  • a source solution containing 5 g of chloroanilic acid and 5 g of ethylenediamine as a source solution containing benzene and amine was prepared.
  • the stirred solution was heated to room temperature and then heat-treated at 80 DEG C for 12 hours to prepare a solid material.
  • the solid matter was filtered in a vacuum atmosphere, washed with ethanol and the like, and then lyophilized for 24 hours to prepare hexaaminobenzene of a mixed color of brown and black.
  • the hexaaminobenzene and chloroanilic acid were dispersed in 1-methyl-2-pyrrolidinone solvent.
  • L-alanine and L-cystein were added to the solvent in which hexaaminobenzene and chloroanilic acid were dispersed, ammonium peroxydisulfate and sulfuric acid were further added, and the mixture was slowly stirred at room temperature to prepare a mixed solution.
  • the mixed solution was heat-treated at 120 ° C for 8 hours and then cooled to room temperature to prepare a hydrogel.
  • the hydrated gel was washed with methanol or the like and lyophilized for 20 hours to prepare an airgel.
  • the aerogels were heat-treated at a temperature of 2 DEG C / min and a nitrogen gas atmosphere of 150 sccm at a temperature of 200 DEG C for 30 minutes to prepare an airgel composite according to Modification Example 1.
  • the airgel composite of the three-dimensional network structure according to the first embodiment and the first modification of the present invention can be the same.
  • hexaaminobenzene and chloroanilic acid were dispersed in a solvent containing 1-methyl-2-pyrrolidinone and deionized water in a volume ratio of 1: 1.
  • the mixed solution was heat-treated at 80 ° C for 12 hours and then cooled to room temperature to prepare a hydrated gel.
  • the mixed solution was heat-treated at 150 ° C for 24 hours and then cooled to room temperature to prepare a hydrated gel.
  • an airgel composite having a one-dimensional network structure according to Modification Example 3 was prepared by freeze-drying and heat-treating in the same manner as in Modification Example 1 described above.
  • the mixed solution was heat-treated at 180 ° C for 6 hours and then cooled to room temperature to prepare a hydrogel.
  • FIG. 8 is a scanning electron microscopy (SEM) photograph of an airgel composite according to Example 1 or Modification 1 of the present invention
  • FIG. 9 is a TEM (transmission electron microscopy) image of an airgel composite according to Example 1 or Modification 1 of the present invention. ) It is a photograph.
  • Fig. 10 is a SEM photograph of an aerogel composite according to Modification Example 2 of the present invention
  • Fig. 11 is an SEM photograph of an aerogel composite according to Modification Example 3 of the present invention
  • Fig. 12 is a SEM image of an aerogel composite according to Modification Example 4 of the present invention SEM picture.
  • the airgel composite according to Example 1 or Modification 1 of the present invention has a porous three-dimensional network structure in which twisted nanoribbons are intertwined in a hierarchical structure.
  • the twisted nanoribbons have a length of several microns and a width of 150 to 200 nm.
  • the clear spacing between adjacent nanoribbons facilitates the approach of the electrolyte to the interface of the nanoribbons and allows rapid diffusion of reactants through fast electrochemical reactions.
  • the nanoribbons have a lattice pattern of ⁇ 0.322 nm in width, and that the lattice pattern has a high crystallinity similar to the lattice plane (002) of graphite carbon .
  • the aerogel composite according to the second modification of the present invention has a two-dimensional network structure that is seen as a plane.
  • the airgel composite according to the modified example 3 of the present invention has a one-dimensional network structure that appears as a line.
  • the aerogel composite according to the modified example 4 of the present invention has a 0-dimensional network structure which is seen as a dot type.
  • the aerogel complex including the network structure of N dimensions (where N is any one of 0 to 3) can be easily manufactured.
  • Fig. 13 is a cross-sectional STM (sanning tunneling microscopy) photograph of an aerogel composite according to Example 1 of the present invention and a profile height profile in the transverse direction
  • Fig. 14 is a cross- Direction elevation profile.
  • the airgel composite according to Example 1 of the present invention has a porous structure uniformly distributed in hexagonal arrangement.
  • the porous structure of the uniformly distributed hexagonal arrangement corresponds to the theoretical C 2 N porous structure.
  • the diameter of the inner hole is 8.26 to 8.28 ⁇ , and the height difference between the hexagonal lattice and the hole is 0.20 to 0.38 ⁇ , confirming that the benzene ring is located slightly higher than the C-N bonding region.
  • This phenomenon means that the airgel composite according to Example 1 of the present invention has a smaller interplanar distance than graphite.
  • the S 2 doping element was doped on the C 2 N lattice of the aerogel composite according to Example 1 of the present invention, and a defect occurred in the lattice structure due to the doping element Can be confirmed.
  • HAADF-STEM high-angle annular dark field imaging-scanning transmission electron microscopy
  • C, N, O, and S constituting the aerogel composite according to the first embodiment of the present invention have a uniform spatial distribution.
  • FIG. 16 is an X-ray diffraction (XRD) pattern of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2.
  • XRD X-ray diffraction
  • the composite according to Comparative Example 2 has a distinct peak at 12.93 and 27.42 °.
  • the peak corresponds to the (100) and (002) peaks of the laminate structure of in-plane packing and aromatic segments.
  • the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention has a distinct peak at 26.87 °.
  • the peak corresponds to an aromatic (002) peak having an interplanar distance of 0.324 nm, which means that the peak shows high crystallinity.
  • the interplanar distance of 0.324 nm is relatively narrow compared to 0.335 nm, which is an interplanar distance of graphite, and 0.332 nm, which is an interplanar distance of bulk graphitic carbon nitride, and this phenomenon is similar to Example 1, Example 2,
  • the aerogel composite according to Comparative Example 1 has a porous structure and means that the nitrogen atoms are uniformly distributed.
  • FIG. 17 is a thermogravimetric (TG) curve of chloroanilic acid
  • FIG. 18 is a TG curve of an aerogel composite according to Example 1 of the present invention.
  • chloroanilic acid is decomposed in a temperature range of 160 to 240 ° C.
  • the airgel composite according to Example 1 of the present invention is stable up to a temperature of 500 ° C, which means that the airgel composite has a stable configuration of hexagonal basic units do.
  • the airgel composite according to Example 1 of the present invention slowly decomposes over a temperature range of 500 to 750 ° C, which means that the thermal stability of the airgel composite is excellent.
  • FIG. 19 is an N 2 adsorption-desorption isotherm of an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2
  • FIG. 20 is a graph showing the N 2 adsorption- 2, and the airgel composite according to Comparative Example 1 and the composite according to Comparative Example 2.
  • the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2 show the type-hysteresis loop characteristic of the hysteresis loop, indicating the presence of micro- / meso holes. IV isotherms.
  • the airgel composite according to Example 1 of the present invention has a peak value when the hole diameter is less than 3 nm . This phenomenon means that the aerogel composite according to Example 1 of the present invention provides a high density of active sites, facilitates mass transfer, and facilitates electrocatalytic activity.
  • FIG. 21 is a graph showing Fourier transform infrared spectra of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • FIG. 21 is a graph showing Fourier transform infrared spectra of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • the peak showing the NH bond characteristic is observed in the range of 3135 to 3155 cm -1 , and the NH bond exhibits a relatively weak band structure characteristic by stretching vibration.
  • the peaks showing the characteristics of the airgel composite according to Comparative Example 1 are observed in the region of 831 cm -1 and the peaks in the region show the characteristics of the electron donating groups mainly in the aromatic ring modes (ortho, meta and para).
  • a peak indicating the SN coupling property is observed in a region of 745 cm -1 , and a peak in this region indicates a stretching mode characteristic of the SN coupling.
  • Fig. 22 is a C 1s high-resolution XPS spectrum of an aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a composite according to Comparative Example 2, and Fig. 23 is a C 1s high resolution XPS spectrum of the composite according to Example 1, Example 2 , And the N 1s high-resolution XPS spectrum of the composite according to Comparative Example 2 and the aerogel composite according to Comparative Example 1.
  • peaks showing C element characteristics of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention are 284.5, 286.6, and 291.4 eV. < / RTI >
  • the peak in the region of 286.6 eV exhibits the CN bonding property
  • the peak in the region of 291.4 eV exhibits the C-heteroatom bonding property.
  • This phenomenon shows that, in the region of 288.1 eV, no peaks showing CN bonding, which is a tri-s-zine characteristic observed in C 3 N 4 , are observed.
  • Means that the airgel composite according to Example 1, Example 2, and Comparative Example 1 was formed of a porous C 2 N airgel composite.
  • peaks showing N element characteristics of the aerogel composite according to Comparative Example 1 are observed in the regions of 398.4, 399.3, 400.14, 401.10, and 402.12 eV.
  • the peak in the region of 398.4 eV exhibits the pyridinic (N1) characteristic
  • the peak in the region of 399.3 eV exhibits the pyrrolic (N2) characteristic
  • the peak in the region of 400.14 eV exhibits the graphitic (N3) characteristic.
  • the peak in the 401.10 eV region exhibits a quaternary (N4) characteristic
  • the peak in the 402.12 eV region exhibits an oxidized pyridinic (N + O - , N5) characteristic.
  • a C 2 N based airgel composite has a graphitic and quaternary nitrogen characteristics.
  • the peaks exhibit remarkable migration is a C 2 N matrix Quot; means that SNC binding or PNC binding is present inside.
  • FIG. 25 is a P 2p high resolution XPS spectrum of an aerogel composite according to Example 2
  • FIG. 26 is an S 2p high resolution XPS spectrum of an aerogel composite according to Example 1 of the present invention.
  • peaks showing P element characteristics of the aerogel composite according to Example 2 are observed in the regions of 132.6, 133.7, and 135.4 eV.
  • the peak in the region of 132.6 and 133.7 eV is characteristic of P-C bond, which is aromatic C, and the peak in the region of 135.4 eV shows the characteristic of P-O bond.
  • the peak in the region of 133.7 eV may exhibit the characteristic of PN coupling. This phenomenon is considered to be due to the fact that the P element of the aerogel composite according to Example 2 replaces the C element to form the PN bond serving as the ORR active site .
  • a peak indicating the S elemental characteristic of the aerogel composite according to Example 1 is observed in the region of 163.1 and 164.5 eV.
  • the peak in the region of 163.1 eV represents the S 2p 3/2 characteristic, which corresponds to the peak of thiol
  • the peak in the region of 164.5 eV represents the S 2p 1/2 characteristic, Or the peak of thiophene.
  • Another peak is observed in the region of 161.8 eV, which shows NS binding properties.
  • the low peaks observed in the region of 165.9 and 166.9 eV indicate that sulfate species (C-SO x -C) are present.
  • FIG. 27 is a graph showing quantitative distribution of nitrogen residue characteristics relative to the relative ratio of total nitrogen content in the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • FIG. 27 is a graph showing quantitative distribution of nitrogen residue characteristics relative to the relative ratio of total nitrogen content in the aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the composite according to Comparative Example 2.
  • the aerogel composite according to Example 1 of the present invention is different from the aerogel composite according to Example 2 of the present invention and the composite according to Comparative Example 2, except that N1 (pyridinic), N2 (pyrrolic), N3 (graphitic) , N4 (quaternary), and N5 - can confirm that it comprises all the (pyridinic N + O).
  • N1 (pyridinic), N2 (pyrrolic), N3 (graphitic) , N4 (quaternary), and N5 - can confirm that it comprises all the (pyridinic N + O).
  • This phenomenon is believed to be due to the presence of N1, N2, N3, N4, and N5 in the aerogel composite according to Example 1 of the present invention, thereby improving the oxidation / reduction performance of the aerogel composite according to Example 1 of the present invention .
  • Example 28 is a photograph of a three-electrode electrochemical cell fabricated using an airgel composite according to Example 1 of the present invention.
  • FIG. 29 is a cyclic voltage-current graph of a three-electrode electrochemical cell manufactured using an airgel composite according to Comparative Example 1
  • FIG. 30 is a graph of a circulating voltage-current of a three-electrode electrochemical cell manufactured using the airgel composite according to Example 2 of the present invention.
  • FIG. 31 is a cyclic voltage-current graph of a three-electrode electrochemical cell manufactured using an airgel composite according to Example 1 of the present invention.
  • FIG. 32 is a cyclic voltage-current graph of a three-electrode electrochemical cell fabricated using a commercialized Pt / C composite.
  • the reduction potential of the three-electrode electrochemical cell fabricated using the airgel composite according to Example 2 of the present invention was 0.82 V
  • the reduction potential of the three-electrode electrochemical cell fabricated using the airgel composite according to Comparative Example 1 was 0.79 V
  • a reduction potential of 0.85 V in a three-electrode electrochemical cell fabricated using a commercialized Pt / C composite the reduction of the three-electrode electrochemical cell fabricated using the airgel composite according to Example 1 of the present invention
  • the potential is 0.86 V, which is relatively large. This phenomenon means that it is appropriate to use the aerogel composite according to Example 1 of the present invention as a catalyst for the reduction reaction.
  • the current density of the three-electrode electrochemical cell manufactured using the airgel composite according to Example 2 of the present invention was 0.7 mA / cm 2
  • that of the three-electrode electrochemical cell manufactured using the airgel composite according to Comparative Example 1 A current density of 0.36 mA / cm < 2 >, and a current density of 0.5 mA / cm < 2 > in a three-electrode electrochemical cell produced using a commercialized Pt / C composite, compared with the airgel composite according to Example 1 of the present invention
  • the current density of the three-electrode electrochemical cell fabricated using the polymer electrolyte membrane was 0.95 mA / cm 2 , which is relatively large.
  • the broad surface area, high graphening, and rich active sites of the aerogel complexes as a result of the heteroatom doping into the C 2 N structure tend to enhance the reduction reaction.
  • FIG. 33 shows the results of the oxygen reduction reaction (ORR) of the aerogel composite according to Example 1, Example 2, and Comparative Example 1, the composite according to Comparative Example 2, and the compatibilized Pt / C composite at a rotation speed of 1600 rpm
  • FIG. 34 is an ORR polarization curve of an aerogel composite according to Embodiment 1 of the present invention at various rotational speeds
  • FIG. 35 is a linear sweep voltammetry (LSV) profile corresponding to KL (Koutechy-Levich) .
  • LSV linear sweep voltammetry
  • the calculated electron transfer number (n) of the aerogel composite according to Example 1 of the present invention was ⁇ 4, which means a rapid rate indicating the four-electron transfer pathway in the ORR process.
  • FIG. 36 is an electrochemical impedance (EIS) distribution diagram of an aerogel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and a battery made of a composite according to Comparative Example 2
  • FIG. 3 is an equivalent circuit diagram of an airgel composite according to Example 1, Example 2, and Comparative Example 1, and a battery made from the composite according to Comparative Example 2;
  • the electrochemical impedance distributions of the airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention and the battery made of the composite according to Comparative Example 2 are all similar to the semicircular shape Shape, and the semi-circular shape of the battery made from the airgel composite according to Example 1 of the present invention is the smallest.
  • This phenomenon means that the airgel composite according to Example 1 of the present invention has a low charge transfer resistance, which is easy to be used as an electrocatalyst.
  • Fig. 38 is a rotating ring-disk electrode (RRDE) polarization distribution diagram of an electrode produced according to various masses of an airgel composite according to Example 1 of the present invention at a rotation speed of 1600 rpm; Fig. And the number of electron mobilities as a potential function of ORR with respect to various masses of an airgel composite according to the present invention.
  • RRDE rotating ring-disk electrode
  • the peroxide ratio (HO 2 - ) can be evaluated by the disk current, and the electron mobility n can be evaluated by the ring current.
  • the electron mobility can be maintained at a value in the range of 3.98 ⁇ 4.02 by more than 6%.
  • Fig. 40 shows the oxygen evolution reaction (OER) of the airgel composite according to Example 1, Example 2 and Comparative Example 1 of the present invention, the composite according to Comparative Example 2, and the compatibilized RuO 2 composite at a rotation speed of 1600 rpm; Fig.
  • exemplary airgel composites in accordance with Example 2 of the airgel composites according to the first embodiment of the invention is 0.3 V
  • commercially available RuO 2 complex is 0.32 V
  • the present invention is 0.47 V
  • the airgel composite according to Comparative Example 1 has an overvoltage of 0.61 V.
  • the commercialized RuO 2 composite was 15.6 mA / cm 2
  • the airgel composite according to Example 2 of the present invention was 2.16 mA / cm 2
  • the airgel composite according to Comparative Example 1 was 0.3 mA / cm < 2 >
  • the airgel composite according to Example 1 of the present invention has the highest current density of 20.97 mA / cm < 2 >.
  • the airgel composite according to Example 2 of the present invention and Comparative Example 1 compared with the starting potential of the commercialized RuO 2 composite having the starting potential of 1.32 V, the airgel composite according to Example 2 of the present invention and Comparative Example 1, and the composite according to Comparative Example 2, It can be confirmed that the starting potential of the aerogel composite according to the present invention is 1.28 V lower.
  • the Tafel slope of the compatibilized Pt / C composite was 72 mV / dec
  • the Tafel slope of the aerogel composite according to Example 2 of the present invention was 68 mV / dec
  • the Tafel of the airgel complex according to Comparative Example 1 The slope of the airgel composite according to Example 1 of the present invention is 54 mV / dec in the ORR region, while the slope thereof is 107 mV / dec.
  • the airgel composite according to Example 2 of the present invention compared to the Tafel values of the commercialized RuO 2 composite having a Tafel value of 78 mV / dec in the OER region, the airgel composite according to Example 2 of the present invention and the composite material according to Comparative Example 2, It can be seen that the Tafel value of the aerogel composite according to Example 1 of the invention is lower at 62 mV / dec.
  • FIG. 42 is a graph showing the ORR stability analysis of the current (current-time) reaction of the aerogel composite and the compatibilized Pt / C composite according to Example 1 of the present invention over time in a 0.1 M KOH electrolyte saturated with O 2 , 43 is in accordance with, an airgel composite and ORR stability analysis of a commercially available Pt / C composite graph according to the first embodiment of the present invention, 44 is a CO 2 introduced into the electrolyte according to the methanol injection of 2 M, embodiments of the present invention 2 is an ORR stability analysis graph of an aerogel composite and a compatibilized Pt / C composite according to Example 1.
  • the current density of the aerogel composite according to Example 1 of the present invention was maintained for 10 hours, while the current density of the commercialized Pt / C composite decreased by 18.45% It can be confirmed that it is possible to operate without being connected.
  • Figure 46 is O a divalent saturated OER chronoamperometric response for an aerogel composite and a commercialized RuO 2 composite according to Example 1 of the present invention in a 0.1 M KOH electrolyte.
  • the current density of the commercial RuO 2 composite is reduced to 23.1% after 10 hours, while the current density of the airgel composite according to Example 1 of the present invention is maintained at 99.65% .
  • This phenomenon means that the airgel composite according to Example 1 of the present invention is stable to an alkaline medium.
  • the airgel composite according to Example 1 of the present invention was placed on the stainless steel to prepare a positive electrode.
  • a polished Zn foil was prepared.
  • the Zn foil was placed on an airgel composite according to Example 1 of the present invention placed on stainless steel to prepare a negative electrode.
  • a metal-air battery according to Example 1 was fabricated by preparing a hydroxide-conducting cellulose nano-fiber as a solid material and placing it between the anode and the cathode.
  • FIG. 47 is a schematic view of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention.
  • a cathode including an airgel composite according to Example 1 of the present invention was prepared, a cathode including a Zn metal plate was prepared, and an electrolyte including 0.2 M of zinc acetate and 6 M of KOH To prepare a metal-air battery.
  • the prepared metal-air battery was compared with a battery containing commercially available Pt / C and RuO 2 .
  • Example 48 shows the ORR of the aerogel composite according to Example 1, Example 2, and Comparative Example 1, the composite according to Comparative Example 2, the compatibilized Pt / C composite, and the compatibilized RuO 2 composite at 1600 rpm and OER polarization distribution diagram.
  • the composite according to Comparative Example 2 compared to the airgel composite according to Example 2 of the present invention and Comparative Example 1, the composite according to Comparative Example 2, the compatibilized Pt / C composite, and the compatibilized RuO 2 composite, 1 has a lower starting potential. It can be confirmed that it has a higher current density.
  • Example 49 is a graph of discharge polarization and power density of an aerogel composite and a compatibilized Pt / C + RuO 2 composite according to Example 1, Example 2, and Comparative Example 1 of the present invention.
  • the open circuit voltage (OCV) of the airgel composite and the compatibilized Pt / C + RuO 2 composite according to Example 1 of the present invention is similar to 1.49 V.
  • the discharge voltage of the aerogel composite according to Example 1 of the present invention is higher than that of the commercially available Pt / C + RuO 2 composite at a current density of 100 mA / cm 2 through a polarization profile of 0.98 V 1.04 V is higher.
  • the maximum power density of the aerogel composite according to Example 1 of the present invention was higher than that of the conventional Pt / C + RuO 2 composite at a maximum power density of 190 mW / cm 2 and a current density of 244 mA / cm 2 209 mW / cm < 2 >, and the current density is higher at 300 mA / cm < 2 >.
  • Example 50 is a discharge curve of a metal-air battery using an airgel composite according to Example 1 of the present invention at various current densities.
  • Example 51 is a graph showing the specific capacity of a metal-air battery using an airgel composite according to Example 1 of the present invention at 5 and 25 mA / cm 2 current density.
  • the metal with the airgel composites according to the first embodiment of the present invention the air cells at a current density of 5 mA / cm 2 863 mA h / g has a specific capacity of, the current of 25 mA / cm 2 It can be confirmed that it has a specific capacity of 825 mA h / g at the density.
  • the non-capacity of 863 mAh / g corresponds to a weight energy density of 958 Wh / kg
  • the non-capacity of 825 mAh / g corresponds to a weight energy density of 917 Wh / kg.
  • This phenomenon shows battery characteristics superior to those of a metal-air battery using a commercially available Pt / C + RuO 2 composite.
  • Example 52 is a discharge and charged polarization distribution diagram of a metal-air battery using a metal-air battery and a commercialized Pt / C + RuO 2 composite using an airgel composite according to Example 1 and Example 2 of the present invention.
  • a metal-air battery using an airgel composite according to Embodiment 1 of the present invention compared with a metal-air battery using a commercialized Pt / C + RuO 2 composite, has a smaller overvoltage . ≪ / RTI > This phenomenon means that the metal-air battery using the airgel composite according to the first embodiment of the present invention has excellent charge-discharge characteristics.
  • 53 and 54 are discharge and charge voltage profiles of a metal-air cell using an airgel composite according to Example 1 of the present invention at a current density of 10 mA / cm 2 .
  • a metal-air battery using an airgel composite according to Example 1 of the present invention is characterized in that at a current density of 10 mA / cm 2 with a cut-off time of 2 hours per cycle, Cycle stability and reversibility.
  • the metal-air battery using the airgel composite according to Example 1 of the present invention exhibited a reciprocating overvoltage of 0.75 V, which was initially 62.1% electric efficiency, and after a continuous 375 charge-discharge cycle for 750 hours, which is equivalent to 60.7% of electric efficiency.
  • a metal-air battery using a commercial Pt / C + RuO 2 composite exhibited a reciprocating overvoltage of 0.97 V, which corresponds to an electric efficiency of 55.12% at the beginning, After the discharge, it can be seen that the reciprocating overvoltage rises to 1.32 V, corresponding to electric efficiency of 44.53%.
  • This phenomenon means that the charge-discharge lifetime of the metal-air battery using the airgel composite according to the first embodiment of the present invention is superior to that of the metal-air battery using the compatibilized Pt / C + RuO 2 composite .
  • FIG. 56 is an SEM photograph of an aerogel composite according to Example 1 of the present invention measured after using a 375 charge-discharge cycle for 750 hours as a positive electrode of a metal-air battery.
  • FIG. 56 is an SEM photograph of an aerogel composite according to Example 1 of the present invention measured after using a 375 charge-discharge cycle for 750 hours as a positive electrode of a metal-air battery.
  • FIG. 57 is a photograph showing the components of a metal-air battery using the airgel composite according to the first embodiment of the present invention.
  • the anode, the cellulose film, and the zinc electrode including the airgel composite according to Example 1 of the present invention are prepared as the constituent elements of the metal-air battery.
  • the metal-air battery using the airgel composite according to the first embodiment of the present invention has a voltage of ⁇ 1.46 V.
  • FIG. 59 is a graph showing the relationship between the voltage of one open circuit of a metal-air battery using an airgel composite according to the first embodiment of the present invention and the open circuit of two metal-air cells using an airgel composite according to the first embodiment of the present invention connected in series Fig.
  • the voltage of one open circuit of the metal-air battery using the airgel composite according to the first embodiment of the present invention is ⁇ 1.46 V, It can be seen that the voltage of the open circuit in which two air cells are connected in series is about two times higher than 3.0 V.
  • FIG. 60 is an impedance Nyquist distribution for a metal-air cell using a metal-air cell and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention at a potential of 1.0 V.
  • FIG. 60 is an impedance Nyquist distribution for a metal-air cell using a metal-air cell and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention at a potential of 1.0 V.
  • 61 is a discharge voltage and power density distribution diagram of a metal-air battery using a metal-air battery and a commercialized Pt / C composite using an airgel composite according to Example 1 of the present invention.
  • the power density of a metal-air battery using a commercialized Pt / C composite is 158.4 mW / cm 2
  • the power density of a metal-air battery using an airgel composite according to Example 1 of the present invention Is 187.0 mW / cm < 2 >.
  • Example 62 is a graph showing the measurement of the specific capacity of a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 5 mA / cm 2 and 50 mA / cm 2 , 1 is a schematic view of a metal-air battery using an airgel composite according to the present invention.
  • the specific capacity of the metal-air cell subjected to the aerogel composite according to Example 1 of the present invention is 695 mAh / g corresponding to 862 Wh / kg . It can be seen that at a current density of 50 mA / cm 2 , the specific capacity of the metal-air battery using the airgel composite according to Example 1 of the present invention is 653 mA h / g, which corresponds to 805 Wh / kg.
  • 63 is a graph of discharge and polarization of a metal-air cell using a metal-air battery and a commercialized Pt / C + RuO 2 composite using an airgel composite according to Example 1 of the present invention.
  • 64 is a long-term constant current discharge and charging voltage profile of a metal-air battery using an airgel composite according to Embodiment 1 of the present invention, when one cycle is 30 minutes at a current density of 25 mA / cm 2
  • 66 is a long term constant current discharge and charge voltage profile of a metal-air battery using an airgel composite according to Example 1 of the present invention, when one cycle is 2 hours at a current density of 25 mA / cm 2 .
  • 67 is a graph showing the results of charge / discharge of 460 hours for 1 cycle at 30 mA and current density of 25 mA / cm < 2 > 2 is a long-term constant current discharge and charge voltage profile of a metal-air battery using an airgel composite according to Example 1 of the present invention.
  • the metal-air battery using the airgel composite according to the first embodiment of the present invention performs discharge and charging for 460 hours and then discharges and charges for 100 hours, It can be confirmed that the charge-discharge is performed stably.
  • 68 is a long term constant current discharge and charge voltage profile of a metal-air cell using a commercialized Pt / C + RuO 2 composite.
  • FIG. 69 is a photograph of green LEDs turned on / off in a circuit in which two metal-air cells using the airgel composite according to the first embodiment of the present invention are connected in series
  • FIG. 70 is a photograph of the airgel according to the first embodiment of the present invention This is a photograph in which a red LED included in a circuit in which two metal-air cells using a composite are connected in series is turned on / off.
  • a LED of about 2.9 V included in a circuit in which two metal-air cells using the airgel composite according to Embodiment 1 of the present invention are connected in series is illuminated with a green light or a red light Accordingly, it can be confirmed that the present invention can be easily applied to a metal-air commercialized electronic circuit device using the airgel composite according to the first embodiment of the present invention.
  • 71 is a SEM photograph of a surface of a zinc electrode used as a cathode of the metal-air battery after continuously discharging and charging the metal-air battery using the airgel composite according to Example 1 of the present invention.
  • the surface of the zinc electrode used as the cathode of the metal-air battery is dendrite, It can be confirmed that the surface is clean and has a clean surface.
  • 73 is a long-term constant current discharge and charge voltage profile when a metal-air cell using an airgel composite according to Embodiment 1 of the present invention is bent at a current density of 10 mA / cm 2 .
  • the metal-air battery using the airgel composite according to the first embodiment of the present invention is bended and repeatedly discharged and charged for 180 hours to reliably charge and discharge the battery without decreasing the voltage.
  • FIG. 74 is an impedance Nyquist distribution when the metal-air battery using the aerogel composite according to Embodiment 1 of the present invention is bent at various bending angles at a potential of 1.0 V.
  • FIG. 74 is an impedance Nyquist distribution when the metal-air battery using the aerogel composite according to Embodiment 1 of the present invention is bent at various bending angles at a potential of 1.0 V.
  • 75 is a discharge graph showing a voltage varying according to the number of bends for a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 15 mA / cm 2 .
  • 76 is a discharge graph showing a voltage varying at various bending angles for a metal-air battery using an airgel composite according to Example 1 of the present invention at a current density of 15 mA / cm 2 .
  • Example 77 is an initial charge-discharge capacity profile of a metal (lithium) -air cell using an airgel composite according to Example 1, Example 2, and Comparative Example 1 of the present invention at a current density of 50 mA / g.
  • the metal (lithium) -air battery using the airgel composite according to Example 2 of the present invention exhibited an initial charge-discharge capacity of 505 mAh / g
  • the metal using the airgel composite according to Comparative Example 1 (Lithium) -a air battery using an airgel composite according to Example 1 of the present invention exhibits an initial charge-discharge capacity of 417 mAh / g
  • a metal (lithium) It can be confirmed that the initial charge-discharge capacity is large.
  • Example 78 is an initial charge-discharge capacity profile of a metal (lithium) -air battery using an airgel composite according to Example 1 of the present invention at various current densities.
  • a metal (lithium) -air battery using an airgel composite according to Example 1 of the present invention exhibits an excellent initial charge-discharge capacity of 648.7 mAh / g at a current density of 50 mA / g, Shows an initial charge-discharge capacity of 547.4 mA h / g at a current density of 100 mA / g and an initial charge-discharge capacity of 299.3 mA h / g at a current density of 200 mA / g.
  • Example 79 is the initial charge-discharge capacity profile of a metal (lithium) -air cell using an airgel composite according to Example 1 of the present invention at various cycles.
  • the metal (lithium) -air battery using the airgel composite according to Example 1 of the present invention maintains the initial charge-discharge capacity even when charging / discharging is performed with 1 cycle, 100 cycles, .
  • This phenomenon means that the metal (lithium) -air battery using the airgel composite according to the first embodiment of the present invention can be used stably for long-term discharge and charging.
  • Example 80 is a cycling capacity profile of a metal (lithium) -air battery using an aerogel composite according to Example 1 of the present invention.
  • a metal (lithium) -air battery using an airgel composite according to Example 1 of the present invention has a capacity of 98% or more after 200 cycles of charge- .
  • This phenomenon means that the airgel composite according to Embodiment 1 of the present invention is excellent in stability when used in metal (lithium) -bath electricity.
  • the airgel composite according to the embodiment of the present invention can be utilized in various technical fields such as a secondary battery and an electrochemical device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

에어로겔 복합물의 제조 방법이 제공된다. 상기 에어로겔 복합물의 제조 방법은, 벤젠 및 아민을 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물을 제조하는 단계를 포함할 수 있다.

Description

에어로겔 복합물 및 그의 제조 방법
본 발명은 에어로겔 복합물 및 그의 제조 방법에 관련된 것으로, 보다 상세하게는 도핑 원소가 도핑된 다공성 에어로겔 복합물, 그의 제조 방법, 및 이를 이용한 금속-공기 전지에 관련된 것이다.
벤젠 고리를 포함하는 그래핀과 같이, 2 차원 원자 결정 구조 갖는 재료는, 뛰어난 전기적 및 열적 특성으로 인하여 꿈의 소재로써 전 세계적으로 주목 받고 있다.
하지만, 2 차원 원자 결정 구조 갖는 재료는, 가전자대와 전도대 사이에 제로-밴드갭(zero-bandgap)을 가지는 특성으로 인해, 2 차원 원자 결정 구조의 층간 전위차를 발생시키는 것이 어려운 것에 따라, 전자 기기 분야 등에 적용이 제한되고 있다.
이러한 2 차원 원자 결정 구조의 한계로 인하여, 종래에는 층 간 전위 차를 발생하는 이중층 그래핀에 대한 연구 개발, 또는 도핑 원소가 도핑된 그래핀에 대한 연구 개발이 진행되었다.
예를 들어, 대한민국 공개특허 10-2016-0032862에는, 질소가 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀의 제조 방법이 개시되어 있다.
그러나, 종래의 방법인, 그래핀에 질소를 도핑하는 기술은, 화학적 기상 증착법(CVD, chemical vapor deposition) 또는 플라즈마 CVD법 등을 이용하여 그래핀 또는 산화 그래핀에 도핑 원소를 도핑하는 방법으로써, 그 제조 공정이 복잡하고, 제조 공정에 있어서 독성 및 금속 오염 등의 위험이 따르는 문제가 있다.
또한, 질소가 도핑된 그래핀은 그 구조가 상대적으로 불안해, 질소가 도핑된 영역의 탄소와 탄소 사이의 결합이 끊어질 수 있고, 이에 따라, 그래핀의 밴드갭을 컨트롤 하기 어려운 문제가 있다.
이에 따라, 벤젠 고리 구조에 도핑 원소가 도핑된 영역의 탄소와 탄소 사이의 결힙은 유지하면서, 상기 도핑 원소가 상기 벤젠 고리 구조에 도핑되어, 탄소와 도핑 원소가 이루는 결합각이, 기존의 탄소와 탄소 사이의 결합각과는 달라지는 현상에 의해, 벤젠 고리 구조인 육방정계의 구조에 변형을 일으켜, 밴드갭을 형성하거나, 또는 밴드갭 오프닝(bandgap opening)이 가능한 것에 따라, 종국적으로 2 차원 원자 결정 구조를 가진 화합물을 이용한 소자에서 전기적 컨트롤이 가능한 기술의 개발이 필요한 실정이다.
본 발명이 해결하고자 하는 일 기술적 과제는, 발명은 에어로겔 복합물 및 그의 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 탄소 및 질소 원소를 포함하는 벤젠 고리 구조를 포함하는 2 차원 원자 결정 구조를 가진 화합물에 도핑 원소를 제공하는 데 있다.
본 발명의 해결하고자 하는 또 다른 기술적 과제는, 2 차원 원자 결정 구조를 가진 화합물의 벤젠 고리 구조에 도핑 원소가 도핑된 영역의 탄소와 탄소 사이의 결합이 유지되는 데 있다.
본 발명의 해결하고자 하는 또 다른 기술적 과제는, 2 차원 원자 결정 구조를 가진 화합물의 벤젠 고리 구조에, 도핑 원소가 도핑되어, 탄소와 도핑 원소가 이루는 결합각이, 기존의 탄소와 탄소 사이의 결합각과는 달라지는 데 있다.
본 발명의 해결하고자 하는 또 다른 기술적 과제는, 벤젠 고리 구조를 포함하는 2 차원 원자 결정 구조를 가진 화합물에 도핑 원소를 제공함에 따라, 밴드갭을 형성하거나, 또는 밴드갭 오프닝(bandgap opening)하는 데 있다.
본 발명의 해결하고자 하는 또 다른 기술적 과제는, 벤젠 고리 구조를 포함하는 2 차원 원자 결정 구조를 가진 화합물을 이용한 소자를 전기적으로 컨트롤하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 에어로겔 복합물을 이용한 금속-공기 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 산화 및 환원 반응이 뛰어난 금속-공기 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 방전 및 충전 특성이 우수한 금속-공기 전지를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 용매 내의 유기 용매, 탈이온수(deionized water), 및 알코올의 부피 비율과, 첨가하는 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 에어로겔 복합물의 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조를 제어하는 것을 포함하는 에어로겔 복합물의 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 용매 내의 유기 용매, 탈이온수, 및 알코올의 부피 비율에 의해, 수화젤이 성장하는 방향이 달라져 N차원 네트워크 구조가 형성되는 에어로겔 복합물의 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 산도 조절 소스의 종류 및 첨가되는 양에 의해, N차원 네트워크 구조가 성장되는 속도가 달라지는 것을 포함하는 에어로겔 복합물의 제조 방법을 제공하는 데 있다.
본 발명이 해결하기 위한 기술적 과제는 상술된 것에 제한되지 않는다.
상기 기술적 과제를 해결하기 위해, 본 발명은 에어로겔 복합물의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 에어로겔 복합물의 제조 방법은, 벤젠 및 아민을 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물을 제조하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물을 제조하는 단계는, 냉각 분위기에서, 상기 소스 용액에 산성 용액을 첨가하고 열처리할 수 있다.
일 실시 예에 따르면, 상기 도핑 원소는, 상기 제2 화합물의 벤젠 고리의 적어도 일부를 구성하여, 상기 도핑 원소를 포함하는 상기 벤젠 고리는 in-plane 구조를 유지하되, 상기 도핑 원소는, 상기 제2 화합물을 구성하는 원소에 비해 크기가 상대적으로 큰 원소일 수 있다.
일 실시 예에 따르면, 상기 제2 화합물은 C와 N으로 구성되고, 상기 도핑 원소는 P 또는 S 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물은 hexaaminobenzene일 수 있다.
일 실시 예에 따르면, 상기 수화젤을 제조하는 단계는, 상기 제1 화합물, 상기 첨가물, 및 상기 도펀트에 가교제 및 산화제를 첨가할 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 다공성 에어로겔 복합물을 제공한다.
일 실시 예에 따르면, 상기 다공성 에어로겔 복합물은, 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 도핑 원소로 도핑된 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 다공성 에어로겔 복합물은 X-C2N(X: 도핑 원소)의 구조를 가지며, 상기 도핑 원소는, 상기 화합물을 구성하는 원소에 비해 크기가 상대적으로 큰 원소일 수 있다.
일 실시 예에 따르면, 상기 도핑 원소는, P 또는 S 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 화합물의 벤젠 고리에 도핑되는 상기 도핑 원소의 종류, 및 상기 도핑 원소가 상기 화합물의 벤젠 고리에 도핑되는 위치에 따라, 상기 도핑 원소를 포함하는 벤젠 고리에서, 상기 도핑 원소 및 상기 도핑 원소에 인접한 탄소 원소들 사이의 결합 각도가 제어될 수 있다.
일 실시 예에 따르면, 상기 도핑 원소 및 상기 도핑 원소에 인접한 탄소 원소들 사이의 결합 각도에 따라, 상기 화합물과 상기 도핑 원소의 결합 에너지가 달라지고, 상기 도핑 원소를 포함하는 상기 화합물의 밴드 구조가 변형될 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 금속-공기 전지를 제공한다.
일 실시 예에 따르면, 상기 금속-공기 전지는, 본 발명의 실시 예에 따른 다공성 에어로겔 복합물을 포함하는 양극, 상기 양극과 이격된 음극, 및 상기 양극 및 상기 음극 사이의 전해질을 포함할 수 있다.
상술된 기술적 과제를 해결하기 위해, 본 발명은 에어로겔 복합물의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 에어로겔 복합물의 제조 방법은, 벤젠 및 아민을 포함하는 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 용매 중에, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 황 원소를 포함하는 산도 조절 소스를 혼합하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제조하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매 내의 유기 용매, 탈이온수(deionized water), 및 알코올의 부피 비율과, 첨가하는 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 에어로겔 복합물의 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조를 제어할 수 있다.
일 실시 예에 따르면, 상기 용매 내의 상기 유기 용매, 상기 탈이온수, 및 상기 알코올의 부피 비율에 의해, 상기 수화젤이 성장하는 방향이 달라져 상기 N차원 네트워크 구조가 형성되고, 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 N차원 네트워크 구조가 성장되는 속도가 달라지는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 유기 용매는 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군, 또는 N,N-dimethylformamide 중에서 적어도 어느 하나를 포함하고, 상기 산도 조절 소스는 thiourea, ammonium peroxydisulfate 또는 sulfuric acid 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나에 ammonium peroxydisulfate 및 sulfuric acid가 첨가되는 것을 포함하고, 상기 에어로겔 복합물은 3차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 탈이온수의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함하고, 상기 에어로겔 복합물은 2차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 N,N-dimethylformamide의 부피 비가 동일한 것을 포함하고, ammonium peroxydisulfate가 첨가되는 것을 포함하고, 상기 에어로겔 복합물은 1차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 알코올의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함하고, 상기 에어로겔 복합물은 0차원 네트워크 구조를 포함할 수 있다.
상술된 기술적 과제를 해결하기 위해, 본 발명은 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제공한다.
일 실시 예에 따르면, 상기 N차원 네트워크 구조의 에어로겔 복합물은 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 황 원소와 결합된 것을 포함할 수 있다.
본 발명의 실시 예에 따르면, 벤젠 및 아민을 포함하는 소스 용액을 준비하고, 상기 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하고, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤을 제조하고, 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물이 제조될 수 있다.
이에 따라, 벤젠 고리 구조에 도핑 원소가 도핑되어, 탄소와 도핑 원소가 이루는 결합각이, 기존의 탄소와 탄소 사이의 결합각과는 달라지는 현상에 의해, 벤젠 고리 구조인 육방정계의 구조에 변형을 일으켜, 밴드갭을 형성하거나, 또는 밴드갭 오프닝(bandgap opening)이 가능하고, 산화 및 환원 반응이 뛰어난 에어로겔 복합물, 및 이를 이용해 방전 및 충전 특성이 우수한 금속-공기 전지가 제조될 수 있다.
또한, 본 발명의 변형 예에 따르면, 벤젠 및 아민을 포함하는 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 용매 중에, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 황 원소를 포함하는 산도 조절 소스를 혼합하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제조하는 단계를 포함하는 에어로겔 복합물의 제조 방법이 제공될 수 있다. 이에 따라, 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 황 원소와 결합된 N차원의 네트워크 구조의 에어로겔 복합물이 제공될 수 있다.
도 1은 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 순서도이다.
도 2는 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 도면이다.
도 3은 본 발명의 실시 예에 따른 hexaaminobenzene의 실사이다.
도 4는 본 발명의 실시 예에 따른 hexaaminobenzene의 EI-MS(electron ionization mass spectrum)이다.
도 5는 본 발명의 실시 예에 따른 에어로겔 복합물의 제조에 있어서 반응 메커니즘을 설명하기 위한 구조도이다.
도 6은 본 발명의 실시 예에 따른 에어로겔 복합물의 실사이다.
도 7은 본 발명의 변형 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 순서도이다.
도 8은 본 발명의 실시 예 1 또는 변형 예 1에 따른 에어로겔 복합물의 SEM(scanning electron microscopy) 사진이다.
도 9는 본 발명의 실시 예 1 또는 변형 예 1에 따른 에어로겔 복합물의 TEM(transmission electron microscopy) 사진이다.
도 10은 본 발명의 변형 예 2에 따른 에어로겔 복합물의 SEM 사진이다.
도 11은 본 발명의 변형 예 3에 따른 에어로겔 복합물의 SEM 사진이다.
도 12는 본 발명의 변형 예 4에 따른 에어로겔 복합물의 SEM 사진이다.
도 13은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 단면 STM(sanning tunneling microscopy) 사진 및 가로 방향의 지형 높이 프로필(profile)이다.
도 14는 본 발명의 실시 예 1에 따른 에어로겔 복합물 단면의 세로 방향의 지형 높이 프로필이다.
도 15는 본 발명의 실시 예 1에 따른 에어로겔 복합물의 HAADF-STEM(high-angle annular dark field imaging-scanning transmission electron microscopy)과 상응하는 요소 맵(map)이다.
도 16은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 XRD(X-ray diffraction) 패턴이다.
도 17은 chloroanilic acid의 TG(thermogravimetric) 곡선이다.
도 18은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 TG 곡선이다
도 19는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 N2 흡착-탈착 등온선이다.
도 20은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 홀 분포도이다.
도 21은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 FT-IR 스펙트라(Fourier transforms infrared spectra)를 나타낸 그래프이다.
도 22는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 C 1s 고해상도 XPS 스펙트럼이다.
도 23은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 N 1s 고해상도 XPS 스펙트럼이다.
도 24는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 XPS 스펙트럼이다.
도 25는 실시 예 2에 따른 에어로겔 복합물의 P 2p 고해상도 XPS 스펙트럼이다.
도 26은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 S 2p 고해상도 XPS 스펙트럼이다.
도 27은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물에서, 총 질소 함량의 상대적 비율 대비 질소 잔기 특성을 정량적 분포로 나타낸 그래프이다.
도 28은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 전지의 실사이다.
도 29는 비교 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 전지의 순환 전압-전류 그래프이다.
도 30은 본 발명의 실시 예 2에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 전지의 순환 전압-전류 그래프이다.
도 31은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 전지의 순환 전압-전류 그래프이다.
도 32는 상용화된 Pt/C 복합물을 이용하여 제조된 3 전극 전기화학 전지의 순환 전압-전류 그래프이다.
도 33은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 및 상용화된 Pt/C 복합물의 ORR(oxygen reduction reaction) 분극 곡선이다.
도 34는 다양한 회전 속도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 ORR 분극 곡선이다.
도 35는 K-L(Koutechy-Levich) 식에 상응하는 LSV(linear sweep voltammetry)프로필이다.
도 36은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물로 제조한 전지의 전기 화학적 임피던스(EIS) 분포도이다.
도 37은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물로 제조한 전지의 등가 회로도이다.
도 38은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 다양한 질량에 따라 제조된 전극의 RRDE(rotating ring-disk electrode) 분극 분포도이다.
도 39는 본 발명의 실시 예 1에 따른 에어로겔 복합물의 다양한 질량에 대한 ORR의 포텐셜 함수로써의 peroxide 비율 및 전자 이동 수를 나타낸 그래프이다.
도 40은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 및 상용화된 RuO2 복합물의 OER(oxygen evolution reaction) 분극 분포도이다.
도 41은 1600 rpm에서 ORR 분극 곡선 및 다양한 회전속도에서 ORR 분극 곡선으로부터 계산된 Tafel 분포도이다.
도 42는 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 시간에 따른 전류(전류-시간) 반응의 ORR 안정성 분석 그래프이다.
도 43은 2 M의 메탄올 주입에 따른, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 ORR 안정성 분석 그래프이다.
도 44는 전해질 내로 CO 도입에 따른, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 ORR 안정성 분석 그래프이다.
도 45는 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물에 대한 1000 사이클 전후의 OER 분극 곡선이다.
도 46은 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물에 대한 OER 크로노 전류 측정 반응(chronoamperometric response)이다.
도 47은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 모식도이다.
도 48은 1600 rpm에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 상용화된 Pt/C 복합물, 및 상용화된 RuO2 복합물의 ORR 및 OER 분극 분포도이다.
도 49는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 및 상용화된 Pt/C + RuO2 복합물의 방전 분극 및 전력 밀도 그래프이다.
도 50은 다양한 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 방전 곡선이다.
도 51은 5 및 25 mA/cm2 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 비용량을 나타낸 그래프이다.
도 52는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 방전 및 충전 분극 분포도이다.
도 53은 10 mA/cm2 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 방전 및 충전 전압 프로필이다.
도 54는 10 mA/cm2 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 1 회 충-방전 및 375 회 충-방전 전압 프로필이다.
도 55는 10 mA/cm2 전류 밀도에서, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 방전 및 충전 전압 프로필이다.
도 56은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 750 시간 동안 연속적인 375 충/방전 사이클로 금속-공기 전지의 양극으로 이용한 후에 측정한 SEM 사진이다.
도 57은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 구성 요소를 보여주는 사진이다.
도 58은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 개방 회로(open circuit)의 사진이다.
도 59는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 1 개의 개방 회로 및 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 개방회로의 전압을 나타낸 그래프이다.
도 60은 1.0 V의 전위에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지에 대한 임피던스 Nyquist 분포이다.
도 61은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 방전 전압 및 전력 밀도 분포도이다.
도 62는 5 mA/cm2 및 50 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 비용량을 측정한 그래프 및 플렉서블한 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 구상도이다.
도 63은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 방전 및 분극 그래프이다.
도 64는 25 mA/cm2의 전류 밀도에서 1 사이클이 30 분인 경우에, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 65는 25 mA/cm2의 전류 밀도에서 1 사이클이 2 시간인 경우에, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 66은 25 mA/cm2의 전류 밀도에서 1 사이클이 2 시간인 경우에, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 67은 25 mA/cm2의 전류 밀도에서 1 사이클을 30 분으로 460 시간 동안 충-방전을 수행하고, 1 사이클을 10 시간으로 100 시간 동안 추가로 더 충-방전을 수행하여 측정한, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 68은 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 69는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 회로에 포함된 녹색 LED가 on/off되는 사진이다.
도 70은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 회로에 포함된 적색 LED가 on/off되는 사진이다.
도 71은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 연속적으로 방전 및 충전한 후에, 상기 금속-공기 전지의 음극으로 쓰이는 아연 전극의 표면을 관찰한 SEM 사진이다.
도 72는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 다양한 굽힘 각도로 굽혔을 경우의 방전 및 충전 그래프이다.
도 73은 10 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우에 장기 정전류 방전 및 충전 전압 프로필이다.
도 74는 1.0 V의 전위에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 다양한 굽힘 각도로 굽혔을 경우 임피던스 Nyquist 분포이다.
도 75는 15 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지에 대하여 굽힘 횟수에 따라 변화하는 전압을 측정한 방전 그래프이다.
도 76은 15 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지에 대하여 다양한 굽힘 각도에 따라 변화하는 전압을 측정한 방전 그래프이다.
도 77은 50 mA/g의 전류 밀도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충/방전 용량 프로필이다.
도 78은 다양한 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충/방전 용량 프로필이다.
도 79는 다양한 사이클 수에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충/방전 용량 프로필이다.
도 80은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 사이클링 용량 프로필이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 어느 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
이하, 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법이 설명된다.
도 1은 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 순서도이고, 도 2는 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 도면이다.
도 3은 본 발명의 실시 예에 따른 hexaaminobenzene의 실사이고, 도 4는 본 발명의 실시 예에 따른 hexaaminobenzene의 EI-MS(electron ionization mass spectrum)이다.
또한, 도 5는 본 발명의 실시 예에 따른 에어로겔 복합물의 제조에 있어서 반응 메커니즘을 설명하기 위한 구조도이고, 도 6은 본 발명의 실시 예에 따른 에어로겔 복합물의 실사이다.
도 1 및 도 2를 참조하면, 벤젠 및 아민을 포함하는 소스 용액(110)이 준비될 수 있다(S110).
일 실시 예에 따르면, 상기 소스 용액(110)은, 벤젠 고리를 포함하는 분자 및 아미노기를 포함하는 분자를 포함할 수 있다. 예를 들어, 상기 소스 용액(110)은, chloroanilic acid 및 ethylenediamine을 포함하는 용액일 수 있다. 다른 예를 들어, 상기 소스 용액(110)은, benzene, tetrahydroxy-1,4-quinone hydrate, tetrachloro-1,4-benzoquinone, 및 chloranilic acid disodium salt dehydrate, 중에서 적어도 어느 하나를 포함하고, diethylenetriamine, 1,3-diaminopropane, 및 ethylenetriamine, dihydrochloride 중에서 적어도 어느 하나를 포함하는 용액일 수 있다.
도 1 내지 도 4를 참조하면 상기 소스 용액(110)을 열처리하여, 벤젠이 아미노화된 제1 화합물(120)이 제조될 수 있다(S120).
일 실시 예에 따르면, 상기 소스 용액(110)에 산성 용액이 첨가될 수 있다. 예를 들어, 상기 산성 용액은, sulfuric acid일 수 있다. 다른 예를 들어, 상기 산성 용액은, sodium bromide, nitric acid, sodium borohydride, 및 ethylenediamine 중에서 적어도 어느 하나를 포함할 수 있다.
상기 산성 용액은, 상기 벤젠 고리를 포함하는 분자가 아미노화되는 과정에서 촉매 역할을 할 수 있다.
일 실시 예에 따르면, 상기 산성 용액이 상기 소스 용액(110)에 첨가되는 것은 냉각 분위기에서 실시될 수 있다. 상기 냉각 분위기에서 상기 소스 용액(110)에 상기 산성 용액이 첨가됨에 따라, 상기 벤젠 고리를 포함하는 분자(chloroanilic acid)가 아미노화되는 과정에서 상기 소스 용액(110)이 촉매 역할을 하는 동안 보일링(boiling)되는 것을 방지할 수 있다.
일 실시 예에 따르면, 상기 산성 용액이 첨가된 상기 소스 용액(110)이 열처리될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 80 ℃에서 12 시간 동안 수행될 수 있다.
상기 열처리되는 것은, 상기 벤젠 고리를 포함하는 분자가 실질적으로 완전히 아미노화되는 과정일 수 있다.
상기 열처리에 의해, 상기 소스 용액(110)이 고상 형태의 제1 화합물(120)로 제조될 수 있다.
상기 열처리에 의해 제조된 고상 형태의 제1 화합물은, 검은 색의 분말일 수 있다. 상기 검은 색의 분말은 hexaaminobenzene일 수 있다.
상기 hexaaminobenzene은, 상기 벤젠 고리를 포함하는 분자 3 개의 복합물로 구성될 수 있다. 상기 hexaaminobenzene이 상기 벤젠 고리를 포함하는 분자 3 개의 복합물로 구성될 경우, 166,9 mz-1에서 피크 값을 갖는 전자 이온화 질량을 포함할 수 있다.
도 1 내지 도 5를 참조하면, 상기 제1 화합물(120), 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤(140)이 제조될 수 있다(S130).
일 실시 예에 따르면, 상기 제1 화합물(120) 및 상기 첨가물이 용매에서 분산될 수 있다. 예를 들어, 상기 용매는, 1-methyl-2-pyrrolidinone일 수 있다. 다른 예를 들어, 상기 용매는, n-methylpyrrolidine 또는 2-methylpyrrolidine 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매에서 분산된 상기 제1 화합물(120) 및 상기 첨가물에, 상기 도펀트의 상기 도핑 원소가 혼합될 수 있다. 예를 들어, 상기 도펀트는, L-cysteine일 수 있다. 다른 예를 들어, 상기 도펀트는, L-methionine, thiourea, 및 thioacetamide, sodium sulfide 중에서 적어도 어느 하나를 포함할 수 있다.
상기 도펀트의 도핑 원소는, S 또는 P를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)은 C와 N을 포함하는 벤젠 고리를 포함하는 화합물일 수 있다. 예를 들어, 상기 제2 화합물(130)은 C2N을 포함하는 벤젠 고리를 포함할 수 있다.
상기 용매에서 분산된 상기 제1 화합물(120) 및 상기 첨가물에 상기 도핑 원소가 혼합되는 것은, 상온에서 실시될 수 있다.
일 실시 예에 따르면, 상기 도핑 원소는, 상기 제2 화합물(130)을 구성하는 원소에 비해 크기가 상대적으로 큰 원소일 수 있다.
후술되는 바와 같이, 상기 제2 화합물(130)을 구성하는 원소에 비해, 상기 도핑 원소의 크기가 상대적으로 큰 것에 따라, 상기 도핑 원소가 상기 제2 화합물의 벤젠 고리에 도핑되는 경우에, 상기 제2 화합물의 벤젠 고리의 구조가 변형될 수 있다.
일 실시 예에 따르면, 상기 제2 화합물(130)의 벤젠 고리에 도핑되는 상기 도핑 원소의 종류에 따라, 상기 도핑 원소를 포함하는 벤젠 고리에서, 상기 도핑 원소 및 상기 도핑 원소에 인접한 C 원소들 사이의 결합 각도가 제어될 수 있다.
일 실시 예에 따르면, 상기 도핑 원소가 상기 제2 화합물(130)의 벤젠 고리에 도핑되는 위치에 따라, 상기 도핑 원소를 포함하는 벤젠 고리에서, 상기 도핑 원소 및 상기 도핑 원소에 인접한 C 원소들 사이의 결합 각도가 제어될 수 있다. 예를 들어, 상기 P 또는 상기 S가, 상기 제2 화합물의 상기 C 자리에 치환되는 경우, 상기 P 또는 상기 S가 상기 C보다 상대적으로 크기가 큰 것에 따라, 상기 제2 화합물의 구조가 out-of-plane 구조로 변형될 수 있다.
반면에, 예를 들어, 상기 P 또는 상기 S가, 상기 제2 화합물의 N 자리에 치환되는 경우, 상기 P 또는 상기 S가 상기 N 보다 상대적으로 크기가 큰 것에 따라, 상기 제2 화합물의 C와 N의 결합 길이에 비해, 상기 제2 화합물의 상기 C와 결합된 상기P 또는 상기 S의 결합 길이가 늘어나는 대신에, 상기 제2 화합물의 구조가 in-plane 구조로 유지될 수 있다.
후술되는 바와 같이, 상기 제2 화합물의 N 자리와는 달리, 상기 제2 화합물의 C 자리는, 2 개의 벤젠 고리가 결합되는 지점이다. 따라서, 상기 도핑 원소가 상기 2 개의 벤젠 고리가 결합되는 지점인, 상기 C 자리에 치환되는 것은, 상기 도핑 원소가 상기 N 자리에 치환되는 것에 비해 상대적으로 더 큰 에너지를 필요로 한다. 따라서, 상기 도핑 원소는 상기 제2 화합물의 C 자리 보다, 상기 제2 화합물의 N 자리에 도핑되는 것을 선호하는 경향을 보인다.
상기 도핑 원소가 상기 제2 화합물의 벤젠 고리에 치환되는 경우, 후술되는 바와 같이, 상기 도핑 원소의 종류 및 상기 제2 화합물 상에 상기 도핑 원소가 치환되는 위치에 따라, 상기 도핑 원소 및 상기 도핑 원소에 인접한 C 원소들 사이의 결합 각도 및 결합 에너지가 달라지고, 상기 도핑 원소를 포함하는 상기 제2 화합물의 밴드 구조가 변형되어, 결국에는 상기 도핑 원소를 포함하는 상기 제2 화합물의 OER(oxygen evolution reaction) 및 ORR(oxygen reduction reaction) 성능이 좌우될 수 있다.
일 실시 예에 따르면, 상기 용매에서 분산된 상기 제1 화합물(120), 상기 첨가물, 및 상기 도펀트에 가교제가 첨가될 수 있다. 예를 들어, 상기 가교제는, L-alanine일 수 있다. 다른 예를 들어, 상기 기교제는, β-alanine, L-serine, 및 ammonia 중에서 적어도 어느 하나를 포함할 수 있다.
상기 가교제는, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130), 및 상기 도펀트의 상기 도핑 원소가 가교 결합하는 과정에서 3차원 네트워크를 형성하는 역할을 할 수 있다.
일 실시 예에 따르면, 상기 용매에서 분산된 상기 제1 화합물(120), 상기 첨가물, 및 상기 도펀트에 산화제가 첨가될 수 있다. 예를 들어, 상기 산화제는, ammonium peroxydisulfate 및 sulfuric acid을 포함할 수 있다. 다른 예를 들어, 상기 산화제는, ammonium phosphate 및 ammoia 중에서 적어도 어느 하나를 포함하고, sodium bromide, nitric acid, sodium borohydride, 및 ethylenediamine 중에서 적어도 어느 하나를 포함할 수 있다.
상기 산화제는, 상기 벤젠 고리를 포함하는 분자가 아미노화되는 과정에서 촉매 역할을 할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120), 상기 첨가물, 상기 도펀트, 상기 가교제, 및 상기 산화제가 첨가된 상기 용매가 열처리되어, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤(140)이 제조될 수 있다.
일 실시 예에 따르면, 상기 제2 화합물(130)은, 상기 벤젠 고리를 포함하는 분자 3개로 형성된 복합물이 복수로 중합된 중합체일 수 있다. 다시 말하면, 상기 hexaaminobenzene이 복수로 중합된 중합체일 수 있다.
일 실시 예에 따르면, 상기 열처리는, 120 ℃에서 8 시간 동안 수행될 수 있다.
일 실시 예에 따르면, 상기 도핑 원소가 도핑된 제2 화합물(130)은 상기 열처리 이후에, 상온까지 쿨링되어 수화젤(140)로 제조될 수 있다.
도 1 내지 도 6을 참조하면, 상기 수화젤(140)을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물(150)이 제조될 수 있다(S140).
일 실시 예에 따르면, 상기 수화젤(140)은 동결건조하기 전에, 알킬기를 포함하는 용액으로 세척될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 200 ℃에서 30 분 동안 수행될 수 있다.
일 실시 예에 따르면, 상기 열처리는 불활성 가스 분위기에서 수행될 수 있다. 예를 들어, 상기 불활성가스는 N2 또는 Ar을 포함할 수 있다.
상기 열처리 이후에 제조된 상기 에어로겔 복합물(150)은, 상기 도핑 원소를 포함하는 hexaaminobenzene 중합체일 수 있다. 예를 들어, 상기 제2 화합물(130)이 상기 hexaaminobenzene이 복수로 중합된 중합체이고, 상기 도핑 원소가 S인 경우, 상기 에어로겔 복합물(150)은 S-C2N일 수 있다. 다른 예를 들어, 상기 제2 화합물(130)이 상기 hexaaminobenzene이 복수로 중합된 중합체이고, 상기 도핑 원소가 P인 경우, 상기 에어로겔 복합물(150)은 P-C2N일 수 있다.
상술된 바와 같이, 상기 hexaaminobenzene이 복수로 중합된 상기 중합체에 상기 도핑 원소가 도핑되는 것은, 상기 벤젠 고리를 포함하는 상기 중합체에서, 상기 도핑 원소가 치환되는 것을 선호하는 위치에 도핑되는 과정일 수 있다.
상술된 바와 같이, 상기 도핑 원소의 종류 및 상기 중합체의 상기 벤젠 고리에서 상기 도핑 원소가 치환되는 위치에 따라, 상기 도핑 원소 및 상기 도핑 원소에 인접한 C 원소들 사이의 결합 각도 및 결합 에너지가 달라지고, 상기 에어로겔 복합물(150)의 밴드 구조가 변형되어, 결국에는 상기 에어로겔 복합물(150)의 ORR/OER 성능이 좌우될 수 있다. 예를 들어, 후술되는 바와 같이, S-C2N의 구조는, 상기 S 도핑 원소가 상기 C2N의 구조에 도핑되어 빠른 전자 이동이 가능한 것에 따라, 상기 S-C2N의 산화 및 환원 반응의 활성화가 증가된다. 다시 말하면, 상기 도핑 원소가 도핑된 에어로겔 복합물(150)의 밴드갭은 페르미 준위(Fermi level)을 넘어서는 상태의 밀도를 가진 금속과 같은 특성을 보임에 따라, ORR/OER이 증가될 수 있다. 또한, 후술되는 바와 같이, 상기 S-C2N 구조 상에서, C 원소와 S 도핑 원소 간의 결합 길이가 늘어난 현상으로 인해 OH*, O*, 및 OOH*와 같은 ORR 및 OER의 중간 상태에서 S-C2N의 구조적 응력을 이완시키는 현상을 제공할 수 있다.
이하, 본 발명의 변형 예에 따른 에어로겔 복합물의 제조 방법이 설명된다.
도 7은 본 발명의 변형 예에 따른 에어로겔 복합물의 제조 방법을 설명하기 위한 순서도이다.
도 7을 참조하여, 본 발명의 변형 예에 따르면, 벤젠 및 아민을 포함하는 소스 용액(110)을 열처리하여, 벤젠이 아미노화된 제1 화합물(120)을 제조할 수 있다(S210).
S110 단계에서 상술된 바와 같이, 상기 소스 용액(110)은, 벤젠 고리를 포함하는 분자 및 아미노기를 포함하는 분자를 포함할 수 있다. 예를 들어, 상기 소스 용액(110)은, chloroanilic acid 및 ethylenediamine을 포함하는 용액일 수 있다. 다른 예를 들어, 상기 소스 용액(110)은, benzene, tetrahydroxy-1,4-quinone hydrate, tetrachloro-1,4-benzoquinone, 및 chloranilic acid disodium salt dehydrate, 중에서 적어도 어느 하나를 포함하고, diethylenetriamine, 1,3-diaminopropane, 및 ethylenetriamine, dihydrochloride 중에서 적어도 어느 하나를 포함하는 용액일 수 있다.
또한, S120 단계에서 상술된 바와 같이, 상기 소스 용액(110)에 산성 용액이 첨가될 수 있다. 예를 들어, 상기 산성 용액은, sulfuric acid일 수 있다. 다른 예를 들어, 상기 산성 용액은, sodium bromide, nitric acid, sodium borohydride, 및 ethylenediamine 중에서 적어도 어느 하나를 포함할 수 있다.
상기 산성 용액은, 상기 벤젠 고리를 포함하는 분자가 아미노화되는 과정에서 촉매 역할을 할 수 있다.
일 실시 예에 따르면, 상기 산성 용액이 상기 소스 용액(110)에 첨가되는 것은 냉각 분위기에서 실시될 수 있다. 상기 냉각 분위기에서 상기 소스 용액(110)에 상기 산성 용액이 첨가됨에 따라, 상기 벤젠 고리를 포함하는 분자(chloroanilic acid)가 아미노화되는 과정에서 상기 소스 용액(110)이 촉매 역할을 하는 동안 보일링(boiling)되는 것을 방지할 수 있다.
일 실시 예에 따르면, 상기 산성 용액이 첨가된 상기 소스 용액(110)이 열처리될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 80 ℃에서 12 시간 동안 수행될 수 있다.
상기 열처리되는 것은, 상기 벤젠 고리를 포함하는 분자가 실질적으로 완전히 아미노화되는 과정일 수 있다.
상기 열처리에 의해, 상기 소스 용액(110)이 고상 형태의 제1 화합물(120)로 제조될 수 있다.
상기 열처리에 의해 제조된 고상 형태의 제1 화합물은, 검은 색의 분말일 수 있다. 상기 검은 색의 분말은 hexaaminobenzene일 수 있다.
상기 hexaaminobenzene은, 상기 벤젠 고리를 포함하는 분자 3 개의 복합물로 구성될 수 있다. 상기 hexaaminobenzene이 상기 벤젠 고리를 포함하는 분자 3 개의 복합물로 구성될 경우, 166,9 mz-1에서 피크 값을 갖는 전자 이온화 질량을 포함할 수 있다.
용매 중에, 상기 제1 화합물(120), 벤젠을 포함하는 첨가물, 및 황 원소를 포함하는 산도 조절 소스를 혼합하여, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 수화젤을 제조할 수 있다(S220).
일 실시 예에 따르면, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)은 C와 N을 포함하는 벤젠 고리를 포함하는 화합물일 수 있다. 예를 들어, 상기 제2 화합물(130)은 C2N을 포함하는 벤젠 고리를 포함할 수 있다.
일 실시 예에 따르면, 상기 용매에서 분산된 상기 제1 화합물(120) 및 상기 첨가물에 상기 소스가 혼합되는 것은, 상온에서 실시될 수 있다.
본 발명의 실시 예에 따르면, 상기 용매 내의 유기 용매, 탈이온수(deionized water), 및 알코올의 부피 비율과, 첨가하는 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 에어로겔 복합물의 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조가 제어될 수 있다. 구체적으로, 상기 용매 내의 상기 유기 용매, 상기 탈이온수, 및 상기 알코올의 부피 비율에 의해, 상기 수화젤이 성장하는 방향이 달라져 상기 N차원 네트워크 구조가 형성되고, 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 N차원 네트워크 구조가 성장되는 속도가 달라질 수 있다.
예를 들어, 상기 유기 용매는 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군, 또는 N,N-dimethylformamide 중에서 적어도 어느 하나를 포함할 수 있다. 또한, 상기 산도 조절 소스는 thiourea, ammonium peroxydisulfate 또는 sulfuric acid 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면,상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나에 ammonium peroxydisulfate 및 sulfuric acid가 첨가되는 것을 포함할 수 있다. 이러한 경우, 상기 에어로겔 복합물은 3차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120), 상기 첨가물, 및 상기 산도 조절 소스가 첨가된 상기 용매가 열처리되어, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 3차원 네트워크 구조의 수화젤이 제조될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 120 ℃에서 8 시간 동안 수행될 수 있다. 일 실시 예에 따르면, 상기 도핑 원소가 도핑된 제2 화합물(130)은 상기 열처리 이후에, 상온까지 쿨링되어 3차원 네트워크 구조의 수화젤로 제조될 수 있다.
후술되는 단계에서, 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 3차원 네트워크 구조의 에어로겔 복합물을 제조할 수 있다.
다른 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 탈이온수의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함할 수 있다. 이러한 경우, 상기 에어로겔 복합물은 2차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120), 상기 첨가물, 및 상기 산도 조절 소스가 첨가된 상기 용매가 열처리되어, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 2차원 네트워크 구조의 수화젤이 제조될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 80 ℃에서 12 시간 동안 수행될 수 있다. 일 실시 예에 따르면, 상기 도핑 원소가 도핑된 제2 화합물(130)은 상기 열처리 이후에, 상온까지 쿨링되어 2차원 네트워크 구조의 수화젤로 제조될 수 있다.
또 다른 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 N,N-dimethylformamide의 부피 비가 동일한 것을 포함하고, ammonium peroxydisulfate가 첨가되는 것을 포함할 수 있다. 이러한 경우, 상기 에어로겔 복합물은 1차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120), 상기 첨가물, 및 상기 산도 조절 소스가 첨가된 상기 용매가 열처리되어, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 1차원 네트워크 구조의 수화젤이 제조될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 150 ℃에서 24 시간 동안 수행될 수 있다. 일 실시 예에 따르면, 상기 도핑 원소가 도핑된 제2 화합물(130)은 상기 열처리 이후에, 상온까지 쿨링되어 1차원 네트워크 구조의 수화젤로 제조될 수 있다.또 다른 실시 예에 따르면, 상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 알코올의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함할 수 있다. 이러한 경우, 상기 에어로겔 복합물은 0차원 네트워크 구조를 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 화합물(120), 상기 첨가물, 및 상기 산도 조절 소스가 첨가된 상기 용매가 열처리되어, 상기 제1 화합물(120)과 상기 첨가물의 벤젠이 중합된 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 0차원 네트워크 구조의 수화젤이 제조될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 180 ℃에서 6 시간 동안 수행될 수 있다. 일 실시 예에 따르면, 상기 도핑 원소가 도핑된 제2 화합물(130)은 상기 열처리 이후에, 상온까지 쿨링되어 0차원 네트워크 구조의 수화젤로 제조될 수 있다.
후술되는 단계에서, 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물(130)에 상기 산도 조절 소스의 상기 황 원소가 결합된 0차원 네트워크 구조의 에어로겔 복합물을 제조할 수 있다.
본 발명의 실시 예에 따르면, 상기 제2 화합물(130)은, 상기 벤젠 고리를 포함하는 분자 3개로 형성된 복합물이 복수로 중합된 중합체일 수 있다. 다시 말하면, 상기 hexaaminobenzene이 복수로 중합된 중합체일 수 있다.
본 발명의 실시 예에 따르면, 상술된 바와 같이, 상기 용매 내의 상기 유기 용매, 상기 탈이온수, 및 상기 알코올의 부피 비율에 의해, 상기 수화젤이 성장하는 방향이 달라져 상기 N차원 네트워크 구조가 형성될 수 있다.또한, 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 N차원 네트워크 구조가 성장되는 속도가 달라질 수 있다. 일 실시 예에 따르면, 상기 산도 조절 소스는 ammonium peroxydisulfate를 포함하는 산화제, 또는 thiourea 및 sulfuric acid를 포함하는 환원제일 수 있다. 일 실시 예에 따르면, 상기 산도 조절 소스의 양이 증가할수록, 상기 N차원 네트워크 구조가 빠르게 성장될 수 있다. 다시 말해, 상기 제1 화합물(120)이 제조되는 동시에 상기 N차원 네트워크 구조가 성장될 수 있다. 이에 따라, 랜덤한 상기 에어로겔 복합물이 제조될 수 있다. 반면에, 상기 산도 조절 소스의 양이 감소할수록, 상기 N차원 네트워크 구조가 느리게 성장될 수 있다. 다시 말해, 상기 제1 화합물(120)이 제조된 이후에 상기 N차원 네트워크 구조가 성장될 수 있다. 이에 따라, 균일한 상기 에어로겔 복합물이 제조될 수 있다.
상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제조할 수 있다(S230).
일 실시 예에 따르면, 상기 수화젤은 동결건조하기 전에, 알킬기를 포함하는 용액으로 세척될 수 있다.
일 실시 예에 따르면, 상기 열처리는, 200 ℃에서 30 분 동안 수행될 수 있다. 상기 열처리는 불활성 가스 분위기에서 수행될 수 있다. 예를 들어, 상기 불활성가스는 N2 또는 Ar을 포함할 수 있다.
상기 열처리 이후에 제조된 상기 에어로겔 복합물은, 상기 황 원소를 포함하는 hexaaminobenzene 중합체일 수 있다. S220 단계에서 상술된 바와 같이, 상기 용매에 따라, N차원 네트워크 구조의 상기 에어로겔 복합물이 제조될 수 있다. 구체적으로,. 상기 용매가, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나에 ammonium peroxydisulfate 및 sulfuric acid가 첨가되는 것을 포함하는 경우, 3차원 네트워크 구조의 상기 에어로겔 복합물이 제조될 수 있다. 또한, 상기 용매가, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 탈이온수의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함하는 경우, 2차원 네트워크 구조의 상기 에어로겔 복합물이 제조될 수 있다. 또한, 상기 용매가, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 N,N-dimethylformamide의 부피 비가 동일한 것을 포함하고, ammonium peroxydisulfate가 첨가되는 것을 포함하는 경우, 1차원 네트워크 구조의 상기 에어로겔 복합물이 제조될 수 있다. 또한, 상기 용매가, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 알코올의 부피 비가 동일한 것을 포함하고, thiourea 및 sulfuric acid가 첨가되는 것을 포함하는 경우, 0차원 네트워크 구조의 상기 에어로겔 복합물이 제조될 수 있다.
이상, 본 발명의 실시 예 및 변형 예에 따른 에어로겔 복합물의 제조 방법이 설명되었다.
본 발명의 실시 예에 따르면, 벤젠 및 아민을 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물을 제조하는 단계를 포함하는 에어로겔 복합물의 제조 방법이 제공될 수 있다.
이에 따라, 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 도핑 원소로 도핑된 다공성 에어로겔 복합물을 제조할 수 있다.
또한, 본 발명의 변형 예에 따르면, 벤젠 및 아민을 포함하는 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계, 용매 중에, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 황 원소를 포함하는 산도 조절 소스를 혼합하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 수화젤을 제조하는 단계, 및 상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제조하는 단계를 포함하는 에어로겔 복합물의 제조 방법이 제공될 수 있다.
이에 따라, 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 황 원소와 결합된 N차원의 네트워크 구조의 에어로겔 복합물이 제공될 수 있다.
이하, 본 발명의 실시 예에 따른 에어로겔 복합물의 제조 방법에 대한 구체적인 실험 예가 설명된다.
실시 예 1에 따른 에어로겔 복합물의 제조
벤젠 및 아민을 포함하는 소스 용액으로, 5 g의 chloroanilic acid 와 5 g의 ethylenediamine을 포함하는 소스 용액을 준비하였다.
냉각 분위기에서, 상기 소스 용액에 sulfuric acid를 몇 방울 떨어뜨리고 5 분 동안 교반하였다.
교반된 상기 소스 용액을 상온까지 승온시킨 후에, 80 ℃에서 12 시간 동안 열처리하여, 고상 물질을 제조하였다.
상기 고상 물질을, 진공 분위기에서 여과하고, 에탄올 등으로 세척한 후에, 24 시간 동안 동결건조하여, 갈색 및 흑색이 혼합된 색의 hexaaminobenzene을 제조하였다.
상기 hexaaminobenzene과 chloroanilic acid를 1-Methyl-2-pyrrolidinone(1:1.2 wt%) 용매에 분산하였다.
상기 hexaaminobenzene과 상기 chloroanilic acid가 분산된 상기 용매에, L-alanine 및 L-cystein를 첨가하고, 추가로 ammonium peroxydisulfate 및 sulfuric acid를 몇 방울 첨가하여, 상온에서 천천히 교반해 혼합 용액을 제조하였다.
상기 혼합 용액을, 120 ℃에서 8 시간 동안 열처리한 후에, 상온까지 쿨링하여 수화젤을 제조하였다.
상기 수화젤을 메탄올 등으로 세척하고, 20 시간 동안 동결건조하여, 에어로겔을 제조하였다.
상기 에어로겔을, 2 ℃/min의 승온 환경 및 150 sccm의 질소 가스 분위기에서, 200 ℃의 온도로 30 분 동안 열처리하여, 실시 예 1에 따른 에어로겔 복합물(S-C2NA)을 제조하였다.
실시 예 2에 따른 에어로겔 복합물의 제조
상술된 실시 예 1에서 상기 hexaaminobenzene과 상기 chloroanilic acid가 분산된 상기 용매에, L-cysteine이 첨가되지 않은, 다시 말하면 상기 L-cysteine 대신에 L-phosphoserine이 첨가된 실시 예 2에 따른 혼합 용액을 제조하였다. 이후, 실시 예 1과 동일한 방법으로, 실시 예 2에 따른 에어로겔 복합물(P-C2NA)을 제조하였다.
비교 예 1에 따른 에어로겔 복합물의 제조
상술된 실시 예 1에서 상기 hexaaminobenzene과 상기 chloroanilic acid가 분산된 상기 용매에, L-cysteine이 첨가되지 않은, 비교 예 1에 따른 혼합 용액을 제조하였다. 이후, 실시 예 1과 동일한 방법으로, 비교 예 1에 따른 에어로겔 복합물(C2NA)을 제조하였다.
비교 예 2에 따른 복합물의 제조
Ethanol에 dicyandiamide를 첨가하여 혼합 용액을 준비하였다.
상기 혼합 용액을 30 분 동안 교반한 후에, 회전 증발기로 응축하여 분말로 제조하였다.
상기 분말을 그라인딩(grinding)하여, 미세 분말로 제조하고, 상기 미세 분말을, 질소 가스 분위기에서 600 ℃의 온도로 4 시간 동안 중합하여, 비교 예 2에 따른 복합물(C3N4)을 제조하였다.
본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물은 아래의 [표 1]과 같이 정리될 수 있다.
구분 제조된 복합물
실시 예 1 S-C2N 에어로겔 복합물(S-C2NA)
실시 예 2 P-C2N 에어로겔 복합물(P-C2NA)
비교 예 1 C2N 에어로겔 복합물(C2NA)
비교 예 2 C3N4 복합물
변형 예 1에 따른 에어로겔 복합물의 제조
벤젠 및 아민을 포함하는 소스 용액으로, 5 g의 chloroanilic acid 와 5 g의 ethylenediamine을 포함하는 소스 용액을 준비하였다.
냉각 분위기에서, 상기 소스 용액에 sulfuric acid를 몇 방울 떨어뜨리고 5 분 동안 교반하였다.
교반된 상기 소스 용액을 상온까지 승온시킨 후에, 80 ℃에서 12 시간 동안 열처리하여, 고상 물질을 제조하였다.
상기 고상 물질을, 진공 분위기에서 여과하고, 에탄올 등으로 세척한 후에, 24 시간 동안 동결건조하여, 갈색 및 흑색이 혼합된 색의 hexaaminobenzene을 제조하였다.
상기 hexaaminobenzene과 chloroanilic acid를 1-methyl-2-pyrrolidinone 용매에 분산하였다.
상기 hexaaminobenzene과 상기 chloroanilic acid가 분산된 상기 용매에, L-alanine 및 L-cystein를 첨가하고, 추가로 ammonium peroxydisulfate 및 sulfuric acid를 첨가하여, 상온에서 천천히 교반해 혼합 용액을 제조하였다.
상기 혼합 용액을, 120 ℃에서 8 시간 동안 열처리한 후에, 상온까지 쿨링하여 수화젤을 제조하였다.
상기 수화젤을 메탄올 등으로 세척하고, 20 시간 동안 동결건조하여, 에어로겔을 제조하였다.
상기 에어로겔을, 2 ℃/min의 승온 환경 및 150 sccm의 질소 가스 분위기에서, 200 ℃의 온도로 30 분 동안 열처리하여, 변형 예 1에 따른 에어로겔 복합물을 제조하였다. 사실상, 본 발명의 실시 예 1 및 변형 예 1에 따른 3차원 네트워크 구조의 에어로겔 복합물은 동일할 수 있다.
변형 예 2에 따른 에어로겔 복합물의 제조
상술된 변형 예 1에서, 상기 hexaaminobenzene과 chloroanilic acid를 1-methyl-2-pyrrolidinone 및 탈이온수를 부피비 1:1로 포함하는 용매에 분산하였다.
이후, 추가로 thiourea 및 sulfuric acid를 첨가하여, 상온에서 천천히 교반해 혼합 용액을 제조하였다.
상기 혼합 용액을, 80 ℃에서 12 시간 동안 열처리한 후에, 상온까지 쿨링하여 수화젤을 제조하였다.
이후, 상술된 변형 예 1과 동일한 방법으로 동결건조 및 열처리하여, 변형 예 2에 따른 2차원 네트워크 구조의 에어로겔 복합물을 제조하였다
변형 예 3에 따른 에어로겔 복합물의 제조
상술된 변형 예 1에서, 상기 hexaaminobenzene과 chloroanilic acid를 1-methyl-2-pyrrolidinone 및 N,N-dimethylformamide를 부피비 1:1로 포함하는 용매에 분산하였다.
이후, 추가로 ammonium peroxydisulfate를 첨가하여, 상온에서 천천히 교반해 혼합 용액을 제조하였다.
상기 혼합 용액을, 150 ℃에서 24 시간 동안 열처리한 후에, 상온까지 쿨링하여 수화젤을 제조하였다.
이후, 상술된 변형 예 1과 동일한 방법으로 동결건조 및 열처리하여, 변형 예 3에 따른 1차원 네트워크 구조의 에어로겔 복합물을 제조하였다.
변형 예 4에 따른 에어로겔 복합물의 제조
상술된 변형 예 1에서,상기 hexaaminobenzene과 chloroanilic acid를 1-methyl-2-pyrrolidinone 및 ethylene glycol을 부피비 1:1로 포함하는 용매에 분산하였다.
이후, 추가로 thiourea 및 sulfuric acid를 첨가하여, 상온에서 천천히 교반해 혼합 용액을 제조하였다.
상기 혼합 용액을, 180 ℃에서 6 시간 동안 열처리한 후에, 상온까지 쿨링하여 수화젤을 제조하였다.
이후, 상술된 변형 예 1과 동일한 방법으로 동결건조 및 열처리하여, 변형 예 4에 따른 0차원 네트워크 구조의 에어로겔 복합물을 제조하였다.
본 발명의 변형 예 1 내지 4에 따른 에어로겔 복합물은 아래의 [표 2]와 같이 정리될 수 있다.
유기 용매 산도 조절 소스 열처리 N차원 네트워크
변형 예 1(3차원 네트워크 구조의 에어로겔 복합물) 1-methyl-2-pyrrolidinone ammonium peroxydisulfate 및 sulfuric acid 120 ℃, 8 시간 3차원
변형 예 2(2차원 네트워크 구조의 에어로겔 복합물) 1-methyl-2-pyrrolidinone 및 탈이온수 thiourea 및 sulfuric acid 80 ℃, 12 시간 2차원
변형 예 3(1차원 네트워크 구조의 에어로겔 복합물) 1-methyl-2-pyrrolidinone 및 N,N-dimethylformamide ammonium peroxydisulfate 150 ℃, 24 시간 1차원
변형 예 4(0차원 네트워크 구조의 에어로겔 복합물) 1-methyl-2-pyrrolidinone 및 ethylene glycol thiourea 및 sulfuric acid 180 ℃, 6 시간 0차원
도 8은 본 발명의 실시 예 1 또는 변형 예 1에 따른 에어로겔 복합물의 SEM(scanning electron microscopy) 사진이고, 도 9는 본 발명의 실시 예 1 또는 변형 예 1에 따른 에어로겔 복합물의 TEM(transmission electron microscopy) 사진이다.
도 10은 본 발명의 변형 예 2에 따른 에어로겔 복합물의 SEM 사진이고, 도 11은 본 발명의 변형 예 3에 따른 에어로겔 복합물의 SEM 사진이고, 도 12는 본 발명의 변형 예 4에 따른 에어로겔 복합물의 SEM 사진이다.
도 8을 참조하면, 본 발명의 실시 예 1 또는 변형 예 1에 따른 에어로겔 복합물은 트위스트된 나노리본(twisted nanoribbons)이 계층 구조로 얽힌 다공성 3차원 네트워크 구조를 가지는 것을 확인할 수 있다.
도 9를 참조하면, 상기 트위스트된 나노리본이, 수 마이크로 길이 및 150~200 nm 폭을 가지는 것을 확인할 수 있다. 인접한 나노리본 사이에 여유있는 이격은, 전해질이 상기 나노리본의 표면(interface)에 접근하는 것을 용이하게 해주고, 빠른 전기화학적 반응을 통한 반응물의 빠른 확산을 가능하게 한다.
도 9의 삽입 사진을 참조하면, 상기 나노리본이, ~0.322 nm 폭의 격자 무늬를 가지는 것을 확인할 수 있고, 상기 격자 무늬는 graphite 탄소의 격자면(002)과 유사하게 높은 결정성을 이루는 것을 확인할 수 있다.
도 10을 참조하면, 본 발명의 변형 예 2에 따른 에어로겔 복합물은 면(plane) 형으로 보이는 2차원 네트워크 구조를 가지는 것을 확인할 수 있다. 또한, 도 11을 참조하면, 본 발명의 변형 예 3에 따른 에어로겔 복합물은 선(line) 형으로 보이는 1차원 네트워크 구조를 가지는 것을 확인할 수 있다. 또한, 도 12를 참조하면, 본 발명의 변형 예 4에 따른 에어로겔 복합물은 점(dot) 형으로 보이는 0차원 네트워크 구조를 가지는 것을 확인할 수 있다. 이에 따라, 본 발명의 실시 예 및 변형 예들에 따르면, N차원(N은 0 내지 3 중 어느 하나)의 네트워크 구조를 포함하는 상기 에어로겔 복합물을 용이하게 제조할 수 있음을 알 수 있다.
도 13은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 단면 STM(sanning tunneling microscopy) 사진 및 가로 방향의 지형 높이 프로필(profile)이고, 도 14는 본 발명의 실시 예 1에 따른 에어로겔 복합물 단면의 세로 방향의 지형 높이 프로필이다.
도 13 및 도 14를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물은, hexagonal 배열로 균일하게 분포된 다공성 구조를 가지는 것을 확인할 수 있다. 균일하게 분포된 상기 hexagonal 배열의 상기 다공성 구조는, 이론적인 C2N의 다공성 구조와 상응된다.
상기 다공성 구조에서, 내부 홀의 지름의 길이는 8.26~8.28Å이고, hexagonal 격자와 상기 홀의 높이 차이가, 0.20~0.38Å인 것에 따라, 벤젠 고리가 C-N 결합 지역보다 약간 높은 위치에 있는 것으로 확인된다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 graphite 보다 작은 면간 거리를 가진다는 것을 의미한다.
또한, 상기 지형 높이 프로필의 높이 차이로부터, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 C2N 격자 상에, S 도핑 원소가 도핑되었고, 상기 도핑 원소로 인하여, 상기 격자 구조에 결함이 발생한 것을 확인할 수 있다.
도 15는 본 발명의 실시 예 1에 따른 에어로겔 복합물의 HAADF-STEM(high-angle annular dark field imaging-scanning transmission electron microscopy)과 상응하는 요소 맵(map))이다.
도 15를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 구성하는 C, N, O, 및 S는 균일한 공간 분포를 가지는 것을 확인할 수 있다.
도 16은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 XRD(X-ray diffraction) 패턴이다.
도 16을 참조하면, 비교 예 2에 따른 복합물은, 12.93 및 27.42 °에서 뚜렷한 피크를 가지는 것을 확인할 수 있다. 상기 피크는, in-plane 패킹(packing) 및 방향족 세그먼트(segment)의 적층 구조가 갖는 (100) 및 (002) 피크와 상응한다.
반면에, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물은, 26.87 °에서 뚜렷한 피크를 가지는 것을 확인할 수 있다. 상기 피크는, 0.324 nm의 면간 거리를 갖는 방향족의 (002) 피크와 상응하며, 상기 피크는 높은 결정성을 나타내는 것을 의미한다. 또한, 상기 0.324 nm의 면간 거리는, graphite의 면간 거리인 0.335 nm 및 bulk graphitic carbon nitride의 면간 거리인 0.332 nm에 비해, 상대적으로 좁은데, 이러한 현상은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물이, 다공성 구조를 가지고, 질소 원자가 균일하게 분포되었다는 것을 의미한다.
도 17은 chloroanilic acid의 TG(thermogravimetric) 곡선이며, 도 18은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 TG 곡선이다.
도 17을 참조하면, 일반적으로 chloroanilic acid는 160~240 ℃의 온도 범위에서 분해되는 것을 확인할 수 있다.
반면에, 도 18을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물은, 500 ℃의 온도까지 안정한 것을 확인할 수 있는데, 이러한 현상은, 상기 에어로겔 복합물이 hexagonal 기본 단위의 안정적인 구성으로 이루어진 것을 의미한다.
또한, 본 발명의 실시 예 1에 따른 에어로겔 복합물은, 500~750 ℃의 온도 범위에 걸쳐, 서서히 분해되는 것을 확인할 수 있는데, 이러한 현상은, 상기 에어로겔 복합물의 열 안정성이 우수하다는 것을 의미한다.
도 19는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 N2 흡착-탈착 등온선이고, 도 20은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 홀 분포도이다.
도 19를 참조하면, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물은, micro-/meso 홀의 존재를 나타내는, 히스테리시스 루프의 특성의 type-IV 등온선과 유사한 것을 확인할 수 있다.
도 20을 참조하면, BJH 홀 분포 프로필을 통해, 상기 micro-/meso 홀의 분포도를 확인할 수 있다. 본 발명의 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물과 달리, 본 발명의 실시 예 1에 따른 에어로겔 복합물은, 홀 지름 크기가 3 nm 미만인 경우에, 피크 값을 나타내는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이, 고밀도의 활성 사이트를 제공하고, 물질 전달을 용이하게 하여, 전기 촉매 활성을 촉진하는 것을 가능하게 한다는 것을 의미한다.
도 21은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 FT-IR 스펙트라(Fourier transforms infrared spectra)를 나타낸 그래프이다.
도 21을 참조하면, 비교 예 2에 따른 복합물의 FT-IR 스펙트라는, s-triazine 고리의 특성을 나타내는 피크가 799 cm-1 영역에서 관찰되는 것을 확인할 수 있다.
반면에, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물의 FT-IR 스펙트라는, s-triazine 고리의 특성 나타내는 피크가 관찰되지 않음에 따라, 다공성의 C2N 기반 복합물이 형성된 것을 확인할 수 있다.
또한, N-H 결합 특성을 나타내는 피크는, 3135~3155 cm-1 범위에서 관찰되고, 상기 N-H 결합은 신축 진동에 의해 상대적으로 약한 밴드 구조의 특성을 나타낸다.
C-N 결합 특성을 나타내는 피크는, 1269 cm-1 영역에서 관찰되고, C=N(pyridinic 또는 graphitic N species) 결합 특성을 나타내는 피크는, 1495 cm-1 영역에서 관찰되며, C=C 결합 특성을 나타내는 피크는, 1651 cm-1 영역에서 관찰되는 것을 확인할 수 있다.
비교 예 1에 따른 에어로겔 복합물의 특성을 나타내는 피크는, 831 cm-1 영역에서 관찰되고, 상기 영역에서 피크는, 주로 방향족 고리 모드(ortho, meta, 및 para)의 전자 공여 그룹의 특성을 나타낸다.
본 발명의 실시 예 1에 따른 에어로겔 복합물의 특성을 나타내는 피크는, 983, 1017, 1065, 및 1128 cm-1 영역에서 관찰되고, 상기 영역에서 피크는, S=O 및 C=S 공유 결합의 대칭 신축 모드의 특성을 나타낸다.
또한, S-N 결합 특성을 나타내는 피크는, 745 cm-1 영역에서 관찰되고, 상기 영역에서 피크는, S-N 결합의 신축 모드 특성을 나타낸다.
P-N 결합 특성을 나타내는 피크는, 920~1080 cm-1 범위에서 관찰되고, 상기 영역에서 피크는, P-O 및 P=O 결합의 대칭 신축 모드의 특성을 나타낸다.
본 발명의 실시 예 1 및 비교 예 1에 따른 에어로겔 복합물은, pyridinic N+O-의 존재 때문에 ~2126 cm-1 영역에서 약한 피크가 관찰되는데, 상기 영역에서 피크는 N=C=O 및 N=C=N 신축 모드의 특성을 나타낸다.
도 22는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 C 1s 고해상도 XPS 스펙트럼이고, 도 23은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 N 1s 고해상도 XPS 스펙트럼이다.
도 22를 참조하면, 비교 예 2에 따른 복합물과는 달리, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물의 C 원소 특성을 나타내는 피크가, 284.5, 286.6, 및 291.4 eV의 영역에서 관찰된다. 상기 284.5 eV의 영역에서 피크는 sp2 graphitic C=C 결합의 특성을 나타내고, 상기 286.6 eV의 영역에서 피크는 C-N 결합 특성을 나타내며, 상기 291.4 eV의 영역에서 피크는 C-heteroatom 결합 특성을 나타낸다. 이러한 현상은, 288.1 eV의 영역에서, C3N4에서 관찰되는 tri-s-zine 특성인, C-N 결합을 나타내는 다른 피크가 관찰되지 않는 것에 따라, 비교 예 2에 따른 복합물과는 달리, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물이, 다공성 C2N 에어로겔 복합물로 형성되었다는 것을 의미한다.
도 23을 참조하면, 비교 예 1에 따른 에어로겔 복합물의 N 원소 특성을 나타내는 피크가, 398.4, 399.3, 400.14, 401.10, 및 402.12 eV의 영역에서 관찰된다. 상기 398.4 eV의 영역에서 피크는 pyridinic(N1) 특성을 나타내고, 상기 399.3 eV의 영역에서 피크는 pyrrolic(N2) 특성을 나타내고, 상기 400.14 eV의 영역에서 피크는 graphitic(N3) 특성을 나타내고. 상기 401.10 eV의 영역에서 피크는 quaternary(N4) 특성을 나타내며, 상기 402.12 eV의 영역에서 피크는 oxidized pyridinic(N+O-, N5)특성을 나타낸다. 비교 예 2에 따른 복합물과는 달리, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물은, 그래핀화(graphitization)와 관련이 있는 아미노화 공정에 의한 in situ 활성화로 인하여, C2N 기반 에어로겔 복합물이 graphitic 및 quaternary nitrogen 특성을 가진다.
또한, 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물과는 달리, 본 발명의 실시 예 1 및 실시 예 2에 따라 제조된 에어로겔 복합물에서 상기 피크들이 현저한 이동을 보이는 것은, C2N 매트릭스 내부에 S-N-C 결합 또는 P-N-C 결합이 존재한다는 것을 의미한다.
도 24는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 XPS 스펙트럼이다.
도 24를 참조하면, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물의 XPS 스펙트럼에서, 금속 또는 산화금속의 특성을 나타내는 피크가 관찰되지 않음에 따라, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물이, 비금속(metal-free) C2N 에어로겔 복합물로 제조되었다는 것을 확인할 수 있다.
도 25는 실시 예 2에 따른 에어로겔 복합물의 P 2p 고해상도 XPS 스펙트럼이고, 도 26은 본 발명의 실시 예 1에 따른 에어로겔 복합물의 S 2p 고해상도 XPS 스펙트럼이다.
도 25를 참조하면, 실시 예 2에 따른 에어로겔 복합물의 P 원소 특성을 나타내는 피크가, 132.6, 133.7, 및 135.4 eV의 영역에서 관찰된다. 상기 132.6 및 133.7 eV의 영역에서 피크는 방향족 C인, P-C 결합의 특성을 나타내고, 상기 135.4 eV의 영역에서 피크는 P-O 결합의 특성을 나타낸다. 상기 133.7 eV의 영역에서 피크는, P-N 결합의 특성을 나타내기도 하는데, 이러한 현상은, 실시 예 2에 따른 에어로겔 복합물의 P 원소가 ORR 활성 사이트로 작용하는 P-N 결합을 형성하기 위해, C 원소를 대체한다는 것을 의미한다.
도 26을 참조하면, 실시 예 1에 따른 에어로겔 복합물의 S 원소 특성을 나타내는 피크가, 163.1 및 164.5 eV의 영역에서 관찰된다. 상기 163.1 eV의 영역에서 피크는 S 2p3/2 특성을 나타내는데, 이러한 현상은, thiol의 피크와 상응되고, 상기 164.5 eV의 영역에서 피크는 S 2p1/2 특성을 나타내는데, 이러한 현상은, benzothiadiazole 또는 thiophene의 피크와 상응된다. 또 다른 피크가, 161.8 eV의 영역에서 관찰되는데, 상기 피크는 N-S 결합 특성을 나타낸다. 또한, 165.9 및 166.9 eV의 영역에서 관찰되는 낮은 피크는 sulfate species(C-SOx-C)가 존재한다는 것을 의미한다.
도 27은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물에서, 총 질소 함량의 상대적 비율 대비 질소 잔기 특성을 정량적 분포로 나타낸 그래프이다.
도 27을 참조하면, 본 발명의 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물과는 달리, 본 발명의 실시 예 1에 따른 에어로겔 복합물은, N1(pyridinic), N2(pyrrolic), N3(graphitic), N4(quaternary), 및 N5(pyridinic N+O-)을 모두 포함하는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물에 상기 N1, N2, N3, N4, 및 N5가 공존함에 따라, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 산화/환원 반응 성능이 향상될 수 있다는 것을 의미한다.
다시 말하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물에 상기 N1, N2, N3, N4, 및 N5를 포함하는 질소 잔기가 공존하고, 상기 질소 잔기와, 상기 질소 잔기에 근접한 탄소 원자가 결합할 경우, 각각의 상황에 따라 각각 다른 전기/화학적 환경을 형성하고, 이러한 질소 잔기의 특성은 전기 촉매로써의 작용과 연계될 수 있다.
도 28은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 셀의 실사이다.
도 28을 참조하면, 0.1 M의 KOH를 전해질로 사용하고, 본 발명의 실시 예 1에 따른 에어로겔 복합물 0.15 mg/cm2을 작용 전극으로 사용하고, Pt wire 및 Ag/AgCl를 레퍼런스 전극으로 사용하여 3전극 전기화학 셀를 제조하였다.
도 29는 비교 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 셀의 순환 전압-전류 그래프이고, 도 30은 본 발명의 실시 예 2에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 셀의 순환 전압-전류 그래프이며, 도 31은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 셀의 순환 전압-전류 그래프이다. 또한, 도 32는 상용화된 Pt/C 복합물을 이용하여 제조된 3 전극 전기화학 셀의 순환 전압-전류 그래프이다.
도 29 내지 도 32를 참조하면, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3전극 전기화학 셀는, N2가 포화된 KOH 전해질에서 산화/환원 피크가 관찰되지 않는 것에 비해, O2가 포화된 KOH 전해질에서 양극 피크가 뚜렷이 관찰되는 것을 확인할 수 있다.
본 발명의 실시 예 2에 따른 에어로겔 복합물을 이용하여 제조된 3전극 전기화학 셀의 환원 전위는 0.82 V, 비교 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3전극 전기화학 셀의 환원 전위는 0.79 V, 및 상용화된 Pt/C 복합물을 이용하여 제조된 3 전극 전기화학 셀의 환원 전위는 0.85 V인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 셀의 환원 전위는 0.86 V으로 그 값이 상대적으로 큰 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 환원 반응의 촉매로 사용하는 것이 적합하다는 것을 의미한다.
또한, 본 발명의 실시 예 2에 따른 에어로겔 복합물을 이용하여 제조된 3전극 전기화학 셀의 전류 밀도는 0.7 mA/cm2, 비교 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3전극 전기화학 전지의 전류 밀도는 0.36 mA/cm2, 및 상용화된 Pt/C 복합물을 이용하여 제조된 3 전극 전기화학 전지의 전류 밀도는 0.5 mA/cm2인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용하여 제조된 3 전극 전기화학 전지의 전류 밀도는 0.95 mA/cm2으로 그 값이 상대적으로 큰 것을 확인할 수 있다. 이러한 결과는 또한, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 환원 반응의 촉매로 사용하는 것이 적합하다는 것을 의미한다.
상술된 바와 같이, 에어로겔 복합물이 가지는 넓은 표면적, 높은 그래핀화, 및 C2N 구조에 헤테로 원자가 도핑되는 것에 따른 풍부한 활성 사이트는, 환원 반응을 향상시키는 경향이 있다.
도 33은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 및 상용화된 Pt/C 복합물의 ORR(oxygen reduction reaction) 분극 곡선이고, 도 34는 다양한 회전 속도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 ORR 분극 곡선이며, 도 35는 K-L(Koutechy-Levich) 식에 상응하는 LSV(linear sweep voltammetry)프로필이다.
도 33 내지 도 35를 참조하면, O2가 포화된 KOH 전해질에서, ORR에서 산소당 전자 이동 수(n)가, K-L(Koutechy-Levich) 식에 상응하는 LSV(linear sweep voltammetry)프로필을 보여주는 것을 확인할 수 있다.
K-L 분포에서, 회전 속도에 따른 전류 밀도가 선형적으로 증가하는 것을 확인할 수 있다. 이러한 현상은, 용존 산소 농도에 따른 1차 반응 속도를 의미한다. 계산된 본 발명의 실시 예 1에 따른 에어로겔 복합물의 전자 이동 수(n)는 ~4였고, 이것은, ORR 과정에서 four-electron transfer pathway를 나타내는 빠른 속도를 의미한다.
도 36은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물로 제조한 전지의 전기 화학적 임피던스(EIS) 분포도이고, 도 37은 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물로 제조한 전지의 등가 회로도이다.
도 36 및 도 37을 참조하면, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물 및 비교 예 2에 따른 복합물로 제조한 전지의 전기 화학적 임피던스 분포가, 모두 반원형과 유사한 형상을 나타내고, 그 중에서 본 발명의 실시 예 1에 따른 에어로겔 복합물로 제조한 전지의 반원형이 가장 작은 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 전기 촉매로 사용되기 용이한, 낮은 전하 이동 저항을 가지는 것을 의미한다.
도 38은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 다양한 질량에 따라 제조된 전극의 RRDE(rotating ring-disk electrode) 분극 분포도이고, 도 39는 본 발명의 실시 예 1에 따른 에어로겔 복합물의 다양한 질량에 대한 ORR의 포텐셜 함수로써의 peroxide 비율 및 전자 이동 수를 나타낸 그래프이다.
도 38 및 도 39를 참조하면, peroxide 비율(HO2 -)은 disk 전류에 의해 평가될 수 있고, 전자 이동 수(n)는 ring 전류에 의해 평가될 수 있다. 본 발명의 실시 예 1에 따른 에어로겔 복합물의 HO2 - 생산량은 3.98~4.02의 범위의 전자 이동 수 값에서 6 % 이하로 유지되는 것을 확인할 수 있다.
도 40은 1600 rpm의 회전 속도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 및 상용화된 RuO2 복합물의 OER(oxygen evolution reaction) 분극 분포도이다.
도 40을 참조하면, 10 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물은 0.3 V, 상용화된 RuO2 복합물은 0.32 V, 본 발명의 실시 예 2에 따른 에어로겔 복합물은 0.47 V, 및 비교 예 1에 따른 에어로겔 복합물은 0.61 V의 과전압을 갖는 것을 확인할 수 있다.
또한, 1.6V(vs RHE)에서, 상용화된 RuO2 복합물이 15.6 mA/cm2, 본 발명의 실시 예 2에 따른 에어로겔 복합물이 2.16 mA/cm2, 및 비교 예 1에 따른 에어로겔 복합물이 0.3 mA/cm2의 전류 밀도를 가지는 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물은 20.97 mA/cm2의 가장 높은 전류 밀도를 가지는 것을 확인할 수 있다.
또한, 1.32 V의 시작 전위를 가지는 상용화된 RuO2 복합물, 본 발명의 실시 예 2 및 비교 예 1에 따른 에어로겔 복합물, 및 비교 예 2에 따른 복합물의 시작 전위에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 시작 전위는 1.28 V로 더 낮은 것을 확인할 수 있다.
도 41은 1600 rpm에서 ORR 및 OER 분극 곡선으로부터 계산된 Tafel 분포도이다.
도 41을 참조하면, 상용화된 Pt/C 복합물의 Tafel 기울기는 72 mV/dec, 본 발명의 실시 예 2에 따른 에어로겔 복합물의 Tafel 기울기는 68 mV/dec, 및 비교 예 1에 따른 에어로겔 복합물의 Tafel 기울기는 107 mV/dec인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 Tafel 기울기는 ORR 영역에서 54 mV/dec인 것을 확인할 수 있다.
반면에, OER 영역에서 78 mV/dec의 Tafel 값을 가지는 상용화된 RuO2 복합물, 본 발명의 실시 예 2 및 비교 예 1에 따른 에어로겔 복합물, 및 비교 예 2에 따른 복합물의 Tafel 값에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 Tafel 값은 62 mV/dec으로 더 낮은 것을 확인할 수 있다.
이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 ORR 및 OER에 있어서 뛰어난 전기화학적 성능을 가진다는 것을 의미한다.
도 42는 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 시간에 따른 전류(전류-시간) 반응의 ORR 안정성 분석 그래프이고, 도 43은 2 M의 메탄올 주입에 따른, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 ORR 안정성 분석 그래프이며, 도 44는 전해질 내로 CO2 도입에 따른, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C 복합물의 ORR 안정성 분석 그래프이다.
도 42를 참조하면, 상용화된 Pt/C 복합물의 전류 밀도가 시간이 흐름에 따라, 18.45 % 감소하는 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 전류 밀도는 10 시간 동안 유지되어, 충전되지 않은 상태에서 작동 가능 한 것을 확인할 수 있다.
도 43을 참조하면, 상용화된 Pt/C 복합물에 메탄올을 주입한 경우, 전류 밀도가 감소하는 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물에 메탄올을 주입한 경우, 전류 밀도가 감소하지 않아, 메탄올 내성, 내식성, 및 뛰어난 ORR에 대한 선택성을 확인할 수 있다.
도 44를 참조하면, 상용화된 Pt/C 복합물에 CO2를 주입한 경우, 전류 밀도가 감소하는 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물에 CO2를 주입한 경우, 전류 밀도가 감소하지 않아, CO poisoning에 영향을 받지 않는 것을 확인할 수 있다.
도 45는 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 RuO2 복합물에 대한 1000 사이클 전후의 OER 분극 곡선이고, 도 46은 O2가 포화된 0.1 M의 KOH 전해질에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 RuO2 복합물에 대한 OER 크로노 전류 측정 반응(chronoamperometric response)이다.
도 45 및 도 46을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 전류 밀도가 99.65 %로 유지되는 것에 비해, 상용화된 RuO2 복합물의 전류 밀도는 10 시간 이후에, 23.1 %로 감소되는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이, 알카리성 매체에 안정적인 것을 의미한다.
이하, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지에 대한 구체적인 실험 예가 설명된다.
실시 예 1에 따른 금속-공기 전지의 제조
메시(mesh) 구조를 가지는 스테인리스 스틸(stainless steel)을 준비하였다.
상기 스테인리스 스틸 상에 본 발명의 실시 예 1에 따른 에어로겔 복합물을 배치하여 양극을 제조하였다.
연마된 Zn 포일을 준비하였다.
상기 Zn 포일을 스테인리스 스틸 상에 배치된 본 발명의 실시 예 1에 따른 에어로겔 복합물 상에 배치하여 음극을 제조하였다.
수산화물 전도성 셀룰로스 나노 섬유를 고상 물질로 제조하고, 상기 양극과 상기 음극 사이에 배치하여, 실시 예 1에 따른 금속-공기 전지를 제조하였다.
도 47은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 모식도이다.
도 47을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 포함하는 양극을 제조하고, Zn 금속 판을 포함하는 음극을 제조하고, 0.2 M의 zinc acetate와 6 M의 KOH 를 포함하는 전해질을 사용하여 금속-공기 전지를 제조하였다. 제조된 상기 금속-공기 전지는 상용화된 Pt/C 및 RuO2를 포함하는 전지와 성능을 비교하였다.
도 48은 1600 rpm에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 상용화된 Pt/C 복합물, 및 상용화된 RuO2 복합물의 ORR 및 OER 분극 분포도이다.
도 48을 참조하면, 본 발명의 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 비교 예 2에 따른 복합물, 상용화된 Pt/C 복합물, 및 상용화된 RuO2 복합물에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 더 낮은 시작 전위를 갖고. 더 높은 전류 밀도를 가지는 것을 확인할 수 있다.
도 49는 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물, 및 상용화된 Pt/C + RuO2 복합물의 방전 분극 및 전력 밀도 그래프이다.
도 49를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물 및 상용화된 Pt/C + RuO2 복합물의 OCV(open circuit voltage)는 1.49 V로 유사한 값을 나타내는 것을 확인할 수 있다.
반면에, 분극 프로필을 통해, 100 mA/cm2의 전류 밀도에서, 상용화된 Pt/C + RuO2 복합물의 방전 전압 0.98 V인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 방전 전압은 1.04 V으로 더 높은 것을 확인할 수 있다.
또한, 상용화된 Pt/C + RuO2 복합물의 최대 전력 밀도는 190 mW/cm2이고, 전류 밀도는 244 mA/cm2인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물의 최대 전력 밀도는 209 mW/cm2이고, 전류 밀도는 300 mA/cm2으로 더 높은 것을 확인할 수 있다.
도 50은 다양한 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 방전 곡선이다.
도 50을 참조하면, 각기 다른 전류 밀도에서, 즉, 2 mA/cm2, 5 mA/cm2, 10 mA/cm2, 및 25 mA/cm2의 전류 밀도에서, 정전류 방전 시에, 전압 감소 없이 20 시간 동안 전위가 유지되는 것을 확인할 수 있다. 이러한 현상은 ORR에서 안정성을 보여준다.
도 51은 5 및 25 mA/cm2 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 비용량을 나타낸 그래프이다.
도 51을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는 5 mA/cm2의 전류 밀도에서 863 mA h/g의 비용량을 갖고, 25 mA/cm2의 전류 밀도에서 825 mA h/g의 비용량을 갖는 것을 확인할 수 있다. 상기 863 mA h/g의 비용량은 958 Wh/kg의 중량 에너지 밀도에 상응하고, 상기 825 mA h/g의 비용량은 917 Wh/kg의 중량 에너지 밀도에 상응한다. 이러한 현상은, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 성능보다 뛰어난 전지 특성을 보여준다.
도 52는 본 발명의 실시 예 1, 및 실시 예 2에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 방전 및 충전 분극 분포도이다.
도 52를 참조하면, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는 방전 및 충전에 있어, 더 작은 과전압을 나타내는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지가 뛰어난 충-방전 특성을 갖는 것을 의미한다.
도 53 및 도 54는 10 mA/cm2 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 방전 및 충전 전압 프로필이다.
도 53 및 도 54를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는, 1 사이클 당 2 시간의 차단 시간을 갖는 10 mA/cm2의 전류 밀도에서, 장기간 동안의 사이클 안정성과 가역성을 보여준다.
본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는, 초기에 전기 효율 62.1 %에 해당하는 0.75 V의 왕복 과전압을 나타냈고, 750 시간 동안 연속적인 375 충-방전 사이클 후에, 왕복 과전압이 전기 효율 60.7 %에 해당하는 0.78V로 상승한 것을 확인할 수 있다.
도 55는 10 mA/cm2 전류 밀도에서, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 방전 및 충전 전압 프로필이다.
도 55를 참조하면, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지는, 초기에 전기 효율 55.12 %에 해당하는 0.97 V의 왕복 과전압을 나타냈고, 150 시간 동안 연속적인 75 사이클 충-방전을 실시한 이후에, 왕복 과전압이 전기 효율 44.53 % 에 해당하는 1.32 V까지 상승한 것을 확인할 수 있다.
이러한 현상은, 상기 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 충-방전 수명이 더 뛰어난 것을 의미한다.
도 56은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 750 시간 동안 연속적인 375 충-방전 사이클로 금속-공기 전지의 양극으로 이용한 후에 측정한 SEM 사진이다.
도 56을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 750 시간 동안 연속적인 375 충-방전 사이클로 금속-공기 전지의 양극으로 이용한 후에도, 상기 금속-공기 전지의 양극으로 이용하기 전 상기 에어로겔 복합물의 트위스트된 나노리본이 계층 구조로 얽힌 다공성 3차원 네트워크 구조 및 형상이 유지되는 것을 확인할 수 있다.
도 57은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 구성 요소를 보여주는 사진이고, 도 58은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 개방 회로(open circuit)의 사진이다.
도 57을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 포함하는 양극, 셀룰로스 필름, 및 아연 전극이 금속-공기 전지의 구성 요소로 준비되는 것을 확인할 수 있다.
또한 도 58을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지가 ~1.46 V의 전압을 가지는 것을 확인할 수 있다.
도 59는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 1 개의 개방 회로 및 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 개방회로의 전압을 나타낸 그래프이다.
도 59를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 1개의 개방 회로의 전압이 ~1.46 V인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 개방 회로의 전압이 약 3.0 V로 2 배 높은 것을 확인할 수 있다.
도 60은 1.0 V의 전위에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지에 대한 임피던스 Nyquist 분포이다.
도 60을 참조하면, 1.0 V의 전위에서, 상용화된 Pt/C 복합물을 이용한 금속-공기 전지에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 계면 및 전하 이동 저항이 더 작은 것을 확인할 수 있다
도 61은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 방전 전압 및 전력 밀도 분포도이다.
도 61을 참조하면, 상용화된 Pt/C 복합물을 이용한 금속-공기 전지의 전력 밀도가 158.4 mW/cm2인 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 전력 밀도는 187.0 mW/cm2로 더 큰 것을 확인할 수 있다.
도 62는 5 mA/cm2 및 50 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 비용량을 측정한 그래프 및 플렉서블한 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 구상도이다.
도 62를 참조하면, 5 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이요한 금속-공기 전지의 비용량은 862 Wh/kg에 해당하는 695 mA h/g이고, 50 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이요한 금속-공기 전지의 비용량은 805 Wh/kg에 해당하는 653 mA h/g인 것을 확인할 수 있다.
도 63은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 및 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 방전 및 분극 그래프이다.
도 63을 참조하면, 낮은 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 충-방전 특성은, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지에 상응할만한 성능을 나타내고, 특히 고전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 충-방전 특성이, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지 충-방전 특성 보다 뛰어난 것을 확인할 수 있다.
도 64는 25 mA/cm2의 전류 밀도에서 1 사이클이 30 분인 경우에, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이고, 도 65 및 도 66은 25 mA/cm2의 전류 밀도에서 1 사이클이 2 시간인 경우에, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 64 내지 도 66을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는 460 시간 동안, 전압 감소 없이 안정적으로 방전 및 충전이 이루어진 것을 확인할 수 있다.
도 67은 25 mA/cm2의 전류 밀도에서 1 사이클을 30 분으로 460 시간 동안 충-방전을 수행하고, 1 사이클을 10 시간으로 100 시간 동안 추가로 더 충-방전을 수행하여 측정한, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 67을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지는, 460 시간 동안 방전 및 충전을 수행한 후에, 추가로 100 시간 동안 방전 및 충전을 수행하여도, 전압 감소 없이 안정적을 충-방전이 이루어지는 것을 확인할 수 있다.
도 68은 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지의 장기 정전류 방전 및 충전 전압 프로필이다.
도 68을 참조하면, 상용화된 Pt/C + RuO2 복합물을 이용한 금속-공기 전지는 180 시간 동안 충-방전을 수행하는 동안, 초기에는 서서히 전압 손실을 보이다가 160 시간 충-방전이 진행된 이후부터 급격한 전압 손실을 보이는 것을 확인할 수 있다.
도 69는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 회로에 포함된 녹색 LED가 on/off되는 사진이고, 도 70은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개가 직렬로 연결된 회로에 포함된 적색 LED가 on/off되는 사진이다.
도 69 및 70을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지 2 개를 직렬로 연결한 회로에 포함된 약 2.9 V의 LED에 녹색 빛 또는 적색 빛이 켜지는 것에 따라, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 상용화된 전자 회로 소자에 용이하게 적용이 가능한 것을 확인할 수 있다.
도 71은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 연속적으로 방전 및 충전한 후에, 상기 금속-공기 전지의 음극으로 쓰이는 아연 전극의 표면을 관찰한 SEM 사진이다.
도 71을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 연속적으로 방전 및 충전한 후에, 상기 금속-공기 전지의 음극으로 쓰이는 아연 전극의 표면은 덴드라이트(dendrite)가 발생하지 않고 깨끗한 표면을 가지는 것을 확인할 수 있다.
도 72는 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 다양한 굽힘 각도로 굽혔을 경우의 방전 및 충전 그래프이다.
도 72를 참조하면, 0, 60, 120, 및 180 °의 굽힘 각도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우, 굽히기 전과 비교하여 충-방전 특성에 변화가 없는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지가 플렉서블 전지에 적용되기 적합하다는 것을 의미한다.
도 73은 10 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우에 장기 정전류 방전 및 충전 전압 프로필이다.
도 73을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽히고 180 시간 동안 방전 및 충전을 반복하여도 전압 감소 없이 안정적으로 충-방전이 이루어진 것을 확인할 수 있다.
도 74는 1.0 V의 전위에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 다양한 굽힘 각도로 굽혔을 경우 임피던스 Nyquist 분포이다.
도 74를 참조하면, 0, 60, 120, 및 180 °의 굽힘 각도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우, 굽히기 전과 비교하여 계면 및 전하 이동 저항 특성에 변화가 없는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지가 플렉서블 전지에 적용되기 적합하다는 것을 의미한다.
도 75는 15 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지에 대하여 굽힘 횟수에 따라 변화하는 전압을 측정한 방전 그래프이다.
도 75를 참조하면, 방전이 진행되는 동안, 굽힘 횟수를 1000 사이클에서 2000 사이클로 증가시켜 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우, 굽히기 전과 같은 전압 특성을 유지하는 것을 확인할 수 있다.
도 76은 15 mA/cm2의 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지에 대하여 다양한 굽힘 각도에 따라 변화하는 전압을 측정한 방전 그래프이다.
도 76을 참조하면, 방전이 진행되는 동안, 0, 60, 120, 및 180 °의 굽힘 각도로, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속-공기 전지를 굽혔을 경우, 굽히기 전과 같은 전압 특성을 유지하는 것을 확인할 수 있다.
도 77은 50 mA/g의 전류 밀도에서, 본 발명의 실시 예 1, 실시 예 2, 및 비교 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충-방전 용량 프로필이다.
도 77을 참조하면, 본 발명의 실시 예 2에 다른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지가 505 mA h/g의 최초 충-방전 용량을 나타내고, 비교 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지가 417 mA h/g의 최초 충-방전 용량을 나타내는 것에 비해, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지가 648.7 mA h/g의 비교적 큰 최초 충-방전 용량을 나타내는 것을 확인할 수 있다.
도 78은 다양한 전류 밀도에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충-방전 용량 프로필이다.
도 78을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지는, 50 mA/g의 전류 밀도에서 648.7 mA h/g의 뛰어난 최초 충-방전 용량을 나타내고, 100 mA/g의 전류 밀도에서 547.4 mA h/g의 최초 충-방전 용량을 나타내며, 200 mA/g의 전류 밀도에서 299.3 mA h/g의 최초 충-방전 용량을 나타내는 것을 확인할 수 있다.
도 79는 다양한 사이클 수에서, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 최초 충-방전 용량 프로필이다.
도 79를 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지는, 1 사이클, 100 사이클 및 200 사이클로 충-방전을 진행하여도 초기의 충-방전 용량이 유지되는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지가 장기간 방전 및 충전에 안정적으로 사용이 가능한 것을 의미한다.
도 80은 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지의 사이클링 용량 프로필이다.
도 80을 참조하면, 본 발명의 실시 예 1에 따른 에어로겔 복합물을 이용한 금속(리튬)-공기 전지는, 400 시간 동안 연속적인 200 사이클 충-방전을 실시한 이후에, 전기 용량을 98 % 이상 유지하는 것을 확인할 수 있다. 이러한 현상은, 본 발명의 실시 예 1에 따른 에어로겔 복합물이 금속(리튬)-공기 전기에 이용되는 경우에 안정성이 뛰어나다는 것을 의미한다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명의 실시 예에 따른 에어로겔 복합물은 이차 전지, 전기 화학 소자 등 다양한 기술 분야에 활용될 수 있다.

Claims (21)

  1. 벤젠 및 아민을 포함하는 소스 용액을 준비하는 단계;
    상기 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계;
    상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 도핑 원소를 포함하는 도펀트를 혼합하고 열처리하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 도펀트의 상기 도핑 원소가 도핑된 수화젤을 제조하는 단계; 및
    상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 도핑 원소가 도핑된 다공성 에어로겔 복합물을 제조하는 단계를 포함하는 에어로겔 복합물의 제조 방법.
  2. 제1 항에 있어서,
    상기 제1 화합물을 제조하는 단계는,
    냉각 분위기에서, 상기 소스 용액에 산성 용액을 첨가하고 열처리하는 것을 포함하는 에어로겔 복합물의 제조 방법.
  3. 제1 항에 있어서,
    상기 도핑 원소는, 상기 제2 화합물의 벤젠 고리의 적어도 일부를 구성하여, 상기 도핑 원소를 포함하는 상기 벤젠 고리는 in-plane 구조를 유지하되,
    상기 도핑 원소는, 상기 제2 화합물을 구성하는 원소에 비해 크기가 상대적으로 큰 원소인 것을 포함하는 에어로겔 복합물의 제조 방법.
  4. 제3 항에 있어서,
    상기 제2 화합물은 C와 N으로 구성되고, 상기 도핑 원소는 P 또는 S 중에서 적어도 어느 하나를 포함하는 에어로겔 복합물의 제조 방법.
  5. 제1 항에 있어서,
    상기 제1 화합물은 hexaaminobenzene인 것을 포함하는 에어로겔 복합물의 제조 방법.
  6. 제1 항에 있어서,
    상기 수화젤을 제조하는 단계는,
    상기 제1 화합물, 상기 첨가물, 및 상기 도펀트에 가교제 및 산화제를 첨가하는 것을 포함하는 에어로겔 복합물의 제조 방법.
  7. 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 도핑 원소로 도핑된 다공성 에어로겔 복합물.
  8. 제7 항에 있어서,
    상기 다공성 에어로겔 복합물은 X-C2N(X: 도핑 원소)의 구조를 가지며, 상기 도핑 원소는, 상기 화합물을 구성하는 원소에 비해 크기가 상대적으로 큰 원소인 것을 포함하는 다공성 에어로겔 복합물.
  9. 제8 항에 있어서,
    상기 도핑 원소는, P 또는 S 중에서 적어도 어느 하나를 포함하는 다공성 에어로겔 복합물.
  10. 제7 항에 있어서,
    상기 화합물의 벤젠 고리에 도핑되는 상기 도핑 원소의 종류, 및 상기 도핑 원소가 상기 화합물의 벤젠 고리에 도핑되는 위치에 따라, 상기 도핑 원소를 포함하는 벤젠 고리에서, 상기 도핑 원소 및 상기 도핑 원소에 인접한 탄소 원소들 사이의 결합 각도가 제어되는 것을 포함하는 다공성 에어로겔 복합물.
  11. 제10 항에 있어서,
    상기 도핑 원소 및 상기 도핑 원소에 인접한 탄소 원소들 사이의 결합 각도에 따라, 상기 화합물과 상기 도핑 원소의 결합 에너지가 달라지고, 상기 도핑 원소를 포함하는 상기 화합물의 밴드 구조가 변형되는 것을 포함하는 다공성 에어로겔 복합물.
  12. 제7 항에 따른 다공성 에어로겔 복합물을 포함하는 양극;
    상기 양극과 이격된 음극; 및
    상기 양극 및 상기 음극 사이의 전해질을 포함하는 금속-공기 전지.
  13. 벤젠 및 아민을 포함하는 소스 용액을 열처리하여, 벤젠이 아미노화된 제1 화합물을 제조하는 단계;
    용매 중에, 상기 제1 화합물, 벤젠을 포함하는 첨가물, 및 황 원소를 포함하는 산도 조절 소스를 혼합하여, 상기 제1 화합물과 상기 첨가물의 벤젠이 중합된 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 수화젤을 제조하는 단계; 및
    상기 수화젤을 동결건조하고 열처리하여, 상기 제2 화합물에 상기 산도 조절 소스의 상기 황 원소가 결합된 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조의 에어로겔 복합물을 제조하는 단계를 포함하는 에어로겔 복합물의 제조 방법.
  14. 제13 항에 있어서,
    상기 용매 내의 유기 용매, 탈이온수(deionized water), 및 알코올의 부피 비율과, 첨가하는 상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, 상기 에어로겔 복합물의 N차원(N은 0 내지 3 중 어느 하나) 네트워크 구조를 제어하는 것을 포함하는 에어로겔 복합물의 제조 방법.
  15. 제14 항에 있어서,
    상기 용매 내의 상기 유기 용매, 상기 탈이온수, 및 상기 알코올의 부피 비율에 의해, 상기 수화젤이 성장하는 방향이 달라져 N차원 네트워크 구조가 형성되고,
    상기 산도 조절 소스의 종류 및 첨가되는 양에 의해, N차원 네트워크 구조가 성장되는 속도가 달라지는 것을 포함하는 에어로겔 복합물의 제조 방법.
  16. 제14 항에 있어서,
    상기 유기 용매는 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군, 또는 N,N-dimethylformamide 중에서 적어도 어느 하나를 포함하고,
    상기 산도 조절 소스는 thiourea, ammonium peroxydisulfate 또는 sulfuric acid 중에서 적어도 어느 하나를 포함하는 에어로겔 복합물의 제조 방법.
  17. 제16 항에 있어서,
    상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나에 ammonium peroxydisulfate 및 sulfuric acid가 첨가되는 것을 포함하고,
    상기 에어로겔 복합물은 3차원 네트워크 구조를 포함하는 에어로겔 복합물의 제조 방법.
  18. 제16 항에 있어서,
    상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 탈이온수의 부피 비가 동일한 것을 포함하고,
    thiourea 및 sulfuric acid가 첨가되는 것을 포함하고,
    상기 에어로겔 복합물은 2차원 네트워크 구조를 포함하는 에어로겔 복합물의 제조 방법.
  19. 제16 항에 있어서,
    상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 N,N-dimethylformamide의 부피 비가 동일한 것을 포함하고,
    ammonium peroxydisulfate가 첨가되는 것을 포함하고,
    상기 에어로겔 복합물은 1차원 네트워크 구조를 포함하는 에어로겔 복합물의 제조 방법.
  20. 제16 항에 있어서,
    상기 용매는, 1-methyl-2-pyrrolidinone, n-methylpyrrolidine, 및 2-methylpyrrolidine를 이루는 군 중에서 적어도 어느 하나와 상기 알코올의 부피 비가 동일한 것을 포함하고,
    thiourea 및 sulfuric acid가 첨가되는 것을 포함하고,
    상기 에어로겔 복합물은 0차원 네트워크 구조를 포함하는 에어로겔 복합물의 제조 방법.
  21. 아미노화된 벤젠 및 벤젠이 중합된 화합물이, 황 원소와 결합된 N차원(N은 0 내지 3 중 어느 하나)의 네트워크 구조의 에어로겔 복합물.
PCT/KR2018/016477 2017-12-21 2018-12-21 에어로겔 복합물 및 그의 제조 방법 WO2019125052A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170177544 2017-12-21
KR10-2017-0177544 2017-12-21
KR10-2018-0165619 2018-12-19
KR1020180165619A KR102198564B1 (ko) 2017-12-21 2018-12-19 에어로겔 복합물 및 그의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019125052A1 true WO2019125052A1 (ko) 2019-06-27

Family

ID=66993628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016477 WO2019125052A1 (ko) 2017-12-21 2018-12-21 에어로겔 복합물 및 그의 제조 방법

Country Status (1)

Country Link
WO (1) WO2019125052A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534749A (zh) * 2019-08-19 2019-12-03 武汉大学 水平式水凝胶改性空气阴极、微生物燃料电池以及制法
CN110589826A (zh) * 2019-10-15 2019-12-20 东北林业大学 一种n、p共掺杂炭气凝胶及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FU, J.: "Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries", ADVANCED MATERIALS, vol. 27, 25 August 2015 (2015-08-25), pages 5617 - 5622, XP055620038 *
MAHMOOD, J.: "Cobalt Oxide Encapsulated in C2N-h2D Network Polymer as a Catalyst for Hydrogen Evolution", CHEMISTRY OF MATERIALS, vol. 27, 24 June 2015 (2015-06-24), pages 4860 - 4864, XP055537485, doi:10.1021/acs.chemmater.5b01734 *
MAHMOOD, J.: "Synthesis of Multifunctional Two-Dimensional Structures and Their Applications", DOCTORAL THESIS- UNIST, 7 June 2015 (2015-06-07), pages 1 - 135, XP055620025 *
SHINDE, S. S.: "Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries", ACS NANO, vol. 12, 20 December 2017 (2017-12-20) - 23 January 2018 (2018-01-23), pages 596 - 608, XP055620015 *
SHINDE, S. S.: "Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries", ACS NANO, vol. 11, no. 1, 21 December 2016 (2016-12-21), pages 347 - 357, XP055620020 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534749A (zh) * 2019-08-19 2019-12-03 武汉大学 水平式水凝胶改性空气阴极、微生物燃料电池以及制法
CN110534749B (zh) * 2019-08-19 2020-12-18 武汉大学 水平式水凝胶改性空气阴极、微生物燃料电池以及制法
CN110589826A (zh) * 2019-10-15 2019-12-20 东北林业大学 一种n、p共掺杂炭气凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2016072810A1 (ko) 엑시톤 버퍼층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
WO2018110776A1 (ko) 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터
WO2019022268A1 (ko) 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
WO2019125052A1 (ko) 에어로겔 복합물 및 그의 제조 방법
WO2021141376A1 (ko) 선분산제 조성물, 이를 포함하는 전극 및 이차전지
WO2020009436A1 (ko) 고온 특성이 향상된 리튬 이차전지
WO2018066974A1 (ko) 전극 섬유 및 그 제조 방법
WO2021075874A1 (ko) 양극 활물질, 및 그 제조 방법
WO2015088252A1 (ko) 리튬이온 이차전지용 음극 활물질 및 이의 제조방법
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2023101522A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2016144097A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2021167432A1 (ko) 전극 구조체, 이를 포함하는 금속 공기 전지의 양극용 전극 구조체, 및 그 제조 방법
WO2021167435A1 (ko) 전기 화학 소자, 및 그 제조 방법
WO2021167434A1 (ko) 금속 음극 전극, 이를 포함하는 이차 전지, 및 그 제조 방법
WO2022203408A1 (ko) 양극용 전극 구조체의 제조 방법, 이를 통해 제조된 전극 구조체, 및 이를 포함하는 이차 전지
WO2023158264A1 (ko) 규소-탄소 복합체, 이의 제조방법, 및 이를 포함하는 음극 활물질 및 리튬 이차전지
WO2024010263A1 (ko) 재생 양극 활물질, 이의 재생 방법 및 이를 포함하는 이차 전지
WO2021167433A1 (ko) 벤딩 구조의 이차 전지, 및 그 제조 방법
WO2015111801A1 (ko) 폴리아닐린 나노페이스트 및 이의 제조방법
WO2023182826A1 (ko) 규소-탄소 복합체, 이의 제조방법, 및 이를 포함하는 음극 활물질 및 리튬 이차전지
WO2024090905A1 (ko) 고분자 고체 전해질 및 이를 포함하는 전고체 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892572

Country of ref document: EP

Kind code of ref document: A1